WorldWideScience

Sample records for clean efficient alternative

  1. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  2. Efficient methods of piping cleaning

    OpenAIRE

    Orlov Vladimir Aleksandrovich; Nechitaeva Valentina Anatol'evna; Bogomolova Irina Olegovna; Shaykhetdinova Yuliya Aleksandrovna; Daminova Yuliya Farikhovna

    2014-01-01

    The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of d...

  3. 75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2010-05-26

    ... Protection Agency 40 CFR Parts 85 and 86 Clean Alternative Fuel Vehicle and Engine Conversions; Proposed Rule...; ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 85 and 86 RIN 2060-AP64 Clean Alternative Fuel Vehicle and Engine... tampering for the conversion of vehicles and engines to operate on a clean alternative fuel. Under...

  4. Hydrogen as alternative clean fuel: Economic analysis

    International Nuclear Information System (INIS)

    In analogy to biofuel production from biomasses, the electrolytic conversion of other renewable energies into hydrogen as an alternative clean fuel is considered. This solution allows the intermittent renewable energy sources, as photovoltaics and wind energy, to enhance their development and enlarge the role into conventional fuel market. A rough economic analysis of hydrogen production line shows the costs, added by electrolysis and storage stages, can be recovered by properly accounting for social and environmental costs due to whole cycle of conventional fuels, from production to use. So, in a perspective of attaining the economic competitiveness of renewable energy, the hydrogen, arising from intermittent renewable energy sources, will be able to compete in the energy market with conventional fuels, making sure that their substitution will occur in a significant amount and the corresponding environment

  5. Energy efficiency procedures for agricultural machinery used in onion cultivation (Allium fistulosum) as an alternative to reduce carbon emissions under the clean development mechanism at Aquitania (Colombia)

    International Nuclear Information System (INIS)

    Climate change has both causes and consequences over agriculture. This paper focuses on the first element and presents scenarios for ASOLAGO -an onion cropper's association in Colombia with 250 members- to reduce their carbon footprint. It evaluates a case study at ''La Primavera'' farm using a methodology approved by the United Nations Framework Convention on Climate Change. Land preparation and crop irrigation were analyzed as stages in order to propose energy efficiency alternatives for both the farm and the association. They include field efficiency, fuel economy and energy efficiency from biofuels for the first stage as well as solar and wind energy supply for the second. A cost-benefit analysis to generate additional income selling additional power produced by the system to the National Grid was done

  6. Energy efficiency procedures for agricultural machinery used in onion cultivation (Allium fistulosum) as an alternative to reduce carbon emissions under the clean development mechanism at Aquitania (Colombia)

    Science.gov (United States)

    Ochoa, K.; Carrillo, S.; Gutierrez, L.

    2014-06-01

    Climate change has both causes and consequences over agriculture. This paper focuses on the first element and presents scenarios for ASOLAGO -an onion cropper's association in Colombia with 250 members- to reduce their carbon footprint. It evaluates a case study at "La Primavera" farm using a methodology approved by the United Nations Framework Convention on Climate Change. Land preparation and crop irrigation were analyzed as stages in order to propose energy efficiency alternatives for both the farm and the association. They include field efficiency, fuel economy and energy efficiency from biofuels for the first stage as well as solar and wind energy supply for the second. A cost-benefit analysis to generate additional income selling additional power produced by the system to the National Grid was done.

  7. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    Science.gov (United States)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    weighed again showing typical contaminant deposition levels of approximately 0.00300g per part. They were then cleaned by the solvent or process being tested and then weighed a third time which allowed for the calculation of the cleaning efficiency of the test solvent or process.Based on preliminary experiments, five solvents (ethanol, isopropanol, acetone, ethyl acetate, and tert-butyl acetate) were down selected for further testing. When coupled with ultrasonic agitation, these solvents removed hydrocarbon contaminants as well as Vertrel MCA and showed improved removal of perfluorinated greases. Supercritical carbon dioxide did an excellent job dissolving each of the five contaminants but did a poor job of removing Teflon particles found in the perfluorinated greases. Plasma cleaning efficiency was found to be dependent on which supply gas was used, exposure time, and gas pressure. Under optimized conditions it was found that breathing air, energized to the plasma phase, was able to remove nearly 100% of the contamination.These findings indicate that alternative cleaning methods are indeed able to achieve precision levels of cleanliness. Currently, our team is working with a commercial cleaning company to get independent verification of our results. We are also evaluating the technical and financial aspects of scaling these processes to a size capable of supporting the future cleaning needs of KSC.

  8. Clean and Highly Efficient Utilization of Coal

    Institute of Scientific and Technical Information of China (English)

    WANG Jianguo; YANG Li

    2011-01-01

    @@ Clean and highly efficient utilization of coal is an important scientific and technological issue.As the petroleum resource decreases but its consumption increases, all of the countries in the world have to face the big issue of sustainable development of energy and economy and protection of environment.Therefore, study on clean coal technology (CCT) has attracted much attention and become one of important themes of energy research.

  9. Sonochemical cleaning efficiencies in dental instruments

    Science.gov (United States)

    Tiong, T. Joyce; Walmsley, A. Damien; Price, Gareth J.

    2012-05-01

    Ultrasound has been widely used for cleaning purposes in a variety of situations, including in dental practice. Cleaning is achieved through a combination of acoustically driven streaming effects and sonochemical effects arising from the production of inertial cavitation in a liquid. In our work, various dental instruments used for endodontic (root canal) treatment have been evaluated for their efficiency in producing sonochemical effects in an in-vitro cleaning environment. The areas where cavitation was produced were mapped by monitoring chemiluminescence from luminol solutions and this was correlated with their cleaning efficiencies - assessed by the ability to bleach a dye, to form an emulsion by mixing immiscible components and also to remove ink from a glass surface. The results showed good correlation (Pearson's coefficient > 0.9) between the cavitation and cleaning efficiencies, suggesting that the former plays an important role in cleaning. The methods developed and the results will be beneficial in endodontics research in order to optimise future root canal instruments and treatments.

  10. Clean and Efficient Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-12-31

    Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

  11. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2011-04-08

    ...-AP64 Clean Alternative Fuel Vehicle and Engine Conversions AGENCY: Environmental Protection Agency (EPA... fuel conversion systems may demonstrate compliance with vehicle and engine emissions requirements... Engineering Judgment C. Vehicle/Engine Groupings and Emission Data Vehicle/Engine Selection D. Mixed-Fuel...

  12. Cleaning up our act: Alternatives for hazardous solvents used in cleaning

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) has studied more than 70 alternative cleaners as potential replacements for chlorofluorocarbons (CFCs), halogenated hydrocarbons (e.g., trichloroethylene and trichloroethane), hydrocarbons (e.g., toluene and Stoddard Solvent), and volatile organic compounds (e.g., acetone, alcohols). This report summarizes LLNL's findings after testing more than 45 proprietary formulations on bench-scale testing equipment and in more than 60 actual shops and laboratories. Cleaning applications included electronics fabrication, machine shops, optical lenses and hardware, and general cleaning. Most of the alternative cleaners are safer than the solvents previously used and many are nonhazardous, according to regulatory criteria

  13. Cleaning up our act: Alternatives for hazardous solvents used in cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Shoemaker, J.D.; Meltzer, M.; Miscovich, D.; Montoya, D.; Goodrich, P.; Blycker, G.

    1994-01-01

    Lawrence Livermore National Laboratory (LLNL) has studied more than 70 alternative cleaners as potential replacements for chlorofluorocarbons (CFCs), halogenated hydrocarbons (e.g., trichloroethylene and trichloroethane), hydrocarbons (e.g., toluene and Stoddard Solvent), and volatile organic compounds (e.g., acetone, alcohols). This report summarizes LLNL`s findings after testing more than 45 proprietary formulations on bench-scale testing equipment and in more than 60 actual shops and laboratories. Cleaning applications included electronics fabrication, machine shops, optical lenses and hardware, and general cleaning. Most of the alternative cleaners are safer than the solvents previously used and many are nonhazardous, according to regulatory criteria.

  14. Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect

    International Nuclear Information System (INIS)

    Nanoimprint lithography (NIL) is a nonconventional lithographic technique that promises low-cost, high-throughput patterning of structures with sub-10 nm resolution. Contamination of nanoimprint stamps is one of the key obstacles to industrialize the NIL technology. Here, we report two efficient approaches for removal of typical contamination of particles and residual resist from stamps: thermal and ultraviolet (UV) imprinting cleaning-both based on the self-cleaning effect of imprinting process. The contaminated stamps were imprinted onto polymer substrates and after demolding, they were treated with an organic solvent. The images of the stamp before and after the cleaning processes show that the two cleaning approaches can effectively remove contamination from stamps without destroying the stamp structures. The contact angles of the stamp before and after the cleaning processes indicate that the cleaning methods do not significantly degrade the anti-sticking layer. The cleaning processes reported in this work could also be used for substrate cleaning.

  15. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: CORROSION STUDIES RESULTS: FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2010-09-29

    dilute concentration environment resulted in carbon steel corrosion rates that were less than 150 mpy. These rates are manageable in that chemical cleaning processes could proceed for limited time without significant wall loss. Further optimization of the Alternative Enhance Chemical Cleaning (AECC) process should focus on testing in solutions of this dilute concentration and low temperature regime. (2) In general, for the nitric acid based reagent, the aluminum oxide phase environments resulted in higher corrosion rates than the iron oxide phase environments. (3) In general, for the sulfuric acid based reagent, the iron oxide phase environments resulted in higher corrosion rates than the aluminum oxide phase environments. (4) In general, for the nitric acid based reagent, the HM sludge simulant environments resulted in higher corrosion rates than the PUREX sludge simulant environments. This result agrees with the previous observation that the aluminum oxide phases are more aggressive than the iron oxide phase environments in the nitric acid reagent. (5) Pitting was more likely to occur in the sulfuric acid based reagents than in the nitric acid based reagents. (6) Pitting occurred only in the iron based pure oxide phases and the sludge simulants. No pitting was observed in the aluminum based pure oxide phases. (7) Pitting tended to occur more frequently in tests that involved the dilute mineral acid reagent. (8) Pitting was more severe at the higher temperature for a given mineral acid concentration. (9) Pitting was more severe at a higher mineral acid concentration for a given temperature. (10) Based on the combined results of the open circuit potential and cathodic polarization testing, there was a low propensity for hydrogen evolution in solutions where sludge has been dissolved.

  16. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane

  17. Ionization Impact on the Air Cleaning Efficiency in the Interior

    OpenAIRE

    Černecký Jozef; Valentová Karina; Pivarčiová Elena; Božek Pavol

    2015-01-01

    The paper deals with ionization impact on efficient cleaning of air in a measuring chamber which has been cleaned and closed against any outer impacts (e.g. impurities, dust from another room, human odours). Smoking has an impact on the number of positive and negative ions including the concentration of particulate matter PM10. We investigated the ion concentration according to the presence of cigarette smoke in the room and according to the change of lit cigarette distance from the supply of...

  18. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; Koopman, D.

    2009-08-01

    aluminum sludge heels may be appropriate as a means of reducing oxalic acid usage. Reagents other than oxalic acid may also be needed for removing actinide elements from the tank heels. A systems engineering evaluation (SEE) was performed on the various alternative chemical cleaning reagents and organic oxidation technologies discussed in the literature review. The objective of the evaluation was to develop a short list of chemical cleaning reagents and oxalic acid destruction methods that should be the focus of further research and development. The results of the SEE found that eight of the thirteen organic oxidation technologies scored relatively close together. Six of the chemical cleaning reagents were also recommended for further investigation. Based on the results of the SEE and plan set out in the TTQAP the following broad areas are recommended for future study as part of the AECC task: (1) Basic Chemistry of Sludge Dissolution in Oxalic Acid: A better understanding of the variables effecting dissolution of sludge species is needed to efficiently remove sludge heels while minimizing the use of oxalic acid or other chemical reagents. Tests should investigate the effects of pH, acid concentration, phase ratios, temperature, and kinetics of the dissolution reactions of sludge components with oxalic acid, mineral acids, and combinations of oxalic/mineral acids. Real waste sludge samples should be characterized to obtain additional data on the mineral phases present in sludge heels. (2) Simulant Development Program: Current sludge simulants developed by other programs for use in waste processing tests, while compositionally similar to real sludge waste, generally have more hydrated forms of the major metal phases and dissolve more easily in acids. Better simulants containing the mineral phases identified by real waste characterization should be developed to test chemical cleaning methods. (3) Oxalic Acid Oxidation Technologies: The two Mn based oxidation methods that

  19. Alternatives to Organic Solvents in Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1998-01-01

    industry, and vehicle repair and maintenance. There are, however, other elements that influence the possibility to substitute. The requirements to the resulting surface, depending on the following treatment of the surface. The character of the soilings to be removed. The possible presence of other...... cleaning agents in offset printing companies instead of volatile, toxic organic solvents. The present study is based on a project with the aim of defining other industrial processes, where organic solvents used for cleaning or degreasing can be replaced by non-volatile, low-toxic products, which are based...... on esters from fatty acids of vegetable origin (vegetable esters - VE).The study indicates that industrial cleaning/degreasing with organic solvents may be substituted with VEs on metal surfaces and on some coated surfaces, in manufacture of paints and inks, use of paints, use of inks (printing), metal...

  20. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; Koopman, D.

    2009-08-01

    aluminum sludge heels may be appropriate as a means of reducing oxalic acid usage. Reagents other than oxalic acid may also be needed for removing actinide elements from the tank heels. A systems engineering evaluation (SEE) was performed on the various alternative chemical cleaning reagents and organic oxidation technologies discussed in the literature review. The objective of the evaluation was to develop a short list of chemical cleaning reagents and oxalic acid destruction methods that should be the focus of further research and development. The results of the SEE found that eight of the thirteen organic oxidation technologies scored relatively close together. Six of the chemical cleaning reagents were also recommended for further investigation. Based on the results of the SEE and plan set out in the TTQAP the following broad areas are recommended for future study as part of the AECC task: (1) Basic Chemistry of Sludge Dissolution in Oxalic Acid: A better understanding of the variables effecting dissolution of sludge species is needed to efficiently remove sludge heels while minimizing the use of oxalic acid or other chemical reagents. Tests should investigate the effects of pH, acid concentration, phase ratios, temperature, and kinetics of the dissolution reactions of sludge components with oxalic acid, mineral acids, and combinations of oxalic/mineral acids. Real waste sludge samples should be characterized to obtain additional data on the mineral phases present in sludge heels. (2) Simulant Development Program: Current sludge simulants developed by other programs for use in waste processing tests, while compositionally similar to real sludge waste, generally have more hydrated forms of the major metal phases and dissolve more easily in acids. Better simulants containing the mineral phases identified by real waste characterization should be developed to test chemical cleaning methods. (3) Oxalic Acid Oxidation Technologies: The two Mn based oxidation methods that

  1. SAGE SOLVENT ALTERNATIVES GUIDE: SYSTEM IMPROVEMENTS FOR SELECTING INDUSTRIAL SURFACE CLEANING ALTERNATIVES

    Science.gov (United States)

    The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...

  2. Energy Efficient Alternatives to Chlorofluorocarbons (CFCs)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-06-01

    An assessment of the state of the art in refrigeration and insulation technologies is carried out to evaluate the potential for efficient substitutes for CFCs and HCFCs to facilitate the transition to a CFC-free environment. Opportunities for improved efficiency in domestic refrigeration, building chillers, commercial refrigeration and industrial refrigeration are evaluated. Needs for alternate refrigerants, improved components, and/or alternate cycles are identified. A summary of on-going research is presented in each area, and the potential roles of industry and government are considered. The most promising approaches for refrigeration technology fall into these categories: (1) improved vapor compressor cycles with alternate fluids, (2) Stirling cycle development and (3) advances in absorption technology. A summary of on-going research into advanced insulation, focused on vacuum-based insulation technology refrigeration is developed. Insulation applications considered include appliances, transport refrigeration, and buildings. Specific recommendations for a long-term R&D agenda are presented. The potential benefits, research, general approach, and probability of success are addressed.

  3. Annealing free, clean graphene transfer using alternative polymer scaffolds

    International Nuclear Information System (INIS)

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications. (paper)

  4. Alternative Enhanced Chemical Cleaning Basic Studies Results FY09

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; King, W.

    2010-05-05

    Due to the need to close waste storage tanks, chemical cleaning methods are needed for the effective removal of the heels. Oxalic acid is the preferred cleaning reagent for sludge heel dissolution, particularly for iron-based sludge, due to the strong complexing strength of the oxalate. However, the large quantity of oxalate added to the tank farm from oxalic acid based chemical cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acid systems may be required for specific waste components with low solubility in oxalic acid and as a means to reduce oxalic acid usage in general. Solubility tests were conducted using non-radioactive, pure metal phases known to be the primary phases present in High Level Waste sludge. The metal phases studied included the aluminum phases gibbsite and boehmite and the iron phases magnetite and hematite. Hematite and boehmite are expected to be the most difficult iron and aluminum phases to dissolve. These mineral phases have been identified in both SRS and Hanford High Level Waste sludge. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids. The results of the solubility tests indicate that oxalic and sulfuric acids are more effective for the dissolution of the primary sludge phases. For boehmite, elevated temperature will be required to promote effective phase dissolution in the acids studied. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control using a supplemental proton source (additional acid) is critical for minimization of oxalic acid usage during the dissolution of hematite. These results emphasize the importance of pH control in optimizing hematite dissolution in oxalic acid and may explain the somewhat

  5. Krakow clean fossil fuels and energy efficiency project

    International Nuclear Information System (INIS)

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the 'Krakow Clean Fossil Fuels and Energy Efficiency Project.' Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the 'low emission sources' and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide

  6. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  7. The high efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs

  8. High efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    The authors have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiently particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing steel filters, they first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, prototype filters were then built for venting compressed gases and evaluated in their automated filter tester

  9. Clean option: An alternative strategy for Hanford Tank Waste Remediation

    International Nuclear Information System (INIS)

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ''clean option'' discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms

  10. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: BASIC STUDIES RESULTS FY2010

    Energy Technology Data Exchange (ETDEWEB)

    King, W.; Hay, M.

    2011-01-24

    In an effort to develop and optimize chemical cleaning methods for the removal of sludge heels from High Level Waste tanks, solubility tests have been conducted using nonradioactive, pure metal phases. The metal phases studied included the aluminum phase gibbsite and the iron phases hematite, maghemite, goethite, lepidocrocite, magnetite, and wustite. Many of these mineral phases have been identified in radioactive, High Level Waste sludge at the Savannah River and Hanford Sites. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids and a variety of other complexing organic acids. The results of the solubility tests indicate that mixtures of oxalic acid with either nitric or sulfuric acid are the most effective cleaning solutions for the dissolution of the primary metal phases in sludge waste. Based on the results, optimized conditions for hematite dissolution in oxalic acid were selected using nitric or sulfuric acid as a supplemental proton source. Electrochemical corrosion studies were also conducted (reported separately; Wiersma, 2010) with oxalic/mineral acid mixtures to evaluate the effects of these solutions on waste tank integrity. The following specific conclusions can be drawn from the test results: (1) Oxalic acid was shown to be superior to all of the other organic acids evaluated in promoting the dissolution of the primary sludge phases. (2) All iron phases showed similar solubility trends in oxalic acid versus pH, with hematite exhibiting the lowest solubility and the slowest dissolution. (3) Greater than 90% hematite dissolution occurred in oxalic/nitric acid mixtures within one week for two hematite sources and within three weeks for a third hematite sample with a larger average particle size. This dissolution rate appears acceptable for waste tank cleaning applications. (4) Stoichiometric dissolution of iron phases in oxalic acid (based on the oxalate concentration) and the formation of the preferred 1:1 Fe to oxalate complex

  11. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: BASIC STUDIES RESULTS FY2010

    Energy Technology Data Exchange (ETDEWEB)

    King, W.; Hay, M.

    2011-01-24

    In an effort to develop and optimize chemical cleaning methods for the removal of sludge heels from High Level Waste tanks, solubility tests have been conducted using nonradioactive, pure metal phases. The metal phases studied included the aluminum phase gibbsite and the iron phases hematite, maghemite, goethite, lepidocrocite, magnetite, and wustite. Many of these mineral phases have been identified in radioactive, High Level Waste sludge at the Savannah River and Hanford Sites. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids and a variety of other complexing organic acids. The results of the solubility tests indicate that mixtures of oxalic acid with either nitric or sulfuric acid are the most effective cleaning solutions for the dissolution of the primary metal phases in sludge waste. Based on the results, optimized conditions for hematite dissolution in oxalic acid were selected using nitric or sulfuric acid as a supplemental proton source. Electrochemical corrosion studies were also conducted (reported separately; Wiersma, 2010) with oxalic/mineral acid mixtures to evaluate the effects of these solutions on waste tank integrity. The following specific conclusions can be drawn from the test results: (1) Oxalic acid was shown to be superior to all of the other organic acids evaluated in promoting the dissolution of the primary sludge phases. (2) All iron phases showed similar solubility trends in oxalic acid versus pH, with hematite exhibiting the lowest solubility and the slowest dissolution. (3) Greater than 90% hematite dissolution occurred in oxalic/nitric acid mixtures within one week for two hematite sources and within three weeks for a third hematite sample with a larger average particle size. This dissolution rate appears acceptable for waste tank cleaning applications. (4) Stoichiometric dissolution of iron phases in oxalic acid (based on the oxalate concentration) and the formation of the preferred 1:1 Fe to oxalate complex

  12. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  13. Promoting energy efficient building in China through clean development mechanism

    International Nuclear Information System (INIS)

    This study aims to investigate the barriers which impede the promotion of Energy Efficient Building (EEB), and to propose solutions to alleviate these barriers by capturing the benefits from Clean Development Mechanism (CDM), in the context of China. Through comprehensive literature review, eight types of significant barriers are identified, including weak enforcement of government policies, market inefficiency, information barrier, small and scattering buildings, fragmentation of the construction industry, perceived high risk, higher initial cost, and difficulty in energy management. To overcome the barriers, the potential of CDM to facilitate EEB promotion is then discussed. These barriers are verified and potential solutions are tested with a questionnaire survey conducted among five professional groups in China, i.e. designers, project managers, quantity surveyors, marketing managers and property managers. The results suggest that they generally identified with the barriers. However, their limited awareness of CDM implies that corresponding policies should be formulated and implemented to improve their capability of providing more EEBs with CDM. - Highlights: ► Eight types of significant barriers to the implement of EEB are identified. ► The sources and roots of barriers are verified with the industry professionals. ► Benefits of CDM to EEB are discussed. ► There is limited awareness of CDM in building sector. ► Overcoming or alleviating these barriers through CDM and other sources are proposed

  14. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  15. 77 FR 31756 - Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating...

    Science.gov (United States)

    2012-05-30

    ... Parts 429, 430, and 431 RIN 1904-AC46 Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating Methods: Public Meeting AGENCY: Office of Energy Efficiency and Renewable... proposed modifications to the regulations authorizing the use of alternative methods of determining...

  16. Piezoelectric Energy Harvesting: A Green and Clean Alternative for Sustained Power Production

    Science.gov (United States)

    Cook-Chennault, Kimberly Ann; Thambi, Nithya; Bitetto, Mary Anne; Hameyie, E. B.

    2008-01-01

    Providing efficient and clean power is a challenge for devices that range from the micro to macro in scale. Although there has been significant progress in the development of micro-, meso-, and macro-scale power supplies and technologies, realization of many devices is limited by the inability of power supplies to scale with the diminishing sizes…

  17. An efficient, environmentally acceptable, clean up system for well completions

    International Nuclear Information System (INIS)

    Evaluation of different casing cleaning fluid systems has been a difficult task due to the lack of a standardised laboratory measurement technique for technical performance. In order to meet the need for a reliable evaluation of different chemicals and fluid systems used in casing cleaning, a laboratory procedure for the evaluation of casing cleaning chemicals has been developed. This procedure has been successfully applied in the development of a new environmentally acceptable casing cleaning fluid system. Two different procedures are presented. An old method where the drilling fluid was displaced down the annulus and up the drill string was found to be ineffective compared to a method where the drilling fluid was displaced up in the annulus. The application of this procedure together with the use of the new chemical additive has reduced the cost of casing cleanup operations in the range of 30-40%. 10 refs., 1 fig., 4 tabs

  18. An efficient, environmentally acceptable, clean up system for well completions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Oe.; Saasen, A.

    1996-12-31

    Evaluation of different casing cleaning fluid systems has been a difficult task due to the lack of a standardised laboratory measurement technique for technical performance. In order to meet the need for a reliable evaluation of different chemicals and fluid systems used in casing cleaning, a laboratory procedure for the evaluation of casing cleaning chemicals has been developed. This procedure has been successfully applied in the development of a new environmentally acceptable casing cleaning fluid system. Two different procedures are presented. An old method where the drilling fluid was displaced down the annulus and up the drill string was found to be ineffective compared to a method where the drilling fluid was displaced up in the annulus. The application of this procedure together with the use of the new chemical additive has reduced the cost of casing cleanup operations in the range of 30-40%. 10 refs., 1 fig., 4 tabs.

  19. Alternative bio-based fuels for aviation: the clean airports program

    International Nuclear Information System (INIS)

    The Renewable Aviation Fuels Development Center at Baylor University in Waco, Texas, has been designated as the national coordinator of the Clean Airports Program. The U.S. Dept. of Energy (US DOE) conferred this designation in March 1996. This program, a spin-off of the Clean Cities Program, was initiated to increase the use of alternative fuels in aviation. The two major fuels used in aviation are the current piston engine aviation gasoline and the current turbine engine fuel. The environmental impact of each of these fuels is significant. Aviation gasoline (100LL), currently used in the general aviation piston engine fleet, contributes 100% of the emissions containing lead in the U.S. today. Turbine engine fuel (jet fuel) produces two major environmental impacts: a local one, in the vicinity of the airports, and a global impact on climate change. The Clean Airports Program was established to achieve and maintain clean air at and in the vicinity of airports, through the use of alternative fuel-powered air and ground transportation vehicles. (author)

  20. An Evolutionary Efficiency Alternative to the Notion of Pareto Efficiency

    OpenAIRE

    Staveren, Irene

    2012-01-01

    textabstractThe paper argues that the notion of Pareto efficiency builds on two normative assumptions: the more general consequentialist norm of any efficiency criterion, and the strong no-harm principle of the prohibition of any redistribution during the economic process that hurts at least one person. These normative concerns lead to a constrained and static notion of efficiency in mainstream economics, ignoring dynamic efficiency gains from more equal allocations of resources. The paper ar...

  1. Nuclear energy as almost unique alternative for future clean reliable power

    International Nuclear Information System (INIS)

    The oil peak is predicted to appear by the end of 2020, which opens a wide range of options for the mankind from self-annihilation to the smartest energetic solutions. The thermal pollution having so low efficiency is still acceptable if no carbon is burned. There is a planetary thermal limitation to several Pw (1015 W), representing less than 1% from the total power received from the sun. This shows that the energy production may grow another 1000 times without visible consequences. The need for the nuclear power replacement of the actual thermal power plants is of about 1 Tw (1012 W), representing about 1000 nuclear reactors. Knowing that 1 Gw thermal power reactor requires an average 100 tons of fuel per year, there will be a serious shortage of nuclear fuel, as soon as this program will be launched. There are other opportunities offered by the nuclear power related to the hydrogen-powered transportation, which come to solve the other aspect of the carbon-based pollution. In spite of all these advantages the nuclear power is the giant able to solve the mankind's problems for the next 1000 years. Unfortunately, this is now a giant with clay legs if the fuel and waste economy are not well set, by minimizing the amount of fuel immobilized as waste and a better waste treatment. The nuclear energy is not the unique energetic alternative, the use of renewable energie in planetary cooperation is by far the best option, but there is an imperious need to back them by strong, clean and compact nuclear sources

  2. Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, D. J.; Haase, S.; Turchi, C. S.; Burman, K.

    2012-06-01

    In January 2012, the National Renewable Energy Laboratory delivered to the Department of the Interior the first part of a study on Navajo Generating Station (Navajo GS) and the likely impacts of BART compliance options. That document establishes a comprehensive baseline for the analysis of clean energy alternatives, and their ability to achieve benefits similar to those that Navajo GS currently provides. This analysis is a supplement to NREL's January 2012 study. It provides a high level examination of several clean energy alternatives, based on the previous analysis. Each has particular characteristics affecting its relevance as an alternative to Navajo GS. It is assumed that the development of any alternative resource (or portfolio of resources) to replace all or a portion of Navajo GS would occur at the end of a staged transition plan designed to reduce economic disruption. We assume that replacing the federal government's 24.3% share of Navajo GS would be a cooperative responsibility of both the U.S. Bureau of Reclamation (USBR) and the Central Arizona Water Conservation District (CAWCD).

  3. An Evolutionary Efficiency Alternative to the Notion of Pareto Efficiency

    NARCIS (Netherlands)

    I.P. van Staveren (Irene)

    2012-01-01

    textabstractThe paper argues that the notion of Pareto efficiency builds on two normative assumptions: the more general consequentialist norm of any efficiency criterion, and the strong no-harm principle of the prohibition of any redistribution during the economic process that hurts at least one per

  4. 76 FR 21673 - Alternative Efficiency Determination Methods and Alternate Rating Methods

    Science.gov (United States)

    2011-04-18

    ...-substantiation of an AEDM or ARM as a result of a change in standard or test procedure. 76 FR 12492 (March 7...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AC46 Alternative Efficiency Determination Methods and Alternate Rating Methods AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy....

  5. 77 FR 32038 - Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating...

    Science.gov (United States)

    2012-05-31

    ...; ] DEPARTMENT OF ENERGY 10 CFR Parts 429, 430, and 431 RIN 1904-AC46 Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating Methods AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of proposed rulemaking. SUMMARY: The U.S....

  6. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    Science.gov (United States)

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  7. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    Science.gov (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  8. Efficiency of cleaning procedure of milking equipment and bacterial quality of milk

    Directory of Open Access Journals (Sweden)

    Anna Sandrucci

    2010-01-01

    Full Text Available The cleaning and sanitation of milking equipment could be consider a critical point in the milking procedure because a cleaning failure could influence the level of bacteria contamination of bulk tank milk. Aim of the study is to monitor the cleaning procedures of milking systems in 7 dairy cows farms in Lombardy and to find a relation between efficacy of cleaning system and the bacterial quality of bulk tank milk, remaining washing water through milking equipment and teat cup surface. Cleaning procedures were monitored with Lactocorder, that measured: duration, water temperature, turbulence, percentage of water in pipes, water conductivity of pre- and post-rinse and detergent phases. Results showed that the monitored farms the most of the cleaning parameters were lower than recommendations, in particular maximum water temperature (42.1±9.9°C and percentage of water during detergent phase (76.1±13.9 %. A maximum temperature of detergent phase <40°C determined a high Standard Plate Count (SPC, thermoduric bacteria and Coliform Count (CC of bulk tank milk, SPC and CC of teat cup surface. The research indicated that monitoring the efficiency of cleaning milking equipment with proper tools provide useful information about possible sources of contamination of bulk tank milk. Improving cleaning milking efficiency allow to improve milk quality.

  9. 76 FR 77977 - U.S. Clean Energy and Energy Efficiency Trade Mission to Saudi Arabia Riyadh and Dhahran, Saudi...

    Science.gov (United States)

    2011-12-15

    ... International Trade Administration U.S. Clean Energy and Energy Efficiency Trade Mission to Saudi Arabia Riyadh... (MAS) units are organizing an Executive-Led Clean Energy and Energy Efficiency Trade Mission to Saudi... generation. The trade mission will target products, technologies and services in the clean energy...

