WorldWideScience

Sample records for cleaning cecc process

  1. Cleaning of spent solvent and method of processing cleaning liquid waste

    International Nuclear Information System (INIS)

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  2. Cleaning Process Development for Metallic Additively Manufactured Parts

    Science.gov (United States)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  3. Preliminary Results of Cleaning Process for Lubricant Contamination

    Science.gov (United States)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.

  4. Preliminary Results of Cleaning Process for Lubricant Contamination

    International Nuclear Information System (INIS)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-01-01

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented

  5. Effect of Thickness on the Morphology and Corrosion Behavior of Cerium-Based Conversion Coatings on AZ31B Magnesium Alloy

    Science.gov (United States)

    Castano, Carlos E.; Maddela, Surender; O'Keefe, Matthew J.; Wang, Yar-Ming

    Cerium-based conversion coatings (CeCCs) were deposited onto AZ31B magnesium alloy substrates using a spontaneous reaction of CeCl3, H2O2 and gelatin in a water-based solution. The coating thickness was adjusted by controlling the immersion time in the deposition solution. Prior to deposition, the AZ31B substrates were treated using an acid pickling in nitric acid and then an alkaline cleaning in sodium metasilicate pentahydrate. After deposition, the coated samples were immersed in a phosphate bath that converted cerium oxide/hydroxide into cerium phosphate. Electrochemical impedance spectroscopy, potentiodynamic polarization and neutral salt spray testing studies indicated that 100 nm thick CeCC had better corrosion performance than 400 nm coatings. Characterization of the CeCCs by transmission electron microscopy (TEM) revealed a three layer structure with different compositions.

  6. Noncontact COS charge analysis for in-line monitoring of wet cleaning processes

    Science.gov (United States)

    Zhang, Xiafang; Juang, Min; Tai, Sung-Shan; Chen, Kuo-in; Wossen, Ejigu; Horner, Gregory

    1998-08-01

    Contamination levels in chemical cleaning equipment and wafer cleanliness in general are very critical to semiconductor manufacturers. In this work, a Keithley Instruments non contact electrical tester (Quantox) is used to measure the mobile ion (Qm) contamination in a variety of cleaning processes. Results show that photoresist strip cleaning process has a higher mobile ion concentration than standard pre-diffusion cleaning process. RCA1, RCA2 and HF solutions mapping measured by the Quantox indicates some negative static charges on the surface after cleaning. This negative field appears to assist Qm removal during wet chemical cleaning. The dependence of flatband voltage and other oxide charges on various cleaning processes has also been investigated using the Quantox. The data suggests that a dipole layer has been formed by a surface reaction during chemical cleaning.

  7. Processing method for cleaning water waste from cement kneader

    International Nuclear Information System (INIS)

    Soda, Kenzo; Fujita, Hisao; Nakajima, Tadashi.

    1990-01-01

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  8. Update-processing steam generator cleaning solvent at Palo Verde

    International Nuclear Information System (INIS)

    Peters, G.

    1996-01-01

    Framatome Technologies Inc.(FTI) recently completed the steam generator chemical cleanings at the Palo Verde Nuclear Generating Station Units 1, 2 and 3. Over 500,000 gallons of low-level radioactive solvents were generated during these cleanings and were processed on-site. Chemical cleaning solutions containing high concentrations of organic chelating wastes are difficult to reduce in volume using standard technologies. The process that was ultimately used at Palo Verde involved three distinct processing steps: The evaporation step was conducted using FTI's submerged combustion evaporator (SCE) that has also been successfully used at Arkansas Nuclear One - Unit 1, Three Mile Island - Unit 1, and Oconee on similar waste. The polishing step of the distillate used ultrafiltration (UF) and reverse osmosis (RO) technology that was also used extensively by Ontario Hydro to assist in their processing of chemical cleaning solvent. This technology, equipment, and operations personnel were provided by Zenon Environmental, Inc. The concentrate from the evaporator was absorbed with a special open-quotes peat mossclose quotes based media that allowed it to be shipped and buried at the Environcare of Utah facility. This is the first time that this absorption media or burial site has been used for chemical cleaning solvent

  9. Material compatibility and corrosion control of the KWU chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1994-01-01

    The concentrations of salt impurities within the deposits on the tube sheet and in the tube to tube-support-plate crevices can induce a variety of corrosion mechanisms on steam generator tubes. One of the most effective ways of counteracting corrosion mechanisms and thus of improving steam generator performance is to clean the steam generators and keep them in a clean condition. As shown by field results chemical cleaning is a way of removing hazardous deposits from steam generators. All available chemical cleaning processes use inhibitors to control the corrosion except the KWU chemical cleaning process. In this article the corrosion control technique of KWU Chemical Cleaning Process without using conventional inhibitors will be explained and the state of the field experience with respect to material compatibility will be presented. (author). 4 figs., 1 tab., 8 refs

  10. Characterization of the corrosion protection mechanism of cerium-based conversion coatings on high strength aluminum alloys

    Science.gov (United States)

    Pinc, William Ross

    The aim of the work presented in this dissertation is to investigate the corrosion protection mechanism of cerium-based conversion coatings (CeCCs) used in the corrosion protection of high strength aluminum alloys. The corrosion resistance of CeCCs involves two general mechanisms; barrier and active. The barrier protection mechanism was influenced by processing parameters, specifically surface preparation, post-treatment, and the use of gelatin. Post-treatment and the addition of gelatin to the coating solution resulted in fewer cracks and transformation of the coating to CePO4, which increased the corrosion resistance by improving the barrier aspect of CeCCs. CeCCs were found to best act as barriers when crack size was limited and CePO4 was present in the coating. CeCCs were found to protect areas of the substrate that were exposed in the coating, indicating that the coatings were more than simple barriers. CeCCs contained large cracks, underneath which subsurface crevices were connected to the surface by the cracks. Despite the observation that no cerium was present in crevices, coatings with crevices exhibited significant corrosion protection. The impedance of post-treated coatings with crevices increased during salt spray exposure. The increase in impedance was associated with the formation of protective oxides / hydroxides; however, crevice-free coatings also exhibited active protection leading to the conclusion that the formation of interfacial layers between the CeCC and the substrate also contributed to the active protection. Based on the overall results of the study, the optimal corrosion protection of CeCCs occurred when processing conditions produced coatings with morphologies and compositions that facilitated both the barrier and active protection mechanisms.

  11. EPRI/Alberta Research Council Clean Soil Process

    International Nuclear Information System (INIS)

    Spear, C.E.

    1992-12-01

    The EPRI/Alberta Research Council Clean Soil Process can remove hydrocarbon contamination from waste material from manufactured gas plants. The process uses coal as an absorbent to remove hydrocarbons. For petroleum contaminated soils, the process can bring residual concentration of petroleum below 0.1 percent and polycyclic aromatic hydrocarbon (PAH) concentration to 1--5 ppM. For coal tar contaminated soils, the process can reduce tar concentrations to about 0.05-0.5 percent and the PAH concentration to about 10--60 ppM. Additional post-treatment may be required for some precleaned soils. The process yields by-product agglomerates suitable for combustion in industrial boilers. Light hydrocarbons such as benzene are vaporized from the soil, condensed and collected in the Process and disposed of off-site. The Clean Soil Process has been tested at pilot-plant scale. A conceptual design for a 200-tons-per-day plant yielded a capital cost estimated at $3.1 million with a per-ton operating cost of $40

  12. Field experience with KWU SG chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1989-01-01

    The ingress of corrosion products into PWR steam generators (SG's) their deposition and the subsequent concentration of salt impurities can induce a variety of mechanisms for corrosion attack on SG tubing. Already, some plants have had to replace their steam generators due to severe corrosion damage and others are seriously considering the same costly action in the near future. One of the most effective ways to counteract corrosion mechanisms and thus to reduce the likelihood of SG replacement becoming necessary is to clean the SG's and to keep them clean. For many years, the industry has been involved in developing different types of cleaning techniques. Among these, chemical cleaning has been shown to be especially effective. In this article, the KWU chemical cleaning process, for which there is considerable application experience, is described. The results of field applications will be presented together with material compatibility data and information on cleaning effectiveness. (author)

  13. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report

    International Nuclear Information System (INIS)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report

  14. New, clean handling process introduced to improve cable quality

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, C G

    1990-05-01

    The clean room system introduced by Canada Wire and Cable Limited in its Toronto plant for its cable manufacturing operation is described. While clean room technology is common in the food processing industry, optical and aerospace manufacturing processes, this is the first time it has been applied to wire and cable extrusion in North America. The purpose of the clean compound handling system is to prevent particle contamination in the shielding and cable insulation materials, as part of an effort to prevent premature underground electric cable failures. Two rooms are dedicated to handling different types of insulation compound, two are dedicated to receiving semi-conducting shielding material, and the fifth room functions as an air lock for the two insulation rooms. The atmosphere is highly regulated with programmable logic control. The air supply filters capture 99.97% of all particles 0.3 microns or larger. The system also maintains air temperature, relative humidity and static pressure. The life variability of cross-linked polyethylene primary distribution cable is dependant on five factors: material purity, extra clean compound handling, cable design, manufacturing process, and installation and operation practices. The clean room system is expected to result in cable that is more resistant to water treeing failures. 2 figs.

  15. Occupational radon expositions during cleaning processes of water reservoirs

    International Nuclear Information System (INIS)

    Hingmann, H.; Ehret, V.; Hegenbart, L.; Krieg, K.

    2002-01-01

    According to the new German ''Strahlenschutzverordnung'' (Radiation Protection Directive) the annual dose due to the exposition to radon has to be estimated for employees of water works. This includes employees of service companies. While the job of employees of water works usually covers a broad spectrum of different activities, employees of service companies may spend a considerable amount of time of their total working hours cleaning water reservoirs. This investigation is concerned with this type of employees. The radon exposition of one or more cleaning processes were determined by passive dosimeters. The mean radon concentration was calculated for the duration of the cleaning process. In some cases, members of the project team accompanied cleaning processes and performed stationary radon measurements on site. Sometimes, parallel to the passive dosimeters, electronic dosimeters were used to measure personal exposure. The results - and results from additional laboratory reference measurements - are compared. All results until January 2002 are considered. The project still goes on and will end in summer of 2002. Experiences made during this investigation are described in the end of this report. (orig.)

  16. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    Science.gov (United States)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were

  17. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    International Nuclear Information System (INIS)

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E.; Lovera, P.; Fleche, J. L.; Lacroix, M.; Carra, O.; Dechelette, F.; Prele, G.; Rodriguez, G.

    2012-01-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO 2 interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  18. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Lovera, P.; Fleche, J. L. [CEA, DEN, DPC Saclay, F-91191 Gif-sur-Yvette (France); Lacroix, M. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Carra, O. [AREVA / NP, 10 Rue Juliette Recamier, 69003 Lyon (France); Dechelette, F. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Prele, G. [EDF/SEPTEN, 12-14 avenue Dutrievoz, 69628 Villeurbane Cedex (France); Rodriguez, G. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2012-07-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  19. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  20. Bubble size distribution analysis and control in high frequency ultrasonic cleaning processes

    International Nuclear Information System (INIS)

    Hauptmann, M; Struyf, H; Mertens, P; Heyns, M; Gendt, S De; Brems, S; Glorieux, C

    2012-01-01

    In the semiconductor industry, the ongoing down-scaling of nanoelectronic elements has lead to an increasing complexity of their fabrication. Hence, the individual fabrication processes become increasingly difficult to handle. To minimize cross-contamination, intermediate surface cleaning and preparation steps are inevitable parts of the semiconductor process chain. Here, one major challenge is the removal of residual nano-particulate contamination resulting from abrasive processes such as polishing and etching. In the past, physical cleaning techniques such as megasonic cleaning have been proposed as suitable solutions. However, the soaring fragility of the smallest structures is constraining the forces of the involved physical removal mechanisms. In the case of 'megasonic' cleaningcleaning with ultrasound in the MHz-domain – the main cleaning action arises from strongly oscillating microbubbles which emerge from the periodically changing tensile strain in the cleaning liquid during sonication. These bubbles grow, oscillate and collapse due to a complex interplay of rectified diffusion, bubble coalescence, non-linear pulsation and the onset of shape instabilities. Hence, the resulting bubble size distribution does not remain static but alternates continuously. Only microbubbles in this distribution that show a high oscillatory response are responsible for the cleaning action. Therefore, the cleaning process efficiency can be improved by keeping the majority of bubbles around their resonance size. In this paper, we propose a method to control and characterize the bubble size distribution by means of 'pulsed' sonication and measurements of acoustic cavitation spectra, respectively. We show that the so-obtained bubble size distributions can be related to theoretical predictions of the oscillatory responses of and the onset of shape instabilities for the respective bubbles. We also propose a mechanism to explain the enhancement of both acoustic and cleaning

  1. Process for cleaning radioactively contaminated metal surfaces

    International Nuclear Information System (INIS)

    Mihram, R.G.; Snyder, G.A.

    1975-01-01

    A process is described for removing radioactive scale from a ferrous metal surface, including the steps of initially preconditioning the surface by contacting it with an oxidizing solution (such as an aqueous solution of an alkali metal permanganate or hydrogen peroxide), then, after removal or decomposition of the oxidizing solution, the metallic surface is contacted with a cleaning solution which is a mixture of a mineral acid and a complexing agent (such as sulfuric acid and oxalic acid), and which preferably contains a corrosion inhibitor. A final step in the process is the treatment of the spent cleaning solution containing radioactive waste materials in solution by adding a reagent selected from the group consisting of calcium hydroxide or potassium permanganate and an alkali metal hydroxide to thereby form easily recovered metallic compounds containing substantially all of the dissolved metals and radioactivity. (auth)

  2. PWR steam generator chemical cleaning. Phase I: solvent and process development. Volume II

    International Nuclear Information System (INIS)

    Larrick, A.P.; Paasch, R.A.; Hall, T.M.; Schneidmiller, D.

    1979-01-01

    A program to demonstrate chemical cleaning methods for removing magnetite corrosion products from the annuli between steam generator tubes and the tube support plates in vertical U-tube steam generators is described. These corrosion products have caused steam generator tube ''denting'' and in some cases have caused tube failures and support plate cracking in several PWR generating plants. Laboratory studies were performed to develop a chemical cleaning solvent and application process for demonstration cleaning of the Indian Point Unit 2 steam generators. The chemical cleaning solvent and application process were successfully pilot-tested by cleaning the secondary side of one of the Indian Point Unit 1 steam generators. Although the Indian Point Unit 1 steam generators do not have a tube denting problem, the pilot test provided for testing of the solvent and process using much of the same equipment and facilities that would be used for the Indian Point Unit 2 demonstration cleaning. The chemical solvent selected for the pilot test was an inhibited 3% citric acid-3% ascorbic acid solution. The application process, injection into the steam generator through the boiler blowdown system and agitation by nitrogen sparging, was tested in a nuclear environment and with corrosion products formed during years of steam generator operation at power. The test demonstrated that the magnetite corrosion products in simulated tube-to-tube support plate annuli can be removed by chemical cleaning; that corrosion resulting from the cleaning is not excessive; and that steam generator cleaning can be accomplished with acceptable levels of radiation exposure to personnel

  3. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Science.gov (United States)

    2010-01-01

    ... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...

  4. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemen's high temperature process

    International Nuclear Information System (INIS)

    Verma, K.; MacNeil, C.; Odar, S.

    1996-01-01

    The secondary sides of all four steam generators at the Point Lepreau Nuclear Generating Stations were cleaned during the 1995 annual outage run-down using the Siemens high temperature chemical cleaning process. Traditionally all secondary side chemical cleaning exercises in CANDU as well as the other nuclear power stations in North America have been conducted using a process developed in conjunction with the Electric Power Research Institute (EPRI). The Siemens high temperature process was applied for the first time in North America at the Point Lepreau Nuclear Generating Station (PLGS). The paper discusses experiences related to the pre and post award chemical cleaning activities, chemical cleaning application, post cleaning inspection results and waste handling activities. (author)

  5. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...

  6. Alternatives to Organic Solvents in Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1998-01-01

    To control chemical hazards in work places, substitution of harmful substances with less harmful or non-toxic products is now a method used in many countries and in many companies. It has previously been demonstrated that it is desirable and possible to use non-volatile, low-toxic vegetable...... cleaning agents in offset printing companies instead of volatile, toxic organic solvents. The present study is based on a project with the aim of defining other industrial processes, where organic solvents used for cleaning or degreasing can be replaced by non-volatile, low-toxic products, which are based...... on esters from fatty acids of vegetable origin (vegetable esters - VE).The study indicates that industrial cleaning/degreasing with organic solvents may be substituted with VEs on metal surfaces and on some coated surfaces, in manufacture of paints and inks, use of paints, use of inks (printing), metal...

  7. Substitution of Organic Solvents in Selected Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas; Rasmussen, Pia Brunn

    1997-01-01

    Volatile organic solvents (VOC)are becoming increasingly unwanted in industrial processes. Substitution of VOC with non-volatile, low-toxic compounds is a possibility to reduce VOC-use. It has been successfully demonstrated, that organic solvents used in cleaning processes in sheet offset printing...

  8. Tests of an environmental and personnel safe cleaning process for BNL accelerator and storage ring components

    International Nuclear Information System (INIS)

    Foerster, C.L.; Lanni, C.; Lee, R.; Mitchell, G.; Quade, W.

    1996-10-01

    A large measure of the successful operation of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) for over a decade can be attributed to the cleaning of its UHV components during and after construction. A new UHV cleaning process, which had to be environmentally and personnel safe, was needed to replace the harsh, unfriendly process which was still in use. Dow Advanced Cleaning Systems was contracted to develop a replacement process without the use of harsh chemicals and which must clean vacuum surfaces as well as the existing process. Acceptance of the replacement process was primarily based on Photon Stimulated Desorption (PSD) measurements of beam tube samples run on NSLS beam line U10B. One meter long beam tube samples were fabricated from aluminum, 304 stainless steel and oxygen free copper. Initially, coupon samples were cleaned and passed preliminary testing for the proposed process. Next, beam tube samples of each material were cleaned, and the PSD measured on beam line U10B using white light with a critical energy of 487 ev. Prior to cleaning, the samples were contaminated with a mixture of cutting oils, lubricants, vacuum oils and vacuum grease. The contaminated samples were then baked. Samples of each material were also cleaned with the existing process after the same preparation. Beam tube samples were exposed to between 10 22 and 10 23 photons per meter for a PSD measurement. Desorption yields for H 2 , CO, CO 2 , CH 4 and H 2 O are reported for both the existing cleaning and for the replacement cleaning process. Preliminary data, residual gas scans, and PSD results are given and discussed. The new process is also compared with new cleaning methods developed in other laboratories

  9. Development of Statistical Process Control Methodology for an Environmentally Compliant Surface Cleaning Process in a Bonding Laboratory

    Science.gov (United States)

    Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.

    1997-01-01

    Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor

  10. Textile Dry Cleaning Using Carbon Dioxide : Process, Apparatus and Mechanical Action

    NARCIS (Netherlands)

    Sutanto, S.

    2014-01-01

    Fabrics that are sensitive to water, may wrinkle or shrink when washed in regular washing machines and are usually cleaned by professional dry cleaners. Dry cleaning is a process of removing soils from substrate, in this case textile, using a non-aqueous solvent. The most common solvent in

  11. ANALYSIS ON TECHNOLOGICAL PROCESSES CLEANING OIL PIPELINES

    Directory of Open Access Journals (Sweden)

    Mariana PǍTRAŞCU

    2015-05-01

    Full Text Available In this paper the researches are presented concerning the technological processes of oil pipelines.We know several technologies and materials used for cleaning the sludge deposits, iron and manganese oxides, dross, stone, etc.de on the inner walls of drinking water pipes or industries.For the oil industry, methods of removal of waste materials and waste pipes and liquid and gas transport networks are operations known long, tedious and expensive. The main methods and associated problems can be summarized as follows: 1 Blowing with compressed air.2 manual or mechanical brushing, sanding with water or dry.3 Wash with water jet of high pressure, solvent or chemical solution to remove the stone and hard deposits.4 The combined methods of cleaning machines that use water jets, cutters, chains, rotary heads cutters, etc.

  12. Separation of mercury in industrial processes of Polish hard steam coals cleaning

    Directory of Open Access Journals (Sweden)

    Wierzchowski Krzysztof

    2016-01-01

    Full Text Available Coal use is regarded as one of main sources of anthropogenic propagation of mercury in the environment. The coal cleaning is listed among methods of the mercury emission reduction. The article concerns the statistical assessment of mercury separation between coal cleaning products. Two industrial processes employed in the Polish coal preparation plants are analysed: coal cleaning in heavy media vessels and coal cleaning in jigs. It was found that the arithmetic mean mercury content in coarse and medium coal size fractions for clean coal from heavy media vessels, amounts 68.9 μg/kg, and most of the results lay below the mean value, while for rejects it amounts 95.5 μg/kg. It means that it is for around 25 μg/kg greater than in the clean coal. The arithmetic mean mercury content in raw coal smalls amounts around 118 mg/kg. The cleaning of smalls in jigs results in clean coal and steam coal blends characterized by mean mercury content 96.8 μg/kg and rejects with mean mercury content 184.5 μg/kg.

  13. Tests of an environmental and personnel safe cleaning process for Brookhaven National Laboratory accelerator and storage ring components

    International Nuclear Information System (INIS)

    Foerster, C.L.; Lanni, C.; Lee, R.; Mitchell, G.; Quade, W.

    1997-01-01

    A large measure of the successful operation of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) for over a decade can be attributed to the cleaning of its ultrahigh vacuum (UHV) components during and after construction. A new UHV cleaning process, which has to be environmentally and personnel safe, is needed to replace the harsh, unfriendly process which is still in use. Dow Advanced Cleaning Systems was contracted to develop a replacement process without the use of harsh chemicals and which must clean vacuum surfaces as well as the existing process. Acceptance of the replacement process was primarily based on photon stimulated desorption (PSD) measurements of beam tube samples run on NSLS beam line U10B. One meter long beam tube samples were fabricated from aluminum, 304 stainless steel, and oxygen-free copper. Initially, coupon samples were cleaned and passed preliminary testing for the proposed process. Next, beam tube samples of each material were cleaned, and the PSD measured on beam line U10B using white light with a critical energy of 487 eV. Prior to cleaning, the samples were contaminated with a mixture of cutting oils, lubricants, vacuum oils, and vacuum grease. The contaminated samples were then baked. Samples of each material were also cleaned with the existing process after the same preparation. Beam tube samples were exposed to between 10 22 and 10 23 photons per meter for a PSD measurement. Desorption yields for H 2 , CO, CO 2 , CH 4 , and H 2 O are reported for both the existing cleaning and for the replacement cleaning process. Preliminary data, residual gas scans, and PSD results are given and discussed. The new process is also compared with new cleaning methods developed in other laboratories. After modification, the new UHV cleaning process was accepted by BNL

  14. Determination of a cleaning and decontamination process using solvents

    International Nuclear Information System (INIS)

    Boutot, P.; Schipfer, P.

    1967-03-01

    This work has been carried out on samples of the white cotton serge material of which most of the working overalls of the Nuclear Research Centre are made. The aims are: - to determine,from the decontamination and cleaning points of view, the efficiency of various solvents (white-spirit, trichloroethylene, perchlorethylene and tri-chloro-trifluoroethane) and the role of additives likely to improve the treatment; - to control the textile from the wear and shrinkage points of view; - to try to develop a basic cleaning and decontamination process as a function of the possibilities of each solvent considered. (authors) [fr

  15. Optimizing a cleaning process for multilayer-dielectric- (MLD) diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Ashe, B. [Univ. of Rochester, NY (United States); Giacofei, C. [Univ. of Rochester, NY (United States); Myhre, G. [Univ. of Rochester, NY (United States); Schmid, A. W. [Univ. of Rochester, NY (United States)

    2007-12-20

    An essential component for the OMEGA EP short-pulse petawatt laser system is the grating compressor chamber (GCC). This large (12,375 ft3) vacuum chamber contains critical optics where laser-pulse compression is performed at the output of the system on two 40-cm-sq-aperture, IR (1054-nm) laser beams. Critical to this compression, within the GCC, are four sets of tiled multilayer-dielectric- (MLD) diffraction gratings that provide the capability for producing 2.6-kJ output IR energy per beam at 10 ps. The primary requirements for these large-aperture (43-cm × 47-cm) gratings are diffraction efficiencies greater than 95%, peak-to-valley wavefront quality of less than λ/10 waves, and laser-induced-damage thresholds greater than 2.7 J/cm2 at 10-ps measured beam normal. Degradation of the grating laser-damage threshold due to adsorption of contaminants from the manufacturing process must be prevented to maintain system performance. In this paper we discuss an optimized cleaning process to achieve the OMEGA EP requirements. The fabrication of MLD gratings involves processes that utilize a wide variety of both organic materials (photoresist processes) and inorganic materials (metals and metal oxides) that can affect the final cleaning process. Finally, a number of these materials have significant optical absorbance; therefore, incomplete cleaning of these residues may result in the MLD gratings experiencing laser damage.

  16. Development of advanced coal cleaning process; Kodo sekitan kaishitsu gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Osaka, S [Center for Coal Utilization, Japan, Tokyo (Japan); Akimoto, A; Yamashita, T [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-09-01

    This paper aims to develop a clean coal production process which excellently removes environmental pollutant, is low-costed, and need no particular systems for distribution of products. The result of the development was described paying attention to column flotation which is a technology to high-efficiently select particulate regions, particulate heavy media cyclone, magnetic separation, and the basic design of the process into which those above were integrated. The two-stage selection process, which is an integration of column flotation and particulate heavy media cyclone into the conventional coal preparation equipment, can produce low-ash clean coal at high separation efficiency and also suppress the rise in processing cost. This process was also effective for removal of sulfur content and trace metal elements. The use of clean coal at power plant can be effective for not only the reduction in ash treatment amount, but the aspect of boiler operation characteristics such as heat transfer efficiency of boiler furnace wall, ash related troubles, loads of electrostatic precipitator, loads of flue gas desulfurization facilities. 17 figs., 5 tabs.

  17. Challenges with modifications of the McClean Lake mill to process midwest ore

    International Nuclear Information System (INIS)

    Nguyen, T.T.; Backham, L.

    2010-01-01

    Midwest is a unique uranium deposit with exceptionally high arsenic content. The ore body is located 17 km west of the McClean Lake operation. The McClean Lake mill will be modified to process Midwest ore and handle solid wastes from the Midwest water treatment plant. This paper describes the modifications required of the McClean Lake mill, process challenges associated with treatment of the arsenic, and the possibility of recovering nickel and cobalt as a by-product. It also reviews the complexity in the design of the Midwest water treatment facility which incorporates reverse osmosis technology with conventional physical-chemical water treatment. (author)

  18. Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect

    Energy Technology Data Exchange (ETDEWEB)

    Meng Fantao; Chu Jinkui [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian (China); Luo Gang; Zhou Ye; Carlberg, Patrick; Heidari, Babak [Obducat AB, SE-20125 Malmoe (Sweden); Maximov, Ivan; Montelius, Lars; Xu, H Q [Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden); Nilsson, Lars, E-mail: ivan.maximov@ftf.lth.se [Department of Food Technology, Engineering and Nutrition, Lund University, Box 117, S-22100 Lund (Sweden)

    2011-05-06

    Nanoimprint lithography (NIL) is a nonconventional lithographic technique that promises low-cost, high-throughput patterning of structures with sub-10 nm resolution. Contamination of nanoimprint stamps is one of the key obstacles to industrialize the NIL technology. Here, we report two efficient approaches for removal of typical contamination of particles and residual resist from stamps: thermal and ultraviolet (UV) imprinting cleaning-both based on the self-cleaning effect of imprinting process. The contaminated stamps were imprinted onto polymer substrates and after demolding, they were treated with an organic solvent. The images of the stamp before and after the cleaning processes show that the two cleaning approaches can effectively remove contamination from stamps without destroying the stamp structures. The contact angles of the stamp before and after the cleaning processes indicate that the cleaning methods do not significantly degrade the anti-sticking layer. The cleaning processes reported in this work could also be used for substrate cleaning.

  19. Application of rapid read-out cleaning indicators for improved process control in hospital sterile services departments.

    Science.gov (United States)

    Nugent, P G; Modi, T; McLeod, N; Bock, L J; Smith, C; Poolman, T M; Warburton, R; Meighan, P; Wells, P; Sutton, J M

    2013-05-01

    Heightened awareness of the importance of cleaning has led to an emphasis on automated systems for the decontamination of re-usable medical devices. The authors have previously described an enzymatic indicator system, based on thermostable adenylate kinases (tAK), for quantitative monitoring of automated cleaning processes within hospital sterile services departments (SSDs). To evaluate tAK indicators for routine process monitoring across a range of SSDs with different cleaning chemistries and different automated washer disinfectors (AWDs). tAK indicator devices and alternative industry test indicators were included in five independent cleaning cycles in each of eight different AWDs. Residual tAK post wash was determined by a coupled luciferase assay using a modified hygiene monitoring system. In all cases, with the exception of a single test, the alternative indicators showed that cleaning had been adequate. They were not able to discriminate between the performance of different processes. In contrast, the tAK indicators were able to resolve differences in the performance of processes across the different SSDs. Where the tAK indicators identified cleaning to the limits of detection of the assay, this demonstrated a log10 enzyme removal factor of >5.69. The results suggest that tAK indicators are suitable for providing improved process control for automated cleaning processes, being able to distinguish between wash performance in different hospital settings and between individual process runs. This technology is believed to be a useful addition to routine AWD performance qualification when used as a daily or weekly test. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. Prioritizing substitution of organic solvents in industrial cleaning processes

    DEFF Research Database (Denmark)

    Rasmussen, Pia Brunn; Jacobsen, Thomas

    1997-01-01

    A method for prioritizing the substitution of volatile organic compounds (VOC) used in industrial cleaning processes is developed. The result is a matrix, which, if all information can be obtained, gives a comprehensive description of the effects, exposure and emission of VOC, as well as the pros...

  1. Controlling the cost of clean air - A new clean coal technology

    International Nuclear Information System (INIS)

    Kindig, J.K.; Godfrey, R.L.

    1991-01-01

    This article presents the authors' alternative to expensive coal combustion products clean-up by cleaning the coal, removing the sulfur, before combustion. Topics discussed include sulfur in coal and the coal cleaning process, the nature of a new coal cleaning technology, the impact on Clean Air Act compliance, and the economics of the new technology

  2. Automated cleaning of electronic components

    International Nuclear Information System (INIS)

    Drotning, W.; Meirans, L.; Wapman, W.; Hwang, Y.; Koenig, L.; Petterson, B.

    1994-01-01

    Environmental and operator safety concerns are leading to the elimination of trichloroethylene and chlorofluorocarbon solvents in cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates from electronic components. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations

  3. Plasma cleaning for waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.P.

    1993-07-01

    Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

  4. Ecological effectiveness of oil spill countermeasures: how clean is clean?

    International Nuclear Information System (INIS)

    Baker, J.M.

    1999-01-01

    This paper with 94 references examines background levels of hydrocarbons and the difficulty of defining clean. Processes and timescales for natural cleaning, and factors affecting natural cleaning timescales are considered. Ecological advantages and disadvantages of clean-up methods are highlighted, and five case histories of oil spills are summarised. The relationships between ecological and socio-economic considerations, and the need for a net environmental benefit analysis which takes into account the advantages and disadvantages of clean-up responses and natural clean-up are discussed. A decision tree for evaluating the requirement for shore clean-up is illustrated. (UK)

  5. NICE3 SO3 Cleaning Process in Semiconductor Manufacturing

    International Nuclear Information System (INIS)

    Blazek, Steve

    1999-01-01

    This fact sheet explains how Anon, Inc., has developed a novel method of removing photoresist--a light-sensitive material used to produce semiconductor wafers for computers--from the computer manufacturing process at reduced cost and greater efficiency. The new technology is technically superior to existing semiconductor cleaning methods and results in reduced use of hazardous chemicals

  6. Processes of elimination of activated corrosion products. Chemical decontamination - fuel cleaning

    International Nuclear Information System (INIS)

    Viala, C.; Brun, C.; Neuhaus, R.; Richier, S.; Bachet, M.

    2007-01-01

    The abatement of the individual and collective dose of a PWR imposes to control the source term through different processes implemented during the plant exploitation. When the limits of these different optimization processes are reached, the abatement of dose rates requires the implementation of curative processes. The objective is thus to eliminate the contaminated oxides and deposits present on surfaces free of radiation flux, and eventually on surfaces under radiation flux and on the fuel itself. The chemical decontamination of equipments and systems is the main and universal remedy implemented at different levels. On the other hand, the ultrasonic cleaning of fuel assemblies is a promising process. This paper aims at illustrating these different techniques using concrete examples of application in France and abroad (decontamination during steam generator replacement, decontamination of primary pump scroll in hot workshop, decontamination of loop sections, ultrasonic cleaning of fuel). The description of these different operations stresses on their efficiency in terms of dosimetric gain, duration of implementation, generation of wastes, and recontamination following their implementation. (J.S.)

  7. How to Address the Data Quality Issues in Regression Models: A Guided Process for Data Cleaning

    Directory of Open Access Journals (Sweden)

    David Camilo Corrales

    2018-04-01

    Full Text Available Today, data availability has gone from scarce to superabundant. Technologies like IoT, trends in social media and the capabilities of smart-phones are producing and digitizing lots of data that was previously unavailable. This massive increase of data creates opportunities to gain new business models, but also demands new techniques and methods of data quality in knowledge discovery, especially when the data comes from different sources (e.g., sensors, social networks, cameras, etc.. The data quality process of the data set proposes conclusions about the information they contain. This is increasingly done with the aid of data cleaning approaches. Therefore, guaranteeing a high data quality is considered as the primary goal of the data scientist. In this paper, we propose a process for data cleaning in regression models (DC-RM. The proposed data cleaning process is evaluated through a real datasets coming from the UCI Repository of Machine Learning Databases. With the aim of assessing the data cleaning process, the dataset that is cleaned by DC-RM was used to train the same regression models proposed by the authors of UCI datasets. The results achieved by the trained models with the dataset produced by DC-RM are better than or equal to that presented by the datasets’ authors.

  8. Self Cleaning HEPA Filtration without Interrupting Process Flow

    International Nuclear Information System (INIS)

    Wylde, M.

    2009-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research (Bergman et al 1997, Moore et al 1992) suggests that the then costs to the DOE, based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4,450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5,000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15,000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  9. Cleaning conveyor belts in the chicken-cutting area of a poultry processing plant with 45°c water.

    Science.gov (United States)

    Soares, V M; Pereira, J G; Zanette, C M; Nero, L A; Pinto, J P A N; Barcellos, V C; Bersot, L S

    2014-03-01

    Conveyor belts are widely used in food handling areas, especially in poultry processing plants. Because they are in direct contact with food and it is a requirement of the Brazilian health authority, conveyor belts are required to be continuously cleaned with hot water under pressure. The use of water in this procedure has been questioned based on the hypothesis that water may further disseminate microorganisms but not effectively reduce the organic material on the surface. Moreover, reducing the use of water in processing may contribute to a reduction in costs and emission of effluents. However, no consistent evidence in support of removing water during conveyor belt cleaning has been reported. Therefore, the objective of the present study was to compare the bacterial counts on conveyor belts that were or were not continuously cleaned with hot water under pressure. Superficial samples from conveyor belts (cleaned or not cleaned) were collected at three different times during operation (T1, after the preoperational cleaning [5 a.m.]; T2, after the first work shift [4 p.m.]; and T3, after the second work shift [1:30 a.m.]) in a poultry meat processing facility, and the samples were subjected to mesophilic and enterobacterial counts. For Enterobacteriaceae, no significant differences were observed between the conveyor belts, independent of the time of sampling or the cleaning process. No significant differences were observed between the counts of mesophilic bacteria at the distinct times of sampling on the conveyor belt that had not been subjected to continuous cleaning with water at 45°C. When comparing similar periods of sampling, no significant differences were observed between the mesophilic counts obtained from the conveyor belts that were or were not subjected to continuous cleaning with water at 45°C. Continuous cleaning with water did not significantly reduce microorganism counts, suggesting the possibility of discarding this procedure in chicken processing.

  10. Benefits of integrating chemical and mechanical cleaning processes for steam generator sludge removal

    International Nuclear Information System (INIS)

    Varrin, R.D.; Ferriter, A.M.; Oliver, T.W.; Le Surf, J.E.

    1992-01-01

    This paper discusses the benefits of performing in-bundle tubesheet lancing in conjunction with chemical cleaning of PWR and PHWR steam generators in which a hard sludge pile is known to exist. The primary benefits of in-bundle lancing are to: (1) increase the exposed area of the sludge pile by cutting furrows in the surface thereby enhancing dissolution of sludge, (2) reduce the volume of solvents required since material removed by lancing does not have to be dissolved chemically, (3) improve rinsing and removal of residual solvent between iron and copper dissolution steps, and (4) allow for verification of process effectiveness by providing high quality in-bundle visual inspection. The reduction in solvent volumes can lead to a significant reduction in solvent costs and waste processing. A case study which includes an economic evaluation for a combined chemical and mechanical cleaning shows a potential cost saving of up to US$ 300,000 over use of chemical cleaning alone. 14 refs., 2 tabs., 2 figs

  11. Electrochemical methods for corrosion testing of Ce-based coating prepared on AA6060 alloy by dip immersion method

    Directory of Open Access Journals (Sweden)

    Jegdić Bore V.

    2013-01-01

    Full Text Available Dip-immersion is simple and cost-effective method for the preparation of Ce-based conversion coatings (CeCCs, a promising alternative to the toxic chromate coatings, on the metal substrates. In this work CeCCs were prepared on Al-alloy AA6060 from aqueous solution of cerium chloride at room temperature. Effect of immersion time and post-treatment in phosphate solution on the microstructure and corrosion properties of the coatings was studied. The longer immersion time, the thicker but nonhomogeneous and cracked CeCCs. The post-treatment contributed to the sealing of cracks, as proven by an increase in corrosion resistance compared with as-deposited coatings. CeCCs prepared at longer deposition time and post-treated showed much better corrosion protection than those prepared at short deposition time. A detailed EIS study was undertaken to follow the evolution of corrosion behaviour of CeCCs with time of exposure to aggressive chloride environment (3.5 % NaCl. For the sake of comparison, the EIS properties of bare AA6060 were also investigated. A linear voltammetry was performed to complete the study. Results confirmed a formation of protective CeCCs on AA6060 surface. However, even CeCCs prepared at longer deposition time and post-treated provided a short term protection in aggressive environment, due to the small thickness. [Projekat Ministarstva nauke Republike Srbije, br. III 45019 i br. III 45012

  12. A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    International Nuclear Information System (INIS)

    Gao Baohong; Liu Yuling; Wang Chenwei; Wang Shengli; Zhou Qiang; Tan Baimei; Zhu Yadong

    2010-01-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO 4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection. (semiconductor technology)

  13. Flue Gas Cleaning With Alternative Processes and Reaction Media

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Huang, Jun; Riisager, Anders

    2007-01-01

    Alternative methods to the traditional industrial NOX and SOXflue gas cleaning processes working at lower temperatures and/orleading to useful products are desired. In this work we presentour latest results regarding the use of molten ionic media inelectrocatalytic membrane separation, ionic liquid...... reversibleabsorption and supported ionic liquid deNOX catalysis. Furtherdevelopment of the methods will hopefully make them suitable forinstallation in different positions in the flue gas duct ascompared to the industrial methods available today....

  14. A study on the chemical cleaning process and its qualification test by eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo [KHNP Central Research Institute, Daejeon (Korea, Republic of); Min, Kyoung Mahn [UMI Inc., Daejeon (Korea, Republic of)

    2013-12-15

    Steam Generator (SG) tube, as a barrier isolating the primary coolant system from the secondary side of nuclear power plants (NPP), must maintain the structural integrity for the public safety and their efficient power generation. So, SG tubes are subject to the periodic examination and the repairs if needed so that any defective tubes are not in service. Recently, corrosion related degradations were detected in the tubes of the domestic OPR-1000 NPP, as a form of axially oriented outer diameter stress corrosion cracking (ODSCC). According to the studies on the factors causing the heat fouling as well as developing corrosion cracking, densely scaled deposits on the secondary side of the SG tubes are mainly known to be problematic causing the adverse impacts against the soundness of the SG tubes. Therefore, the processes of various cleaning methods efficiently to dissolve and remove the deposits have been applied as well as it is imperative to maintain the structural integrity of the tubes after exposing to the cleaning agent. So qualification test (QT) should be carried out to assess the perfection of the chemical cleaning and QT is to apply the processes and to do ECT. In this paper, the chemical cleaning processes to dissolve and remove the scaled deposits are introduced and results of ECT on the artificial crack specimens to determine the effectiveness of those processes are represented.

  15. Development of the ultra-clean dry cleanup process for coal-based syngases: pilot-scale evaluation

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Slimane; P.V. Bush; J.L. Aderhold, Jr.; B.G. Bryan; R.A. Newby; D. A. Horazak; S.C. Jain [Gas Technology Institute, Des Plaines, IL (United States)

    2005-07-01

    This paper reports on a recent successful pilot-scale evaluation of the Ultra-Clean Process performance at a 10-ton/day coal gasifier facility. In these tests, carbonaceous feedstocks were gasified, using GTI's fluidized bed U-GAS{reg_sign} gasification technology, to generate syngas. The raw syngas was then conditioned and fed to the UCP test section for deep cleaning to meet very stringent cleaning requirements for chemical feedstocks or liquid-fuel synthesis applications, or for fuel-cell power generation. Fine particle sorbents for sulfur, halide, and mercury removal were injected into the syngas upstream of two stages of particulate controlled devices, 'barrier filter-reactors', coupling efficient particle capture with an effective entrained and filter cake reaction environment for very effective multiple contaminant removal. The goal of the test program was to confirm sorbent selection, filter-reactor operating parameters and sorbent-to-contaminant ratios, which were previously determined in the laboratory to have potential to reduce contaminant concentrations to very low levels. The pilot-scale data developed are being used to update conceptual evaluations, which have shown the technical feasibility, cost effectiveness and commercial merit for the Ultra-Clean Process compared to conventional, Rectisol-based syngas cleaning. 10 refs., 5 figs.

  16. [Cleaning and disinfection of surfaces in hospitals: Data on structure, process and result in the Frankfurt/Main Metropolitan Area].

    Science.gov (United States)

    Hausemann, A; Hofmann, H; Otto, U; Heudorf, Ursel

    2015-06-01

    In addition to hand hygiene and reprocessing of medical products, cleaning and disinfection of surfaces is also an important issue in the prevention of germ transmission and by implication infections. Therefore, in 2014, the quality of the structure, process and result of surface preparation of all hospitals in Frankfurt am Main, Germany, was monitored. All 17 hospitals transferred information on the quality of structure. Process quality was obtained through direct observation during cleaning and disinfection of rooms and their plumbing units. Result quality was gained using the fluorescent method, i.e. marking surfaces with a fluorescent liquid and testing if this mark has been sufficiently removed by cleaning. Structure quality: in all hospitals the employees were trained regularly. In 12 of them, the foremen had the required qualifications, in 6 hospitals unclarity as to the intersection of the cleaning and care services remained. In 14 hospitals only visible contamination was cleaned on the weekends, whereas complete cleaning was reported to take place in 12 hospitals on Saturdays and in 2 hospitals on Sundays. The contractually stipulated cleaning (observations specified in brackets) averaged 178 m(2)/h (148 m(2)/h) per patient room and 69 m(2)/h (33 m(2)/h) for bathrooms. Process quality: during process monitoring, various hand contact surfaces were prepared insufficiently. Result quality: 63 % of fluorescent markings were appropriately removed. The need for improvement is given especially in the area of the qualification of the foremen and a in a clear definition of the intersection between cleaning and care services, as well as in the regulations for weekends and public holidays.

  17. Automated cleaning and pre-processing of immunoglobulin gene sequences from high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Miri eMichaeli

    2012-12-01

    Full Text Available High throughput sequencing (HTS yields tens of thousands to millions of sequences that require a large amount of pre-processing work to clean various artifacts. Such cleaning cannot be performed manually. Existing programs are not suitable for immunoglobulin (Ig genes, which are variable and often highly mutated. This paper describes Ig-HTS-Cleaner (Ig High Throughput Sequencing Cleaner, a program containing a simple cleaning procedure that successfully deals with pre-processing of Ig sequences derived from HTS, and Ig-Indel-Identifier (Ig Insertion – Deletion Identifier, a program for identifying legitimate and artifact insertions and/or deletions (indels. Our programs were designed for analyzing Ig gene sequences obtained by 454 sequencing, but they are applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and Ig-Indel-Identifier have been implemented in Java and saved as executable JAR files, supported on Linux and MS Windows. No special requirements are needed in order to run the programs, except for correctly constructing the input files as explained in the text. The programs' performance has been tested and validated on real and simulated data sets.

  18. Chemical cleaning review

    International Nuclear Information System (INIS)

    Dow, B.L.; Thomas, R.C.

    1995-01-01

    Three main chemical processes for cleaning steam generators have evolved from the early work of the industry. Of the more than 50 chemical cleanings carried out to date most have been considered a success by the utilities performing them. (author)

  19. Processing method of radioactive cleaning drain

    International Nuclear Information System (INIS)

    Otsuka, Shigemitsu; Murakami, Tadashi; Kitao, Hideo

    1998-01-01

    Upon processing of radioactive cleaning drains, contained Co-60 is removed by a selectively adsorbing adsorbent. In addition, after removing suspended materials by a filtering device, Co-60 as predominant nuclides in the drain is selectively adsorbed. The concentration of objective Co-60 is in the order of 0.1 Bq/cc, and non-radioactive metal ions such as Na + ions are present in the order of ppm in addition to Co-60. A granular adsorbent for selectively adsorbing Co-60 is oxine-added activated carbon, and has a grain size of from 20 to 48 mesh. The granular adsorbent is used while being filled in an adsorbing tower. Since a relatively simple device comprising the filtering device and the adsorbing tower in combination is provided, the reduction of the construction cost can be expected. In addition, since no filtering aid is used in the filtering device, the amount of secondary wastes is small. (N.H.)

  20. Investigation of the timesaver process for de-burring and cleaning the plate for the Atlas Tilecalorimeter

    International Nuclear Information System (INIS)

    Guarino, V.; Kocenko, L.; Wood, K.

    1997-01-01

    The Timesaver belt grinding machine has been selected by the Atlas collaboration for deburring the master and spacer plates after die stamping and laser cutting, respectively. However, the question has been raised as to whether or not the plates are sufficiently clean after going through the Timesaver machine to immediately be glued into a submodule assembly. This would greatly enhance the production of submodules because the task of cleaning individual master and spacer plates is labor intensive and time consuming as well as raises environmental issues with the detergent that is used. In order to investigate the possibility of using the Timesaver process to clean the plates as well as debur them, several plates were run through the machine and their cleanliness inspected before and after. In addition, several glue samples were subjected to the same process, glued, and then pulled apart in an attempt to gauge the cleanliness of the plates. From this series of tests it can be concluded that the wet Timesaver machine can adequately prepare the surface of the master and spacer plates as well as clean the plates for gluing. The machine was able to adequately remove all of the oil and grime from the test plates. Also, from the single test on the dry machine it appears that significant cleaning will be required to adequately clean the plates before gluing in order to remove the remaining grit

  1. Optimization of the process of steel strip perforation and nickel platting for the purpose of elimination of trichloroethylene from the cleaning process of perforated steel strip

    Directory of Open Access Journals (Sweden)

    Petrović Aleksandra B.

    2009-01-01

    Full Text Available In the production of pocket type electrodes for Ni-Cd batteries perforation of proper steel strips and then nickel platting of perforated steel strips were made. In the nickel platting process, the organic solvent, trichloroethylene, has previously been used for cleaning. Due to the carcinogenic nature of trichloroethylene and the many operations previously required during cleaning, it was considered to do cleaning of perforated steel strips without use of the mentioned organic solvent. In the purpose of elimination of trichloroethylene from the cleaning process of perforated steel strips, the tests of perforation of steel strips with use of oils of different viscosity were made. It was shown that there was no dysfunction during the work of the perforation plants, meaning there was no additional heating of the strips, deterring of the steel filings, nor excessive wearing of the perforation apparatus. The perforation percent was the same irrelevant of the viscosity of the used oil. Before being perforated using the oils with different viscosity, the nickel platting steel strips were cleaned in different degreasers (based on NaOH as well as on KOH. It was shown that efficient cleaning without the use of trichloroethylene is possible with the use of oil with smaller viscosity in the perforated steel strips process and the degreaser based on KOH in the cleaning process, before nickel platting. It also appeared that the alkali degreaser based on KOH was more efficient, bath corrections were made less often and the working period of the baths was longer, which all in summary means less quantity of chemicals needed for degreasing of perforated steel strips.

  2. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    Science.gov (United States)

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  3. Dry Phosphorus silicate glass etching and surface conditioning and cleaning for multi-crystalline silicon solar cell processing

    International Nuclear Information System (INIS)

    Kagilik, Ahmed S.

    2014-01-01

    As an alternative to the wet chemical etching method, dry chemical etching processes for Phosphorus silicate glass [PSG} layer removal using Trifluormethane/Sulfur Hexafluoride (CHF 3 / SF 6 ) gas mixture in commercial silicon-nitride plasma enhanced chemical vapour deposition (SiN-PECVD) system is applied. The dependence of the solar cell performance on the etching temperature is investigated and optimized. It is found that the SiN-PECVD system temperature variation has a significant impact on the whole solar cell characteristics. A dry plasma cleaning treatment of the Si wafer surface after the PSG removal step is also investigated and developed. The cleaning step is used to remove the polymer film which is formed during the PSG etching using both oxygen and hydrogen gases. By applying an additional cleaning step, the polymer film deposited on the silicon wafer surface after PSG etching is eliminated. The effect of different plasma cleaning conditions on solar cell performance is investigated. After optimization of the plasma operating conditions, the performance of the solar cell is improved and the overall gain in efficiency of 0.6% absolute is yielded compared to a cell without any further cleaning step. On the other hand, the best solar cell characteristics can reach values close to that achieved by the conventional wet chemical etching processes demonstrating the effectiveness of the additional O 2 /H 2 post cleaning treatment.(author)

  4. Laser surface cleaning

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1994-01-01

    The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO 2 lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results

  5. Private Exploration Primitives for Data Cleaning

    OpenAIRE

    Ge, Chang; Ilyas, Ihab F.; He, Xi; Machanavajjhala, Ashwin

    2017-01-01

    Data cleaning, or the process of detecting and repairing inaccurate or corrupt records in the data, is inherently human-driven. State of the art systems assume cleaning experts can access the data (or a sample of it) to tune the cleaning process. However, in many cases, privacy constraints disallow unfettered access to the data. To address this challenge, we observe and provide empirical evidence that data cleaning can be achieved without access to the sensitive data, but with access to a (no...

  6. Is dry cleaning all wet?

    International Nuclear Information System (INIS)

    Ryan, M.

    1993-01-01

    Chemical solvents from dry cleaning, particularly perchloroethylene (perc), have contributed to groundwater contamination, significant levels of air pollution in and around cleaners, and chemical accumulation in food. Questions are being raised about the process of cleaning clothes with chemical, and other less toxic cleaning methods are being explored. The EPA has focused attention on the 50 year old Friedburg method of cleaning, Ecoclean, which uses no dangerous chemicals and achieves comparable results. Unfortunately, the cleaning industry is resistant to change, so cutting back on amount of clothes that need dry cleaning and making sure labels aren't exaggerating when they say dry clean only, is frequently the only consumer option now

  7. Canyon solvent cleaning

    International Nuclear Information System (INIS)

    Reif, D.J.

    1986-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributylphosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, produce decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown the carbonate washing, although removing residual solvent activity does not remove binding ligands that hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  8. Efficient methods of piping cleaning

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  9. Outsourcing Housekeeping: An insight into two cleaning companies, SOL and N-Clean, in Helsinki, Finland

    OpenAIRE

    Hussain, Samra

    2016-01-01

    The purpose of the author was to find to get an insight into the cleaning companies, in Helsin-ki, Finland, which the hotel industry is using as an external supplier for their housekeeping de-partment. The author has looked into the cleaning companies training process for the cleaning staff, employee demographics, quality control and process of handling complaints. The ad-vantages and disadvantages of outsourcing housekeeping in the hotel sector are also investi-gated. The research method...

  10. Cleaning Process Versus Laser-Damage Threshold of Coated Optical Components

    International Nuclear Information System (INIS)

    Rigatti, A.L.

    2005-01-01

    The cleaning of optical surfaces is important in the manufacture of high-laser-damage-threshold coatings, which are a key component on peak-power laser systems such as OMEGA located at the Laboratory for Laser Energetics (LLE). Since cleaning adds time, labor, and ultimately cost to the final coated component, this experiment was designed to determine the impact of different cleaning protocols on the measured laser-damage performance

  11. Effectiveness of bone cleaning process using chemical and entomology approaches: time and cost.

    Science.gov (United States)

    Lai, Poh Soon; Khoo, Lay See; Mohd Hilmi, Saidin; Ahmad Hafizam, Hasmi; Mohd Shah, Mahmood; Nurliza, Abdullah; Nazni, Wasi Ahmad

    2015-08-01

    Skeletal examination is an important aspect of forensic pathology practice, requiring effective bone cleaning with minimal artefact. This study was conducted to compare between chemical and entomology methods of bone cleaning. Ten subjects between 20 and 40 years old who underwent uncomplicated medico-legal autopsies at the Institute of Forensic Medicine Malaysia were randomly chosen for this descriptive cross sectional study. The sternum bone was divided into 4 parts, each part subjected to a different cleaning method, being two chemical approaches i.e. laundry detergent and a combination of 6% hydrogen peroxide and powder sodium bicarbonate and two entomology approaches using 2nd instar maggots of Chrysomyia rufifacies and Ophyra spinigera. A scoring system for grading the outcome of cleaning was used. The effectiveness of the methods was evaluated based on average weight reduction per day and median number of days to achieve the average score of less than 1.5 within 12 days of the bone cleaning process. Using maggots was the most time-effective and costeffective method, achieving an average weight reduction of 1.4 gm per day, a median of 11.3 days to achieve the desired score and an average cost of MYR 4.10 per case to reach the desired score within 12 days. This conclusion was supported by blind validation by forensic specialists achieving a 77.8% preference for maggots. Emission scanning electron microscopy evaluation also revealed that maggots especially Chrysomyia rufifacies preserved the original condition of the bones better allowing improved elucidation of bone injuries in future real cases.

  12. Ensuring clean air: Developing a clean air strategy for British Columbia

    International Nuclear Information System (INIS)

    1992-04-01

    In 1992, a clean air strategy will be developed to incorporate views of British Columbians on ways to meet goals related to air quality. A discussion paper is presented to provide information to those interested in participation in developing this strategy. The paper gives information on air quality issues important to the province, including local air quality, urban smog, ozone layer depletion, and global climate change. The views and concerns expressed by stakeholders who attended the Clean Air Conference in 1991 are summarized. The process used to develop the clean air strategy is outlined and some outcomes to be anticipated from the strategy are suggested, including policies and priorities for action to ensure clean air. Air pollutants of concern are total reduced sulfur, mainly from pulp mills and gas processing plants; smoke from wood burning; sulfur dioxide from pulp mills and gas plants; hydrogen fluoride from aluminum smelting; ground-level ozone in urban areas; and acid rain. Elements of a clean air strategy include a smoke management policy, management strategies for greenhouse gases and ozone smog, ozone layer protection measures, regional air quality management plans, and long-term planning efforts in energy use, transportation modes, community design, and land use. 12 refs., 14 figs., 2 tabs

  13. AN ELECTROLYTIC CIP-CLEANING PROCESS FOR REMOVING IMPURITIES FROM THE INNER SURFACE OF A METALLIC CONTAINER

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to a novel electrolytic process for removing impurities from the inner surface of a metallic container. The process is particularly useful for cleaning process reactors used for culturing microorganisms, and storage tanks used for storing metabolites formed in the process...... reactor, as well as containers for dairy products....

  14. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the

  15. [Cleaning and disinfection in nursing homes. Data on quality of structure, process and outcome in nursing homes in Frankfurt am Main, Germany, 2011].

    Science.gov (United States)

    Heudorf, U; Gasteyer, S; Samoiski, Y; Voigt, K

    2012-08-01

    Due to the Infectious Disease Prevention Act, public health services in Germany are obliged to check the infection prevention in hospitals and other medical facilities as well as in nursing homes. In Frankfurt/Main, Germany, standardized control visits have been performed for many years. In 2011 focus was laid on cleaning and disinfection of surfaces. All 41 nursing homes were checked according to a standardized checklist covering quality of structure (i.e. staffing, hygiene concept), quality of process (observation of the cleaning processes in the homes) and quality of output, which was monitored by checking the cleaning of fluorescent marks which had been applied some days before and should have been removed via cleaning in the following days before the final check. In more than two thirds of the homes, cleaning personnel were salaried, in one third external personnel were hired. Of the homes 85% provided service clothing and all of them offered protective clothing. All homes had established hygiene and cleaning concepts, however, in 15% of the homes concepts for the handling of Norovirus and in 30% concepts for the handling of Clostridium difficile were missing. Regarding process quality only half of the processes observed, i.e. cleaning of hand contact surfaces, such as handrails, washing areas and bins, were correct. Only 44% of the cleaning controls were correct with enormous differences between the homes (0-100%). The correlation between quality of process and quality of output was significant. There was good quality of structure in the homes but regarding quality of process and outcome there was great need for improvement. This was especially due to faults in communication and coordination between cleaning personnel and nursing personnel. Quality outcome was neither associated with the number of the places for residents nor with staffing. Thus, not only quality of structure but also quality of process and outcome should be checked by the public health

  16. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, A.; Clary, W.; Tice, D.

    2002-01-01

    For the first time in their operational lives, UK advanced gas-cooled reactor once-through boilers have been chemically cleaned. Chemical cleaning was necessary to avoid lost output resulting from boiler pressure drops, which had been increasing for a number of years. Chemical cleaning of these boilers presents a number of unique difficulties. These include lack of access to the boilers, highly sensitised 316H superheater sections that cannot be excluded from the cleaning flow path, relatively thin boiler tube walls and an intolerance to boiler tube failure because of the role of the boilers in nuclear decay heat removal. The difficulties were overcome by implementing the clean in a staged manner, starting with an extensive materials testwork programme to select and then to substantiate the cleaning process. The selected process was based on ammoniated citric acid plus formic acid for the principal acid cleaning stage. Materials testwork was followed by an in-plant trial clean of six boiler tubes, further materials testwork and the clean of a boiler tube in a full-scale test rig. An overview is presented of the work that was carried out to demonstrate that the clean could be carried out safely, effectively and without leading to unacceptable corrosion losses. Full-scale chemical cleaning was implemented by using as much of the existing plant as possible. Careful control and monitoring was employed to ensure that the cleaning was implemented according to the specified design, thus ensuring that a safe and effective clean was carried out. Full-scale cleaning has resulted in significant boiler pressure drop recovery, even though the iron burden was relatively low and cleaning was completed in a short time. (orig.)

  17. Determination of properties of clean coal technology post-process residue

    Directory of Open Access Journals (Sweden)

    Agnieszka Klupa

    2016-01-01

    Full Text Available This article presents the possibilities of using modern measuring devices to determine the properties of process residues (Polish acronym: UPP. UPP was taken from the combustion process from a power plant in Silesia. Determining the properties of UPP is the basis for making decisions about its practical application, for example, as a raw material to obtain useful products such as: pozzolan, cenosphere or zeolite, for which there is demand. The development of advanced technology and science has given rise to modern and precise research tools that contribute to the development of appropriate methods to assess the properties of post-process residue. For this study the following were used: scanning electron microscope with EDS microanalysis and an analyzer for particle size-, shape- and number- analysis. The study conducted confirms the effectiveness of SEM analysis to determine the properties of post-process residue from Clean Coal Technologies (CCT. The results obtained are an introduction to further research on the determination of properties of CCT post-process residue. Research to determine the properties of CCT post-process residue only began relatively recently.

  18. Surface cleaning in thin film technology

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1978-01-01

    A ''clean surface'' is one that contains no significant amounts of undesirable material. This paper discusses the types and origin of various contaminants. Since cleaning is often equated with adhesion, the mechanisms of adhesion to oxide, metal, and organic surfaces are reviewed and cleaning processes for these surfaces are outlined. Techniques for monitoring surface cleaning are presented, and the importance of storage of clean surfaces is discussed. An extensive bibliography is given. 4 figs., 89 references

  19. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z; Morikawa, M; Fujii, Y [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-09-01

    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  20. Pickering Unit 1 chemical cleaning

    International Nuclear Information System (INIS)

    Smee, J.L.; Fiola, R.J.; Brennenstuhl, K.R.; Zerkee, D.D.; Daniel, C.M.

    1995-01-01

    The secondary sides of all 12 boilers at Pickering Unit 1 were chemically cleaned in 1994 by the team of Ontario Hydro, B and W International (Cambridge, Ontario) and B and W Nuclear Technologies (Lynchburg, Virginia). A multi-step EPRI/SGOG process was employed in a similar manner to previous clearings at Units 5 and 6 in 1992 and 1993, respectively. A major innovation with the Unit 1 cleaning was the incorporation of a crevice cleaning step, the first time this had been done on Ontario Hydro plants. In addition, six boilers were cleaned in parallel compared to three at a time in previous Pickering cleanings. This significantly reduced cleaning time. A total of 6,770 kg of sludge was removed through direct chemical dissolution. It consisted of 66% iron/nickel oxides and 28% copper metal. A total of 1,600,000 L (420,000 US gallons) of liquid waste was produced. It was processed through the spent solvent treatment facility located at the Bruce Nuclear Power Development site. Visual inspection performed after the cleaning indicated that the crevices between the boiler tubes and the tube support structure were completely clear of deposit and the general condition of the tubing and lattice bars appeared to be in 'as new' condition. (author)

  1. 2000 Annual report NATO/CCMS Pilot Study, Clean Products and Processes (Phase I)

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Molin, Christine; Hauschild, Michael Zwicky

    2001-01-01

    The NATO/Committee on the Challenges of Modern Society third Pilot Study meeting on Clean Products and Processes was held in Copenhagen, Denmark on May 7-12, 2000. This meeting maintained the momentum generated during the of the first two years of the pilot study, focusing on progress made on sev...... homepage....

  2. Offgas system particulate cleaning test and evaluation for the process experimental pilot plant

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.; Gale, L.G.; Stermer, D.L.

    1990-01-01

    The process experimental pilot plant (PREPP) incinerates mixed solid waste. The exhaust gas is processed through a wet offgas cleaning system. Rapid loading of the exhaust filters has been a problem and an important contributing factor is the use of quench solution containing a relatively high concentration of dissolved solids. The dissolved solids are released as a submicron particulate when the quench solution evaporates. A series of tests were performed to better identify the nature of the problem and explore solutions to the problem involving modifications to the quench process

  3. Offgas system particulate cleaning test and evaluation for the Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.; Gale, L.G.; Stermer, D.L.

    1990-01-01

    The Process Experimental Pilot Plant (PREPP) incinerates mixed solid waste. The exhaust gas is processed through a wet offgas cleaning system. Rapid loading of the exhaust filters has been a problem and an important contributing factor is the use of a quench solution containing a relatively high concentration of dissolved solids. The dissolved solids are released as a submicron particulate when the quench solution evaporates. A series of tests were performed to better identify the nature of the problem and explore solutions to the problem involving modifications to the quench process. 2 refs., 7 figs

  4. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  5. [Assessment of decontamination processes: cleaning, disinfection and sterilization in dental practice in Poland in the years 2011-2012].

    Science.gov (United States)

    Röhm-Rodowald, Ewa; Jakimiak, Bozenna; Chojecka, Agnieszka; Zmuda-Baranowska, Magdalena; Kanclerski, Krzysztof

    2012-01-01

    Effective decontamination of instruments is a key element of infection control and the provision of high quality in dental care. The aim of the study was to evaluate the efficiency of decontamination procedures including cleaning, disinfection and sterilization of re-usable instruments in dental practices in Poland. The efficiency of disinfection and sterilization processes have been evaluated on the results of the questionnaires. The following information were taken into account: setting where disinfection and sterilization had been performed, preparation of dental equipment for sterilization (disinfection, washing and cleaning, packaging), the types of autoclaves and used types of sterilization cycles, routine monitoring and documentation of sterilization processes, treatment of handpieces and the frequency of surface decontamination. Data were collected from 43 dental practices (35 dental offices and 8 clinics). Disinfection and cleaning processes were performed manually in 63% of dental offices and ultrasonic baths were used in 53% of settings. Washer disinfectors were used in 23% of dental practices: in every researched clinic and in a few dental offices. All sterilization processes were performed in steam autoclaves, mainly in small steam sterilizers (81%). Dental handpieces were sterilized in 72% of practices, but only 33% of them performed sterilization in recommended cycle B. Sterilization processes were monitored with chemical indicators in 33% of practices. Biological monitoring of the processes was carried out at different intervals. Incorrect documentation of instruments and surfaces decontamination was recorded in several settings. There is still a need for improvement of decontamination processes in dental practice in Poland. Areas for improvement include: replacement of manual cleaning and disinfection processes with automatic processes, sterilization of dental handpieces after each patient, monitoring of a sterilization process with chemical and

  6. Industrial rag cleaning process for the environmentally safe removal of petroleum-based solvents

    International Nuclear Information System (INIS)

    Fierro, J.V.

    1993-01-01

    A process for the cleaning of industrial rags contaminated with environmentally unsafe petroleum-based solvent is described, comprising the step of: (a) placing a load of the industrial rags in a mechanically driven rotary drum; (b) revolving the drum at a high speed sufficient to physically extract liquid petroleum-based solvent contaminate from the industrial rags; (c) routing the extracted petroleum-based solvent contaminate from the rotary drum to a waste solvent collection line for environmentally safe disposal; (d) revolving the rotary drum to cause a tumbling of the industrial rags while maintaining the temperature within the drum at below the flash point of the petroleum-based solvent; (e) intermittently forcing cold air and hot air through the rotary drum to vaporize solvent from the industrial rags; (f) routing the vaporized petroleum-based solvent contaminant from the rotary drum to a condenser wherein the petroleum-based solvent contaminate is condensed and thereafter further routing said condensed solvent to a waste collection line for environmentally safe disposal; and (g) cleaning the industrial rags in the presence of a dry cleaning solvent to remove residual petroleum-based solvents and soil

  7. Heat exchanger cleaning

    International Nuclear Information System (INIS)

    Gatewood, J.R.

    1980-01-01

    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  8. Comparison and Recovery of Escherichia coli and Thermotolerant Coliforms in Water with a Chromogenic Medium Incubated at 41 and 44.5°C

    Science.gov (United States)

    Alonso, Jose L.; Soriano, Adela; Carbajo, Oscar; Amoros, Inmaculada; Garelick, Hemda

    1999-01-01

    This study compared the performance of a commercial chromogenic medium, CHROMagarECC (CECC), and CECC supplemented with sodium pyruvate (CECCP) with the membrane filtration lauryl sulfate-based medium (mLSA) for enumeration of Escherichia coli and non-E. coli thermotolerant coliforms (KEC). To establish that we could recover the maximum KEC and E. coli population, we compared two incubation temperature regimens, 41 and 44.5°C. Statistical analysis by the Fisher test of data did not demonstrate any statistically significant differences (P = 0.05) in the enumeration of E. coli for the different media (CECC and CECCP) and incubation temperatures. Variance analysis of data performed on KEC counts showed significant differences (P = 0.01) between KEC counts at 41 and 44.5°C on both CECC and CECCP. Analysis of variance demonstrated statistically significant differences (P = 0.05) in the enumeration of total thermotolerant coliforms (TTCs) on CECC and CECCP compared with mLSA. Target colonies were confirmed to be E. coli at a rate of 91.5% and KEC of likely fecal origin at a rate of 77.4% when using CECCP incubated at 41°C. The results of this study showed that CECCP agar incubated at 41°C is efficient for the simultaneous enumeration of E. coli and KEC from river and marine waters. PMID:10427079

  9. Decontamination of polypropylene fabrics by dry cleaning

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.

    1983-01-01

    Polypropylene fabrics can efficiently be decontaminated by dry cleaning in benzine or perchloroethylene, this also in case the fabric was greased in addition to radioactive contamination. For heavily soiled fabric, it is advantageous to first dry clean it and then wash it. The positive effect was confirmed of intensifiers on the cleaning process, especially of benzine soap. In practice, its concentration should be selected within 1 and 10 g.dm - 3 . Decontamination by dry cleaning and subsequent washing is advantageous in that that the resulting activity of waste water from the laundry is low. Radioactive wastes from the dry cleaning process have a low weight and can be handled as solid waste. (M.D.)

  10. Exhaust gas clean up process

    Science.gov (United States)

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  11. Fluorescent Penetrant INSPECTION—CLEANING Study Update

    Science.gov (United States)

    Eisenmann, D.; Brasche, L.

    2009-03-01

    Fluorescent penetrant inspection (FPI) is widely used in the aviation industry and other industries for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. There is variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. Before the FPI process begins, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. From the first three phases of this project it has been found that a hot water rinse can aid in the detection process when using this nondestructive method.

  12. FY1995 development of a clean CVD process by evaluation and control of gas phase nucleation phenomena; 1995 nendo kisokaku seisei gensho no hyoka to seigyo ni yoru clean CVD process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this study is to develop a high-rate and clean chemical vapor deposition (CVD) process as a breakthrough technique to overcome the problems that particles generated in the gas phase during CVD process for preparation of functional thin films cause reduced product yield and deterioration of the films. In the CVD process proposed here, reactant gas and generated particles are electrically charged to control the motion of them with an electric field. In this study, gas-phase nucleation phenomena are evaluated both theoretically and experimentally. A high-rate, ionized CVD method is first developed, in which reactant gas and generated particles are charged with negative ions generated from a radioisotope source and the UV/photoelectron method, and the motion of the charged gas and particles is controlled with an electric field. Charging and transport processes of fine particles are then investigated experimentally and theoretically to develop a clean CVD method in which generated particles are removed with the electric forces. As a result, quantitative evaluation of the charging and transport process was made possible. We also developed devices for measuring the size distribution and concentration of fine particles in low pressure gas such as those found in plasma CVD processes. In addition, numerical simulation and experiments in this study for a TEOS/O{sub 3} CVD process to prepare thin films could determine reaction rates which have not been known so far and give information on selecting good operation conditions for the process. (NEDO)

  13. Si-compatible cleaning process for graphene using low-density inductively coupled plasma.

    Science.gov (United States)

    Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong

    2012-05-22

    We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.

  14. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  15. Washing away your sins in the brain: physical cleaning and priming of cleaning recruit different brain networks after moral threat.

    Science.gov (United States)

    Tang, Honghong; Lu, Xiaping; Su, Rui; Liang, Zilu; Mai, Xiaoqin; Liu, Chao

    2017-07-01

    The association between moral purity and physical cleanliness has been widely discussed recently. Studies found that moral threat initiates the need of physical cleanliness, but actual physical cleaning and priming of cleaning have inconsistent effects on subsequent attitudes and behaviors. Here, we used resting-state functional magnetic resonance imaging to explore the underlying neural mechanism of actual physical cleaning and priming of cleaning. After recalling moral transgression with strong feelings of guilt and shame, participants either actually cleaned their faces with a wipe or were primed with cleanliness through viewing its pictures. Results showed that actual physical cleaning reduced the spontaneous brain activities in the right insula and MPFC, regions that involved in embodied moral emotion processing, while priming of cleaning decreased activities in the right superior frontal gyrus and middle frontal gyrus, regions that participated in executive control processing. Additionally, actual physical cleaning also changed functional connectivity between insula/MPFC and emotion related regions, whereas priming of cleaning modified connectivity within both moral and sensorimotor areas. These findings revealed that actual physical cleaning and priming of cleaning led to changes in different brain regions and networks, providing neural evidence for the inconsistent effects of cleanliness on subsequent attitudes and behaviors. © The Author (2017). Published by Oxford University Press.

  16. Clean utilization of coal

    International Nuclear Information System (INIS)

    Yueruem, Y.

    1992-01-01

    This volume contains 23 lectures presented at the Advanced Study Institute on 'Chemistry and Chemical Engineering of Catalytic Solid Fuel Conversion for the Production of Clean Synthetic Fuels', which was held at Akcay, Edremit, Turkey, between 21 July and August 3, 1991. Three main subjects: structure and reactivity of coal; cleaning of coal and its products, and factors affecting the environmental balance of energy usage and solutions for the future, were discussed in the Institute and these are presented under six groups in the book: Part 1. Structure and reactivity of coal; Part 2. Factors affecting environmental balance; Part 3. Pre-usage cleaning operations and processes; Part 4. Upgrading of coal liquids and gases; Part 5. Oxygen enriched processes; and Part 6. Probable future solution for energy and pollution problems. Separate abstracts have been prepared for all the lectures

  17. Manufacturing of NAA laboratory clean room

    International Nuclear Information System (INIS)

    Suwoto; Hasibuan, Djaruddin

    2001-01-01

    The ''NAA laboratory clean room'' has been built in the Reactor Serba Guna G.A. Siwabessy building. The erection of ''AAN laboratory clean room'' doing by started of preparation of the ''manufacturing procedure'' refer to ''Design and manufacturing neutron activation analysis clean room laboratory''. Manufacturing process and erection doing refer to procedures makes. By providing of the ''AAN laboratory clean room'' can be cocluded that the research activity and the user sevises in P2TRR well meet to be done

  18. Researches in increase of efficiency of electrokinetic process of ground cleaning from radionuclides

    International Nuclear Information System (INIS)

    Prozorov, L.B.; Shcheglov, M.Y.; Nikolaevsky, V.B.; Tkachenko, A.V.

    2003-01-01

    Potentially perspective method of decontamination of ground is electrokinetic method, which basic advantage consists in an opportunity of its application for clearing ground with low filtering by ability directly on a place of local contaminated (in situ). Thus moving the large volumes of the contaminated ground is excluded. Base of this method is the processes of electromigration and electro-osmotic, proceeding in a contaminated ground lay at imposing an electrical field of a constant current. Electrokinetic method of cleaning of ground from radionuclides provides their transfer in water-soluble, mobile form, carry as positive or negative ions under influence of an electrical field into electrode chambers with their subsequent recycling.Electrokinetic method in practice can be realized as follows: in the contaminated ground establish special electrode devices, fill their electrolyte and connect to a source of a constant current. Formed in the anode device as a result of electrochemical decomposition of water the ions of hydrogen under action of an electrical field move to the cathode, thus cooperate with a ground and superside cations of radioactive elements. Desorbed cations of contaminate act in catholyte, which periodically or continuously is exposed to clearing, for example, on sorption column. Last years the experts MosNPO Radon carry out complex researches directed on development of electrokinetic technology of cleaning ground from radionuclides and heavy metals. To the present time laboratory and bench tests of electrokinetic method are carried out. The basic attention at study of process of cleaning was given to objects contaminated Cs-137, most difficult recovery an element, which is strongly fixed by clay minerals and can enter into crystal structure. (authors)

  19. Cleaning of aluminum after machining with coolants

    International Nuclear Information System (INIS)

    Roop, B.

    1992-01-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended

  20. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  1. Rudimentary Cleaning Compared to Level 300A

    Science.gov (United States)

    Arpin, Christina Y. Pina; Stoltzfus, Joel

    2012-01-01

    A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.

  2. Extending CO2 cryogenic aerosol cleaning for advanced optical and EUV mask cleaning

    Science.gov (United States)

    Varghese, Ivin; Bowers, Charles W.; Balooch, Mehdi

    2011-11-01

    Cryogenic CO2 aerosol cleaning being a dry, chemically-inert and residue-free process is used in the production of optical lithography masks. It is an attractive cleaning option for the mask industry to achieve the requirement for removal of all printable soft defects and repair debris down to the 50nm printability specification. In the technique, CO2 clusters are formed by sudden expansion of liquid from high to almost atmospheric pressure through an optimally designed nozzle orifice. They are then directed on to the soft defects or debris for momentum transfer and subsequent damage free removal from the mask substrate. Unlike aggressive acid based wet cleaning, there is no degradation of the mask after processing with CO2, i.e., no critical dimension (CD) change, no transmission/phase losses, or chemical residue that leads to haze formation. Therefore no restriction on number of cleaning cycles is required to be imposed, unlike other cleaning methods. CO2 aerosol cleaning has been implemented for several years as full mask final clean in production environments at several state of the art mask shops. Over the last two years our group reported successful removal of all soft defects without damage to the fragile SRAF features, zero adders (from the cleaning and handling mechanisms) down to a 50nm printability specification. In addition, CO2 aerosol cleaning is being utilized to remove debris from Post-RAVE repair of hard defects in order to achieve the goal of no printable defects. It is expected that CO2 aerosol cleaning can be extended to extreme ultraviolet (EUV) masks. In this paper, we report advances being made in nozzle design qualification for optimum snow properties (size, velocity and flux) using Phase Doppler Anemometry (PDA) technique. In addition the two new areas of focus for CO2 aerosol cleaning i.e. pellicle glue residue removal on optical masks, and ruthenium (Ru) film on EUV masks are presented. Usually, the residue left over after the pellicle

  3. Clean Technology Evaluation & Workforce Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Glaza

    2012-12-01

    The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

  4. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    Directory of Open Access Journals (Sweden)

    Robert Clifford

    Full Text Available The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal correlates with cleaning efficacy (absence of molecular or cultivable biomaterial and whether one brief educational intervention improves cleaning outcomes.Before-after trial.Newly built community hospital.90 minute training refresher with surface-specific performance results.Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention and assessments continued for another eight consecutive months.1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant. For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant, and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016. For nonspecific biomaterial on surfaces: a removal of cultivable Gram-negatives (GN trended toward improvement (P = 0.056; b removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning worsened (P = 0.017; c removal of PCR-based detection of bacterial DNA improved (P = 0.046, but acquisition worsened (P = 0.003; d cleaning thoroughness and efficacy were not correlated.At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences.

  5. A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces

    Directory of Open Access Journals (Sweden)

    Marina A. González Lazo

    2016-08-01

    Full Text Available A facile in situ and UV printing process was demonstrated to create self-cleaning synthetic replica of natural petals and leaves. The process relied on the spontaneous migration of a fluorinated acrylate surfactant (PFUA within a low-shrinkage acrylated hyperbranched polymer (HBP and its chemical immobilization at the polymer-air interface. Dilute concentrations of 1 wt. % PFUA saturated the polymer-air interface within 30 min, leading to a ten-fold increase of fluorine concentration at the surface compared with the initial bulk concentration and a water contact angle (WCA of 108°. A 200 ms flash of UV light was used to chemically crosslink the PFUA at the HBP surface prior to UV printing with a polydimethylsiloxane (PDMS negative template of red and yellow rose petals and lotus leaves. This flash immobilization hindered the reverse migration of PFUA within the bulk HBP upon contacting the PDMS template, and enabled to produce texturized surfaces with WCA well above 108°. The synthetic red rose petal was hydrophobic (WCA of 125° and exhibited the adhesive petal effect. It was not superhydrophobic due to insufficient concentration of fluorine at its surface, a result of the very large increase of the surface of the printed texture. The synthetic yellow rose petal was quasi-superhydrophobic (WCA of 143°, roll-off angle of 10° and its self-cleaning ability was not good also due to lack of fluorine. The synthetic lotus leaf did not accurately replicate the intricate nanotubular crystal structures of the plant. In spite of this, the fluorine concentration at the surface was high enough and the leaf was superhydrophobic (WCA of 151°, roll-off angle below 5° and also featured self-cleaning properties.

  6. Hydrodynamic design of an underwater hull cleaning robot and its evaluation

    Directory of Open Access Journals (Sweden)

    Man Hyung Lee

    2012-12-01

    Full Text Available An underwater hull cleaning robot can be a desirable choice for the cleaning of large ships. It can make the cleaning process safe and economical. This paper presents a hydrodynamic design of an underwater cleaning robot and its evaluation for an underwater ship hull cleaning robot. The hydrodynamic design process of the robot body is described in detail. Optimal body design process with compromises among conflicting design requirements is given. Experimental results on the hydrodynamic performance of the robot are given.

  7. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications

    KAUST Repository

    Chung, Tai-Shung; Li, Xue; Ong, Rui Chin; Ge, Qingchun; Wang, Honglei; Han, Gang

    2012-01-01

    The purpose of this short review is to share our understanding and perspectives with the chemical, environmental, water and osmotic power communities on FO processes in order to conduct meaningful R & D and develop effective and sustainable FO technologies for clean water and clean energy. © 2012 Elsevier Ltd. All rights reserved.

  8. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications

    KAUST Repository

    Chung, Tai-Shung

    2012-08-01

    The purpose of this short review is to share our understanding and perspectives with the chemical, environmental, water and osmotic power communities on FO processes in order to conduct meaningful R & D and develop effective and sustainable FO technologies for clean water and clean energy. © 2012 Elsevier Ltd. All rights reserved.

  9. Self Cleaning High Efficiency Particulate Air (HEPA) Filtration without Interrupting Process Flow - 59347

    International Nuclear Information System (INIS)

    Chadwick, Chris

    2012-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research suggests that the then costs to the Department of Energy (DOE), based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4, 450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5, 000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15, 000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  10. Cleaning and Processing RSS measurements for Location Fingerprinting

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2007-01-01

    Handling variations in sampled Received Signal Strength (RSS) is neassary for achieving robust location fingerprinting (LF). Current research has only proposed limited system-specific models for how to handle the cleaning of RSS variations. However, this paper propose a novel model for both...

  11. Clean-room robot implementation

    International Nuclear Information System (INIS)

    Comeau, J.L.

    1982-01-01

    A robot has been incorporated in a clean room operation in which vacuum tube parts are cleaned just prior to final assembly with a 60 lb/in 2 blast of argon gas. The robot is programmed to pick up the parts, manipulate/rotate them as necessary in the jet pattern and deposit them in a tray precleaned by the robot. A carefully studied implementation plan was followed in the procurement, installation, modification and programming of the robot facility. An unusual configuration of one tube part required a unique gripper design. A study indicated that the tube parts processed by the robot are 12% cleaner than those manually cleaned by an experienced operator

  12. Risk in cleaning: chemical and physical exposure.

    Science.gov (United States)

    Wolkoff, P; Schneider, T; Kildesø, J; Degerth, R; Jaroszewski, M; Schunk, H

    1998-04-23

    Cleaning is a large enterprise involving a large fraction of the workforce worldwide. A broad spectrum of cleaning agents has been developed to facilitate dust and dirt removal, for disinfection and surface maintenance. The cleaning agents are used in large quantities throughout the world. Although a complex pattern of exposure to cleaning agents and resulting health problems, such as allergies and asthma, are reported among cleaners, only a few surveys of this type of product have been performed. This paper gives a broad introduction to cleaning agents and the impact of cleaning on cleaners, occupants of indoor environments, and the quality of cleaning. Cleaning agents are usually grouped into different product categories according to their technical functions and the purpose of their use (e.g. disinfectants and surface care products). The paper also indicates the adverse health and comfort effects associated with the use of these agents in connection with the cleaning process. The paper identifies disinfectants as the most hazardous group of cleaning agents. Cleaning agents contain evaporative and non-evaporative substances. The major toxicologically significant constituents of the former are volatile organic compounds (VOCs), defined as substances with boiling points in the range of 0 degree C to about 400 degrees C. Although laboratory emission testing has shown many VOCs with quite different time-concentration profiles, few field studies have been carried out measuring the exposure of cleaners. However, both field studies and emission testing indicate that the use of cleaning agents results in a temporal increase in the overall VOC level. This increase may occur during the cleaning process and thus it can enhance the probability of increased short-term exposure of the cleaners. However, the increased levels can also be present after the cleaning and result in an overall increased VOC level that can possibly affect the indoor air quality (IAQ) perceived by

  13. Cleaning and decontamination: Experimental feedback from PHENIX

    International Nuclear Information System (INIS)

    Masse, F.; Rodriguez, G.

    1997-01-01

    After the first few years of operation of PHENIX, it proved necessary to clean, then decontaminate sodium-polluted components, particularly large components such as the intermediate heat exchangers (IHX) and the primary pumps (PP). Ibis document presents the evolution of the cleaning and decontamination processes used, and specifies the reasons for this evolution. As regards the cleaning, experimental feedback and a greater rigour with respect to the hydrogen hazard have resulted in a modification of the process. The new cleaning process used at present (since 1994) is described in greater detail in this document. The main steps are: cold CO 2 bubbling in water, followed by hot CO 2 bubbling, spraying phase, then drying for inspection before immersion. In order to optimize and validate the process, the cleaning and decontamination plant has been highly instrumented, which, in particular, has allowed confirmation of the contention that the major part of the sodium is eliminated during the bubbling phases. With respect to decontamination, the objective is to perfect an efficient process that allows both human intervention with no particular biological shield for repair or maintenance of the components, and requalification of the materials after the decontamination operation. Owing to the high operating temperature of Fast Breeder Reactor components (400 to 550 deg. C), the activated corrosion products deposited on the components melt into the metal. The decontamination process therefore consists in either dissolving the deposits on the surface, or dissolving a thickness of about less than ten micrometers of the base metal. The reference process for austenitic-type steels is the SPm process, which consists in immersing the component in a sulphuric-phosphoric bath (sulphuric acid and phosphoric acid) at a temperature of 60 deg. C for 6 hours. The problem linked to this process is the treatment of the effluents that are produced, particularly phosphate releases. A

  14. Digital processing of SEM images for the assessment of evaluation indexes of cleaning interventions on Pentelic marble surfaces

    International Nuclear Information System (INIS)

    Moropoulou, A.; Delegou, E.T.; Vlahakis, V.; Karaviti, E.

    2007-01-01

    In this work, digital processing of scanning-electron-microscopy images utilized to assess cleaning interventions applied on the Pentelic marble surfaces of the National Archaeological Museum and National Library in Athens, Greece. Beside mineralogical and chemical characterization that took place by scanning-electron-microscopy with Energy Dispersive X-ray Spectroscopy, the image-analysis program EDGE was applied for estimating three evaluation indexes of the marble micro-structure. The EDGE program was developed by the U.S. Geological Survey for the evaluation of cleaning interventions applied on Philadelphia City Hall. This computer program analyzes scanning-electron-microscopy images of stone specimens cut in cross-section for measuring the fractal dimension of the exposed surfaces, the stone near-surface fracture density, the shape factor (a surface roughness factor) and the friability index which represents the physico-chemical and physico-mechanical stability of the stone surface. The results indicated that the evaluation of the marble surface micro-structure before and after cleaning is achieved by the suggested indexes, while the performance of cleaning interventions on the marble surfaces can be assessed

  15. McClean Lake. Site Guide

    International Nuclear Information System (INIS)

    2016-09-01

    Located over 700 kilometers northeast of Saskatoon, Areva's McClean Lake site is comprised of several uranium mines and one of the most technologically advanced uranium mills in the world - the only mill designed to process high-grade uranium ore without dilution. Areva has operated several open-pit uranium mines at the McClean Lake site, and is evaluating future mines at and near the site. The McClean Lake mill has recently undergone a multimillion-dollar upgrade and expansion, which has doubled its annual production capacity of uranium concentrate to 24 million pounds. It is the only facility in the world capable of processing high-grade uranium ore without diluting it. The mill processes the ore from the Cigar Lake mine, the world's second largest and highest-grade uranium mine. The McClean Lake site operates 365 days a year on a week-in/week-out rotation schedule for workers, over 50% of whom reside in northern Saskatchewan communities. Tailings are waste products resulting from milling uranium ore. This waste is made up of leach residue solids, waste solutions and chemical precipitates that are carefully engineered for long-term disposal. The TMF serves as the repository for all resulting tailings. This facility allows proper waste management, which minimizes potential adverse environmental effects. Mining projections indicate that the McClean Lake mill will produce tailings in excess of the existing capacity of the TMF. After evaluating a number of options, Areva has decided to pursue an expansion of this facility. Areva is developing the Surface Access Borehole Resource Extraction (SABRE) mining method, which uses a high-pressure water jet placed at the bottom of the drill hole to extract ore. Areva has conducted a series of tests with this method and is evaluating its potential for future mining operations. McClean Lake maintains its certification in ISO 14001 standards for environmental management and OHSAS 18001 standards for occupational health

  16. Carbon dioxide cleaning pilot project

    International Nuclear Information System (INIS)

    Knight, L.; Blackman, T.E.

    1994-01-01

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved

  17. Apparatuses, Systems and Methods for Cleaning Photovoltaic Devices

    KAUST Repository

    Eitelhuber, Georg

    2013-02-14

    Embodiments of solar panel cleaning apparatuses, solar panel cleaning systems, and solar panel cleaning methods are disclosed. In certain embodiments, the disclosed solar panel cleaning apparatuses, systems and methods do may not require any water or other cleaning liquids in the whole cleaning process, which makes them prominent well suited in for water-deficit environments such as deserts. In one embodiment, the solar panel cleaning apparatus comprises one or more rotatable brushes each having a rotational axis and a drive configured to move each of the one or more rotatable brushes in a direction that is not perpendicular to the rotational axis. The solar panel cleaning apparatus is may be configured such that the angle of the rotational axis of at least one of the one or more rotatable brushes is adjustable relative to the direction of travel.

  18. Fabrication of free standing anodic titanium oxide membranes with clean surface using recycling process.

    Science.gov (United States)

    Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom

    2010-07-01

    Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.

  19. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P [Gas Turbine Efficiency, Jarfalla (Sweden)

    1999-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  20. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P. [Gas Turbine Efficiency, Jarfalla (Sweden)

    1998-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  1. Integrated hot fuel gas cleaning for advanced gasification combined cycle process

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kangasmaa, K.; Laatikainen, J.; Staahlberg, P.; Kurkela, E. [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1996-12-01

    The fate of halogens in pressurised fluidized-bed gasification and hot gas filtration is determined. Potential halogen removal sorbents, suitable for integrated hot gas cleaning, are screened and some selected sorbents are tested in bench scale. Finally, halogen removal results are verified using the PDU-scale pressurised fluidized-bed gasification and integrated hot gas cleaning facilities of VTT. The project is part of the JOULE II Extension programme of the European Union. (author)

  2. A new strategy for improvement of the corrosion resistance of a green cerium conversion coating through thermal treatment procedure before and after application of epoxy coating

    Energy Technology Data Exchange (ETDEWEB)

    Mahidashti, Z. [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Shahrabi, T., E-mail: tshahrabi34@modares.ac.ir [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), P.O. 16765-654, Tehran (Iran, Islamic Republic of)

    2016-12-30

    Highlights: • The Ce conversion coating was post-heated at various conditions. • The corrosion resistance of post-heated Ce films was evaluated. • A crack free and denser Ce film were obtained after post-heating. • The corrosion resistance of Ce film noticeably increased. • Post-heated Ce film resulted better protection performance of epoxy coating. - Abstract: The effect of post-heating of CeCC on its surface morphology and chemistry has been studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and contact angle (CA) measurements. The corrosion protection performance of the coatings was investigated by electrochemical impedance spectroscopy (EIS). The effect of thermal treatment of CeCC on the corrosion protection performance of epoxy coating was investigated by EIS. Results showed that the heat treatment of Ce film noticeably improved its corrosion resistance and adhesion properties compared to that of untreated samples. The CeCC deposited on the steel substrate at room temperature had a highly cracked structure, while the amount of micro-cracks significantly reduced after post-heating procedure. Results obtained from EIS analysis confirmed the effect of post-heating of CeCC on its corrosion protection performance enhancement. The increase of post-heating temperature and time up to 140 °C and 3 h led to better results.

  3. Staying sticky: contact self-cleaning of gecko-inspired adhesives.

    Science.gov (United States)

    Mengüç, Yigit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin

    2014-05-06

    The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load-drag-unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible.

  4. Canyon solvent cleaning with solid adsorbents

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands that hold fission products in the solvent. Treatment of solvent with a solid adsorbent removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  5. Dry-cleaning with high-pressure carbon dioxide

    NARCIS (Netherlands)

    Van Roosmalen, M.J.E.

    2003-01-01

    Dry-cleaning is a process for removing soils and stains from fabrics and garments which uses a non-aqueous solvent with detergent added. The currently most used dry-cleaning solvent is perchloroethylene (PER), which is toxic, environmentally harmful and suspected to be carcinogenic. Carbon dioxide

  6. Inhibition of the Nitrification Process of Activated Sludge Micro-Organism by Scrubber Water from an Industrial Flue Gas Cleaning Process

    DEFF Research Database (Denmark)

    Thomsen, Jens Peter

    2007-01-01

    the nitrogen removal. A major sewage cleaning plant in the southern part of Denmark is a recipient of industrial sewage from a major fish meal industry. Severe nitrification inhibition was observed in scrubber water from an incineration of process air, and the processes that lead to the production were stopped......The microbial transformation of ammonia to nitrate, the nitrification, is a central process in the nitrogen biogeochemical cycle. In a modern wastewater treatment plant, the nitrification process is a key process in the removal of nitrogen and inhibitory compounds in sewage can seriously affect....... In order to investigate the relation between incineration temperatures and the production of inhibitory compounds, the process air was burned at temperatures from 800°C to 1000°C. The termically affected condensate was collected and the nitrification inhibition effect of the condensate was tested using...

  7. Three Mile Island Nuclear Station steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Hansen, C.A.

    1992-01-01

    The Three Mile Island-1 steam generators were chemically cleaned in 1991 by the B and W Nuclear Service Co. (BWNS). This secondary side cleaning was accomplished through application of the EPRI/SGOG (Electric Power Research Institute - Steam Generator Owners Group) chemical cleaning iron removal process, followed by sludge lancing. BWNS also performed on-line corrosion monitoring. Corrosion of key steam generator materials was low, and well within established limits. Liquid waste, subsequently processed by BWNS was less than expected. 7 tabs

  8. Ultrasonic and immersion cleaning: a comparison using aqueous and fluorocarbon solvents

    International Nuclear Information System (INIS)

    Bond, R.D.; Kearsey, A.

    1984-11-01

    Decontamination is a necessary process in reducing radiation levels in the working environment in the nuclear industry. Components from active areas which require decontamination for re-use or maintenance operations. In this report, a typical chemical cleaning process using liquid pumping, airagitation and physical movement for agitation is compared with ultrasonic cleaning, now an established cleaning process in many industries. The chosen traditional method is immersion in an agitated solution of warm SDG.3 solution; an established decontaminating reagent. The decontamination effect of this process is compared with the effect of cleaning in an ultrasonic bath containing the same reagent at the same concentration and temperature. Fluorocarbon reagents are of particular interest to the nuclear industry for they offer the ability to clean electrical components without damage, and can clean product contaminated material without the risk of criticality. Such reagents are based on 1,1,2-trichloro, 1,2,2-trifluoroethane and azeotropic mixtures. This reagent and one mixture with 6% methanol were tested under agitation and ultrasonic immersion at the same temperature. Parallel control experiments were conducted using demineralised water as the cleaning media in an agitated bath. SGG3 is a good reagent for general purpose cleaning (it can remove 99% of particulate contamination) using scrubbing, immersion or spraying techniques. There is little evidence to show that ultrasonic cleaning increases its effectiveness. For special purpose fluorocarbon solvents will give satisfactory results when used in an ultrasonic system. (author)

  9. Cleaning and dewatering fine coal

    Science.gov (United States)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    2017-10-17

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.

  10. [Effects of rice cleaning and cooking process on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice].

    Science.gov (United States)

    Satoh, Motoaki; Sakaguchi, Masayuki; Kobata, Masakazu; Sakaguchi, Yoko; Tanizawa, Haruna; Miura, Yuri; Sasano, Ryoichi; Nakanishi, Yutaka

    2003-02-01

    We studied the effect of cleaning and cooking on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice. The rice had been sprayed in a paddy field in Wakayama city, with 3 kinds of pesticide application protocols: spraying once at the usual concentration of pesticides, repeated spraying (3 times) with the usual concentration of pesticides and spraying once with 3 times the usual concentration of pesticides. The residue levels of pesticide decreased during the rice cleaning process. Silafluofen, which has a higher log Pow value, remained in the hull of the rice. Fenobucarb, which has a lower log Pow value, penetrated inside the rice. The residue concentration of pesticide in polished rice was higher than that in pre-washed rice processed ready for cooking. During the cooking procedure, the reduction of pesticides in polished rice was higher than that in brown rice.