  10. A pilot study of energy efficient air cleaning for ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara A.; Sullivan, Douglas P.; Katsapov, Gregory Y.; Fisk, William J.

    2002-11-01

    A laboratory pilot study has been undertaken with the material that showed the most promise (high capacity and low pressure drop) based on the literature review and associated calculations. The best-performing air cleaner was a commercially available pleated filter that contained a thin layer of small activated carbon particles between two sheets of non-woven fibrous webbing. We will refer to this unit as the ''ozone filter'' although it is marketed for removal of volatile organic compounds (VOCs) from automobile passenger compartments. This pilot study strongly suggests that ozone air cleaning can be practical in commercial air handling systems; however, further tests are needed to assess air cleaner performance under a wider range of conditions.

  11. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  12. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    Science.gov (United States)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  13. Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the radiopharmaceutical production

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Tatyana S.; Batista, Vanessa; Gomes, Antonio; Matsuda, Margareth; Fukumori, Neuza; Araujo, Elaine B. de, E-mail: tsbaptista@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    A great challenge in the radiopharmaceuticals production is to fulfill the Good Manufacturing Practices (GMPs), involving the validation of process and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms and normative resolutions has led to a constant concern with programs and cleaning validation in pharmaceutical production. The main goal of GMP is to reduce risks inherent to pharmaceutical production, that is to reduce product contamination with microorganisms and cross-contamination. The basic requirements to prevent contamination is the development and implementation of efficient cleaning programs. In the case of clean rooms for the production of injectable radiopharmaceuticals, the requirement for cleaning programs is evidently higher due to the characteristics of these areas with hot cells for radioactive materials, where sterile radiopharmaceuticals are manipulated and distributed before administration to patients just after minutes or hours of its preparation. In the Radiopharmacy Department at IPEN it was established a cleaning program for clean rooms and hot cells using a hydrogen peroxide solution (20% proxitane alfa). The objective of this work was to assess effectiveness of this cleaning agent in reducing and/or eliminating microbial load in the clean rooms and equipment to acceptable levels in accordance with the current legislation. The analysis was conducted using results of the environmental monitoring program with and settling contact plates in clean rooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population on the surface of equipment and clean rooms. It was also evaluated the best way to accomplish the cleaning program considering the dosimetric factor in each production process, as the main concern of pharmaceutical companies is the microbiological contamination, in

  14. Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the radiopharmaceutical production

    International Nuclear Information System (INIS)

    A great challenge in the radiopharmaceuticals production is to fulfill the Good Manufacturing Practices (GMPs), involving the validation of process and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms and normative resolutions has led to a constant concern with programs and cleaning validation in pharmaceutical production. The main goal of GMP is to reduce risks inherent to pharmaceutical production, that is to reduce product contamination with microorganisms and cross-contamination. The basic requirements to prevent contamination is the development and implementation of efficient cleaning programs. In the case of clean rooms for the production of injectable radiopharmaceuticals, the requirement for cleaning programs is evidently higher due to the characteristics of these areas with hot cells for radioactive materials, where sterile radiopharmaceuticals are manipulated and distributed before administration to patients just after minutes or hours of its preparation. In the Radiopharmacy Department at IPEN it was established a cleaning program for clean rooms and hot cells using a hydrogen peroxide solution (20% proxitane alfa). The objective of this work was to assess effectiveness of this cleaning agent in reducing and/or eliminating microbial load in the clean rooms and equipment to acceptable levels in accordance with the current legislation. The analysis was conducted using results of the environmental monitoring program with and settling contact plates in clean rooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population on the surface of equipment and clean rooms. It was also evaluated the best way to accomplish the cleaning program considering the dosimetric factor in each production process, as the main concern of pharmaceutical companies is the microbiological contamination, in

  15. Enhanced understanding of energy ratepayers: Factors influencing perceptions of government energy efficiency subsidies and utility alternative energy use

    International Nuclear Information System (INIS)

    This study explores factors related to energy consumers' perceptions of government subsidies for utility provided energy efficiency (EE) programs and for utility providers' use of more clean/alternative energy sources. Demographic factors, attitudes, planned purchases, and perceptions of utility provider motives in relation to governmental and utility provider EE initiatives (i.e. providing discounts and coupons for CFL bulbs), plus the influence of gain- and loss-framed messages are investigated. Over 2000 respondents completed a 16 item phone survey. Hierarchical regression explained 38% of the variance in reactions regarding government subsidies of the cost of utility provided EE programs and 43% of the variance in perceptions involving whether utility companies should use of more clean or alternative forms of energy. Gender and party differences emerged. Loss-framed messages were more important when the issue was government subsidies. Both gain- and loss-framed messages were important when clean/alternative energy was the issue. - Highlights: • Over 2000 ratepayers were surveyed on their attitudes, planned behaviors and perceptions towards energy efficiency programs. • Almost 40% of how ratepayers feel about government subsidies and utility use of clean/alternative energy was explained. • Loss-framed messages were more effective when the dependent variable was ratepayer perception of government subsidies

  16. The Krakow clean fossil fuels and energy efficiency program

    Energy Technology Data Exchange (ETDEWEB)

    Feibus, H.

    1995-12-31

    The joint effort by Polish and American organizations in Krakow has accomplished a great deal in just a few years. In particular, the low emission sources program has had major successes. Poland and America have a lot to learn from each other in the clean and economical use of coal. Both our countries are major producers and users of coal. Both have had to deal with the emissions of particulate and organics from coal combustion. We were fortunate, since our free market economy and democratic government helped us deal with a lot of these problems in the 1950s. In Poland, the freedom to solve these problems has evolved only in the last few years. In the first phase of the program, Polish and American engineers ran combustion tests on boilers and stoves in Krakow. They also performed analyses on the cost and feasibility of various equipment changes. The results of the first phase were used in refining the spreadsheet model to give better estimates of costs emissions. The first phase also included analyses of incentives for proceeding with needed changes. These analyses identified actions needed to create a market for the goods and services which control pollution. Such actions could include privatization, regulation, or financial incentives. The second phase of the program consisted of public meetings in Chicago, Washington, and Krakow. The purpose of the meetings was to inform U.S. and Polish firms about the results of phase 1 and to encourage them to compete to take part in phase 3. The third phase currently underway consists of the commercial ventures that were competitively selected. These ventures were consistent with recommendations unanimously made by the BSC. The three phases of the Polish-American program are discussed.

  17. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    2014-01-08

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the fact that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.

  18. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    International Nuclear Information System (INIS)

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the fact that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process

  19. Interrogating chemical variation via layer-by-layer SERS during biofouling and cleaning of nanofiltration membranes with further investigations into cleaning efficiency.

    Science.gov (United States)

    Cui, Li; Chen, Pengyu; Zhang, Bifeng; Zhang, Dayi; Li, Junyi; Martin, Francis L; Zhang, Kaisong

    2015-12-15

    Periodic chemical cleaning is an essential step to maintain nanofiltration (NF) membrane performance and mitigate biofouling, a major impediment in high-quality water reclamation from wastewater effluent. To target the important issue of how to clean and control biofouling more efficiently, this study developed surface-enhanced Raman spectroscopy (SERS) as a layer-by-layer tool to interrogate the chemical variations during both biofouling and cleaning processes. The fact that SERS only reveals information on the surface composition of biofouling directly exposed to cleaning reagents makes it ideal for evaluating cleaning processes and efficiency. SERS features were highly distinct and consistent with different biofouling stages (bacterial adhesion, rapid growth, mature and aged biofilm). Cleaning was performed on two levels of biofouling after 18 h (rapid growth of biofilm) and 48 h (aged biofilm) development. An opposing profile of SERS bands between biofouling and cleaning was observed and this suggests a layer-by-layer cleaning mode. In addition, further dynamic biochemical and infrastructural changes were demonstrated to occur in the more severe 48-h biofouling, resulting in the easier removal of sessile cells from the NF membrane. Biofouling substance-dependent cleaning efficiency was also evaluated using the surfactant sodium dodecyl sulfate (SDS). SDS appeared more efficient in cleaning lipid than polysaccharide and DNA. Protein and DNA were the predominant residual substances (irreversible fouling) on NF membrane leading to permanent flux loss. The chemical information revealed by layer-by-layer SERS will lend new insights into the optimization of cleaning reagents and protocols for practical membrane processes. PMID:26433006

  20. Interrogating chemical variation via layer-by-layer SERS during biofouling and cleaning of nanofiltration membranes with further investigations into cleaning efficiency.

    Science.gov (United States)

    Cui, Li; Chen, Pengyu; Zhang, Bifeng; Zhang, Dayi; Li, Junyi; Martin, Francis L; Zhang, Kaisong

    2015-12-15

    Periodic chemical cleaning is an essential step to maintain nanofiltration (NF) membrane performance and mitigate biofouling, a major impediment in high-quality water reclamation from wastewater effluent. To target the important issue of how to clean and control biofouling more efficiently, this study developed surface-enhanced Raman spectroscopy (SERS) as a layer-by-layer tool to interrogate the chemical variations during both biofouling and cleaning processes. The fact that SERS only reveals information on the surface composition of biofouling directly exposed to cleaning reagents makes it ideal for evaluating cleaning processes and efficiency. SERS features were highly distinct and consistent with different biofouling stages (bacterial adhesion, rapid growth, mature and aged biofilm). Cleaning was performed on two levels of biofouling after 18 h (rapid growth of biofilm) and 48 h (aged biofilm) development. An opposing profile of SERS bands between biofouling and cleaning was observed and this suggests a layer-by-layer cleaning mode. In addition, further dynamic biochemical and infrastructural changes were demonstrated to occur in the more severe 48-h biofouling, resulting in the easier removal of sessile cells from the NF membrane. Biofouling substance-dependent cleaning efficiency was also evaluated using the surfactant sodium dodecyl sulfate (SDS). SDS appeared more efficient in cleaning lipid than polysaccharide and DNA. Protein and DNA were the predominant residual substances (irreversible fouling) on NF membrane leading to permanent flux loss. The chemical information revealed by layer-by-layer SERS will lend new insights into the optimization of cleaning reagents and protocols for practical membrane processes.

  1. Evaluation of the efficiency of alternative enzyme production technologies

    DEFF Research Database (Denmark)

    Albæk, Mads Orla

    production of cellulases and hemi-cellulases. The aim of the thesiswas to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process...... of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative fermentation technologies for enzyme production were identified in the open literature. Their mass transfer capabilities and their energy efficiencies were...... complexity of the fermentation vessel. The airlift reactor was identified as a potential high energy efficiency technology for enzyme production with excellent chances for success. Two different pilot plant configurations of the airlift reactor technology were tested in nine fermentations. The headspace...

  2. Wastewater Mediated Activation of Micromotors for Efficient Water Cleaning.

    Science.gov (United States)

    Srivastava, Sarvesh Kumar; Guix, Maria; Schmidt, Oliver G

    2016-01-13

    We present wastewater-mediated activation of catalytic micromotors for the degradation of nitroaromatic pollutants in water. These next-generation hybrid micromotors are fabricated by growing catalytically active Pd particles over thin-metal films (Ti/Fe/Cr), which are then rolled-up into self-propelled tubular microjets. Coupling of catalytically active Pd particles inside the micromotor surface in the presence of a 4-nitrophenol pollutant (with NaBH4 as reductant) results in autonomous motion via the bubble-recoil propulsion mechanism such that the target pollutant mixture (wastewater) is consumed as a fuel, thereby generating nontoxic byproducts. This study also offers several distinct advantages over its predecessors including no pH/temperature manipulation, limited stringent process control and complete destruction of the target pollutant mixture. The improved intermixing ability of the micromotors caused faster degradation ca. 10 times higher as compared to its nonmotile counterpart. The high catalytic efficiency obtained via a wet-lab approach has promising potential in creating hybrid micromotors comprising of multicatalytic systems assembled into one entity for sustainable environmental remediation and theranostics. PMID:26674098

  3. Needs, resources and climate change: Clean and efficient conversion technologies

    KAUST Repository

    Ghoniem, Ahmed F.

    2011-02-01

    Energy "powers" our life, and energy consumption correlates strongly with our standards of living. The developed world has become accustomed to cheap and plentiful supplies. Recently, more of the developing world populations are striving for the same, and taking steps towards securing their future energy needs. Competition over limited supplies of conventional fossil fuel resources is intensifying, and more challenging environmental problems are springing up, especially related to carbon dioxide (CO 2) emissions. There is strong evidence that atmospheric CO 2 concentration is well correlated with the average global temperature. Moreover, model predictions indicate that the century-old observed trend of rising temperatures could accelerate as carbon dioxide concentration continues to rise. Given the potential danger of such a scenario, it is suggested that steps be taken to curb energy-related CO 2 emissions through a number of technological solutions, which are to be implemented in a timely fashion. These solutions include a substantial improvement in energy conversion and utilization efficiencies, carbon capture and sequestration, and expanding the use of nuclear energy and renewable sources. Some of these technologies already exist, but are not deployed at sufficiently large scale. Others are under development, and some are at or near the conceptual state. © 2010 Elsevier Ltd. All rights reserved.

  4. Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries.

    Science.gov (United States)

    Luján-Facundo, M J; Mendoza-Roca, J A; Cuartas-Uribe, B; Álvarez-Blanco, S

    2016-11-01

    Membrane cleaning is a key point for the implementation of membrane technologies in the dairy industry for proteins concentration. In this study, four ultrafiltration (UF) membranes with different molecular weight cut-offs (MWCOs) (5, 15, 30 and 50kDa) and materials (polyethersulfone and ceramics) were fouled with three different whey model solutions: bovine serum albumin (BSA), BSA plus CaCl2 and whey protein concentrate solution (Renylat 45). The purpose of the study was to evaluate the effect of ultrasounds (US) on the membrane cleaning efficiency. The influence of ultrasonic frequency and the US application modes (submerging the membrane module inside the US bath or applying US to the cleaning solution) were also evaluated. The experiments were performed in a laboratory plant which included the US equipment and the possibility of using two membrane modules (flat sheet and tubular). The fouling solution that caused the highest fouling degree for all the membranes was Renylat 45. Results demonstrated that membrane cleaning with US was effective and this effectiveness increased at lower frequencies. Although no significant differences were observed between the two different US applications modes tested, slightly higher cleaning efficiencies values placing the membrane module at the bottom of the tank were achieved. PMID:27245952

  5. An assessment of alternatives for replacing Freon 113 in bench type electrical circuit board cleaning at Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation, and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ''best alternatives'': Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases

  6. Investigation of efficiency of air cleaning from acetone using a segmental construction biofilter

    OpenAIRE

    Denas Bacevičius; Alvydas Zagorskis

    2015-01-01

    Volatile organic compounds, e. g. acetone, have a direct impact on climate change, decrease of ozone in the air, and on the growth of greenhouse effect. One of the most popular air purifying methods from VOC is a biological air cleaning. Experimental investigations were conducted to determine the efficiency of the new structure of biofilter with polypropylene plates segments. During the investigations the efficiency of segmental construction biofilter of air purification at different initial ...

  7. Triboelectrostatic Separation-an Efficient Method of Producing Low Ash Clean Coal

    Institute of Scientific and Technical Information of China (English)

    章新喜; 边炳鑫; 段超红; 熊建军

    2002-01-01

    At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the results of the research on producing low ash (<2%) coal with triboelectrostatic separator used for producing high-grade active carbon. The test is conducted in bench-scale system, whose capacity is 30~100 kg/h. The results indicate that: 1) the ash content of clean coal increases with the increase of solid content of feedstock, on the contrary, the yield of clean coal is declining; 2) a high velocity may result in a good separation efficiency; 3) for the same solid content, the reunion caused by intermolecular force makes the separation efficiency drop down when the ultra-fine coal is separated; 4) the separation efficiency is improved with the increase of electric field intensity, but there is a good optimized match between the electric field intensity and yield of clean coal; 5) a low rank coal is easy-to-wash in triboelectrostatic separation process; 6) the yield of clean coal can be enhanced and the ash decreased through adapting optimized conditions according to various coals.

  8. Influence of wet chemical cleaning on quantum efficiency of GaN photocathode

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Hui; Gao Pin; Wang Hong-Gang; Li Biao; Chang Ben-Kang

    2013-01-01

    GaN samples 1-3 are cleaned by a 2:2:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%) to de-ionized water; hydrochloric acid (37%); or a 4:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%).The samples are activated by Cs/O after the same annealing process.X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows:sample 1 has the largest proportion of Ga,N,and O among the three samples,while its C content is the lowest.After activation the quantum efficiency curves show sample 1 has the best photocathode performance.We think the wet chemical cleaning method is a process which will mainly remove C contamination.

  9. EM-21 ALTERNATIVE ENHANCED CHEMICAL CLEANING PROGRAM FOR SLUDGE HEEL REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M; King, W; Martino, C

    2009-12-18

    Preliminary studies in the EM-21 Alternative Chemical Cleaning Program have focused on understanding the dissolution of Hematite (a primary sludge heel phase) in oxalic acid, with a focus on minimizing oxalic acid usage. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control, preferably using a supplemental proton source, is critical to oxalate minimization. With pH control, iron concentrations as high as 0.103 M have been obtained in 0.11 M oxalic acid. This is consistent with the formation of a 1:1 (iron:oxalate) complex. The solubility of Hematite in oxalic acid has been confirmed to increase by a factor of 3 when the final solution pH decreases from 5 to below 1. This is consistent with literature predictions of a shift in speciation from a 1:3 to 1:1 as the pH is lowered. Above a solution pH of 6, little Hematite dissolves. These results emphasize the importance of pH control in optimizing Hematite dissolution in oxalic acid.

  10. Clean, agile alternative binders, additives and plasticizers for propellant and explosive formulations

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.M. [Lawrence Livermore National Lab., CA (United States); Hawkins, T.W. [Phillips Lab., Edwards AFB, CA (United States); Lindsay, G.A. [Naval Weapons Station, China Lake, CA (United States)] [and others

    1994-12-01

    As part of the Strategic Environmental Research and Development Program (SERDP) a clean, agile manufacturing of explosives, propellants and pyrotechniques (CANPEP) effort set about to identify new approaches to materials and processes for producing propellants, explosives and pyrotechniques (PEP). The RDX based explosive PBXN-109 and gun propellant M-43 were identified as candidates for which waste minimization and recycling modifications might be implemented in a short time frame. The binders, additives and plasticizers subgroup identified cast non-curable thermoplastic elastomer (TPE) formulations as possible replacement candidates for these formulations. Paste extrudable explosives were also suggested as viable alternatives to PBXN-109. Commercial inert and energetic TPEs are reviewed. Biodegradable and hydrolyzable binders are discussed. The applicability of various types of explosive formulations are reviewed and some issues associated with implementation of recyclable formulations are identified. It is clear that some processing and weaponization modifications will need to be made if any of these approaches are to be implemented. The major advantages of formulations suggested here over PBXN-109 and M-43 is their reuse/recyclability. Formulations using TPE or Paste could by recovered from a generic bomb or propellant and reused if they met specification or easily reprocessed and sold to the mining industry.

  11. Comparing the efficiency of Denture brush and Ordinary brush in complete Denture cleaning

    OpenAIRE

    Amir Fayaz; Mohaddeseh Shakerian; Ghassem Ansari

    2013-01-01

    Please cite this article as: Fayaz A, Shakerian M, Ansari GH. Comparing the Efficiency of Denture brush and Ordinary brush in complete Denture cleaning. Novel Biomed 2013;1(2):62-65.Background & objective: Denture cleansing is a key element in retaining mucosa free of any inflammation. However, many denture users usually ignore this important factor. This investigation was designed to compare the efficacy of a denture brush and an ordinary brush in cleansing process of complete dentures.M...

  12. Efficiency of different protocols for enamel clean-up after bracket debonding: an in vitro study

    Science.gov (United States)

    Sigilião, Lara Carvalho Freitas; Marquezan, Mariana; Elias, Carlos Nelson; Ruellas, Antônio Carlos; Sant'Anna, Eduardo Franzotti

    2015-01-01

    Objective: This study aimed to assess the efficiency of six protocols for cleaning-up tooth enamel after bracket debonding. Methods: A total of 60 premolars were divided into six groups, according to the tools used for clean-up: 12-blade bur at low speed (G12L), 12-blade bur at high speed (G12H), 30-blade bur at low speed (G30L), DU10CO ORTHO polisher (GDU), Renew System (GR) and Diagloss polisher (GD). Mean roughness (Ra) and mean roughness depth (Rz) of enamel surface were analyzed with a profilometer. Paired t-test was used to assess Ra and Rz before and after enamel clean-up. ANOVA/Tukey tests were used for intergroup comparison. The duration of removal procedures was recorded. The association between time and variation in enamel roughness (∆Ra, ∆Rz) were evaluated by Pearson's correlation test. Enamel topography was assessed by scanning electron microscopy (SEM). Results: In Groups G12L and G12H, original enamel roughness did not change significantly. In Groups G30L, GDU, GR and GD, a smoother surface (p < 0.05) was found after clean-up. In Groups G30L and GD, the protocols used were more time-consuming than those used in the other groups. Negative and moderate correlation was observed between time and (∆Ra, ∆Rz); Ra and (∆Ra, ∆Rz); Rz (r = - 0.445, r = - 0.475, p < 0.01). Conclusion: All enamel clean-up protocols were efficient because they did not result in increased surface roughness. The longer the time spent performing the protocol, the lower the surface roughness. PMID:26560825

  13. Efficiency of different protocols for enamel clean-up after bracket debonding: an in vitro study

    Directory of Open Access Journals (Sweden)

    Lara Carvalho Freitas Sigilião

    2015-10-01

    Full Text Available Objective: This study aimed to assess the efficiency of six protocols for cleaning-up tooth enamel after bracket debonding.Methods:A total of 60 premolars were divided into six groups, according to the tools used for clean-up: 12-blade bur at low speed (G12L, 12-blade bur at high speed (G12H, 30-blade bur at low speed (G30L, DU10CO ORTHO polisher (GDU, Renew System (GR and Diagloss polisher (GD. Mean roughness (Ra and mean roughness depth (Rz of enamel surface were analyzed with a profilometer. Paired t-test was used to assess Ra and Rz before and after enamel clean-up. ANOVA/Tukey tests were used for intergroup comparison. The duration of removal procedures was recorded. The association between time and variation in enamel roughness (∆Ra, ∆Rz were evaluated by Pearson's correlation test. Enamel topography was assessed by scanning electron microscopy (SEM.Results:In Groups G12L and G12H, original enamel roughness did not change significantly. In Groups G30L, GDU, GR and GD, a smoother surface (p < 0.05 was found after clean-up. In Groups G30L and GD, the protocols used were more time-consuming than those used in the other groups. Negative and moderate correlation was observed between time and (∆Ra, ∆Rz; Ra and (∆Ra, ∆Rz; Rz (r = - 0.445, r = - 0.475, p < 0.01.Conclusion:All enamel clean-up protocols were efficient because they did not result in increased surface roughness. The longer the time spent performing the protocol, the lower the surface roughness.

  14. Investigation of efficiency of air cleaning from acetone using a segmental construction biofilter

    Directory of Open Access Journals (Sweden)

    Denas Bacevičius

    2015-10-01

    Full Text Available Volatile organic compounds, e. g. acetone, have a direct impact on climate change, decrease of ozone in the air, and on the growth of greenhouse effect. One of the most popular air purifying methods from VOC is a biological air cleaning. Experimental investigations were conducted to determine the efficiency of the new structure of biofilter with polypropylene plates segments. During the investigations the efficiency of segmental construction biofilter of air purification at different initial concentrations of pollutants was determined. Different concentrations of pollutants were estimated during the acetone dilution with water. During the tests the efficiency of biofilter air purification from acetone vapor and its change under different concentrations of vapors was set. Based on test results, the maximum efficiency of biofilter air purification was up to 93%. Studies have shown that increasing the allowable pollutant concentration, the efficiency of air purification unit decreases. Increasing the concentration of supplied acetone vapor into the biofilter from 232 to 701 mg/m3, cleaning efficiency decreased from 92.8 to 82.3%. Since microorganisms fail to oxidize organic compounds, the filter works better at lower initial concentrations of pollutants.

  15. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various

  16. Clean/alternative fueled fleet programs - 1990 Amendments to the Clean Air Act, the Colorado Air Pollution Prevention and Control Act, and Denver City and County regulations

    International Nuclear Information System (INIS)

    Despite substantial regulations for nearly two decades, attainment of this ambient standards for ozone and carbon monoxide (CO) remain difficult goals to achieve, Even with of ozone precursors and CO. The 1990 Amendments to the Clean Air Act (CAA90) prescribe further reductions of mobile source emissions. One such reduction strategy is using clean fuels, such as methanol, ethanol, or other alcohols (in blends of 85 percent or more alcohol with gasoline or other fuel), reformulated gasoline or diesel, natural gas, liquified petroleum gas, hydrogen, or electricity. There are regulatory measures involving special fuels which will be required in areas heavily polluted with ozone and CO. The state of Colorado recently passed the 1992 Air Pollution Prevention and Control Act which included provisions for the use of alternative fuels which will be implemented in 1994. In addition to adhering to the Colorado state regulations, the city and county of Denver also have regulations pertaining to the use of alternative fuels in fleets of 10 or more vehicles. Denver's program began in 1992. This paper will address the issue of fleet conversion and its impact on industry in Colorado, and Denver in particular

  17. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    Energy Technology Data Exchange (ETDEWEB)

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, Michael S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had been pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.

  18. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  19. Air cleaning efficiency of deodorant materials under dynamic conditions: effect of air flow rate

    DEFF Research Database (Denmark)

    Mizutani, Chiyomi; Bivolarova, Mariya Petrova; Melikov, Arsen Krikor;

    2014-01-01

    was evaluated as deodorant materials neutralising ammonia in air. The deodorant material efficiency was tested in a special experimental set-up consisting of a straight pipe section, an ammonia gas generator, a fan and a textile frame. The deodorant materials, placed in the pipe, were exposed to a flow of air......Unpleasant odor is a serious problem in hospitals and elderly facilities. One of the unpleasant odors is ammonia originating from human urine and sweat. The air cleaning efficiency of porous activated carbon fiber fabric which has been treated with acid, and porous activated carbon fiber fabric...

  20. Sec16 alternative splicing dynamically controls COPII transport efficiency.

    Science.gov (United States)

    Wilhelmi, Ilka; Kanski, Regina; Neumann, Alexander; Herdt, Olga; Hoff, Florian; Jacob, Ralf; Preußner, Marco; Heyd, Florian

    2016-08-05

    The transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi depends on COPII-coated vesicles. While the basic principles of the COPII machinery have been identified, it remains largely unknown how COPII transport is regulated to accommodate tissue- or activation-specific differences in cargo load and identity. Here we show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T-cell activation. Using splice-site blocking morpholinos and CRISPR/Cas9-mediated genome engineering, we show that the number of ER exit sites, COPII dynamics and transport efficiency depend on Sec16 alternative splicing. As the mechanistic basis, we suggest the C-terminal Sec16 domain to be a splicing-controlled protein interaction platform, with individual isoforms showing differential abilities to recruit COPII components. Our work connects the COPII pathway with alternative splicing, adding a new regulatory layer to protein secretion and its adaptation to changing cellular environments.

  1. The Search for Nonflammable Solvent Alternatives for Cleaning Aerospace Oxygen Systems

    Science.gov (United States)

    Mitchell, Mark; Lowrey, Nikki

    2012-01-01

    Oxygen systems are susceptible to fires caused by particle and nonvolatile residue (NVR) contaminants, therefore cleaning and verification is essential for system safety. . Cleaning solvents used on oxygen system components must be either nonflammable in pure oxygen or complete removal must be assured for system safety. . CFC -113 was the solvent of choice before 1996 because it was effective, least toxic, compatible with most materials of construction, and non ]reactive with oxygen. When CFC -113 was phased out in 1996, HCFC -225 was selected as an interim replacement for cleaning propulsion oxygen systems at NASA. HCFC-225 production phase-out date is 01/01/2015. HCFC ]225 (AK ]225G) is used extensively at Marshall Space Flight Center and Stennis Space Center for cleaning and NVR verification on large propulsion oxygen systems, and propulsion test stands and ground support equipment. . Many components are too large for ultrasonic agitation - necessary for effective aqueous cleaning and NVR sampling. . Test stand equipment must be cleaned prior to installation of test hardware. Many items must be cleaned by wipe or flush in situ where complete removal of a flammable solvent cannot be assured. The search for a replacement solvent for these applications is ongoing.

  2. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    Science.gov (United States)

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success. PMID:26667058

  3. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    Science.gov (United States)

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.

  4. Feasibility for the medium efficiency filter as a postfilter in the air cleaning unit

    International Nuclear Information System (INIS)

    The Air Cleaning Unit (ACU) is provided in a nuclear facility to filter the radioactive materials in gaseous effluents released from the facility during normal operation and during a postulated accident. The Air Cleaning Unit (ACU) consists of pre-HEPA filters, charcoal adsorber, post HEPA filters, fans, etc. The charcoal filters keep on-site dose and off-site effluents ALARA, consistent with regulatory requirements. The function of HEPA filter downstream of charcoal(carbon) adsorber in ACU is to catch potential radioactive carbon dust and to be a backup in the event of failure of upstream HEPA. Previous Regulatory Guide use only post HEPA filter of charcoal adsorber downstream but the Regulatory Guide of current revisions allows use of 95% dust spot efficiency filters in lieu of HEPA at the downstream of the carbon adsorber. In this paper is described that the background information of filters, Current Regulatory Guide of revised by the United States Nuclear Regulatory Commission and the feasibility for the medium efficiency filter as a carbon adsorber post filter in the Air Cleaning Unit

  5. 1991-92 Canadian directory of efficiency and alternative energy technologies

    International Nuclear Information System (INIS)

    The 1991-1992 Canadian Directory of efficiency and alternative energy technologies. The three main sections cover Alternative Energy Companies, Energy Efficiency Companies and Energy Service Companies. Contact and company information is provided

  6. CALCIUM CARBIDE: AN EFFICIENT ALTERNATIVE TO THE USE OF ALUMINUM

    Directory of Open Access Journals (Sweden)

    Amilton Carlos Pinheiro Cardoso Filho

    2013-03-01

    Full Text Available The steel demand for fine applications have increased considerably in the last years, and the criteria for its production are even stricter, mainly in relation to the residual elements content and cleanness required. In relation to the steel cleanness, the main problem faced is the control of the amount and morphology of alumina inclusions, generated in the steel deoxidation with aluminum. Besides harming the products quality, the presence of non metallic inclusions can originate nozzle clogging, and consequently interruptions in the process flux. Aiming to improve the steel cleanness and to minimize nozzle clogging, this study is developed to evaluate the partial substitution of aluminum by calcium carbide in the steel deoxidation. Along the operational procedures, the calcium carbide was applied to 397 heats, through what the improvement in steel cleanness is confirmed, with consequent reduction in the nozzle clogging occurrence.

  7. Radioisotope tracer technology for a hydraulic efficiency diagnosis of sludge digester after cleaning up

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Hee; Kim Jong Bum; Choi, Byung Jong

    2004-03-01

    Radiotracer experiments were carried out on a cylindrical 2-stage anaerobic sludge digester in order to investigate the improvement of its efficiency by means of RTD (Residence Time Distribution) measurements before and after cleaning up the inside of the digester. The tracer was Sc-46 in an EDTA solution which forms such a stable complex compound to keep the isotope from being absorbed onto the surface of the pipelines or the wall. It was injected into the digester by pressurized nitrogen gas and its movement was monitored by NaI(Tl) scintillation detectors installed around the digester and recorded for a month by a 24-channel data acquisition system specially developed for radiotracer experiments by the Korea Tracer Group of KAERI. The experimental data was analyzed for the MRT (Mean Residence Time) and other parameters characterizing the flow behavior. After the cleaning of the digesters the variance has been decreased and the sludge dynamics was activated as a result of the increase of the effective volume from 20% to 80% after cleaning up in the secondary digester. Particularly the MRT of the secondary digester which has no mixing mechanism has been increased by 3 times.