  11. A centrifuge CO2 pellet cleaning system

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.; Nelson, W.D.; Schechter, D.E.

    1993-01-01

    Centrifuge-based cryogenic pellet accelerator technology, originally developed at Oak Ridge National Laboratory (ORNL) for the purpose of refueling fusion reactors with high-speed pellets of frozen deuterium/tritium,is now being developed as a method of cleaning without the use of conventional solvents. In these applications large quantities of pellets made of frozen CO 2 or argon are accelerated in a high-speed rotor. The accelerated pellet stream is used to clean or etch surfaces. The advantage of this system is that the spent pellets and debris resulting from the cleaning process can be filtered leaving only the debris for disposal. This paper discusses the centrifuge CO 2 pellet cleaning system, the physics model of the pellet impacting the surface, the centrifuge apparatus, and some initial cleaning and etching tests

  12. Significant OH production under surface cleaning and air cleaning conditions: Impact on indoor air quality.

    Science.gov (United States)

    Carslaw, N; Fletcher, L; Heard, D; Ingham, T; Walker, H

    2017-11-01

    We report measurements of hydroxyl (OH) and hydroperoxy (HO 2 ) radicals made by laser-induced fluorescence spectroscopy in a computer classroom (i) in the absence of indoor activities (ii) during desk cleaning with a limonene-containing cleaner (iii) during operation of a commercially available "air cleaning" device. In the unmanipulated environment, the one-minute averaged OH concentration remained close to or below the limit of detection (6.5×10 5  molecule cm -3 ), whilst that of HO 2 was 1.3×10 7  molecule cm -3 . These concentrations increased to ~4×10 6 and 4×10 8  molecule cm -3 , respectively during desk cleaning. During operation of the air cleaning device, OH and HO 2 concentrations reached ~2×10 7 and ~6×10 8  molecule cm -3 respectively. The potential of these OH concentrations to initiate chemical processing is explored using a detailed chemical model for indoor air (the INDCM). The model can reproduce the measured OH and HO 2 concentrations to within 50% and often within a few % and demonstrates that the resulting secondary chemistry varies with the cleaning activity. Whilst terpene reaction products dominate the product composition following surface cleaning, those from aromatics and other VOCs are much more important during the use of the air cleaning device. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Collodion-reinforcement and plasma-cleaning of target foils

    Science.gov (United States)

    Stoner, John O.

    2002-03-01

    The preparation of evaporated target foils can often be facilitated by use of collodion coatings either on the substrate sides or on the exterior surfaces of the foils. Later, such coatings must usually be removed. Cleaning of a foil is necessary if thin layers of adhesives have crept onto the foil. Removal and/or cleaning can often be done satisfactorily with an oxygen plasma. Apparatus and procedures used for this are described. Foils that were cleaned successfully, and some that were incompatible with the cleaning process are listed.

  14. Collodion-reinforcement and plasma-cleaning of target foils

    International Nuclear Information System (INIS)

    Stoner, John O.

    2002-01-01

    The preparation of evaporated target foils can often be facilitated by use of collodion coatings either on the substrate sides or on the exterior surfaces of the foils. Later, such coatings must usually be removed. Cleaning of a foil is necessary if thin layers of adhesives have crept onto the foil. Removal and/or cleaning can often be done satisfactorily with an oxygen plasma. Apparatus and procedures used for this are described. Foils that were cleaned successfully, and some that were incompatible with the cleaning process are listed

  15. Effectiveness of HVAC duct cleaning procedures in improving indoor air quality.

    Science.gov (United States)

    Ahmad, I; Tansel, B; Mitrani, J D

    2001-12-01

    Indoor air quality has become one of the most serious environmental concerns as an average person spends about 22 hr indoors on a daily basis. The study reported in this article, was conducted to determine the effectiveness of three commercial HVAC (Heating Ventilation Air Conditioning) duct cleaning processes in reducing the level of airborne particulate matter and viable bioaerosols. The three HVAC sanitation processes were: (1) Contact method (use of conventional vacuum cleaning of interior duct surfaces); (2) Air sweep method (use of compressed air to dislodging dirt and debris); (3) Rotary brush method (insertion of a rotary brush into the ductwork to agitate and dislodge the debris). Effectiveness of these sanitation processes was evaluated in terms of airborne particulate and viable bioaerosol concentrations in residential homes. Eight identical homes were selected in the same neighborhood. Two homes were cleaned using each procedure and two were used as controls. It was found that both particle count readings and bioaerosol concentrations were higher when cleaning was being performed than before or after cleaning, which suggests that dirt, debris and other pollutants may become airborne as a result of disturbances caused by the cleaning processes. Particle count readings at 0.3 micron size were found to have increased due to cigarette smoking. Particle counts at 1.0 micron size were reduced due to HVAC duct cleaning. Post-level bioaerosol concentrations, taken two days after cleaning, were found to be lower than the pre-level concentrations suggesting that the cleaning procedures were effective to some extent. Homes cleaned with the Air Sweep procedure showed the highest degree of reduction in bioaerosol concentration among the three procedures investigated.

  16. Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service

    Science.gov (United States)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1997-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.

  17. Chemical cleaning/disinfection and ageing of organic UF membranes: a review.

    Science.gov (United States)

    Regula, C; Carretier, E; Wyart, Y; Gésan-Guiziou, G; Vincent, A; Boudot, D; Moulin, P

    2014-06-01

    Membrane separation processes have become a basic unit operation for process design and product development. These processes are used in a variety of separation and concentration steps, but in all cases, the membranes must be cleaned regularly to remove both organic and inorganic material deposited on the surface and/or into the membrane bulk. Cleaning/disinfection is a vital step in maintaining the permeability and selectivity of the membrane in order to get the plant to its original capacity, to minimize risks of bacteriological contamination, and to make acceptable products. For this purpose, a large number of chemical cleaning/disinfection agents are commercially available. In general, these cleaning/disinfection agents have to improve the membrane flux to a certain extent. However, they can also cause irreversible damages in membrane properties and performances over the long term. Until now, there is considerably less literature dedicated to membrane ageing than to cleaning/disinfection. The knowledge in cleaning/disinfection efficiency has recently been improved. But in order to develop optimized cleaning/disinfection protocols there still remains a challenge to better understand membrane ageing. In order to compensate for the lack of correlated cleaning/disinfection and ageing data from the literature, this paper investigates cleaning/disinfection efficiencies and ageing damages of organic ultrafiltration membranes. The final aim is to provide less detrimental cleaning/disinfection procedures and to propose some guidelines which should have been taken into consideration in term of membrane ageing studies. To carry out this study, this article will detail the background of cleaning/disinfection and aging membrane topics in a first introductive part. In a second part, key factors and endpoints of cleaning/disinfection and aging membranes will be discussed deeply: the membrane role and the cleaning parameters roles, such as water quality, storing conditions

  18. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  19. Chemical-Cleaning Demonstration Test No. 2 in a mock-up steam generator

    International Nuclear Information System (INIS)

    Jevec, J.M.; Leedy, W.S.

    1983-04-01

    This report describes the results of the mockup demonstration test of the first modified baseline process under Contract S-127, Chemical Cleaning of Nuclear Steam Generators. The objective of this program is to determine the feasibility of cleaning the secondary side of nuclear steam generators with state-of-the-art chemical cleaning technology. The first step was to benchmark a baseline process. This process was then modified to attempt to eliminate the causes of unacceptable cleaning performance. The modified baseline process consists of an EDTA/H 2 O 2 -based copper solvent and a near-neutral, EDTA/N 2 H 4 -based magnetite and crevice solvent. This report also presents the results of three inhibitor evaluation mockup runs used in the evaluation of the modified baseline process

  20. 75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2010-05-26

    ... Part II Environmental Protection Agency 40 CFR Parts 85 and 86 Clean Alternative Fuel Vehicle and...-0299; FRL-9149-9] RIN 2060-AP64 Clean Alternative Fuel Vehicle and Engine Conversions AGENCY... streamline the process by which manufacturers of clean alternative fuel conversion systems may demonstrate...

  1. 40 CFR 52.246 - Control of dry cleaning solvent vapor losses.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control of dry cleaning solvent vapor... cleaning solvent vapor losses. (a) For the purpose of this section, “dry cleaning operation” means that process by which an organic solvent is used in the commercial cleaning of garments and other fabric...

  2. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  3. Megasonic cleaning strategy for sub-10nm photomasks

    Science.gov (United States)

    Hsu, Jyh-Wei; Samayoa, Martin; Dress, Peter; Dietze, Uwe; Ma, Ai-Jay; Lin, Chia-Shih; Lai, Rick; Chang, Peter; Tuo, Laurent

    2016-10-01

    One of the main challenges in photomask cleaning is balancing particle removal efficiency (PRE) with pattern damage control. To overcome this challenge, a high frequency megasonic cleaning strategy is implemented. Apart from megasonic frequency and power, photomask surface conditioning also influences cleaning performance. With improved wettability, cleanliness is enhanced while pattern damage risk is simultaneously reduced. Therefore, a particle removal process based on higher megasonic frequencies, combined with proper surface pre-treatment, provides improved cleanliness without the unintended side effects of pattern damage, thus supporting the extension of megasonic cleaning technology into 10nm half pitch (hp) device node and beyond.

  4. Financing clean energy market creation. Clean energy ventures, venture capitalists and other investors

    Energy Technology Data Exchange (ETDEWEB)

    Teppo, T. [Helsinki Univ. of Technology, Espoo (Finland). Development and Management in Industry

    2006-07-01

    , technology, regulatory control, and exits. The four cognitive risk factors were investment outcome history, VC risk preferences, investment domain familiarity, and venture framing. Third, the study developed a model showing that parent firm organizational culture affects the performance of a CVC fund. The effect of the organizational culture is moderated by risk-taking practices in the parent firm's decision-making process and the parent firm's skills in managing, measuring, and compensating fund success. The main contribution of this dissertation is in identifying theoretical models that explain the clean energy venture entrepreneurial challenges, how VCs view clean energy ventures from a risk perspective, and how the organizational culture of a firm affects its CVC activity. The findings of the study suggest several managerial implications to policy makers, corporations planning to launch CVC fund activities, venture capitalists, and clean energy ventures. The findings and limitations of the study suggest several avenues for future research. First of all, the developed models and propositions should be quantitatively tested and further refined. Furthermore, the effect of the parent firm's organizational culture on the CVC fund performance warrants further investigation, preferably in some other than clean energy context. In addition, future research could explore the two other clean energy venture entrepreneurial challenges, growth management and market education, in more detail. The role of institutions and energy policy in the formation of clean energy markets, especially from the perspective of clean energy ventures and investors, would also be worth exploring in future research. (orig.)

  5. Corrosion Finishing/Coating Systems for DoD Metallic Substrates Based on Non-Chromate Inhibitors and UV Curable, Zero VOC Materials

    Science.gov (United States)

    2010-08-01

    decrease the effective deposition rate of CeCCs by slowing the nucleation process, improving coating quality and corrosion resistance. Investigations on...Release, October 1, 2004. 3. “ Electrodeposition of Cerium Based Coatings for Corrosion Protection of Aluminum Alloys”, J. O. Stoffer, T.J. O’Keefe, S...Chloride Environments”, Materials Letters, 61 (17), 3378 (2007). B. Technical Reports 1. Philip Jones, May 2007, MS Thesis , Impact of Processing

  6. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  7. Combustion and environmental performance of clean coal end products

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Sakellaropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Chemical Process Engineering Research Inst., Thessaloniki (Greece). Lab. of Solid Fuels and Environment; Someus, E. [Thermal Desorption Technology Group (Greece); Grammelis, P.; Amarantos, P.S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications; Palladas, A.; Basinas, P.; Natas, P.; Prokopidou, M.; Diamantopoulou, I.; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab

    2006-07-01

    Clean and affordable power production is needed in order to achieve sustainable economic development. This paper focused on clean coal technologies in which coal-fired power plants are used in conjunction with large amounts of renewable energy sources to offer a high level of process safety and long term management of all residual operation streams. Thermal Desorption Recycle-Reduce-Reuse Technology (TDT-3R) was described as being a promising solid fuel pretreatment process for clean energy production up to 300 MWe capacities. TDT-3R is based on low temperature carbonisation fuel pre-treatment principles, which produce cleansed anthracite type fuels from coal and other carbonaceous material such as biomass and organic wastes. The combustion efficiency of such clean coals and the environmental performance of the TDT-3R process were investigated in this study via pilot scale tests of clean fuel production. Tests included flue gas emissions monitoring, raw fuel and product characterisation and thermogravimetric tests, polychlorinated dibenzo-p-dioxins and dibenzo-furans, and heavy metals analyses, and toxicity tests. Raw material included coal and biomass, such as willow, straw and demolition wood. The fuels were heated in a rotary kiln operating at 550 degrees C under slightly vacuum conditions. Clean coals were tested either alone or in conjunction with biomass fuels in a pilot scale combustion facility at Dresden, Germany. The clean coal samples were shown to have higher fixed carbon and ash content and lower volatiles compared to the respective raw coal samples. The major advantage of the TDT-3R process is the production of fuels with much lower pollutants content. Low nitrogen, sulphur, chlorine and heavy metal contents result in produced fuels that have excellent environmental performance, allow boiler operation in higher temperatures and overall better efficiency. Moreover, the use of clean fuels reduces deposition problems in the combustion chamber due to the

  8. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  9. Novel micronized woody biomass process for production of cost-effective clean fermentable sugars.

    Science.gov (United States)

    Fu, Yu; Gu, Bon-Jae; Wang, Jinwu; Gao, Johnway; Ganjyal, Girish M; Wolcott, Michael P

    2018-03-29

    Thermo-chemical pretreatments of biomass typically result in environmental impacts from water use and emission. The degradation byproducts in the resulting sugars can be inhibitory to the activities of enzymes and yeasts. The results of this study showed that combining existing commercial comminution technology can reduce total energy consumption with improved saccharification yield while eliminating chemical use. Impact mill was found to be the most efficient milling for size reduction of forest residual chips from ca. 2 mm to a specific value below 100 µm. The further micronization effectively disrupted the recalcitrance of the woody biomass and produced the highly saccharifiable substrates for downstream processing. In addition, extrusion can be integrated into a clean cellulosic sugar process for further fibrillation in place of the conventional mixing processing. The highest energy efficiency was observed on the impact-milled samples with 0.515 kg sugars kWh -1 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Criticality concerns in cleaning large uranium hexafluoride cylinders

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    Cleaning large cylinders used to transport low-enriched uranium hexafluoride (UF 6 ) presents several challenges to nuclear criticality safety. This paper presents a brief overview of the cleaning process, the criticality controls typically employed and their bases. Potential shortfalls in implementing these controls are highlighted, and a simple example to illustrate the difficulties in complying with the Double Contingency Principle is discussed. Finally, a summary of recommended criticality controls for large cylinder cleaning operations is presented

  11. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  12. Sustainable development, clean technology and knowledge from industry

    Directory of Open Access Journals (Sweden)

    Sokolović Slobodan M.

    2012-01-01

    Full Text Available Clean technology or clean production is the most important factor for the economic growth of a society and it will play the main role not only in the area of cleaner production, but also in sustainable development. The development of clean technology will be the main factor of the company’s strategy in the future. Each company, which wants to reach the competitive position at the market and wants to be environmentally friendly, has to accept the new approach in corporate management and the strategy of new clean technology. The main principles of clean technology are based on the concept of maximum resource and energy productivity and virtually no waste. This approach may be limited by human resources and the level of their environmental knowledge. Companies are committed to the development of the workers’ skills, and thus to the improvement of the company for the full implementation of the environmental legislation and clean production concept. Based on this commitment, one of Tempus projects is designed to improve the university-enterprise cooperation in the process of creating sustainable industry in Serbia, Bosnia and Herzegovina and the Former Yugoslav Republic of Macedonia. To achieve this goal, partner universities will create special courses on sustainable industry and thus enhance the lifelong learning process and cooperation between industry and universities in the Western Balkan countries.

  13. Electro-membrane processes for flue gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, T. F.

    1997-12-31

    , the energy consumption for regeneration of 250 kJ/mole SO{sub 2}, at a current density of 150 mA/Cm{sup 2} and 200 kJ/mole SO{sub 2}, at a current density of 50 mA/cm{sup 2}, have been achieved. This may be compared to the energy consumption of about 1200 kJ/mole SO{sub 2} for the conventional process (steam stripping) for regeneration. The problems arising from fouling of membranes due to the presence of impurities in the liquid have also been studied. These studies have then been used for evaluating the requirement for cleaning of liquids before regeneration. (EG) EFP-94. 95 refs.

  14. Conditions for the clean slate effect after success or failure.

    Science.gov (United States)

    Körner, Anita; Strack, Fritz

    2018-03-20

    The act of physically cleaning one's hands may reduce the impact of past experiences, termed clean-slate effect. Cleaning was found to affect negative, neutral, and mildly positive states. We extend this influence to success, a self-serving state. We manipulated success vs. failure and measured changes in optimism (Experiment 1) or self-esteem (Experiment 2). Moreover, we examined boundary conditions for the clean-slate effect. Experiment 1 indicates that the influence of performance on optimism diminishes if participants knew (compared to did not know) they were cleaning their hands. Experiment 2 indicates that the influence of performance on self-esteem diminishes if participants cleaned themselves (compared to an object). These results suggest that the clean-slate effect requires both awareness and self-reference of the cleaning act. Thus, the clean-slate effect seems to depend on both conscious inferences and automatic processes. A meta-analysis across the experiments confirms a moderate-sized clean-slate effect.

  15. Cleaning of Sodium in the Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high- oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  16. Medium scale test study of chemical cleaning technique for secondary side of SG in PWR

    International Nuclear Information System (INIS)

    Zhang Mengqin; Zhang Shufeng; Yu Jinghua; Hou Shufeng

    1997-08-01

    The medium scale test study of chemical cleaning technique for removing corrosion product (Fe 3 O 4 ) in secondary side of SG in PWR has been completed. The test has been carried out in a medium scale test loop. The medium scale test evaluated the effect of the chemical cleaning technique (temperature, flow rate, cleaning time, cleaning process), the state of corrosion product deposition on magnetite (Fe 3 O 4 ) solubility and safety of materials of SG in cleaning process. The inhibitor component of chemical cleaning agent has been improved by electrochemical linear polarization method, the effect of inhibitor on corrosion resistance of materials have been examined in the medium scale test loop, the most components of chemical cleaning agent have been obtained, the EDTA is main component in cleaning agent. The electrochemical method for monitor corrosion of materials during cleaning process has been completed in the laboratory. The study of the medium scale test of chemical cleaning technique have had the optimum chemical cleaning technique for remove corrosion product in SG secondary side of PWR. (9 refs., 4 figs., 11 tabs.)

  17. Laser cleaning of varnishes and contaminants on brass

    Energy Technology Data Exchange (ETDEWEB)

    Mateo, M.P.; Ctvrtnickova, T. [Universidad de A Coruna, Dpto. Ingenieria Industrial II, C/ Mendizabal s/n, 15403 Ferrol (Spain); Fernandez, E.; Ramos, J.A. [Instituto Tecnologico de Optica Color e Imagen, AIDO, Dpto. Laser, Valencia (Spain); Yanez, A. [Universidad de A Coruna, Dpto. Ingenieria Industrial II, C/ Mendizabal s/n, 15403 Ferrol (Spain); Nicolas, G. [Universidad de A Coruna, Dpto. Ingenieria Industrial II, C/ Mendizabal s/n, 15403 Ferrol (Spain)], E-mail: gines@cdf.udc.es

    2009-03-01

    The capability of laser ablation to perform controlled cleaning of varnishes containing contaminants and paints used by restorers in artistic objects from brass samples while keeping unaltered the finish structure is demonstrated in this work. Adequate laser energy per pulse and number of laser shots required to perform a suitable cleaning by laser ablation have been optimized. The inspection of the samples before and after the cleaning process by optical microscopy and by Fourier transform infrared spectroscopy (FTIR) technique demonstrated that the finish structure of the surface was intact while the coatings were completely eliminated. Furthermore, a laser-induced plasma spectroscopy (LIBS)-based detection system was applied during the irradiation process for the analysis of the material removal and also for its monitoring.

  18. Laser cleaning of varnishes and contaminants on brass

    International Nuclear Information System (INIS)

    Mateo, M.P.; Ctvrtnickova, T.; Fernandez, E.; Ramos, J.A.; Yanez, A.; Nicolas, G.

    2009-01-01

    The capability of laser ablation to perform controlled cleaning of varnishes containing contaminants and paints used by restorers in artistic objects from brass samples while keeping unaltered the finish structure is demonstrated in this work. Adequate laser energy per pulse and number of laser shots required to perform a suitable cleaning by laser ablation have been optimized. The inspection of the samples before and after the cleaning process by optical microscopy and by Fourier transform infrared spectroscopy (FTIR) technique demonstrated that the finish structure of the surface was intact while the coatings were completely eliminated. Furthermore, a laser-induced plasma spectroscopy (LIBS)-based detection system was applied during the irradiation process for the analysis of the material removal and also for its monitoring

  19. Cleaning, disinfection and sterilization of surface prion contamination.

    Science.gov (United States)

    McDonnell, G; Dehen, C; Perrin, A; Thomas, V; Igel-Egalon, A; Burke, P A; Deslys, J P; Comoy, E

    2013-12-01

    Prion contamination is a risk during device reprocessing, being difficult to remove and inactivate. Little is known of the combined effects of cleaning, disinfection and sterilization during a typical reprocessing cycle in clinical practice. To investigate the combination of cleaning, disinfection and/or sterilization on reducing the risk of surface prion contamination. In vivo test methods were used to study the impact of cleaning alone and cleaning combined with thermal disinfection and high- or low-temperature sterilization processes. A standardized test method, based on contamination of stainless steel wires with high titres of scrapie-infected brain homogenates, was used to determine infectivity reduction. Traditional chemical methods of surface decontamination against prions were confirmed to be effective, but extended steam sterilization was more variable. Steam sterilization alone reduced the risk of prion contamination under normal or extended exposure conditions, but did show significant variation. Thermal disinfection had no impact in these studies. Cleaning with certain defined formulations in combination with steam sterilization can be an effective prion decontamination process, in particular with alkaline formulations. Low-temperature, gaseous hydrogen peroxide sterilization was also confirmed to reduce infectivity in the presence and absence of cleaning. Prion decontamination is affected by the full reprocessing cycle used on contaminated surfaces. The correct use of defined cleaning, disinfection and sterilization methods as tested in this report in the scrapie infectivity assay can provide a standard precaution against prion contamination. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. Development of clean soil technology using coals as oily/tarry contaminant removal

    International Nuclear Information System (INIS)

    Ignasiak, T.; Szymocha, K.; Carson, D.; Ignasiak, B.

    1991-01-01

    A Clean Soil Process for the treatment of oil/tar contaminated soils has been developed. The mechanics, of the clean-up process that utilizes coal as a cleaning medium is described. The experience and results obtained in the batch-scale testing as well as in the 250 kg/hr continuous facility have been applied for a conceptual design of a 200 t/day mobile plant

  1. Cleaning Schedule Operations in Heat Exchanger Networks

    Directory of Open Access Journals (Sweden)

    Huda Hairul

    2018-01-01

    Full Text Available Heat exchanger networks have been known to be the essential parts in the chemical industries. Unfortunately, since the performance of heat exchanger can be decreasing in transferring the heat from hot stream into cold stream due to fouling, then cleaning the heat exchanger is needed to restore its initial performance periodically. A process of heating crude oil in a refinery plant was used as a case study. As many as eleven heat exchangers were used to heat crude oil before it was heated by a furnace to the temperature required to the crude unit distillation column. The purpose of this study is to determine the cleaning schedule of heat exchanger on the heat exchanger networks due to the decrease of the overall heat transfer coefficient by various percentage of the design value. A close study on the process of heat exchanger cleaning schedule in heat exchanger networks using the method of decreasing overall heat transfer coefficient as target. The result showed that the higher the fouling value the more often the heat exchanger is cleaned because the overall heat transfer coefficient decreases quickly.

  2. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    International Nuclear Information System (INIS)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  3. CHEMICAL AND ENERGETIC CONTENT OF CORN BEFORE AND AFTER PRE-CLEANING

    Directory of Open Access Journals (Sweden)

    Sandra Iara Furtado Costa Rodrigues

    2015-04-01

    Full Text Available The poultry industry normally has little control over the raw material that arrives at the processing plant. This experiment aimed to evaluate chemical and energetic quality of corn obtained in a feed mill before and after pre-cleaning. Twenty samples of 30 kg of corn each were taken from trucks delivering corn to the mill. The trucks were then unloaded and the material passed through a pre-cleaning process when another sample was taken. Samples were graded and physical properties evaluated: density (g/L, grain percentages of foreign material, impurities, fragments, broken, soft, insect damaged, fire-burnt, fermented, damaged, cracked and fine particles, as well as chemical composition analysis: Apparent metabolizable energy for poultry (AME, ether extract (EE, crude fiber (CF, starch (STA, water activity (WA, crude protein (CP, digestible and total lysine, methionine, cystine, threonine, tryptophan, valine, isoleucine, leucine, phenylalanine, histidine and arginine. The experiment was a randomized design with two treatments (before and after pre-cleaning and twenty replications. Data was analyzed using SAS ® and treatment differences obtained using F test. Correlations and principal components were calculated. There was a decrease in density after the pre-cleaning process, which was probably due to the removal of earth and stones rather than grain and its fractions. Significant increases were found for insect damage, fermented and damaged grain while fire-burn was significantly reduced after the pre-cleaning process. Starch increased after pre-cleaning which is a result of contaminants that normally are poor in this carbohydrate, but fiber levels increased too. Apparent metabolizable energy, aminoacids, digestible (P<0.05 and total (P<0.05 histidine, total lysine and methionine (P<0.1 levels were reduced after pre-cleaning. Density was higher when there were fewer impurities such as straw, husk or small grains. Broken corn was positively

  4. Optimization of Ultrasonic Fabric Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hand, T.E.

    1998-05-13

    The fundamental purpose of this project was to research and develop a process that would reduce the cost and improve the environmental efficiency of the present dry-cleaning industry. This second phase of research (see report KCP-94-1006 for information gathered during the first phase) was intended to allow the optimal integration of all factors of ultrasonic fabric cleaning. For this phase, Garment Care performed an extensive literature search and gathered data from other researchers worldwide. The Garment Care-AlliedSignal team developed the requirements for a prototype cleaning tank for studies and acquired that tank and the additional equipment required to use it properly. Garment Care and AlliedSignal acquired the transducers and generators from Surftran Martin-Walter in Sterling Heights, Michigan. Amway's Kelly Haley developed the test protocol, supplied hundreds of test swatches, gathered the data on the swatches before and after the tests, assisted with the cleaning tests, and prepared the final analysis of the results. AlliedSignal personnel, in conjunction with Amway and Garment Care staff, performed all the tests. Additional planning is under way for future testing by outside research facilities. The final results indicated repeatable performance and good results for single layered fabric swatches. Swatches that were cleaned as a ''sandwich,'' that is, three or more layers.

  5. Morphological analysis of three wound-cleaning processes on potentially contamined wounds in rats

    Directory of Open Access Journals (Sweden)

    d'Acampora Armando José

    2006-01-01

    Full Text Available PURPOSE: To evaluate the inflammatory response of potentially infected wounds treated with isotonic saline solution, chlorhexidine and PVP-I, seven days after surgery. METHODS: Thirty-two male rats were used, divided into 4 groups. All animals had their surgical wounds infected with a standard bacterial inoculum. Control group (A: animals had their surgical wounds sutured without any kind of cleaning. Saline solution group (B: animals had their wounds cleaned with saline solution. Chlorhexidine group (C: animals had their wounds cleaned with chlorhexidine. PVP-I group (D: animals had their wounds cleaned with PVP-I. Seven days after surgery, all the animals had their skin submitted to microscopic and macroscopic evaluation. RESULTS: Edema was found on all histological slices analyzed, as well as vascular proliferation and congestion. Groups A and D showed presence of mild neutrophilic infiltrate, and moderate lymphocytic and macrophage infiltrate. Group B showed severe neutrophilic, macrophage, and lymphocytic infiltrate. Group C showed moderate neutrophilic, macrophage, and lymphocytic infiltrate. CONCLUSION: Group D was the group which showed inflammatory infiltrate most similar to the group that was not submitted to treatment.

  6. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  7. Some impacts of the 1990 Clean Air Act and state clean-air regulations on the fertilizer industry

    International Nuclear Information System (INIS)

    Breed, C.E.; Kerns, O.S.

    1992-01-01

    The Clean Air Act amendments of 1990 will intensify national efforts to reduce air pollution. They will have major impacts on governmental agencies and on industrial and commercial facilities throughout the country. As with other industries, it is essential for fertilizer dealers and producers to understand how these changes to the Clean Air Act can significantly change the way they do business. This paper is proffered as an overview of ways in which the 1990 amendments to the Clean Air Act may impact the fertilizer industry. The nonattainment, toxics, and permit provisions of the amended act will be three areas of particular concern to the fertilizer industry. Implementation of the new regulatory requirements of this legislation promises to be a long and onerous process for all concerned. However, it appears that state and local regulations may have a much more profound impact on the fertilizer industry than the new Clean Air Act

  8. Oxalate Mass Balance During Chemical Cleaning in Tank 5F

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-07-08

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

  9. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  10. New challenges to air/gas cleaning systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.L. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  11. Data cleaning in the energy domain

    Science.gov (United States)

    Akouemo Kengmo Kenfack, Hermine N.

    This dissertation addresses the problem of data cleaning in the energy domain, especially for natural gas and electric time series. The detection and imputation of anomalies improves the performance of forecasting models necessary to lower purchasing and storage costs for utilities and plan for peak energy loads or distribution shortages. There are various types of anomalies, each induced by diverse causes and sources depending on the field of study. The definition of false positives also depends on the context. The analysis is focused on energy data because of the availability of data and information to make a theoretical and practical contribution to the field. A probabilistic approach based on hypothesis testing is developed to decide if a data point is anomalous based on the level of significance. Furthermore, the probabilistic approach is combined with statistical regression models to handle time series data. Domain knowledge of energy data and the survey of causes and sources of anomalies in energy are incorporated into the data cleaning algorithm to improve the accuracy of the results. The data cleaning method is evaluated on simulated data sets in which anomalies were artificially inserted and on natural gas and electric data sets. In the simulation study, the performance of the method is evaluated for both detection and imputation on all identified causes of anomalies in energy data. The testing on utilities' data evaluates the percentage of improvement brought to forecasting accuracy by data cleaning. A cross-validation study of the results is also performed to demonstrate the performance of the data cleaning algorithm on smaller data sets and to calculate an interval of confidence for the results. The data cleaning algorithm is able to successfully identify energy time series anomalies. The replacement of those anomalies provides improvement to forecasting models accuracy. The process is automatic, which is important because many data cleaning processes

  12. Clean Cities Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  13. Plasma cleaning techniques and future applications in environmentally conscious manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.P.

    1995-07-01

    Plasmas have frequently been used in industry as a last step surface preparation technique in an otherwise predominantly wet-etch process. The limiting factor in the usefulness of plasma cleaning techniques has been the rate at which organic materials are removed. Recent research in the field of plasma chemistry has provided some understanding of plasma processes. By controlling plasma conditions and gas mixtures, ultra-fast plasma cleaning and etching is possible. With enhanced organic removal rates, plasma processes become more desirable as an environmentally sound alternative to traditional solvent or acid dominated process, not only as a cleaning tool, but also as a patterning and machining tool. In this paper, innovations in plasma processes are discussed including enhanced plasma etch rates via plasma environment control and aggressive gas mixtures. Applications that have not been possible with the limited usefulness of past plasma processes are now approaching the realm of possibility. Some of these possible applications will be discussed along with their impact to environmentally conscious manufacturing.

  14. 16th DOE nuclear air cleaning conference: proceedings

    International Nuclear Information System (INIS)

    First, M.W.

    1981-02-01

    Major topics discussed during the Sixteenth DOE Nuclear Air Cleaning Conference were: waste treatment, including volume reduction and storage; system and component response to stress and accident conditions; Three Mile Island accident; iodine adsorption; treatment and storage of noble gas: treatment of offgases from chemical processing; aerosol; behavior; containment venting; laboratory and in-place filter-testing methods; and particulate filtration. Volume I of the Proceedings has 49 papers from the following sessions; HEPA filter test methods; noble gas separation; air cleaning system design; containment venting; iodine adsorption; reprocessing offgas cleaning; critical review; filtration; filter testing; and aerosols. Volume II contains 44 papers from the sessions on: nuclear waste treatment; critical review; noble gas treatment; carbon-14 and tritium; air cleaning system response to stress; nuclear standards and safety; round table; open end; and air cleaning technology at Three Mile Island. Abstracts are provided for all of these papers

  15. 16th DOE nuclear air cleaning conference: proceedings

    International Nuclear Information System (INIS)

    First, M.W.

    1981-02-01

    Major topics discussed during the Sixteenth DOE Nuclear Air Cleaning Conference were: waste treatment, including volume reduction and storage; system and component response to stress and accident conditions; Three Mile Island accident; iodine adsorption; treatment and storage of noble gas; treatment of offgases from chemical processing; aerosol behavior; containment venting; laboratory and in-place filter-testing methods; and particulate filtration. Volume I of the Proceedings has 49 papers from the following sessions: HEPA filter test methods; noble gas separation; air cleaning system design; containment venting; iodine adsorption; reprocessing offgas cleaning; critical review; filtration, filter testing, and aerosols. Volume II contains 44 papers from the sessions on: nuclear waste treatment; critical review; noble gas treatment; carbon-14 and tritium; air cleaning system response to stress; nuclear standards and safety; round table; open end; and air cleaning technology at Three Mile Island. Abstracts are provided for all of these papers

  16. Modelling de-novo formation of dioxins in the effluent gas cleaning tract of a zinc recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Nordsieck, H.; Peche, R.

    2002-07-01

    Dioxins as well as other chloroaromatics are an unwanted by-product of most metallurgical processes, both in primary metal production and in recycling, such as at the re-use of high-zinc steel dust, as obtained in the second steel melting process using in electric arc furnaces, by extracting the included zinc. for achieving this purpose, the steel dust is treated in a rotary kiln. This resulting zinc oxide is offered to metal working companies in form of fine powder where it is used for galvanizing of components, for example, or for converting the powder pure metal. In the framework of the MINIDIP-project (Minimization of Dioxins in Thermal Industrial Processes: Mechanisms, Monitoring, Abatement) the formation of dioxins was studied as a function of temperature, time, oxygen, and inhibitor addition. The resulting kinetic data are introduced into a computational fluid dynamics (CFD) model, featuring geometric representations of the effluent gas cleaning tract components and the temperature and gas flow field as well as the trajectories and destination of particles different sizes calculated. This CFD model is used to estimate the de-novo formation of dioxins from the moment the gas leaves the rotary kiln until its cleaning, in order to define the role of this part of the plant in the formation of dioxins, as well as the identification and extent of possibilities for minimizing dioxin emissions. (Author)

  17. Dual Electrolytic Plasma Processing for Steel Surface Cleaning and Passivation

    Science.gov (United States)

    Yang, L.; Zhang, P.; Shi, J.; Liang, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M.

    2017-10-01

    To remove the rust on rebars and passivate the fresh surfaces, electrodes reversing electrolytic plasma processing (EPP) was proposed and conducted in a 10 wt.% Na2CO3 aqueous solution. The morphology and the composition of the surface were investigated by SEM and XPS. Experimental results show that the rust on the surface was removed effectively by cathode EPP, and a passive film containing Cr2O3 was achieved by the succeeding anode EPP treatment, by a simple operation of reversing the bias. The corrosion resistance was evaluated in a 3.5 wt.% NaCl aqueous solution using an electrochemical workstation. In comparison, the corrosion resistance was improved by the succeeding anode EPP treatment, which is evidenced by a positive shift of the open-circuit potential, an increase in the electrochemical impedance representing the inner layer by 76.8% and the decrease in the corrosion current density by 49.6%. This is an effective and environment-friendly technique to clean and passivate rebars and similar steel materials.

  18. SAGE SOLVENT ALTERNATIVES GUIDE: SYSTEM IMPROVEMENTS FOR SELECTING INDUSTRIAL SURFACE CLEANING ALTERNATIVES

    Science.gov (United States)

    The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...

  19. Surface Analysis of the Laser Cleaned Metal Threads

    Science.gov (United States)

    Sokhan, M.; Hartog, F.; McPhail, D.

    The laser cleaning of the tarnished silver threads was carried out using Nd:YAG laser radiation at IR (1064 nm) and visible wavelengths (532 nm). The preliminary tests were made on the piece of silk with the silver embroidery with the clean and tarnished areas. FIBS and SIMS analysis were used for analysing the condition of the surface before and after laser irradiation. It was found that irradiation below 0.4 J/cm-2 and higher than 1.0 J/cm-2 fluences aggravates the process of tarnishing and leads to the yellowing effect. The results of preliminary tests were used for finding the optimum cleaning regime for the laser cleaning of the real museum artefact: "Women Riding Jacket" dated to the beginning of 18th century.

  20. Ultra-clean

    International Nuclear Information System (INIS)

    Hergenroether, K.

    1987-01-01

    No other method guarantees such a thorough cleaning of contaminated materials' surfaces. Only ultrasound can reach those cavities crevices and corners where any manual cleaning fails. Furthermore there is no cumbersome and time-consuming manual decontamination which often has to be carried out in glove boxes and hot cells. Depending on the design the cleaning effect can reach from removing adhering dirt particles to removing complete surface layers. (orig./PW) [de

  1. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    Science.gov (United States)

    advice on financing instruments. In a recent keynote to the Climate and Clean Energy Investment Forum renewable energy technologies in the country. Informing Energy Access and Clean Energy Project Finance understanding and knowledge of how to design policies that enable financing and encourage investment in clean

  2. Multiphysics modelling and simulation of dry laser cleaning of micro-slots with particle contaminants

    International Nuclear Information System (INIS)

    Yue Liyang; Wang Zengbo; Li Lin

    2012-01-01

    Light could interact differently with thin-film contaminants and particle contaminates because of their different surface morphologies. In the case of dry laser cleaning of small transparent particles, it is well known that particles could function like mini-lenses, causing a localized near-field hot spot effect on the cleaning process. This paper looks into a special, yet important, phenomenon of dry laser cleaning of particles trapped in micro-sized slots. The effects of slot size, particle size and particle aggregate states in the cleaning process have been theoretically investigated, based on a coupled electromagnetic-thermal-mechanical multiphysics modelling and simulation approach. The study is important for the development and optimization of laser cleaning processes for contamination removal from cracks and slots. (paper)

  3. Development of clean chemical mechanical polishing systems; Clean CMP system

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, M.; Hosokawa, M. [Ebara Corp., Tokyo (Japan)

    1998-10-20

    Described herein are clean chemical mechanical polishing (CMP) systems developed by Ebara. A CMP system needs advanced peripheral techniques, in addition to those for grinding adopted by the conventional system, in order to fully exhibit its inherent functions. An integrated design concept is essential for the CMP steps, including slurry supplying, polishing, washing, process controlling and waste fluid treatment. The Ebara has adopted a standard concept `Clean CMP, dry-in and dry-out of wafers,` and provided world`s highest grades of techniques for inter-layer insulating film, shallow trench isolation, plug and wiring. The head for the polishing module is specially designed by FEM, to improve homogeneity of wafers from the center to edges. The dresser is also specially designed, to improve pad surface topolody after dressing. A slurry dipsersing method is developed to reduce slurry consumption. Various washing modules, designed to have the same external shape, can be allocated to various functions. 10 figs.

  4. Petroleum industry is cleaning up its act -- Self-cleaning filters to maximize profits, minimize waste and reduce liability

    International Nuclear Information System (INIS)

    Williams, D.

    2004-01-01

    Recent steps taken by the petroleum industry to control end-of-pipe pollution and to minimize waste at the source by changing over to self-cleaning, backwashable filters instead of the traditional disposable filters such as bags or cartridges, are discussed. Various self-cleaning filter systems and their advantages are described, using REACTOGARD which provides total protection for catalysts in fixed-bed reactors and EROSIONGARD, used in fluidized catalytic crackers, as examples. Both filter systems have been developed by RPA Process Technologies, Inc., a global leader in industrial filtration systems. Major advantages attributed to self-cleaning filters include significantly reduced costs through reducing the number of catalyst change-out cycles, maximized platform productivity through virtually eliminating the risk of plugged wells, reduced waste through ability to recycle cleaning liquids, increased profits through shorter return-on-investment cycles, reduced emissions and reduced future liability through higher safety in the workplace; also reduced pollution of landfill sites. 1 photo

  5. Evaluation of boiler chemical cleaning techniques

    International Nuclear Information System (INIS)

    1993-04-01

    The EPRI/SGOG process, which has been selected by Ontario Hydro for use at the Bruce A station, is described. This process consists of alternating iron removal and copper removal steps, the two metals which comprise the bulk of the deposit in the Bruce A SGs. The iron removal solvent consists of ethylenediameinetetraacetic acid (EDTA), hydrazine, ammonium hydroxide and a proprietary corrosion inhibitor CCI-801. The copper removal solvent consists of EDTA, ethylene diamine and hydrogen peroxide. Ontario Hydro proposes to clean a bank of four SGs in parallel employing a total of six copper removal steps and four iron removal steps. Cleaning all eight SGs in a single Bruce A unit will generate 2,200 m 3 of liquid waste which will be treated by a wet air oxidation process. The iron and copper sludges will be buried in a landfill site while the liquid waste will be further treated by the Bruce sewage treatment plant. Some ammonia vapour will be generated through the wet air oxidation process and will be vented through a stack on top of the high bay of the spent solvent treatment plant. With the exception of the proprietary corrosion inhibitor, all chemicals that will be employed in the cleaning and waste treatment operations are standard industrial chemicals which are well characterized. No extraordinary hazards are anticipated with their use as long as adequate safety precautions are taken

  6. Chemical cleaning for sludge in steam generator of nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Mengqin; Lu Yucheng; Zhang Binyong; Yu Jinghua

    2002-01-01

    The sludge induced corrosion damage to secondary side of tubes of Steam Generator (SG), effect of chemical cleaning technique on maintenance integrity of tubes of SG NPP and use of chemical cleaning technique in SG NPP have been summarized. The engineering technique of chemical cleaning for removing sludge in secondary side of SG NPP has been studied and qualified by CIAE (China Institute of Atomic Energy). Chemical cleaning engineering technique is introduced (main agent is EDTA, temp. <100 degree C), including chemical cleaning technology for tube plate and full tube nest of secondary side of SG, the monitoring technique of chemical cleaning process (effectiveness and safety), the disposal method of wastage of chemical cleaning, the system of chemical cleaning. The method for preventing sludge deposition in secondary side and the research on advanced water chemistry of secondary loop are introduced

  7. How clean is clean?---How clean is needed?

    International Nuclear Information System (INIS)

    Hays, A.K.

    1991-01-01

    This paper will provide an overview of cleaning qualifications used in a variety of industries: from small-scale manufacturer's of precision-machined products to large-scale manufacturer's of electronics (printed wiring boards and surface mount technology) and microelectronics. Cleanliness testing techniques used in the production of precision-machined products, will be described. The on-going DOD program to obtain high-reliability electronics, through the use of military specifications for cleaning and cleanliness levels, will be reviewed. In addition, the continually changing cleanroom/materials standards of the microelectronics industry will be discussed. Finally, we will speculate on the role that new and improved analytical techniques and sensor technologies will play in the factories of the future. 4 refs., 1 tab

  8. Processing method for chemical cleaning liquid on the secondary side of steam generator

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Inagaki, Yuzo.

    1993-01-01

    Upon processing nitrilotriacetate (NTA), Fe liquid wastes mainly comprising Fe and Cu liquid wastes mainly comprising ethylene diamine and Cu generated upon chemical cleaning on the secondary side of a steam generator, pH of the Fe liquid wastes is lowered to deposit and separate NTA. Then, Fe ions in a filtrates are deposited on a cathode by electrolysis, as well as remaining NTA is decomposed by oxidation at an anode by O 2 gas. Cu liquid wastes are reacted with naphthalene disulfate and Ba ions and the reaction products are separated by deposition as sludges. Remaining Cu ions in the filtrates are deposited on the cathode by electrolysis. With such procedures, concentration of COD(NTA), Fe ions and Cu ions can greatly be reduced. Further, since capacity of the device can easily be increased in this method, a great amount of liquid wastes can be processed in a relatively short period of time. (T.M.)

  9. The Research and Implementation of MUSER CLEAN Algorithm Based on OpenCL

    Science.gov (United States)

    Feng, Y.; Chen, K.; Deng, H.; Wang, F.; Mei, Y.; Wei, S. L.; Dai, W.; Yang, Q. P.; Liu, Y. B.; Wu, J. P.

    2017-03-01

    It's urgent to carry out high-performance data processing with a single machine in the development of astronomical software. However, due to the different configuration of the machine, traditional programming techniques such as multi-threading, and CUDA (Compute Unified Device Architecture)+GPU (Graphic Processing Unit) have obvious limitations in portability and seamlessness between different operation systems. The OpenCL (Open Computing Language) used in the development of MUSER (MingantU SpEctral Radioheliograph) data processing system is introduced. And the Högbom CLEAN algorithm is re-implemented into parallel CLEAN algorithm by the Python language and PyOpenCL extended package. The experimental results show that the CLEAN algorithm based on OpenCL has approximately equally operating efficiency compared with the former CLEAN algorithm based on CUDA. More important, the data processing in merely CPU (Central Processing Unit) environment of this system can also achieve high performance, which has solved the problem of environmental dependence of CUDA+GPU. Overall, the research improves the adaptability of the system with emphasis on performance of MUSER image clean computing. In the meanwhile, the realization of OpenCL in MUSER proves its availability in scientific data processing. In view of the high-performance computing features of OpenCL in heterogeneous environment, it will probably become the preferred technology in the future high-performance astronomical software development.

  10. [Clinical research of minimal extracorporeal circulation in perioperative blood conservation of coronary artery bypass graft].

    Science.gov (United States)

    Liu, Yan; Cui, Hu-jun; Tao, Liang; Chen, Xu-fa

    2011-04-01

    To analyze the clinical effect of minimal extracorporeal circulation (MECC) in blood conservation perioperatively coronary artery bypass graft (CABG). The data of 120 cases received simple CABG since August 2006 to October 2009 was analyzed retrospectively. All the patients were divided to three groups according to the mode of circulation support in-operation: MECC, conventional extracorporeal circulation (cECC) or off-pump, 40 cases in each group. Jostra MECC system with normal temperature was used in MECC group, and common membrane oxygenator with moderate hypo-temperature was used in cECC group. Collect the data of coagulation and the blood cytological examination perioperatively, the draining volume during the first 24 h after operation, and consumption of blood products perioperatively. Standard and logistic EuroSCORE were higher in MECC group than the others (P blood products in cECC group, but no difference among the three groups. MECC could reduce the ruin to blood cell and interfere to coagulation function during the conventional ECC procedure, decrease the postoperative draining volume and requirement of blood products.

  11. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward

    2006-01-01

    Full Text Available The preventive pre-treatment of low grade solid fuels is safer, faster, better, and less costly vs. the "end-of-the-pipe" post treatment solutions. The "3R" (Recycle-Reduce-Reuse integrated environment control technology provides preventive pre-treatment of low grade solid fuels, such as brown coal and contaminated solid fuels to achieve high grade cleansed fuels with anthracite and coke comparable quality. The goal of the 3R technology is to provide cost efficient and environmentally sustainable solutions by preventive pre-treatment means for extended operations of the solid fuel combustion power plants with capacity up to 300 MWe power capacities. The 3R Anthracite Clean Coal end product and technology may advantageously be integrated to the oxyfuel-oxy-firing, Foster Wheeler anthracite arc-fired utility type boiler and Heat Pipe Reformer technologies in combination with CO2 capture and storage programs. The 3R technology is patented original solution. Advantages. Feedstock flexibility: application of pre-treated multi fuels from wider fuel selection and availability. Improved burning efficiency. Technology flexibility: efficient and advantageous inter-link to proven boiler technologies, such as oxyfuel and arcfired boilers. Near zero pollutants for hazardous-air-pollutants: preventive separation of halogens and heavy metals into small volume streams prior utilization of cleansed fuels. >97% organic sulphur removal achieved by the 3R thermal pre-treatment process. Integrated carbon capture and storage (CCS programs: the introduction of monolitic GHG gas is improving storage safety. The 3R technology offers significant improvements for the GHG CCS conditions. Cost reduction: decrease of overall production costs when all real costs are calculated. Improved safety: application of preventive measures. For pre-treatment a specific purpose designed, developed, and patented pyrolysis technology used, consisting of a horizontally arranged externally

  12. Cleaning, disassembly, and requalification of the FFTF in vessel handling machine

    International Nuclear Information System (INIS)

    Coops, W.J.

    1977-10-01

    The Engineering Model In Vessel Handling Machine (IVHM) was successfully removed, cleaned, disassembled, inspected, reassembled and reinstalled into the sodium test vessel at Richland, Washington. This was the first time in the United States a full size operational sodium wetted machine has been cleaned by the water vapor nitrogen process and requalified for operation. The work utilized an atmospheric control system during removal, a tank type water vapor nitrogen cleaning system and an open ''hands on'' disassembly and assembly stand. Results of the work indicate the tools, process and equipment are adequate for the non-radioactive maintenance sequence. Additionally, the work proves that a machine of this complexity can be successfully cleaned, maintained and re-used without the need to replace a large percentage of the sodium wetted parts

  13. Holistic processes and practices for clean energy in strengthening bioeconomic strategies (INDO-NORDEN)

    Science.gov (United States)

    Shurpali, Narasinha J.; Parameswaran, Binod; Raud, Merlin; Pumpanen, Jukka; Sippula, Olli; Jokiniemi, Jorma; Lusotarinen, Sari; Virkajarvi, Perttu

    2017-04-01

    We are proud to introduce the project, INDO-NORDEN, funded in response to the Science and Technology call of the INNO INDIGO Partnership Program (IPP) on Biobased Energy. The project is scheduled to begin from April 2017. The proposed project aims to address both subtopics of the call, Biofuels and From Waste to Energy with research partners from Finland (coordinating unit), India and Estonia. The EU and India share common objectives in enhancing energy security, promoting energy efficiency and energy safety, and the pursuit of sustainable development of clean and renewable energy source. The main objective of INDO-NORDEN is to investigate, evaluate and develop efficient processes and land use practices of transforming forest and agricultural biomass, agricultural residues and farm waste into clean fuels (solid, liquid or gas), by thermochemical or biochemical conversions. Forestry and agriculture are the major bioenergy sectors in Finland. Intensive forest harvesting techniques are being used in Finland to enhance the share of bioenergy in the total energy consumption in the future. However, there are no clear indications how environmentally safe are these intensive forestry practices in Finland. We address this issue through field studies addressing the climate impacts on the ecosystem carbon balance and detailed life cycle assessment. The role of agriculture in Finland is expected to grow significantly in the years to come. Here, we follow a holistic field experimental approach addressing several major issues relevant to Nordic agriculture under changing climatic conditions - soil nutrient management, recycling of nutrients, farm and agricultural waste management, biogas production potentials, greenhouse gas inventorying and entire production chain analysis. There is a considerable potential for process integration in the biofuel sector. This project plans to develop biofuel production processes adopted in Estonia and India with a major aim of enhancing biofuel

  14. Chemical cleaning the service water system at a nuclear power plant

    International Nuclear Information System (INIS)

    Brice, T.O.; Glover, W.A.

    1994-01-01

    Chemical cleaning a large cooling water system in a nuclear power plant presented many unique problems. The selection, qualification, and performance of the cleaning process were done using a phased approach. The piping was inspected to determine the extent of the problem. Deposit samples were removed from the service water system pipe and tested in the laboratory to determine the most effective cleaning solvent for deposit removal. An engineering study was performed to define the design parameters required to implement the system-wide chemical cleaning

  15. Cleaning Of Black Crust From Marble Substrate By Short Free Running μs Nd: YAG Laser

    International Nuclear Information System (INIS)

    Khedr, A.; Harith, M. A.; Pouli, P.; Fotakis, C.

    2009-01-01

    One of the most important aspects in laser cleaning of artworks is the possibility for on-line monitoring the cleaning process. This ensures that the cleaning intervention is satisfactory without any damage to the underlying original surface. In this work it is shown that following and observing the integrated densities of the plumes generated during laser cleaning may be a simple, safe and straightforward methodology to monitor the removal process. A series of experiments on reference marble with simulated thick encrustation were considered to evaluate the plume monitoring technique. Parameters influencing the cleaning process and ablation threshold of the black crust (such as laser fluence, number of pulses etc.) were considered while the results were also evaluated under the microscope. The results of this study will be presented and discussed with the aim to establish accurate and reliable monitoring tools to follow the laser cleaning process.

  16. Introducing the Clean-Tech Adoption Model: A California Case Study

    NARCIS (Netherlands)

    Bijlveld, P.C. (Paul); Riezebos, P. (Peter); Wierstra, E. (Erik)

    2012-01-01

    Abstract. The Clean-Tech Adoption Model (C-TAM) explains the adoption process of clean technology. Based on the Unified Theory of Acceptance and Usage of Technology (UTAUT) combined with qualitative research and empirical data gathering, the model predicts adoption based on the perceived quality,

  17. Service water chemical cleaning at River Bend gets results

    International Nuclear Information System (INIS)

    Brice, T.O.; Glover, W.A.

    1994-01-01

    The largest known Service Water System (SWS) chemical cleaning ever performed at a nuclear plant was successfully completed at, River Bend Station. Corrosion product buildup was observed during system inspections in the first operating cycle and the first refueling outage in 1987. Under deposit corrosion was followed with microbiologically influenced corrosion (MIC) occurring as a later stage under deposits. The heavy corrosion caused blockage of heat exchanger tubes, fouling of valve seats, and general flow blockage throughout the system. Various options were evaluated for restoring the SWS back to an acceptable long term operating condition. The large scale chemical cleaning performed arrested the corrosion by removing the deposits down to the bare metal surfaces and leaving behind a protective passivation layer. After the cleaning, the open recirculating SWS was converted to a closed system. The implementation of a molybdate/nitrate water treatment program with a copper corrosion inhibitor maintained at a high pH (8.5--10.5) has significantly reduced corrosion rates in the closed system. This should extend the life of the SWS piping for the remaining life of the plant. Several field tests were conducted to qualify the process and demonstrate its ability to achieve acceptable cleaning results prior to being used on a larger scale. In the summer of 1992, temporary and permanent modifications were installed to divide the SWS into two separate cleaning loops for the system wide cleaning. The SWS chemical was successfully performed and completed on schedule during the fourth refueling outage. Post cleaning inspections at various locations throughout the Service Water System showed the process to be very effective at complete deposit removal

  18. EBR-II experience with sodium cleaning and radioactivity decontamination

    International Nuclear Information System (INIS)

    Ruther, W.E.; Smith, C.R.F.

    1978-01-01

    The EBR-II is now in Its 13th year of operation. During that period more than 2400 subassemblies have been cleaned of sodium without a serious incident of any kind by a two-step process developed at Argonne. Sodium cleaning and decontamination of other reactor components has been performed only on the relatively few occasions in which a repair or replacement has been required. A summary of the EBR-II experience will be presented. A new facility will be described for the improved cleaning and maintenance of sodium-wetted primary components

  19. EBR-II experience with sodium cleaning and radioactivity decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, W E; Smith, C R.F. [Argonne National Laboratory, Argonne (United States)

    1978-08-01

    The EBR-II is now in Its 13th year of operation. During that period more than 2400 subassemblies have been cleaned of sodium without a serious incident of any kind by a two-step process developed at Argonne. Sodium cleaning and decontamination of other reactor components has been performed only on the relatively few occasions in which a repair or replacement has been required. A summary of the EBR-II experience will be presented. A new facility will be described for the improved cleaning and maintenance of sodium-wetted primary components.

  20. Optimizing UF Cleaning in UF-SWRO System Using Red Sea Water

    KAUST Repository

    Bahshwan, Mohanad

    2012-01-01

    in the production cost. This research focused on increasing the plant's efficiency through optimizing the cleaning protocol without jeopardizing the effectiveness of the cleaning process. For that purpose, the design of experiment (DOE) focused on testing

  1. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula...

  2. Report on Seminar on Clean Coal Technology '93; Clean coal technology kokusai seminar hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The program of the above clean coal technology (CCT) event is composed of 1) Coal energy be friendly toward the earth, 2) Research on CCT in America (study of coal structure under electron microscope), and 3) Research on CCT in Australia (high intensity combustion of ultrafine coal particles in a clean way). Remarks under item 1) are mentioned below. As for SO{sub 2} emissions base unit, Japan's is 1 at its coal-fired thermal power station while that of America is 7.8. As for the level of SO{sub 2}/NOx reduction attributable to coal utilization technologies, it rises in the order of flue gas desulfurizer-aided pulverized coal combustion, normal pressure fluidized bed combustion, pressurized fluidized bed combustion, integrated coal gasification combined cycle power generation, and integrated coal gasification combined cycle power generation/fuel cell. As for the level of CO2 reduction attributable to power generation efficiency improvement, provided that Japan's average power generation efficiency is 39% and if China's efficiency which is now 28% is improved to be similar to that of Japan, there will be a 40% reduction in CO2 emissions. Under item 2) which involves America's CCT program, reference is made to efforts at eliminating unnecessary part from the catalytic process and at reducing surplus air, to the export of CCT technology, and so forth. Under item 3), it is stated that coal cleaning may govern reaction efficiency in a process of burning coal particles for gasification. (NEDO)

  3. The progress in the researches for uranium mill tailings cleaning treatment and no-waste uranium ore milling processes

    International Nuclear Information System (INIS)

    Wang Jintang

    1990-01-01

    The production of uranium mill tailings and their risk assessment are described. The moethods of uranium mill tailings disposal and management are criticized and the necessity of the researches for uranium mill tailings cleaning treatment and no-wasle uranium ore milling process are demonstrated. The progress for these researches in China and other countries with uranium production is reviewed, and the corresponding conclusions are reported

  4. Food cleaning in gorillas: Social learning is a possibility but not a necessity.

    Directory of Open Access Journals (Sweden)

    Damien Neadle

    Full Text Available Food cleaning is widespread in the animal kingdom, and a recent report confirmed that (amongst other behaviours wild western lowland gorillas also show food cleaning. The authors of this report conclude that this behaviour, based on its distribution patterns, constitutes a potential candidate for culture. While different conceptualisations of culture exist, some more and some less reliant on behavioural form copying, all of them assign a special role to social learning processes in explaining potentially cultural behaviours. Here we report the results of an experiment that tested to what extent food cleaning behaviour in a group of captive Western lowland gorillas (Gorilla gorilla gorilla relies on social learning processes. Subjects were provided with clean and dirty apples. When they were provided with dirty apples, all subjects showed evidence of food cleaning in at least 75% of trials. Preferred cleaning techniques differed between individuals, four out of five of subjects expressed a behaviour analogous to that reported in wild conspecifics. Given this occurrence of food cleaning in a culturally unconnected population of gorillas, we conclude that social learning is unlikely to play a central role in the emergence of the food cleaning behavioural form in Western lowland gorillas; instead, placing a greater emphasis on individual learning of food cleaning's behavioural form.

  5. TECHNOLOGY OF REVERSE-BLAST CORROSION CLEANING OF STEEL SHEETS PRIOR TO LASER CUTTING

    Directory of Open Access Journals (Sweden)

    A. N. Zguk

    2017-01-01

    Full Text Available Quality of surface cleaning against corrosion influences on efficiency in realization of a number of technological processes. While using bentonite clays in power fluid reverse-blast cleaning ensures formation of anticorrosion protective coating with light absorbing properties on the cleaned surface and prevents formation of the repeated corrosion. The paper presents results of the investigations pertaining to influence of reverse-blast cleaning parameters of steel sheets on quality of the cleaned surface prior to laser cutting. Processing conditions, applied compositions of power fluid and also properties of the protective film coatings on the cleaned surface have been given in the paper. The paper considers topography, morphology and chemical composition of the given coating while applying complex metal micrographic, X-ray diffraction and electronic and microscopic investigations. A complex of laser cutting (refer to gas lasers with output continuous capacity of 2.5/4.0 kW has been applied for experimental works to evaluate influence of the formed surface quality on efficiency of laser cutting process. Specimens having dimension 120×120 mm, made of steel Ст3пс, with thickness from 3 to 10 mm have been prepared for the experiments. An analysis has shown that the application of reverse-blast cleaning ensures higher speed in laser cutting by a mean of 10–20 %. The investigations have made it possible to determine optimum cleaning modes: distance from a nozzle to the surface to be cleaned, jet velocity, pressure. It has been revealed that after drying of the specimens processed by power fluid based on water with concentrations of bentonite clay and calcined soda a protective film coating with thickness of some 5–7 µm has been formed on the whole cleaned specimen surfaces. Chemical base of the coating has been formed by the elements which are included in the composition of bentonite clay being the basic component of the power fluid. 

  6. Laser cleaning of diagnostic mirrors from tokamak-like carbon contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Maffini, A., E-mail: alessandro.maffini@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Uccello, A. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Dellasega, D. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy); Russo, V. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Perissinotto, S. [Center for Nano Science and Technology @ Polimi, Istituto Italiano di Tecnologia, Milan (Italy); Passoni, M. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy)

    2015-08-15

    This paper presents a laboratory-scale experimental investigation of laser cleaning of diagnostic First Mirrors (FMs). Redeposition of contaminants sputtered from tokamak first wall onto FMs surface could dramatically decrease their reflectivity in an unacceptable way for the functioning of the plasma diagnostic systems. Laser cleaning is a promising solution to tackle this issue. In this work, pulsed laser deposition was exploited to produce rhodium films functional as FMs and to deposit onto them carbon contaminants with tailored features, resembling those found in tokamaks. The same laser system was also used to perform laser cleaning experiments by means of a sample handling procedure that allows to clean some cm{sup 2} in few minutes. The cleaning effectiveness was evaluated in terms of specular reflectivity recovery and mirror surface integrity. The effect of different laser wavelengths (λ = 1064, 266 nm) on the cleaning process is also addressed.

  7. Clean data

    CERN Document Server

    Squire, Megan

    2015-01-01

    If you are a data scientist of any level, beginners included, and interested in cleaning up your data, this is the book for you! Experience with Python or PHP is assumed, but no previous knowledge of data cleaning is needed.

  8. Fouling and Cleaning of Membrane Filtration Systems in the Dairy Industry

    DEFF Research Database (Denmark)

    Berg, Thilo Heinz Alexander

    not necessarily be perfect hydraulic cleanliness in order to restore processing performance. Consequences of reduced cleaning could however be observed in subsequent CIPs; hydraulic cleanliness reached a lower level. Further research is required to assess the practical significance of these consequences......membranes that were industrially used for a longer period of time (“aged membranes”) to study fouling and cleaning phenomena. During this study, reduced cleaning (a onestep CIP instead of a three-step CIP) was investigated, leading to the suggestion that the aim of a cleaning procedure should...

  9. Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process.

    Science.gov (United States)

    Gan, Min; Ji, Zhiyun; Fan, Xiaohui; Chen, Xuling; Zhou, Yang; Wang, Guojing; Tian, Ye; Jiang, Tao

    2018-04-18

    Applying recycled iron-bearing waste materials (RIM) into iron ore sintering process is the general disposal approach worldwide, while its use is still a thorny problem. Results showed that adding RIM increased contents of hazardous elements (K, Na, Pb, Zn, and Cl) in sinter product, and also enhanced emission concentration of PM 2.5 in flue gas; increasing reaction temperature, and contents of CaO & coke breeze in raw mixtures improved hazardous elements removal. Based on these features, a novel method through granulating natural iron ores and RIM separately and distributing granulated RIM in bottom sintering layers was proposed for clean RIM cycle. When recycling 5% RIM, granulating RIM separately with higher contents of CaO and coke breeze removed hazardous elements effectively, the contents of which in sinter were reduced to comparable level of the case without RIM. Moreover, distributing RIM in bottom sintering layer reached intensive release of hazardous elements and PM 2.5 during sintering, which reduced the flue gas volume needing purification by about 2/3. Through activated carbon purification, about 60% of PM 2.5 comprised high contents of hazardous elements was removed. Novel technique eliminated the negative impact of RIM and has the prospect to reach clean recycle in sinter-making plants. Copyright © 2018. Published by Elsevier B.V.

  10. Cleaning and Disinfection of Biofilms Composed of Listeria monocytogenes and Background Microbiota from Meat Processing Surfaces

    Science.gov (United States)

    Møretrø, Trond; Heir, Even; Briandet, Romain; Langsrud, Solveig

    2017-01-01

    ABSTRACT Surfaces of food processing premises are exposed to regular cleaning and disinfection (C&D) regimes, using biocides that are highly effective against bacteria growing as planktonic cells. However, bacteria growing in surface-associated communities (biofilms) are typically more tolerant toward C&D than their individual free-cell counterparts, and survival of pathogens such as Listeria monocytogenes may be affected by interspecies interactions within biofilms. In this study, Pseudomonas and Acinetobacter were the most frequently isolated genera surviving on conveyor belts subjected to C&D in meat processing plants. In the laboratory, Pseudomonas, Acinetobacter, and L. monocytogenes dominated the community, both in suspensions and in biofilms formed on conveyor belts, when cultures were inoculated with eleven-genus cocktails of representative bacterial strains from the identified background flora. When biofilms were exposed to daily C&D cycles mimicking treatments used in food industry, the levels of Acinetobacter and Pseudomonas mandelii diminished, and biofilms were instead dominated by Pseudomonas putida (65 to 76%), Pseudomonas fluorescens (11 to 15%) and L. monocytogenes (3 to 11%). The dominance of certain species after daily C&D correlated with high planktonic growth rates at 12°C and tolerance to C&D. In single-species biofilms, L. monocytogenes developed higher tolerance to C&D over time, for both the peracetic acid and quaternary ammonium disinfectants, indicating that a broad-spectrum mechanism was involved. Survival after C&D appeared to be a common property of L. monocytogenes strains, as persistent and sporadic subtypes showed equal survival rates in complex biofilms. Biofilms established preferentially in surface irregularities of conveyor belts, potentially constituting harborage sites for persistent contamination. IMPORTANCE In the food industry, efficient production hygiene is a key measure to avoid the accumulation of spoilage bacteria and

  11. Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces.

    Science.gov (United States)

    Fagerlund, Annette; Møretrø, Trond; Heir, Even; Briandet, Romain; Langsrud, Solveig

    2017-06-30

    Surfaces of food processing premises are exposed to regular cleaning and disinfection (C&D) regimes, using biocides that are highly effective against bacteria growing as planktonic cells. However, bacteria growing in surface associated communities (biofilms) are typically more tolerant towards C&D than their individual free cells counterparts, and survival of pathogens such as Listeria monocytogenes may be affected by interspecies interactions within biofilms. In this study, Pseudomonas and Acinetobacter were the most frequently isolated genera surviving on conveyor belts subjected to C&D in meat processing plants. In the laboratory, Pseudomonas , Acinetobacter and L. monocytogenes dominated the community both in suspensions and in biofilms formed on conveyor belts, when cultures were inoculated with eleven-genera cocktails of representative bacterial strains from the identified background flora. When biofilms were exposed to daily C&D cycles, mimicking treatments used in food industry, the levels of Acinetobacter and Pseudomonas mandelii diminished, and biofilms were instead dominated by Pseudomonas putida (65-76%), Pseudomonas fluorescens (11-15%) and L. monocytogenes (3-11%). The dominance of certain species after daily C&D correlated with high planktonic growth rates at 12°C and tolerance to C&D. In single-species biofilms, L. monocytogenes developed higher tolerance to C&D over time, both for the peracetic acid and quaternary ammonium disinfectant, indicating that a broad-spectrum mechanism was involved. Survival after C&D appeared to be a common property of L. monocytogenes strains, as both persistent and sporadic subtypes showed equal survival in complex biofilms. Biofilms established preferentially in surface irregularities of conveyor belts, potentially constituting harborage sites for persistent contamination. IMPORTANCE In food industry, efficient production hygiene is a key measure to avoid accumulation of spoilage bacteria and eliminate pathogens

  12. Solar photocatalytic cleaning of polluted water

    International Nuclear Information System (INIS)

    Bockelmann, D.

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI) [de

  13. Implications of various dispersants on biofilm clean up processes

    Energy Technology Data Exchange (ETDEWEB)

    Beardwood, E.S.; Therrien, J.K.

    1999-07-01

    A microbiologically fouled industrial cooling water system was investigated utilizing a portable corrosion and fouling monitor according to the NACE RP0189-951 Standard. Baseline data was established and at which time the monitor was subjected to various dispersants (3) typically used for organic and microbiological deposit removal. The results of this in-field, side stream, experiment on a dynamic system will be presented. A number of key points and factors influencing the performance of the foulant clean up will also be discussed.

  14. Qualification test of chemical cleaning for secondary side of steam generator in Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhang Mengqin; Zhang Shufeng; Yu Jinghua; Hou Shufeng

    1997-07-01

    The chemical cleaning technique for removing sludge on the secondary side in Qinshan Nuclear Power Plant has been qualified. The chemical cleaning process will carry out during shutdown refuelling. The qualification test has studied the effect of chemical cleaning agent component, cleaning time on dissolution effectiveness of sludge (Fe 3 O 4 ) and to evaluate corrosion situation of main materials of SG in the cleaning process. The main component of cleaning agent is EDTA. The cleaning temperature is 20∼30 degree C. It is determined that allowable remains amount of cleaning agent (EDTA). The technique of cleaning, rinse, passivation for the chemical cleaning in Qinshan Nuclear Power Plant has been made. The qualification test shown that the technique can dissolve Fe 3 O 4 >1 g/L, the corrosion of materials is in allowable value, the allowable remains of EDTA is <0.01%. The technique character is static, ambient temperature. (9 refs., 12 tabs.)

  15. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  16. Measuring quality indicators in the operating room: cleaning and turnover time.

    Science.gov (United States)

    Jericó, Marli de Carvalho; Perroca, Márcia Galan; da Penha, Vivian Colombo

    2011-01-01

    This exploratory-descriptive study was carried out in the Surgical Center Unit of a university hospital aiming to measure time spent with concurrent cleaning performed by the cleaning service and turnover time and also investigated potential associations between cleaning time and the surgery's magnitude and specialty, period of the day and the room's size. The sample consisted of 101 surgeries, computing cleaning time and 60 surgeries, computing turnover time. The Kaplan-Meier method was used to analyze time and Pearson's correlation to study potential correlations. The time spent in concurrent cleaning was 7.1 minutes and turnover time was 35.6 minutes. No association between cleaning time and the other variables was found. These findings can support nurses in the efficient use of resources thereby speeding up the work process in the operating room.

  17. Post-CMP cleaning for metallic contaminant removal by using a remote plasma and UV/ozone

    International Nuclear Information System (INIS)

    Lim, Jong Min; Jeon, Bu Yong; Lee, Chong Mu

    2000-01-01

    For the chemical mechanical polishing (CMP) process to be successful, it is important to establish a good post-CMP cleaning process that will remove not only slurry and particles but also metallic impurities from the polished surface. The common metallic contaminants found after oxide CMP and Cu CMP include Cu, K, and Fe. Scrubbing, a popular method for post-CMP cleaning, is effective in removing particles, but removal of metallic contaminants using this method is not so effective. In this study, the removal of Fe metallic contaminants like Fe, which are commonly found on the wafer surface after CMP processes, was investigated using remote-hydrogen-plasma and UV/O 3 cleaning techniques. Our results show that metal contaminants, including Fe, can be effectively removed by using a hydrogen-plasma or UV/O 3 cleaning technique performed under optimal process conditions. In remote plasma H 2 cleaning, contaminant removal is enhanced with decreasing plasma exposure time and increasing rf-power. The optimal process condition for the removal of the Fe impurities existing on the wafer surface is an rf-power of 100 W. Plasma cleaning for 5 min or less is effective in removing Fe contaminants, but a plasma exposure time of 1 min is more appropriate than 5 min in view of the process time, The surface roughness decreased by 30∼50 % after remote-H 2 -plasma cleaning. On the other hand, the highest efficiency of Fe-impurity removal was achieved for an UV exposure time of 30 s. The removal mechanism for the Fe contaminants in the remote-H 2 -plasma and the UV/O 3 cleaning processes is considered to be the liftoff of Fe atoms when the SiO is removed by evaporation after the chemical or native SiO 2 formed underneath the metal atoms reacts with H + and e - to form SiO

  18. Controlling the clean room atmosphere

    International Nuclear Information System (INIS)

    Meeks, R.F.

    1979-01-01

    Several types of clean rooms are commonly in use. They include the conventional clean room, the horizontal laminar flow clean room, the vertical laminar flow clean room and a fourth type that incorporates ideas from the previous types and is known as a clean air bench or hood. These clean rooms are briefly described. The origin of contamination and methods for controlling the contamination are discussed

  19. Development of Cotton Fabrics with Durable UV Protective and Self-cleaning Property by Deposition of Low TiO2 Levels through Sol-gel Process.

    Science.gov (United States)

    Mishra, Anu; Butola, Bhupendra Singh

    2018-01-19

    In this article, the deposition of TiO 2 on cotton fabric using sol-gel technique has been described. Various process routes (pad-dry-cure, pad-dry-hydrothermal and pad-dry-solvothermal) were examined to impart a stable coating of TiO 2 on fabric. The role of precursor concentration, process temperature and time of treatment were studied to aim at a wash durable, UV protective and self-cleaning property in the treated fabric. EDX and ICP-MS techniques were used to examine the add-on percentage of TiO 2 on cotton fabrics treated via different routes. It has been found that the TiO 2 remains largely amorphous and nondurable if it is given a short thermal treatment. To convert the deposited TiO 2 to its anatase crystal form, a prolonged hydrothermal treatment for at least 3 h needs to be given. TiO 2 deposition levels of less than 0.1% were found to be effective in imparting reasonable degree of UV protection and self-cleaning property to the cotton fabric. The self-cleaning ability of the treated fabric against coffee stain was also studied and was found to be related to the process route and the deposition levels of TiO 2 . © 2018 The American Society of Photobiology.

  20. Validation of cleaning method for various parts fabricated at a Beryllium facility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cynthia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic beryllium disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.

  1. The Clean Air Act Amendments of 1990

    International Nuclear Information System (INIS)

    Mosby, R.C.

    1991-01-01

    The natural gas liquids industry and specifically the gas processing business has not been rosy the last several years. processors have been faced with low NGL prices, high inventories and more regulations which have forced product margins to all time lows and have resulted in plant closings, mergers and a determined search for those processors that are left for ways to make ends meet until times get better. Whether a barometer for the future or merely a fluke in the economy, things got better in 1990. Last year represented a change for the positive in all the indicators characterizing the gas processing business. An early winter in 1989, propane distribution problems, overall increases in petrochemical demand for NGLs and the fear brought on by events in Kuwait all contributed to changes in the marketplace. For the gas processor, these events combined with relatively low natural gas prices to produce wider processing margins and a degree of prosperity. The biggest regulatory event in 1990 however was without a doubt the Clean Air Act Amendments. These sweeping changes to the 1970 Clean Air Act promise to affect the economy and public health well into the next century. The purpose of this paper is to examine first the major provisions of the Clean Air Act Amendments of 1990 and then relate those anticipated changes to the gas processing industry. As will be examined later, the Amendments will create both threats and opportunities for gas processors

  2. Benchmarks of Global Clean Energy Manufacturing: Summary of Findings

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Benchmarks of Global Clean Energy Manufacturing will help policymakers and industry gain deeper understanding of global manufacturing of clean energy technologies. Increased knowledge of the product supply chains can inform decisions related to manufacturing facilities for extracting and processing raw materials, making the array of required subcomponents, and assembling and shipping the final product. This brochure summarized key findings from the analysis and includes important figures from the report. The report was prepared by the Clean Energy Manufacturing Analysis Center (CEMAC) analysts at the U.S. Department of Energy's National Renewable Energy Laboratory.

  3. Pengembangan Sistem Informasi Pemesanan Layanan Jasa Cleaning Service Berbasis Web Dan Mobile Di Liochita Cleaning Semarang

    Directory of Open Access Journals (Sweden)

    Aulio Romadho Agung

    2016-01-01

    Full Text Available Liochita cleaning is a company engaged in the field of cleaning services which are located in the city of Semarang. Until now, the existing of information systems on Liochita Cleaning were not sufficiently able to manage the company and thus to make this company as a company that developed and developing its field and can compete with other companies is not possible. Start from recording customer data and order data, which is the became one as income data, so this companies are less aware in detail of the customer data. On the other hand, customers must make a call in advance to order the services that it requires no small cost. Lack of marketing facilities makes this company unable to include all of costumers in the city of Semarang. Data recording is still using paper, so this company were at risk of paper lost which is containing data that has been recorded . Development of an information system in this study using the method of the waterfall. Waterfall model consists of: requirements, design, implementation, testing and maintenance. For the start of the design, developer need to observations or interviews to determine the needs of the system that being developed. Applications developed using the framework CodeIgniter. The results of this final project is an information system that can meet the needs of Liochita Cleaning in the management of these services, customers and orders in accordance with the business processes that Liochita Cleaning have and allow customers to book services .

  4. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference

    International Nuclear Information System (INIS)

    First, M.W.; Harvard Univ., Boston, MA

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  5. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    International Nuclear Information System (INIS)

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.; Coleman, C. J.

    2013-01-01

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt % or 2 wt %) were used at 55 deg C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results

  6. Corrosion Behavior of SA508 Coupled with and without Magnetite in Chemical Cleaning Environments

    International Nuclear Information System (INIS)

    Son, Yeong-Ho; Jeon, Soon-Hyeok; Song, Geun Dong; Hur, Do Haeng; Lee, Jong-Hyeon

    2017-01-01

    To mitigate these problems, chemical cleaning process has been widely used. However, the chemical cleaning solution can affect the corrosion of SG structural materials as well as the magnetite dissolution. During the chemical cleaning process, the galvanic corrosion between SG materials and magnetite is also anticipated because they are in electrical connection. However, the corrosion measurement or monitoring for the materials has been performed without consideration of galvanic effect coupled with magnetite during the chemical cleaning process. In this study, the effect of temperature and EDTA concentration on the corrosion behavior of SA508 tubesheet material with and without magnetite was studied in chemical cleaning solutions. The galvanic corrosion behavior between SA508 and magnetite is predicted by using the mixed potential theory and its effect on the corrosion rate of SA508 is also discussed. By newly designed immersion test, it was confirmed that the extent of galvanic corrosion effect between SA508 and magnetite increased with increasing temperature and EDTA concentration. The galvanic corrosion behavior of SA508 coupled with magnetite in chemical cleaning environments was predicted by the mixed potential theory and verified by ZRA and LP technique. Galvanic coupling increased the corrosion rate of SA508 due to the shift in its potential to the anodic direction. Therefore, the galvanic corrosion effect between SA508 and magnetite should be considered when the corrosion measurement is performed during the chemical cleaning process in steam generators.

  7. Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the radiopharmaceutical production

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Tatyana S.; Batista, Vanessa; Gomes, Antonio; Matsuda, Margareth; Fukumori, Neuza; Araujo, Elaine B. de, E-mail: tsbaptista@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    A great challenge in the radiopharmaceuticals production is to fulfill the Good Manufacturing Practices (GMPs), involving the validation of process and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms and normative resolutions has led to a constant concern with programs and cleaning validation in pharmaceutical production. The main goal of GMP is to reduce risks inherent to pharmaceutical production, that is to reduce product contamination with microorganisms and cross-contamination. The basic requirements to prevent contamination is the development and implementation of efficient cleaning programs. In the case of clean rooms for the production of injectable radiopharmaceuticals, the requirement for cleaning programs is evidently higher due to the characteristics of these areas with hot cells for radioactive materials, where sterile radiopharmaceuticals are manipulated and distributed before administration to patients just after minutes or hours of its preparation. In the Radiopharmacy Department at IPEN it was established a cleaning program for clean rooms and hot cells using a hydrogen peroxide solution (20% proxitane alfa). The objective of this work was to assess effectiveness of this cleaning agent in reducing and/or eliminating microbial load in the clean rooms and equipment to acceptable levels in accordance with the current legislation. The analysis was conducted using results of the environmental monitoring program with and settling contact plates in clean rooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population on the surface of equipment and clean rooms. It was also evaluated the best way to accomplish the cleaning program considering the dosimetric factor in each production process, as the main concern of pharmaceutical companies is the microbiological contamination, in

  8. Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the radiopharmaceutical production

    International Nuclear Information System (INIS)

    Baptista, Tatyana S.; Batista, Vanessa; Gomes, Antonio; Matsuda, Margareth; Fukumori, Neuza; Araujo, Elaine B. de

    2013-01-01

    A great challenge in the radiopharmaceuticals production is to fulfill the Good Manufacturing Practices (GMPs), involving the validation of process and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms and normative resolutions has led to a constant concern with programs and cleaning validation in pharmaceutical production. The main goal of GMP is to reduce risks inherent to pharmaceutical production, that is to reduce product contamination with microorganisms and cross-contamination. The basic requirements to prevent contamination is the development and implementation of efficient cleaning programs. In the case of clean rooms for the production of injectable radiopharmaceuticals, the requirement for cleaning programs is evidently higher due to the characteristics of these areas with hot cells for radioactive materials, where sterile radiopharmaceuticals are manipulated and distributed before administration to patients just after minutes or hours of its preparation. In the Radiopharmacy Department at IPEN it was established a cleaning program for clean rooms and hot cells using a hydrogen peroxide solution (20% proxitane alfa). The objective of this work was to assess effectiveness of this cleaning agent in reducing and/or eliminating microbial load in the clean rooms and equipment to acceptable levels in accordance with the current legislation. The analysis was conducted using results of the environmental monitoring program with and settling contact plates in clean rooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population on the surface of equipment and clean rooms. It was also evaluated the best way to accomplish the cleaning program considering the dosimetric factor in each production process, as the main concern of pharmaceutical companies is the microbiological contamination, in

  9. Process of cleaning oil spills and the like

    International Nuclear Information System (INIS)

    Breisford, J.A.

    1993-01-01

    A process of cleaning spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like from bodies of water, garage floors, roadways and the like, comprising spraying unbonded shredded fiberglass blowing wool composition particles onto the spill, absorbing the spill into the shredded fiberglass blowing wool composition particles, and removing the soaked shredded fiberglass blowing wool composition particles and the spill absorbed therein. An absorbent composition for absorbing spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and like, comprising shredded fiberglass blowing wool particles, and means for absorbing the spill and for stiffening the co-position so that the composition fights against being compressed so that less of the absorbed spill escapes from the composition when it is being removed from the spill, said means including cork particles dispersed in with the fiberglass blowing wool particles. An absorbent sock for absorbing or containing a spill of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like, comprising a hollow tube, said tube being permeable to the toxic or hazardous materials and being made of nylon or polypropylene, and unbonded, shredded fiberglass blowing wool composition particles enclosed in the tube. Apparatus for controlling an oil slick on the surface of water, comprising a craft for traversing the slick, a supply of fiberglass blowing wool composition particles stored on the craft in position for being dispersed, shredding means on the craft for shredding the fiberglass blowing wool particles to form unbonded, shredded fiberglass blowing wool particles, and dispensing means on the craft for dispensing the unbonded, shredded fiberglass blowing wool particles onto the slick

  10. Quantitative Evaluation of Contamination on Dental Zirconia Ceramic by Silicone Disclosing Agents after Different Cleaning Procedures

    Directory of Open Access Journals (Sweden)

    Sebastian Wille

    2015-05-01

    Full Text Available The aim of this study was to evaluate the effectiveness of cleaning procedures for air-abraded zirconia after contamination with two silicone disclosing agents. Air-abraded zirconia ceramic specimens (IPS e.max ZirCAD were contaminated with either GC Fit Checker white or GC Fit Checker II. Untreated zirconia specimens were used as control. Afterwards the surfaces were cleaned either with waterspray or ultrasonically in 99% isopropanol or using a newly developed cleaning paste (Ivoclean. After cleaning X-ray photoelectron spectroscopy (XPS was performed and the relative peak intensities of Zr, C and Si were used for a qualitative comparison of the residuals. There was no significant difference between the two different silicone disclosing agents. An additional cleaning step with isopropanol led to a significantly lower amount of residuals on the surface, but an additional cleaning process with Ivoclean did not reduce the amount of carbon residuals in comparison to the isopropanol cleaning. Just the silicone amount on the surface was reduced. None of the investigated cleaning processes removed all residuals from the contaminated surface. Standard cleaning processes do not remove all residuals of the silicone disclosing agent from the surface. This may lead to a failure of the resin-ceramic bonding.

  11. Cleaning and sterilization in biotechnological clean system. Biotechnological clean system no senjo sakkin

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M.

    1994-02-20

    Despite their usefulness for mankind, many of microorganisms are generally emphasized of the aspect of their harmfulness as decomposable and pathogenic microorganisms, apt to implant people with wrong preconception. Moreover, the food industries have a habitual practice that they leave unexpectedly unclean conditions unattended. This paper indicates such actual circumstances by quoting various examples, and introduces characteristics and test results on commercially available chemicals having excellent cleansing and sterilizing effects. High-pressure and high-temperature sterilization processes fit the purpose of preservation, but secondary contamination may occur in subsequent processing, for example, from the ceiling and walls of a work room, or operators' fingers. Problems exist there that should be considered in biotechnological clean systems. Technologies have been advanced that mix a small amount of chemicals into plastic sheets, wall materials, and floor materials so that their surfaces are kept away from growth of microorganisms for extended periods of time. About 300 kinds of chemicals have been developed, and are available commercially. 3 refs., 8 figs.

  12. Clean slate corrective action investigation plan

    International Nuclear Information System (INIS)

    1996-05-01

    The Clean Slate sites discussed in this report are situated in the central portion of the Tonopah Test Range (TTR), north of the Nevada Test Site (NTS) on the northwest portion of the Nellis Air Force Range (NAFR) which is approximately 390 kilometers (km) (240 miles [mi]) northwest of Las Vegas, Nevada. These sites were the locations for three of the four Operation Roller Coaster experiments. These experiments evaluated the dispersal of plutonium in the environment from the chemical explosion of a plutonium-bearing device. Although it was not a nuclear explosion, Operation Roller Coaster created some surface contamination which is now the subject of a corrective action strategy being implemented by the Nevada Environmental Restoration Project (NV ERP) for the U.S. Department of Energy (DOE). Corrective Action Investigation (CAI) activities will be conducted at three of the Operation Roller Coaster sites. These are Clean Slate 1 (CS-1), Clean Slate 2 (CS-2), and Clean Slate 3 (CS-3) sites, which are located on the TTR. The document that provides or references all of the specific information relative to the various investigative processes is called the Corrective Action Investigation Plan (CAIP). This CAIP has been prepared for the DOE Nevada Operations Office (DOE/NV) by IT Corporation (IT)

  13. Clean slate corrective action investigation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The Clean Slate sites discussed in this report are situated in the central portion of the Tonopah Test Range (TTR), north of the Nevada Test Site (NTS) on the northwest portion of the Nellis Air Force Range (NAFR) which is approximately 390 kilometers (km) (240 miles [mi]) northwest of Las Vegas, Nevada. These sites were the locations for three of the four Operation Roller Coaster experiments. These experiments evaluated the dispersal of plutonium in the environment from the chemical explosion of a plutonium-bearing device. Although it was not a nuclear explosion, Operation Roller Coaster created some surface contamination which is now the subject of a corrective action strategy being implemented by the Nevada Environmental Restoration Project (NV ERP) for the U.S. Department of Energy (DOE). Corrective Action Investigation (CAI) activities will be conducted at three of the Operation Roller Coaster sites. These are Clean Slate 1 (CS-1), Clean Slate 2 (CS-2), and Clean Slate 3 (CS-3) sites, which are located on the TTR. The document that provides or references all of the specific information relative to the various investigative processes is called the Corrective Action Investigation Plan (CAIP). This CAIP has been prepared for the DOE Nevada Operations Office (DOE/NV) by IT Corporation (IT).

  14. Method and apparatus for a self-cleaning filter

    Science.gov (United States)

    Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael

    2010-11-16

    A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.

  15. Method and apparatus for a self-cleaning filter

    Science.gov (United States)

    Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael

    2013-09-10

    A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.

  16. Critical cleaning agents for Di-2-ethylhexyl sebacate.

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Mya; Archuleta, Kim M.

    2013-08-01

    It is required that Di-2-ethylhexyl Sebacate oil, also commonly known as Dioctyl Sebacate oil, be thoroughly removed from certain metals, in this case stainless steel parts with narrow, enclosed spaces. Dioctyl Sebacate oil is a synthetic oil with a low compressibility. As such, it is ideally used for high pressure calibrations. The current method to remove the Dioctyl Sebacate from stainless steel parts with narrow, enclosed spaces is a labor-intensive, multi-step process, including a detergent clean, a deionized (DI) water rinse, and several solvent rinses, to achieve a nonvolatile residue of 0.04 mg per 50 mL rinse effluent. This study was undertaken to determine a superior detergent/solvent cleaning method for the oil to reduce cleaning time and/or the amount of detergent/solvent used. It was determined that while some detergent clean the oil off the metal better than the current procedure, using only solvents obtained the best result. In addition, it can be inferred, based on elevated temperature test results, that raising the temperature of the oil-contaminated stainless steel parts to approximately 50ÀC will provide for improved cleaning efficacy.

  17. Flux recovery of ceramic tubular membranes fouled with whey proteins: Some aspects of membrane cleaning

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2008-01-01

    Full Text Available Efficiency of membrane processes is greatly affected by the flux reduction due to the deposits formation at the surface and/or in the pores of the membrane. Efficiency of membrane processes is affected by cleaning procedure applied to regenerate flux. In this work, flux recovery of ceramic tubular membranes with 50 and 200 nm pore size was investigated. The membranes were fouled with reconstituted whey solution for 1 hour. After that, the membranes were rinsed with clean water and then cleaned with sodium hydroxide solutions or formulated detergents (combination of P3 Ultrasil 67 and P3 Ultrasil 69. Flux recovery after the rinsing step was not satisfactory although fouling resistance reduction was significant so that chemical cleaning was necessary. In the case of 50 nm membrane total flux recovery was achieved after cleaning with 1.0% (w/w sodium hydroxide solution. In the case of 200 nm membrane total flux recovery was not achieved irrespective of the cleaning agent choice and concentration. Cleaning with commercial detergent was less efficient than cleaning with the sodium hydroxide solution.

  18. WINDOW-CLEANING

    CERN Multimedia

    Environmental Section / ST-TFM

    2001-01-01

    The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

  19. Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials

    Science.gov (United States)

    Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger

    2004-09-01

    A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm × 2.5 cm) were precleaned and inoculated with 5.8 × 103 cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.

  20. Chemical cleaning, decontamination and corrosion

    International Nuclear Information System (INIS)

    Gadiyar, H.S.; Das Chintamani; Gaonkar, K.B.

    1991-01-01

    Chemical cleaning of process equipments and pipings in chemical/petrochemical industries is necessitated for improving operation, for preventing premature failures and for avoiding contamination. In developing a chemical formulation for cleaning equipments, the important aspects to be considered include (i) effective removal of corrosion products and scales, (ii) minimum corrosion of the base metal, (iii) easy to handle chemicals and (iv) economic viability. As on date, a wide variety of chemical formulations are available, many of them are either proprietory or patented. For evolving an effective formulation, knowledge of the oxides of various metals and alloys on the one hand and acid concentration, complexing agents and inhibitors to be incorporated on the other, is quite essential. Organic acids like citric acid, acetic acid and formic acid are more popular ones, often used with EDTA for effective removal of corrosion products from ferrous components. The report enumerates some of the concepts in developing effective formulations for chemical cleaning of carbon steel components and further, makes an attempt to suggest simple formulations to be developed for chemical decontamination. (author). 6 refs., 3 fi gs., 4 tabs

  1. Bioinspired superhydrophobic, self-cleaning and low drag surfaces

    Science.gov (United States)

    Bhushan, Bharat

    2013-09-01

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.

  2. Waste processing air cleaning

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases

  3. Petroleum storage tank cleaning using commercial microbial culture products

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D.R.; Entzeroth, L.C.; Timmis, A.; Whiteside, A.; Hoskins, B.C.

    1995-12-31

    The removal of paraffinic bottom accumulations from refinery storage tanks represents an increasingly costly area of petroleum storage management. Microorganisms can be used to reduce paraffinic bottoms by increasing the solubility of bottom material and by increasing the wax-carrying capacity of carrier oil used in the cleaning process. The economic savings of such treatments are considerable. The process is also intrinsically safer than alternative methods, as it reduces and even eliminates the need for personnel to enter the tank during the cleaning process. Both laboratory and field sample analyses can be used to document changes in tank material during the treatment process. These changes include increases in volatile content and changes in wax distribution. Several case histories illustrating these physical and chemical changes are presented along with the economics of treatment.

  4. Cleaning the soil

    International Nuclear Information System (INIS)

    Stegmann, R.

    1993-01-01

    Volume 6 of the Hamburg Reports contains contributions from scientists from the Special Research Field 188 'Cleaning up Contaminated Soils' of the Technical University of Hamburg-Harburg and the University of Hamburg and of experts from science and from the practical field. The soil science and analytical aspects of the biological and chemical/physical treatment processes are shown and open questions specific to processes are dealt with. Scientific results are compared with practical experience here. The evaluation of treated soils for reuse in the environment is a very important question, which is explained in the first articles here. Examples of case studies are shown in the last part of the volume. (orig.) [de

  5. TORR system polishes oily water clean

    International Nuclear Information System (INIS)

    Mowers, J.

    2002-01-01

    The TORR (total oil recovery and remediation) system utilizes a specially patented polymer material, similar to styrofoam, which is used to get rid of non-soluble hydrocarbons from water. An application in Fort Smith, Northwest Territories, is described where it was used to recover diesel oil, which had been seeping into the groundwater over a period of 20 years. About 100,000 gallons of heating oil had leached into the water; TORR removed the non-soluble hydrocarbons, while another piece of equipment removed the soluble portions. After treatment the water tested consistently at non-detectable levels and was clean enough to be discharged into the town's sewer system. The system is considered ideal for oil spills clean-up underground, onshore, or the open sea, but it also has many potentially useful applications in industrial and oilfield applications. Water used in steam injection and water floods to produce heavy oil and SAGD applications are some of the obvious ones that come to mind. Cleaning up the huge tailings ponds at the mining and processing of oil sands, and removing diluent from water that is used to thin out bitumen in pipelines so that it can be transported to processing plants, are other promising areas of application. Several field trials to test the effectiveness of the system in these type of applications are scheduled for the summer and fall of 2002

  6. Carbon dioxide nucleation as a novel cleaning method for ultrafiltration membranes

    KAUST Repository

    Al Ghamdi, Mohanned

    2016-12-08

    The use of low-pressure membranes, mainly ultrafiltration (UF), has emerged in the last decade and began to show acceptance as a novel pretreatment process for seawater reverse osmosis (SWRO) desalination. This is mainly due to the superior water quality provided by these membranes, in addition to reduction in chemicals consumption compared to conventional methods. However, membrane fouling remains the main drawback of this technology. Therefore, frequent cleaning of these membranes is required to maintain water flux and its quality. Usually, after a series of backwash using UF permeate chemical cleaning is required under some conditions to fully recover the operating flux. Frequent chemical cleaning will probably decrease the life time of the membrane, increase costs, and will have some effects on the environment. The new cleaning method proposed in this study consists of using a solution saturated with carbon dioxide (CO2) to clean UF membranes. Under the drop in pressure, this solution will become in a supersaturated state and bubbles will start to nucleate on the surface of the membrane and its pores from this solution resulting in the removal of the fouling material deposited on the membrane. Different compositions of fouling solutions including the use of organic compounds such as sodium alginate and colloidal 5 silica with different concentrations were studied using synthetic seawater with different concentrations. This cleaning method was then compared to the backwash using Milli-Q water and showed an improved performance compared to it. An operational modification to this cleaning technique was then investigated which includs a series of sudden pressure drop during the backwash process. This enhanced technique showed an even better performance in cleaning the membrane, especially at severe fouling conditions. In most cases, the membrane permeability was fully recovered even at harsh conditions where conventional backwash failed to maintain a stable

  7. Fossil fuels. Commercializing clean coal technologies

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Kirk, Roy J.; Clark, Marcus R. Jr.; Greene, Richard M.; Buncher, Carole S.; Kleigleng, Robert G.; Imbrogno, Frank W.