  8. Clean coal technology and acid rain compliance: An examination of alternative incentive proposals

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, K.A. [Center for Regulatory Studies, Normal, IL (United States); South, D.W. [Argonne National Lab., IL (United States)

    1991-12-31

    The Clean Air Act Amendments (CAAA) of 1990 rely primarily on the use of market incentives to stimulate least-cost compliance choices by electric utilities. Because of the potential risks associated with selecting Clean Coal Technologies (CCTs) and the public-good nature of technology commercialization, electric utilities may be reluctant to adopt CCTs as part of their compliance strategies. This paper examines the nature of the risks and perceived impediments to adopting CCTs as a compliance option. It also discusses the incentives that regulatory policy makers could adopt to mitigate these barriers to CCT adoption. (VC)

  9. Clean coal technology and acid rain compliance: An examination of alternative incentive proposals

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, K.A. (Center for Regulatory Studies, Normal, IL (United States)); South, D.W. (Argonne National Lab., IL (United States))

    1991-01-01

    The Clean Air Act Amendments (CAAA) of 1990 rely primarily on the use of market incentives to stimulate least-cost compliance choices by electric utilities. Because of the potential risks associated with selecting Clean Coal Technologies (CCTs) and the public-good nature of technology commercialization, electric utilities may be reluctant to adopt CCTs as part of their compliance strategies. This paper examines the nature of the risks and perceived impediments to adopting CCTs as a compliance option. It also discusses the incentives that regulatory policy makers could adopt to mitigate these barriers to CCT adoption. (VC)

  10. Methodology and data used for estimating the complex-wide impacts of alternative environmental restoration clean-up goals

    International Nuclear Information System (INIS)

    This paper describes the methodologies and data used for estimating the complex-wide impacts of alternative strategies for conducting remediation of all DOE sites and facilities, but does not address issues relating to Waste Management capabilities. Clean-up strategies and their corresponding goals for contaminated media may be driven by concentration-based regulatory standards, land-use standards (e.g., residential, industrial, wild life reserve, or totally restricted), risk-based standards, or other standards determined through stakeholder input. Strategies implemented to achieve these goals usually require the deployment of (a) clean-up technologies to destroy, remove, or contain the contaminants of concern; (b) institutional controls to prevent potential receptors from coming into contact with the contaminants; or (c) a combination of the above

  11. An alternative clean-up column for the determination of polychlorinated biphenyls in solid matrices.

    Science.gov (United States)

    Ndunda, Elizabeth N; Madadi, Vincent O; Mizaikoff, Boris

    2015-12-01

    The need for continuous monitoring of polychlorinated biphenyls (PCBs) has necessitated the development of analytical techniques that are sensitive and selective with minimal reagent requirement. In light of this, we developed a column for clean-up of soil and sediment extracts, which is less demanding in terms of the amount of solvent and sorbent. The dual-layer column consists of acidified silica gel and molecularly imprinted polymers (MIPs). MIPs were synthesized via aqueous suspension polymerization using PCB 15 as the dummy template, 4-vinylpyridine as the functional monomer and ethylene glycol dimethacrylate as the cross-linker and the obtained particles characterized via SEM, BET, and batch rebinding assays. Pre-concentration of the spiked real-world water sample using MISPE gave recoveries between 85.2 and 104.4% (RSD clean-up of extracts from complex matrices provided recoveries of 91.6-102.5% (RSD clean-up using acidified silica (70.4-90.5%; RSD clean-up procedure for continuous monitoring of PCBs. Method detection limits were 0.01-0.08 ng g(-1) and 0.002-0.01 ng mL(-1) for solid matrices and water, respectively.

  12. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Finch, P.; Potes, A.

    2010-06-01

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  13. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up

    International Nuclear Information System (INIS)

    Air-blown IGCC systems with hot fuel gas clean-up are investigated. In detail, the gas clean-up station consists of two reactors: in the first, the raw syngas exiting the gasifier and passed through high-temperature syngas coolers is desulfurized by means of a zinc oxide-based sorbent, whereas in the second the sulfided sorbent is duly regenerated. The hot fuel gas clean-up station releases H2S-free syngas, which is ready to fuel the combustion turbine after hot gas filtration, and a SO2-laden stream, which is successively treated in a wet scrubber. A thermodynamic analysis of two air-blown IGCC systems, the first with cold fuel gas clean-up and the second with hot fuel gas clean-up, both with a state-of-the-art combustion turbine as topping cycle, shows that it is possible to obtain a really attractive net efficiency (more than 51%) for the second system, with significant improvements in comparison with the first system. Nevertheless, higher efficiency is accomplished with a small reduction in the power output and no sensible efficiency improvements seem to be appreciated when the desulfurization temperature increases. Other IGCC systems, with an advanced 1500 °C-class combustion turbine as the result of technology improvements, are investigated as well, with efficiency as high as 53%. - Highlights: ► Hot fuel gas clean-up is a highly favorable technology for IGCC concepts. ► Significant IGCC efficiency improvements are possible with hot fuel gas clean-up. ► Size reductions of several IGCC components are possible. ► Higher desulfurization temperatures do not sensibly affect IGCC efficiency. ► IGCC efficiency as high as 53% is possible with a 1500°C-class combustion turbine

  14. Alternative approach for Article 5. Energie Efficiency Directive; Alternatieve aanpak artikel 5. Energy Efficiency Directive

    Energy Technology Data Exchange (ETDEWEB)

    Menkveld, M.; Jablonska, B. [ECN Beleidsstudies, Petten (Netherlands)

    2013-05-15

    Article 5 of the Energy Efficiency Directive (EED) is an annual obligation to renovate 3% of the building stock of central government. After renovation the buildings will meet the minimum energy performance requirements laid down in Article 4 of the EPBD. The Directive gives room to an alternative approach to achieve the same savings. The Ministry of Interior Affairs has asked ECN to assist with this alternative approach. ECN calculated what saving are achieved with the 3% renovation obligation under the directive. Then ECN looked for the possibilities for an alternative approach to achieve the same savings [Dutch] In artikel 5 van de Energie Efficiency Directive (EED) staat een verplichting om jaarlijks 3% van de gebouwvoorraad van de centrale overheid te renoveren. Die 3% van de gebouwvoorraad moet na renovatie voldoen aan de minimum eisen inzake energieprestatie die door het betreffende lidstaat zijn vastgelegd op grond van artikel 4 in de EPBD. De verplichting betreft gebouwen die in bezit en in gebruik zijn van de rijksoverheid met een gebruiksoppervlakte groter dan 500 m{sup 2}, vanaf juli 2015 groter dan 250 m{sup 2}. De gebouwen die eigendom zijn van de Rijksgebouwendienst betreft kantoren van rijksdiensten, gerechtsgebouwen, gebouwen van douane en politie en gevangenissen. Van de gebouwen van Defensie hoeven alleen kantoren en legeringsgebouwen aan de verplichting te voldoen.

  15. Experimental researches and comparison on aerodynamic parameters and cleaning efficiency of multi-level multi-channel cyclone

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2015-10-01

    Full Text Available Multi-level multi-channel cyclone – the lately designed air cleaning device that can remove ultra-fine 20 μm particulatematter (PM from dusted air and reach over 95% of the overall cleaning efficiency. Multi-channel cyclone technology is based on centrifugal forces and has the resulting additional filtering process operation. Multi-level structure of cyclone allows to achieve higher air flow cleaning capacity at the same dimensions of the device, thus saving installation space required for the job, production and operating costs. Studies have examined the air flow parameters change in one–, two– and three–levels multichannel cyclone. These constructions differ according to the productivity of cleaned air under the constant peripheral and transitional (50/50 case air flow relations. Accordance with the results of air flow dynamics – velocity distribution of multi-channel cyclone, aerodynamic resistance and efficiency can be judged on the flow turbulence, the flow channel cross-section and select the most appropriate application. Cleaning efficiency studies were carried out using fine granite and wood ashes PM. The maximum cleaning efficiency was 93.3%, at an average of 4.5 g/m3, the aerodynamic resistance was equal to 1525 Pa.

  16. Establishing reliable good initial quantum efficiency and in-situ laser cleaning for the copper cathodes in the RF gun

    International Nuclear Information System (INIS)

    Establishing good initial quantum efficiency (QE) and reliable in-situ cleaning for copper cathode in the RF gun is of critical importance for the RF gun operations. Recent studies on the SLAC RF gun test bed indicated that the pre-cleaning (plasma cleaning) in the test chamber followed by copper cathode exposure to air for cathode change leads to a very low initial QE in the RF gun, and also demonstrated that without the pre-cleaning good initial QE >4×10−5 can be routinely achieved in the RF gun with the cathodes of QE <1×10−7 measured in the test chamber. QE can decay over the time in the RF gun. The in-situ laser cleaning technique for copper cathodes in the RF gun is established and refined in comparison to previous cleaning at the linac coherent light source, resulting in an improved QE and emittance evolutions. The physics of the laser cleaning process is discussed. It is believed that the reflectivity change is one of the major factors for the QE boost with the laser cleaning

  17. Establishing reliable good initial quantum efficiency and in-situ laser cleaning for the copper cathodes in the RF gun

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F., E-mail: zhoufeng@slac.stanford.edu; Sheppard, J.C.; Vecchione, T.; Jongewaard, E.; Brachmann, A.; Corbett, J.; Gilevich, S.; Weathersby, S.

    2015-05-21

    Establishing good initial quantum efficiency (QE) and reliable in-situ cleaning for copper cathode in the RF gun is of critical importance for the RF gun operations. Recent studies on the SLAC RF gun test bed indicated that the pre-cleaning (plasma cleaning) in the test chamber followed by copper cathode exposure to air for cathode change leads to a very low initial QE in the RF gun, and also demonstrated that without the pre-cleaning good initial QE >4×10{sup −5} can be routinely achieved in the RF gun with the cathodes of QE <1×10{sup −7} measured in the test chamber. QE can decay over the time in the RF gun. The in-situ laser cleaning technique for copper cathodes in the RF gun is established and refined in comparison to previous cleaning at the linac coherent light source, resulting in an improved QE and emittance evolutions. The physics of the laser cleaning process is discussed. It is believed that the reflectivity change is one of the major factors for the QE boost with the laser cleaning.

  18. Experimental researches and comparison on aerodynamic parameters and cleaning efficiency of multi-level multi-channel cyclone

    OpenAIRE

    Aleksandras Chlebnikovas; Pranas Baltrėnas

    2015-01-01

    Multi-level multi-channel cyclone – the lately designed air cleaning device that can remove ultra-fine 20 μm particulatematter (PM) from dusted air and reach over 95% of the overall cleaning efficiency. Multi-channel cyclone technology is based on centrifugal forces and has the resulting additional filtering process operation. Multi-level structure of cyclone allows to achieve higher air flow cleaning capacity at the same dimensions of the device, thus saving installation space required for t...

  19. Energy efficient biological air cleaning for farm stable ventilation; Energieffektiv biologisk luftrensning til staldventilation

    Energy Technology Data Exchange (ETDEWEB)

    Groenborg Nicolaisen, C.; Hansen, Mads P.R. [Teknologisk Institut, Aarhus (Denmark); Stroem, J.; Soerensen, Keld [DXT. Danish Exergy Technology A/S, Skoerping (Denmark); Goetke, C. [Lokalenergi Aarhus, Viby J. (Denmark); Morsing, S.; Soerensen, Lars C. [SKOV A/S, Roslev (Denmark); Ladegaerd Jensen, T.; Pedersen, Poul [Videncenter for svineproduktion, Copenhagen (Denmark)

    2013-05-01

    The project has been designed to reduce energy consumption for air purification by 30% while having a payback period of maximum 3 years. The project has achieved very significant results which are far above the target. Particularly satisfying is the wide range of new components that are launched in late 2012. By implementing the newly developed system at 100% cleaning (LPC 13 ventilators and Dynamic multistep control) in relation to Best Practice (SKOV's original system with DA600 fans) in a concrete pigsty, a saving of 61% and a simple payback of 1.7 years is achieved. Similarly, it is found that the energy used for pump operation can be reduced by 37% with the new Dynamic sprinkling control. At 20% cleaning a potential saving of 15% per year and a payback period of between 0 and 5 years was found, which is dependent on the desired performance as the capacities in the bio-filter's upper capacity range between 26 thousand to 30 thousand m3 / h entails costs for an additional extraction unit in the new solution. Furthermore, the newly developed components proved highly suitable for standard installations without air cleaning where a savings potential is 53% and the payback period 1.5 years. Product-wise, the project formed the basis for the development of: 1. New energy-efficient ventilation units (LPC11, 12,13) that are suitable for air purification; 2. A new energy-saving control principle (Dynamic Multi-Step) which is particularly suitable for low-energy ventilators; 3. A new energy-saving flow measurement system for ventilating ducts (Dynamic air to the central exhaust); 4. An energy-saving pressure control in common ducts (pressure control as a function of outside temperature); 5. Proposal for a new energy-saving pump operation for sprinkling of biological filters (Dynamic sprinkling). (LN)

  20. 40 CFR Appendix A to Subpart Mmmm... - Alternative Capture Efficiency and Destruction Efficiency Measurement and Monitoring Procedures...

    Science.gov (United States)

    2010-07-01

    ... portion of the coating and the efficiency of the capture system. The organic carbon content of the control... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Alternative Capture Efficiency and... and Products Pt. 63, Subpt. MMMM, App. A Appendix A to Subpart MMMM of Part 63—Alternative...

  1. Highly Efficient Synthesis of Clean Biofuels from Biomass Using FeCuZnAIK Catalyst

    Institute of Scientific and Technical Information of China (English)

    Song-bai Qiu; Yong Xu; Tong-qi Ye; Fei-yan Gong; Zhi Yang; Mitsuo Yamamoto; Yong Liu; Quan-xin Li

    2011-01-01

    Highly efficient synthesis of clean biofuels using the bio-syngas obtained from biomass gasification was performed over Fe1.5Cu1Zn1Al1K0.117 catalyst.The maximum biofuel yield from the bio-syngas reaches about 1.59 kg biofuels/(kgcatal·h) with a contribution of 0.57 kg alcohols/(kgcatal·h) and 1.02 kg liquid hydrocarbons/(kgcatal·h).The alcohol products in the resulting biofuels were dominated by the C2+ alcohols (mainly C2-C6 alcohols) with a content of 73.55%-89.98%.The selectivity of the liquid hydrocarbons (C5+) in the hydrocarbon products ranges from 60.37% to 70.94%.The synthesis biofuels also possess a higher heat value of 40.53-41.49 MJ/kg.The effects of the synthesis conditions,including temperature,pressure,and gas hourly space velocity,on the biofuel synthesis were investigated in detail.The catalyst features were characterized by inductively coupled plasma and atomic emission spectroscopy,X-ray diffraction,temperature programmed reduction,and the N2 adsorption-desorption isotherms measurements.The present biofuel synthesis with a higher biofuel yield and a higher selectivity of liquid hydrocarbons and C2+ alcohols may be a potentially useful route to produce clean biofuels and chemicals from biomass.

  2. Evaluation of the efficiency of alternative enzyme production technologies

    Energy Technology Data Exchange (ETDEWEB)

    Albaek, M.O.

    2012-03-15

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact on for example the emission of green house gasses. Cellulases and hemi-cellulases are used for enzymatic hydrolysis of pretreated lignocellulosic biomass, and fermentable sugars are released upon the enzymatic process. Even though many years of research has decreased the amount of enzyme needed in the process, the cost of enzymes is still considered a bottleneck in the economic feasibility of lignocellulose utilization. The purpose of this project was to investigate and compare different technologies for production of these enzymes. The filamentous fungus Trichoderma reesei is currently used for industrial production of cellulases and hemi-cellulases. The aim of the thesis was to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process was carried out in pilot scale stirred tank reactors and based on a range of different process conditions, a process model was constructed which satisfactory described the course of fermentation. The process was governed by the rate limiting mass transfer of oxygen from the gas to the liquid phase. During fermentation, filamentous growth of the fungus lead to increased viscosity which hindered mass transfer. These mechanisms were described by a viscosity model based on the biomass concentration of the fermentation broth and a mass transfer correlation that incorporated a viscosity term. An analysis of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative

  3. Efficiency of cleaning procedure of milking equipment and bacterial quality of milk

    OpenAIRE

    Anna Sandrucci; Lucio Zanini; Milena Brasca; Maddalena Zucali; Luciana Bava

    2010-01-01

    The cleaning and sanitation of milking equipment could be consider a critical point in the milking procedure because a cleaning failure could influence the level of bacteria contamination of bulk tank milk. Aim of the study is to monitor the cleaning procedures of milking systems in 7 dairy cows farms in Lombardy and to find a relation between efficacy of cleaning system and the bacterial quality of bulk tank milk, remaining washing water through milking equipment and teat cup surface. Cleani...

  4. COMSOL’s New Thermoacoustics Interface and Computationally Efficient Alternative Formulations for FEM

    OpenAIRE

    Kampinga, W.R.; Wijnant, Y. H.

    2011-01-01

    Three efficient alternatives to the model in COMSOL’s thermoacoustics interface are presented. The higher efficiency of these models are explained from theory and are demonstrated by means of two examples.

  5. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  6. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  7. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics.

    Science.gov (United States)

    Tsui, Kwong-Hoi; Lin, Qingfeng; Chou, Hungtao; Zhang, Qianpeng; Fu, Huiying; Qi, Pengfei; Fan, Zhiyong

    2014-05-01

    Low-cost engineered nanotemplates are used to mold flexible nanocone anti-reflection (AR) films. Both optical reflectance measurements and photovoltaics characterizations demonstrate that the flexible nanocone AR films can considerably suppress device front-side reflectance and thus improve the power conversion efficiency of high-efficiency thin-film CdTe solar cells. Additionally, these nanocone AR films are found to be superhydrophobic and thus possess self-cleaning capability. PMID:24448979

  8. Alternative and Efficient Extraction Methods for Marine-Derived Compounds

    OpenAIRE

    Clara Grosso; Patrícia Valentão; Federico Ferreres; Paula B. Andrade

    2015-01-01

    Marine ecosystems cover more than 70% of the globe’s surface. These habitats are occupied by a great diversity of marine organisms that produce highly structural diverse metabolites as a defense mechanism. In the last decades, these metabolites have been extracted and isolated in order to test them in different bioassays and assess their potential to fight human diseases. Since traditional extraction techniques are both solvent- and time-consuming, this review emphasizes alternative extracti...

  9. Efficiency Testing of the Air Cleaning System for a High Temperature Reactor

    International Nuclear Information System (INIS)

    The Los Alamos Ultra High Temperature Reactor Experiment (UHTREX) utilizes a helium-cooled, graphite-moderated reactor, employing refractory fuel elements. Under accident conditions, the effluent that may be released from this reactor requires an air-cleaning system capable of reducing radioactive gas and particulate contaminants to safe levels. Dioctyl phthalate and iodine-131 were used as test aerosols for the HEPA and activated carbon filters, respectively. Methods of aerosol generation and test procedures are detailed for the preinstallation tests of the carbon and in-place testing of the carbon and HEPA filters. The importance of visual inspection of the HEPA filters prior to installation and supervision of filter installation is discussed. In-place tests indicated desirable design changes which would (1) simplify in-place testing procedures, (2) expedite installation and future changing of the filters, and (3) ensure operation of a more efficient system. Problems encountered during in-place testing, recommendations for the design of similar systems, and acceptance criteria used at LASL are discussed. (author)

  10. Comparing the efficiency of Denture brush and Ordinary brush in complete Denture cleaning

    Directory of Open Access Journals (Sweden)

    Amir Fayaz

    2013-11-01

    Full Text Available Please cite this article as: Fayaz A, Shakerian M, Ansari GH. Comparing the Efficiency of Denture brush and Ordinary brush in complete Denture cleaning. Novel Biomed 2013;1(2:62-65.Background & objective: Denture cleansing is a key element in retaining mucosa free of any inflammation. However, many denture users usually ignore this important factor. This investigation was designed to compare the efficacy of a denture brush and an ordinary brush in cleansing process of complete dentures.Materials & Methods: A group of 31 individuals aged 44-76 years were included in this study. Each patient was then instructed to use the denture brush for a period of 4 weeks while an ordinary brush was to be used for the following 4 weeks. Dentures were photographed and evaluated at every two week intervals using a computer photographic software assessment method. Pictures were compared using the image tool for plaque remaining on the denture surfaces. Student t-test was used to analyse data collected.Results: Comparison of the brush type efficacy at 2 and 4 weeks did not show any significant difference ( P>0.05 , however , clinical evaluation indicated that denture brush leaves much less plaque bio-film compare to the ordinary one, with mean plaque traced at 6.88 to 9.24 in 4 weeks.Conclusion: There were no significant differences found between the two brushes’ efficacy, with clinical evaluation significantly in favor of denture brush.

  11. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    Energy Technology Data Exchange (ETDEWEB)

    Elnashaie, S. [Auburn Univ., Chemical Engineering Dept., Auburn, Alabama (United States)]|[Univ. of British Columbia, Chemical and Biological Engineering Dept., Vancouver, British Columbia, (Canada)]. E-mail: nashaie@eng.auburn.edu.; nashaie@chml.ubc.ca

    2005-07-01

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO{sub 2} sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO{sub 2} sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  12. New progresses in safe, clean and efficient development technologies for high-sulfur gas reservoirs

    Directory of Open Access Journals (Sweden)

    Liming Huang

    2015-10-01

    Full Text Available In China, there are a lot of high-sulfur gas reservoirs with total proved reserves of over 1 trillion m3, most of which were discovered in the Sichuan Basin. Most high-sulfur gas reservoirs in China, distributed in marine carbonate zones, are characterized by great buried depths, complex geologic conditions, high temperatures, high pressures, high H2S and CO2 content, presenting various challenges in gas field development engineering and production safety. Since the development of Sinian high-sulfur gas reservoirs in the Weiyuan area of the Sichuan Basin started in the 1960s, Wolonghe, Zhongba and other medium to small-scale gas reservoirs with medium to low sulfur content have been developed. Ever since 2009, successful production of Longgang and Puguang in the Sichuan Basin, together with some other high-sulfur gas reservoirs highlighted the breakthroughs in development technologies for high-sulfur gas reservoirs in China. This paper reviews the progress made in gas reservoir engineering, drilling and completion engineering, gas production, pipeline transportation, corrosion control, natural gas purification, HSE and other aspects with consideration of specific requirements related to safe, clean and high-efficient development of high-sulfur gas reservoirs since the “12th Five-Year Plan” period. Finally, considering the challenges in the development of high-sulfur gas reservoirs in China, we summarized the trend in future technological development with the following goals of reducing risks, minimizing environmental damages, and enhancing the efficiency of high-sulfur gas reservoir development.

  13. ALTERNATIVES TO IMPROVE HYBRIDIZATION EFFICIENCY IN Eucalyptus BREEDING PROGRAMS

    Directory of Open Access Journals (Sweden)

    Roselaine Cristina Pereira

    2002-01-01

    Full Text Available Simple and quick hybridization procedures and ways to keep pollen grains viable for long periods are sought in plant breeding programs to provide greater work flexibility. The presentstudy was carried out to assess the efficiency of pollinations made shortly after flower emasculationand the viability of stored pollen from Eucalyptus camaldulensis and Eucalyptus urophylla clones cultivated in Northwestern Minas Gerais State. Controlled pollinations were carried out at zero, one,three, five and seven days after emasculation. Hybridization efficiency was assessed by thepercentage of viable fruits, number of seeds produced per fruit, percentage of viable seeds and also bycytological observation of the pollen development along the style. Flower buds from clones of the twospecies were collected close to anthesis to assess the viability of pollen grain storage. Pollen was thencollected and stored in a freezer (-18oC for 1, 2 and 3 months. Pollen assessed was carried out by invitro and in vivo germination tests. The efficiency of the pollinations varied with their delay and alsobetween species. The greatest pollination efficiency was obtained when they were carried out on thethird and fifth day after emasculation, but those performed simultaneously with emasculationproduced enough seeds to allow this practice in breeding programs. The decrease in pollen viabilitywith storage was not sufficiently significant to preclude the use of this procedure in artificialhybridization.

  14. Alternative and efficient extraction methods for marine-derived compounds.

    Science.gov (United States)

    Grosso, Clara; Valentão, Patrícia; Ferreres, Federico; Andrade, Paula B

    2015-05-01

    Marine ecosystems cover more than 70% of the globe's surface. These habitats are occupied by a great diversity of marine organisms that produce highly structural diverse metabolites as a defense mechanism. In the last decades, these metabolites have been extracted and isolated in order to test them in different bioassays and assess their potential to fight human diseases. Since traditional extraction techniques are both solvent- and time-consuming, this review emphasizes alternative extraction techniques, such as supercritical fluid extraction, pressurized solvent extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed electric field-assisted extraction, enzyme-assisted extraction, and extraction with switchable solvents and ionic liquids, applied in the search for marine compounds. Only studies published in the 21st century are considered.

  15. Amorphous metal distribution transformers: The energy-efficient alternative

    Energy Technology Data Exchange (ETDEWEB)

    Garrity, T.F. [GE Power Systems, Schenectady, NY (United States)

    1994-12-31

    Amorphous metal distribution transformers have been commercially available for the past 13 years. During that time, they have realized the promise of exceptionally high core efficiency as compared to silicon steel transformer cores. Utility planners today must consider all options available to meet the requirements of load growth. While additional generation capacity will be added, many demand-side initiatives are being undertaken as complementary programs to generation expansion. The efficiency improvement provided by amorphous metal distribution transformers deserves to be among the demand-side options. The key to understanding the positive impact of amorphous metal transformer efficiency is to consider the aggregate contribution those transformers can make towards demand reduction. It is estimated that distribution transformer core losses comprise at least 1% of the utility`s peak demand. Because core losses are continuous, any significant reduction in their magnitude is of great significance to the planner. This paper describes the system-wide economic contributions amorphous metal distribution transformers can make to a utility and suggests evaluation techniques that can be used. As a conservation tool, the amorphous metal transformer contributes to reduced power plant emissions. Calibration of those emissions reductions is also discussed in the paper.

  16. Energy Efficient Indoor VOC Air Cleaning with Activated Carbon Fiber (ACF) Filters

    OpenAIRE

    Sidheswaran, Meera

    2012-01-01

    This study explores the potential environmental and energy benefits of using activated carbon fiber (ACF) filters for air cleaning in HVAC systems. The parallel aims for the air cleaning system were to enable reduced indoor exposures to volatile organic compounds (VOCs) and to simultaneously allow reduced rates and energy consumption for outdoor-air ventilation. We evaluated the use of ACF media to adsorb VOCs from indoor air during repeated simulated 12-hour to 24-hour periods of occupancy. ...

  17. An Alternative Efficient Technique For Thin Tooth Sectioning

    Directory of Open Access Journals (Sweden)

    Muneer Gohar Babar

    2011-06-01

    Full Text Available Background: The importance of tooth sectioningis realized in disasters such as earthquake, airplanecrash investigation, terror, micro leakage studies, ageestimation etc. The objective of this study was to developa simple method to make thin sections (approximately100 mm from freshly extracted teeth.Methods: One hundred and twenty human premolarsrecently extracted for orthodontic purpose were used forthis study. The teeth were stored in 0.5% chorlaraminefor 2 weeks and were not allowed to dry at any stageof the experiment. The teeth were thoroughly washedin distilled water teeth and then were sectionedbuccolingually from crown to the root portion.Results: A detailed embedding-cutting-mountingprocedure is described. The prepared thin groundsections were then examined under a Polarised lightmicroscope for the enamel and the dentine, as well asthe caries lesions can clearly be distinguished.Conclusion: This is an effective and efficient methodfor preparation of ground sections in which the hardtissue details are preserved.

  18. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  19. National Clean Fleets Partnership (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  20. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    Science.gov (United States)

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development.

  1. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    Science.gov (United States)

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. PMID:27070382

  2. Layer-by-layer TiO(2)/WO(3) thin films as efficient photocatalytic self-cleaning surfaces.

    Science.gov (United States)

    Patrocinio, Antonio Otavio T; Paula, Leonardo F; Paniago, Roberto M; Freitag, Janna; Bahnemann, Detlef W

    2014-10-01

    New TiO2/WO3 films were produced by the layer-by-layer (LbL) technique and successfully applied as self-cleaning photocatalytic surfaces. The films were deposited on fluorine doped tin oxide (FTO) glass substrates from the respective metal oxide nanoparticles obtained by the sol-gel method. Thirty alternative immersions in pH = 2 TiO2 and pH = 10 WO3 sols resulted in ca. 400 nm thick films that exhibited a W(VI)/Ti(IV) molar ratio of 0.5, as determined by X-ray photoelectron spectroscopy. Scanning electron microscopy, along with atomic force images, showed that the resulting layers are constituted by aggregates of very small nanoparticles (cleaning, antifogging applications.

  3. Influence of flue gas cleaning system on the energetic efficiency and on the economic performance of a WTE plant.

    Science.gov (United States)

    Poggio, A; Grieco, E

    2010-07-01

    Gas cleaning systems of MSW (Municipal Solid Waste) incinerators are characterised by the process employed to remove acid gases. The commonly used technologies for acid gas removal are: (1) dry treatment with Ca(OH)(2) or (2) with NaHCO(3), (3) semi-dry process with Ca(OH)(2) and (4) wet scrubbing. In some recent plants beside a wet cleaning system, a dry neutralization with Ca(OH)(2) is used. The goal is to reduce the amount of acid to be removed in the wet treatment and the liquid effluents produced. The influence of these different technologies on the electrical efficiency was investigated by a detailed simulation of a WTE (Waste To Energy) plant with a capacity of about 100,000 t/y of MSW. The effects of the different gas cleaning systems on electrical efficiency were significant. The difference of efficiency between the most advantageous technology, which is dry treatment with NaHCO(3), and the least advantageous technology which is semi-dry treatment, is about 0.8%. A simple economic analysis showed that the few advantages of dry technologies can often be lost if the costs of chemicals and the disposal of products are considered. PMID:19822412

  4. DESIGNING AND EFFICIENCY EFFECT OF AUTOMATIC BALL-CLEANING SYSTEM FOR CONDENSER 180-KTsS-1 OF TURBINE Т-180/210-130-1 LMZ. Part 2

    Directory of Open Access Journals (Sweden)

    Yu. A. Zenovich-Leshkevich-Ol’pinskiy

    2015-01-01

    Full Text Available The authors elaborate the economical efficiency evaluation technique that could be universal and applied for technical-and-economic feasibility study of the ball-cleaning system installation on the steam turbines of the electric power plants. Besides the effect from reducing the exhaust steam pressure in the condenser by means of the ball-cleaning system implementation, this technique also accounts for the effect of lowering the condenser hydraulic pressure.The article refers to the practical results of the ball-cleaning system introduction on the steam turbines of Gomel CHP-2. As a result of regular application of the ball-cleaning system the temperature difference of the condensers of all blocks Т-180/210-130-1 confined into the regulatory values and the cleanness coefficient of all three turbine units reached 0,85. The authors consider the working results, implementation experience of the ball-cleaning system at Gomel CHP-2 and its efficiency evaluation technique to be worth disseminating when introducing the analogous systems at the plants of Belarusian power network.The authors suggest measures on the condenser automatic-cleaning system improvement with the turbine mathematical-simulation model employment that will make it possible to optimize the condenser cleaning regimes and to increase the ball-cleaning system effectiveness with the condenser cleanness coefficient growing up to 0,90–0,92.