    1989-03-01

    Coal, an abundant domestic energy source, provides 25 percent of the nation's energy needs, but its use contributes to various types of pollution, including acid rain. The Department of Energy (DOE) has a Clean Coal Technology (CCT) program whose goal is to expand the use of coal in an environmentally safe manner by contributing to the cost of projects demonstrating the commercial applications of emerging clean coal technologies. Concerned about the implementation of the CCT program, the Chairman, Subcommittee on Energy and Power, House Committee on Energy and Commerce, requested GAO to report on (1) DOE's process of negotiating cooperative agreements with project sponsors, (2) changes DOE has made to the program, (3) the status of funded projects, and (4) the interrelationship between acid rain control proposals and the potential commercialization of clean coal technologies. Under the CCT program, DOE funds up to 50 percent of the cost of financing projects that demonstrate commercial applications of emerging clean coal technologies. DOE has conducted two solicitations for demonstration project proposals and is planning a third solicitation by May 1989. The Congress has appropriated $400 million for the first solicitation, or round one of the program, $575 million for round two, and $575 million for round three, for a total of $1.55 billion. For the round-one solicitation, DOE received 51 proposals from project sponsors. As of December 31, 1988, DOE had funded nine projects and was in the process of negotiating cooperative financial assistance agreements with sponsors of four projects. In September 1988, DOE selected 16 round-two projects from 55 proposals submitted and began the process of negotiating cooperative agreements with the project sponsors. The Congress has debated the need to reduce acid rain-causing emissions associated with fossil fuel combustion. The 100th Congress considered but did not enact about 20 acid rain control bills. On February 9, 1989

  8. Biological decomposition of aqueous solutions from soil cleaning

    International Nuclear Information System (INIS)

    Kniebusch, M.M.; Sekoulov, I.

    1993-01-01

    The biological cleaning of process water from soil cleaning and from contaminated groundwater required the development of new types of reaction systems. With the introduced membrane biofilm reactor, even substances difficult to decompose can be removed from contaminated water. Previous investigations of the elimination of pyrene in the presence of n-hexadecane show an optimum temperature at 30 C. An increase of scale is possible based on the invesstigations carried out on the aerobic biological decomposition of polycyclic aromatic hydrocarbons. (orig.) [de

  9. Chemical cleaning of Dresden Unit 1: Final report

    International Nuclear Information System (INIS)

    1986-05-01

    The introduction of NS-1 solvent into the full primary system of Dresden Unit-1 nuclear power reactor on September 12, 1984, represented the culmination of several years of development, testing, planning, and construction. The requirement was to dissolve the highly radioactive deposits of primarily nickel ferrite without any corrosion which might compromise the reactor systems. During the actual cleaning with the NS-1 solvent, the chemical condition of the circulating solvent was measured. Iron, nickel, and radioactive cobalt all dissolved smoothly. The amount of copper in solution decreased in concentration, verifying expectations that metallic copper would plate on to clean metal surfaces. A special rinse formulation was employed after the primary cleaning steps and the ''lost'' copper was thus redissolved and removed from the system. After the cleaning was complete and the reactor had been refilled with pure water, radiation levels were measured. The most accurate of these measurements gave decontamination factors ranging well above 100, which indicated a significant removal of the radioactive deposits, and demonstrated the success of this project. Treatment of the radioactive liquid wastes from this operation required volume reduction and water purification. The primary method of processing the spent cleaning solvent and rinse water was evaporation. The resulting concentrate has been stored as a liquid, awaiting solidification to allow burial at a designated site. Water which was separated during evaporation, along with the dilute rinses, was processed by various chemical means, reevaporated, treated with activated carbon, and/or demineralized before its radionuclide and chemical content was low enough to allow it to be returned to Dresden Station for treatment or disposal. 60 figs., 31 tabs

  10. Identifying optimal cleaning cycles for heat exchangers subject to fouling and ageing

    International Nuclear Information System (INIS)

    Pogiatzis, Thomas; Ishiyama, Edward M.; Paterson, William R.; Vassiliadis, Vassilios S.; Wilson, D. Ian

    2012-01-01

    Fouling of heat exchangers causes reduced heat transfer and other penalties. Regular cleaning represents one widely used fouling mitigation strategy, where the schedule of cleaning actions can be optimised to minimise the cost of fouling. This paper investigates, for the first time, the situation where there are two cleaning methods available so that the mode of cleaning has to be selected as well as the cleaning interval. Ageing is assumed to convert the initial deposit, labelled 'gel', into a harder and more conductive form, labelled 'coke', which cannot be removed by one of the cleaning methods. The second method can remove both the gel layer and the coke layer, but costs more and requires the unit to be off-line longer for cleaning. Experimental data demonstrating the effects of ageing are presented. The industrial application is the comparison of cleaning-in-place methods with off-line mechanical cleaning. A process model is constructed for an isolated counter-current heat exchanger subject to fouling, where ageing is described by a simple two-layer model. Solutions generated by an NLP-based approach prove to be superior to a simpler heuristic. A series of case studies demonstrate that combinations of chemical and mechanical cleaning can be superior to mechanical cleaning alone for certain combinations of parameters.

  11. The influence of furniture and equipment layouts on airflow pattern in a clean room

    NARCIS (Netherlands)

    Cheong, K.W.D.; Djunaedy, E.

    2001-01-01

    The layout of the production line in any clean rooms will change according to the production process and this posed a problem for post clean room maintenance. Air velocity is one of the many problematic issues commonly found in clean room environment. It is important to address this on-going problem

  12. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Tanaka, Koji; Egashira, Yasuo; Shimada, Fumie; Igarashi, Noboru.

    1983-01-01

    Purpose: To save a low temperature reactor water clean-up system indispensable so far and significantly simplify the system by carrying out the reactor water clean-up solely in a high temperature reactor water clean-up system. Constitution: The reactor water clean-up device comprises a high temperature clean-up pump and a high temperature adsorption device for inorganic adsorbents. The high temperature adsorption device is filled with amphoteric ion adsorbing inorganic adsorbents, or amphoteric ion adsorbing inorganic adsorbents and anionic adsorbing inorganic adsorbents. The reactor water clean-up device introduces reactor water by the high temperature clean-up pump through a recycling system to the high temperature adsorption device for inorganic adsorbents. Since cations such as cobalt ions and anions such as chlorine ions in the reactor water are simultaneously removed in the device, a low temperature reactor water clean-up system which has been indispensable so far can be saved to realize the significant simplification for the entire system. (Seki, T.)

  13. Microbial water quality in clean water tanks following inspection and cleaning

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine Boesgaard; Esbjørn, Anne; Mollerup, Finn

    Increased bacterial counts are often registered in drinking water leaving clean water tanks after the tanks have been emptied, inspected and cleaned by flushing. To investigate the reason for the increased bacterial concentrations and consequently limit it, samples from two clean water tanks befo...... start-up of the tanks, which may indicate that a substantial part of the bacteria in the drinking water leaving the tanks originated from the sand filter. This was supported by 16S DNA analyses....

  14. Comparison of glow discharge cleaning with Taylor-type discharge cleaning on JFT-2

    International Nuclear Information System (INIS)

    Yokokura, Kenji; Matsuzaki, Yoshimi; Tani, Takashi

    1983-01-01

    Method of glow discharge cleaning (GDC) was applied to JFT-2 tokamak and the cleaning effect of GDC was compared with that of taylor-type discharge cleaning (TDC) on the same machin. Results show clearly their individual characteristics to remove light impurities. Their abilities of surface cleaning were compared each other by observing cleanliness of sample surfaces with a AES and by measuring decay times of produced gas pressures during discharge cleanings with a mass-analyser. It was shown that TDC method is better by several times than GDC method from a mass-analyser measurement. Moreover discharge cleaning time necessary to reduce light impurities in the normal plasma to a certain level was compared by monitoring time evolution of radiation loss power with a bolometer, and the time by TDC was only one fifth of that by GDC. The advantage of TDC may come from the excellently high hydrogen flux which interacts with the limiter and the wall. (author)

  15. The successful of finite element to invent particle cleaning system by air jet in hard disk drive

    Science.gov (United States)

    Jai-Ngam, Nualpun; Tangchaichit, Kaitfa

    2018-02-01

    Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.

  16. Chemical cleaning and decontamination of equipments in Rajasthan Atomic Power Station-2, Kota, NPCIL

    International Nuclear Information System (INIS)

    Pal, P.K.; Saini, S.L.

    2008-01-01

    Heat exchanger of End Shield Cooling System of RAPS-2 made up of 70:30 cupronickel was cleaned with a cleaning solution containing 5% sulphamic acid for periods of around 10 hours at a temperature of 60 deg C. The cleaning was attempted to remove the deposit inside the tube of heat exchanger to make a path of the probe to go inside the tube for eddy current testing for measurement of wall thinning. During the campaign 20 kg of CaCO 3 and 5 kg of SiO 2 were removed. Pre-cooler of heat transport system of RAPS-2 made up of monel was cleaned with a cleaning solution containing 5% citric acid, 1% ascorbic acid and 1% NTA at 50-60 deg C temperature for about 20 hours. The cleaning was attempted to remove the deposit inside the tube of pre cooler to make a path of the probe to go inside the tube for eddy current testing for measurement of wall thinning. For the pre-cooler a decontamination factor of 2 to 3 was obtained. The paper describes about the analysis of the deposit, the cleaning process, and schematic diagram of the process. (author)

  17. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    International Nuclear Information System (INIS)

    1997-01-01

    Bechtel, together with Amax Research and Development Center (Amax R ampersand D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications, (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at

  18. Chemical cleaning of steam generators: application to Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1991-01-01

    EDF has patented a chemical cleaning process for PWR steam generators, based on the use of a mixture or organic acids in order to dissolve iron oxides and copper with a single solution and clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its innocuousness related to steam generator materials. The process, the licence of which belongs to SOMAFER RA and Framatome has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units. (author)

  19. Impurity studies and discharge cleaning in Doublet III

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges.

  20. Impurity studies and discharge cleaning in Doublet III

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges

  1. FY1995 study to create the high density magnetic recording devices by using an ultra clean sputtering process; 1995 nendo choseijo sputter process ni yoru chokomitsudo jiki kiroku device no sosei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    It is important to control microstructure of thin film magnetic devices such as recording heads and media, in order to induce excellent magnetic properties. Since the impurities in the sputtering atmosphere is easily thought to affect strongly on the initial film growth, we will develop the highly purified sputtering atmosphere to establish a fabrication technology of ultra thin metallic films with desirable microstructure. A specialized multi-sputtering system which has extremely clean atmosphere (impurity level: 1/10000 compared to conventional systems) were realized by (a) decreasing out-gassing rate from vacuum chamber, pumping system, cathode, robot, etc. and (b) using ultra-clean processing gas. The base pressure was 8 x 10{sup -12} Torr (XHV) and the build-up rate was less than 1 x 10{sup -8} Torrl/sec. From the correlation between the microstructure and magnetic properties of a part of spin-valve GMR films, the guiding principle for the microstructural design were clarified to induce the exchange coupling effectively at the ferro/antiferromagnetic interface and to enhance the GMR effect at the magnetic/non-magnetic interface. The mechanism of' Cr segregation on the grain boundaries was clarified, in thin film media deposited under ultra clean sputtering process. The material specification of the magnetic ultra thin film media for high density recording with low media noise were designed from view of the thermal agitation. (NEDO)

  2. Characterization of the Tokamak Novillo in cleaning regime

    International Nuclear Information System (INIS)

    Lopez C, R.; Melendez L, L.; Valencia A, R.; Chavez A, E.; Colunga S, S.; Gaytan G, E.

    1992-02-01

    In this work the obtained results of the investigation about the experimental characterization of those low energy pulsed discharges of the Tokamak Novillo are reported. With this it is possible to fix the one operation point but appropriate of the Tokamak to condition the chamber in the smallest possible time for the cleaning discharges regime before beginning the main discharge. The characterization of the cleaning discharges in those Tokamaks is an unique process and characteristic of each device, since the good points of operation are consequence of those particularities of the design of the machine. In the case of the Tokamak Novillo, besides characterizing it a contribution is made to the cleaning discharges regime which consists on the one product of the current peak to peak of plasma by the duration of the discharge Ip t like reference parameter for the optimization of the operation of the device in the cleaning discharge regime. The maximum value of the parameter I (p) t, under different work conditions, allowed to find the good operation point to condition the discharges chamber of the Tokamak Novillo in short time and to arrive to a regime in which is not necessary the preionization for the obtaining of the cleaning discharges. (Author)

  3. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    Science.gov (United States)

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  4. Limonene and tetrahydrofurfurly alcohol cleaning agent

    Science.gov (United States)

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  5. Operational experience of the fuel cleaning facility of Joyo

    International Nuclear Information System (INIS)

    Mukaibo, R.; Matsuno, Y.; Sato, I.; Yoneda, Y.; Ito, H.

    1978-01-01

    Spent fuel assemblies in 'Joyo', after they are taken out of the core, are taken to the Fuel Cleaning Facility in the reactor service building and sodium removal is done. The cleaning process is done by cooling the assembly with argon gas, steam charging and rinsing by demineralized water. Deposited sodium was 50 ∼ 60 g per assembly. The sodium and steam reaction takes about 15 minutes to end and the total time the fuel is placed in the pot is about an hour. The total number of assemblies cleaned in the facility was 95 as of November 1977. In this report the operational experience together with discussions of future improvements are given. (author)

  6. Operational experience of the fuel cleaning facility of Joyo

    Energy Technology Data Exchange (ETDEWEB)

    Mukaibo, R; Matsuno, Y; Sato, I; Yoneda, Y; Ito, H [O-arai Engineering Centre, PNC, Ibaraki-ken, Tokio (Japan)

    1978-08-01

    Spent fuel assemblies in 'Joyo', after they are taken out of the core, are taken to the Fuel Cleaning Facility in the reactor service building and sodium removal is done. The cleaning process is done by cooling the assembly with argon gas, steam charging and rinsing by demineralized water. Deposited sodium was 50 {approx} 60 g per assembly. The sodium and steam reaction takes about 15 minutes to end and the total time the fuel is placed in the pot is about an hour. The total number of assemblies cleaned in the facility was 95 as of November 1977. In this report the operational experience together with discussions of future improvements are given. (author)

  7. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    Science.gov (United States)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  8. Clean Hands Count

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on May ... 34 How The Clean Hands - Safe Hands System Works - Duration: 3:38. Clean Hands-Safe Hands 5, ...

  9. Strengthening Clean Energy Technology Cooperation under the UNFCCC: Steps toward Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, R.; de Coninck, H.; Dhar, S.; Hansen, U.; McLaren, J.; Painuly, J.

    2010-08-01

    Development of a comprehensive and effective global clean technology cooperation framework will require years of experimenting and evaluation with new instruments and institutional arrangements before it is clear what works on which scale and in which region or country. In presenting concrete examples, this paper aims to set the first step in that process by highlighting successful models and innovative approaches that can inform efforts to ramp up clean energy technology cooperation. This paper reviews current mechanisms and international frameworks for global cooperation on clean energy technologies, both within and outside of the UNFCCC, and provides selected concrete options for scaling up global cooperation on clean energy technology RD&D, enabling environment, and financing.

  10. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains paper on the following topics: coal combustion/coal processing; advanced electric power generation systems; combined nitrogen oxide/sulfur dioxide control technologies; and emerging clean coal issues and environmental concerns. These paper have been cataloged separately elsewhere

  11. Modern Procedures Used in Cleaning Old, Illegibly and Blackened Icons

    Directory of Open Access Journals (Sweden)

    Pruteanu Silvea

    2015-05-01

    Full Text Available In order to restore the original aesthetic aspect, to improve the state of the age patina and of the gold halo, similar processes are required. The cleaning process is one of the most important aspects for an artwork and is considering a series of deteriorations and degradations, like dirt deposits (clogged or unclogged opalescent varnish, colors blackening, burns, blisters, gaps (missing ground, painting layer or varnish. This step in the restoration process includes physical and mechanical proceedings like dusting (with a vacuum, brushing (with a brush, scraping (with a scalpel, removal or polishing etc. The scalpel and the milling process are rough unconventional means that are used only in exceptional cases. The wet cleaning of dirt includes classic washing processes, with water or other complex systems of organic solvents (emollients, surface additives or surfactants, mixtures of solvents. Cleaning the clogged dirt deposits with unconventional methods can be done by means of electronic laser, ion and thermal exchange or ultrasounds. Laser cleaning is often used in removing unwanted dirt deposits from different layers of the art piece. A lot of attention goes towards the controlled elimination of the exterior protection layer (varnish, which can be photo- degraded and oxidized by atmospheric exposure. Visual analysis, with enlargers (OM, SEM, AFM etc. combined with transmission or penetration techniques (radiography, endoscopy, X-ray diffraction etc. provides information on the superficial structures of the art work. In order to determine the modifications of the desiccant oils, SEM was used to observed the changes in the morphology of the oil painting layers. Gas chromatography/mass spectrometry (GC/MS can be used to detrmine detergent residues on the painting layer.

  12. Fundamentals and applications of dry CO2 cryogenic aerosol for photomask cleaning

    Science.gov (United States)

    Varghese, Ivin; Balooch, Mehdi; Bowers, Charles W.

    2010-09-01

    There is a dire need for the removal of all printable defects on lithography masks. As the technology node advances, smaller particles need to be efficiently removed from smaller features without any damage or adders. CO2 cryogenic aerosol cleaning is a dry, residue-free and chemically inert technique that doesn't suffer from disadvantages of conventional wet cleaning methods such as transmission/reflectivity loss, phase change, CD change, haze/progressive defects, and/or limitation on number of cleaning cycles. Ultra-pure liquid CO2 when dispensed through an optimally designed nozzle results in CO2 clusters that impart the required momentum for defect removal. Historically nanomachining debris removal has been established with this technique. Several improvements have been incorporated for cleaning of advanced node masks, which has enabled Full Mask Final Clean, a new capability that has been successfully demonstrated. The properties of the CO2 clusters can be captured utilizing the Phase Doppler Anemometry (PDA) and effect of varying process and design parameters can be verified. New nozzles have been designed to widen the cleaning process window for advanced node optical masks, without any damage to the weak primary features and/or sub-resolution assist features (SRAFs). This capability has been experimentally proven for high aspect ratio SRAFs e.g. 2.79 (52nm wide by 145 nm tall) as well as SRAFs 45nm wide by 73 nm tall. In this paper, 100% removal of soft defects that would have printed on advanced node masks is demonstrated. No printed defects larger than 50nm is observed after the CO2 cleaning. Stability of the cleaning and handling mechanisms has been demonstrated over the last 4.5 months in a production environment. The CO2 cleaning technique is expected to be effective for more advanced masks and Extreme Ultra-Violet (EUV) lithography.

  13. Clean energy industries and rare earth materials: Economic and financial issues

    International Nuclear Information System (INIS)

    Baldi, Lucia; Peri, Massimo; Vandone, Daniela

    2014-01-01

    In the last few years, rare earth materials (REM) prices have experienced a strong increase due to geopolitical and sustainability issues. Financial markets could already have factored in concerns about shortages of REM supplies into clean energy companies’ valuations. We use a multifactor market model for the period January 2006 to September 2012 to analyze the impact of REM price trends – specifically dysprosium and neodymium – on six clean energy indices (NYSE–BNEF) tracking the world's most important companies in the clean energy sector. The results show that during period of price increase, there is a negative relationships between REM price changes and the stock market performance of some clean energy indices. The European clean energy index is also negatively affected, and this effect could be relevant to policy makers, considering that Europe is implementing some relevant policy actions to support the development of the clean energy industry. - Highlights: • Clean energy is an industry with a double-digit growth market rate in the last years. • Rare earth materials are a key component in the development process of this industry. • Recently REMs’ prices have skyrocketed and the clean energy industry is in turmoil. • We analyze the effect of REMs price on the stock market performances of clean industry. • We find negative relation between REMs price increase and stock market performances

  14. Advantages of fluoride ion cleaning at sub-atmospheric pressure

    CSIR Research Space (South Africa)

    Miglietti, W

    1998-06-01

    Full Text Available The fluoride ion cleaning (FIC) process is used to assist in the successful braze repair of nickel-based super alloy components. This process is especially effective in removing deeply embedded oxides in wide and narrow cracks typically found...

  15. Clean coal technologies: A business report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  16. Recovery of clean coal fines through a combination of gravity concentrator and flotation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Banerjee, P.K.; Dutta, A.; Mishra, A. [Tata Steel, Jamshedpur (India). Research & Development

    2007-07-01

    Flotation feed is a mixture of coarse and ultra-fine fractions. During conditioning of the flotation feed with collector and frother, the finer fraction consumes more reagents as compared to coarser particles. This is mainly due to more specific surface area of the ultra fine than the coarse fraction. This favors the adsorption of reagents toward ultra-finer fractions leads to less complete surface coverage of coarse particles and more entrainment of finer gangue particles. This results in the lower yield of coarse fractions from the flotation circuit and loss in selectivity. Hence, the major challenge is to improve the recovery of the coarser fraction and selectivity of ultra-fine fractions by improving flotation kinetics of all size fractions. This article deals with an approach to overcome the improper reagent adsorption by fine and coarse coal fractions in the flotation circuit through an innovative washing circuit containing gravity operation and flotation processes. Flotation performance between a new washing circuit having stub cyclone and flotation and normal single-stage reagent addition flotation process is compared in terms of selectivity, separation efficiency, rate constant, and size-wise recovery. The washing circuit having stub cyclone and flotation processes improves the fine clean coal yield by 10% and reduces the consumption of reagent compared to the normal single-stage reagent addition flotation process.

  17. An experience of cleaning and decontamination of the BN-350 reactor components

    International Nuclear Information System (INIS)

    Vasilenko, K.T.; Kochetkov, L.A.; Arkhipov, V.M.; Baklushin, R.P.; Gorlov, A.I.; Kiselev, G.V.; Rezinkin, P.S.; Samarkin, A.A.; Tverdovsky, N.D.

    1978-01-01

    In the course of start-up, adjustment and operation of the BN-350 reactor there arose a need for cleaning from sodium and decontamination of primary and secondary equipment components. Design schemes of the systems provided for this purpose as well as those specially designed for cleaning of steam generator evaporators are considered. Technological processes of cleaning and decontamination for some reactor components (removable parts of circulating pumps, evaporators, valves) are described, the results are presented. (author)

  18. Proceedings of the 19th DOE/NRC nuclear air cleaning conference

    International Nuclear Information System (INIS)

    First, M.W.

    1987-05-01

    This document contains the papers and the associated discussions of the 19 DOE/NRC Nuclear Air Cleaning Conference. Sessions were devoted to (1) fire, explosion and accident analysis, (2) adsorption and iodine retention, (3) filters and filter testing, (4) standards and regulation, (5) treatment of radon, krypton, tritium and carbon-14, (6) ventilation and air cleaning in reactor operations, (7) dissolver off-gas cleaning, (8) adsorber fires, (9) nuclear grade carbon testing, (10) sampling and monitoring, and (11) field test experience. Individual papers were processed separately for the data base

  19. Remote Robotic Cleaning System for Contaminated Hot-Cell Floor

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Park, Jang Jin; Yang, Myung S.; Kwon, Hyo Kjo

    2005-01-01

    The M6 hot-cell of the Irradiated Material Examination Facility at the Korea Atomic Energy Research Institute (KAERI) has been contaminated with spent fuel debris and other radioactive waste due to the DUPIC nuclear fuel development processes. As the hot-cell is active, direct human workers' access, even with protection, to the in-cell is not possible because of the nature of the high radiation level of the spent PWR fuel. A remote robotic cleaning system has been developed for use in a highly radioactive environment of the M6 hot-cell. The remote robotic cleaning system was designed to completely eliminate human interaction with hazardous radioactive contaminants. This robotic cleaning system was also designed to remove contaminants or contaminated smears placed or fixed on the floor of the M6 hot-cell by mopping it in a remote manner. The environmental, functional and mechanical design considerations, control system and capabilities of the developed remote robotic cleaning system are presented

  20. TiO 2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications

    KAUST Repository

    Xi, Baojuan; Verma, Lalit Kumar; Li, Jing; Bhatia, Charanjit Singh; Danner, Aaron James; Yang, Hyunsoo; Zeng, Hua Chun

    2012-01-01

    oxidation processes for wastewater and bactericidal treatments, self-cleaning window glass for green intelligent buildings, dye-sensitized solar cells, solid-state semiconductor metal-oxide solar cells, self-cleaning glass for photovoltaic devices

  1. Clean fuel technologies and clean and reliable energy: a summary

    International Nuclear Information System (INIS)

    Bulatov, Igor; Klemes, Jiri Jaromir

    2011-01-01

    There are two major areas covered by this current Special Issue: Cleaner Fuel Technologies and Waste Processing. In addition, the Special Issue, also includes some recent developments in various fields of energy efficiency research. The first group of contributions considers in detail, hydrogen production from biomass and hydrogen production by the sorption-enhanced steam methane reforming process (SE-SMR). Biomass-related technologies are also discussed for a design of an integrated biorefinery, production of clean diesel fuel by co-hydrogenation of vegetable oil with gas oil and utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Waste Processing aspects are considered in the second group of papers. This section includes integrated waste-to-energy plants, utilisation of municipal solid waste in the cement industry and urban supply and disposal systems. The third topic is intentionally made rather loose: it includes different research topics on various aspects of energy efficiency, e.g. resource-saving network design, new research on divided wall columns, vehicle logistics as process-network synthesis for energy consumption and CO 2 reduction.

  2. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; Koopman, D.

    2009-08-01

    A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previous review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high

  3. Steam cleaning device

    International Nuclear Information System (INIS)

    Karaki, Mikio; Muraoka, Shoichi.

    1985-01-01

    Purpose: To clean complicated and long objects to be cleaned having a structure like that of nuclear reactor fuel assembly. Constitution: Steams are blown from the bottom of a fuel assembly and soon condensated initially at the bottom of a vertical water tank due to water filled therein. Then, since water in the tank is warmed nearly to the saturation temperature, purified water is supplied from a injection device below to the injection device above the water tank on every device. In this way, since purified water is sprayed successively from below to above and steams are condensated in each of the places, the entire fuel assembly elongated in the vertical direction can be cleaned completely. Water in the reservoir goes upward like the steam flow and is drained together with the eliminated contaminations through an overflow pipe. After the cleaning has been completed, a main steam valve is closed and the drain valve is opened to drain water. (Kawakami, Y.)

  4. Overview of shoreline cleaning agents

    International Nuclear Information System (INIS)

    Clayton, J.

    1992-01-01

    Chemical cleaning agents may be used to promote release of stranded oil from shorelines for reasons including biological sensitivity of indigenous fauna and flora to the oil, amenity considerations of the shoreline, or concern about refloating of the oil and subsequent stranding on adjacent shorelines. While use of chemical cleaning agents may be appropriate under proper toxic responses in circumstances, certain limitations should be recognized. The potential for toxic responses in indigenous fauna and flora to the cleaning agents must be considered. Enhanced penetration of oil into permeable shorelines following treatment with chemical cleaning agents also is not desirable. However, if conditions related to toxicity and substrate permeability are determined to be acceptable, the use of chemical cleaning agents for treatment of stranded oil can be considered. Chemical agents for cleaning oiled shorelines can be grouped into three categories: (1) non-surfactant-based solvents, (2) chemical dispersants, and (3) formulations especially designed to release stranded oil from shoreline substrates (i.e., shoreline-cleaning-agents). Depending on the specific circumstances present on an oiled shoreline, it is generally desirable that chemical agents used for cleaning will release oil from shoreline substrate(s) to surface waters. Recovery of the oil can then be accomplished by mechanical procedures such as booming and skimming operations

  5. ''How clean is clean'' in the United States federal and Washington State cleanup regulations

    International Nuclear Information System (INIS)

    Landau, H.G.

    1993-01-01

    The enactment of legislation and promulgation of implementing regulations generally involves the resolution of conflicting goals. Defining ''How Clean is Clean?'' in federal and state cleanup laws, regulations, and policies is no exception. Answering the ''How Clean is Clean?'' question has resulted in the identification of some important and sometimes conflicting goals. Continuing resolution of the following conflicting goals is the key to effect cleanup of hazardous waste sites: Expediency vs. Fairness; Flexibility vs. Consistency; Risk Reduction vs. Risk Causation; and Permanence vs. Cost Effectiveness

  6. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture.

    Science.gov (United States)

    Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean

    2009-01-01

    Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.

  7. Dry cleaning of fluorocarbon residues by low-power electron cyclotron resonance hydrogen plasma

    CERN Document Server

    Lim, S H; Yuh, H K; Yoon Eui Joon; Lee, S I

    1988-01-01

    A low-power ( 50 W) electron cyclotron resonance hydrogen plasma cleaning process was demonstrated for the removal of fluorocarbon residue layers formed by reactive ion etching of silicon dioxide. The absence of residue layers was confirmed by in-situ reflection high energy electron diffraction and cross-sectional high resolution transmission electron microscopy. The ECR hydrogen plasma cleaning was applied to contact cleaning of a contact string structure, resulting in comparable contact resistance arising during by a conventional contact cleaning procedure. Ion-assisted chemical reaction involving reactive atomic hydrogen species generated in the plasma is attributed for the removal of fluorocarbon residue layers.

  8. Effect of design and technology on the efficiency of ultrasonic facilities for sheet cleaning

    International Nuclear Information System (INIS)

    Lubyanitskij, G.D.

    1977-01-01

    Various techniques are reviewed for enhancing the efficiency of ultrasonic cleaning of various items, such as sheets, and for lowering the energy consumption of the process. It is important to maintain a specified spacing between the item to be cleaned and the supersound projector, to remove the contaminants accumulating in the surface layer of the solution and to provide an adequate combination between the ultrasonic and the mechanical cleaning means. It is noted that the injection of the surfactants directly into the cleaning zone lowers the intensity of foaming without affecting the quality of cleaning. In some cases the cleaning is even speeded up due to an improvement in conditions for the transmission of acoustic waves in areas at some distance from the converter

  9. Benchmarks of Global Clean Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  10. Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L. [Battelle, Columbus, OH (United States)

    1989-08-28

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  11. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  12. Diamond-cleaning investigations

    International Nuclear Information System (INIS)

    Derry, T.E.

    Four parcels of diamonds which either had or had not been cleaned using the usual techniques, chiefly involving etch in molten potassium nitrate were supplied by De Beers Diamond Research Laboratories. Each parcel contained about 40 stones, amounting to about 10 carats. Half the diamonds in each parcel were cleaned by a standard procedure involving half an hours ultrasonic agitation in a 20% solution of the commercial detergent 'Contrad' which is effectively a surfactant and chelating agent. Visual comparisons by a number of observers who were not told the stones' histories, established that these diamonds generally had a more sparkling appearance after the cleaning procedure had been applied

  13. Keeping condensers clean

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  14. National Alliance for Clean Energy Incubators New Mexico Clean Energy Incubator

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Suzanne S.

    2004-12-15

    The National Alliance for Clean Energy Incubators was established by the National Renewable Energy Laboratory (NREL) to develop an emerging network of business incubators for entrepreneurs specializing in clean energy enterprises. The Alliance provides a broad range of business services to entrepreneurs in specific geographic locales across the U.S. and in diverse clean energy technology areas such as fuel cells, alternative fuels, power generation, and renewables, to name a few. Technology Ventures Corporation (TVC) participates in the Alliance from its corporate offices in Albuquerque, NM, and from its sites in Northern and Southern New Mexico, California, and Nevada. TVC reports on the results of its attempts to accelerate the growth and success of clean energy and energy efficiency companies through its array of business support services. During the period from September 2002 through September 2004, TVC describes contributions to the Alliance including the development of 28 clients and facilitating capital raises exceeding $35M.

  15. Lessons learned from a rigorous peer-review process for building the Climate Literacy and Energy Awareness (CLEAN) collection of high-quality digital teaching materials

    Science.gov (United States)

    Gold, A. U.; Ledley, T. S.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Niepold, F.; Fox, S.; Howell, C. D.; Lynds, S. E.

    2010-12-01

    The topic of climate change permeates all aspects of our society: the news, household debates, scientific conferences, etc. To provide students with accurate information about climate science and energy awareness, educators require scientifically and pedagogically robust teaching materials. To address this need, the NSF-funded Climate Literacy & Energy Awareness Network (CLEAN) Pathway has assembled a new peer-reviewed digital collection as part of the National Science Digital Library (NSDL) featuring teaching materials centered on climate and energy science for grades 6 through 16. The scope and framework of the collection is defined by the Essential Principles of Climate Science (CCSP 2009) and a set of energy awareness principles developed in the project. The collection provides trustworthy teaching materials on these socially relevant topics and prepares students to become responsible decision-makers. While a peer-review process is desirable for curriculum developer as well as collection builder to ensure quality, its implementation is non-trivial. We have designed a rigorous and transparent peer-review process for the CLEAN collection, and our experiences provide general guidelines that can be used to judge the quality of digital teaching materials across disciplines. Our multi-stage review process ensures that only resources with teaching goals relevant to developing climate literacy and energy awareness are considered. Each relevant resource is reviewed by two individuals to assess the i) scientific accuracy, ii) pedagogic effectiveness, and iii) usability/technical quality. A science review by an expert ensures the scientific quality and accuracy. Resources that pass all review steps are forwarded to a review panel of educators and scientists who make a final decision regarding inclusion of the materials in the CLEAN collection. Results from the first panel review show that about 20% (~100) of the resources that were initially considered for inclusion

  16. Evaluation of Surface Cleaning Procedures for CTGS Substrates for SAW Technology with XPS

    Directory of Open Access Journals (Sweden)

    Erik Brachmann

    2017-11-01

    Full Text Available A highly efficient and reproducible cleaning procedure of piezoelectric substrates is essential in surface acoustic waves (SAW technology to fabricate high-quality SAW devices, especially for new applications such SAW sensors wherein new materials for piezoelectric substrates and interdigital transducers are used. Therefore, the development and critical evaluation of cleaning procedures for each material system that is under consideration becomes crucial. Contaminants like particles or the presence of organic/inorganic material on the substrate can dramatically influence and alter the properties of the thin film substrate composite, such as wettability, film adhesion, film texture, and so on. In this article, focus is given to different cleaning processes like SC-1 and SC-2, UV-ozone treatment, as well as cleaning by first-contact polymer Opticlean, which are applied for removal of contaminants from the piezoelectric substrate Ca 3 TaGa 3 Si 2 O 14 . By means of X-ray photoelectron spectroscopy, the presence of the most critical contaminants such as carbon, sodium, and iron removed through different cleaning procedures were studied and significant differences were observed between the outcomes of these procedures. Based on these results, a two-step cleaning process, combining SC-1 at a reduced temperature at 30 ∘ C instead of 80 ∘ C and a subsequent UV-ozone cleaning directly prior to deposition of the metallization, is suggested to achieve the lowest residual contamination level.

  17. Steam generator secondary side chemical cleaning at Gentilly-2

    International Nuclear Information System (INIS)

    Plante, S.

    2006-01-01

    After more than 20 years of operation, the secondary side of the four steam generators at Gentilly-2 were chemically cleaned during the 2005 annual outage. The FRAMATOME ANP high temperature cleaning process used to remove magnetite loading involved stepwise injection of solvent with PHT temperature in the range 160 o C to 175 o C. The heat required to maintain the PHT temperature was provided by the operation of the main PHT pumps and the reactor core residual heat. The temperature control was accomplished by the shutdown cooling system heat exchangers. A total of 1280 kg of magnetite was removed from the four steam generators. A copper-cleaning step was applied after the iron step. The PHT has been cooled down and the steam generators drained to temporary tanks and dried in preparation of the copper step. The process has been applied at room temperature, two boilers at a time. The solvent removed a total of 116 kg of copper. During the iron step, steam flow to the feedwater tank chemically contaminate the Balance Of Plant (BOP) systems. The isolation of this path should have been part of the G2 procedures. Around 700 m3 of water had to be drained to interim storage tanks for subsequent resin treatment before disposal. Visual inspection of BO1 tubesheet and first support plate showed clean surfaces without measurable sludge pile. Upper support plates visual inspection of BO4 revealed that broach holes blockage reported in 2000 is still present in peripheral area. Following the plant restart, the medium range level measurement instability observed since several years for BO3 was no more present. As anticipated, it also has been observed that the medium and wide range level measurements have shifted down as a result of downcomer flow increase after the cleaning. The cleaning objectives were achieved regarding the fouling reduction on the steam generators secondary side but broach holes blockage of the upper support plate is still present in periphery. (author)

  18. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  19. A study of drying and cleaning methods used in preparation for fluorescent penetrant inspection - Part II

    International Nuclear Information System (INIS)

    Brasche, L.; Lopez, R.; Larson, B.

    2003-01-01

    Fluorescent penetrant inspection is the most widely used method for aerospace components such as critical rotating components of gas turbine engines. Successful use of FPI begins with a clean and dry part, followed by a carefully controlled and applied FPI process, and conscientious inspection by well trained personnel. A variety of cleaning methods are in use for cleaning of titanium and nickel parts with selection based on the soils or contamination to be removed. Cleaning methods may include chemical or mechanical methods with sixteen different types studied as part of this program. Several options also exist for use in drying parts prior to FPI. Samples were generated and exposed to a range of conditions to study the effect of both drying and cleaning methods on the flaw response of FPI. Low cycle fatigue (LCF) cracks were generated in approximately 40 nickel and 40 titanium samples for evaluation of the various cleaning methods. Baseline measurements were made for each of the samples using a photometer to measure sample brightness and a UVA videomicroscope to capture digital images of the FPI indications. Samples were exposed to various contaminants, cleaned and inspected. Brightness measurements and digital images were also taken to compare to the baseline data. A comparison of oven drying to flash dry in preparation for FPI has been completed and will be reported in Part I. Comparison of the effectiveness of various cleaning methods for the contaminants will be presented in Part II. The cleaning and drying studies were completed in cooperation with Delta Airlines using cleaning, drying and FPI processes typical of engine overhaul processes and equipment. The work was completed as part of the Engine Titanium Consortium and included investigators from Honeywell, General Electric, Pratt and Whitney, and Rolls Royce

  20. A study of drying and cleaning methods used in preparation for fluorescent penetrant inspection - Part I

    International Nuclear Information System (INIS)

    Brasche, L.; Lopez, R.; Larson, B.

    2003-01-01

    Fluorescent penetrant inspection is the most widely used method for aerospace components such as critical rotating components of gas turbine engines. Successful use of FPI begins with a clean and dry part, followed by a carefully controlled and applied FPI process, and conscientious inspection by well trained personnel. A variety of cleaning methods are in use for cleaning of titanium and nickel parts with selection based on the soils or contamination to be removed. Cleaning methods may include chemical or mechanical methods with sixteen different types studied as part of this program. Several options also exist for use in drying parts prior to FPI. Samples were generated and exposed to a range of conditions to study the effect of both drying and cleaning methods on the flaw response of FPI. Low cycle fatigue (LCF) cracks were generated in approximately 40 nickel and 40 titanium samples for evaluation of the various cleaning methods. Baseline measurements were made for each of the samples using a photometer to measure sample brightness and a UVA videomicroscope to capture digital images of the FPI indications. Samples were exposed to various contaminants, cleaned and inspected. Brightness measurements and digital images were also taken to compare to the baseline data. A comparison of oven drying to flash dry in preparation for FPI has been completed and will be reported in Part I. Comparison of the effectiveness of various cleaning methods for the contaminants will be presented in Part II. The cleaning and drying studies were completed in cooperation with Delta Airlines using cleaning, drying and FPI processes typical of engine overhaul processes and equipment. The work was completed as part of the Engine Titanium Consortium and included investigators from Honeywell, General Electric, Pratt and Whitney, and Rolls Royce

  1. Steam Generator Chemical Cleaning Application: Korean Experience in PWR NPP

    International Nuclear Information System (INIS)

    Hwang, In-Ho; Varrin-Jr, Robert-D.; Little, Michael-J.; Oh, Yeon-Ok; Choo, Seong-Jib; Park, Jin-Hyeok

    2012-09-01

    Korea Hydro and Nuclear Power (KHNP) performed an EPRI/SGOG chemical cleaning of the secondary side of the steam generators at Ulchin Unit 3 (UCN3) in March 2011 and at Ulchin Unit 4 (UCN4) in September 2011. The steam generator chemical cleaning (SGCC) was performed with venting at the top-of-tube sheet (TTS) and at tube support plates (TSPs) 4, 5, 6, 7, 8, 9, and 10. A primary objective of this SGCC was to address outer diameter stress corrosion cracking (ODSCC), which has been observed at the TTS and TSPs in the UCN3 SGs. The EPRI/SGOG process has been shown to effectively reduce prevailing ODSCC rates at the TTS and TSPs, particularly when applied with periodic venting in this application. This was the first full-length SGCC campaign with venting performed in Korea. Ulchin Unit 3 commenced commercial operation in August 1998 and Ulchin Unit 4 commenced commercial operation in December 1999. UCN3 and UCN4 are a two-loop pressurized water reactor (PWR) of the Korea Standard Nuclear Plant (KSNP) design. The SGs contain high-temperature mill annealed (HTMA) Alloy 600 tubing and are similar in design to the Combustion Engineering CE-80. The KSNP SGs have been susceptible to outer diameter stress corrosion cracking (ODSCC), which is consistent with operating experience for other SGs containing Alloy 600HTMA tubing material. The UCN3/4 SGs have recently begun to experience ODSCC. Hankook Jungsoo Industries Co., Ltd (HaJI) was selected as the cleaning vendor by KHNP. To date, HaJI has completed five Advanced Scale Conditioning Agent (ASCA) cleaning applications and two EPRI/SGOG Steam Generator Chemical Cleaning (SGCC) campaigns for KHNP. The goal of total deposit removal of the applications were successfully achieved and the amounts are 3,579 kg at UCN3 and 3,786 kg at UCN4 which values were estimated before each cleaning by analysing ECT signal and liquid samples from the SGs. The deposits from the SGs were primarily composed of magnetite. There were no chemical

  2. Chemical cleaning of PWR steam generators: application at Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1990-01-01

    EDF has developed and patented a chemical cleaning process for PWR steam generators, based on the use of a mixture of organic acids in order to: - dissolve iron oxides and copper with a single solution; - clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its inocuousness related to steam generator materials. The process, the license of which belongs to SOMAFER R.A. and FRAMATOME, has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units [fr

  3. Clean Energy Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    For the past several years, the IEA and others have been calling for a clean energy revolution to achieve global energy security, economic growth and climate change goals. This report analyses for the first time progress in global clean energy technology deployment against the pathways that are needed to achieve these goals. It provides an overview of technology deployment status, key policy developments and public spending on RDD&D of clean energy technologies.

  4. Development of recycling processes for clean rejected MOX fuel pellets

    International Nuclear Information System (INIS)

    Khot, P.M.; Singh, G.; Shelke, B.K.; Surendra, B.; Yadav, M.K.; Mishra, A.K.; Afzal, Mohd.; Panakkal, J.P.

    2014-01-01

    Highlights: • Dry and wet (MWDD) methods were developed for 100% recycling of CRO (0.4–44% PuO 2 ). • Dry method showed higher productivity and comparable powder/product characteristics. • MWDD batches demonstrated improved powder/product characteristics to that of virgin. • Second/multiple recycling is possible with MWDD with better powder/product characteristics. • MWDD batches prepared by little milling showed better macroscopic homogeneity to that of virgin. - Abstract: The dry and wet recycling processes have been developed for 100% recycling of Clean Reject Oxide (CRO) generated during the fabrication of MOX fuel, as CRO contains significant amount of plutonium. Plutonium being strategic material need to be circumvented from its proliferation issues related to its storage for long period. It was difficult to recycle CRO containing higher Pu content even with multiple oxidation and reduction steps. The mechanical recycling comprising of jaw crushing and sieving has been coupled with thermal pulverization for recycling CRO with higher Pu content in dry recycling technique. In wet recycling, MicroWave Direct Denitration (MWDD) technique has been developed for 100% recycling of CRO. The powder prepared by dry and wet (MWDD) recycling techniques was characterized by XRD and BET techniques and their effects on the pellets were evaluated. (U,21%Pu)O 2 pellets fabricated from virgin powder and MWDD were characterized using optical microscopy and α-autoradiography and the results obtained were compared

  5. Process, background and design criteria of the gas cleaning at Puertollano IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Pisa, J. [Elcogas, Madrid (Spain)

    1998-11-01

    The Puertollano IGCC plant selected cooling by a water-tube boiler with upstream quenching at high velocities that requires a dust-free cooling gas at not less than 250{degree}C in order not to penalise the heat recovery efficiency. A filtration system for gas dedusting in the 250{degree}C temperature range has been installed and will be commissioned at the end of 1997. The gas cleaning concept is completed with a Venturi Scrubber, a COS hydrolysis reactor and a MDEA column to strip the sulphuric acid to yield clean gas. The gasification island is based upon the PRENFLO system which is an entrained-flow system with dry feeding. The selection of the filter system arrangement considered the limited operational experience in comparable operating conditions and acknowledged the flexibility of the filter system versus the cyclone-scrubber as far as easier load variation operation, the reduction of residues needing deposition and increased slag flow, as well as easier maintenance. Additionally to the ceramic test filters in Furstenhausen (PRENFLO) and Deer Park near Houston (SHELL), ceramic candle-type filter were selected in Buggenum and at Wabash River, and for the KoBra plant. The main criteria for the selection of the filter system and the type of candle were: separation efficiency to match clean gas limits; uniform distribution of the dust-laden gas to the filters; wear-resistant routing of the dust-laden gas flow; need for a supporting structure which must cope with sudden pressure fluctuations; optimised pulse gas system; and maintenance and repair. Based upon the above criteria, the PRENFLO concept requirements and the gas turbine specification, an arrangement with two pressure filter vessels with LLB design and filter elements manufactured by Schumacher has been installed in Puertollano. 2 figs., 3 tabs.

  6. Surface cleaning and preparation in AlGaN/GaN-based HEMT processing as assessed by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez-Posada, Fernando; Bardwell, Jennifer A.; Moisa, Simona; Haffouz, Soufien; Tang, Haipeng; Brana, Alejandro F.; Munoz, Elias

    2007-01-01

    The chemical composition of the AlGaN/GaN surface during typical process steps in transistor fabrication was studied using X-ray photoelectron spectroscopy (XPS). The steps studied included organic solvent cleaning, 1:1 HCl:H 2 O dip, buffered oxide etch dip, oxygen plasma descum and rapid thermal annealing (RTA). The surface composition was calculated after correction for the interference of the Ga Auger lines in the N 1s portion of the spectra. The buffered oxide etched (BOE) surface showed a greater tendency for Al (compared to Ga) to be oxidized in the surface, under a layer of adventitious carbon. Three different treatments were found to yield a combination of low C and O levels in the surface. Both plasma cleaning and RTA were highly effective at reducing the carbon contamination of the surface, but did increase the oxygen levels. The RTA treated surface was found to have low levels of oxygen incorporation to a depth of 2-6 nm

  7. Remedial actions of nuclear safety shot sites: Double Tracks and Clean Slates

    International Nuclear Information System (INIS)

    Sanchez, M.; Shotton, M.; Lyons, C.