  5. Alternating Anderson-Richardson method: An efficient alternative to preconditioned Krylov methods for large, sparse linear systems

    CERN Document Server

    Suryanarayana, Phanish; Pask, John E

    2016-01-01

    We generalize the recently proposed Alternating Anderson-Jacobi (AAJ) method (Pratapa et al., J. Comput. Phys. (2016), 306, 43--54) to include preconditioning, and demonstrate its efficiency and scaling in the solution of large, sparse linear systems on parallel computers. The resulting preconditioned Alternating Anderson-Richardson (AAR) method reduces to the AAJ method for a particular choice of preconditioner. The AAR method employs Anderson extrapolation at periodic intervals within a preconditioned Richardson iteration to accelerate convergence. In this work, we develop a version of the method that is particularly well suited for scalable high-performance computing. In applications to Helmholtz and Poisson equations, we show that the strong and weak parallel scaling of AAR is superior to both Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) methods, using the same preconditioning, in large-scale parallel calculations employing up to 110,592 computational cores. Moreover, we find that the ...

  6. Flourescence-assay on traces of protein on re-usable medical devices: cleaning efficiency.

    Science.gov (United States)

    Verjat, D; Prognon, P; Darbord, J C

    1999-03-15

    The cleaning of re-usable medical devices before disinfection or sterilization is recognized as being an essential phase. Detection of residual proteins can be used to validate the process, provided a sufficiently sensitive method is employed. A fluorescent method is presented, using orthophtalaldehyde (OPA) bound to N,N dimethyl-2-mercaptoethylammonium, to demonstrate the presence of amino acids on a medical device following cleaning. The sensitivity of this method (10-5 g/l) was assessed and the applicability of this detection technique is verified, using three types of carriers (steel blades, glass tubes or ceramic penicylinders), three types of contaminants (yeast extract, bovine albumin with native sheep's blood and formaldehyde fixed fibrin). In this context, studies involving formaldehyde-fixed fibrin are more sensitive and are to be recommended. PMID:10053219

  7. Procedures for Efficient and Economic Recovery of Heat for Reuse in Batch Processes for Cleaning

    DEFF Research Database (Denmark)

    Qvale, Einar Bjørn

    2005-01-01

    (TES) may be required to achieve these improvements. Further improvements may be achieved if there is a need, in the plant, for heating water at low-or-medium-level temperatures for cleaning purposes and there are significant quantities of medium-to-lowtemperature heat recoverable. Such conditions...... are often encountered in the food industry. However, the extent to which PI is utilized is much smaller than the number of potential applications. The present paper will address this topic, give some reasons for the underuse of PI, and indicate some principles, methods, and directions that, when applied...

  8. Using a Clean Energy Version of Moore's Law to Plan for the Extreme Efficiency of the Future

    Science.gov (United States)

    van Buskirk, Robert

    2014-03-01

    In 1965, Gordon Moore predicted a decade of exponential growth in the transistor density growth (and hence computing power) for integrated circuits that--with some modification--has held to the present day. In this talk, we discuss to what extent clean energy technologies are subject to similar laws of long term exponential improvement and how these improvement rates may be accelerating due to recent developments. We review a range of long term energy efficiency and technology productivity improvement trends ranging from lighting, televisions, refrigerators, HVAC, batteries, motors, power electronics and solar PV. After reviewing historical and recent trends, we discuss several factors that may lead to an acceleration of improvement rates in the clean energy technology sector. Finally, we discuss the Baumol effect which predicts how differential trends in technology productivity may affect trends in relative prices in the economy. We conclude with a discussion of some of the implications that Baumol's theories may have for the development of extreme levels of energy efficiency in the coming decades.

  9. The NucleoSpin® DNA Clean-up XS kit for the concentration and purification of genomic DNA extracts: an alternative to microdialysis filtration.

    Science.gov (United States)

    Hudlow, William R; Krieger, Robert; Meusel, Markus; Sehhat, Joshua C; Timken, Mark D; Buoncristiani, Martin R

    2011-06-01

    Traditionally, DNA extracts from biological evidence items have been concentrated and rinsed using microdialysis filtration units, including the Centricon(®) and Microcon(®) centrifugal filter devices. As an alternative to microdialysis filtration, we present an optimized method for using NucleoSpin(®) XS silica columns to concentrate and clean-up aqueous extracts from the organic extraction of DNA from biological samples. The method can be used with standard organic extraction and dithiothreitol (DTT)-based differential extraction methods with no modifications to these methods prior to the concentration and clean-up step. Extracts from laboratory-prepared bloodstains, saliva and semen stains have been successfully amplified with both qPCR and STR assays. Finally, the total time to process a set of samples with the NucleoSpin(®) XS column is approximately 30 min vs. approximately 1.5h with the Centricon(®) YM-100 filter device.

  10. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O' Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  11. Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation

    International Nuclear Information System (INIS)

    Currently, micro-/nanotopography on polymeric replica is generally limited to 2D when a mechanical demolding approach is applied. In this work, one-step replication of bio-inspired 3D topography is achieved using microinjection compression molding with novel dual-layer molds. Using a proposed flexible template, the replica topography and wettability are highly tunable during molding. Moreover, dual-scale topography on the mold is developed by coating the micropatterned insert with submicron silica particles. Contact angle and roll-off angle measurements indicate the lotus leaf, rose petal and rice leaf effects on biomimetic surfaces. Among the three kinds of surfaces, the petal-inspired surface possesses the superior performance in self-cleaning submicron contaminants and mechanical robustness, which is highly correlated to the low roughness-induced adhesive superhydrophobicity and the absence of fragile submicron-/nanostructure, respectively. Furthermore, a multi-layer mold structure is proposed for fabricating the open microfluidic devices. The embedment of the hydrophilic and hydrophobic silica particles in the microstructured open channel and the hydrophobic silica particles in the background area during replication renders the wettability contrast sharp, realizing the self-driven flow of microfluid confined within the open microchannel. (paper)

  12. Alternate partial root-zone irrigation improves fertilizer-N use efficiency in tomatoes

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Liu, Fulai; Jensen, Lars Stoumann;

    2013-01-01

    The objective of this study was to investigate the comparative effects of alternative partial root-zone irrigation (PRI) and deficit irrigation (DI) on fertilizer-N use efficiency in tomato plants under mineral N and organic N fertilizations. The plants were grown in split-root pots in a climate......-controlled glasshouse and were subjected to PRI and DI treatments during early fruiting stage. When analyzed across the N fertilizer treatments, PRI treatment led to significantly higher N yield, agronomic N use efficiency (ANUE), and apparent N recovery efficiency (ANRE) as compared with the DI treatment, indicating...... significantly higher fertilizer-N use efficiency and soil N availability as well as enhanced plant’s N acquisition ability in the PRI treatment. Analysis across the irrigation treatments showed that the mineral N fertilizer treatment (MinN) significantly increased N yield, ANUE and ANRE relative to the organic...

  13. Trend analysis air pollution. The effects of the working programme 'Clean and Efficient' on the emission of air pollutants

    International Nuclear Information System (INIS)

    This report explores the effects of the Dutch Climate Programme 'Clean and Efficient - Opportunities for Tomorrow' on the emissions of air pollutants, as included in the National Emissions Ceilings. The starting point for the analysis is the ex ante evaluation of Clean and Efficient as published in September 2007. On the national level, the relative effects on air pollutant emissions are invariably much smaller than those on domestic greenhouse gas emissions. With a 1% decrease in domestic greenhouse emissions, SO2 emission decrease between 0.3 and 0.5%, NOx emissions between 0.1 and 0.2%, NMVOC emissions decrease about 0.02 % and PM10 emissions decrease about 0.1%. Some general causes explain the differences between the effects on GHG emissions and NEC-emissions. Only part of both the NEC-emissions and the GHG-emissions is linked to energy use. Further, replacement of fossil fuels by biomass results in lower fossil CO2 emissions, but NEC-emissions remain roughly the same. Finally, emission factors of NEC-emissions vary strongly with energy carriers and processes, and reduction of energy use is unevenly divided among energy carriers and processes. Specifically for the Netherlands, the role of electricity exports is important. Strong climate policies and high CO2 prices are likely to result in lower electricity demand, more renewable electricity generation and more cogeneration. However, they are likely to improve the international competitiveness of the Dutch electricity generation as well. As a result, electricity exports rise and part of the emission reductions materialize outside the Netherlands, rather than within its borders. In the case of GHG-emissions, burden sharing mechanisms and trade in emission right make sure that this is not a real problem. As comparable mechanisms for NEC-emissions do not exist, the GHG burden sharing and emission trading pose a risk for the attainment of Dutch NEC-targets

  14. A Floquet description of phase alternated sequences for efficient homonuclear recoupling in solid perdeuterated systems

    Science.gov (United States)

    Jayanthi, Sundaresan; Akbey, Ümit; Uluca, Boran; Oschkinat, Hartmut; Vega, Shimon

    2013-09-01

    A Floquet description of a phase alternated homonuclear recoupling scheme for perdeuterated systems is presented. As a result, we demonstrate improvements in the recoupling efficiency of the DOuble Nucleus Enhanced Recoupling [DONER; J. Am. Chem. Soc. 131 (2009) 17054] technique by utilizing Phase Alternated Recoupling Irradiation Schemes [PARIS; Chem. Phys. Lett. 469 (2009) 342]. The effect of proton and deuterium radio frequency irradiation during recoupling has been systematically studied and theoretical observations have been verified experimentally using a deuterated model compound, L-Alanine, at 10 and 20 kHz magic angle spinning frequency. Experimental results are well in agreement with theoretical observations, thereby significantly increasing the recoupling efficiency of conventional DONER in perdeuterated systems.

  15. Technical efficiency under alternative environmental regulatory regimes: The case of Dutch horticulture

    International Nuclear Information System (INIS)

    We consider the performance of small and medium sized enterprises in Dutch horticulture under different environmental policy regimes across time. We address the question whether technical performance differs under these alternative regulatory regimes to test Porter's hypothesis that stricter environmental regulation reduces technical inefficiency. For this purpose, we use a stochastic production frontier framework allowing for inclusion of policy variables to measure the effect of alternative environmental policy regimes on firms' performance. The main result is that stricter environmental policy regimes have indeed reduced technical inefficiencies in Dutch horticulture. The estimation results indicate amongst others that the 1997 agreement on energy, nutrient and pesticides use enhances technical efficiency. Firms under the strict environmental policy regime are found to be more technically efficient than those under a lax regime, thereby supporting the claims by Porter and Van der Linde (Porter, M., Van der Linde, C., 1995. Green and Competitive: Ending the stalemate. Harvard Business Review 73, pp. 120-137) concerning Dutch horticulture. (author)

  16. Assessment of Energy Efficiency Project Financing Alternatives for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, W. D.; Hail, John C.; Sullivan, Gregory P.

    2000-02-14

    This document provides findings and recommendations that resulted from an assessment of the Brookhaven National Laboratory by a team from Pacific Northwest National Laboratory to assess the site's potential for various alternative financing options as a means to implement energy-efficiency improvements. The assessment looked for life-cycle cost-effective energy-efficiency improvement opportunities, and through a series of staff interviews, evaluated the various methods by which these opportunities may be financed, while considering availability of funds, staff, and available financing options. This report summarizes the findings of the visit and the resulting recommendations.

  17. Study of Volumetric Efficiency for Spark Ignition Engines Using Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2010-10-01

    Full Text Available One of the most important parameter for spark ignition engines is volumetric efficiency, as it directly influences specific power output. Several definitions of this parameter are studied from a theoretical point of view, taking into consideration the use of alternative fuels. The influence of using gasoline-bioethanol blends is investigated, as well as the effect of fuelling spark ignition engines with methane, liquefied petroleum gas and hydrogen. Bioethanol features the highest volumetric efficiency, while gaseous fuels cause a drop in specific power output compared to gasoline operation.

  18. Intelligent alternator control system - a path to efficient dynamics; Intelligente Generatorregelung - Ein Weg zur effizienten Dynamik

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, J.; Frickenstein, E.; Wier, M.; Hafkemeyer, M.; El-Dwaik, F.; Hockgeier, E. [BMW AG, Muenchen (Germany)

    2006-11-15

    In automotive engineering, it would seem - at first glance at least - difficult to simultaneously achieve both efficiency and dynamics in the sense of improved driving performance and fuel economy. The BMW Group has set itself the following goal: to drive innovation in automotive and powertrain engineering for the benefit of its customers. An example is the specific control of the alternator in such a way as to improve driving dynamics and fuel economy. (orig.)

  19. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  20. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    OpenAIRE

    Belošević Srđan V.; Tomanović Ivan D.; Crnomarković Nenad Đ.; Milićević Aleksandar R.; Tucaković Dragan R.

    2016-01-01

    Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by c...

  1. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  2. Inter-relationships among alternative definitions of feed efficiency in grazing lactating dairy cows.

    Science.gov (United States)

    Hurley, A M; López-Villalobos, N; McParland, S; Kennedy, E; Lewis, E; O'Donovan, M; Burke, J L; Berry, D P

    2016-01-01

    International interest in feed efficiency, and in particular energy intake and residual energy intake (REI), is intensifying due to a greater global demand for animal-derived protein and energy sources. Feed efficiency is a trait of economic importance, and yet is overlooked in national dairy cow breeding goals. This is due primarily to a lack of accurate data on commercial animals, but also a lack of clarity on the most appropriate definition of the feed intake and utilization complex. The objective of the present study was to derive alternative definitions of energetic efficiency in grazing lactating dairy cows and to quantify the inter-relationships among these alternative definitions. Net energy intake (NEI) from pasture and concentrate intake was estimated up to 8 times per lactation for 2,693 lactations from 1,412 Holstein-Friesian cows. Energy values of feed were based on the French Net Energy system where 1 UFL is the net energy requirements for lactation equivalent of 1kg of air-dry barley. A total of 8,183 individual feed intake measurements were available. Energy balance was defined as the difference between NEI and energy expenditure. Efficiency traits were either ratio-based or residual-based; the latter were derived from least squares regression models. Residual energy intake was defined as NEI minus predicted energy to fulfill the requirements for the various energy sinks. The energy sinks (e.g., NEL, metabolic live weight) and additional contributors to energy kinetics (e.g., live weight loss) combined, explained 59% of the variation in NEI, implying that REI represented 41% of the variance in total NEI. The most efficient 10% of test-day records, as defined by REI (n=709), on average were associated with a 7.59 UFL/d less NEI (average NEI of the entire population was 16.23 UFL/d) than the least efficient 10% of test-day records based on REI (n=709). Additionally, the most efficient 10% of test-day records, as defined by REI, were associated with

  3. Challenges of efficient and clean use of fossil fuels for power production

    Energy Technology Data Exchange (ETDEWEB)

    Vortmeyer, Nicolas; Zimmermann, Gerhard

    2010-09-15

    Constantly increasing resource efficiency together with the broad introduction of CCS technologies is fundamental for a continuous use of fossil fuels in power generation against the background of up-coming requirements for CO2 emission reduction. In principle, CCS means up-grading conventional power plant technology with proven CO2 removal processes. However, this leads to additional losses, auxiliary power demand and cost. System integration, development or at least adaption of components and processes are the main requirements in this context. Different technology solutions and recent developments will be addressed as well as challenges when implementing in demonstration projects.

  4. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  5. Evaluation of alternative sorbents for dispersive solid-phase extraction clean-up in the QuEChERS method for the determination of pesticide residues in rice by liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Cabrera, Liziara da C; Caldas, Sergiane S; Prestes, Osmar D; Primel, Ednei G; Zanella, Renato

    2016-05-01

    Many compounds are used for pest control during the production and storage of rice, making it necessary to employ multiclass methods for pesticide residues determination. For this purpose, QuEChERS-based methods are very efficient, fast and accurate, and improvements in the clean-up step are important, especially for complex matrices, like cereals. In this work, different sorbents such as chitosan, florisil(®) , alumina, diatomaceous earth, graphitized carbon black, besides the commonly used primary secondary amine and octadecylsilane, were evaluated for dispersive solid-phase extraction clean-up in acetate-buffered QuEChERS method for the determination of residues of 20 representative pesticides and one metabolite in rice by liquid chromatography coupled to tandem mass spectrometry. The sorbent C18 presented the best results, however, chitosan showed similar results, and the best performance among the unconventional sorbents evaluated. The method limit of quantification, attending accuracy (70-120% recovery) and precision (RSD ≤20%) criteria, ranged from 5 to 20 μg/kg. Results showed that chitosan is an effective alternative to reduce analysis costs, maintaining the method reliability and accuracy.

  6. Autothermal upgrading of biomass and wastes for clean and efficient production of power

    Energy Technology Data Exchange (ETDEWEB)

    Rafal Kobylecki; Zbigniew Bis; Wojciech Nowak [Czestochowa University of Technology (Poland)

    2005-07-01

    In this paper it is demonstrated that the main barrier of large scale heat and electricity production from biomass may be significantly reduced or eliminated by fuel upgrading and thermal treatment in a specially-designed pilot plant autothermal reactor. The process does not require significant amount of additional energy, since the whole process is run autothermal. The process final products are hot flue gases and a solid residue called a 'biocarbon' of LHV of roughly 28 MJ/kg. The properties of the biocarbon were similar, regardless of the input raw fuel type (biomass, waste, sewage sludge, energy crops, etc.). The use of the biocarbon for direct co-combustion with coal does not require installation of any additional feeding or fuel treatment systems at the power plants. Apart from its possible direct combustion, the biocarbon can be also efficiently used as a promising solid energy carrier for other processes (e.g. fuel cells). 6 refs., 6 figs.

  7. Krakow clean fossil fuels and energy efficiency program. Phase 1 report

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.; Pierce, B. [eds.

    1995-06-01

    Krakow is one of the largest and oldest cities in Poland. It is situated in the south of the country on the banks of the Vistula River. From the 11th until the 17th centuries, it was the capital of Poland. Today, Krakow is a city of 750,000 residents, one of the largest centers of higher education, an important industrial center, and is of particular importance because of the number and kinds of historic buildings and sites. For this reason, Krakow was included by the UNESCO in the list of the world`s cultural heritages. For about three decades, significant air pollution has been one of Krakow`s most serious problems. Because the city is situated in the Vistula River valley, it is poorly ventilated and experiences a high concentration of air pollutants. The quality of air in Krakow is affected mainly by industry (Sendzimir Steelworks, energy industry, chemical plants), influx from the Silesian industrial region (power plants, metallurgy), transboundary pollution (Ostrava - Czech Republic), and local sources of low pollution, i.e. more than 1,000 boiler houses using solid fuels and more than 100,000 coal-fired home stoves. These local sources, with low stacks and almost no pollution-control equipment, are responsible for about 35-40% of the air pollution. This report presents phase I results of a program to reduce pollution in krakow. Phase I was to gather information on emissions and costs, and to verify assumptions on existing heating methods and alternatives.

  8. Energy Efficiency Under Alternative Carbon Policies. Incentives, Measurement, and Interregional Effects

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Daniel C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Boyd, Erin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-28

    In this report, we examine and compare how tradable mass-based polices and tradable rate-based policies create different incentives for energy efficiency investments. Through a generalized demonstration and set of examples, we show that as a result of the output subsidy they create, traditional rate-based policies, those that do not credit energy savings from efficiency measures, reduce the incentive for investment in energy efficiency measures relative to an optimally designed mass-based policy or equivalent carbon tax. We then show that this reduced incentive can be partially addressed by modifying the rate-based policy such that electricity savings from energy efficiency measures are treated as a source of zero-carbon generation within the framework of the standard, or equivalently, by assigning avoided emissions credit to the electricity savings at the rate of the intensity target. These approaches result in an extension of the output subsidy to efficiency measures and eliminate the distortion between supply-side and demand-side options for GHG emissions reduction. However, these approaches do not address electricity price distortions resulting from the output subsidy that also impact the value of efficiency measures. Next, we assess alternative approaches for crediting energy efficiency savings within the framework of a rate-based policy. Finally, we identify a number of challenges that arise in implementing a rate-based policy with efficiency crediting, including the requirement to develop robust estimates of electricity savings in order to assess compliance, and the requirement to track the regionality of the generation impacts of efficiency measures to account for their interstate effects.

  9. A research needs assessment: Energy efficient alternatives to chlorofluorocarbons (CFCs). Final reprot

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    An assessment of the state of the art in refrigeration and insulation technologies is carried out to evaluate the potential for efficient substitutes for CFCs and HCFCs to facilitate the transition to a CFC-free environment. Opportunities for improved efficiency in domestic refrigeration, building chillers, commercial refrigeration and industrial refrigeration are evaluated. Needs for alternate refrigerants, improved components, and/or alternate cycles are identified. A summary of on-going research is presented in each area, and the potential roles of industry and government are considered. The most promising approaches for refrigeration technology fall into these categories: (1) improved vapor compressor cycles with alternate fluids, (2) Stirling cycle development and (3) advances in absorption technology. A summary of on-going research into advanced insulation, focused on vacuum -- based insulation technology refrigeration is developed. Insulation applications considered include appliances, transport refrigeration, and buildings. Specific recommendations for a long-term R&D agenda are present. The potential benefits, research, general approach, and probability of success are addressed.

  10. Efficiency versus cost of alternative fuels from renewable resources: outlining decision parameters

    International Nuclear Information System (INIS)

    In the discussion of traditional versus renewable energies and alternatives to conventional crude oil-based fuels in the transportation sector, efficiency calculations are but one decision making parameter. Comparing the assets and liabilities of fossil-based and renewable fuels in the transportation sector, further aspects such as centralized versus decentralized technologies, cost evaluations, taxation, and ecological/social benefits have to be taken into account. This paper outlines the driving parameters for shifting toward alternative fuels based on fossil or renewable resources and their use in innovative vehicle technologies such as advanced internal combustion and fuel cell electric drive systems. For the decision in favor or against an alternative fuel to be introduced to the mass market, automotive technologies and the energy supply system have to be examined in an integrated way. From an economic and technological perspective, some fuels may be even incompatible with the trend toward using renewable resources that have advantages in decentralized systems. Beyond efficiency calculations, political and industrial interests arise and may be influential to reshaping our currently crude oil-based mobility sector

  11. Efficiency of Silver Impregnated Porous Pot (SIPP Filters for Production of Clean Potable Water

    Directory of Open Access Journals (Sweden)

    Bhekie Mamba

    2012-08-01

    Full Text Available The Silver Impregnated Porous Pot (SIPP filter is a product of the Tshwane University of Technology manufactured for the production of safe drinking water at a household (home level. Two SIPP devices were assessed for the reduction efficiency of chemical contaminants such as calcium, magnesium, iron, arsenic, fluorides and total organic carbon (TOC as well as microbial contaminants from environmental samples. Turbidity change after filtration, together with correlation between chlorophyll a in the feed water and SIPP’s flow rates were also evaluated in order to give comprehensive guidelines on the quality of intake water that could be filtered through the filter without causing a significant decrease in flow rate. The SIPP filters removed contaminants from environmental water samples as follows: 70% to 92% iron, 36% to 68% calcium, 42% to 82% arsenic, 39% to 98% magnesium, 39% to 95% fluorides, 12% to 35% TOC and 45% to 82% turbidity. The SIPP filters had initial flow rates of 1 L/h to 4 L/h but the flow rates dropped to 0.5 L/h with an increase in cumulative volume of intake water as the filter was used. Turbidity and chemical contaminant reduction rates decreased with accumulating volume of intake water but the filter removed Ca, Fe and Mg to levels that comply with the South African National Standards (SANS 241 and the World Health Organization (WHO guideline values. However, the SIPP filters cannot produce enough water to satisfy the daily drinking water requirement of a typical household (25 L/p·d. Chlorophyll a was associated with a decrease in the flow rate through the SIPP filters.

  12. Heterogeneous photocatalysis on construction materials: effect of catalyst properties on the efficiency for degrading NOx and self cleaning

    Directory of Open Access Journals (Sweden)

    Bengtsson, N.

    2014-05-01

    Full Text Available This paper analyzes the effect of some properties of different catalysts on the photocatalytic activity. The efficiency has been determined for two different processes: NOx abatement and self-cleaning for Rhodamine B and tobacco extract being, the TiO2 based photocatalyst, supported as coatings on white mortar. Eight different catalysts were tested, seven commercial ones and one home-made catalyst with improved visible light absorption properties. Additionally, some of them were submitted to exposition to water and/or calcinations to alter their physical properties. A kinetic approach was used to evaluate the photocatalytic activity, being the first reaction constant (for NO and just empirical constants (for self-cleaning the parameters used for the comparison of the different materials. As a result, the efficiency, even for ranking, is dependent on the type of contaminant used in the experiment. In general, NO oxidation and tobacco followed similar trends while no clear relations were found for Rhodamine B.En este trabajo se analiza el efecto de las propiedades de distintos catalizadores en la actividad fotocatalítica de degradación de NOx y autolimpieza, para Rodamina B y extracto de tabaco. Se han ensayado ocho fotocatalizadores, basados en TiO2 y soportados sobre mortero blanco; siete de ellos comerciales y uno sintetizado en el laboratorio con absorción mejorada en el visible. Adicionalmente, las propiedades físicas de algunos de ellos se alteraron mediante tratamientos con agua y/o por calcinación. La actividad fotocatalítica se ha evaluado mediante aproximación cinética, siendo la constante de reacción de primer orden (para NO y constantes empíricas de ajuste (para autolimpieza los parámetros de comparación entre materiales. Como resultado, la eficiencia depende del contaminante utilizado en el experimento de evaluación. En general, en este estudio, oxidación de NO y de extracto de tabaco presentan tendencias similares

  13. DESIGNING AND EFFICIENCY EFFECT OF AUTOMATIC BALL-CLEANING SYSTEM FOR CONDENSER 180-KTsS-1 OF TURBINE Т-180/210-130-1 LMZ. Part 1

    Directory of Open Access Journals (Sweden)

    Yu. A. Zenovich-Leshkevich-Ol’pinskiy

    2015-01-01

    Full Text Available In order to reduce losses in the cooling source (condenser and to increase effectiveness of fuel-and-power resources utilization, the authors present a modern automatic ball-cleaning system for the pipes of condenser 180-KTsS-1 of turbine unit Т-180/210-130-1 LMZ of Gomel CHP-2. The article examines exploitation challenges of the steam turbine condensers and methods of clearing them from sedimentations. Depending on the sedimentation character and composition, and the quality of cooling water at the power plant, they apply various methods of the condenser tubes clearing: heat drying, vacuum dehydration, acid-washing, pipes-shooting with water and water-air pistols, ablution with high-pressure water jet etc. All the applied cleaning methods are the periodical means to fight the sedimentations and require the turbine halting or unloading, predetermine the equipment operating between clearings with constantly smearing cooling surfaces of the condensers, i.e. with reduced efficiency of equipment operation.The installation of the ball-cleaning system practically excludes defects of the chemical and mechanical cleaning methods, which leads to the condenser pipes life-in-service increase, the full-flow condensate quality improvement, reliability and efficient performance enhancement of the steam turbines equipment. The authors consider developed algorithms of data processing and designed system control of the condenser cleaning that allowed realizing its operation in automatic mode.

  14. Irradiation alternative method of manganese sulfate solution by a Pu-Be source for efficiency measurements

    International Nuclear Information System (INIS)

    This study intends to create an alternative irradiation system from a Plutonium-Beryllium source for manganese sulphate solution using the Monte Carlo code. Thus seeking to eliminate the issue of institutes that do not have reactors or particle accelerators in its infrastructure, in order to optimize and provide independence for them to carry out efficiency measurements of MnSO4 solution in their own locality. The Monte Carlo simulations defined the technical features of this new system so that the solution reaches the maximum neutron capture by manganese in solution. (author)

  15. Use of biomass for clean and efficient production of heat and power. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Lans, R. van der; Frandsen, J.B.F.; Johnsson, J.E.; Jensen, A.; Kiil, S.; Dam-Johansen, K.

    2001-03-01

    measurement and mathematical modelling of limestone reactivity were conducted. The influence of pH, type and size of limestone and the bulk composition of the solution on the dissolution rate of limestone was investigated. FGD pilot scale experiments were conducted to compare two methods of optimising the wet FGD process, i.e. 1) the use of adipic acid with limestone, and 2) exchange of the limestone with a chalk. Both methods were found to improve the desulphurization efficiency. Presence of HCl in the flue gas was shown to inhibit the limestone dissolution. Mathematical modelling of the FGD process was carried out to obtain a better understanding of the rate determining parameters in the desulphurization process and to provide a tool to aid in process optimization. The modeling results compared favourably with pilot scale results. (au)

  16. Efficiency and concordance of alternative methods for minimizing opportunity costs in conservation planning.

    Science.gov (United States)

    Cameron, Susan E; Williams, Kristen J; Mitchell, David K

    2008-08-01

    Scarce resources and competing land-use goals necessitate efficient biodiversity conservation. Combining multicriteria analysis with conservation decision-support tools improves efficiency of conservation planning by maximizing outcomes for biodiversity while minimizing opportunity costs to society. An opportunity cost is the benefit that could have been received by taking an alternative course of action (i.e., costs to society of protecting an area for biodiversity rather than developing it for some other use). Although different ways of integrating multiple opportunity costs into conservation planning have been suggested, there have been no tests as to which method is most efficient. We compared the relative efficiency of 3 such procedures(Faith & Walker [1996], Sarkar et al. [2004], and a procedure of our own design) in a systematic conservation-planning framework for the Milne Bay Province of Papua New Guinea. We devised 14 opportunity costs and assigned these to 3 scenarios representing different conservation planning concerns: food security, macro-economic development, and biodiversity persistence. For each scenario, we compared the efficiency of the 3 methods in terms of amount of biodiversity protected relative to total expenditure for each opportunity cost. All 3 methods captured similar amounts of biodiversity, but differed in total cost. Our method had the least overall cost and was therefore most efficient. Nevertheless, there was a high correlation and geographical concordance among all 3 methods, indicating a high degree of spatial overlap. This suggests that choosing an appropriate approach may often depend on contextual factors related to the design of the planning question, rather than efficiency alone. PMID:18637906

  17. Replacement of Natural Sand with Efficient Alternatives: Recent Advances in Concrete Technology

    Directory of Open Access Journals (Sweden)

    Anzar Hamid Mir

    2015-03-01

    Full Text Available Concrete is the most undisputable material being used in infrastructure development throughout the world. It is a globally accepted construction material in all types of Civil Engineering structures. Natural sand is a prime material used for the preparation of concrete and also plays an important role in Mix Design. Now a day‟s river erosion and other environmental issues have led to the scarcity of river sand. The reduction in the sources of natural sand and the requirement for reduction in the cost of concrete production has resulted in the increased need to find new alternative materials to replace river sand so that excess river erosion is prevented and high strength concrete is obtained at lower cost. Partial or full replacement of natural sand by the other alternative materials like quarry dust, foundry sand and others are being researched from past two decades, in view of conserving the ecological balance. This paper summarizes conclusions of experiments conducted for the properties like strength, durability etc. It was observed the results have shown positive changes and improvement in mechanical properties of the conventional concrete due to the addition or replacement of fine sand with efficient alternatives.

  18. Technical efficiency under alternative environmental regulatory regimes: The case of Dutch horticulture

    Energy Technology Data Exchange (ETDEWEB)

    Van der Vlist, Arno J. [Wageningen University and Agricultural Economics Research Institute (Netherlands); Withagen, Cees [Tilburg University and Free University Amsterdam (Netherlands); Folmer, Henk [Groningen University and Wageningen University (Netherlands)

    2007-06-15

    We consider the performance of small and medium sized enterprises in Dutch horticulture under different environmental policy regimes across time. We address the question whether technical performance differs under these alternative regulatory regimes to test Porter's hypothesis that stricter environmental regulation reduces technical inefficiency. For this purpose, we use a stochastic production frontier framework allowing for inclusion of policy variables to measure the effect of alternative environmental policy regimes on firms' performance. The main result is that stricter environmental policy regimes have indeed reduced technical inefficiencies in Dutch horticulture. The estimation results indicate amongst others that the 1997 agreement on energy, nutrient and pesticides use enhances technical efficiency. Firms under the strict environmental policy regime are found to be more technically efficient than those under a lax regime, thereby supporting the claims by Porter and Van der Linde (Porter, M., Van der Linde, C., 1995. Green and Competitive: Ending the stalemate. Harvard Business Review 73, pp. 120-137) concerning Dutch horticulture. (author)

  19. Dilemma in new clean and renewable energy alternatives for Santa Elena and its university. Opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Moreano, Hernan [Universidad Estatal Peninsula de Santa Elena (Ecuador). Inst. de Investigacion Cientifica y Desarrollo Tecnologico (INCYT)

    2011-07-01

    The fate of finite fossil fuel sources for the coming decades and the need to migrate to renewable energy in a joint effort among governments, academia and private companies which make business in the energy arena are discussed and also the energy balance in Ecuador which shows a strong dependence of fossil fuels to satisfy demand from both: thermoelectric plants and transport, however, Santa Elena, the newly created province at the south western of Ecuador has the chance to turn the country energy situation into an opportunity and face the challenge to be the leader in energy alternatives because of its resources and chances to migrate sooner to environmental friendly fuels and later on to renewable energies, but a number of actions should be taken in a joint effort with its local university (UPSE), government bodies and private companies in order to create the ''Campus of Energy Knowledge'' to carry out the program: Energy Alternatives for Santa Elena, which includes 7 projects to make the province a leader one on the energy issue in Ecuador and in the continent, acting on a cluster initiative scheme. (orig.)

  20. Resource efficiency and economic implications of alternatives to surgical castration without anaesthesia.

    Science.gov (United States)

    de Roest, K; Montanari, C; Fowler, T; Baltussen, W

    2009-11-01

    This paper presents an analysis of the economic implications of alternative methods to surgical castration without anaesthesia. Detailed research results on the economic implications of four different alternatives are reported: castration with local anaesthesia, castration with general anaesthesia, immunocastration and raising entire males. The first three alternatives have been assessed for their impact on pig production costs in the most important pig-producing Member States of the EU. The findings on castration with anaesthesia show that cost differences among farms increase if the anaesthesia cannot be administered by farmers and when the veterinarian has to be called to perform it. The cost of veterinarian service largely affects the total average costs, making this solution economically less feasible in small-scale pig farms. In all other farms, the impact on production costs of local anaesthesia is however limited and does not exceed 1 €ct per kg. General anaesthesia administered by inhalation or injection of Ketamin in combination with a sedative (Azaperone, Midazolan) is more expensive. These costs depend heavily on farm size, as the inhalation equipment has to be depreciated on the largest number of pigs possible. The overall costs of immunocastration - including the cost of the work load for the farmer - has to be evaluated against the potential benefits derived from higher daily weight gain and feed efficiency in comparison with surgical castrates. The economic feasibility of this practice will finally depend on the price of the vaccine and on consumer acceptance of immunocastration. The improvement in feed efficiency may compensate almost entirely for the cost of vaccination. The main advantages linked to raising entire males are due to the higher efficiency of feed conversion, to the better growth rate and to the higher leanness of carcass. A higher risk of boar taint on the slaughter line has to be accounted for. Raising entire males should not

  1. Using energy efficiency and alternative energy to extend fossil resources or what if tomorrow actually comes

    International Nuclear Information System (INIS)

    This PowerPoint presentation outlined the role of energy in maintaining and advancing society, and what happens if we run out of energy. The author provided a glimpse into the energy world through the display of a series of graphs depicting world energy consumption, world energy production, world population distribution, growth rates in Asia, coal use per capita, the United States energy consumption by source, percent of air emissions in the United States from fossil fuel use, and others. It was argued that alternative energy and energy efficiency diminish growth in demand and peak load, supports portfolio diversity, lowers cost, and diminishes environmental impacts. The advances in wind power and solar power were reviewed, as well as advances in bioenergy and hydrogen. The author also argued the case for energy efficiency and conservation. A discussion of various pricing schemes was offered. The first option examined was time of use price, defined as 3 time blocks published in advance for entire seasons. The second option was critical peak pricing, involving a high price imposed for a few days per year when system conditions are critical or near critical. The third option discussed was real-time prices, implying an hourly real-time marginal cost of a kilowatt hour. It was suggested that the system should be changed, since subsidizing energy consumption distorts demand. Energy efficiency and renewables extend fossil energy availability, helping in the transition to a more sustainable world. refs., tabs., figs

  2. Alternative methods for the efficient construction of short hairpin RNA expression vectors.

    Science.gov (United States)

    Xu, Kun; Zhang, Tingting; Guo, Lijun; Xin, Ying; Zhang, Long; Zhang, Zhiying

    2015-06-01

    Short hairpin RNA (shRNA)-mediated RNA interference has become a basic technique in modern molecular biology and biochemistry for studying gene function and biological pathways. Here, we report two alternative and efficient methods to construct shRNA expression vectors based respectively on multiple-step sequential PCR and primer extension-homologous recombination (PE-HR). Neither method requires synthesizing long oligonucleotides containing hairpin sequences as used in traditional approaches. The hairpin sequences may produce mutations during oligo synthesis, pose problems in annealing, and lead to inefficient cloning. The PE-HR method further provides rapid and economical construction of shRNA expression vectors without needing the ligation procedure. PMID:25794926

  3. Efficiency and exhaust gas analysis of variable compression ratio spark ignition engine fuelled with alternative fuels

    Directory of Open Access Journals (Sweden)

    N. Seshaiah

    2010-09-01

    Full Text Available Considering energy crises and pollution problems today, investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on lowering the concentration of toxic components in combustion products. In the present work, the variable compression ratio spark ignition engine designed to run on gasoline has been tested with pure gasoline, LPG (Isobutene, and gasoline blended with ethanol 10%, 15%, 25% and 35% by volume. Also, the gasoline mixed with kerosene at 15%, 25% and 35% by volume without any engine modifications has been tested and presented the result. Brake thermal and volumetric efficiency variation with brake load is compared and presented. CO and CO2 emissions have been also compared for all tested fuels.

  4. Use of ultrasonic and acoustic sensors for characterization of liquid-particle flow and evaluation of hole cleaning efficiency

    OpenAIRE

    Fredagsvik, Kristian

    2014-01-01

    The transportation of solids by suspension can cause severe damage to pipelines and infrastructures if not handled correctly. An adequate system for monitoring multiphase flow can be used to get early indications of erosion and poor hole cleaning. The use of ultrasonic and acoustic sensors has been reviewed for the application of slurry monitoring and evaluation of hole cleaning. The theories of slurry flow in pipes are quite extensive and are mostly based on fluid mechanics. The various a...

  5. Influence of sonication conditions on the efficiency of ultrasonic cleaning with flowing micrometer-sized air bubbles.

    Science.gov (United States)

    Tuziuti, Toru

    2016-03-01

    This paper describes the sizes of cleaned areas under different sonication conditions with the addition of flowing micrometer-sized air bubbles. The differences in the cleaned area of a glass plate pasted with silicon grease as a dirty material under different sonication conditions were investigated after tiny bubbles were blown on the dirty plate placed in an underwater sound field. The ultrasound was applied perpendicular to the bubble flow direction. The shape of the cleaned areas was nearly elliptical, so the lengths of the minor and major axes were measured. The length of the minor axis under sweep conditions (amplitude modulation), for which the average power was lower than that for continuous wave (CW) irradiation, was comparable to that for CW irradiation and was slightly larger than under bubble flow only. Not only the relatively high power for CW irradiation, but also the larger angular change of the bubble flow direction under sweep conditions contributed to the enlargement of the cleaned area in the direction of the minor axis. The combination of bubble flow and sonication under sweep or CW conditions produced a larger cleaned area compared with bubble flow only, although the increase was not higher than 20%. A rapid change from an air to water interface caused by the bubble flow and water jets caused by the collapse of bubbles due to violent pulsation is the main cleaning mechanism under a combination of ultrasound and bubble flow. PMID:26422770

  6. The Codacs™ direct acoustic cochlear implant actuator: exploring alternative stimulation sites and their stimulation efficiency.

    Directory of Open Access Journals (Sweden)

    Martin Grossöhmichen

    Full Text Available This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW. Here the perilymph stimulation with a K-piston through a stapes footplate (SFP fenestration (N = 10 as well as stimulation of the stapes head (SH with a Bell prosthesis (N = 9, SFP stimulation with an Omega/Aerial prosthesis (N = 8 and reverse RW stimulation (N = 10 were performed in cadaveric human temporal bones (TBs. Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL, being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL and RW stimulation (108.3-128.2 eq. dB SPL. Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.

  7. Determination of loss of efficiency photovoltaic panel function of cleaning; Influencia do acumulo de poeira sobre a eficiencia de um painel fotovoltaico

    Energy Technology Data Exchange (ETDEWEB)

    Michels, Roger N. [Instituto Federal de Educacao, Ciencia e Tecnologia Catarinense (IFC), Luzerna, SC (Brazil)], E-mail: roger@ifc-videira.edu.br; Gnoatto, Estor; Ferruzzi, Yuri; Kavanagh, Edward [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil); Melo, Dirceu de [Instituto Federal de Santa Catarina (IFSC), Chapeco, SC (Brazil)

    2010-07-01

    The use of photovoltaic panels to generate electricity is growing into a worldwide basis. This generation system has a low efficiency, so it is necessary to know the panels will be used, the load will be fed and factors that may influence the operation and performance. The main factors are: radiation, temperature, angle of installation and level the dirt on the surface of the panel. This study aimed to show the difference in efficiency between two sets of photovoltaic panels, one clean and one dirty, the average difference is 16.26%, thus demonstrating the importance of making regular cleaning of photovoltaic panels, and these data can extended to other types of photovoltaic modules. (author)

  8. Preliminary discussion about clean and efficient utilization of coal%煤炭的清洁高效利用初探

    Institute of Scientific and Technical Information of China (English)

    樊亚明

    2012-01-01

    煤炭的大量使用带来了环境污染、资源枯竭等问题,因此煤炭资源的清洁高效利用,将成为我国能源技术创新和能源结构调整的战略性选择。从煤炭消费带来的环境问题入手,通过综合分析的方法,从提高原煤入洗率、煤炭高效洁净燃烧技术、燃煤烟气净化、改变煤炭利用方式、加大煤炭提质和分质利用等方面,对煤炭高效清洁利用的措施进行探讨,旨在最大限度地控制燃煤烟气主要污染物的排放,达到促进煤炭清洁高效利用的目的。%The extensive use of coal brought environmental pollution, resource depletion and other issues, so the clean and efficient utilization of coal resources will become our strategic choice about the innovation of energy technology and the adjustment of energy structure. From the perspective about environmental problems caused by coal consumption, through the comprehensive analysis method, from the aspect of improving the washing rate of raw coal, high efficiency and clean combustion technology of coal, flue gas purification,change of coal utilization,increasing coal quality and dual using etc, the measures about efficient and clean use of coal is discussed, in order to maximize control of coal-fired flue gas emissions of major pollutants to achieve the goal of promoting clean and efficient utilization of coal.

  9. Beyond centrality-classifying topological significance using backup efficiency and alternative paths

    International Nuclear Information System (INIS)

    In complex networks characterized by broad degree distribution, node significance is often associated with its degree or with centrality metrics which relate to its reachability and shortest paths passing through it. Such measures do not consider availability of efficient backup of the node and thus often fail to capture its contribution to the functionality and resilience of the network operation. In this paper, we suggest the quality of backup (QoB) and alternative path centrality (APC) measures as complementary methods which enable analysis of node significance in a manner which considers backup. We examine the theoretical significance of these measures and use them to classify nodes in social interaction networks and in the Internet AS (autonomous system) graph while applying the valley-free routing restrictions which reflect the economic relationships between the AS nodes in the Internet. We show that both node degree and node centrality are not necessarily evidence of its significance. In particular, we show that social structures do not necessarily depend on highly central nodes and that medium degree nodes with medium centrality measure prove to be crucial for efficient routing in the Internet AS graph

  10. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  11. Development of Alternate Soil Clean-Up Goals for Hanford Waste Sites Using Fate and Transport Modeling

    International Nuclear Information System (INIS)

    Remedial Action Goals (RAGs) for soil contaminant levels that are protective of groundwater have been determined for the Removal/Treatment/Disposal (RTD) sites at the 200-UW-1 Operable Unit on the Hanford Site. The RAG values were determined using a methodology involving the back-calculation of soil contaminant levels protective of groundwater (i.e., resulting groundwater concentrations are ≤ MCLs) in conjunction with the fate and transport modeling as a risk-based alternative to the currently prescribed use of background or detection limit default values. This methodology is important for waste management activities at the Hanford Site because it provides risk-based metrics and a technical basis for determining the levels of contamination 'left in place' in the Hanford Site vadose zone that are protective of human health and the environment. The methodology and the use of fate and transport modeling described here comply with federal guidelines for the use of environmental models. This approach is also consistent with one of several allowable methods identified in State guidelines for deriving soil concentrations for ground water protection. Federal and state guidelines recommend the use of site-specific information and data in risk-based assessments of risk and/or protectiveness. The site-specific characteristics of the Hanford Site, which include consideration of the semi-arid climate, an unsaturated zone thickness of over 80 m (262 feet), and associated/other site features and processes, are integral for the risk-based assessments associated with the protection of groundwater pathway. This methodology yields soil cleanup values (RAGs) for the 200-UW-1 OU waste sites selected for the removal/treatment/disposal (RTD) remedy. These proposed RAGs for uranium, nitrate, and technetium-99 are derived from soil concentrations calculated not to cause contamination of groundwater at levels that exceed the ground water MCLs, and are 40 to 200 times greater than

  12. Dry efficient cleaning of poly-methyl-methacrylate residues from graphene with high-density H2 and H2-N2 plasmas

    International Nuclear Information System (INIS)

    Graphene is the first engineering electronic material, which is purely two-dimensional: it consists of two exposed sp2-hybridized carbon surfaces and has no bulk. Therefore, surface effects such as contamination by adsorbed polymer residues have a critical influence on its electrical properties and can drastically hamper its widespread use in devices fabrication. These contaminants, originating from mandatory technological processes of graphene synthesis and transfer, also impact fundamental studies of the electronic and structural properties at the atomic scale. Therefore, graphene-based technology and research requires “soft” and selective surface cleaning techniques dedicated to limit or to suppress this surface contamination. Here, we show that a high-density H2 and H2-N2 plasmas can be used to selectively remove polymeric residues from monolayer graphene without any damage on the graphene surface. The efficiency of this dry-cleaning process is evidenced unambiguously by a set of spectroscopic and microscopic methods, providing unprecedented insights on the cleaning mechanisms and highlighting the role of specific poly-methyl-methacrylate residues at the graphene interface. The plasma is shown to perform much better cleaning than solvents and has the advantage to be an industrially mature technology adapted to large area substrates. The process is transferable to other kinds of two-dimensional material and heterostructures

  13. Elaboration of a Program to Facilitate the Implementation of the Directive 2009/33/EC on the Promotion of Clean and Energy-Efficient Road Motor Vehicles

    Directory of Open Access Journals (Sweden)

    Krisztián Uhlik

    2012-09-01

    Full Text Available The energy consumption, carbon-dioxide and other air pollutant emissions of motor vehicles can be reduced substantially by various recently developed technical solutions. The use of these new technologies increases the price of the vehicles which causes an unwanted economic burden for the purchasers of such vehicles. The market competition between manufacturers requires low prices which delays the adaptation of the new, more efficient technologies. The recently enacted legislation, aimed at the promotion of purchasing clean and energy-efficient road transport vehicles, intends to remedy this problem.

  14. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  15. Resource efficiency and economic implications of alternatives to surgical castration without anaesthesia

    NARCIS (Netherlands)

    Roest, de K.; Montanari, C.; Fowler, T.; Baltussen, W.H.M.

    2009-01-01

    This paper presents an analysis of the economic implications of alternative methods to surgical castration without anaesthesia. Detailed research results on the economic implications of four different alternatives are reported. castration with local anaesthesia, castration with general anaesthesia,

  16. Energy efficiency and CDM (Clean Development Mechanism): an attractive combination?; Eficiencia energetica e MDL (Mecanismo de Desenvolvimento Limpo): uma combinacao atrativa?

    Energy Technology Data Exchange (ETDEWEB)

    Aragao Neto, Raymundo Moniz de; Silva, Pedro Paulo [Programa GERBI - Reducao da Emissao de Gases Causadores do Efeito Estufa na Industria Brasileira, CE (Brazil); Almeida, Jose Ricardo Uchoa Cavalcanti [PETROBRAS S.A., Pojuca, BA (Brazil). Unidade de Negocios de Gas Natural (UNGN)

    2004-07-01

    The agreements that defined associated practices to the CDM (Clean Development Mechanism) include energy efficiency in end users as a possible candidate to CDM eligibility. Worldwide, the experience of using 'carbon credits' resulted from reduced emissions in end users, as consequence of increased energy efficiency in processes, is limited. The paper presents preliminary conclusions of case studies developed by GERBI, evaluating the emissions reduction potential achieved by energy efficiency improvements in industrial processes, as well as financial impacts due to emissions reduction certificates traded. The paper considers a simplified methodology for feasibility analysis, but with necessary information to demonstrate how CDM and Energy Efficiency combination can support the decision for project implementation. (author)

  17. Potential of renewable and alternative energy sources

    OpenAIRE

    Konovalov, Vyacheslav Vasilievich; Pozharnitskaya, Olga Vyacheslavovna; Rostovshchikova, А.; Matveenko, Irina Alekseevna

    2015-01-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative a...

  18. An Efficient Apparatus for Rapid Deoxygenation of Erythrocyte Concentrates for Alternative Banking Strategies

    Directory of Open Access Journals (Sweden)

    Lello Zolla

    2013-01-01

    Full Text Available Erythrocyte concentrates (ECs stored for transfusion purposes still represent a lifesaving solution in a wide series of clinically occurring circumstances, especially for traumatized and perioperative patients. However, concerns still arise and persist as to whether current criteria for collection and storage of ECs might actually represent the best case scenario or there might rather be still room for improvement. In particular, the prolonged storage of EC has been associated with the accumulation of a wide series of storage lesions, either reversible (metabolism or irreversible (protein and morphology. Independent laboratories have contributed to propose alternative strategies, among which is the introduction of oxygen removal treatments to ECs. Convincing biochemical and preliminary clinical evidences have been produced about the benefits derived from the introduction of this practice. We, hereby, propose a rapid, efficient, and time-effective strategy for blood deoxygenation which might fit in current EC production chain. The proposed strategy resulted in the complete deoxygenation of red blood cell hemoglobin (pO2<0.0021 mmHg. A preliminary small-scale study about the application of the present method resulted in reduced hemolysis, decreased vesiculation, and limited alterations to the red blood cell morphology, as gleaned from flow cytometry and scanning electron microscopic analyses. Further in-depth and larger-scale investigations are encouraged.

  19. Water Use Efficiency and Physiological Response of Rice Cultivars under Alternate Wetting and Drying Conditions

    Directory of Open Access Journals (Sweden)

    Yunbo Zhang

    2012-01-01

    Full Text Available One of the technology options that can help farmers cope with water scarcity at the field level is alternate wetting and drying (AWD. Limited information is available on the varietal responses to nitrogen, AWD, and their interactions. Field experiments were conducted at the International Rice Research Institute (IRRI farm in 2009 dry season (DS, 2009 wet season (WS, and 2010 DS to determine genotypic responses and water use efficiency of rice under two N rates and two water management treatments. Grain yield was not significantly different between AWD and continuous flooding (CF across the three seasons. Interactive effects among variety, water management, and N rate were not significant. The high yield was attributed to the significantly higher grain weight, which in turn was due to slower grain filling and high leaf N at the later stage of grain filling of CF. AWD treatments accelerated the grain filling rate, shortened grain filling period, and enhanced whole plant senescence. Under normal dry-season conditions, such as 2010 DS, AWD reduced water input by 24.5% than CF; however, it decreased grain yield by 6.9% due to accelerated leaf senescence. The study indicates that proper water management greatly contributes to grain yield in the late stage of grain filling, and it is critical for safe AWD technology.

  20. An alternative approach to modeling genetic merit of feed efficiency in dairy cattle.

    Science.gov (United States)

    Lu, Y; Vandehaar, M J; Spurlock, D M; Weigel, K A; Armentano, L E; Staples, C R; Connor, E E; Wang, Z; Bello, N M; Tempelman, R J

    2015-09-01

    Genetic improvement of feed efficiency (FE) in dairy cattle requires greater attention given increasingly important resource constraint issues. A widely accepted yet occasionally contested measure of FE in dairy cattle is residual feed intake (RFI). The use of RFI is limiting for several reasons, including interpretation, differences in recording frequencies between the various component traits that define RFI, and potential differences in genetic versus nongenetic relationships between dry matter intake (DMI) and FE component traits. Hence, analyses focusing on DMI as the response are often preferred. We propose an alternative multiple-trait (MT) modeling strategy that exploits the Cholesky decomposition to provide a potentially more robust measure of FE. We demonstrate that our proposed FE measure is identical to RFI provided that genetic and nongenetic relationships between DMI and component traits of FE are identical. We assessed both approaches (MT and RFI) by simulation as well as by application to 26,383 weekly records from 50 to 200 d in milk on 2,470 cows from a dairy FE consortium study involving 7 institutions. Although the proposed MT model fared better than the RFI model when simulated genetic and nongenetic associations between DMI and FE component traits were substantially different from each other, no meaningful differences were found in predictive performance between the 2 models when applied to the consortium data. PMID:26210274

  1. National Alliance for Clean Energy Incubators New Mexico Clean Energy Incubator

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Suzanne S.

    2004-12-15

    The National Alliance for Clean Energy Incubators was established by the National Renewable Energy Laboratory (NREL) to develop an emerging network of business incubators for entrepreneurs specializing in clean energy enterprises. The Alliance provides a broad range of business services to entrepreneurs in specific geographic locales across the U.S. and in diverse clean energy technology areas such as fuel cells, alternative fuels, power generation, and renewables, to name a few. Technology Ventures Corporation (TVC) participates in the Alliance from its corporate offices in Albuquerque, NM, and from its sites in Northern and Southern New Mexico, California, and Nevada. TVC reports on the results of its attempts to accelerate the growth and success of clean energy and energy efficiency companies through its array of business support services. During the period from September 2002 through September 2004, TVC describes contributions to the Alliance including the development of 28 clients and facilitating capital raises exceeding $35M.

  2. Research into the Cleaning Efficiency of 300 m3/h Maintained by the Spiral Multi-Channel Cyclone in the Process of Removing Solid Particles of <20 µm

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2014-10-01

    Full Text Available Tests on the cleaning efficiency of an experimental spiral cyclone have been conducted to determine the removal efficiency of the solid particles the dispersion of which makes <20 µm in the streamlined multi-channel cyclone. The introduced device is adapted to removing ultrafine particulate matter from contaminated air (gas flow. A multi-channel cyclone with spiral casing has been designed at the Department of Environmental Protection (DEP of Vilnius Gediminas Technical University. Experimental studies have disclosed that air (gas flow cleaning efficiency of the spiral multi-cyclone (capacity 300 m3 depend on the internal structure of the device, i.e. on the number of channels and air (gas flow distribution ratio of transit and peripheral channels. Also, the treatment efficiency of the applied equipment has been evaluated removing solid particles of different nature. AFA-VP-20 filters have been employed for conducting experimental tests. The obtained results have disclosed that solid granite particles – 95.1%, glass – 91.4% and wood – 92.2% are removed most effectively.

  3. Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater.

    Science.gov (United States)

    Lee, Siew Siang; Bai, Hongwei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    It is still a challenge to photocatalytically cogenerate clean water and energy from dye wastewater owing to the relatively low photocatalytic efficiency of photocatalysts. In this study, novel-structured TiO2/CuO composite nanofibers were successfully fabricated via facile electrospinning. For the first time, the TiO2/CuO composite nanofibers demonstrated multifunctional ability for concurrent photocatalytic organic degradation and H2 generation from dye wastewater. The enhanced photocatalytic activity of TiO2/CuO composite nanofibers was ascribed to its excellent synergy of physicochemical properties: 1) mesoporosity and large specific surface area for efficient substrate adsorption, mass transfer and light harvesting; 2) red-shift of the absorbance spectra for enhanced light utilization; 3) long nanofibrous structure for efficient charge transfer and ease of recovery, 4) TiO2/CuO heterojunctions which enhance the separation of electrons and holes and 5) presence of CuO which serve as co-catalyst for the H2 production. The TiO2/CuO composite nanofibers also exhibited rapid settleability by gravity and uncompromised reusability. Thus, the as-synthesized TiO2/CuO composite nanofibers represent a promising candidate for highly efficient concurrent photocatalytic organic degradation and clean energy production from dye wastewater.

  4. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water.

    Science.gov (United States)

    Hori, Hisao; Nagaoka, Yumiko; Murayama, Misako; Kutsuna, Shuzo

    2008-10-01

    Decomposition of C5-C9 perfluorocarboxylic acids (PFCAs) and perfluoroether carboxylic acids (alternatives to PFCA-based surfactants) in hot water in a sealed reactor was investigated. Although PFCAs showed almost no decomposition in hot water at 80 degrees C in the absence of persulfate (S2O8(2-)), the addition of S2O8(2-) to the reaction system led to efficient decomposition, even at this relatively low temperature. The major products in the aqueous and gas phases were F- ions and CO2, respectively, and short-chain PFCAs were also detected in the aqueous phase. For example, when an aqueous solution containing perfluorooctanoic acid (PFOA, 374 microM) and S2O8(2-) (50.0 mM) was heated at 80 degrees C for 6 h, PFOA concentration in the aqueous phase fell below 1.52 microM (detection limit of HPLC with conductometric detection), and the yields of F- ions [i.e., (moles of F- formed) /(moles of fluorine content in initial PFOA)] and CO2 [i.e, (moles of CO2 formed) /(moles of carbon content in initial PFOA)] were 77.5% and 70.2%, respectively. This method was also effective in decomposing perfluoroether carboxylic acids, such as CF3OC2F4OCF2COOH, CF3OC2F4OC2F4OCF2COOH, and C2F5OC2F4OCF2COOH, which are alternatives to PFCA-based surfactants, producing F- and CO2 with yields of 82.9-88.9% and 87.7-100%, respectively, after reactions at 80 degrees C for 6 h. In addition, the method was successfully used to decompose perfluorononanoic acid in a floor wax solution. When PFOAwastreated at a higher temperature (150 degrees C), other decomposition reactions occurred: the formation of F- and CO2 was dramatically decreased, and 1H-perfluoroalkanes (C(n)F(2n+1)H, n = 4-7) formed in large amounts. This result clearly indicates that treatment with high-temperature water was not suitable for the decomposition of PFCAs to F-: surprisingly, the relatively low temperature of 80 degrees C was preferable.

  5. Clean Cities Now: Vol. 18, No. 1, Spring 2014 (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    Spring 2014 edition of the biannual newsletter of the U.S. Department of Energy's Clean Cities program. Each issue contains program news, success stories, and information about tools and resources to assist in the deployment of alternative fuels, advanced vehicles, idle reduction, fuel efficiency improvements, and other measures to cut petroleum use in transportation.

  6. Gas Cleaning System with a Pre-Unloading Flow

    Directory of Open Access Journals (Sweden)

    Vasilevsky Michail

    2016-01-01

    Full Text Available The analysis of the causes and mechanisms reduce the efficiency of processes separation in cyclone devices, the results of field surveys of industrial cyclone. It offers an alternative solution to clean the flue gases from the boiler KE-10/14.

  7. Report of the results of the fiscal 1997 survey. R and D of high efficiency clean energy vehicles; 1997 nendo chosa hokokusho. Kokoritsu clean energy jidosha no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the purpose of developing an automobile which keeps low pollution using petroleum substituting clean energy, decreases the running energy consumption to a half at least, and reduces the CO2 emission to less than a half of the conventional one at the same time, the R and D started in fiscal 1997. As to the study of a high efficiency hybrid power system, conducted were the prediction of fuel consumption performance of the system proposed, evaluation of element technology using hybrid simulator, evaluation experiment on a new hybrid vehicle, and grasp of overseas trends. In relation to the development of hybrid vehicles, the following were studied: methanol fuel cell loading hybrid vehicle, CNG engine loading hybrid vehicle, CNG ceramic engine loading hybrid truck, CNG lean burn engine loading hybrid truck, LNG engine loading hybrid bus, and DME engine loading hybrid bus. Besides, a survey on synthetic fuel and the related survey were carried out. 17 refs., 185 figs., 101 tabs.

  8. 高效路面油污清洗剂的研制%Development of road grease cleaning agent with high decontamination efficiency

    Institute of Scientific and Technical Information of China (English)

    王文; 蔡卫权; 李玉军; 涂文辉

    2013-01-01

    A new weakly alkaline road grease cleaning agent with high decontamination efficiency was developed by choosing appropriate surfactants, auxiliary solvent and alkaline auxiliaries via analysis of the composition, properties and forming process of the road surface grease. Based on orthogonal experiment, the best ingredients and their percentage contents of AES 6%, LAS 1%, APG 4%, AEO-9 1%, mandarin oil 1.5%, triethanolamine 4% and trisodium citrate 3% were determined b further experiments of performance optimization, and its decontamination rate could reach 99.8% at dry temperature of 150℃. Comparison study of the cleaning performance between commercial multipurpose cleaning agent "Mr Muscle" for kitchen and the as-prepared road grease cleaning agent showed that the latter cleaning agent had higher comprehensive decontamination capacity, and also broad application prospect in the field of thick road grease cleaning.%通过对美食街路面油污组成、性质及形成过程进行分析,选择合适的表面活性剂、辅助溶剂和碱性助剂等原料成功地复配成弱碱性高效路面油污清洗剂.在正交实验的基础上,对所选配方进行性能优化实验,确定最佳实验配方组成分别为脂肪醇聚氧乙烯醚硫酸钠6%、直链烷基苯磺酸钠1%、烷基糖苷4%、脂肪醇聚氧乙烯醚1%、桔子油1.5%、三乙醇胺4%和柠檬酸三钠3%,在150℃的干燥温度下其去污力可达99.8%.与市售厨房多用清洗剂“威猛先生”清洗性能的对比研究表明,该清洗剂的综合去污能力更强,在路面稠油垢清洗领域显示出广阔的应用前景.