    1998-03-01

    Remedial actions of plutonium (Pu)-contaminated soils are in the preliminary stages of development at the Nevada Test Site (NTS). Interim clean-up actions were completed at the Double Tracks and Clean Slate 1 safety shot sites in 1996 and 1997, respectively. Soil at both sites, with a total transuranic activity greater than 20 picoCuries per gram (pCi/g), was excavated and shipped to the NTS for disposal. Characterization and assessment efforts were initiated at the Double Tracks site in 1995, and the clean-up of this site as an interim action was completed in 1996. Clean-up of this site consisted of taking site-specific data and applying rationale for dose and risk calculations in selecting parameter values for the interim corrective action level. The remediation process included excavating and stockpiling the contaminated soil and loading the soil into supersacks with approximately 1,513 cubic meters (53,500 cubic feet) being shipped to the NTS for disposal. In 1997, remediation began on the Clean Slate 1 site on which characterization had already been completed using a very similar approach; however, the site incorporated lessons learned, cost efficiencies, and significant improvements to the process. This paper focuses on those factors and the progress that has been made in cleaning up the sites. The application of a technically reasonable remediation method, as well as the cost factors that supported transport and disposal of the low-level waste in bulk are discussed

  8. Design of off-gas and air cleaning systems at nuclear power plants

    International Nuclear Information System (INIS)

    1987-01-01

    The primary purpose of this report is to describe the current design of air and process off-gas cleaning technologies used in nuclear power plants (NPPs). Because of the large inventory of fission products that are produced in the fuel (i.e. in the range of 5x10 19 Bq per GW(e)·a) and the highly restrictive airborne radionuclide release limits being established by Member States, air and process off-gas cleaning technologies are constantly being improved to provide higher airborne radionuclide recovery efficiencies and a smaller probability of malfunction. For various technologies considered an attempt has been made to provide the following information: (a) Process description in terms of principles of off-gas and air cleaning, operating parameters and system performance; (b) Design for normal and accident situations; (c) Design of components with regard to construction materials, size, shape and geometry of the system, resistance to chemical and physical degradation from the operational environment, safety and quality assurance requirements

  9. Laser cleaning of sulfide scale on compressor impeller blade

    International Nuclear Information System (INIS)

    Tang, Q.H.; Zhou, D.; Wang, Y.L.; Liu, G.F.

    2015-01-01

    Highlights: • The effects of sulfide layers and fluence values on the mechanism of laser cleaning were experimentally established. • The specimen surface with sulfide scale becomes slightly smoother than that before laser cleaning. • The mechanism of laser cleaning the sulfide scale of stainless steel is spallation without oxidization. • It would avoid chemical waste and dust pollution using a fiber laser instead of using nitric acids or sandblasting. - Abstract: Sulfide scale on the surface of a compressor impeller blade can considerably reduce the impeller performance and its service life. To prepare for subsequent remanufacturing, such as plasma spraying, it needs to be removed completely. In the corrosion process on an FV(520)B stainless steel, sulfide scale is divided into two layers because of different outward diffusion rates of Cr, Ni and Fe. In this paper, the cleaning threshold values of the upper and inner layers and the damage threshold value of the substrate were investigated using a pulsed fiber laser. To obtain experimental evidence, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 3D surface profilometry were employed to investigate the two kinds of sulfide layers on specimens before, during, and after laser cleaning.

  10. Likely-clean concrete disposition at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Betts, J.A.

    2011-01-01

    The vast majority of wastes produced at nuclear licensed sites are no different from wastes produced from other traditional industrial activities. Radiation and contamination control practices ensure that the small amounts of waste materials that contain a radiation and or contamination hazard are segregated and managed appropriately according to the level of hazard. Part of the segregation process involves additional clearance checks of wastes generated in areas where the potential to become radioactively contaminated exists, but is very small and contamination control practices are such that the wastes are believed to be 'likely-clean'. This important clearance step helps to ensure that radioactive contamination is not inadvertently released during disposition of inactive waste materials. Clearance methods for bagged likely-clean wastes (i.e. small volumes of low density wastes) or discreet non-bagged items are well advanced. Clearance of bagged likely-clean wastes involves measuring small volumes of bagged material within purpose built highly sensitive bag monitors. For non-bagged items the outer surfaces are scanned to check for surface contamination using traditional hand-held contamination instrumentation. For certain very bulky and porous materials (such as waste concrete), these traditional clearance methods are impractical or not fully effective. As a somewhat porous (and dense) material, surface scanning cannot always be demonstrated to be conclusive. In order to effectively disposition likely-clean concrete, both the method of clearance (i.e. conversion from likely-clean to clean) and method of disposition have to be considered. Likely-clean concrete wastes have been produced at Chalk River Laboratories (CRL) from demolitions of buildings and structures, as well as small amounts from site maintenance activities. A final disposition method for this material that includes the secondary clearance check that changes the classification of this

  11. Likely-clean concrete disposition at Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Betts, J.A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    The vast majority of wastes produced at nuclear licensed sites are no different from wastes produced from other traditional industrial activities. Radiation and contamination control practices ensure that the small amounts of waste materials that contain a radiation and or contamination hazard are segregated and managed appropriately according to the level of hazard. Part of the segregation process involves additional clearance checks of wastes generated in areas where the potential to become radioactively contaminated exists, but is very small and contamination control practices are such that the wastes are believed to be 'likely-clean'. This important clearance step helps to ensure that radioactive contamination is not inadvertently released during disposition of inactive waste materials. Clearance methods for bagged likely-clean wastes (i.e. small volumes of low density wastes) or discreet non-bagged items are well advanced. Clearance of bagged likely-clean wastes involves measuring small volumes of bagged material within purpose built highly sensitive bag monitors. For non-bagged items the outer surfaces are scanned to check for surface contamination using traditional hand-held contamination instrumentation. For certain very bulky and porous materials (such as waste concrete), these traditional clearance methods are impractical or not fully effective. As a somewhat porous (and dense) material, surface scanning cannot always be demonstrated to be conclusive. In order to effectively disposition likely-clean concrete, both the method of clearance (i.e. conversion from likely-clean to clean) and method of disposition have to be considered. Likely-clean concrete wastes have been produced at Chalk River Laboratories (CRL) from demolitions of buildings and structures, as well as small amounts from site maintenance activities. A final disposition method for this material that includes the secondary clearance check that changes the classification of this

  12. Mechanics ofadhesion and contact self-cleaning of bio-inspired microfiberadhesives

    Science.gov (United States)

    Abusomwan, Uyiosa Anthony

    The remarkable attachment system of geckos has inspired the development of dry microfiber adhesives through the last two decades. Some of the notable characteristics of gecko-inspired fibrillar adhesives include: strong, directional, and controllable adhesion to smooth and rough surfaces in air, vacuum, and under water; ability to maintain strong adhesion during repeated use; anti-fouling and self-cleaning after contamination. Given these outstanding qualities, fibrillar adhesives promise an extensive range of use in industrial, robotic, manufacturing, medical, and consumer products. Significant advancements have been made in the design of geckoinspired microfiber adhesives with the characteristic properties listed above, with the exception of the anti-fouling and self-cleaning features. The self-cleaning mechanism of the gecko's adhesion system plays an important role to its ability to remain sticky in various environments. Similarly, enabling self-cleaning capability for synthetic microfiber adhesives will lead to robust performance in various areas of application. Presently, the practical use of fibrillar adhesives is restricted mainly to clean environments, where they are free from contaminants. The goal of this thesis is to conduct a detailed study of the mechanisms and mechanics of contact-based self-cleaning of gecko-inspired microfiber adhesives. This work focuses on contact self-cleaning mechanisms, as a more practical approach to cleaning. Previous studies on the cleaning of microfiber adhesives have mostly focused on mechanisms that involve complete removal of the contaminants from the adhesive. In this thesis, a second cleaning process is proposed whereby particles are removed from the tip of the microfibers and embedded between adjacent microfibers or in grooves patterned onto the adhesive, where they are no longer detrimental to the performance of the adhesive. In this work, a model of adhesion for microfiber adhesives that take the deformation of the

  13. Chemical cleaning as an essential part of steam generator asset management

    International Nuclear Information System (INIS)

    Stiepani, C.; Ammann, F.; Jones, D.; Evans, S.; Harper, K.

    2010-01-01

    Accumulation of deposits is intrinsic for the operation of Steam Generators in PWRs. Such depositions often lead to reduction of thermal performance, loss of component integrity and, in some cases to power restrictions. Accordingly removal of such deposits is an essential part of the asset management of the Steam Generators in a Nuclear Power Plant. Every plant has its individual condition, history and constraints which need to be considered when planning and performing a chemical cleaning. Typical points are: Sludge load amount and constitution of the deposits; Sludge distribution in the steam generator; Existing or expected corrosion problems; Amount and treatment possibilities for the waste generated. Depending on these points the strategy for chemical cleaning shall be evolved. The range of treatment starts with very soft cleanings with a removal of approx 100 kg per steam generator and goes to a full scale cleaning which can remove up to several thousand kilograms of deposits from a steam generator. Depending on the goal to be achieved and the steam generator present an adequate cleaning method shall be selected. Flexible and 'customizable' cleaning methods that can be adapted to the individual needs of a plant are therefore a must. Particular for the application of preventive cleanings where repeated or even regular application are intended, special focus has to be put on low corrosion and easy waste handling. Therefore AREVA has developed the 'C3' concept, Customized Chemical Cleaning concept. This concept covers the entire range of steam generator cleaning. Particular for the preventive maintenance cleanings processes with extreme low corrosion rates and easy waste handling are provided which make repeated applications safe and cost efficient. (author)

  14. Influence of wet chemical cleaning on quantum efficiency of GaN photocathode

    International Nuclear Information System (INIS)

    Wang Xiao-Hui; Gao Pin; Wang Hong-Gang; Li Biao; Chang Ben-Kang

    2013-01-01

    GaN samples 1–3 are cleaned by a 2:2:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%) to de-ionized water; hydrochloric acid (37%); or a 4:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%). The samples are activated by Cs/O after the same annealing process. X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows: sample 1 has the largest proportion of Ga, N, and O among the three samples, while its C content is the lowest. After activation the quantum efficiency curves show sample 1 has the best photocathode performance. We think the wet chemical cleaning method is a process which will mainly remove C contamination. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  16. MIT Clean Energy Prize: Final Technical Report May 12, 2010 - May 11, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Chris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Campbell, Georgina [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Salony, Jason [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Aulet, Bill [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2011-08-09

    The MIT Clean Energy Prize (MIT CEP) is a venture creation and innovation competition to encourage innovation in the energy space, specifically with regard to clean energy. The Competition invited student teams from any US university to submit student-led ventures that demonstrate a high potential of successfully making clean energy more affordable, with a positive impact on the environment. By focusing on student ventures, the MIT CEP aims to educate the next generation of clean energy entrepreneurs. Teams receive valuable mentoring and hard deadlines that complement the cash prize to accelerate development of ventures. The competition is a year-long educational process that culminates in the selection of five category finalists and a Grand Prize winner and the distribution of cash prizes to each of those teams. Each entry was submitted in one of five clean energy categories: Renewables, Clean Non-Renewables, Energy Efficiency, Transportation, and Deployment.

  17. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O' Toole, D.; Fetter, J.

    2010-04-01

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  18. Chemical cleaning of the Bruce A steam generators

    International Nuclear Information System (INIS)

    Le Surf, J.E.; Mason, J.B.; Symmons, W.R.; Yee, F.

    1992-01-01

    Deposits consisting mostly of oxides and salts and copper metal in the secondary side of the steam generators at the Bruce A Nuclear Generating Station have caused instability in the steam flow and loss of heat capacity, resulting in derating of the units and reduction in power production. Attempts to remove the deposits by pressure pulsing were unsuccessful. Water lancing succeeded in restoring stability, but restrictions on access prevented complete lancing of the tube support plate holes. Chemical cleaning using a modified EPRI-SGOG process has been selected as the best method of removing the deposits. A complete chemical cleaning system has been designed and fabricated for Ontario Hydro by Pacific Nuclear, with support from AECL CANDU and their suppliers. The system consists of self contained modules which are easily interconnected on site. The whole process is controlled from the Control Module, where all parameters are monitored on a computer video screen. The operator can control motorized valves, pumps and heaters from the computer key board. This system incorporates all the advanced technologies and design features that have been developed by Pacific Nuclear in the design, fabrication and operation of many systems for chemical decontamination and cleaning of nuclear systems. 2 figs

  19. Laser cleaning of Rakowicze sandstone

    NARCIS (Netherlands)

    Nijland, T.G.; Wijffels, T.J.

    2003-01-01

    Decisions about the cleaning of natural stone should always be made within the awareness of direct and indirect damage that may be the result of cleaning. During the last decade, laser cleaning of objects and monuments of natural stone has become increasingly popular. Whereas a considerable amount

  20. Steam generator chemical cleaning demonstration test No. 1 in a pot boiler

    International Nuclear Information System (INIS)

    Key, G.L.; Helyer, M.H.

    1981-04-01

    The effectiveness of the Electric Power Research Institute (EPRI Mark I) chemical cleaning solvent process was tested utilizing a 12 tube pot boiler that had previously been fouled and dented under 30 days of high chloride fault chemistry operation. Specifically, the intent of this chemical cleaning test was to: (1) dissolve sludge from the tubesheet, (2) remove non-protective magnetite from dented tube/support crevice regions, and (3) quantify the extent of corrosion of steam generator material during the test. Two laboratory cleaning demonstrations of 191 and 142 hours were performed

  1. Fine coal cleaning via the micro-mag process

    Science.gov (United States)

    Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.

    1991-01-01

    A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.

  2. A novel compound cleaning solution for benzotriazole removal after copper CMP

    International Nuclear Information System (INIS)

    Gu Zhangbing; Liu Yuling; Gao Baohong; Wang Chenwei; Deng Haiwen

    2015-01-01

    After the chemical mechanical planarization (CMP) process, the copper surface is contaminated by a mass of particles (e.g. silica) and organic residues (e.g. benzotriazole), which could do great harm to the integrated circuit, so post-CMP cleaning is essential. In particular, benzotriazole (BTA) forms a layer of Cu-BTA film with copper on the surface, which leads to a hydrophobic surface of copper. So an effective cleaning solution is needed to remove BTA from the copper surface. In this work, a new compound cleaning solution is designed to solve two major problems caused by BTA: one is removing BTA and the other is copper surface corrosion that is caused by the cleaning solution. The cleaning solution is formed of alkaline chelating agent (FA/O II type), which is used to remove BTA, and a surfactant (FA/O I type), which is used as a corrosion inhibitor. BTA removal is characterized by contact angle measurements and electrochemical techniques. The inhibiting corrosion ability of the surfactant is also characterized by electrochemical techniques. The proposed compound cleaning solution shows advantages in removing BTA without corroding the copper surface. (paper)

  3. Preliminary assessment and analysis of CO2 cleaning for an inertial fusion device

    International Nuclear Information System (INIS)

    Ying, A.; Abdou, M.

    1996-01-01

    The mechanisms of cleaning with carbon dioxide ice (CO 2 ) for the National Ignition Facility (NIF) application are discussed and analyzed. The compatibility between this cleaning process and the materials proposed for energy-relevant liquid-interaction experiments is examined. The cleaning mechanisms include kinetic shear stress, sublimation followed by thermophoresis, and solvent action. The study shows that the debris size could determine the efficiency of this cleaning technique. Furthermore, if the condensed vapor particulate becomes flattened and embedded inside the abscissa while hitting the surface, a large kinetic shear would be needed for debris removal which might damage the surface. 20 refs., 5 figs

  4. Fire protection for clean rooms

    International Nuclear Information System (INIS)

    Kirson, D.

    1990-01-01

    The fire protection engineer often must decide what size fire can be tolerated before automatic fire suppression systems actuate. Is it a wastepaper basket fire, a bushel basket fire...? In the case of state-of-the-art clean rooms, the answer clearly is not even an incipient fire. Minor fires in clean rooms can cause major losses. This paper discusses what a clean room is and gives a brief overview of the unique fire protection challenges encountered. The two major causes of fire related to clean rooms in the semiconductor industry are flammable/pyrophoric gas fires in plastic ducts and polypropylene wet bench fires. This paper concentrates on plastic ductwork in clean rooms, sprinkler protection in ductwork, and protection for wet benches

  5. 7 CFR 51.2083 - Clean.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Clean. 51.2083 Section 51.2083 Agriculture Regulations... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Almonds in the Shell Definitions § 51.2083 Clean. Clean means that the shell is...

  6. Dry-cleaning of graphene

    International Nuclear Information System (INIS)

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-01-01

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy

  7. Dry-cleaning of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Algara-Siller, Gerardo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Department of Chemistry, Technical University Ilmenau, Weimarer Strasse 25, Ilmenau 98693 (Germany); Lehtinen, Ossi; Kaiser, Ute, E-mail: ute.kaiser@uni-ulm.de [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Turchanin, Andrey [Faculty of Physics, University of Bielefeld, Universitätsstr. 25, Bielefeld 33615 (Germany)

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  8. New NOx cleaning technology helps the government fulfil promise

    International Nuclear Information System (INIS)

    2006-01-01

    The Norwegian, Bergen-based company ECO Energy has recently launched a new cleaning technology halving NO x emissions from industry plants without requiring large investments. Thus, governmental promises to finance NO x cleaning equipment for Norwegian industry have become a less expensive to reach. ECO Energy has ensured world patent on the 'stopNOx' technology. Its method consists of adding water and urea to oil before the combustion process. The technology has been applied in Italy, reducing NO x emissions from industry in average with above 50 percent (ml)

  9. Effectiveness acidic pre-cleaning for copper-gold ore

    Directory of Open Access Journals (Sweden)

    Antonio Clareti Pereira

    Full Text Available Abstract The presence of copper-bearing minerals is known to bring on many challenges during the cyanidation of gold ore, like high consumption of cyanide and low extraction of metal, which are undesirable impacts on the auriferous recovery in the subsequent process step. The high copper solubility in cyanide prevents the direct use of classical hydrometallurgical processes for the extraction of gold by cyanidation. Additionally, the application of a conventional flotation process to extract copper is further complicated when it is oxidized. As a result, an acid pre-leaching process was applied in order to clean the ore of these copper minerals that are cyanide consumers. The objective was to evaluate the amount of soluble copper in cyanide before and after acidic cleaning. From a gold ore containing copper, the study selected four samples containing 0.22%, 0.55%, 1.00% and 1.36% of copper. For direct cyanidation of the ore without pre-treatment, copper extraction by cyanide complexing ranged from 8 to 83%. In contrast, the pre-treatment carried out with sulfuric acid extracted 24% to 99% of initial copper and subsequent cyanidation extracted 0.13 to 1.54% of initial copper. The study also showed that the copper contained in the secondary minerals is more easily extracted by cyanide (83%, being followed by the copper oxy-hydroxide minerals (60%, while the copper contained in the manganese oxide is less complexed by cyanide (8% a 12%. It was possible to observe that minerals with low acid solubility also have low solubility in cyanide. Cyanide consumption decreased by about 2.5 times and gold recovery increased to above 94% after acidic pre-cleaning.

  10. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D S; Lee, D S [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C Y [Seoul National University, Seoul (Korea, Republic of); and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  11. Manual cleaning of hospital mattresses: an observational study comparing high- and low-resource settings.

    Science.gov (United States)

    Hopman, J; Hakizimana, B; Meintjes, W A J; Nillessen, M; de Both, E; Voss, A; Mehtar, S

    2016-01-01

    Hospital-associated infections (HAIs) are more frequently encountered in low- than in high-resource settings. There is a need to identify and implement feasible and sustainable approaches to strengthen HAI prevention in low-resource settings. To evaluate the biological contamination of routinely cleaned mattresses in both high- and low-resource settings. In this two-stage observational study, routine manual bed cleaning was evaluated at two university hospitals using adenosine triphosphate (ATP). Standardized training of cleaning personnel was achieved in both high- and low-resource settings. Qualitative analysis of the cleaning process was performed to identify predictors of cleaning outcome in low-resource settings. Mattresses in low-resource settings were highly contaminated prior to cleaning. Cleaning significantly reduced biological contamination of mattresses in low-resource settings (P cleaning in both the high- and low-resource settings seemed comparable. Cleaning with appropriate type of cleaning materials reduced the contamination of mattresses adequately. Predictors for mattresses that remained contaminated in a low-resource setting included: type of product used, type of ward, training, and the level of contamination prior to cleaning. In low-resource settings mattresses were highly contaminated as noted by ATP levels. Routine manual cleaning by trained staff can be as effective in a low-resource setting as in a high-resource setting. We recommend a multi-modal cleaning strategy that consists of training of domestic services staff, availability of adequate time to clean beds between patients, and application of the correct type of cleaning products. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Intelligent Sensor for Autonomous Cleaning in livestock buildings (ISAC) - A challenge in bioenvironmental engineering

    DEFF Research Database (Denmark)

    Strøm, J.S.; Zhang, G.; Blanke, Mogens

    2003-01-01

    Manual cleaning of livestock buildings, using high-pressure water technology, is one of the most tedious and health threatening tasks which is conducted by human labour. The cleaning process itself contributes to deterioration of the working environment due to stirring up dirt, microorganisms...

  13. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  14. Investigation of Alternative Approaches for Cleaning Mott Porous Metal Filters

    International Nuclear Information System (INIS)

    Poirier, M.R.

    2003-01-01

    The Department of Energy selected Caustic Side Solvent Extraction (CSSX) as the preferred cesium removal technology for Savannah River Site (SRS) waste. As a pretreatment step for the CSSX flowsheet, the incoming salt solution that contains entrained sludge is contacted with monosodium titanate (MST) to adsorb strontium and select actinides. The resulting slurry is filtered to remove the sludge and MST. Filter fouling occurs during this process. At times, personnel can increase the filtrate rate by backpulsing or scouring. At other times, the filtrate rate drops significantly and only chemical cleaning will restore filter performance. The current baseline technology for filter cleaning uses 0.5 M oxalic acid. The Salt Processing Project (SPP) at SRS, through the Tanks Focus Area, requested an evaluation of other cleaning agents to determine their effectiveness at removing trapped sludge and MST solids compared with the baseline oxalic acid method. A review of the technical literature identified compounds that appear effective at dissolving solid compounds. Consultation with the SPP management team, engineering personnel, and researchers led to a selection of oxalic acid, nitric acid, citric acid, and ascorbic acid for testing. Tests used simulated waste and actual waste as follows. Personnel placed simulated or actual SRS High Level Waste sludge and MST in a beaker. They added the selected cleaning agents, stirred the beakers, and collected supernate samples periodically analyzing for dissolved metals

  15. Evaluation of Ultra Clean Fuels from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.

  16. Laser paper cleaning: the method of cleaning historical books

    Science.gov (United States)

    Zekou, Evangelini; Tsilikas, Ioannis; Chatzitheodoridis, Elias; Serafetinides, Alexander A.

    2016-01-01

    Conservation of cultural heritage treasures is the most important issue for transferring knowledge to the public through the next generation of students, academics, and researchers. Although this century is authenticating e-books and information by means of electronic text, still historical manuscripts as content as well as objects are the main original recourses of keeping a record of this transformation. The current work focuses on cleaning paper samples by the application of pulsed light, which is interventional. Experiments carried out using paper samples that are artificially colonized with Ulocladium chartarum. Paper is treated by Nd:YAG laser light. The available wavelength is 1064 nm, at various fluences, repetition rates and number of pulses. Two types of paper are stained with fungi colonies, which grow on substrates of clean paper, as well as on paper with ink text. The first type of paper is Whatman No.1056, which is closer to pure cellulose. The second type of paper is a page of a cultural heritage book published in 1926. Cleaning is performed using laser irradiation, thus defining the damage threshold of each sample. The treatment on paper Watman showed a yellowing, especially on areas with high concentration of fungi. The second sample was more durable to the exposure, performing the best results at higher fluences. Eventually, the paper samples are characterized, with optical microscopy and SEM/EDX analyses, prior to and after cleaning.

  17. Gas Cleaning System with a Pre-Unloading Flow

    Directory of Open Access Journals (Sweden)

    Vasilevsky Michail

    2016-01-01

    Full Text Available The analysis of the causes and mechanisms reduce the efficiency of processes separation in cyclone devices, the results of field surveys of industrial cyclone. It offers an alternative solution to clean the flue gases from the boiler KE-10/14.

  18. Summary report of the Banff clean energy dialogue : towards a truly Canadian clean energy strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    A clean energy strategy will allow Canada to seize opportunities for prosperity in a low-carbon future, while also contributing to the country's economic growth. This report outlined the conclusions drawn by representatives of major energy corporations and policy-makers who gathered to discuss Canada's clean energy plans for the future. Attendants at the meeting concluded that energy conservation and energy efficiency will play a prominent role in a successful clean energy strategy. However, a price on carbon is needed to emphasize the fundamental relationship between energy and the environment. A successful strategy will feature the following 4 overarching principles: (1) economic opportunity, (2) social responsibility, (3) environmental stewardship, and (4) international strategy in relation to trade and development of new markets. The role that federal, provincial and municipal governments will play in developing and implementing the strategy was also presented. The meeting was divided into the following 6 working sessions: (1) global context for a clean energy strategy, (2) why a Canadian clean energy strategy? Why now?, (3) key pillars of a Canadian clean energy strategy, (4) key building blocks of a national clean energy strategy, (5) a balanced Canadian framework, and (6) next steps. 1 fig.

  19. Solution-derived photocatalytic films for environmental cleaning applications

    International Nuclear Information System (INIS)

    Štangar, U Lavrencic; Kete, M; Šuligoj, A; Tasbihi, M

    2012-01-01

    When photocatalytic water treatment is concerned, suspended catalyst in the aqueous phase is usually more efficient than immobilized on an inert support, but in the former case an undesirable separation/recycling step is needed. We have therefore concentrated on the preparation of immobilized catalysts in the form of films on glass and aluminium supports. The low-temperature sol-gel processing route to obtain transparent thin TiO 2 /SiO 2 films for self-cleaning purposes and thicker TiO 2 /SiO 2 coatings for efficient removal of pollutants in water and air are presented. The synthesis is based on a production of a nanocrystalline titania sol with a silica binder that after deposition does not require thermal treatment at high temperatures. Depending on the target application, some specific synthesis parameters and photocatalytic activity testing conditions are illustrated. For water-cleaning coatings fast kinetics is required, which was achieved by addition of a highly active titania powder into the sol. The same preparation procedure was used to prepare efficient air-cleaning coatings. On the other hand, self-cleaning films were thinner and transparent to keep the original appearance of the substrate and they solidified at ambient conditions. Advanced methodologies to evaluate photocatalytic activity of the films were applied.

  20. The NOXSO clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P. [NOXSO Corp., Bethel Park, PA (United States)

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  1. Effectiveness of Surface Cleaning and Disinfection in a Brazilian Healthcare Facility

    Science.gov (United States)

    Santos-Junior, Aires G.; Ferreira, Adriano M.; Frota, Oleci P.; Rigotti, Marcelo A.; Barcelos, Larissa da S.; Lopes de Sousa, Alvaro Francisco; de Andrade, Denise; Guerra, Odanir G.; R. Furlan, Mara C.

    2018-01-01

    Background: Failures in the processes of cleaning and disinfecting health service surfaces may result in the spread and transfer of pathogens that are often associated with healthcare-related infections and outbreaks. Aims: To assess the effectiveness of environmental surface cleaning and disinfection in a hospital clinic. Method: The study was conducted in a nursing ward with 45 beds. A total of 80 samples from five high-touch surfaces were evaluated before and after cleaning and disinfection, using the following methods: visual inspection, adenosine triphosphate bioluminescence assay, aerobic colony count, Staphylococcus aureus colony count, and evaluation of resistance to methicillin. The data analysis used nonparametric comparative and correlative tests to observe any differences in the pre- and post- cleaning and disinfection results for the surfaces assessed. Results: Effective cleaning and disinfection had a significant effect on only two surfaces when measured for the presence of adenosine triphosphate, the inner bathroom door handle (p=0.007) and the toilet bowl (p=0.01). When evaluated for Staphylococcus aureus colony count, the toilet flush handle also demonstrated a significant effect (p=0.04). Conclusion: The effectiveness of cleaning and disinfection of the surfaces tested was not satisfactory. An educational intervention is recommended for the cleaning and disinfection staff and the nursing team at the healthcare facility. Relevance to Clinical Practice: The data in the study revealed that daily hospital cleaning and disinfection in the sampled sites are not sufficient in medical and surgical wards. Hospital cleanliness must be reevaluated from the point of view of materials, such as an adequate supply of clean cloths, in addition to establishing more precise cleanliness protocols and accurate monitoring systems. PMID:29643951

  2. Effectiveness of Surface Cleaning and Disinfection in a Brazilian Healthcare Facility.

    Science.gov (United States)

    Santos-Junior, Aires G; Ferreira, Adriano M; Frota, Oleci P; Rigotti, Marcelo A; Barcelos, Larissa da S; Lopes de Sousa, Alvaro Francisco; de Andrade, Denise; Guerra, Odanir G; R Furlan, Mara C

    2018-01-01

    Failures in the processes of cleaning and disinfecting health service surfaces may result in the spread and transfer of pathogens that are often associated with healthcare-related infections and outbreaks. To assess the effectiveness of environmental surface cleaning and disinfection in a hospital clinic. The study was conducted in a nursing ward with 45 beds. A total of 80 samples from five high-touch surfaces were evaluated before and after cleaning and disinfection, using the following methods: visual inspection, adenosine triphosphate bioluminescence assay, aerobic colony count, Staphylococcus aureus colony count, and evaluation of resistance to methicillin. The data analysis used nonparametric comparative and correlative tests to observe any differences in the pre- and post- cleaning and disinfection results for the surfaces assessed. Effective cleaning and disinfection had a significant effect on only two surfaces when measured for the presence of adenosine triphosphate, the inner bathroom door handle ( p =0.007) and the toilet bowl ( p =0.01). When evaluated for Staphylococcus aureus colony count, the toilet flush handle also demonstrated a significant effect ( p =0.04). The effectiveness of cleaning and disinfection of the surfaces tested was not satisfactory. An educational intervention is recommended for the cleaning and disinfection staff and the nursing team at the healthcare facility. The data in the study revealed that daily hospital cleaning and disinfection in the sampled sites are not sufficient in medical and surgical wards. Hospital cleanliness must be reevaluated from the point of view of materials, such as an adequate supply of clean cloths, in addition to establishing more precise cleanliness protocols and accurate monitoring systems.

  3. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  4. The Clean Energy Manufacturing Analysis Center (CEMAC): Providing Analysis and Insights on Clean Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nicholi S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  5. Mechanical cleaning of graphene

    NARCIS (Netherlands)

    Goossens, A.M.; Calado, V.E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; Vandersypen, L.M.K.

    2012-01-01

    Contamination of graphene due to residues from nanofabrication often introduces background doping and reduces electron mobility. For samples of high electronic quality, post-lithography cleaning treatments are therefore needed. We report that mechanical cleaning based on contact mode atomic force

  6. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    International Nuclear Information System (INIS)

    Abdel-Kareem, Omar; Harith, M.A.

    2008-01-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles

  7. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Kareem, Omar [Conservation Department, Faculty of Archaeology, Cairo University, El-Gamaa Street, El-Giza (Egypt)], E-mail: Omaa67@yahoo.com; Harith, M.A. [National Institute of Laser Enhanced Science, Cairo University (Egypt)], E-mail: mharithm@niles.edu.eg

    2008-07-15

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  8. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    Science.gov (United States)

    Abdel-Kareem, Omar; Harith, M. A.

    2008-07-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  9. National Clean Fleets Partnership (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  10. Proceedings of the 23rd DOE/NRC nuclear air cleaning conference

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1995-02-01

    The report contains the papers presented at the 23rd DOE/NRC Nuclear Air Cleaning Conference and the associated discussions. Major topics are: (1) nuclear air cleaning codes, (2) nuclear waste, (3) filters and filtration, (4) effluent stack monitoring, (5) gas processing, (6) adsorption, (7) air treatment systems, (8) source terms and accident analysis, and (9) fuel reprocessing. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. Mechanical Design and Dynamcis of an Autonomous Climbing Robot for Elliptic Half-shell Cleaning

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2007-12-01

    Full Text Available This paper presents an auto-climbing robot for cleaning the elliptic half-shell of National Grand Theatre in China. The robot consists of a climbing mechanism, a moving mechanism, two cleaning brushes and supporting mechanisms. The mechanism and unique aspects are presented in detail. A distributed control system based on CAN bus is designed to meet the requirements of controlling the robot. After that the emphasis for discussion is on the motion realization which includes climbing and cleaning movements. The robot independently climbs and descends in the vertical direction and cleans in the horizontal direction. It takes the circling tracks as supports for climbing up and down between strips and moving horizontally along one strip around the ellipsoid. For system design and control purposes, the dynamic models of the climbing and cleaning processes are given applying of the Lagrange equation. Furthermore the force distribution of the front and rear supporting mechanisms is computed in a way that ensures the safety of the climbing process. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  12. Mechanical Design and Dynamcis of an Autonomous Climbing Robot for Elliptic Half-shell Cleaning

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2008-11-01

    Full Text Available This paper presents an auto-climbing robot for cleaning the elliptic half-shell of National Grand Theatre in China. The robot consists of a climbing mechanism, a moving mechanism, two cleaning brushes and supporting mechanisms. The mechanism and unique aspects are presented in detail. A distributed control system based on CAN bus is designed to meet the requirements of controlling the robot. After that the emphasis for discussion is on the motion realization which includes climbing and cleaning movements. The robot independently climbs and descends in the vertical direction and cleans in the horizontal direction. It takes the circling tracks as supports for climbing up and down between strips and moving horizontally along one strip around the ellipsoid. For system design and control purposes, the dynamic models of the climbing and cleaning processes are given applying of the Lagrange equation. Furthermore the force distribution of the front and rear supporting mechanisms is computed in a way that ensures the safety of the climbing process. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  13. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  14. Mathematical modelling of flux recovery during chemical cleaning of tubular membrane fouled with whey proteins

    Directory of Open Access Journals (Sweden)

    Marković Jelena Đ.

    2009-01-01

    Full Text Available Membrane process efficiency in the dairy industry is impaired by the formation of deposits during filtration processes. This work describes cleaning procedures for ceramic tubular membrane (50 nm fouled with whey proteins. Also, mathematical modelling was performed to obtain models which allow deeper insight into the mechanisms involved during cleaning procedures. The caustic solutions (0.2%w/w, 0.4%w/w and 1.0%w/w NaOH and the mixture of two commercial detergents (0.8%w/w P3-ultrasil 69+0.5% w/w P3-ultrasil 67 and 1.2% P3-ultrasil 69+0.75 P3-ultrasil 67 were used as chemical cleaning agents. The results showed that the best flux recovery was achieved with 0.4%w/w NaOH solution. After analyzing the experimental data, five parameter and six parameter kinetic models were suggested for alkali and detergent cleaning, respectively. The changes of total and specific resistances, as well as the change of the effective pore diameter and deposit thickness during cleaning are estimated by applying these models.

  15. Mobilization Potential and Democratization Processes of the Coalition for Clean and Fair Elections (Bersih) in Malaysia: An Interview With Hishamuddin Rais

    OpenAIRE

    Ying Hooi Khoo

    2014-01-01

    "In recent years, protests and popular mobilization have become pronounced elements in Malaysian politics. Bersih (clean) demonstrations are notably the most outstanding protest events in Malaysian history. Bersih is a group of 89 non-governmental organizations (NGOs) pushing for a thorough reform of the electoral process in Malaysia through rallies and demonstrations. Five opposition parties initiated the idea of Bersih in 2005 and included several NGOs in the ‘project’ later on. After the f...

  16. Clean coal technology: The new coal era

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  17. Air cleaning using regenerative silica gel wheel

    DEFF Research Database (Denmark)

    Fang, Lei

    2011-01-01

    This paper discussed the necessity of indoor air cleaning and the state of the art information on gas-phase air cleaning technology. The performance and problems of oxidation and sorption air cleaning technology were summarized and analysed based on the literature studies. Eventually, based...... on an experimental study, a technology called clean air heat pump is proposed as a practical approach for indoor air cleaning....

  18. Green Cleaning Label Power

    Science.gov (United States)

    Balek, Bill

    2012-01-01

    Green cleaning plays a significant and supportive role in helping education institutions meet their sustainability goals. However, identifying cleaning products, supplies and equipment that truly are environmentally preferable can be daunting. The marketplace is inundated with products and services purporting to be "green" or environmentally…

  19. L-Reactor 186-basin cleaning alternatives

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Operation of L Reactor will necessitate annual cleaning of the L Area 186 basins. Alternatives are presented for sediment discharge due to 186-basin cleaning activities as a basis for choosing the optimal cleaning method. Current cleaning activities (i.e. removal of accumulated sediments) for the P, C and K-Area 186 basins result in suspended solids concentrations in the effluent waters above the NPDES limits, requiring an exemption from the NPDES permit for these short-term releases. The objective of mitigating the 186-basin cleaning activities is to decrease the suspended solids concentrations to within permit limits while continuing satisfactory operation of the basins

  20. Development of a dynamic model for cleaning ultra filtration membranes fouled by surface water

    NARCIS (Netherlands)

    Zondervan, Edwin; Betlem, Ben H.L.; Roffel, Brian

    2007-01-01

    In this paper, a dynamic model for cleaning ultra filtration membranes fouled by surface water is proposed. A model that captures the dynamics well is valuable for the optimization of the cleaning process. The proposed model is based on component balances and contains three parameters that can be

  1. Is peracetic acid suitable for the cleaning step of reprocessing flexible endoscopes?

    Science.gov (United States)

    Kampf, Günter; Fliss, Patricia M; Martiny, Heike

    2014-09-16

    The bioburden (blood, protein, pathogens and biofilm) on flexible endoscopes after use is often high and its removal is essential to allow effective disinfection, especially in the case of peracetic acid-based disinfectants, which are easily inactivated by organic material. Cleaning processes using conventional cleaners remove a variable but often sufficient amount of the bioburden. Some formulations based on peracetic acid are recommended by manufacturers for the cleaning step. We performed a systematic literature search and reviewed the available evidence to clarify the suitability of peracetic acid-based formulations for cleaning flexible endoscopes. A total of 243 studies were evaluated. No studies have yet demonstrated that peracetic acid-based cleaners are as effective as conventional cleaners. Some peracetic acid-based formulations have demonstrated some biofilm-cleaning effects and no biofilm-fixation potential, while others have a limited cleaning effect and a clear biofilm-fixation potential. All published data demonstrated a limited blood cleaning effect and a substantial blood and nerve tissue fixation potential of peracetic acid. No evidence-based guidelines on reprocessing flexible endoscopes currently recommend using cleaners containing peracetic acid, but some guidelines clearly recommend not using them because of their fixation potential. Evidence from some outbreaks, especially those involving highly multidrug-resistant gram-negative pathogens, indicated that disinfection using peracetic acid may be insufficient if the preceding cleaning step is not performed adequately. Based on this review we conclude that peracetic acid-based formulations should not be used for cleaning flexible endoscopes.

  2. Clean room actuators

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Toshiro

    1987-06-01

    This report explains on the present status of the clean room actuators including the author's research results. In a clean room, there exists a possibility of dust generation, even when a direct human work is eliminated by the use of robots or automatic machines, from the machines themselves. For this, it is important to develop such clean robots and transfer/positioning mechanism that do not generate dusts, and to develop an actuator and its control technique. Topics described in the report are as follows: 1. Prevention of dust diffusion by means of sealing. 2. Elimination of mechanical contact (Linear induction motor and pneumatic float, linear motor and magnetic attraction float, linear motor and air bearing, and magnetic bearing). 3. Contactless actuator having a positioning mechanism (Use of linear step motor and rotary contactless actuator). (15 figs, 11 refs)

  3. Efficacy of computer-based endoscope cleaning and disinfection using a hospital management information system.

    Science.gov (United States)

    Wang, Caixia; Chen, Yuanyuan; Yang, Feng; Ren, Jie; Yu, Xin; Wang, Jiani; Sun, Siyu

    2016-08-01

    The present study aimed to assess the efficacy of computer-based endoscope cleaning and disinfection using a hospital management information system (HMIS). A total of 2,674 gastroscopes were eligible for inclusion in this study. For the processes of disinfection management, the gastroscopes were randomly divided into 2 groups: gastroscope disinfection HMIS (GD-HMIS) group and manual group. In the GD-HMIS group, an integrated circuit card (IC card) chip was installed to monitor and record endoscope cleaning and disinfection automatically and in real time, whereas the endoscope cleaning and disinfection in the manual group was recorded manually. The overall disinfection progresses for both groups were recorded, and the total operational time was calculated. For the GD-HMIS group, endoscope disinfection HMIS software was successfully developed. The time to complete a single session of cleaning and disinfecting on a gastroscope was 15.6 minutes (range, 14.3-17.2 minutes) for the GD-HMIS group and 21.3 minutes (range, 20.2-23.9 minutes) for the manual group. Failure to record information, such as the identification number of the endoscope, occasionally occurred in the manual group, which affected the accuracy and reliability of manual recording. Computer-based gastroscope cleaning and disinfection using a hospital management information system could monitor the process of gastroscope cleaning and disinfection in real time and improve the accuracy and reliability, thereby ensuring the quality of gastroscope cleaning and disinfection. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Waste cleaning using CO2-acid microemulsion

    International Nuclear Information System (INIS)

    Park, Kwangheon; Sung, Jinhyun; Koh, Moonsung; Ju, Minsu

    2011-01-01

    Frequently we need to decontaminate radioactive wastes for volume reduction purposes. Metallic contaminants in wastes can be removed by dissolution to acid; however, this process produces a large amount of liquid acid waste. To reduce this 2ndary liquid waste, we suggest CO 2 -acid emulsion in removing metallic contaminants. Micro- and macro-emulsion of acid in liquid/supercritical CO 2 were successfully made. The formation region of microemulsion (water or acid in CO 2 ) was measured, and stability of the microemulsion was analyzed with respect to surfactant types. We applied micro- and macro-emulsion containing acid to the decontamination of radioactive metallic parts contaminated on the surface. The cleaning methods of micro- and macro-emulsion seemed better compared to the conventional acid cleaning. Moreover, these methods produce very small amount of secondary wastes. (author)

  5. 40 CFR 63.744 - Standards: Cleaning operations.

    Science.gov (United States)

    2010-07-01

    ... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Cleaning operations. 63.744...

  6. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  7. Energy Efficient in-Sensor Data Cleaning for Mining Frequent Itemsets

    Directory of Open Access Journals (Sweden)

    Jacques M. BAHI

    2012-03-01

    Full Text Available Limited energy, storage, computational power represent the main constraint of sensor networks. Development of algorithms that take into consideration this extremely demanding and constrained environment of sensor networks became a major challenge. Communicating messages over a sensor network consume far more energy than processing it and mining sensors data should respect the characteristics of sensor networks in terms of energy and computation constraints, network dynamics, and faults. This lead us to think of a data cleaning pre processing phase to reduce the packet size transmitted and prepare the data for an efficient and scalable data mining. This paper introduces a tree-based bi-level periodic data cleaning approach implemented on both the source node and the aggregator levels. Our contribution in this paper is two folds. First we look on a periodic basis at each data measured and periodically clean it while taking into consideration the number of occurrences of the measures captured which we shall call weight. Then, a data cleaning is performed between groups of nodes on the level of the aggregator, which contains lists of measures along with their weights. The quality of the information should be preserved during the in-network transmission through the weight of each measure captured by the sensors. This weight will constitute the key optimization of the frequent pattern tree. The result set will constitute a perfect training set to mine without higher CPU consumption allowing us to send only the useful information to the sink. The experimental results show the effectiveness of this technique in terms of energy efficiency and quality of the information by focusing on a periodical data cleaning while taking into consideration the weight of the data captured.

  8. The Clean Development Mechanism and Sustainable Development in China's Electricity Sector

    Institute of Scientific and Technical Information of China (English)

    Paul A. Steenhof

    2005-01-01

    The Clean Development Mechanism,a flexibility mechanism contained in the Kyoto Protocol, offers China an important tool to attract investment in clean energy technology and processes into its electricity sector. The Chinese electricity sector places centrally in the country's economy and environment, being a significant contributor to the acid rain and air pollution problems that plague many of China's cities and regions, and therefore a focus of many related energy and environmental policies.China's electricity sector has also been the subject of a number of economic analyses that have showed that it contains the highest potential for clean energy investment through the Clean Development Mechanism of any economic sector in China. This mechanism, through the active participation from investors in more industrialized countries, can help alleviate the environmental problems attributable to electricity generation in China through advancing such technology as wind electricity generation, dean coal technology, high efficient natural gas electricity generation, or utilization of coal mine methane. In this context, the Clean Development Mechanism also compliments a range of environmental and energy policies which are strategizing to encourage the sustainable development of China's economy.

  9. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    Science.gov (United States)

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  10. Gas plant cleaning case history

    Energy Technology Data Exchange (ETDEWEB)

    Woods, B

    1971-03-22

    Basic steps to be taken before using any cleaning method are select a responsible group and give it full responsibility; know the problem, what type of fouling, lab samples, amount of material, time and cost; sell the idea to management; maintain the cleaning equipment; and follow up each cleaning operation. These principles have been applied to advantage in the amine contractor at Taylor, a vessel 60 ft high with 78-in. OD, containing carbon steel deck trays with stainless steel caps. The original attempt to clean with wire scrapers manually involved much lost time and several crews. There was limited space in the tray vessels, design created areas difficult to clean, working conditions were unpleasant, equipment downtime was extended, labor cost was high, and the final result was not satisfactory. Chemical cleaning was substituted, preceded by a water wash. Five hours of caustic wash with a 3% solution at 170$F were followed by a water wash, an acid wash, 1-hr neutralization with a weak soda ash solution, and finally passivation to eliminate iron oxide. For the acid wash, sulfamic acid was found best, in 10% concentration for 4 hr. Cascading was most economical, but flooding has been employed sometimes at 2-1/2 times the cost, to reach all the dark corners.

  11. Is peracetic acid suitable for the cleaning step of reprocessing flexible endoscopes?

    OpenAIRE

    Kampf, Günter; Fliss, Patricia M; Martiny, Heike

    2014-01-01

    The bioburden (blood, protein, pathogens and biofilm) on flexible endoscopes after use is often high and its removal is essential to allow effective disinfection, especially in the case of peracetic acid-based disinfectants, which are easily inactivated by organic material. Cleaning processes using conventional cleaners remove a variable but often sufficient amount of the bioburden. Some formulations based on peracetic acid are recommended by manufacturers for the cleaning step. We performed ...

  12. 76 FR 16646 - Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc...

    Science.gov (United States)

    2011-03-24

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc.), Collectible Concepts Group, Inc., Communitronics of... is a lack of current and accurate information concerning the securities of Clean Energy Combustion...

  13. Carbon pricing comes clean

    International Nuclear Information System (INIS)

    De Wit, Elisa

    2011-01-01

    Together with the Clean Energy Bill, the implications of the Australian Federal Government's climate change legislative package are far reaching. Norton Rose gives business a heads-up in this breakdown of the draft legislation underpinning the carbon pricing and clean energy scheme. It is a summary of Norton Rose's full analysis.

  14. Energized CO{sub 2} dry ice blast cleaning firmly grounded in the Canadian electrical industry

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, K.

    1999-02-01

    Development and use of energized carbon dioxide dry ice blast technology for cleaning electrical distribution system components by Oakville Hydro and Milton Hydro (both in Ontario) is discussed. The technology was developed by Alpheus Cleaning Technologies of California and Puget Sound Power and Light Company after a two-year study that commenced in 1991, and has been supplied in Canada by Wickens Industrial Ltd., since 1993 for cleaning various industrial and non-energized electrical applications in the automotive, printing , food processing and other manufacturing industries and hydro generating facilities. The unique cleaning dynamics of this technology allow for the removal of contaminants that are much more stubborn than those encountered in pad-mounted switchgear and other electrical apparatus. Dry ice pellets, by expanding to 400 times their solid state on impact, create a flushing action that helps to remove contaminants. No grit or solvents are required and the process is non-toxic. In using the process workers wear fire retardant clothing, 40 kV-Class 4 rubber gloves and full face shields. Dielectric tests are performed routinely to confirm the dielectric integrity of the spray wand components. A two stage inspection/trouble report is completed on every job. Use of this technology eliminates power interruptions to customers, improves system reliability and safety, reduces cleaning time to a minimum, and eliminated the need for reclamation of grit or solvent containment.