  9. 我国煤炭高效洁净利用新技术%New Technology of Coal High Efficient and Cleaning Utilization in China

    Institute of Scientific and Technical Information of China (English)

    王金华

    2012-01-01

    The high efficient and clean utilization of coal is the effective access to realize the energy saving and emission reduction.Based on the circumstances,the paper introduced the technical principle,innovations,technical advantage and promotion conditions of the three new technologies of the coal high efficient and clean utilization,including the high efficient pulverized coal industrial boiler technology,the coal water mixture preparation and new technology application and the dry flue gas cleaning technology of the active coke.In combination with the present actual conditions,the development orientation of the high efficient pulverized coal industrial boiler technology as pointed would be finally to set up the high efficient pulverized coal industrial boiler technology system with the deep systematic study on the clean pulverized coal preparation technology,the pulverized coal logistic and distribution technology,the pulverized coal boiler combustion and cleaning technology as well as the commercialized operation mode.The gasification coal water mixture prepared with the mine water and the long distance pipeline transportation would be the development orientation of the gasification coal water mixture.The dry flue gas cleaning technology of active coke would be suitable applied to the zone lacking of water resources and the development direction in the near future would be to improve the performances of the active coke,to reduce the technique cost,to improve the de-nitre capacity,to simplify the technique procedure and to have the removing and regeneration completed in a device.%煤炭的高效洁净利用是实现节能减排的有效途径,基于此,对我国目前煤炭高效洁净利用3项新技术(高效煤粉工业锅炉技术、水煤浆制备和应用新技术、活性焦干法烟气净化技术)的技术原理、创新点、技术优点及推广情况进行了介绍。结合当前实际,指出高效煤粉工业锅炉技术的发展方向是通过对

  10. Prepsolv (TM): The optimum alternative to 1,1,1-trichloroethane and methyl ethyl ketone for hand-wipe cleaning of aerospace materials

    Science.gov (United States)

    Gallagher, R. Scott; Purvis, John A.; Moran, Wade W.

    1995-01-01

    Engineers at Hercules Aerospace, a rocket motor manufacturer in Utah, have worked closely with chemists at Glidco Organics to study the feasibility of using terpenes for zero-residue wipe cleaning. The result of this work is a technological breakthrough, in which the barrier to ultra-low non-volatile residue formation has been broken. After 2 years of development and testing, SCM Glidco Organics has announced the availability of Glidsafe(registered trademark) Prepsolv(TM): a state-of-the-art ultra-low residue terpene wipe cleaning agent that does not require rinsing. Prepsolv(TM) can successfully be used in simple hand-wipe cleaning processes without fear of leaving surface residues. Industry testing has confirmed that Prepsolv(TM) is not only highly effective, but can even be less expensive to use than traditional cleaning solvents like methyl chloroform. This paper addresses the features and benefits of Prepsolv(TM), and presents performance and material compatibility data that characterizes this unique cleaning agent. Since its commercialization, Hercules Aerospace has chosen Prepsolv(TM) as the optimum cleaning agent to replace ozone-depleting solvents in their weapons factory in Magna, UT. Likewise, Boeing has approved Prepsolv(TM) for cleaning components in the manufacture of commercial aircraft at their facilities in Seattle, WA and Wichita, KS. Additional approvals are forthcoming for this uniquely safe and effective solvent.

  11. What is Clean Cities? October 2011 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    Brochure describes the Clean Cities program and includes the contact information for its 85 coalitions. Sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP), Clean Cities is a government-industry partnership that reduces petroleum consumption in the transportation sector. Clean Cities contributes to the energy, environmental, and economic security of the United States by supporting local decisions to reduce our dependence on imported petroleum. Established in 1993 in response to the Energy Policy Act (EPAct) of 1992, the partnership provides tools and resources for voluntary, community-centered programs to reduce consumption of petroleum-based fuels. In nearly 100 coalitions, government agencies and private companies voluntarily come together under the umbrella of Clean Cities. The partnership helps all parties identify mutual interests and meet the objectives of reducing the use of petroleum, developing regional economic opportunities, and improving air quality. Clean Cities deploys technologies and practices developed by VTP. These include idle-reduction equipment, electric-drive vehicles, fuel economy measures, and renewable and alternative fuels, such as natural gas, liquefied petroleum gas (propane), electricity, hydrogen, biofuels, and biogas. Idle-reduction equipment is targeted primarily to buses and heavy-duty trucks, which use more than 2 billion gallons of fuel every year in the United States while idling. Clean Cities fuel economy measures include public education on vehicle choice and fuel-efficient driving practices.

  12. Efficient sample clean-up and online preconcentration for sensitive determination of melamine in milk samples by capillary electrophoresis with contactless conductivity detection.

    Science.gov (United States)

    Ji, Yan-ling; Chen, Xiao-wei; Zhang, Zhu-bao; Li, Jing; Xie, Tian-yao

    2014-10-01

    Based on an efficient sample clean-up and field-amplified sample injection online preconcentration technique in capillary electrophoresis with contactless conductivity detection, a new analytical method for the sensitive determination of melamine in milk samples was established. In order to remove the complex matrix interference, which resulted in a serious problem during field-amplified sample injection, liquid-liquid extraction was utilized. As a result, liquid-liquid extraction provides excellent sample clean-up efficiency when ethyl acetate was used as organic extraction by adjusting the pH of the sample solution to 9.5. Both inorganic salts and biological macromolecules are effectively removed by liquid-liquid extraction. The sample clean-up procedure, capillary electrophoresis separation parameters and field-amplified sample injection conditions are discussed in detail. The capillary electrophoresis separation was achieved within 5 min under the following conditions: an uncoated fused-silica capillary, 12 mM HAc + 10 mM NaAc (pH = 4.6) as running buffer, separation voltage of +13 kV, electrokinetic injection of +12 kV × 10 s. Preliminary validation of the method performance with spiked melamine provided recoveries >90%, with limits of detection and quantification of 0.015 and 0.050 mg/kg, respectively. The relative standard deviations of intra- and inter-day were below 6%. This newly developed method is sensitive and cost effective, therefore, suitable for screening of melamine contamination in milk products.

  13. Technical efficiency under alternative environmental regulatory regimes: The case of Dutch horticulture

    NARCIS (Netherlands)

    Vlist, van der A.J.; Withagen, C.; Folmer, H.

    2007-01-01

    We consider the performance of small and medium sized enterprises in Dutch horticulture under different environmental policy regimes across time. We address the question whether technical performance differs under these alternative regulatory regimes to test Porter's hypothesis that stricter environ

  14. Technical efficiency under alternative environmental regulatory regimes : The case of Dutch horticulture

    NARCIS (Netherlands)

    van der Vlist, Arno J.; Withagen, Cees; Folmer, Henk

    2007-01-01

    We consider the performance of small and medium sized enterprises in Dutch horticulture under different environmental policy regimes across time. We address the question whether technical performance differs under these alternative regulatory regimes to test Porter's hypothesis that stricter environ

  15. Eco-efficient Value Creation: An Alternative Perspective on Packaging and Sustainability

    NARCIS (Netherlands)

    Wever, R.; Vogtländer, J.

    2012-01-01

    The classical sustainability perspective on packaging is to reduce the environmental impact or eco burden of the packaging, using life cycle assessment to evaluate different design alternatives. Simultaneously, the classical marketing perspective on packaging is to generate value through differentia

  16. Clean data

    CERN Document Server

    Squire, Megan

    2015-01-01

    If you are a data scientist of any level, beginners included, and interested in cleaning up your data, this is the book for you! Experience with Python or PHP is assumed, but no previous knowledge of data cleaning is needed.

  17. Final Technical Report for Alternative Fuel Source Study-An Energy Efficient and Environmentally Friendly Approach

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Ralph [Auburn University, AL (United States); Schindler, Anton [Auburn University, AL (United States); Duke, Steve [Auburn University, AL (United States); Burch, Thom [Auburn University, AL (United States); Bransby, David [Auburn University, AL (United States); Stafford, Don [Lafarge North America, Inc., Alpharetta, GA (United States)

    2010-08-31

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels were examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.

  18. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Cappers, Peter; Satchwell, Andrew; Goldman, Charles; Schlegel, Jeff

    2010-08-06

    Increased interest by state (and federal) policymakers and regulatory agencies in pursuing aggressive energy efficiency efforts could deliver significant utility bill savings for customers while having long-term implications for ratepayers (e.g. potential rate impacts). Equity and distributional concerns associated with the authorized recovery of energy efficiency program costs may necessitate the pursuit of alternative program funding approaches. In 2008, Massachusetts passed the Green Communities Act which directed its energy efficiency (EE) program administrators to obtain all cost-effective EE resources. This goal has translated into achieving annual electric energy savings equivalent to a 2.4% reduction in retail sales from energy efficiency programs in 2012. Representatives of electricity consumer groups supported the new portfolio of EE programs (and the projected bill savings) but raised concerns about the potential rate impacts associated with achieving such aggressive EE goals, leading policymakers to seek out alternative funding sources which can potentially mitigate these effects. Utility administrators have also raised concerns about under-recovery of fixed costs when aggressive energy efficiency programs are pursued and have proposed ratemaking policies (e.g. decoupling) and business models that better align the utility's financial interests with the state's energy efficiency public policy goals. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other states looking to significantly increase savings targets that can be achieved from their own ratepayer-funded energy efficiency programs. We use a pro-forma utility financial model to quantify the bill and rate impacts on electricity customers when very aggressive annual energy efficiency savings goals ({approx}2.4%) are achieved over the long-term and also assess the impact of

  19. Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting

    OpenAIRE

    Byung-Lip Ahn; Ji-Woo Park; Seunghwan Yoo; Jonghun Kim; Hakgeun Jeong; Seung-Bok Leigh; Cheol-Yong Jang

    2015-01-01

    We investigated the synergetic effect between light-emitting diode (LED) lighting efficiency and building energy savings in heating and cooling using an alternative thermal operating system (ATOS) of indoor LED lighting integrated with the ventilation system of a building as an active cooling device. The heat generated from LED lighting and the indoor lighting illuminance were experimentally determined. The indoor heat gains in cooling and heating periods were determined using measurement dat...

  20. Efficient training protocol for rapid learning of the two‐alternative forced‐choice visual stimulus detection task

    OpenAIRE

    Soma, Shogo; Suematsu, Naofumi; Shimegi, Satoshi

    2014-01-01

    Abstract The potential of genetically engineered rodent models has accelerated demand for training procedures of behavioral tasks. Such training is generally time consuming and often shows large variability in learning speed between animals. To overcome these problems, we developed an efficient and stable training system for the two‐alternative forced‐choice (2AFC) visual stimulus detection task for freely behaving rodents. To facilitate the task learning, we introduced a spout‐lever as the o...

  1. Alternate MIMO AF relaying networks with interference alignment: Spectral efficient protocol and linear filter design

    KAUST Repository

    Park, Kihong

    2013-02-01

    In this paper, we study a two-hop relaying network consisting of one source, one destination, and three amplify-and-forward (AF) relays with multiple antennas. To compensate for the capacity prelog factor loss of 1/2$ due to the half-duplex relaying, alternate transmission is performed among three relays, and the inter-relay interference due to the alternate relaying is aligned to make additional degrees of freedom. In addition, suboptimal linear filter designs at the nodes are proposed to maximize the achievable sum rate for different fading scenarios when the destination utilizes a minimum mean-square error filter. © 1967-2012 IEEE.

  2. Efficient on-the-fly Algorithm for Checking Alternating Timed Simulation

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Chatain, Thomas;

    2009-01-01

    of building a symbolic turn-based two-player game such that the existence of a winning strategy is equivalent to the simulation being satisfied. We also propose an on-the-fly algorithm for solving this game. This simulation checking method can be applied to the case of non-alternating or strong simulations...

  3. Investigation into environmentally friendly alternative cleaning processes for hybrid microcircuits to replace vapor degreasing with 1,1,1-trichloroethane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adams, B.E.

    1997-02-01

    Two cleaning processes, one aqueous and one nonaqueous, were investigated as potential replacements for the vapor degreasing process using 1,1,1 trichloroethane (TCA) for hybrid microcircuit assemblies. The aqueous process was based upon saponification chemistry. A 10% solution of either Kester 5768 or Armakleen 2001, heated to 140 F, was sprayed on the hybrid at 450 psig and a flow rate of 5 gpm through a specially designed nozzle which created microdroplets. The nonaqueous process was based upon dissolution chemistry and used d-limonene as the solvent in an immersion and spray process. The d-limonene solvent was followed by an isopropyl alcohol spray rinse to remove the excess d-limonene. The aqueous microdroplet process was found to be successful only for solder reflow profiles that did not exceed 210 C. Furthermore, removal of component marking was a problem and the spray pressure had to be reduced to 130 psig to eliminate damage to capacitor end caps. The d-limonene cleaning was found to be successful for solder reflow temperature up to 250 C when using a four-step cleaning process. The four steps included refluxing the hybrid at 80 C, followed by soaking the hybrid in d-limonene which is heated to 80 C, followed by spray cleaning at 80 psig with room temperature d-limonene, followed by spray cleaning at 80 psig with room temperature IPA was developed to remove residual flux from the hybrid microcircuits. This process was the most robust and most closely matched the cleaning ability of TCA.

  4. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods

    International Nuclear Information System (INIS)

    Solar-driven non-stoichiometric thermochemical redox cycling of ceria for the conversion of solar energy into fuels shows promise in achieving high solar-to-fuel efficiency. This efficiency is significantly affected by the operating conditions, e.g. redox temperatures, reduction and oxidation pressures, solar irradiation concentration, or heat recovery effectiveness. We present a thermodynamic analysis of five redox cycle designs to investigate the effects of working conditions on the fuel production. We focused on the influence of approaches to reduce the partial pressure of oxygen in the reduction step, namely by mechanical approaches (sweep gassing or vacuum pumping), chemical approaches (chemical scavenger), and combinations thereof. The results indicated that the sweep gas schemes work more efficient at non-isothermal than isothermal conditions, and efficient gas phase heat recovery and sweep gas recycling was important to ensure efficient fuel processing. The vacuum pump scheme achieved best efficiencies at isothermal conditions, and at non-isothermal conditions heat recovery was less essential. The use of oxygen scavengers combined with sweep gas and vacuum pump schemes further increased the system efficiency. The present work can be used to predict the performance of solar-driven non-stoichiometric redox cycles and further offers quantifiable guidelines for system design and operation. - Highlights: • A thermodynamic analysis was conducted for ceria-based thermochemical cycles. • Five novel cycle designs and various operating conditions were proposed and investigated. • Pressure reduction method affects optimal operating conditions for maximized efficiency. • Chemical oxygen scavenger proves to be promising in further increasing efficiency. • Formulation of quantifiable design guidelines for economical competitive solar fuel processing

  5. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation.

    Science.gov (United States)

    Paz, Margie M; Martinez, Juan Carlos; Kalvig, Andrea B; Fonger, Tina M; Wang, Kan

    2006-03-01

    The utility of transformation for soybean improvement requires an efficient system for production of stable transgenic lines. We describe here an improved cotyledonary node method using an alternative explant for Agrobacterium tumefaciens-mediated soybean transformation. We use the term "half-seed" to refer to this alternative cotyledonary explant that is derived from mature seed of soybean following an overnight imbibition and to distinguish it from cotyledonary node derived from 5-7-day-old seedlings. Transformation efficiencies using half-seed explants ranged between 1.4 and 8.7% with an overall efficiency of 3.8% based on the number of transformed events that have been confirmed in the T1 generation by phenotypic assay using the herbicide Liberty (active ingredient glufosinate) and by Southern analysis. This efficiency is 1.5-fold higher than the cotyledonary node method used in our laboratory. Significantly, the half-seed system is simple and does not require deliberate wounding of explants, which is a critical and technically demanding step in the cotyledonary node method. PMID:16249869

  6. Economic efficiency or self-sufficiency: alternative strategies for oil consumers?

    International Nuclear Information System (INIS)

    The ideal energy source is low cost (efficient) and reliable (secure). The high price and perceived political unreliability of Middle East oil supplies prompted a nearly worldwide trend towards energy self-sufficiency. Gains in energy efficiency, which have been most marked in the OECD, are permanent and, prompted by environmental concern, probably progressive. But the opportunity that is still available to low cost oil suppliers to regain lost markets will only be realized if those supplies are demonstrably reliable. (author)

  7. Energy efficiency of the oil transportation processes and alternative energy use

    International Nuclear Information System (INIS)

    Full text : The energy efficiency of the transportation processes of Azerbaijan oil by pipelines on Western routes has been assessed. It was shown that the surface facilities of oil pipelines in many cases, the power supply is realized through autonomous energy sources. This report dedicated to analysis of organic fuel combustion processes in the autonomic generators and turbogenerators, definition of energy efficiency of these facilities. The facilities are grouped by energy capacity

  8. Eco-efficient Value Creation: An Alternative Perspective on Packaging and Sustainability

    OpenAIRE

    Wever, R.; Vogtländer, J.

    2012-01-01

    The classical sustainability perspective on packaging is to reduce the environmental impact or eco burden of the packaging, using life cycle assessment to evaluate different design alternatives. Simultaneously, the classical marketing perspective on packaging is to generate value through differentiation, for instance, by providing additional convenience. These two perspectives often conflict. In business reality, there is currently no established method to deal with these conflicts. Life cycl...

  9. Efficient multi-keV x-ray generation from a high-Z target irradiated with a clean ultra-short laser pulse.

    Science.gov (United States)

    Zhang, Z; Nishikino, M; Nishimura, H; Kawachi, T; Pirozhkov, A S; Sagisaka, A; Orimo, S; Ogura, K; Yogo, A; Okano, Y; Ohshima, S; Fujioka, S; Kiriyama, H; Kondo, K; Shimomura, T; Kanazawa, S

    2011-02-28

    Kα line emissions from Mo and Ag plates were experimentally studied using clean, ultrahigh-intensity femtosecond laser pulses. The absolute yields of Kα x-rays at 17 keV from Mo and 22 keV from Ag were measured as a function of the laser pulse contrast ratio and irradiation intensity. Significantly enhanced Kα yields were obtained for both Mo and Ag by employing high contrast ratios and irradiances. Conversion efficiencies of 4.28×10⁻⁵/sr for Mo and 4.84×10⁻⁵/sr for Ag, the highest values obtained to date, were demonstrated with contrast ratios in the range 10⁻¹⁰ to 10⁻¹¹.

  10. Assessment of energy efficiency project financing alternatives for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    WDM Hunt; JC Hail; GP Sullivan

    2000-03-13

    Energy reduction goals for Federal agencies were first established in the National Energy Conservation Policy Act of 1988, and directed 10{percent} reduction in facility energy use based on a 1985 baseline. Since that time, Federal sites have been actively seeking and implementing a wide variety of energy-efficiency measures in facilities across the Federal sector. In the intervening years this energy reduction goal has been progressively increased to 20{percent} through legislation (Public Law 102-486, The Energy Policy Act of 1992) and a number of Executive Orders. Executive Order 13123, Greening the Government Through Efficient Energy management (signed June 3, 1999), further increased the facility energy-efficiency improvement goal from 30{percent} in 2005 to 35{percent} by 2010 relative to the 1985 baseline.

  11. Polyphosphonium polymers for siRNA delivery: An efficient and nontoxic alternative to polyammonium carriers

    KAUST Repository

    Ornelas-Megiatto, Cátia

    2012-02-01

    A water-soluble polyphosphonium polymer was synthesized and directly compared with its ammonium analog in terms of siRNA delivery. The triethylphosphonium polymer shows transfection efficiency up to 65% with 100% cell viability, whereas the best result obtained for the ammonium analog reaches only 25% transfection with 85% cell viability. Moreover, the nature of the alkyl substituents on the phosphonium cations is shown to have an important influence on the transfection efficiency and toxicity of the polyplexes. The present results show that the use of positively charged phosphonium groups is a worthy choice to achieve a good balance between toxicity and transfection efficiency in gene delivery systems. © 2012 American Chemical Society.

  12. Clean Cities Tools

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-12-19

    The U.S. Department of Energy's Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  13. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  14. Evaluation of the combination of dimethyl disulfide and dazomet as an efficient methyl bromide alternative for cucumber production in China.

    Science.gov (United States)

    Mao, Liangang; Yan, Dongdong; Wang, Qiuxia; Li, Yuan; Ouyang, Canbin; Liu, Pengfei; Shen, Jin; Guo, Meixia; Cao, Aocheng

    2014-05-28

    The combination of dimethyl disulfide (DMDS) and dazomet (DZ) is a potential alternative to methyl bromide (MB) for soil disinfestation. The efficacy of DMDS plus DZ in controlling key soilborne pests was evaluated in a laboratory study and in two commercial cucumber greenhouses. Laboratory studies found that all of the combinations had positive synergistic effects on root-knot nematodes, two key soilborne fungi, and two major weed seeds. Greenhouse trials revealed that the combination of DMDS and DZ (30 + 25 g m(-2)) successfully suppressed Meloidogyne spp. root galling, sharply reduced the colony-forming units of Fusarium spp. and Phytophthora spp. on media, maintained high cucumber yields, and was not significantly different from MB or DMDS alone, but better than DZ alone. All of the chemical treatments provided significantly better results than the nontreated control. The results indicate that the combination of DMDS and DZ is an efficient MB alternative for cucumber production. PMID:24820184

  15. Energy efficient school buildings in central-western Argentina: an assessment of alternative typologies for the classroom tier

    Energy Technology Data Exchange (ETDEWEB)

    De Rosa, C.; Basso, M.; Fernandez, J.C. [Laboratorio de Ambiente Humano y Vivienda, Mendoza (AR)] [and others

    2000-07-01

    Four energy-efficient demonstration school buildings were built in the western province of Mendoza, Argentina, in 1999, as part of a massive building program required to implement the new Federal Education Plan. The buildings should make medium use of bioclimatic strategies and daylighting. The aspects of typology of the classroom tiers became immediately apparent as one of the main conditioners of the overall scheme. Three different alternative schemes were designed and built. A deeper analysis of these and other possible alternatives were thought essential for future constructions of the type. Four typologies of the classroom tier, using the same, locally available technology, are being comparatively assessed in the aspects of energy efficiently, thermal and luminous comfort, construction and operation costs and environmental impact (LCA). The paper presents the provisional results of the two first items only: energy efficiency and thermal comfort. While all four schemes evaluated are believed to be ''workable'', differences will tend to favour some the other according to context situations. Volumetric Loss Coeff. range from 1.09 to 1.24 W/Km{sup 3}. Solar savings fractions for the school operation hours vary between: 82.83 and 91.58%. Work is being continued to cover all the analysis items in a combined way. (author)

  16. An alternative to evaluate the efficiency of in vitro culture medium using a logistic regression model

    Directory of Open Access Journals (Sweden)

    Daniel Furtado Ferreira

    2003-01-01

    Full Text Available The evaluation of a culture medium for the in vitro culture of a species is performed using its physical and/or chemical properties. However, the analysis of the experimental results makes it possible to evaluate its quality. In this sense, this work presents an alternative using a logistic model to evaluate the culture medium to be used in vitro. The probabilities provided by this model will be used as a medium evaluator index. The importance of this index is based on the formalization of a statistical criterion for the selection of the adequate culture medium to be used on in vitro culture without excluding its physical and/or chemical properties. To demonstrate this procedure, an experiment determining the ideal medium for the in vitro culture of primary explants of Ipeca [Psychotria ipecacuanha (Brot. Stokes] was evaluated. The differentiation of the culture medium was based on the presence and absence of the growth regulator BAP (6-benzilaminopurine. A logistic model was adjusted as a function of the weight of fresh and dry matter. Minimum, medium and maximum probabilities obtained with this model showed that the culture medium containing BAP was the most adequate for the explant growth. Due to the high discriminative power of these mediums, detected by the model, their use is recommended as an alternative to select culture medium for similar experiments.

  17. Acute medical assessment units: an efficient alternative to in-hospital acute medical care.

    LENUS (Irish Health Repository)

    Watts, M

    2011-02-01

    Acute Medical Assessment Units (AMAUs) are being proposed as an alternative to congested Emergency Departments (EDs for the assessment of patients with a range of acute medical problems. We retrospectively reviewed the discharge destination of patients referred to a newly established AMAU during a six-month period. During the same period we contrasted activity in the ED for a similar group of patients. 1,562 patients were assessed in the AMAU. 196 (12.5%) were admitted to an in-patient bed and 1,148 (73.5%) were entered into specific diagnosis-driven out-patient pathways. 1,465 patients attended the ED and 635 (43.3%) were admitted. Out-patient alternatives to expensive in-patient care need to be provided at the \\'coal face" of acute referral. The AMAU provides this, and as a consequence admission rates are relatively low. This is achieved by directly communicating with GPs, accessing senior clinical decision makers, and providing immediate access to diagnostically driven outpatient pathways.

  18. Clean Cities Annual Metrics Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, P.; Putsche, V.

    2007-07-01

    Report summarizes Clean Cities coalition accomplishments, including membership, funding, sales of alternative fuel blends, deployment of AFVs and HEVs, idle reduction initiatives, and fuel economy activities.

  19. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    Science.gov (United States)

    Hosford, Eve; Ong, Ana; Richesson, Douglas; Fraser, Susan; Kwak, Yoon; Miller, Sonia; Julius, Michael; McGann, Patrick; Lesho, Emil

    2016-01-01

    Objectives The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal) correlates with cleaning efficacy (absence of molecular or cultivable biomaterial) and whether one brief educational intervention improves cleaning outcomes. Design Before-after trial. Setting Newly built community hospital. Intervention 90 minute training refresher with surface-specific performance results. Methods Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention) and assessments continued for another eight consecutive months. Results 1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant). For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant), and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016). For nonspecific biomaterial on surfaces: a) removal of cultivable Gram-negatives (GN) trended toward improvement (P = 0.056); b) removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning) worsened (P = 0.017); c) removal of PCR-based detection of bacterial DNA improved (P = 0.046), but acquisition worsened (P = 0.003); d) cleaning thoroughness and efficacy were not correlated. Conclusion At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences. PMID

  20. A simple and efficient alternative to implementing systematic random sampling in stereological designs without a motorized microscope stage.

    Science.gov (United States)

    Melvin, Neal R; Poda, Daniel; Sutherland, Robert J

    2007-10-01

    When properly applied, stereology is a very robust and efficient method to quantify a variety of parameters from biological material. A common sampling strategy in stereology is systematic random sampling, which involves choosing a random sampling [corrected] start point outside the structure of interest, and sampling relevant objects at [corrected] sites that are placed at pre-determined, equidistant intervals. This has proven to be a very efficient sampling strategy, and is used widely in stereological designs. At the microscopic level, this is most often achieved through the use of a motorized stage that facilitates the systematic random stepping across the structure of interest. Here, we report a simple, precise and cost-effective software-based alternative to accomplishing systematic random sampling under the microscope. We believe that this approach will facilitate the use of stereological designs that employ systematic random sampling in laboratories that lack the resources to acquire costly, fully automated systems.

  1. Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-01

    This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

  2. An Energy-efficient and Clean Spray Drying Technology%节能型清洁喷雾干燥技术

    Institute of Scientific and Technical Information of China (English)

    张志远; 贾敏

    2016-01-01

    The traditional catalyst spray drying system usually uses direct drying process, the carrier gas contacts with materials directly, this method can pollute some special catalysts to influence the quality of the final product, and direct discharge of the high temperature exhaust gas into the atmosphere can cause heat loss. So an energy-efficient and clean spray drying technology for catalyst preparation has been developed. The spray drying technology uses the indirect stove with new structure to supply clean and dry hot air, and uses the half-cycle technology to reuse part of the high temperature exhaust gas.%传统的催化剂喷雾干燥系统多采用直接干燥工艺,载气与待干燥物料直接接触换热,这样会对某些特性的催化剂造成污染,影响产品的最终品质,且高温尾气不经回收直接排入大气,造成热量损失。基于此,开发了一种节能型催化剂清洁喷雾干燥技术,即:利用新型结构的间接式热风炉提供清洁的干燥热风,利用尾气半循环使部分高温清洁尾气回用,实现了节能型、清洁型喷雾干燥工艺。

  3. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline.

    Science.gov (United States)

    Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M

    2013-07-16

    Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.

  4. Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting

    Science.gov (United States)

    Liang, Yanhui; Sun, Xuping; Asiri, Abdullah M.; He, Yuquan

    2016-03-01

    It is highly attractive, but still remains challenging, to develop noble metal-free bifunctional electrocatalysts efficient for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. In this letter, we describe the rapid electroless deposition of amorphous Ni-B nanoparticle film on Ni foam (Ni-B/Ni foam) by alternative dipping of Ni foam into Ni precursor and reducing solutions. This Ni-B/Ni foam acts as an efficient and durable 3D catalytic electrode for water splitting, affording 100 mA cm-2 at 360 mV overpotential for the OER and 20 mA cm-2 at 125 mV overpotential for the HER in 1.0 M KOH, and its two-electrode electrolyzer demands a cell voltage of 1.69 V to afford 15 mA cm-2 water-splitting current. Moreover, the catalyst loading can be easily tuned and this alternately dipping deposition technique works universally for other conductive substrates.

  5. Impact of alternate furrow irrigation with different irrigation intervals on yield, water use efficiency, and economic return of corn

    Directory of Open Access Journals (Sweden)

    Awad Abd El-Halim

    2013-06-01

    Full Text Available Alternate furrow irrigation with proper irrigation intervals could save irrigation water and result in high grain yield with low irrigation costs in arid areas. Two field experiments were conducted in the Middle Nile Delta area of Egypt during the 2010 and 2011 seasons to investigate the impact of alternate furrow irrigation with 7-d (AFI7 and 14-d intervals (AFI14 on yield, crop water use efficiency, irrigation water productivity, and economic return of corn (Zea mays L. as compared with every-furrow irrigation (EFI, conventional method with 14-d interval. Results indicated that grain yield increased under the AFI7 treatment, whereas it tended to decrease under AFI14 as compared with EFI. Irrigation water saving in the AFI7 and AFI14 treatments was approximately 7% and 17%, respectively, as compared to the EFI treatment. The AFI14 and AFI7 treatments improved both crop water use efficiency and irrigation water productivity as compared with EFI. Results also indicated that the AFI7 treatment did not only increase grain yield, but also increased the benefit-cost ratio, net return, and irrigation water saving. Therefore, if low cost water is available and excess water delivery to the field does not require any additional expense, then the AFI7 treatment will essentially be the best choice under the study area conditions.

  6. Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?

    International Nuclear Information System (INIS)

    An analytical job creation model for the US power sector from 2009 to 2030 is presented. The model synthesizes data from 15 job studies covering renewable energy (RE), energy efficiency (EE), carbon capture and storage (CCS) and nuclear power. The paper employs a consistent methodology of normalizing job data to average employment per unit energy produced over plant lifetime. Job losses in the coal and natural gas industry are modeled to project net employment impacts. Benefits and drawbacks of the methodology are assessed and the resulting model is used for job projections under various renewable portfolio standards (RPS), EE, and low carbon energy scenarios We find that all non-fossil fuel technologies (renewable energy, EE, low carbon) create more jobs per unit energy than coal and natural gas. Aggressive EE measures combined with a 30% RPS target in 2030 can generate over 4 million full-time-equivalent job-years by 2030 while increasing nuclear power to 25% and CCS to 10% of overall generation in 2030 can yield an additional 500,000 job-years.

  7. Efficiency of alternative MCMC strategies illustrated using the reaction norm model

    DEFF Research Database (Denmark)

    Shariati, Mohammad Mahdi; Sørensen, D.

    2008-01-01

    inferences may be affected. The objective of this study was to compare the efficiency (in terms of the asymptotic variance of features of posterior distributions of chosen parameters, and in terms of computing cost) of six MCMC strategies to sample parameters using simulated data generated with a reaction...... of the parameters, and no method comes out as an overall winner across all parameters. TSG and BG show very good performance in terms of asymptotic variance especially when the posterior correlation between genetic effects is high. In terms of computing cost, TSG performs best except for dispersion parameters...... in the low correlation scenario where SG was the best strategy. The two LH proposals could not compete with any of the Gibbs sampling algorithms. In this study it was not possible to find an MCMC strategy that performs optimally across the range of target distributions and across all possible values...

  8. Collisionless Stellar Hydrodynamics as an Efficient Alternative to N-body Methods

    CERN Document Server

    Mitchell, Nigel L; Hensler, Gerhard

    2012-01-01

    For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient, and relatively simple to implement. However when including the effects of gas physics, mesh codes are at a distinct disadvantage compared to SPH. Whilst implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh, has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. We propose the use of the collisionless Boltzmann moment equations as a means to model collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH AMR code. This approach, which we term "collisionless stellar hydrodynamics" enables us to do away with ...

  9. Clean Cities Now, Vol. 18, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-19

    This is version 18.2 of Clean Cities Now, the official biannual newsletter of the Clean Cities program. Clean Cities is an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  10. Clean Cities Annual Metrics Report 2009 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.

    2011-08-01

    Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

  11. Increasing the efficiency of NMR by multiplex data acquisition and alternative probe tuning

    International Nuclear Information System (INIS)

    Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool to investigate the structure and dynamics of molecular systems. But it is justifiably perceived as a costly and time-consuming technology. Within this thesis the author presents novel approaches to improve the technique regarding sensitivity and efficiency, and their implementations on commercial NMR spectrometers. The time requirements of multi-dimensional NMR experiments are usually determined by: 1. The number of transients that have to be accumulated to get sufficient signal-to-noise ratio. 2. The coherence selection process required to filter the desired information. 3. The number of indirect time increments to achieve enough resolution. Often, especially for structure determination of bigger molecules, a single experiment does not provide enough information and a set of different experiments has to be recorded. Based on that the author adds a fourth item to the list: 4. The number of different experiments that have to be recorded to obtain the necessary information about the sample. Within this thesis several approaches to improve the overall sensitivity (i.e. signal-to-noise ratios; ad 1) by optimizing the detection conditions in NMR using NMR noise and radiation damping are shown. Exploiting the latter it is possible to enhance tiny signals, which normally cannot be detected in the vicinity of a big signal, through non-linear signal enhancement. Efficiency can be enhanced using ideas based on cogwheel and multiplex phase cycling. During an NMR experiment pulses, delays and coherence selection methods are applied to obtain exactly the structurally relevant information required. This selection almost inevitably goes along with a waste of information or sensitivity in most conventional measurement protocols. To improve on that situation Multiplex Quadrature Detection (MQD) is developed, which significantly accelerates the coherence selection process (item 2) and the sampling in the indirect

  12. Online soot cleaning using infrasound

    Energy Technology Data Exchange (ETDEWEB)

    Torra i Fernandez, Eric; Ellebro, Martin [Infrafone AB, Stockholm (Sweden)

    2013-10-01

    The company Infrafone has been using infrasound as a soot cleaning method for more than 30 years. Infrasonic soot cleaning increases the efficiency, the availability and the lifetime of marine and industrial boilers. The properties and the description of infrasound and Infrafone's soot cleaning method are presented. Moreover, a brief comparison with audible sonic horns is carried out. The results and the savings of installing Infrafone's infrasonic cleaners are presented here with several case studies. (orig.)

  13. VIGOR TESTS ASSOCIATION AS AN ALTERNATIVE FOR PRECISE AND EFFICIENT ASSESSMENT OF MAIZE SEED QUALITY

    Directory of Open Access Journals (Sweden)

    MARCOS ALTOMANI NEVES DIAS

    2015-01-01

    Full Text Available This study aimed to associate two concepts of seed vigor testing, the aging and seedling growth using image analysis, providing a feasible and time-saving way to evaluate maize seed vigor in large scale. For this purpose, five seed lots with different vigor levels from two single hybrids were used. The seeds were characterized by moisture content, germination, seedling emergence, seedling emergence speed index, accelerated aging and cold tests. The treatments were composed by varying the accelerated aging periods (0, 24, 48, 72 and 96h and seedling growth periods (48 and 72h, before submitting the seedlings to image analysis for seedling root length measurement. Considering the results obtained, the adaptation of accelerated aging test by reducing the aging duration from 96h to 48h, and the replacement of the germination test by seedling root length measurement using image analysis could be considered a potential tool for maize seed vigor assessment. The treatments composed of 48h of seed aging followed by seedlings root length measurements using image analysis provided reliable data, compared to traditional vigor tests and it could be considered an efficient and timesaving approach, associating two different concepts of seed vigor analysis.

  14. Functionalized dicationic ionic liquids: Green and efficient alternatives for catalysts in phthalate plasticizers preparation

    Indian Academy of Sciences (India)

    NEGAR ZEKRI; REZA FAREGHI-ALAMDARI; ZAHRA KHODARAHMI

    2016-08-01

    Two highly acidic, imidazolium-based, functionalized dicationic ionic liquids (FDCILs) were synthesized and characterized by FTIR, ¹H NMR and¹³ C NMR. The synthesized FDCILs were used as efficient and green catalysts in the synthesis of phthalate plasticizers through esterification of phthalic anhydride (PhA)with ethanol, n-propanol and n-butanol. Among these two FDCILs, (dimethyl-4-sulfobutyl-ammonium) 1,2- ethan-1-methyl-imidazolium-sulfonic acid hydrogen sulfate performed better. The catalytic activity of FDCIL is related to the density of acidic groups on it and the length of the carbon chain in the cationic part. Theinfluences of the reaction temperature, catalyst dosage, and molar ratio of phthalic anhydride to alcohol on the esterification reaction were investigated. The reusability of the catalyst in these reactions was studied too. Theb diester phthalates were obtained up to 98.8% yield. The products can be separated easily by decantation from the reaction mixture.

  15. Tuning Chemical Potential Difference across Alternately Doped Graphene p-n Junctions for High-Efficiency Photodetection.

    Science.gov (United States)

    Lin, Li; Xu, Xiang; Yin, Jianbo; Sun, Jingyu; Tan, Zhenjun; Koh, Ai Leen; Wang, Huan; Peng, Hailin; Chen, Yulin; Liu, Zhongfan

    2016-07-13

    Being atomically thin, graphene-based p-n junctions hold great promise for applications in ultrasmall high-efficiency photodetectors. It is well-known that the efficiency of such photodetectors can be improved by optimizing the chemical potential difference of the graphene p-n junction. However, to date, such tuning has been limited to a few hundred millielectronvolts. To improve this critical parameter, here we report that using a temperature-controlled chemical vapor deposition process, we successfully achieved modulation-doped growth of an alternately nitrogen- and boron-doped graphene p-n junction with a tunable chemical potential difference up to 1 eV. Furthermore, such p-n junction structure can be prepared on a large scale with stable, uniform, and substitutional doping and exhibits a single-crystalline nature. This work provides a feasible method for synthesizing low-cost, large-scale, high efficiency graphene p-n junctions, thus facilitating their applications in optoelectronic and energy conversion devices. PMID:27351273

  16. A study on the introduction of a demonstration plant for the clean and efficient production of water and electricity in Indonesia

    International Nuclear Information System (INIS)

    BATAN is interested to develop a nuclear reactor that has a high degree of safety and a broad spectrum of process heat application including for electricity to be introduced in Indonesia and in the Asia Pacific Region. In order to have nuclear reactor technology that meets those requirements, a flexible direct marketing in the short and long term with a minimum adaptation could be done. Nuclear process heat applications such as for synthetic fuel production require supply of energy at high temperature levels up to 950 deg. C in order to achieve a sufficiently high reaction rate. The high temperature reactor is the only reactor system working in this temperature range. However, as the first step of development of the reactor technology in Indonesia, introduction (in the near time) of demo plant for the clean and efficient production of water and electricity may be a realistic strategy. Therefore, the study is focused on the high temperature gas cooled reactor technology coupled with the proven desalination plant. The scope of study to be done includes reactor technology, safety system evaluation, fuel cycle technology, waste management and decommissioning, economic and financing, licensing process, project development, site and environmental study, and plant layout. BATAN and related parties are preparing the study. In this report the scope of study and its progress is briefly presented. (author)

  17. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se2 thin-film solar cell absorbers

    International Nuclear Information System (INIS)

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for “realistic” surfaces of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In1-xGax)Se2 thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH3-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is – apart from a slight change in surface composition – identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material

  18. Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-08-01

    Full Text Available We investigated the synergetic effect between light-emitting diode (LED lighting efficiency and building energy savings in heating and cooling using an alternative thermal operating system (ATOS of indoor LED lighting integrated with the ventilation system of a building as an active cooling device. The heat generated from LED lighting and the indoor lighting illuminance were experimentally determined. The indoor heat gains in cooling and heating periods were determined using measurement data; the annual energy savings of an office building in heating and cooling were calculated through simulation. The LED lighting illuminance increased by approximately 40% and the lighting contribution for indoor heat gain was 7.8% in summer, while 69.8% in winter with the ATOS. Consequently, the annual total energy use of the office building could be reduced by 5.9%; the energy use in cooling and heating was reduced by 18.4% and 3.3%, respectively.

  19. Potential of renewable and alternative energy sources

    Science.gov (United States)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  20. Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics

    Science.gov (United States)

    Koehorst, Jasper J.; Saccenti, Edoardo; Schaap, Peter J.; Martins dos Santos, Vitor A. P.; Suarez-Diez, Maria

    2016-01-01

    A functional comparative genome analysis is essential to understand the mechanisms underlying bacterial evolution and adaptation. Detection of functional orthologs using standard global sequence similarity methods faces several problems; the need for defining arbitrary acceptance thresholds for similarity and alignment length, lateral gene acquisition and the high computational cost for finding bi-directional best matches at a large scale. We investigated the use of protein domain architectures for large scale functional comparative analysis as an alternative method. The performance of both approaches was assessed through functional comparison of 446 bacterial genomes sampled at different taxonomic levels. We show that protein domain architectures provide a fast and efficient alternative to methods based on sequence similarity to identify groups of functionally equivalent proteins within and across taxonomic bounderies. As the computational cost scales linearly, and not quadratically with the number of genomes, it is suitable for large scale comparative analysis. Running both methods in parallel pinpoints potential functional adaptations that may add to bacterial fitness.

  1. Efficient RFID Data Cleaning Method

    Directory of Open Access Journals (Sweden)

    Li Xing

    2013-01-01

    Full Text Available RFID (Radio Frequency Identification technology transfers data between movable tagged objects and readers without line of sight, and the captured data tends to be noisy. The inherent unreliability makes the data unreliable to application. Nowadays, the main solution is to use sliding window, but it is difficult to decide the window size, especially when the tag moves frequently or with high false positive. To solve the mentioned problems, SWKF (Sliding Window based on Kalman Filter Pre-processing is proposed. It preprocesses the RFID data to make the read rate close to the real one, detects and filters the mobile tags. Then, the preprocessed data is smoothed to further improve accuracy. At the same time, the mid-window slide point reduces the output. Through the combination of Kalman Filter and sliding window, SWKF provides accurate RFID data to application.

  2. Clean catch urine sample

    Science.gov (United States)

    Urine culture - clean catch; Urinalysis - clean catch; Clean catch urine specimen; Urine collection - clean catch ... lips" (labia). You may be given a special clean-catch kit that contains sterile wipes. Sit on ...

  3. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water.

    Science.gov (United States)

    Ma, Wei; Ma, Renzhi; Wang, Chengxiang; Liang, Jianbo; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2015-02-24

    Cost-effective electrocatalysts based on nonprecious metals for efficient water splitting are crucial for various technological applications represented by fuel cell. Here, 3d transition metal layered double hydroxides (LDHs) with varied contents of Ni and Fe were successfully synthesized through a homogeneous precipitation. The exfoliated Ni-Fe LDH nanosheets were heteroassembled with graphene oxide (GO) as well as reduced graphene oxide (rGO) into superlattice-like hybrids, in which two kinds of oppositely charged nanosheets are stacked face-to-face in alternating sequence. Heterostructured composites of Ni2/3Fe1/3 LDH nanosheets and GO (Ni2/3Fe1/3-GO) exhibited an excellent oxygen evolution reaction (OER) efficiency with a small overpotential of about 0.23 V and Tafel slope of 42 mV/decade. The activity was further improved via the combination of Ni2/3Fe1/3 LDH nanosheets with more conductive rGO (Ni2/3Fe1/3-rGO) to achieve an overpotential as low as 0.21 V and Tafel plot of 40 mV/decade. The catalytic activity was enhanced with an increased Fe content in the bimetallic Ni-Fe system. Moreover, the composite catalysts were found to be effective for hydrogen evolution reaction. An electrolyzer cell powered by a single AA battery of 1.5 V was demonstrated by using the bifunctional catalysts.

  4. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water.

    Science.gov (United States)

    Ma, Wei; Ma, Renzhi; Wang, Chengxiang; Liang, Jianbo; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2015-02-24

    Cost-effective electrocatalysts based on nonprecious metals for efficient water splitting are crucial for various technological applications represented by fuel cell. Here, 3d transition metal layered double hydroxides (LDHs) with varied contents of Ni and Fe were successfully synthesized through a homogeneous precipitation. The exfoliated Ni-Fe LDH nanosheets were heteroassembled with graphene oxide (GO) as well as reduced graphene oxide (rGO) into superlattice-like hybrids, in which two kinds of oppositely charged nanosheets are stacked face-to-face in alternating sequence. Heterostructured composites of Ni2/3Fe1/3 LDH nanosheets and GO (Ni2/3Fe1/3-GO) exhibited an excellent oxygen evolution reaction (OER) efficiency with a small overpotential of about 0.23 V and Tafel slope of 42 mV/decade. The activity was further improved via the combination of Ni2/3Fe1/3 LDH nanosheets with more conductive rGO (Ni2/3Fe1/3-rGO) to achieve an overpotential as low as 0.21 V and Tafel plot of 40 mV/decade. The catalytic activity was enhanced with an increased Fe content in the bimetallic Ni-Fe system. Moreover, the composite catalysts were found to be effective for hydrogen evolution reaction. An electrolyzer cell powered by a single AA battery of 1.5 V was demonstrated by using the bifunctional catalysts. PMID:25605063

  5. Acute physiology, age, and chronic health evaluation (APACHE) III score is an alternative efficient predictor of mortality in burn patients.

    Science.gov (United States)

    Tanaka, Yohei; Shimizu, Mikio; Hirabayashi, Hidemitsu

    2007-05-01

    The present study was performed to evaluate the prognostic value of the acute physiology, age, chronic health evaluation (APACHE) III score in burn patients. We hypothesised that APACHE III score efficiently predicts mortality of burn patients as it reflects the physiological changes in the acute phase and the severity of the underlying illness. Data such as age, gender, inhalation injury, total burn surface area (TBSA), burn index (BI), prognostic burn index (PBI), APACHE III score and outcome of 105 hospitalised patients were analysed retrospectively. TBSA, BI, PBI, and APACHE III score in the mortality group were significantly higher than those of surviving group. The mean scores of surviving versus mortality groups were as follows: TBSA, 19.2+/-17.8% versus 69.1+/-28.4%, pAPACHE III score, 28.4+/-22.2% versus 71.3+/-32.1%, pAPACHE III score showed marked associations between higher scores and higher mortality. APACHE III score showed a significant correlation with PBI (pAPACHE III score could be used as an alternative efficient predictor of mortality in burn patients.

  6. A modified ABC model in InGaN MQW LED using compositionally step graded Alternating Barrier for efficiency improvement

    Science.gov (United States)

    Prajoon, P.; Nirmal, D.; Anuja Menokey, M.; Charles Pravin, J.

    2016-08-01

    In this paper, Multiple Quantum Well (MQW) Light-Emitting Diodes (LEDs) with compositionally step graded (CSG) Alternating Barriers (AB) of InGaN-AlGaN with p-doped GaN barrier is designed and analysed. The improved crystal structure and modified band bending in the device enhances the carrier confinement and diminishes the polarization-related efficiency reduction. Furthermore, the good crystalline quality increases the hole injection and transportation; this significantly improves the radiative recombination rate and reduces the non-radiative recombination as well as carrier leakage out of the active region. Simulation result show mitigated efficiency droop of 3% and light output power of 1500 mW at the injection current of 500 mA. A modified ABC model is also developed to model the carrier leakage mechanism at high injection current density. In the model, total carrier leakage currents from the active region due to thermionic emission and electron overflow at high injection current are considered. Also, the obtained result of the modelled conventional LED shows a good fit with experimental data. Moreover, the SiC substrate technology in the design is attributed with improved crystal structure, reduced polarization effect and thermal conductivity, which improve the optical performance of the device.

  7. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    Energy Technology Data Exchange (ETDEWEB)

    G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel

    2010-07-01

    After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At the same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents the most likely path of growth based on continuation of current policies and meeting announced targets and goals, including meeting planned appliance efficiency standard revisions, fuel economy standards, and industrial targets and moderate phase-out of subcritical coal-fired generation with additional non-fossil generation. AIS represents a more aggressive trajectory of accelerated improvement in energy intensity and decarbonized power and transport sectors. A range of sensitivity analysis and power technology scenarios are tested to evaluate the impact of additional actions such as

  8. IDEA Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Robert

    2013-09-30

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening

  9. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative clean liquid fuel. Interim report, October 1978-November 15, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J. P.

    1979-11-15

    The rheological and combustion properties of coal/water/oil mixtures have been investigated. In addition the use of alkaline additives to remove the sulfur oxide gases has been studied. Results on stability and pumpability indicate that mixtures of 50% by weight of coal and stoichiometric concentrations of alkaline absorbents are pumpable. Correlation between viscometer data and pumping data follows a power law behavior for these mixtures. Thermal efficiencies are about the same as for pure oil. Combustion efficiencies are approximately 97%. It is possible to remove in a small scale combustion from 50 to 80% of the sulfur dioxide gases.

  10. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  11. A comparative study on efficiency of different methods for medical device moisturizing and cleaning%不同方法保湿清洗医疗器械效果的对比分析

    Institute of Scientific and Technical Information of China (English)

    常香远; 郝淑芹

    2012-01-01

    目的 检测分析3种不同保湿方法清洗医疗器械的效果.方法 选择<7d全院临床科室使用后的医疗器械,采用3种不同的保湿和清洗方法处理;A组:0.5%含氯消毒剂保湿+手工清洗,B组:酶清洗剂保湿+机洗,C组:碱性清洗液+酶清洗剂保湿+超声+升级后的清洗机清洗;清洗后的器械用目测方法:裸视和带光源5倍放大镜下观察及隐血试验法检测其清洗效果.结果 3种方法处理器械裸视目测合格率A组:为92.01%,B组:为96.07%,C组:为99.14%,C组明显高于A组,差异有统计学意义(P<0.01).结论 医院应根据新标准的要求,选择合适的保湿清洗器械方法,建立正确的清洗流程.%OBJECTIVE To analyze the efficiency of 3 different medical devices moisturizing and cleaning methods before and after the implementation of new national industrial standard for central sterile supply department issued by the MOH. METHODS The medical devices from the clinics after use within 7days were chosen, and three different moisturizing and cleaning methods were applied. Group A: the medical devices were moisturized with 0. 5% chlorine disinfectant and cleaned by hand. Group B were moisturized with enzyme detergent and cleaned by machine. Group C were moisturized with alkaline cleaning liquid and enzyme detergent and then cleaned with ultrasound machine and upgraded washer. The cleaning effect on the medical devices was evaluated by visual examination (observed with naked eyes and with 5 times magnifying glass with light) and occult blood test. RESULTS The qualified rates of the three methods evaluated with naked eyes were;Group A (92. 01%) , Group B (96. 07%) , and Group C (99. 14%). The qualified rate of Group C was significantly higher than that of Group A (P<0. 01). CONCLUSION Hospitals should select appropriate moisturizing and cleaning method for medical devices to establish correct cleaning procedure under the new national standard requirements.

  12. Dry Cleaning

    OpenAIRE

    Shirley, Lindsey; Weller, Chanae

    2010-01-01

    Despite its name, commercial dry cleaning is not actually a “dry” process. Clothes are immersed in a solvent, most commonly perchlorethylene (perc), instead of in water. Perc or other similar solvents are effective in the removal of oil and grease-based stains without damaging or shrinking sensitive fabrics, unlike a regular detergents and fabric softeners.

  13. Otimização da eficiência de limpeza em equipamento de beneficiamento de tomate de mesa Optimizing cleaning efficiency at a fresh market tomato packing line

    Directory of Open Access Journals (Sweden)

    Michele C. Silva

    2008-12-01

    Full Text Available A etapa de limpeza no sistema de beneficiamento do tomate de mesa é essencial para a aceitação do produto pelo consumidor, pois o grau de limpeza dos frutos está diretamente relacionado com a qualidade do produto. Entretanto, a etapa de lavagem, nos atuais equipamentos de limpeza, utilizada em unidades comerciais de beneficiamento, demanda volume excessivo de água, trazendo sérias preocupações ambientais. Este trabalho teve como objetivo comparar a eficiência de limpeza em dois sistemas, avaliando diferentes configurações operacionais relacionadas com a rotação de escovas, vazão do sistema e tempo de permanência do fruto sobre o jato. Comparou-se o sistema convencional utilizado em equipamentos comerciais com o sistema composto por um bocal de spray do tipo cone cheio. Os resultados demonstraram que a eficiência de limpeza não está diretamente relacionada com o volume de água utilizado, mas, sim, à pressão da água, associado ao tempo de permanência dos frutos e à rotação das escovas. Portanto, o uso de spray em sistemas de limpeza de frutos de tomate pode trazer benefícios tanto para a eficiência de limpeza, com incrementos superiores a 13%, como para o meio ambiente, trazendo redução no consumo de água.The post-harvesting cleaning process in fresh market tomatoes production is essential to the consumer acceptance, since the degree of dirtiness of the fruits is directly related to its quality. However, the washing stage of the cleaning process of commercial packinghouse demands an excessive water volume, bringing serious environmental concerns. The objective of this work was to compare the cleaning efficiency in two cleaning systems through the evaluation of different operational conditions of the cleaning process, related with the brush rotation, water flow and fruit standing time under the system. It was compared the conventional system utilized in commercial equipment with a system using commercial sprays. The

  14. Pressurised fluidised bed combustion: an alternative for the clean use of coal. La combustion en lecho fluido a presion, una alternativa de uso limpio del carbon en desarrollo

    Energy Technology Data Exchange (ETDEWEB)

    Beucom O Perez-Zamora, V.; Menendez Perez, J.A.E. (ENDESA, Madrid (Spain))

    1988-11-01

    Atmospheric fluidised bed combustion is an alternative worthy of consideration. It is a solution which maintains or even increases output slightly and, in the circulating fluidised bed variety, has the advantage of being able to burn an inconsistent quality of coal with a high sulphur content. The most important question is to what output this method can be developed whilst remaining competitive with other systems. There is a tendency to assume that atmospheric fluidised bed combustors can be developed up to 250 MW and that more powerful installations for electricity generation use systems with a higher output. In any case, this is no more than a general and preliminary observation. Its validity will be proved by the technical and economic results achieved with high output systems and by the availability of coal of the required mix of quality and price. 10 tabs., 10 figs.

  15. Alternative Processing Technology for Converting Vegetable Oils and Animal Fats to Clean Fuels and Light Olefins%动植物油生产清洁燃料和低碳烯烃的替代加工工艺

    Institute of Scientific and Technical Information of China (English)

    田华; 李春义; 杨朝合; 山红红

    2008-01-01

    Since the production cost of biodiesel is now the main hurdle limiting their applicability in some areas, catalytic cracking reactions represent an alternative route to utilization of vegetable oils and animal fats. Hence, catalytic transformation of oils and fats was carried out in a laboratory-scale two-stage riser fluid catalytic cracking (TSRFCC) unit in this work. The results show that oils and fats can be used as FCC feed singly or co-feeding with vacuum gas oil (VGO), which can give high yield (by mass) of liquefied petroleum gas (LPG), C2-C4 olefins, for example 45% LPG, 47% C2-C4 olefins, and 77.6% total liquid yield produced with palm oil cracking. Co-feeding with VGO gives a high yield of LPG (39.1%) and propylene (18.1%). And oxygen element content is very low (about 0.5%) in liquid products, hence, oxygen is removed in the form of H2O, CO and CO2. At the same time, high concentration of aromatics (C7-C9 aromatics predominantly) in the gasoline fraction is obtained after TSRFCC reaction of palm oil, as a result of large amount of hydrogen-transfer, cyclization and aromatization reactions. Additionally, most of properties of produced gasoline and diesel oil fuel meet the requirements of national standards, containing little sulfur. So TSRFCC technology is thought to be an alternative processing technology leading to production of clean fuels and light olefins.

  16. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  17. ECOLOGICAL AND ECONOMIC EFFICIENCY OF PEAT FAST PYROLYSIS PROJECTS AS AN ALTERNATIVE SOURCE OF RAW ENERGY RESOURCES

    Directory of Open Access Journals (Sweden)

    Pavel Tcvetkov

    2016-01-01

    Full Text Available The objective of this review is to find ecologically and economically reasonable method of biomass processing to produce electricity and thermal energy. The major causes of the annual increase in the volume of consumed electricity and thermal energy are the current pace of scientific and technological progress, the overcrowding of cities and industrial agglomeration. Traditional energy sources (coal, oil, gas have a significant negative impact on the environment, which leads to the deterioration of sanitary-hygienic indicators of the human environment. Besides, prices for traditional energy resources are increasing due to the decline of easy produced stocks. The goal of this article is the investigation and evaluation of environmental and economic efficiency of biomass fast pyrolysis methods for as modern energy resources. The result of the review is the choice of biomass fast pyrolysis as the most environmentally reasonable and economically viable local method of producing electricity and thermal energy in Russia. This method is more eco-friendly, compared to other alternative energy sources, for example using peat as solid fuel.

  18. Efficient and robust 3D CT image reconstruction based on total generalized variation regularization using the alternating direction method.

    Science.gov (United States)

    Chen, Jianlin; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Cheng, Genyang

    2015-01-01

    Iterative reconstruction algorithms for computed tomography (CT) through total variation regularization based on piecewise constant assumption can produce accurate, robust, and stable results. Nonetheless, this approach is often subject to staircase artefacts and the loss of fine details. To overcome these shortcomings, we introduce a family of novel image regularization penalties called total generalized variation (TGV) for the effective production of high-quality images from incomplete or noisy projection data for 3D reconstruction. We propose a new, fast alternating direction minimization algorithm to solve CT image reconstruction problems through TGV regularization. Based on the theory of sparse-view image reconstruction and the framework of augmented Lagrange function method, the TGV regularization term has been introduced in the computed tomography and is transformed into three independent variables of the optimization problem by introducing auxiliary variables. This new algorithm applies a local linearization and proximity technique to make the FFT-based calculation of the analytical solutions in the frequency domain feasible, thereby significantly reducing the complexity of the algorithm. Experiments with various 3D datasets corresponding to incomplete projection data demonstrate the advantage of our proposed algorithm in terms of preserving fine details and overcoming the staircase effect. The computation cost also suggests that the proposed algorithm is applicable to and is effective for CBCT imaging. Theoretical and technical optimization should be investigated carefully in terms of both computation efficiency and high resolution of this algorithm in application-oriented research.

  19. The Development of Mini Portable Digester Designs for Domestic and Restaurant Solid Waste Processing to be Clean Biogas as Energy's Alternative to Replace LPG

    Science.gov (United States)

    Mansur, A.; Janari dan, D.; Setiawan, N.

    2016-02-01

    Biofuel is developed as an alternative source of second generation energy that could be attained from organic waste. This research is purposed to create applicative and cheap Portable digester unit for society. The design concepts’ screening that was made under considerations of the experts is finally resumed. Design 1 with final weight score of 1, design 2 with final weight score of -1, design 3 with final weight score of 2, design 4 with final weight score 3, design 5 with final weight score of -1, design 6 with final weight score of 0. Accepted designs for further concept assessment are design 1, 2 and 6. The result of concept assessment applies weighting for the scoring. Design 1 resulting 2.67, design 2 results 2.15 while design 3 results 2.52. Design 1 is concluded as the design with biggest result, which is 2.67. Its specification is explained as follows: tank capacity of 60 liters, manual rotating crank pivot, tank's material is plastic with symbol 1, material of axle swivel arm is grey cast iron, 2 mm rotary blades with hole. The experiment 1 contained 23.78% methane and 13.65 carbon dioxide that resulted from content test.

  20. Roadmap 2030 Dutch Glass Industry. Towards a clean, efficient and cost-effective future; Routekaart 2030 Nederlandse Glasindustrie. Naar een schone, zuinige en rendabele toekomst

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    This Roadmap is the result of the covenant signed by the Dutch glass industry and the Dutch national government in 2009 on a Long Term Agreement on Energy Efficiency. Participating companies committed to continuous improvement in energy performance in both manufacturing processes as well as the supply chain from raw material to final product. The Dutch glass industry has undertaken a strategic study regarding the possibilities of achieving far-reaching energy efficiency improvement by 2030. The overall industry's target is to realise an energy efficiency improvement of 25%, compared to its energy consumption and production level of 2009. Several related areas were identified for actions and measures for energy efficiency improvement: (1) Alternatives to primary raw materials; (2) Intensified use of secondary raw materials (cullet); (3) Innovations in batch preparation; (4) Innovations in glass composition; (5) Innovations in process control; (6) Innovations in furnace design; (7) New methods of waste heat recovery; (8) Improved performance of glass products [Dutch] Dit rapport is tot stand gekomen in het kader van de Meerjarenafspraak Energie-Efficientie ETS (Emission Trading System) ondernemingen, ook wel het MEE-convenant genoemd. Dit convenant nodigt de deelnemende sectoren uit tot het opstellen van een Routekaart voor 2030. De Routekaart is een strategische studie die inzichtelijk maakt hoe invulling wordt gegeven aan het realiseren van energie-efficientie verbeteringen binnen de bedrijven en in de keten op de route naar 2030. Hoofdstuk 1 is een introductie op de Routekaart 2030 en de wijze waarop de Routekaart tot stand is gekomen. Hoofdstuk 2 beschrijft in vogelvlucht de sector, op welke manier nu al invulling wordt gegeven aan duurzame ontwikkeling en energie, en geeft een beschrijving van de Vereniging van Nederlandse Glasfabrikanten (VNG). Hoofdstuk 3 beschrijft algemene trends en de visie van de sector op de toekomst. Daarnaast wordt de markt in 2030

  1. Clean cars

    Energy Technology Data Exchange (ETDEWEB)

    Piffaretti, M.

    2008-07-01

    This well-illustrated presentation made at the Swiss 2008 research conference on traffic by the Protoscar company takes a look at research, design, engineering and communication topics in the area of 'clean cars'. The present situation with electrically driven and hybrid-drive cars is reviewed and the chances and problems of the present-day vehicles are examined. New developments and a number of vehicles that should be on the market in the period from 2012 to 2015 are presented. Also, 'clean' specialist vehicles such as trucks and buses are reviewed. Battery systems and associated problems and new developments are looked at. The promotion scheme in Mendrisio, Switzerland is reviewed. Bottom-up and top-down approaches are discussed and future market developments are looked at, as are promotional activities in various countries.