  15. Sonochemical cleaning efficiencies in dental instruments

    Science.gov (United States)

    Tiong, T. Joyce; Walmsley, A. Damien; Price, Gareth J.

    2012-05-01

    Ultrasound has been widely used for cleaning purposes in a variety of situations, including in dental practice. Cleaning is achieved through a combination of acoustically driven streaming effects and sonochemical effects arising from the production of inertial cavitation in a liquid. In our work, various dental instruments used for endodontic (root canal) treatment have been evaluated for their efficiency in producing sonochemical effects in an in-vitro cleaning environment. The areas where cavitation was produced were mapped by monitoring chemiluminescence from luminol solutions and this was correlated with their cleaning efficiencies - assessed by the ability to bleach a dye, to form an emulsion by mixing immiscible components and also to remove ink from a glass surface. The results showed good correlation (Pearson's coefficient > 0.9) between the cavitation and cleaning efficiencies, suggesting that the former plays an important role in cleaning. The methods developed and the results will be beneficial in endodontics research in order to optimise future root canal instruments and treatments.

  16. Study on effective laser cleaning method to remove carbon layer from a gold surface

    International Nuclear Information System (INIS)

    Singh, Amol; Modi, Mohammed H; Lodha, G S; Choubey, A K; Upadhyaya, B N

    2013-01-01

    Hydrocarbon cracking and carbon contamination is a common problem in soft x-ray Synchrotron Radiation (SR) beamlines. Carbon contamination on optics is known to absorb and scatter radiation close to the C K-edge (284 eV) spectral region. The purpose of this work is to study and develop a laser cleaning method that can effectively remove the carbon contaminations without damaging the underneath gold-coated optics. The laser cleaning process is a non-contact, accurate, efficient and safe. Nd:YAG laser of 100 ns pulse duration is used for carbon cleaning. The effect of laser pulse duration, laser fluence, number of laser passes, angle of incidence and spot overlapping on the cleaning performance is studied. Cleaning effect and subsequent film quality after laser irradiation is analyzed using x-ray photoelectron spectroscopy (XPS) and soft x-ray reflectivity (SXR) techniques.

  17. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  18. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  19. Cleaning metal filters by pulse-jet

    International Nuclear Information System (INIS)

    Pickard, P.; Perry, R.A.

    1986-01-01

    Cleanable metal filters have an established use in the Nuclear Industry. The filters that have been installed in the past have not proved to be sufficiently cleanable. A series of tests were undertaken to study the application of pulse-jet cleaning to metal fibre filter elements. The efficiency of dust removal was examined under various operating conditions. A very high degree of particulate removal was achieved, with a return to almost clean pressure drop. The effectiveness of cleaning was found to vary inversely with blowback pressure. The position of the blowback nozzle with respect to the filter element throat was also found to be important to cleaning efficiency. Under the test conditions the effect of re-entrainment when cleaning on line was found to be minimal. (author)

  20. Clean-up of a radioactive spill

    International Nuclear Information System (INIS)

    Fish, W.

    1987-01-01

    Bikini Atoll in the Marshall Islands of the South Pacific was extensively contaminated with radionuclides deposited by thermonuclear weapons testing in the 1940s and 1950s. In recent years, the U.S. government has attempted to restore the habitability of the islands by cleaning up the remaining radioactive material. Although the island no longer presents an acute radiation risk to inhabitants, plants growing on the island concentrate cesium-137 from the soil, presenting an unacceptable risk to the future population. The behavior of Cs-137 has proved to be an intractable problem that has major implications for the risks associated with transporting and processing high-level nuclear wastes in the U.S. Various proposed soil treatment strategies for Bikini are discussed, including ion-exchange treatments and competing-ion strategies. No fully satisfactory treatment currently exists and the problems and prospects of cleaning up after a major nuclear waste spill are presented

  1. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION

    Science.gov (United States)

    The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...

  2. Advances in telescope mirror cleaning

    Science.gov (United States)

    Blanken, Maarten F.; Chopping, Alan K.; Dee, Kevin M.

    2004-09-01

    Metrology and cleaning techniques for telescope mirrors are generally well established. CO2 cleaning and water washing are mainly used. Water washing has proven to be the best method of removing oil and water stains and restoring the aluminium to nearly fresh values. The risk of water getting to unwanted places such as electronics or other optics prevents this method from being employed more often. Recently the Isaac Newton Group introduced a new cleaning technique for their telescope mirrors, which reduces the risks discussed above. This technique uses water vapour instead of water to wash the mirror. The advantage of this method is that the amount of water needed is drastically reduced. In addition the pressure of the vapour will blow away any large dust particles on the mirror and the temperature shock between the vapour and the mirror will help to de-bond the dust particles. Adding a soapy solution will help to clean oil and watermarks of the mirror. This paper describes the vapour cleaning method, tests that have been done and the overall findings.

  3. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning...... itself, it is demonstrated that for a wide range of cleaning procedures and types of coal, chemical cleaning generally performs worse than combustion of the raw coals and physical cleaning using dense medium separation. These findings apply for many relevant impact categories, including climate change...

  4. Coolant clean-up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuburaya, Hirobumi; Akita, Minoru; Shiraishi, Tadashi; Kinoshita, Shoichiro; Okura, Minoru; Tsuji, Akio.

    1987-01-01

    Purpose: To ensure a sufficient urging pressure at the inlet of a coolant clean-up system pump in a nuclear reactor and eliminate radioactive contaminations to the pump. Constitution: Coolant clean-up system (CUW) pump in a nuclear reactor is disposed to the downstream of a filtration desalter and, for compensating the insufficiency of the urging pressure at the pump inlet, the reactor water intake port to the clean-up system is disposed to the downstream of the after-heat removing pump and the heat exchanger. By compensating the net positive suction head (NPSH) of the clean-up system from the residual heat removing system, the problems of insufficient NPSH for the CUW pump upon reactor shut-down can be dissolved and, accordingly, the reactor clean-up system can be arranged in the order of the heat exchanger, clean-up device and pump. Thus, the CUW pump acts on reactor water after cleaned-up in the clean-up device to reduce the radioactivity contamination to the pump. (Kawakami, Y.)

  5. 49 CFR 174.615 - Cleaning cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) [Reserved] (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless...

  6. Effectuality of Cleaning Workers' Training and Cleaning Enterprises' Chemical Health Hazard Risk Profiling.

    Science.gov (United States)

    Suleiman, Abdulqadir M; Svendsen, Kristin V H

    2015-12-01

    Goal-oriented communication of risk of hazards is necessary in order to reduce risk of workers' exposure to chemicals. Adequate training of workers and enterprise priority setting are essential elements. Cleaning enterprises have many challenges and the existing paradigms influence the risk levels of these enterprises. Information on organization and enterprises' prioritization in training programs was gathered from cleaning enterprises. A measure of enterprises' conceptual level of importance of chemical health hazards and a model for working out the risk index (RI) indicating enterprises' conceptual risk level was established and used to categorize the enterprises. In 72.3% of cases, training takes place concurrently with task performances and in 67.4% experienced workers conduct the trainings. There is disparity between employers' opinion on competence level of the workers and reality. Lower conceptual level of importance was observed for cleaning enterprises of different sizes compared with regional safety delegates and occupational hygienists. Risk index values show no difference in risk level between small and large enterprises. Training of cleaning workers lacks the prerequisite for suitability and effectiveness to counter risks of chemical health hazards. There is dereliction of duty by management in the sector resulting in a lack of competence among the cleaning workers. Instituting acceptable easily attainable safety competence level for cleaners will conduce to risk reduction, and enforcement of attainment of the competence level would be a positive step.

  7. Discharge cleaning for a tokamak

    International Nuclear Information System (INIS)

    Ishii, Shigeyuki

    1983-01-01

    Various methods of discharge cleaning for tokamaks are described. The material of the first walls of tokamaks is usually stainless steel, inconel, titanium and so on. Hydrogen is exclusively used as the discharge gas. Glow discharge cleaning (GDC), Taylor discharge cleaning (TDC), and electron cyclotron resonance discharge cleaning (ECR-DC) are discussed in this paper. The cleaning by GDC is made by moving a movable anode to the center of a tokamak vassel. Taylor found the good cleaning effect of induced discharge by high pressure and low power discharge. This is called TDC. When the frequency of high frequency discharge in a magnetic field is equal to that of the electron cyclotron resonance, the break down potential is lowered if the pressure is sufficiently low. The ECR-CD is made by using this effect. In TDC and ECR-DC, the electron temperature, which has a close relation to the production rate of H 0 , can be controlled by the pressure. In GDC, the operating pressure was improved by the radio frequency glow (RG) method. However, there is still the danger of arcing. In case of GDC and ECR-DC, the position of plasma can be controlled, but not in case of TDC. The TDC is accepted by most of takamak devices in the world. (Kato, T.)

  8. Acrylic vessel cleaning tests

    International Nuclear Information System (INIS)

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-01-01

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory

  9. Demonstrating practical application of soil and groundwater clean-up and recovery technologies at natural gas processing facilities: Bioventing, air sparging and wetlands remediation

    International Nuclear Information System (INIS)

    Moore, B.

    1996-01-01

    This issue of the project newsletter described the nature of bioventing, air sparging and wetland remediation. It reviewed their effectiveness in remediating hydrocarbon contaminated soil above the groundwater surface. Bioventing was described as an effective, low cost treatment in which air is pumped below ground to stimulate indigenous bacteria. The bacteria then use the oxygen to consume the hydrocarbons, converting them to CO 2 and water. Air sparging involves the injection of air below the groundwater surface. As the air rises, hydrocarbons are stripped from the contaminated soil and water. The advantage of air sparging is that it cleans contaminated soil and water from below the groundwater surface. Hydrocarbon contamination of wetlands was described as fairly common. Conventional remediation methods of excavation, trenching, and bellholes to remove contamination often cause extreme harm to the ecosystem. Recent experimental evidence suggests that wetlands may be capable of attenuating contaminated water through natural processes. Four hydrocarbon contaminated wetlands in Alberta are currently under study. Results to date show that peat's high organic content promotes sorption and biodegradation and that some crude oil spills can been resolved by natural processes. It was suggested that assuming peat is present, a good clean-up approach may be to contain the contaminant source, monitor the lateral and vertical extent of contamination, and wait for natural processes to resolve the problem. 3 figs

  10. Ultrasonic aqueous cleaning as a replacement for chlorinated solvent cleaning

    International Nuclear Information System (INIS)

    Thompson, L.M.; Simandl, R.F.

    1992-01-01

    The Oak Ridge Y-12 Plant has been involved in the replacement of chlorinated solvents since 1982. One of the most successful replacement efforts has been the substitution of vapor degreasers or soak tanks using chlorinated solvents with ultrasonic cleaning using aqueous detergents. Recently, funding was obtained from the Department of Energy Office (DOE) of Technology Development to demonstrate this technology. A unit has been procured and installed in the vacuum pump shop area to replace the use of a solvent soak tank. Initially, the solvents used in the shop were CFC-113 and a commercial brand cleaner which contained both perchloroethylene and methylene chloride. While the ultrasonic unit was being procured, a terpene-based solvent was used. Generally, parts were soaked overnight in order to soften baked-on vanish. Many times, wire brushing was used to help remove remaining contamination. Initial testing with the ultrasonic cleaner indicated cleaning times of 20 min were as effective as the overnight solvent soaks in removing contamination. Wire brushing was also not required following the ultrasonic cleaning as was sometimes required with the solvent soak

  11. Clean Energy Solutions Center Services

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  12. Emulsion type dry cleaning system

    International Nuclear Information System (INIS)

    Kohanawa, Osamu; Matsumoto, Hiroyo.

    1988-01-01

    Protective clothing against radioactive contamination used in the radiation controlled areas of nuclear plants has been washed by the same wet washing as used for underwear washing, but recently dry cleaning is getting used in place of wet washing, which generates a large quantity of laundry drain. However, it was required to use wet washing once every five to ten dry cleanings for washing protective clothing, because conventional dry cleaning is less effective in removing water-soluble soils. Therefore, in order to eliminate wet washing, and to decrease the quantity of laundry drains, the emulsion type dry cleaning system capable of removing both oil-soluble and water-soluble soils at a time has been developed. The results of developmental experiments and actual application are presented in this paper. (author)

  13. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  14. Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  15. Clean Energy Policy Analyses. Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  16. The AREVA customized chemical cleaning C3-concept as part of the steam generator asset management

    International Nuclear Information System (INIS)

    Weiss, Steffen; Drexler, Andreas

    2012-09-01

    In pressurized water reactors corrosion products and impurities are transported into the steam generators by feed water. Corrosion products and impurities are accumulated in the SGs as deposits and scales on the tubes, the tube support structures and the tube sheet. Depending on the location, the composition and the morphology such deposits may negatively affect the performance of the steam generators by reducing the thermal performance, changing the flow patterns and producing localized corrosion promoting conditions. Accordingly removal of deposits or deposit minimization strategies are an essential part of the asset management program of the steam generators in Nuclear Power Plants. It is evident that such a program is plant specific, depending on the individual condition prevailing. Parameters to be considered are for example: - Steam generator and balance of plant design; - Secondary side water chemistry treatment; - Deposit amount and constitution; - Deposit distribution in the steam generator; - Existing or expected corrosion problems. After evaluation of the steam generator condition a strategy for deposit minimization has to be developed. Depending on the individual situation such strategies may span from curative full scale cleanings which are capable of removing the entire sludge inventory in the range of several 1000 kg per SG to preventive cleanings that remove only a portion of the deposits in the range of several 100 kg per SG. But also other goals depending on the specific plant situation, like tube sheet sludge piles or hard scale removal, may be considered. Beside the chemical cleaning process itself also the integration of the process into the outage schedule and considerations about its impact on other maintenance activities is of great importance. It is obvious that all these requirements cannot be met easily by a standardized cleaning method, thus a customisable chemical cleaning technology is required. Based on its comprehensive experience

  17. Determination of a cleaning and decontamination process using solvents; Determination d'une methode de nettoyage et de decontamination par solvant

    Energy Technology Data Exchange (ETDEWEB)

    Boutot, P; Schipfer, P [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1967-03-15

    This work has been carried out on samples of the white cotton serge material of which most of the working overalls of the Nuclear Research Centre are made. The aims are: - to determine,from the decontamination and cleaning points of view, the efficiency of various solvents (white-spirit, trichloroethylene, perchlorethylene and tri-chloro-trifluoroethane) and the role of additives likely to improve the treatment; - to control the textile from the wear and shrinkage points of view; - to try to develop a basic cleaning and decontamination process as a function of the possibilities of each solvent considered. (authors) [French] Cette experimentation pratiquee sur des echantillons de tissu en serge de coton blanc, tissu dans lequel est confectionnee la majorite des tenues de travail du Centre, a pour but: - de determiner, sous l'angle decontamination et nettoyage, l'efficacite de differents solvants (white-spirit, trichlorethylene, perchlorethylene et trichlorotrifluoroethane) ainsi que le role des adjuvants susceptibles d'ameliorer le traitement; - de controler le textile du point de vue usure et retrecissement; - d'essayer de mettre au point un procede de nettoyage et de decontamination type en fonction des possibilites d'emploi de chacun des solvants consideres. (auteurs)

  18. Dynamics of sustained use and abandonment of clean cooking systems: lessons from rural India

    Science.gov (United States)

    Chalise, Nishesh; Kumar, Praveen; Priyadarshini, Pratiti; Yadama, Gautam N.

    2018-03-01

    Clean cooking technologies—ranging from efficient cookstoves to clean fuels—are widely deployed to reduce household air pollution and alleviate adverse health and climate consequences. Although much progress has been made on the technical aspects, sustained and proper use of clean cooking technologies by populations with the most need has been problematic. Only by understanding how clean cooking as an intervention is embedded within complex community processes can we ensure its sustained implementation. Using a community-based system dynamics approach, we engaged two rural communities in co-creating a dynamic model to explain the processes influencing the uptake and transition to sustained use of biogas (an anaerobic methane digester), a clean fuel and cooking technology. The two communities provided contrasting cases: one abandoned biogas while the other continues to use it. We present a system dynamics simulation model, associated analyses, and experiments to understand what factors drive transition and sustained use. A central insight of the model is community processes influencing the capacity to solve technical issues. Model analysis shows that families begin to abandon the technology when it takes longer to solve problems. The momentum in the community then shifts from a determination to address issues with the cooking technology toward caution in further adhering to it. We also conducted experiments using the simulation model to understand the impact of interventions aimed at renewing the use of biogas. A combination of theoretical interventions, including repair of non-functioning biogas units and provision of embedded technical support in communities, resulted in a scenario where the community can continue using the technology even after support is retracted. Our study also demonstrates the utility of a systems approach for engaging local stakeholders in delineating complex community processes to derive significant insights into the dynamic feedback

  19. Apparatuses, Systems and Methods for Cleaning Photovoltaic Devices

    KAUST Repository

    Eitelhuber, Georg

    2013-01-01

    Embodiments of solar panel cleaning apparatuses, solar panel cleaning systems, and solar panel cleaning methods are disclosed. In certain embodiments, the disclosed solar panel cleaning apparatuses, systems and methods do may not require any water

  20. Solidifying processing device for radioactive waste

    International Nuclear Information System (INIS)

    Sueto, Kumiko; Toyohara, Naomi; Tomita, Toshihide; Sato, Tatsuaki

    1990-01-01

    The present invention concerns a solidifying device for radioactive wastes. Solidifying materials and mixing water are mixed by a mixer and then charged as solidifying and filling materials to a wastes processing container containing wastes. Then, cleaning water is sent from a cleaning water hopper to a mixer to remove the solidifying and filling materials deposited in the mixer. The cleaning liquid wastes are sent to a separator to separate aggregate components from cleaning water components. Then, the cleaning water components are sent to the cleaning water hopper and then mixed with dispersing materials and water, to be used again as the mixing water upon next solidifying operation. On the other hand, the aggregate components are sent to a processing mechanism as radioactive wastes. With such procedures, since the discharged wastes are only composed of the aggregates components, and the amount of the wastes are reduced, facilities and labors for the processing of cleaning liquid wastes can be decreased. (I.N.)

  1. Webinar: Green Cleaning for Improved Health: The Return on Investment of Green Cleaning in Schools

    Science.gov (United States)

    A page to register to view the June 22, 2017, webinar in the IAQ Knowledge-to-Action Professional Training Webinar Series: Green Cleaning for Improved Health: The Return on Investment of Green Cleaning in Schools

  2. Tracking Clean Energy Progress 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Tracking Clean Energy Progress 2013 (TCEP 2013) examines progress in the development and deployment of key clean energy technologies. Each technology and sector is tracked against interim 2020 targets in the IEA Energy Technology Perspectives 2012 2°C scenario, which lays out pathways to a sustainable energy system in 2050. Stark message emerge: progress has not been fast enough; large market failures are preventing clean energy solutions from being taken up; considerable energy efficiency remains untapped; policies need to better address the energy system as a whole; and energy-related research, development and demonstration need to accelerate. Alongside these grim conclusions there is positive news. In 2012, hybrid-electric vehicle sales passed the 1 million mark. Solar photovoltaic systems were being installed at a record pace. The costs of most clean energy technologies fell more rapidly than anticipated.

  3. AEC Regulatory view of the reliability of air cleaning systems in nuclear facilities

    International Nuclear Information System (INIS)

    Bellamy, R.R.; Zavadoski, R.W.

    1975-01-01

    Air cleaning systems in nuclear facilities can be divided into three categories: ventilation exhaust systems, containment atmosphere cleanup systems, and process offgas systems. These systems have been the subject of numerous reports, regulatory guides, discussions, and meetings. Some of the analyses have been critical of the operation and design of these air cleaning systems--in particular, the engineered safety features containment atmosphere cleanup systems. Although for the most part the criticism is applicable, and recognizing that there are a number of unresolved issues pertaining to gaseous waste management systems, there are data to show that air cleaning systems in use in nuclear facilities are performing their intended function. (U.S.)

  4. Clean energy, non-clean energy, and economic growth in the MIST countries

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Li, Yi-Ying; Hsin-Chia Fu

    2014-01-01

    This paper explores the causal relationship between clean (renewable/nuclear) and non-clean energy consumption and economic growth in emerging economies of the MIST (Mexico, Indonesia, South Korea, and Turkey) countries. The panel co-integration tests reveal that there is a long-term equilibrium relationship among GDP, capital formation, labor force, renewable/nuclear, and fossil fuel energy consumption. The panel causality results indicate that (1) there is a positive unidirectional short-run causality from fossil fuel energy consumption to economic growth with a bidirectional long-run causality; (2) there is a unidirectional long-run causality from renewable energy consumption to economic growth with positive bidirectional short-run causality, and a long-run causality from renewable to fossil fuel energy consumption with negative short-run feedback effects; and (3) there is a bidirectional long-run causality between nuclear energy consumption and economic growth and a long-run causality from fossil fuel energy consumption to nuclear energy consumption with positive short-run feedback effects. These suggest that MIST countries should be energy-dependent economies and that energy conservation policies may depress their economic development. However, developing renewable and nuclear energy is a viable solution for addressing energy security and climate change issues, and creating clean and fossil fuel energy partnerships could enhance a sustainable energy economy. - Highlights: • This novel study can provide more robust bases to strengthen sustainable energy policy settings. • Fossil fuel/nuclear energy use and economic growth is bidirectional causality. • Renewable energy consumption long term causes economic growth. • There is substitutability between renewable and fossil fuel energy. • Clean and non-clean energy partnerships can achieve a sustainable energy economy

  5. Problems of clean coals production as a sources of clean energy generation; Problemy produkcji czystych wegli jako zrodlo wytwarzania czystej energii

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, W. [Polish Academy of Sciences, Krakow (Poland). Mineral and Energy Economy Institute

    2004-07-01

    The paper advises of clean coal technology programme objectives. Issues connected with clean coals preparation for combustion have been discussed. The quality of steam fine coals has been presented, including those used in the commercial power industry. A small supply of 'clean coals' has been started in Poland, related however to a limited demand. Factors affecting the reduction in clean coal production have been discussed. The fact that there are no significant reasons to constrain supplies of clean coals has been emphasised. The quality of coal in deposits is very good, and the condition of preparation enables production of clean coal. Clean energy generation from clean coal requires only cooperation between the hard coal mining industry and the commercial power industry, passing over particular sectoral interests. 15 refs.

  6. Self-cleaning behavior in polyurethane/silica coatings via formation of a hierarchical packed morphology of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of); Mir Mohamad Sadeghi, Gity, E-mail: Gsadeghi@aut.ac.ir [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of); Seyfi, Javad [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Jafari, Seyed-Hassan [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Graphical abstract: - Highlights: • Self-cleaning behavior was imparted to the hydrophilic polyurethane. • A hierarchical packed morphology is responsible for the superhydrophobicity. • Prolonged pressing process cannot lead to superhydrophobicity due to migration of TPU. • Samples exhibited excellent stability against media with a wide range of pH values. - Abstract: In the current research, a hierarchical morphology comprising of packed assembly of nanoparticles was induced in thermoplastic polyurethane (TPU)/silica nanocomposite coatings in order to achieve self-cleaning behavior. Moderately hydrophilic behavior of TPU hinders its transforming to a superhydrophobic material. In the presented method, a very thin layer of silica nanoparticles is applied to the surface of TPU sheets under elevated temperature and pressure. As temperature and pressure of the process remain unchanged, processing time was considered as a main variable. Based on scanning electron microscopy and confocal microscopy results, it was found that at a certain processing time, nanoparticles can form an utterly packed morphology leading to a self-cleaning behavior. Once the process was prolonged, TPU macromolecules found the chance to migrate onto the coating's top layer due to the enhanced mobility of chains at high temperature. This observation was further proved by X-ray photoelectron spectroscopy analysis and cross-sectional morphology. The presented method has promising potentials in transforming intrinsically hydrophilic polymers into superhydrophobic materials with self-cleaning behavior.

  7. Dynamics Analysis of Castor Hulling in the Process of Air-and-Screen Cleaning

    Directory of Open Access Journals (Sweden)

    Gao Ruitao

    2016-01-01

    Full Text Available The air-and-screen cleaning mechanism of castor hulling is analyzed in this paper. And the numeric expression equations of the castor dynamics analysis are established. The correlation of floating speeds vp, air speeds w, the direction angle of airflow velocity β, the direction angle of vibration δ, the friction angle ϕ, the slip coefficient, the fell coefficient and the jumping coefficient are analyzed.

  8. Dynamics Analysis of Castor Hulling in the Process of Air-and-Screen Cleaning

    OpenAIRE

    Gao Ruitao; Cao Yuhua; Yao Liangliang; Jin Hong

    2016-01-01

    The air-and-screen cleaning mechanism of castor hulling is analyzed in this paper. And the numeric expression equations of the castor dynamics analysis are established. The correlation of floating speeds vp, air speeds w, the direction angle of airflow velocity β, the direction angle of vibration δ, the friction angle ϕ, the slip coefficient, the fell coefficient and the jumping coefficient are analyzed.

  9. Facile Dry Surface Cleaning of Graphene by UV Treatment

    Science.gov (United States)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  10. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both the ash and sulfur contents of run-of-mine coals. The extent of cleaning depends on the liberation characteristics of the coal, which generally improve with reducing particle size. however, since most of the advanced technologies are wet processes, the clean coal product must be dewatered before it can be transported and burned in conventional boilers. This additional treatment step significantly increases the processing cost and makes the industrial applicability of these advanced technologies much less attractive. In order to avoid problems associated with fine coal dewatering, researchers at the Pittsburgh Energy Technology Center (PETC) developed a novel triboelectrostatic separation (TES) process that can remove mineral matter from dry coal. In this technique, finely pulverized coal is brought into contact with a material (such as copper) having a work function intermediate to that of the carbonaceous material and associated mineral matter. Carbonaceous particles having a relatively low work function become positively charged, while particles of mineral matter having significantly higher work functions become negatively charged. once the particles become selectively charged, a separation can be achieved by passing the particle stream through an electrically charged field. Details related to the triboelectrostatic charging phenomenon have been discussed elsewhere (Inculet, 1984).

  11. Clean fuel for demanding environmental markets

    Energy Technology Data Exchange (ETDEWEB)

    Josewicz, W.; Natschke, D.E. [Acurex Environmental Corp., Research Triangle Park, NC (United States)

    1995-12-31

    Acurex Environmental Corporation is bringing Clean Fuel to the environmentally demand Krakow market, through the cooperative agreement with the U.S. Department of Energy. Clean fuel is a proprietary clean burning coal-based energy source intended for use in stoves and hand stoked boilers. Clean Fuel is a home heating fuel that is similar in form and function to raw coal, but is more environmentally friendly and lower in cost. The heating value of Clean Fuel is 24,45 kJ/kg. Extensive sets of confirmation runs were conducted in the Academy of Mining and Metallurgy in the Krakow laboratories. It demonstrated up to 54 percent reduction of particulate matter emission, up to 35 percent reduction of total hydrocarbon emissions. Most importantly, polycyclic aromatic hydrocarbons (toxic and carcinogens compounds) emissions were reduced by up to 85 percent, depending on species measured. The above comparison was made against premium chunk coal that is currently available in Krakow for approximately $83 to 93/ton. Clean Fuel will be made available in Krakow at a price approximately 10 percent lower than that of the premium chunk coal.

  12. WWW expert system on producer gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, E.J.; Lammers, G.; Beenackers, A.A.C.M. [University of Groningen (Netherlands)

    1999-07-01

    The University of Groningen (RUG) has developed an expert system on cleaning of biomass producer gas. This work was carried out in close co-operation with the Biomass Technology Group B.V. (BTG) in Enschede, The Netherlands within the framework of the EC supported JOR3-CT95-0084 project. The expert system was developed as a tool for the designer-engineer of downstream gas cleaning equipment and consists of an information package and a flowsheet package. The packages are integrated in a client/server system. The flowsheeting package of the expert system has been designed for the evaluation of different gas cleaning methods. The system contains a number of possible gas cleaning devices such as: cyclone, fabric filter, ceramic filter, venturi scrubber and catalytic cracker. The user can select up to five cleaning steps in an arbitrary order for his specific gas cleaning problem. After specification of the required design parameters, the system calculates the main design characteristics of the cleaning device. The information package is a collection of HTML{sup TM} files. It contains a large amount of information, tips, experience data, literature references and hyperlinks to other interesting Internet sites. This information is arranged per cleaning device. (orig.)

  13. CPV performance versus soiling effects: Cleaning policies

    Science.gov (United States)

    Sanchez, D.; Trujillo, P.; Martinez, M.; Ferrer, J. P.; Rubio, F.

    2012-10-01

    In order to improve the performance of the CPV Plants in a cost effective way it is important to define the best cleaning policies, analyzing the effect of soiling in the surface of CPV modules. The energy generation of a CPV technology based in Fresnel Lens improves up to 7% when the surface of the module is cleaned. Some experimental measurements have been carried out over CPV modules and a model has been defined to analyze what is the best cleaning policy for that Technology in Puertollano. The power losses because of soiling and the critical time until the power losses stabilizes are obtained from the measurements; they are used as an input for the simulation. Using an established cleaning cost and the feeding tariff from Spain in 2007 it has been obtained that cleaning only reports a profit during the summer. The conclusion of the work is that the cleaning tasks have to be carefully planned together with the meteorological forecast in order to maximize the investment made in the cleaning.

  14. The Clean Coal Program's contributions to addressing the requirements of the Clean Air Act Amendments of 1990

    International Nuclear Information System (INIS)

    Miller, R.L.

    1992-01-01

    The purpose of this paper is to examine the potential contributions of the US Department of Energy's Clean Coal Program (CCP) to addressing the requirements of the Clean Air Act (CAA) Amendments of 1990 (CAA90). Initially funded by Congress in 1985, the CCP is a government and industry co-funded effort to demonstrate a new generation of more efficient, economically feasible, and environmentally acceptable coal technologies in a series of full- scale ''showcase'' facilities built across the country. The CCP is expected to provide funding for more than $5 billion of projects during five rounds of competition, with at least half of the funding coming from the private sector. To date, 42 projects have been selected in the first 4 rounds of the CCP. The CAA and amendments form the basis for regulating emissions of air pollutants to protect health and the environment throughout the United States. Although the origin of the CAA can be traced back to 1955, many amendments passed since that time are testimony to the iterative process involved in the regulation of air pollution. Three key components of CAA90, the first major amendments to the CAA since 1977, include mitigation measures to reduce levels of (1) acid deposition, (2) toxic air pollutants, and (3) ambient concentrations of air pollutants. This paper focuses on the timeliness of clean coal technologies in contributing to these provisions of CAA90

  15. Southwest Regional Clean Energy Incubation Initiative (SRCEII)

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Michael [Univ. of Texas, Austin, TX (United States)

    2017-10-31

    The Austin Technology Incubator’s (ATI’s) Clean Energy Incubator at the University of Texas at Austin (ATI-CEI) utilized the National Incubator Initiative for Clean Energy (NIICE) funding to establish the Southwest Regional Clean Energy Incubation Initiative, composed of clean energy incubators from The University of Texas at Austin (UT-Austin), The University of Texas at El Paso (UTEP), The University of Texas at San Antonio (UTSA), and Texas A&M University (TAMU).

  16. Canyon solvent cleaning with activated alumina

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    This paper presents recent work at SRL concerning the cleaning of solvent extraction solvent used at SRP. The paper explains why we undertook the work, and some laboratory studies on two approaches to solvent cleaning, namely extended carbonate washing and use of solid adsorbents. The paper then discusses scale-up of the preferred method and the results of the full-scale cleaning. 19 figs

  17. The local implementation of clean(er) fuels policies in Europe. A Handbook with guidelines. Final version

    International Nuclear Information System (INIS)

    Mulder, F.; Amara, Sliman Abu; Uustal, M.; Pelkmans, L.; Devriendt, N.; Rogulska, M.; Defranceschi, P.

    2009-05-01

    This handbook aims to guide the local/regional governments all over Europe who are involved in implementing clean(er) fuel policies in transport. The general challenge these governments are facing is how local policies on clean(er) fuels and vehicles can be made operational. Hence, how can the step be made from a vision on the strategic policy level, to a vision on the implementation of these policies. A local/regional policy on clean(er) fuels and vehicles is commonly part of the larger category 'sustainable transport policy', which in itself is part of a broader local environmental policy. The encompassing local/regional sustainable mobility policy will in most cases be based on the three well known main policy aims in this area: CO2 reduction; Improving the local air quality; and Improving the security of supply (locally often less stressed). This handbook will focus on the actual implementation of a clean(er) fuels and vehicles policy. It will describe the main challenges and how these can be overcome. It will describe how the market conditions for clean(er) fuels and vehicles can be created by establishing the vital market elements and which process is required to do so. And it will show how local enterprises can be involved and what the role of the local governments in this process can be. In order to identify the local success factors in overcoming the main challenges for implementation, case studies have been carried out in three European cities, namely Stockholm (Sweden), Graz (Austria) and Lille (France). The choice of these cities was based on their successes in implementing clean(er) fuel policies (although they followed different paths) and the fact that they managed to achieve ambitious clean(er) fuel/ clean(er) vehicle targets. These cities may thus be considered as ?good practice examples?. The case studies are based on existing literature, on multiple stakeholders? interviews in all three cities, and on two small surveys. The objectives of this

  18. Clean vehicles as an enabler for a clean electricity grid

    Science.gov (United States)

    Coignard, Jonathan; Saxena, Samveg; Greenblatt, Jeffery; Wang, Dai

    2018-05-01

    California has issued ambitious targets to decarbonize transportation through the deployment of electric vehicles (EVs), and to decarbonize the electricity grid through the expansion of both renewable generation and energy storage. These parallel efforts can provide an untapped synergistic opportunity for clean transportation to be an enabler for a clean electricity grid. To quantify this potential, we forecast the hourly system-wide balancing problems arising out to 2025 as more renewables are deployed and load continues to grow. We then quantify the system-wide balancing benefits from EVs modulating the charging or discharging of their batteries to mitigate renewable intermittency, without compromising the mobility needs of drivers. Our results show that with its EV deployment target and with only one-way charging control of EVs, California can achieve much of the same benefit of its Storage Mandate for mitigating renewable intermittency, but at a small fraction of the cost. Moreover, EVs provide many times these benefits if two-way charging control becomes widely available. Thus, EVs support the state’s renewable integration targets while avoiding much of the tremendous capital investment of stationary storage that can instead be applied towards further deployment of clean vehicles.

  19. Evaporation and wet oxidation of steam generator cleaning solutions

    International Nuclear Information System (INIS)

    Baldwin, P.N. Jr.

    1996-01-01

    Ethylene diamine tetra acetic acid (EDTA) is used in metal-cleaning formulations. Usually the form of the EDTA used is the tetra ammonium salt. When these powerful cleaning solutions are used in steam generators, they attract the key metals of interest--iron and copper. A reduction in the volume of these cleaners and EDTA destruction is required to meet waste management and disposal standards. One method of volume reduction is described: concentration by evaporation. Once volume is reduced, the liquid waste can then be further volume reduced and treated for EDTA content through the use of wet oxidation. The effect of this process on the total organic carbon (TOC) in the form of EDTA contained in the copper as well as the iron spent cleaning solutions is reviewed, including regression analysis of selected benchmark and production data. A regressive analysis is made of the relationship between the EDTA and the TOC analyzed in the wet-oxidation batch residuals as well as the summary effects of hydrogen peroxide, sulfuric acid, and reaction time on the percentage of TOC destroyed

  20. In-Water Hull Cleaning & Filtration System

    Science.gov (United States)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  1. New Strategy for the Cleaning of Paper Artworks: A Smart Combination of Gels and Biosensors

    Directory of Open Access Journals (Sweden)

    Laura Micheli

    2014-01-01

    Full Text Available In this work an outlook on the design and application, in the cultural heritage field, of new tools for diagnostic and cleaning use, based on biocompatible hydrogels and electrochemical sensors, is reported. The use of hydrogels is intriguing because it does not require liquid treatment that could induce damage on artworks, while electrochemical biosensors not only are easy to prepare, but also can be selective for a specific compound and therefore are suitable for monitoring the cleaning process. In the field of restoration of paper artworks, more efforts have to be done in order to know how to perform the best way for an effective restoration. Rigid Gellan gel, made up of Gellan gum and calcium acetate, was proposed as a paper cleaning treatment, and selective biosensors for substances to be removed from this gel have been obtained by choosing the appropriate enzymes to be immobilized. Using this approach, it is possible to know when the cleanup process will be completed, avoiding lengthy and sometimes unnecessary cleaning material applications.

  2. Materials and boiler rig testing to support chemical cleaning of once-through AGR boilers

    International Nuclear Information System (INIS)

    Tice, D.R.; Platts, N.; Raffel, A.S.; Rudge, A.

    2002-01-01

    An extensive programme of work has been carried out to evaluate two candidate inhibited cleaning solutions for possible implementation on plant, which would be the first chemical clean of an AGR boiler. The two candidate cleaning solutions considered were a Stannine-inhibited citric acid/formic acid mixture (GOM106) and inhibited hydrofluoric acid. Citric acid-based cleaning processes are widely used within the UK Power Industry. The GOM106 solution, comprising a mixture of 3% citric acid, 0.5% formic acid and 0.05% Stannine LTP inhibitor, buffered with ammonia to pH 3.5, was developed specifically for the AGR boilers during the 1970's. Although a considerable amount of materials testing work was carried out by British Energy's predecessor companies to produce a recommended cleaning procedure there were some remaining concerns with the use of GOM106, from these earlier studies, for example, an increased risk of pitting attack associated with the removal of thick 9Cr oxide deposits and a risk of unacceptable damage in critical locations such as the upper transition joints and other weld locations. Hence, additional testing was still required to validate the solution for use on plant. Inhibited hydrofluoric acid (HFA) was also evaluated as an alternative reagent to GOM106. HFA has been used extensively for cleaning mild and low'alloy steel boiler tubes in fossil-fired plant in the UK and elsewhere in Europe and is known to remove oxide quickly. Waste treatment is also easier than for the GOM106 process and some protection against damage to the boiler tube materials is provided by complexing of fluoride with ferric ion. Validation of the potential reagents and inhibitors was achieved by assessing the rate and effectiveness of oxide removal from specimens of helical boiler tubing and welds, together with establishing the extent of any metal loss or localised damage. The initial materials testing resulted in the inhibited ammoniated citric / formic acid reagent being

  3. Effectuality of Cleaning Workers' Training and Cleaning Enterprises' Chemical Health Hazard Risk Profiling

    Directory of Open Access Journals (Sweden)

    Abdulqadir M. Suleiman

    2015-12-01

    Conclusion: Training of cleaning workers lacks the prerequisite for suitability and effectiveness to counter risks of chemical health hazards. There is dereliction of duty by management in the sector resulting in a lack of competence among the cleaning workers. Instituting acceptable easily attainable safety competence level for cleaners will conduce to risk reduction, and enforcement of attainment of the competence level would be a positive step.

  4. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu

    2017-07-27

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  5. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu; Valladares Linares, Rodrigo; Bucs, Szilard; Fortunato, Luca; Hé lix-Nielsen, Claus; Vrouwenvelder, Johannes S.; Ghaffour, NorEddine; Leiknes, TorOve; Amy, Gary

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  6. Benzotriazole removal on post-Cu CMP cleaning

    International Nuclear Information System (INIS)

    Tang Jiying; Liu Yuling; Sun Ming; Fan Shiyan; Li Yan

    2015-01-01

    This work investigates systematically the effect of FA/O II chelating agent and FA/O I surfactant in alkaline cleaning solutions on benzotriazole (BTA) removal during post-Cu CMP cleaning in GLSI under the condition of static etching. The best detergent formulation for BTA removal can be determined by optimization of the experiments of single factor and compound cleaning solution, which has been further confirmed experimentally by contact angle (CA) measurements. The resulting solution with the best formulation has been measured for the actual production line, and the results demonstrate that the obtained cleaning solution can effectively and efficiently remove BTA, CuO and abrasive SiO 2 without basically causing interfacial corrosion. This work demonstrates the possibility of developing a simple, low-cost and environmentally-friendly cleaning solution to effectively solve the issues of BTA removal on post-Cu CMP cleaning in a multi-layered copper wafer. (paper)

  7. Clean cars

    Energy Technology Data Exchange (ETDEWEB)

    Piffaretti, M.

    2008-07-01

    This well-illustrated presentation made at the Swiss 2008 research conference on traffic by the Protoscar company takes a look at research, design, engineering and communication topics in the area of 'clean cars'. The present situation with electrically driven and hybrid-drive cars is reviewed and the chances and problems of the present-day vehicles are examined. New developments and a number of vehicles that should be on the market in the period from 2012 to 2015 are presented. Also, 'clean' specialist vehicles such as trucks and buses are reviewed. Battery systems and associated problems and new developments are looked at. The promotion scheme in Mendrisio, Switzerland is reviewed. Bottom-up and top-down approaches are discussed and future market developments are looked at, as are promotional activities in various countries.

  8. Advanced mask cleaning for 0.20-μm technology: an integrated user-supplier approach

    Science.gov (United States)

    Poschenrieder, Rudolf; Hay, Bernd; Beier, Matthias; Hourd, Andrew C.; Stuemer, Harald; Gairing, Thomas M.

    1998-12-01

    A newly developed photomask final cleaning system, STEAG HamaTech's Advanced Single Substrate Cleaner, ASC 500, was assessed and optimized at the Siemens mask shop in Munich, Germany, under production conditions within the Esprit European Semiconductor Equipment Assessment programme (SEA). The project was carried out together with the active participation of Compugraphics Intl. Ltd. (UK), DuPont Photomasks, Inc. (Germany; Photronics-MZD, Germany). The results of the assessment are presented, focusing on the cleaning performance at the 0.25 micrometer defect level on photomasks, equipment reliability and Cost of Ownership data. A reticle free of soft defects on glass and on chrome down to the 0.25 micrometer level requires an excellent cleaning process and the use of high-end inspection tools like the KLA STARlight. In order to get a full understanding of the nature of the detected features additional investigations on the blank quality have been carried out. These investigations include the questions whether a detection is a hard or a soft defect and whether small defects on chrome are able to move on the reticle surface. Final cleaning recipes have been optimized in respect to cleaning efficiency while maintaining high throughput and low Cost of Ownership. A benchmark comparison against other final cleaning tools at the partner's maskshops showed the leading data of the ASC 500. It was found that a cleaning program which includes several substrate flips and a combination of the available cleaning methods acid- dispense, water pressure jet clean, brush and megasonic clean was best suitable to achieve these goals. In particular the use of the brush unit was shown to improve the yield while not adding damage to the plate.

  9. Baseline methodologies for clean development mechanism projects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.K. (ed.); Shrestha, R.M.; Sharma, S.; Timilsina, G.R.; Kumar, S.

    2005-11-15

    The Kyoto Protocol and the Clean Development Mechanism (CDM) came into force on 16th February 2005 with its ratification by Russia. The increasing momentum of this process is reflected in more than 100 projects having been submitted to the CDM Executive Board (CDM-EB) for approval of the baselines and monitoring methodologies, which is the first step in developing and implementing CDM projects. A CDM project should result in a net decrease of GHG emissions below any level that would have resulted from other activities implemented in the absence of that CDM project. The 'baseline' defines the GHG emissions of activities that would have been implemented in the absence of a CDM project. The baseline methodology is the process/algorithm for establishing that baseline. The baseline, along with the baseline methodology, are thus the most critical element of any CDM project towards meeting the important criteria of CDM, which are that a CDM should result in 'real, measurable, and long term benefits related to the mitigation of climate change'. This guidebook is produced within the frame work of the United Nations Environment Programme (UNEP) facilitated 'Capacity Development for the Clean Development Mechanism (CD4CDM)' Project. This document is published as part of the projects effort to develop guidebooks that cover important issues such as project finance, sustainability impacts, legal framework and institutional framework. These materials are aimed to help stakeholders better understand the CDM and are believed to eventually contribute to maximize the effect of the CDM in achieving the ultimate goal of UNFCCC and its Kyoto Protocol. This Guidebook should be read in conjunction with the information provided in the two other guidebooks entitled, 'Clean Development Mechanism: Introduction to the CDM' and 'CDM Information and Guidebook' developed under the CD4CDM project. (BA)

  10. Baseline methodologies for clean development mechanism projects

    International Nuclear Information System (INIS)

    Lee, M.K.; Shrestha, R.M.; Sharma, S.; Timilsina, G.R.; Kumar, S.

    2005-11-01

    The Kyoto Protocol and the Clean Development Mechanism (CDM) came into force on 16th February 2005 with its ratification by Russia. The increasing momentum of this process is reflected in more than 100 projects having been submitted to the CDM Executive Board (CDM-EB) for approval of the baselines and monitoring methodologies, which is the first step in developing and implementing CDM projects. A CDM project should result in a net decrease of GHG emissions below any level that would have resulted from other activities implemented in the absence of that CDM project. The 'baseline' defines the GHG emissions of activities that would have been implemented in the absence of a CDM project. The baseline methodology is the process/algorithm for establishing that baseline. The baseline, along with the baseline methodology, are thus the most critical element of any CDM project towards meeting the important criteria of CDM, which are that a CDM should result in 'real, measurable, and long term benefits related to the mitigation of climate change'. This guidebook is produced within the frame work of the United Nations Environment Programme (UNEP) facilitated 'Capacity Development for the Clean Development Mechanism (CD4CDM)' Project. This document is published as part of the projects effort to develop guidebooks that cover important issues such as project finance, sustainability impacts, legal framework and institutional framework. These materials are aimed to help stakeholders better understand the CDM and are believed to eventually contribute to maximize the effect of the CDM in achieving the ultimate goal of UNFCCC and its Kyoto Protocol. This Guidebook should be read in conjunction with the information provided in the two other guidebooks entitled, 'Clean Development Mechanism: Introduction to the CDM' and 'CDM Information and Guidebook' developed under the CD4CDM project. (BA)

  11. Clean Energy Solutions Center Services (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  12. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    International Nuclear Information System (INIS)

    Poirier, M.; Thomas Peters, T.; Fernando Fondeur, F.; Samuel Fink, S.

    2008-01-01

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached ∼10 psi while processing ∼1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and

  13. Alberta's clean energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper deals with the future of clean energy in Alberta. With the present economic growth of the oil sands industry in Alberta, it is expected that there will be very considerable increases in job opportunities and GDP in both Canada and US. The challenges include high-energy demand and reduction of the carbon footprint. Alberta has adopted certain approaches to developing renewable and alternate forms of energy as well as to increasing the efficiency of present energy use and raising environmental consciousness in energy production. Three areas where the effects of clean energy will be felt are energy systems, climate change, and regional impacts, for instance on land, water, and wildlife. Alberta's regulatory process is shown by means of a flow chart. Aspects of oil sands environmental management include greenhouse gas targets, air quality assurance, and water quality monitoring, among others. Steps taken by Alberta to monitor and improve air quality and water management are listed. In conclusion, the paper notes that significant amounts of money are being pumped into research and development for greenhouse gas and water management projects.

  14. Hydrophobic ZnO-TiO2 Nanocomposite with Photocatalytic Promoting Self-Cleaning Surface

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2015-01-01

    Full Text Available The hydrophobicity and self-cleaning are the important influence factors on the precision and environment resistance of quartz crystal microbalance (QCM in detecting organic gas molecules. In this paper, ZnO nanorod array is prepared via the in situ method on the QCM coated with Au film via hydrothermal process. ZnO nanorod array film on QCM is modified by β-CD in hydrothermal process and then decorated by TiO2 after being impregnated in P25 suspension. The results show that as-prepared ZnO-TiO2 nanocomposite exhibits excellent hydrophobicity for water molecules and superior self-cleaning property for organic molecules under UV irradiation.

  15. Effect of Time in Chemical Cleaning of Ultrafiltration Membranes

    NARCIS (Netherlands)

    Levitsky, I.; Naim, R.; Duek, A.; Gitis, V.

    2012-01-01

    Chemical cleaning of ultrafiltration membranes is often considered successful when the flux through a cleaned membrane is much higher than through a pristine one. Here, a novel definition of cleaning intensity is proposed as the product of the concentration of the cleaning agent and the cleaning

  16. Cleaning up a GNU/Linux operating system

    OpenAIRE

    Oblak , Denis

    2018-01-01

    The aim of the thesis is to develop an application for cleaning up the Linux operating system that would be able to function on most distributions. The theoretical part discusses the cleaning of the Linux operating system that frees up disk space and allows a better functioning. The cleaning techniques and the existing tools for Linux are systematically reviewed and presented. The following part examines the cleaning of the Windows and MacOS operating systems. The thesis also compares all...

  17. Learning and clean-up in a large scale music database

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Lehn-Schiøler, Tue; Petersen, Kaare Brandt

    2007-01-01

    We have collected a database of musical features from radio broadcasts (N > 100.000). The database poses a number of hard modeling challenges including: Segmentation problems and missing metadata. We describe our efforts towards cleaning the database using signal processing and machine learning...

  18. Transition through co-optation: Harnessing carbon democracy for clean energy

    Science.gov (United States)

    Meng, Kathryn-Louise

    This dissertation explores barriers to a clean energy transition in the United States. Clean energy is demonstrably viable, yet the pace of clean energy adoption in the U.S. is slow, particularly given the immediate threat of global climate change. The purpose of this dissertation is to examine the factors inhibiting a domestic energy transition and to propose pragmatic approaches to catalyzing a transition. The first article examines the current political-economic and socio-technical energy landscape in the U.S. Fossil fuels are central to the functioning of the American economy. Given this centrality, constellations of power have been constructed around the reliable and affordable access of fossil fuels. The fossil fuel energy regime is comprised of: political-economic networks with vested interests in continued fossil fuel reliance, and fixed infrastructure that is minimally compatible with distributed generation. A transition to clean energy threatens the profitability of fossil fuel regime actors. Harnessing structural critiques from political ecology and process and function-oriented socio-technical systems frameworks, I present a multi-level approach to identifying pragmatic means to catalyzing an energy transition. High-level solutions confront the existing structure, mid-level solutions harness synergy with the existing structure, and low-level solutions lie outside of the energy system or foster the TIS. This is exemplified using a case study of solar development in Massachusetts. Article two presents a case study of the clean energy technological innovation system (TIS) in Massachusetts. I examine the actors and institutions that support cleantech development. Further, I scrutinize the actors and institutions that help sustain the TIS support system. The concept of a catalyst is presented; a catalyst is an actor that serves to propel TIS functions. Catalysts are critical to facilitating anchoring. Strategic corporate partners are identified as powerful

  19. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  20. Clean Energy Infrastructure Educational Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master's program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master's Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master's Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify

  1. Clean Energy Solutions Center Services (Vietnamese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Vietnamese translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  2. Clean Energy Solutions Center Services (Arabic Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is an Arabic translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  3. Clean Energy Solutions Center Services (French Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a French translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  4. [Research on cleaning rate of the C-shaped canal treated by manual or rotary endodontic file combined with ultrasonic rinsing].

    Science.gov (United States)

    Wang, Jing; Gao, Yan; Wang, Qing-shan; Zhang, Yan; Rong, Li; Wang, Jiu

    2014-08-01

    To evaluate the cleaning effect of the C-shaped canal treated by manual K file and ProTaper rotary endodontic file combined with ultrasonic cleaning, and find a better cleaning program for the C-shaped root canal. Fifty mandibular second molars were randomly divided into 5 groups: K file group, K file+ultrasonic rinsing group, ProTaper group, ProTaper+ultrasonic rinsing group and the control group. After initial shaping and cleaning, the mandibular second molars were soaked in formalin and stained. Under microscopy, the cleaning rate of necrotic tissue and cutting area were observed and analyzed. The data was processed with SPSS 17.0 software package. The cleaning rates of the treated groups were significantly higher than that of the control group (P<0.05); In each treatment group, the cleaning rate of the apex was significantly lower than that of the crown and central part (P<0.05); The cutting score of ProTaper+ultrasonic cleaning group was lower than that of the other treatment groups; The cutting score of the K file+ultrasonic rinsing group was significantly lower than that of the K file group (P<0.05); The cutting score and cleaning rate were negatively correlated (r=-0.712, P=0.000 ), the linear regression was the cleaning rate =98.325-4.325 × wall cutting score (R=0.454, P<0.05). In the process of shaping and cleaning of C-shaped canal, it is recommended that the ProTaper nickel-titanium rotary endodontic file should be chosen to clean the top of the taproot pipe and combined with ultrasonic rinsing to achieve better results.

  5. Benzotriazole removal on post-Cu CMP cleaning

    Science.gov (United States)

    Jiying, Tang; Yuling, Liu; Ming, Sun; Shiyan, Fan; Yan, Li

    2015-06-01

    This work investigates systematically the effect of FA/O II chelating agent and FA/O I surfactant in alkaline cleaning solutions on benzotriazole (BTA) removal during post-Cu CMP cleaning in GLSI under the condition of static etching. The best detergent formulation for BTA removal can be determined by optimization of the experiments of single factor and compound cleaning solution, which has been further confirmed experimentally by contact angle (CA) measurements. The resulting solution with the best formulation has been measured for the actual production line, and the results demonstrate that the obtained cleaning solution can effectively and efficiently remove BTA, CuO and abrasive SiO2 without basically causing interfacial corrosion. This work demonstrates the possibility of developing a simple, low-cost and environmentally-friendly cleaning solution to effectively solve the issues of BTA removal on post-Cu CMP cleaning in a multi-layered copper wafer. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308).

  6. The Clean Air Act

    International Nuclear Information System (INIS)

    Coburn, L.L.

    1990-01-01

    The Clean Air Act amendments alter the complex laws affecting atmospheric pollution and at the same time have broad implications for energy. Specifically, the Clean Air Act amendments for the first time deal with the environmental problem of acid deposition in a way that minimizes energy and economic impacts. By relying upon a market-based system of emission trading, a least cost solution will be used to reduce sulfur dioxide (SO 2 ) emissions by almost 40 percent. The emission trading system is the centerpiece of the Clean Air Act (CAA) amendments effort to resolve energy and environmental interactions in a manner that will maximize environmental solutions while minimizing energy impacts. This paper will explore how the present CAA amendments deal with the emission trading system and the likely impact of the emission trading system and the CAA amendments upon the electric power industry

  7. Plasma cleaning of ITER first mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  8. Silvering substrates after CO2 snow cleaning

    Science.gov (United States)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  9. Clean Energy Solutions Center Services (Portuguese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Portuguese translation of the Clean Energy Solutions Center Services fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  10. Cleaning up our act: Alternatives for hazardous solvents used in cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Shoemaker, J.D.; Meltzer, M.; Miscovich, D.; Montoya, D.; Goodrich, P.; Blycker, G.

    1994-01-01

    Lawrence Livermore National Laboratory (LLNL) has studied more than 70 alternative cleaners as potential replacements for chlorofluorocarbons (CFCs), halogenated hydrocarbons (e.g., trichloroethylene and trichloroethane), hydrocarbons (e.g., toluene and Stoddard Solvent), and volatile organic compounds (e.g., acetone, alcohols). This report summarizes LLNL`s findings after testing more than 45 proprietary formulations on bench-scale testing equipment and in more than 60 actual shops and laboratories. Cleaning applications included electronics fabrication, machine shops, optical lenses and hardware, and general cleaning. Most of the alternative cleaners are safer than the solvents previously used and many are nonhazardous, according to regulatory criteria.

  11. Cleaning up our act: Alternatives for hazardous solvents used in cleaning

    International Nuclear Information System (INIS)

    Shoemaker, J.D.; Meltzer, M.; Miscovich, D.; Montoya, D.; Goodrich, P.; Blycker, G.

    1994-01-01

    Lawrence Livermore National Laboratory (LLNL) has studied more than 70 alternative cleaners as potential replacements for chlorofluorocarbons (CFCs), halogenated hydrocarbons (e.g., trichloroethylene and trichloroethane), hydrocarbons (e.g., toluene and Stoddard Solvent), and volatile organic compounds (e.g., acetone, alcohols). This report summarizes LLNL's findings after testing more than 45 proprietary formulations on bench-scale testing equipment and in more than 60 actual shops and laboratories. Cleaning applications included electronics fabrication, machine shops, optical lenses and hardware, and general cleaning. Most of the alternative cleaners are safer than the solvents previously used and many are nonhazardous, according to regulatory criteria

  12. Pengembangan Sistem Informasi Pemesanan Layanan Jasa Cleaning Service Berbasis Web dan Mobile di Liochita Cleaning Semarang

    OpenAIRE

    Agung, Aulio Romadho; Kridalukmana, Rinta; Windasari, Ike Pertiwi

    2016-01-01

    Liochita cleaning is a company engaged in the field of cleaning services which are located in the city of Semarang. Until now, the existing of information systems on Liochita Cleaning were not sufficiently able to manage the company and thus to make this company as a company that developed and developing its field and can compete with other companies is not possible. Start from recording customer data and order data, which is the became one as income data, so this companies are less aware in ...

  13. [Evaluation of Medical Instruments Cleaning Effect of Fluorescence Detection Technique].

    Science.gov (United States)

    Sheng, Nan; Shen, Yue; Li, Zhen; Li, Huijuan; Zhou, Chaoqun

    2016-01-01

    To compare the cleaning effect of automatic cleaning machine and manual cleaning on coupling type surgical instruments. A total of 32 cleaned medical instruments were randomly sampled from medical institutions in Putuo District medical institutions disinfection supply center. Hygiena System SUREII ATP was used to monitor the ATP value, and the cleaning effect was evaluated. The surface ATP values of the medical instrument of manual cleaning were higher than that of the automatic cleaning machine. Coupling type surgical instruments has better cleaning effect of automatic cleaning machine before disinfection, the application is recommended.

  14. Clean nuclear power (2. part)

    International Nuclear Information System (INIS)

    Rocherolles, R.

    1998-01-01

    The 450 nuclear power plants which produce 24% of world electricity do not generate greenhouse gas effects, but 8,000 tonnes per year of irradiated, radioactive fuel. The first article which was published in the July-August 1997 issue of this journal, described the composition and management of these fuels. This article wish to show the advantage of 'advanced re-processing', which would separate fission products from actinides, in order to incinerate them separately in dedicated fuels and reactors, which, from an ecological point of view, seems more efficient than burying them underground in deep, geological layers. To rid the planet of waste which is continuing to build up, the first step is to build 'incinerators' which will eliminate fission products by slow neutron assisted neutronic capture, and actinides by fast neutron assisted fission. Various projects have been set up, in particular, in Los Alamos, Japan and the CERN. The Carlo Rubbia hybrid machine operating on the well-known thorium cycle is the most advanced project. An incinerator connected up to standard PWR reactor produces no actinide, and reduces the existing stock of plutonium. However, the proper solution, obviously, is to no longer produce waste along with power; second generation nuclear fission will do this. The CERN team bas studied a clean reactor, producing practically no actinides, or fission products, more or less. Thus, the solution to the problem of waste is at hand, and nuclear power will be cleaner that all other types of power. The world market opening up to clean nuclear power is about 1,300 Gigawatts, or 1,300 plants of 1,000 Megawatts. Remarkable progress is taking place under our very eyes; soon we will have clean power in sufficient quantities, at a lower cost than that of other forms of power. (authors)

  15. Steam generator cleaning campaigns at Bruce A: 1993-1996

    International Nuclear Information System (INIS)

    Puzzuoli, F.V.; Leinonen, P.J.; Lowe, G.A.

    1997-01-01

    Boiler chemical cleaning (BOCC) and high-pressure water lancing operations were performed during the Bruce A 1993 Unit 3, 1994 Unit 3, 1995 Unit 1 and 1996 Unit 3 outages to remove secondary side deposits. High-pressure water lancing focused on three boiler areas: tube support plates, to remove broached hole deposits, hot leg U-bend supports to dislodge deposits contributing to boiler tube stress corrosion cracking and tube sheets with the aim of removing accumulated sludge piles and post BOCC insoluble residues. The chemical cleaning processes applied were modified versions of the one developed by the Electric Power Research Institute/Steam Generator Owners Group. During these BOCC operations, corrosion for several key boiler materials was monitored and was well below the specified allowances

  16. Programmed Cleaning and Environmental Sanitation.

    Science.gov (United States)

    Gardner, John C., Ed.

    Maintenance of sanitation in buildings, plants, offices, and institutions; the selection of cleaning materials for these purposes; and the organization and supervision of the cleaning program are becoming increasingly complex and needful of a higher cost of handling. This book describes these problems and gives helpful information and guidance for…

  17. Validation of the cleaning and sanitization method for radiopharmaceutical production facilities

    International Nuclear Information System (INIS)

    Robles, Anita; Morote, Mario; Moore, Mariel; Castro, Delcy; Paragulla, Wilson; Novoa, Carlos; Otero, Manuel; Miranda, Jesus; Herrera, Jorge; Gonzales, Luis

    2014-01-01

    A protocol for the cleaning and sanitization method for radiopharmaceutical production facilities has been designed and developed for the inner surface of the hot cells for the production of Sodium Pertechnetate Tc-99m and Sm-153 EDTMP, considering an extreme situation for each hot cell. Cleaning is performed with double-distilled water and sanitation with two disinfectant solutions, 70 % isopropyl alcohol and 3 % hydrogen peroxide in alternate weeks. Microbiological analysis of sanitized surfaces were made after 20 minutes and 48 hours for the hot cell of Tc-99m and 72 hours for the hot cell of EDTMP Sm-153 in 3 consecutive tests by the method of direct contact with plates containing culture medium, made for each sampling point (6 in the first and five in the second). The results showed that the microbial load on surfaces sanitized was below acceptable limits and that the lifetime of cleaning and sanitization is 48 hours for the hot cell of Tc-99m and 72 hours for the one of EDTMP-Sm-153. As a conclusion, the method of cleaning and sanitization is effective to reduce or eliminate microbial contamination therefore, the process is validated. (authors).

  18. Clean conditions during the erection phase

    International Nuclear Information System (INIS)

    Koschel, P.

    1977-01-01

    Following the basic requirements of the Regulatory Guide 1.37 and ANSI 45.2.1 - Standard on Cleaning of Fluid Systems and Associated Components during the Construction Phase of Nuclear Power Plants as a guideline, the implementation of cleaning operations in the pre-installation phase, the installation phase and the maintenance of clean conditions until the operational phase is covered. Specific information will be given from the practical experience point of view with the work execution under clean conditions of piping and components at the semi-finished product manufacturer, the prefabrication workshop and the on-site installation with specific reference to the various detailed procedures required by individual system builders for nuclear power plants in Germany and abroad. (orig.) [de

  19. Method of cleaning pipeline in control rod drive

    International Nuclear Information System (INIS)

    Baba, Mikiya.

    1993-01-01

    A step of filtering cleaning water by a provisional filter unit and a step of returning filtered cleaning water to a provisional tank are disposed. That is, purified water is stored in the provisional tank and it is sucked by a driving pump under pressure by way of a suction filter into the pipelines in a control rod drive system to clean them. Purified water after the cleaning is filtered by the provisional filter unit and returned to the provisional tank by way of provisional pipelines to form a closed loop. A great amount of purified water to be used is no more necessary by thus changing the water passing cleaning method to the recycling cleaning method, which moderate influences on other steps using purified water and ensure a cleaning step for pipelines in a CRD system, in addition, save the steps for plant construction greatly. (N.H.)

  20. National Clean Fleets Partnership (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-01-01

    Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

  1. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  2. Clean Restructuring: Design Elements for Low Carbon Wholesale Markets and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-05-01

    Countries around the world are in various stages of power system reform and restructuring to more effectively meet development goals and decarbonization commitments. Changes in social dynamics, technology, business models, and environmental goals are increasing pressure for countries to consider improvements to their power systems. This brochure overviews the 21st Century Power Partnerships thought leadership report that explores the clean restructuring pathway in depth, envisions an end state, and articulates three main areas of consideration for decision makers embarking on a clean restructuring process. The report also details case studies from Germany, Denmark, and Mexico.

  3. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor.

    Science.gov (United States)

    Mei, Xiaojie; Quek, Pei Jun; Wang, Zhiwei; Ng, How Yong

    2017-09-01

    In this study, a chemically enhanced backflush (CEB) cleaning method using NaOH solution was proposed for fouling mitigation in anaerobic membrane bioreactors (AnMBRs). Ex-situ cleaning tests revealed that NaOH dosages ranging from 0.05 to 1.30mmol/L had positive impacts on anaerobic biomass, while higher dosages (>1.30mmol/L) showed inhibition and/or toxic impacts. In-situ cleaning tests showed that anaerobic biomass could tolerate much higher NaOH concentrations due to the alkali consumption by anaerobic process and/or the buffering role of mixed liquor. More importantly, 10-20mmol-NaOH/L could significantly reduce membrane fouling rates (4-5.5 times over the AnMBR with deionized water backflush) and slightly improve methanogenic activities. COD removal efficiencies were over 87% and peaked at 20mmol-NaOH/L. However, extremely high NaOH concentration had adverse effects on filtration and treatment performance. Economic analysis indicated that 12mmol/L of NaOH was the cost-efficient and optimal fouling-control dosage for the CEB cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cleaning of Easel Paintings: An Overview

    International Nuclear Information System (INIS)

    Bordalo, R.; Morais, P.J.; Gouveia, H.; Young, C.

    2006-01-01

    The application of laser cleaning to paintings is relatively recent despite its use on stone-based materials for over 30 years. The cleaning of paintings is of high importance, because it is the least reversible invasive intervention, as well as the most usual of all conservation treatments. Paintings are multilayer system of heterogeneous nature, often very sensitive and inherent difficult to clean. Being a noncontact method, laser cleaning has advantages compared to alternative techniques. Over the last decade, there have been important research studies and advances. However, they are far from sufficient to study the effects on painting materials and to establish the best parameters for each material under investigation. This paper presents a historical overview of the application of laser technology to the cleaning of paintings giving special emphasis on the research of the last decade. An overview of the current research into the interaction between the radiation and the different painting materials (varnish, pigments, and medium) is also given. The pigment's mechanisms of discoloration and the presence of media as a variable factor in the discoloration of pigments are discussed.

  5. Coolant cleaning facility for nuclear reactor

    International Nuclear Information System (INIS)

    Kuboniwa, Takao; Konno, Yasuhiro; Kumaya, Shin; Osumi, Katsumi.

    1982-01-01

    Purpose: To remove cation of radioactive cobalt 60 produced in a reactor water during the ordinary operation of the reactor and chlorine when sea water is leaked in a condenser as well as to suppress an increase in iron clad containing radioactive cobalt 60 in the reactor water when the reactor is stopped. Constitution: A large flow rate high temperature cleaning system having an electromagnetic filter capable of removing radioactive substance in a reactor water, a low temperature cleaning system having a desalting unit using ion exchanger resin, a turbidity meter for measuring the turbidity of the reactor water and a conductivity meter for measuring the conductivity are provided. Further, flow rate control means are provided in the high and low temperature cleaning systems. The flow rate control means of the high temperature cleaning system is controlled by a measured signal of the turbidity meter, and the flow rete control means of the low temperature cleaning system is controlled by the measured signal of the conductivity meter. (Aizawa, K.)

  6. Clean Cities Now, Vol. 18, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-19

    This is version 18.2 of Clean Cities Now, the official biannual newsletter of the Clean Cities program. Clean Cities is an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  7. A study for estimate of contamination source with numerical simulation method in the turbulent type clean room

    International Nuclear Information System (INIS)

    Han, Sang Mok; Hwang, Young Kyu; Kim, Dong Kwon

    2015-01-01

    Contamination in a clean room may appear even more complicated by the effect of complicated manufacturing processes and indoor equipment. For this reason, detailed information about the concentration of pollutant particles in the clean room is needed to control the level of contamination financially and efficiently without any problem in manufacturing process. Allocation method has been developed as one of main ideas to fulfill a function of controlling contamination under the situation. By using this method, weighting factor can be predicted based on cleanliness on sampling spots and the values based on numerical analysis. In this point, the weighting factor indicates how each of contaminant sources influences the concentration of pollutant in the clean room. In this paper, when applied allocation method, we propose zoning method to accelerate the calculation time. And it was applied to cleanliness the actual improvement of the turbulent type clean room. As a result, we could estimate quantitatively the amount of contamination generated from the pollution sources. And was proved by experiments that it is possible to improve the level of cleanliness of the clean rooms by using these results.

  8. [Importance of cleaning and disinfection of critical surfaces in dental health services. Impact of an intervention program].

    Science.gov (United States)

    Véliz, Elena; Vergara, Teresa; Pearcy, Mercedes; Dabanch, Jeannette

    Introduction Dental care has become a challenge for healthcare associated infection prevention programs, since the environment, within other factors, plays an important role in the transmission chain. Materials and Methods An intervention program was designed for the Dental Unit of Hospital Militar de Santiago, between years 2014 and 2015. The program contemplated 3 stages: diagnostic, intervention and evaluation stage. Objective To improve the safety of critical surfaces involved in dental healthcare. Results During the diagnostic stage, the cleaning and disinfection process was found to be deficient. The most contaminated critical surface was the instrument holder unit, then the clean area and lamp handle. The surfaces that significantly reduced their contamination, after the intervention, were the clean area and the instrument carrier unit. Conclusion Training in the processes of cleaning and disinfecting surfaces and dental equipment is one of the cost-effective strategies in preventing healthcare-associated infections (HCAI), with simple and easy-to-apply methods.

  9. 14 CFR 1260.34 - Clean air and water.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  10. In-Situ Ion Source Cleaning: Review of Chemical Mechanisms and Evaluation Data at Production Fabs

    International Nuclear Information System (INIS)

    Kaim, R.; Bishop, S.; Byl, O.; Eldridge, D.; Marganski, P.; Mayer, J.; Sweeney, J.; Yedave, S.; Fuchs, D.; Spreitzer, S.; Vogel, J.; Dunn, J.; Lundquist, P.; Rolland, J.; Romig, T.; Newman, D.; Mitchell, M.; Ditzler, K.

    2008-01-01

    Since the concept of chemical in-situ ion implanter cleaning was introduced at IIT2006 [1], evaluations of the XeF 2 cleaning technology have taken place or are ongoing at more than 40 production fabs worldwide. Testing has been focused on assessing effects of cleaning in the source arc chamber and extraction regions. In this paper we describe use of the cleaning technology in a production environment and summarize evaluation data showing advantages of the technology for improving ion source life, reducing glitching, improving beam auto-tuning and avoiding species cross-contamination. More details of the evaluations are given in several separate papers submitted to this Conference. We have supplemented the fab production data with laboratory experiments designed to investigate the reactivity of XeF 2 and fundamental aspects of the source deposition and cleaning processes. These experiments are summarized here, and more details can be found in separate papers submitted to this Conference

  11. Clean Coal Technology Programs: Program Update 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-01

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  12. Clean coal use in China: Challenges and policy implications

    International Nuclear Information System (INIS)

    Tang, Xu; Snowden, Simon; McLellan, Benjamin C.; Höök, Mikael

    2015-01-01

    Energy consumption in China is currently dominated by coal, a major source of air pollution and carbon emissions. The utilization of clean coal technologies is a likely strategic choice for China at present, however, although there have been many successes in clean coal technologies worldwide, they are not widely used in China. This paper examines the challenges that China faces in the implementation of such clean coal technologies, where the analysis shows that those drivers that have a negative bearing on the utilization of clean coal in China are mainly non-technical factors such as the low legal liability of atmospheric pollution related to coal use, and the lack of laws and mandatory regulations for clean coal use in China. Policies for the development of clean coal technologies are in their early stages in China, and the lack of laws and detailed implementation requirements for clean coal require resolution in order to accelerate China's clean coal developments. Currently, environmental pollution has gained widespread attention from the wider Chinese populace and taking advantage of this opportunity provides a space in which to regain the initiative to raise people’s awareness of clean coal products, and improve enterprises’ enthusiasm for clean coal. - Highlights: • Clean coal is not widely used in China due to many management issues. • Legal liability of pollution related with coal utilization is too low in China. • China is lack of laws and mandatory regulations for clean coal utilization. • It is difficult to accelerate clean coal utilization by incentive subsidies alone.

  13. Measurement of the Residual Sodium and Reaction Compounds on a Cleaned Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun Nam

    2006-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either a intergranular penetration characteristic of a high-oxygen sodium or an accelerated corrosion due to oxygen. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, a chemical, physical, or mechanical damage, and external effects. It is important to determine the levels of residual sodium that can be accepted so that those deleterious effects will not negate the reuse of the component. The purpose of this paper is to measure the amount of the sodium and the reaction compounds remaining on a component after a cleaning and prepare acceptable criteria for the reuse of components which have been subjected to a sodium cleaning

  14. Discharge cleaning of carbon deposits

    International Nuclear Information System (INIS)

    Mozetic, M.; Vesel, A.; Drenik, A.

    2006-01-01

    Experimental results of discharge cleaning of carbon deposits are presented. Deposits were prepared by creating plasma in pure methane. The methane was cracked in RF discharge at the output power of 250 W. The resultant radicals were bonded to the wall of discharge vessel forming a thin film of hydrogenated black carbon with the thickness of about 200nm. The film was then cleaned in situ by oxygen plasma with the density of about 1x10 16 m -3 , electron temperature of 5 eV, neutral gas kinetic temperature of about 100 0 C and neutral atom density of 6x10 21 m -3 . The treatment time was 30 minutes. The efficiency of plasma cleaning was monitored by optical emission spectroscopy. As long as the wall was contaminated with carbon deposit, substantial emission of the CO molecules was detected. As the cleaning was in progress, the CO emission was decreasing and vanished after 30 minutes when the discharge vessel became free of any carbon. The results are explained by interaction of plasma radicals with carbon deposits. (author)

  15. A semi-automated workflow for biodiversity data retrieval, cleaning, and quality control

    Directory of Open Access Journals (Sweden)

    Cherian Mathew

    2014-12-01

    Full Text Available The compilation and cleaning of data needed for analyses and prediction of species distributions is a time consuming process requiring a solid understanding of data formats and service APIs provided by biodiversity informatics infrastructures. We designed and implemented a Taverna-based Data Refinement Workflow which integrates taxonomic data retrieval, data cleaning, and data selection into a consistent, standards-based, and effective system hiding the complexity of underlying service infrastructures. The workflow can be freely used both locally and through a web-portal which does not require additional software installations by users.

  16. Stethoscope Cleaning During Patient Care.

    Science.gov (United States)

    Ghumman, Ghazi Wahla; Ahmad, Nina; Pop-Vicas, Aurora; Iftikhar, Sadia

    2018-05-01

    We conducted a cross-sectional survey of healthcare workers in two community teaching hospitals to better understand clinicians' beliefs and practices related to cleaning of their stethoscopes. The study was conducted from September 2015 to May 2016. Among the total 358 responses received, 45%, 40%, 10% and 5% were from attending physicians, medical students, nurses, and resident physicians, respectively. Although the majority of the respondents (76%) frequently used a stethoscope at work, and almost all (93%) believed that stethoscopes can be involved in pathogen transmission, only 29% of participants reported cleaning their stethoscopes after every use. Hospitals should include stethoscope cleaning into their overall infection prevention efforts. [Full article available at http://rimed.org/rimedicaljournal-2018-05.asp].

  17. Should you get your heating ducts cleaned?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Canada Mortgage and Housing Corporation conducted research into duct cleaning during which time several houses were tested for hot air furnace duct performance before and after cleaning. Duct cleaning is a major industry which claims that cleaning of ducts will provide you with better indoor air quality, reduce household molds and allergens, get rid of house dust, result in more airflow and better delivery of warm air and reduce energy costs. This report does not substantiate those claims. Researchers found little or no discernible differences in the concentrations of house airborne particles or in duct airflows due to duct cleaning. This is because ducts are metal passages that cannot create dust. Most household dusts come from outdoors that has been tracked in or blows through windows and other openings. While duct cleaning may be justifiable personally, it does not change the quality of the air you breathe, nor will it significantly affect airflow or heating costs. Some filters effectively clean the air in the ducts but they do not create a dust-free environment because of the above-mentioned dust sources. The only time that duct cleaning may make sense is if you have water in your ducts that can result in mold growth, if you are moving into a newly constructed house to remove drywall dust, if your are having trouble with furnace airflow, or if you see an accumulation of debris in the return air ducts. It was emphasized that broadcast spraying of biocides within the duct system should not be performed.

  18. Clean Cities Now Vol. 16.1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  19. Basis for the life cycle assessment (LCA) of cleaning-in-place systems in milk processing plants; Bases para el analisis de ciclo de vida de los sistemas de limpieza in situ en plantas de la industria lactea

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barral, S.; Laca Perez, A.; Gutierrez Lavin, A.; Diaz Fernandez, M.; Rendueles de la Vega, M.; Iglesias Gonzalez, E.

    2006-07-01

    Milk processing requires high hygienic operations in order to assure safe products of high quality and suitable for human diet. The cleaning operations that take place during milk processing, do cause environmental impact, because of the high volume of wastewater generated, which is contaminated with rests of milk, detergents and other chemical products. The life cycle assessment of cleaning operations can be a powerful tool to evaluate the environmental impact associated with different operation methodologies. In this work, two current alternatives are studied, by means of operational data of a dairy plant. (Author) 7 refs.

  20. Photocatalytic Nanofiltration Membranes with Self-Cleaning Property for Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yan [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China; Zhang, Chao [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China; He, Ai [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China; Yang, Shang-Jin [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China; Wu, Guang-Peng [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China; Darling, Seth B. [Nanoscience & Technology Division, Argonne National Laboratory, 9700 South Cass Avenue Lemont IL 60439 USA; Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Xu, Zhi-Kang [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 China

    2017-05-16

    Membrane fouling is one of the most severe problems restricting membrane separation technology for wastewater treatment. This work reports a photocatalytic nanofiltration membrane (NFM) with self-cleaning property fabricated using a facile biomimetic mineralization process. In this strategy, a polydopamine (PDA)/polyethyleneimine (PEI) intermediate layer is fabricated on an ultrafiltration membrane via a co-deposition method followed by mineralization of a photocatalytic layer consisting of beta-FeOOH nanorods. The PDA-PEI layer acts both as a nanofiltration selective layer and an intermediate layer for anchoring the beta-FeOOH nanorods via strong coordination complexes between Fe3+ and catechol groups. In visible light, the beta-(F)eOOH layer exhibits efficient photocatalytic activity for degrading dyes through the photo-Fenton reaction in the presence of hydrogen peroxide, endowing the NFM concurrently with effective nanofiltration performance and self-cleaning capability. Moreover, the mineralized NFMs exhibit satisfactory stability under simultaneous filtration and photocatalysis processing, showing great potential in advanced wastewater treatment.

  1. The impact of chemical cleaning on separation efficiency and properties of reverse osmosis membrane

    KAUST Repository

    Baatiyyah, Hani

    2018-04-01

    One of most major concerns from both cost-effective and technical point of view in membrane process industry is membrane cleaning. The aim of the project was to investigate the variations in membrane surface properties and separation efficiency of reverse osmosis membrane. Compativtive analysis have to be performed on four RO membrane before and after exposing the virgin membrane into chemical cleaning to identify and analysis the impact of the chemical cleaning on the performance of RO membrane. Commerical chemical cleaning used in this project were caustic and acidic cleaning agent. The project’s aim is the investigation of simulation software’s precision for the four membranes performance projection at different conditions of the feed water. The assessment of the membranes performance was done in the Innovation Cluster at pilot plant that was industrial in size. The main commercial elements used were the thin-film composite membranes with a spiral-wound of 8-inch polyamide. Ultrafiltration (UF) and seawater RO membrane pretreatment process was done for the red sea sourced feed water. A pressure vessel dimensioned at 8-inch was operated in conjunction with an individual element at 8 -20 m3/hr feed flow rate, with an 8 to 12 % recovery and an average 35,000-42,000 mg/L of total dissolved solids (TDS) composition for the feed water. To achieve the project’s aim in assessing the membranes, three phase experimental stages were completed. The membranes performance was assessed in terms of their water flux, salt rejection, boron rejection, bicarbonate rejection and permeate quality. In addition, the membrane surfaces were characterized after exposing the fresh membranes with a chemical cleaning reagent. The experimental results showed an increase in both permeate flow and salt passage for all studied elements. The changes in the membranes performance were systematically explained based on the changes in the charge density and chemical structure of the membranes

  2. Atmospheric plasma generation for LCD panel cleaning

    Science.gov (United States)

    Kim, Gyu-Sik; Won, Chung-Yuen; Choi, Ju-Yeop; Yim, C. H.

    2007-12-01

    UV lamp systems have been used for cleaning of display panels of TFT LCD or Plasma Display Panel (PDP). However, the needs for high efficient cleaning and low cost made high voltage plasma cleaning techniques to be developed and to be improved. Dielectric-barrier discharges (DBDs), also referred to as barrier discharges or silent discharges have for a long time been exclusively related to ozone generation. In this paper, a 6kW high voltage plasma power supply system was developed for LCD cleaning. The -phase input voltage is rectified and then inverter system is used to make a high frequency pulse train, which is rectified after passing through a high-power transformer. Finally, bi-directional high voltage pulse switching circuits are used to generate the high voltage plasma. Some experimental results showed the usefulness of atmospheric plasma for LCD panel cleaning.

  3. Robotic cleaning of a spent fuel pool

    International Nuclear Information System (INIS)

    Roman, H.T.; Marian, F.A.; Silverman, E.B.; Barkley, V.P.

    1987-01-01

    Spent fuel pools at nuclear power plants are not cleaned routinely, other than by purifying the water that they contain. Yet, debris can collect on the bottom of a pool and should be removed prior to fuel transfer. At Public Service Electric and Gas Company's Hope Creek Nuclear Power Plant, a submersible mobile robot - ARD Corporation's SCAVENGER - was used to clean the bottom of the spent fuel pool prior to initial fuel loading. The robotic device was operated remotely (as opposed to autonomously) with a simple forward/reverse control, and it cleaned 70-80% of the pool bottom. This paper reports that a simple cost-benefit analysis shows that the robotic device would be less expensive, on a per mission basis, than other cleaning alternatives, especially if it were used for other similar cleaning operations throughout the plant

  4. Carbon steel corrosion prevention during chemical cleaning of steam generator secondary side components

    International Nuclear Information System (INIS)

    Fulger, M.; Lucan, D.; Velciu, L.

    2009-01-01

    During operation of a nuclear power plant, many contaminants, such as solid particles or dissolved species are formed in the secondary circuit, go into steam generator and deposit as scales on heat transfer tubing, support plate or as sludge on tube sheet. By accumulation of these impurities, heat transfer is reduced and the integrity of the steam generator tubing is influenced. Chemical cleaning is a qualified, efficient measure to improve steam generator corrosion performance. The corrosion mechanism can be counteracted by the chemical cleaning of the deposits on the tube sheet and the scales on the heat transfer tubing. The major component of the scales is magnetite, which can be dissolved using an organic chelating agent (ethylenediaminetetraacetic acid, EDTA) in combination with a complexing agent such as citric acid in an alkaline reducing environment. As the secondary side of SG is a conglomerate of alloys it is necessary to choose an optimal chemical cleaning solution for an efficient cleaning properties and at the same time with capability of corrosion prevention of carbon steel components during the process. The paper presents laboratory tests initiated to confirm the ability of this process to clean the SG components. The experiments followed two paths: - first, carbon steel samples have been autoclavized in specific secondary circuit solutions of steam generator to simulate the deposits constituted during operation of this equipment; - secondly, autoclavized samples have been cleaned with a solvent composed of EDTA citric acid, hydrazine of pH = 5 and temperature of 85 deg. C. Before chemical cleaning, the oxide films were characterized by surface analysis techniques including optical microscopy, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Applied to dissolve corrosion products formed in a steam generator, the solvents based on chelating agents are aggressive toward carbon steels and corrosion inhibitors are

  5. Combining a Novel Computer Vision Sensor with a Cleaning Robot to Achieve Autonomous Pig House Cleaning

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Braithwaite, Ian David; Blanke, Mogens

    2005-01-01

    condition based cleaning. This paper describes how a novel sensor, developed for the purpose, and algorithms for classification and learning are combined with a commercial robot to obtain an autonomous system which meets the necessary quality attributes. These include features to make selective cleaning...

  6. Pool water cleaning facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro [Hitachi Ltd., Tokyo (Japan); Asano, Takashi

    1998-05-29

    Only one system comprising a suppression poor water cleaning system (SPCU) and a filtration desalting tower (F/D) is connected for a plurality of nuclear power plants. Pipelines/valves for connecting the one system of the SPCU pump, the F/D and the plurality of nuclear power plants are disposed, and the system is used in common with the plurality of nuclear power plants. Pipelines/valves for connecting a pipeline for passing SP water to the commonly used SPCU pump and a skimmer surge tank are disposed, and fuel pool water is cooled and cleaned by the commonly used SPCU pump and the commonly used F/D. The number of SPCU pumps and the F/D facilities can be reduced, and a fuel pool water cooling operation mode and a fuel pool water cleaning operation mode which were conducted by an FPC pump so far are conducted by the SPCU pump. (N.H.)

  7. Optimizing UF Cleaning in UF-SWRO System Using Red Sea Water

    KAUST Repository

    Bahshwan, Mohanad

    2012-07-01

    Increasing demand for fresh water in arid and semi-arid areas, similar to the Middle East, pushed for the use of seawater desalination techniques to augment freshwater. Seawater Reverse Osmosis (SWRO) is one of the techniques that have been commonly used due to its cost effectiveness. Recently, the use of Ultrafiltration (UF) was recommended as an effective pretreatment for SWRO membranes, as opposed to conventional methods (i.e. sand filtration). During UF operation, intermittent cleaning is required to remove particles and contaminants from the membrane\\'s surface and pores. The different cleaning steps consume chemicals and portion of the product water, resulting in a decrease in the overall effectiveness of the process and hence an increase in the production cost. This research focused on increasing the plant\\'s efficiency through optimizing the cleaning protocol without jeopardizing the effectiveness of the cleaning process. For that purpose, the design of experiment (DOE) focused on testing different combinations of these cleaning steps while all other parameters (such as filtration flux or backwash flux) remained constant. The only chemical used was NaOCI during the end of each experiment to restore the trans-membrane pressure (TMP) to its original state. Two trains of Dow™ Ultrafiltration SFP-2880 were run in parallel for this study. The first train (named UF1) was kept at the manufacturer\\'s recommended cleaning steps and frequencies, while the second train (named UF2) was varied according to the DOE. The normalized final TMP was compared to the normalized initial TMP to measure the fouling rate of the membrane at the end of each experiment. The research was supported by laboratory analysis to investigate the cause of the error in the data by analyzing water samples collected at different locations. Visual inspection on the results from the control unit showed that the data cannot be reproduced with the current feed water quality. Statistical analysis

  8. Wavelet imaging cleaning method for atmospheric Cherenkov telescopes

    Science.gov (United States)

    Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.

    2002-07-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.

  9. Association between clean delivery kit use, clean delivery practices, and neonatal survival: pooled analysis of data from three sites in South Asia.

    Directory of Open Access Journals (Sweden)

    Nadine Seward

    2012-02-01

    Full Text Available Sepsis accounts for up to 15% of an estimated 3.3 million annual neonatal deaths globally. We used data collected from the control arms of three previously conducted cluster-randomised controlled trials in rural Bangladesh, India, and Nepal to examine the association between clean delivery kit use or clean delivery practices and neonatal mortality among home births.Hierarchical, logistic regression models were used to explore the association between neonatal mortality and clean delivery kit use or clean delivery practices in 19,754 home births, controlling for confounders common to all study sites. We tested the association between kit use and neonatal mortality using a pooled dataset from all three sites and separately for each site. We then examined the association between individual clean delivery practices addressed in the contents of the kit (boiled blade and thread, plastic sheet, gloves, hand washing, and appropriate cord care and neonatal mortality. Finally, we examined the combined association between mortality and four specific clean delivery practices (boiled blade and thread, hand washing, and plastic sheet. Using the pooled dataset, we found that kit use was associated with a relative reduction in neonatal mortality (adjusted odds ratio 0.52, 95% CI 0.39-0.68. While use of a clean delivery kit was not always accompanied by clean delivery practices, using a plastic sheet during delivery, a boiled blade to cut the cord, a boiled thread to tie the cord, and antiseptic to clean the umbilicus were each significantly associated with relative reductions in mortality, independently of kit use. Each additional clean delivery practice used was associated with a 16% relative reduction in neonatal mortality (odds ratio 0.84, 95% CI 0.77-0.92.The appropriate use of a clean delivery kit or clean delivery practices is associated with relative reductions in neonatal mortality among home births in underserved, rural populations.

  10. 5. annual clean coal technology conference: powering the next millennium. Vol.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increased demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains papers presented at the plenary session and panel sessions on; international markets for clean coal technologies (CCTs); role of CCTs in the evolving domestic electricity market; environmental issues affecting CCT deployment; and CCT deployment from today into the next millennium. In addition papers presented at the closing plenary session on powering the next millennium--CCT answers the challenge are included. Selected papers have been processed for inclusion in the Energy Science and Technology database.

  11. Falling behind - Canada's lost clean energy jobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    With the depletion of conventional resources and the increasing concerns about the environment, emphasis has been put on developing clean energy. Clean energy is expected to become one of the main industrial sectors within the next decade, thus creating numerous jobs. While significant investments have been made by several countries to shift to clean energy, Canada is investing in highly polluting resources such as the tar sands. It is shown that if Canada were to match U.S. efforts in terms of clean energy on a per person basis, they would need to invest 11 billion additional dollars and this would result in the creation of 66,000 clean energy jobs. This paper showed that Canada is falling behind in terms of clean energy and the authors recommend that the Canadian government match U.S. investments and design policies in support of clean energy and put a price on carbon so as to favor the development of the clean energy sector and its consequent job creation.

  12. Environmental cleaning and disinfection of patient areas

    Directory of Open Access Journals (Sweden)

    Michelle Doll

    2018-02-01

    Full Text Available The healthcare setting is predisposed to harbor potential pathogens, which in turn can pose a great risk to patients. Routine cleaning of the patient environment is critical to reduce the risk of hospital-acquired infections. While many approaches to environmental cleaning exist, manual cleaning supplemented with ongoing assessment and feedback may be the most feasible for healthcare facilities with limited resources.

  13. X-ray photoelectron spectroscopy analysis of cleaning procedures for synchrotron radiation beamline materials at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Li, Y.; Ryding, D.; Liu, C.; Kuzay, T.M.; McDowell, M.W.; Rosenberg, R.A.

    1994-01-01

    TZM (a high temperature molybdenum alloy), machinable tungsten, and 304 stainless steel were cleaned using environmentally safe, commercially available cleaning detergents. The surface cleanliness was evaluated by x-ray photoelectron spectroscopy (XPS). It was found that a simple alkaline detergent is very effective at removal of organic and inorganic surface contaminants or foreign particle residue from machining processes. The detergent can be used with ultrasonic agitation at 140 F to clean the TZM molybdenum, machinable tungsten, and 304 stainless steel. A citric-acid-based detergent was also found to be effective at cleaning metal oxides, such as iron oxide, molybdenum oxide, as well as tungsten oxides at mild temperatures with ultrasonic agitation, and it can be used to replace strong inorganic acids to improve cleaning safety and minimize waste disposal and other environmental problems. The efficiency of removing the metal oxides depends on both cleaning temperature and time

  14. Engineering development of advance physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Smit, F.J.; Shields, G.L. [AMAX R& D Center/ENTECH Global Inc., Golden, CO (United States)

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  15. Elimination of the dirty crust of white alterated glaze from excavated ceramics using the laser cleaning alternative

    OpenAIRE

    Aura Castro, Elvira; Saiz Mauleón, María Begoña; Domenech Carbo, Mª Teresa

    2006-01-01

    The laser technique has been applied to the cleaning process of glazed decorated ceramics from excavation sites. The use of this method arises as the only possible alternative in the process of cleaning pieces with crusts of dirt that are extremely hard and strongly stuck over altered and friable white glaze layers. The study carried out has allowed to fix the optimal laser parameters in the elimination of the dark dirty layer found on several fragments from different periods. The study has b...

  16. The construction, fouling and enzymatic cleaning of a textile dye surface.

    Science.gov (United States)

    Onaizi, Sagheer A; He, Lizhong; Middelberg, Anton P J

    2010-11-01

    The enzymatic cleaning of a rubisco protein stain bound onto Surface Plasmon Resonance (SPR) biosensor chips having a dye-bound upper layer is investigated. This novel method allowed, for the first time, a detailed kinetic study of rubisco cleanability (defined as fraction of adsorbed protein removed from a surface) from dyed surfaces (mimicking fabrics) at different enzyme concentrations. Analysis of kinetic data using an established mathematical model able to decouple enzyme transfer and reaction processes [Onaizi, He, Middelberg, Chem. Eng. Sci. 64 (2008) 3868] revealed a striking effect of dyeing on enzymatic cleaning performance. Specifically, the absolute rate constants for enzyme transfer to and from a dye-bound rubisco stain were significantly higher than reported previously for un-dyed surfaces. These increased transfer rates resulted in higher surface cleanability. Higher enzyme mobility (i.e., higher enzyme adsorption and desorption rates) at the liquid-dye interface was observed, consistent with previous suggestions that enzyme surface mobility is likely correlated with overall enzyme cleaning performance. Our results show that reaction engineering models of enzymatic action at surfaces may provide insight able to guide the design of better stain-resistant surfaces, and may also guide efforts to improve cleaning formulations. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Distribution Route Planning of Clean Coal Based on Nearest Insertion Method

    Science.gov (United States)

    Wang, Yunrui

    2018-01-01

    Clean coal technology has made some achievements for several ten years, but the research in its distribution field is very small, the distribution efficiency would directly affect the comprehensive development of clean coal technology, it is the key to improve the efficiency of distribution by planning distribution route rationally. The object of this paper was a clean coal distribution system which be built in a county. Through the surveying of the customer demand and distribution route, distribution vehicle in previous years, it was found that the vehicle deployment was only distributed by experiences, and the number of vehicles which used each day changed, this resulted a waste of transport process and an increase in energy consumption. Thus, the mathematical model was established here in order to aim at shortest path as objective function, and the distribution route was re-planned by using nearest-insertion method which been improved. The results showed that the transportation distance saved 37 km and the number of vehicles used had also been decreased from the past average of 5 to fixed 4 every day, as well the real loading of vehicles increased by 16.25% while the current distribution volume staying same. It realized the efficient distribution of clean coal, achieved the purpose of saving energy and reducing consumption.

  18. Cleaning Services.

    Science.gov (United States)

    Sharpton, James L.

    This curriculum guide provides cleaning services instructional materials for a ninth- and tenth-grade Coordinated Vocational Education and Training: Home and Community Services program. It includes 2 sections and 11 instructional units. Each unit of instruction consists of eight basic components: performance objectives, teacher activities,…

  19. Evaluation of concepts for a NET plasma exhaust clean-up system

    International Nuclear Information System (INIS)

    Glugla, M.; Penzhorn, R.D.; Rodriguez, R.; Herbrechter, D.; Dinner, P.; Murdoch, D.

    1990-07-01

    The process steps for the off-gas clean-up and direct recovery of the unburned fuel gases deuterium and tritium are, together with the isotope separation and the fuel preparation, the major subsystems within the fuel cycle of a fusion reactor. A comparison between process concepts largely based on experimental work at KfK and other process alternatives discussed in the literature is carried out and the various options are evaluated on the basis of the process requirements for NET I. The recovery of most of the unburned hydrogen with a palladium/silver permeator is selected as a first step, common to all seven concepts. The remaining impurity stream is processed either catalytically, with the help of getters, or by oxidation followed by reduction of the produced water. The physicochemical basis of each process alternative is discussed and the corresponding chemical flow sheets (flow diagrams and material flow tables) are presented. Concepts employing getters are unattractive because the produce untolerably high amounts of solid waste. Main drawbacks of process options involving an oxidation step are the non-discriminative oxidation of hydrogen and impurities as well as the non-trivial reduction of the produced highly tritiated water at the required elevated throughput. Advantages of the catalytic process are the production of little solid waste, the low steady state inventory and the comparatively easy scale-up. The catalytic process is therefore considered the most promising option for the development of a fuel clean-up process. (orig./HK) [de

  20. Fluid dynamic effects on precision cleaning with supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.R.; Hogan, M.O.; Silva, L.J.

    1994-06-01

    Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.