  2. Dry efficient cleaning of poly-methyl-methacrylate residues from graphene with high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Petit-Etienne, C.; Davydova, A. [Laboratoire des Technologies de la Microélectronique, CNRS-UJF, 17 rue des Martyrs, 38054 Grenoble (France); Ferrah, D.; Renault, O. [CEA, LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Okuno, H. [CEA, INAC/SP2M/LEMMA, 17 rue des Martyrs, 38054 Grenoble (France); Kalita, D.; Bouchiat, V. [Institut Néel, CNRS-UJF-INP, BP 166, 38042 Grenoble Cedex 9 (France)

    2015-09-28

    Graphene is the first engineering electronic material, which is purely two-dimensional: it consists of two exposed sp{sup 2}-hybridized carbon surfaces and has no bulk. Therefore, surface effects such as contamination by adsorbed polymer residues have a critical influence on its electrical properties and can drastically hamper its widespread use in devices fabrication. These contaminants, originating from mandatory technological processes of graphene synthesis and transfer, also impact fundamental studies of the electronic and structural properties at the atomic scale. Therefore, graphene-based technology and research requires “soft” and selective surface cleaning techniques dedicated to limit or to suppress this surface contamination. Here, we show that a high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas can be used to selectively remove polymeric residues from monolayer graphene without any damage on the graphene surface. The efficiency of this dry-cleaning process is evidenced unambiguously by a set of spectroscopic and microscopic methods, providing unprecedented insights on the cleaning mechanisms and highlighting the role of specific poly-methyl-methacrylate residues at the graphene interface. The plasma is shown to perform much better cleaning than solvents and has the advantage to be an industrially mature technology adapted to large area substrates. The process is transferable to other kinds of two-dimensional material and heterostructures.

  3. Electrical field assisted matrix solid phase dispersion as a powerful tool to improve the extraction efficiency and clean-up of fluoroquinolones in bovine milk.

    Science.gov (United States)

    da Silva, Mariana Cristina; Orlando, Ricardo Mathias; Faria, Adriana Ferreira

    2016-08-26

    This work presents a new method by electrical matrix solid phase dispersion for the extraction and clean-up of marbofloxacin, ofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, difloxacin and sarafloxacin in bovine milk. Composition and pH of the eluent, applied electrical potential and polarity were optimized by experimental designs. The combination of the chromatographic and electrophoretic mechanisms allowed the extraction and clean-up in one step with low organic solvent consumption, high extraction throughput and elution automation. Linearity, precision, trueness and limit of quantification were evaluated and provided values in accordance with other methods recently developed for the analysis of fluoroquinolones in milk. This technique proved to be promising for the extraction and clean-up of ionizable analytes in different milk matrices. PMID:27492598

  4. Electrical field assisted matrix solid phase dispersion as a powerful tool to improve the extraction efficiency and clean-up of fluoroquinolones in bovine milk.

    Science.gov (United States)

    da Silva, Mariana Cristina; Orlando, Ricardo Mathias; Faria, Adriana Ferreira

    2016-08-26

    This work presents a new method by electrical matrix solid phase dispersion for the extraction and clean-up of marbofloxacin, ofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, difloxacin and sarafloxacin in bovine milk. Composition and pH of the eluent, applied electrical potential and polarity were optimized by experimental designs. The combination of the chromatographic and electrophoretic mechanisms allowed the extraction and clean-up in one step with low organic solvent consumption, high extraction throughput and elution automation. Linearity, precision, trueness and limit of quantification were evaluated and provided values in accordance with other methods recently developed for the analysis of fluoroquinolones in milk. This technique proved to be promising for the extraction and clean-up of ionizable analytes in different milk matrices.

  5. Application of State and Federal Guidelines for Establishing Alternate Soil Clean-Up Levels for the Protection of Groundwater at the Hanford Site

    International Nuclear Information System (INIS)

    Risk-based soil cleanup levels that are protective of groundwater have been calculated for use in environmental remediation activities at the Hanford Site using vadose zone fate and transport modeling. The determination of soil cleanup levels is important because it involves the technical basis for the levels of contamination that can be left in place, which are protective of human health and the environment. The determination of risk-based soil cleanup levels is an especially important issue at the Hanford Site where site conditions such as a semi-arid climate, and a thick vadose zone of over 100 meters necessitate the use of appropriate risk-based methods. In the absence of an alternative risk-based approach, the cleanup levels default to background, detection limits, or simplistic formulas not intended for applications involving these distinctive site conditions. However, the use of vadose zone fate and transport modeling for risk-based applications such as the determination of soil cleanup levels in the vadose zone are not as well established as modeling for groundwater applications. Thus, the use of models in this manner involves additional challenges for the demonstration of the efficacy of its use for risk-based applications, in accordance with federal and state regulatory requirements and guidelines. An approach has been developed to integrate with federal and state regulatory guidelines in conjunction with the development of the risk-based methodology. Demonstration of integration with these guidelines primarily involves documentation of the objectives of the problem to be solved, the technical basis and rationale associated with the selection of an appropriate risk-based method (e.g., model type and code selection), and documentation associated with the use of the model, e.g., conceptual site model, parameter estimation, uncertainty and assumptions analyses, and model results. (authors)

  6. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    Science.gov (United States)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  7. Decision document on the revision of the VERA protocol on air cleaning technologies. Measuring techniques for the determination of the removal efficiency for ammonia

    OpenAIRE

    Mosquera Losada, J.; Edouard, N.; Guiziou, F.; Melse, R.W.; Riis, A.L.; Sommer, S.; Brusselman, E.

    2014-01-01

    In the project “ICT-AGRI: Development of harmonized sampling and measurement methods for odour, ammonia and dust emissions” different subgroups have been formed focusing on either ammonia, odour or dust. In this report, the conclusions of the ammonia subgroup regarding harmonization of measurement methods for the estimation of the ammonia removal from air cleaning technologies are summarized.

  8. 身体清洁对低龄幼儿选择扩散效应的消除%Physical Cleanness Eliminates Children's Spreading-alternatives-effect

    Institute of Scientific and Technical Information of China (English)

    傅于玲; 秦启文; 冯缙; 杨帅

    2012-01-01

    研究以105名4岁幼儿为被试,采用选择扩散范式的盲选-双选法考察身体清洁能否消除低龄幼儿的选择扩散效应。通过操纵自变量(洗手vs.不洗手),观察幼儿是否出现选择扩散。结果发现,不洗手组的被试出现明显的选择扩散效应,洗手组则没有。说明4岁幼儿已经表现出选择扩散效应,且能通过身体清洁得以消除。除了自我心理学和行为倾向的解释之外,研究结果说明,具身认知可能也是影响选择扩散效应的心理机制。%The Spreading-alternatives-effect is a form of attitude , hange caused by post-decision dissonance. After choosing between two equally attractive alternatives, people tend to evaluate the chosen alternative more positively or devaluate the rejected alternative. It can be observed in both adults and children. Recent studies found that the spreading-alternatives-effict was eliminated by hand-washing in adults. The purpose uf this study was to explore whether physical clean behavior such as hand-washing could eliminate children' s post decision dissonance as it did in adults. A total of' 1104-year-old kindergarten children participated in this experiment. Five of them refused to cooperate and 105 of them finished the experiment as designed (M = 53.4month, SD = 2.98, 49boys). In blind-two-fhoice tasks preferences would not guide choices and such tasks are applicable to children, too. 3 brightly cohn'ed plastic toys were used as the stimuli. The toys were the same except for their colors, which were mainly red, blue and orange. Each of the three toys were put in three stockings to hide their main identities ; two of the the stockings were the same colore and the remaining one was different. Children firstly chose between two toys in the same colored stocking, while the color of the toys cannot be seen, and secondly chose between the rejected alternative and the third one. To manipulate the independent

  9. National Clean Fleets Partnership (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-01-01

    Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

  10. Prototype air cleaning system for a firing range

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, J.A.; Mishima, J.; Bamberger, J.A.

    1985-01-01

    This report recommends air cleaning system components for the US Army Ballistics Research Laboratory's new large-caliber firing range, which is used for testing depleted uranium (DU) penetrators. The new air cleaning system has lower operating costs during the life of the system compared to that anticipated for the existing air cleaning system. The existing system consists of three banks of filters in series; the first two banks are prefilters and the last are high-efficiency particulate air (HEPA) filters. The principal disadvantage of the existing filters is that they are not cleanable and reusable. Pacific Northwest Laboratory focused the search for alternate air cleaning equipment on devices that do not employ liquids as part of the particle collection mechanism. Collected dry particles were assumed preferable to a liquid waste stream. The dry particle collection devices identified included electrostatic precipitators; inertial separators using turning vanes or cyclones; and several devices employing a filter medium such as baghouses, cartridge houses, cleanable filters, and noncleanable filters similar to those in the existing system. The economics of practical air cleaning systems employing the dry particle collection devices were evaluated in 294 different combinations. 7 references, 21 figures, 78 tables.

  11. Clean Cities 2010 Annual Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.

    2012-10-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  12. Clean Cities 2011 Annual Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.

    2012-12-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  13. Clean Cities Now Vol. 19, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-18

    Clean Cities Now is the official bi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  14. Clean Cities Now Vol. 20, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-13

    Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  15. Clean Cities Now Vol. 17, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-23

    The Fall 2013 issue of the biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on deployment of alternative fuels and advanced vehicles, and articles on Clean Cities coalition successes across the country.

  16. Clean Cities Now, Vol. 18, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-04-30

    The Spring 2014 edition of the semi-annual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on deployment of alternative fuels and advanced vehicles, and articles on Clean Cities coalition successes across the country.

  17. Clean Cities Annual Metrics Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Bergeron, P.

    2009-09-01

    This report summarizes the Department of Energy's Clean Cities coalition accomplishments in 2008, including petroleum displacement data, membership, funding, sales of alternative fuel blends, deployment of AFVs and HEVs, idle reduction initiatives, and fuel economy activities.

  18. Electrical efficiency and renewable energy - Economical alternatives to large-scale power generation; Stromeffizienz und erneuerbare Energien - Wirtschaftliche alternative zu Grosskraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Oettli, B.; Hammer, S.; Moret, F.; Iten, R. [Infras, Zuerich (Switzerland); Nordmann, T. [TNC Consulting AG, Erlenbach (Switzerland)

    2010-05-15

    This final report for WWF Switzerland, Greenpeace Switzerland, the Swiss Energy Foundation SES, Pro Natura and the Swiss Cantons of Basel City and Geneva takes a look at the energy-relevant effects of the propositions made by Swiss electricity utilities for large-scale power generation. These proposals are compared with a strategy that proposes investments in energy-efficiency and the use of renewable sources of energy. The effects of both scenarios on the environment and the risks involved are discussed, as are the investments involved. The associated effects on the Swiss national economy are also discussed. For the efficiency and renewables scenario, two implementation variants are discussed: Inland investments and production are examined as are foreign production options and/or import from foreign countries. The methods used in the study are introduced and discussed. Investment and cost considerations, earnings and effects on employment are also reviewed. The report is completed with an extensive appendix which, amongst other things, includes potential reviews, cost estimates and a discussion on 'smart grids'

  19. Efficiency

    NARCIS (Netherlands)

    I.P. van Staveren (Irene)

    2009-01-01

    textabstractThe dominant economic theory, neoclassical economics, employs a single economic evaluative criterion: efficiency. Moreover, it assigns this criterion a very specific meaning. Other – heterodox – schools of thought in economics tend to use more open concepts of efficiency, related to comm

  20. Tracking Clean Energy Progress 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Tracking Clean Energy Progress 2013 (TCEP 2013) examines progress in the development and deployment of key clean energy technologies. Each technology and sector is tracked against interim 2020 targets in the IEA Energy Technology Perspectives 2012 2°C scenario, which lays out pathways to a sustainable energy system in 2050. Stark message emerge: progress has not been fast enough; large market failures are preventing clean energy solutions from being taken up; considerable energy efficiency remains untapped; policies need to better address the energy system as a whole; and energy-related research, development and demonstration need to accelerate. Alongside these grim conclusions there is positive news. In 2012, hybrid-electric vehicle sales passed the 1 million mark. Solar photovoltaic systems were being installed at a record pace. The costs of most clean energy technologies fell more rapidly than anticipated.

  1. First cleaning with LHC collimators

    CERN Document Server

    Wollmann, D; Arnau-Izquiedo, G; Assmann, R; Bacher, J P; Baglin, V; Bellodi, G; Bertarelli, A; Bouzoud, A; Bracco, C; Bruce, R; Brugger, M; Calatroni, S; Cerruti, F; Chamizo, R; Cherif, A; Chiaveri, E; Chiggiato, P; Dallochio, A; Dehning, B; Donze, M; Ferrari, A; Folch, R; Francon, P; Gander, P; Geisser, J M; Grudiev, A; Holzer, EB; Jacquet, D; Jeanneret, J B; Jimenez, J M; Jonker, M; Jowett, J; Kershaw, K; Lari, L; Lendaro, J; Loprete, F; Losito, R; Magistris, M; Malabaila, M; Mayer, M; Marsili, A; Masi, A; Mathot, S; Métral, E; Mitifiot, C; Mounet, N; de Morais Amaral, R; Nordt, A; Perret, R; Perrollaz, S; Rathjen, C; Redaelli, S; Robert-Demolaize, G; Roesler, S; Rossi, A; Salvant, B; Santana, M; Sexton, I; Sievers, P; Tardy, T; Timmins, M; Tsoulou, K; Veyrunes, E; Vincke, H; Vlachoudis, V; Vuillemin, V; Weiler, T; Zimmermann, F; Baishev, I; Kurochkin, I; Kaltchev, D; Caspers, F; Kadi, Y

    2010-01-01

    The LHC has two dedicated cleaning insertions: IR3 for momentum cleaning and IR7 for betatron cleaning. The collimation system has been specified and built with tight mechanical tolerances (e.g. jaw flatness ~ 40 μm ) and is designed to achieve a high accuracy and reproducibility of the jaw positions (~ 20 μm). The practically achievable cleaning efficiency of the present Phase-I system depends on the precision of the jaw centering around the beam, the accuracy of the gap size and the jaw parallelism against the beam. The reproducibility and stability of the collimation system is important to avoid the frequent repetition of beam based alignment which is currently a lengthy procedure. Within this paper we describe the method used for the beam based alignment of the LHC collimation system, its achieved accuracy and stability and its performance at 450GeV.

  2. DESIGNING AND EFFICIENCY EFFECT OF AUTOMATIC BALL-CLEANING SYSTEM FOR CONDENSER 180-KTsS-1 OF TURBINE Т-180/210-130-1 LMZ. Part 1

    OpenAIRE

    Yu. A. Zenovich-Leshkevich-Ol’pinskiy; A. Yu. Naumov; A. Yu. Zenovich-Leshkevich-Ol’pinskaya

    2015-01-01

    In order to reduce losses in the cooling source (condenser) and to increase effectiveness of fuel-and-power resources utilization, the authors present a modern automatic ball-cleaning system for the pipes of condenser 180-KTsS-1 of turbine unit Т-180/210-130-1 LMZ of Gomel CHP-2. The article examines exploitation challenges of the steam turbine condensers and methods of clearing them from sedimentations. Depending on the sedimentation character and composition, and the quality of cooling wate...

  3. Adoption of clean coal technologies in India

    International Nuclear Information System (INIS)

    Coal is a major Indian energy resource. It is being utilized in conventional power stations now. Considerable coal resources are not located near load centers and therefore involve transport by rail. India is becoming more concerned with environmental matters and particularly with the health of its population. Clean coal electricity generation technologies are at the commercial demonstration stage in Europe and the USA in unit capacities appropriate to Indian needs. These technologies minimize environmental problems and promise 25% more efficiency. This competitive technology can be introduced to India in greenfield power stations, in repowering older power stations and in providing an enviable alternative for existing and new power stations presently depending on liquid or gas as fuel. (author)

  4. Clean electricity from photovoltaics

    CERN Document Server

    Green, Martin A

    2015-01-01

    The second edition of Clean Electricity from Photovoltaics , first published in 2001, provides an updated account of the underlying science, technology and market prospects for photovoltaics. All areas have advanced considerably in the decade since the first edition was published, which include: multi-crystalline silicon cell efficiencies having made impressive advances, thin-film CdTe cells having established a decisive market presence, and organic photovoltaics holding out the prospect of economical large-scale power production. Contents: The Past and Present (M D Archer); Limits to Photovol

  5. 75 FR 6180 - Mission Statement; Secretarial China Clean Energy Business Development Mission; May 16-21, 2010

    Science.gov (United States)

    2010-02-08

    ... International Trade Administration Mission Statement; Secretarial China Clean Energy Business Development... following sectors: clean energy, energy efficiency, and electric energy storage and transmission and... has made clean energy and energy efficiency strategic priorities. In the 11th Five- Year Plan,...

  6. 螺旋纽带自动清洗式高效蒸发器技术可行性研究%Research of Technical Feasibility of High - efficiency Evapourators of Self- cleaning with Twisted Strips

    Institute of Scientific and Technical Information of China (English)

    俞天兰; 彭德其; 俞秀民; 廖吉林; 叶施仁; 周世琦; 俞天翔; 陈洪; 李概奇

    2001-01-01

    The technical principle of high efficient evaporators of self- cleaning with twisted strips is that the cycle flowing energy of evaporating solutions is directly utilized to make the inserted twisted strips spin to continuously clean crystals or fouling. Based on the principle of crystallization dynamics, simulated cleaning experiments of hydrodynamics were conducted by using carbon steel tubs, through which saturated solutions Na2SO4 or KCLO3 flowed while being cooled. Experimental results indicate that the cleaning ability of twisted strips' motion can meet the self- cleaning requirement of evaporators and this new technique can not only realize continuous production of eveaporators for a much longer time but also raise production capacity and reduce much energy consumption. Therefore, it can be widely used in many industries such as sugar, salt,caustic soda, chemical, food and medicine.%螺旋纽带自动清洗式高效蒸发器的技术原理,是利用蒸发溶液的循环流动能带动加热管内的螺旋纽带旋转清洗结晶垢。根据结晶动力学原理,采用碳钢管内Na2S04、KCLO3的冷却过饱和溶液的结晶盐垢进行流体动力学模拟清洗试验。结果表明,螺旋纽带的旋转清洗能力能够满足蒸发器结晶垢的自动清洗要求,使蒸发生产长期连续,能力提高,能耗降低,可以在制糖、制盐、烧碱、化工、食品、制药等工业生产部门广泛应用,获得相当高的综合经济效益。

  7. Efficiency of enzymatic and other alternative clarification and fining treatments on turbidity and haze in cherry juice

    DEFF Research Database (Denmark)

    Meyer, Anne Boye Strunge; Köser, C.; Adler-Nissen, Jens

    2001-01-01

    function. Individual and interactive effects on turbidity and haze formation in precentrifuged and uncentrifuged cherry juice of treatments with pectinase, acid protease, bromelain, gallic acid, and gelatin-silica sol were investigated in a factorial experimental design with 32 different parameter...... combinations. Gelatin-silica sol consistently had the best effect on juice clarity. Centrifugation of cherry juice (10000g for 15 min) prior to clarification treatment significantly improved juice clarity and diminished the rate of haze formation during cold storage of juice. Both treatment of precentrifuged...... cherry juice with Novozym 89L protease and co- addition of pectinase and gallic acid improved cherry juice clarity and diminished haze levels. None of the alternative treatments produced the unwieldy colloids notorious to gelatin- silica sol treatment. The data suggest that several alternative...

  8. Efficiency of enzymatic and other alternative clarification and fining treatments on turbidity and haze in cherry juice.

    Science.gov (United States)

    Meyer, A S; Köser, C; Adler-Nissen, J

    2001-08-01

    Several alternative strategies were examined for improving conventional juice fining procedures for cherry juice clarification and fining in laboratory-scale experiments: Centrifugation of freshly pressed juice from 1000g to 35,000g induced decreased turbidity according to a steep, negative power function. Individual and interactive effects on turbidity and haze formation in precentrifuged and uncentrifuged cherry juice of treatments with pectinase, acid protease, bromelain, gallic acid, and gelatin-silica sol were investigated in a factorial experimental design with 32 different parameter combinations. Gelatin-silica sol consistently had the best effect on juice clarity. Centrifugation of cherry juice (10,000g for 15 min) prior to clarification treatment significantly improved juice clarity and diminished the rate of haze formation during cold storage of juice. Both treatment of precentrifuged cherry juice with Novozym 89L protease and co-addition of pectinase and gallic acid improved cherry juice clarity and diminished haze levels. None of the alternative treatments produced the unwieldy colloids notorious to gelatin-silica sol treatment. The data suggest that several alternative clarification strategies deserve further consideration in large-scale cherry juice processing. Precentrifugation of juice before clarification and fining is immediately recommended. PMID:11513641

  9. Non-Gasoline Alternative Fueling Stations

    Data.gov (United States)

    Department of Homeland Security — Through a nationwide network of local coalitions, Clean Citiesprovides project assistance to help stakeholders in the public and private sectors deploy alternative...

  10. Electro-impulse Method of Surface Cleaning

    Directory of Open Access Journals (Sweden)

    Bekbolat R. Nussupbekov

    2013-01-01

    Full Text Available This article is focused on the qualitative assessment of the electro-impulse method of surface cleaning efficiency. Heat exchanger tubes are cleaned under the action of blast waves created by the high voltage discharge in the liquid. The article presents dependences of degree of surface purification on the impulse voltage at switching device and on spark rate

  11. Electro-impulse Method of Surface Cleaning

    OpenAIRE

    Bekbolat R. Nussupbekov; Kappas Kussaynov; Аyanbergen К. Khassenov

    2013-01-01

    This article is focused on the qualitative assessment of the electro-impulse method of surface cleaning efficiency. Heat exchanger tubes are cleaned under the action of blast waves created by the high voltage discharge in the liquid. The article presents dependences of degree of surface purification on the impulse voltage at switching device and on spark rate

  12. Ultrasound-guided Thrombin Injection: An Alternative Treatment for Femoral Artery Pseudoaneurysm with Better Efficiency and Safety

    Institute of Scientific and Technical Information of China (English)

    Qinghai YAO; Hongliang CONG; Shangqin WU; Shan SUN; Qike DONG; Dongmei CHEN; Peng LI

    2008-01-01

    The aim of this study was to evaluate the efficiency and safety of ultrasound-guided thrombin injection on femoral pseudoaneurysm (FPA) as compared to ultrasound-guided local oppression. Eleven cases of FPA were enrolled and 7 cases received ultrasound-guide thrombin injection (injection group), and the remaining 4 cases were treated with local oppression (oppression group). Efficiency and safety were analyzed by ultrasound and subsequent follow-up. The results showed that 1 case relapsed in oppression group while no relapse occurred in thrombin injection group. Ultrasound-guided thrombin injection is better for treatment of FPA in terms of effectiveness and safety.

  13. Regulating Greenhouse Gases from Coal Power Plants under the Clean Air Act

    OpenAIRE

    Joshua Linn; Erin Mastrangelo; Dallas Burtraw

    2014-01-01

    The Clean Air Act has assumed the central role in US climate policy, directing the development of regulations governing greenhouse gas emissions from existing coal-fired power plants. This paper uses a model of power plant operation and efficiency investments to compare the cost-effectiveness of alternative policies to reduce greenhouse gas emissions from coal plants. We empirically estimate the key model parameters from a data set of the operation of coal-fired generating units over 25 years...

  14. ASSESSMENT OF THE ECONOMIC EFFICIENCY OF APPLICATION OF THE HEATING OF THE THERMAL IMAGERS FROM ALTERNATIVE ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    A. O. Kahramanian

    2010-01-01

    Full Text Available In the article the issues of economic efficiency of use of warming-up the diesel locomotives at the expense of an idle-run diesel engine are considered and the economic estimation of different ways of warming-up the diesel locomotives is carried out.

  15. Land Rental Markets as an Alternative to Government Reallocation? Equity and Efficiency Considerations in the Chinese Land Tenure system

    OpenAIRE

    Deininger, Klaus; Jin, Songqing

    2002-01-01

    The authors develop a model of land leasing with agents characterized by unobserved heterogeneity in ability and presence of an off-farm labor market. In this case, decentralized land rental may contribute to equity and efficiency goals and may have several advantages over administrative reallocation. The extent to which this is true empirically is explored using data from three of China's...

  16. Variable Circular Collimator in Robotic Radiosurgery: A Time-Efficient Alternative to a Mini-Multileaf Collimator?

    NARCIS (Netherlands)

    Van de Water, S.; Hoogeman, M.S.; Breedveld, S.; Nuyttens, J.J.M.E.; Schaart, D.R.; Heijmen, B.J.M.

    2011-01-01

    urpose Compared with many small circular beams used in CyberKnife treatments, beam’s eye view-shaped fields are generally more time-efficient for dose delivery. However, beam’s eye view-shaping devices, such as a mini-multileaf collimator (mMLC), are not presently available for CyberKnife, although

  17. Chitosan and Sodium Alginate Combinations Are Alternative, Efficient, and Safe Natural Adjuvant Systems for Hepatitis B Vaccine in Mouse Model

    Science.gov (United States)

    AbdelAllah, Nourhan H.; Boseila, Abeer A.; Amin, Magdy A.

    2016-01-01

    Hepatitis B viral (HBV) infections represent major public health problem and are an occupational hazard for healthcare workers. Current alum-adjuvanted HBV vaccine is the most effective measure to prevent HBV infection. However, the vaccine has some limitations including poor response in some vaccinee and being a frost-sensitive suspension. The goal of our study was to use an alternative natural adjuvant system strongly immunogenic allowing for a reduction in dose and cost. We tested HBV surface antigen (HBsAg) adjuvanted with chitosan (Ch) and sodium alginate (S), both natural adjuvants, either alone or combined with alum in mouse model. Mice groups were immunized subcutaneously with HBsAg adjuvanted with Ch or S, or triple adjuvant formula with alum (Al), Ch, and S, or double formulations with AlCh or AlS. These were compared to control groups immunized with current vaccine formula or unadjuvanted HBsAg. We evaluated the rate of seroconversion, serum HBsAg antibody, IL-4, and IFN-γ levels. The results showed that the solution formula with Ch or S exhibited comparable immunogenic responses to Al-adjuvanted suspension. The AlChS gave significantly higher immunogenic response compared to controls. Collectively, our results indicated that Ch and S are effective HBV adjuvants offering natural alternatives, potentially reducing dose. PMID:27493674

  18. Canada-US collaborations in clean energy research: a scientometric analysis (2005-2009)

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T.; Picard-Aitken, M.; Hillman-Beauchesne, O.; Campbell, D.; Archambault, E.

    2010-03-31

    In February 2009, the U.S. and Canada established the Clean Energy Dialogue, aiming at identifying ways to reduce greenhouse gases, in order to fight against global warming. This initiative led to the development of an action plan by joint Canada-U.S. working groups that comprise activities in three defined areas: the development of clean energy technology, the construction of a more efficient energy grid, and the expansion of research and development (R&D). The objective is to improve available modes of environmentally responsible energy production, minimize waste in energy transportation and delivery, and set up new alternatives. This document is a study used as a source of information by the working group. It will allow a better understanding of the scientific production, give an overview of the various collaboration and trends around the world in the field of clean energy R&D and in three subfields of interest: future generation biofuels, clean engines/vehicles and energy efficiency homes and buildings. This scientometric study shows that, in clean energy R&D, the U.S. and Canada are among the 15 leading countries. In clean energy R&D and in the three subfields, Canada's strongest affinities are generally with the U.S., Turkey and China. Sweden and Turkey stand out as having levels of impact and specialization that are above the world level. Clean energy R&D is examined as a whole before focusing on scientific activity in future generation biofuels, clean energy vehicles and green buildings. An insight of the relative strengths and weaknesses of Canada and the U.S. in these areas appears within the presented data. Leading Canadian and U.S. research institutions are also considered for a better understanding of their involvement in these fields and to determine those that were the most active in terms of Canada/U.S. cross-border collaborations. 19 tabs., 15 figs.

  19. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  20. Confine Clay in an Alternating Multilayered Structure through Injection Molding: A Simple and Efficient Route to Improve Barrier Performance of Polymeric Materials.

    Science.gov (United States)

    Yu, Feilong; Deng, Hua; Bai, Hongwei; Zhang, Qin; Wang, Ke; Chen, Feng; Fu, Qiang

    2015-05-20

    Various methods have been devoted to trigger the formation of multilayered structure for wide range of applications. These methods are often complicated with low production efficiency or require complex equipment. Herein, we demonstrate a simple and efficient method for the fabrication of polymeric sheets containing multilayered structure with enhanced barrier property through high speed thin-wall injection molding (HSIM). To achieve this, montmorillonite (MMT) is added into PE first, then blended with PP to fabricate PE-MMT/PP ternary composites. It is demonstrated that alternating multilayer structure could be obtained in the ternary composites because of low interfacial tension and good viscosity match between different polymer components. MMT is selectively dispersed in PE phase with partial exfoliated/partial intercalated microstructure. 2D-WAXD analysis indicates that the clay tactoids in PE-MMT/PP exhibits an uniplanar-axial orientation with their surface parallel to the molded part surface, while the tactoids in binary PE-MMT composites with the same overall MMT contents illustrate less orientation. The enhanced orientation of nanoclay in PE-MMT/PP could be attributed to the confinement of alternating multilayer structure, which prohibits the tumbling and rotation of nanoplatelets. Therefore, the oxygen barrier property of PE-MMT/PP is superior to that of PE-MMT because of increased gas permeation pathway. Comparing with the results obtained for PE based composites in literature, outstanding barrier property performance (45.7% and 58.2% improvement with 1.5 and 2.5 wt % MMT content, respectively) is achieved in current study. Two issues are considered responsible for such improvement: enhanced MMT orientation caused by the confinement in layered structure, and higher local density of MMT in layered structure induced denser assembly. Finally, enhancement in barrier property by confining impermeable filler into alternating multilayer structure through such

  1. Transition to Clean Technology

    OpenAIRE

    Acemoglu, Daron; Akcigit, Ufuk; Hanley, Douglas; Kerr,William Robert

    2014-01-01

    We develop a microeconomic model of endogenous growth where clean and dirty technologies compete in production and innovation-in the sense that research can be directed to either clean or dirty technologies. If dirty technologies are more advanced to start with, the potential transition to clean technology can be difficult both because clean research must climb several steps to catch up with dirty technology and because this gap discourages research effort directed towards clean technologies....

  2. Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes

    International Nuclear Information System (INIS)

    We investigate the properties of N,N′-[(Diphenyl-N,N′-bis)9,9,-dimethyl-fluoren-2-yl]-benzidine (BF-DPB) as hole transport material (HTL) in organic light-emitting diodes (OLEDs) and compare BF-DPB to the commonly used HTLs N,N,N′,N′-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), 2,2′,7,7′-tetrakis(N,N′-di-p-methylphenylamino)-9,9′-spirobifluorene (Spiro-TTB), and N,N′-di(naphtalene-1-yl)-N,N′-diphenylbenzidine (NPB). The influence of 2,2′-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ p-dopant) concentration in BF-DPB on the operation voltage and efficiency of red and green phosphorescent OLEDs is studied; best results are achieved at 4 wt. % doping. Without any light extraction structure, BF-DPB based red (green) OLEDs achieve a luminous efficacy of 35 .1 lm/W (74 .0 lm/W) at 1000 cd/m2 and reach a very high brightness of 10 000 cd/m2 at a very low voltage of 3.2 V (3.1 V). We attribute this exceptionally low driving voltage to the high ionization potential of BF-DPB which enables more efficient hole injection from BF-DPB to the adjacent electron blocking layer. The high efficiency and low driving voltage lead to a significantly lower luminous efficacy roll-off compared to the other compounds and render BF-DPB an excellent HTL material for highly efficient OLEDs.

  3. INTENSIVE THERAPY FOR RHEUMATOID ARTHRITIS: IS IT REAL EFFICIENCY OR A NEED IN THE ABSENCE OF ANY ALTERNATIVE?

    OpenAIRE

    Irina Mikhailovna Marusenko

    2009-01-01

    Objective. To evaluate the efficiency of different intensive therapy (IT) regimens for rheumatoid arthritis (RA) in real clinical practice. Subjects and methods. The study enrolled 104 patients receiving different modalities of IT and 115 control patients having the standard basic therapy only. The time course of changes in the articular syndrome (Ritchie articular index, counts of tender and swollen joints, pain levels and global disease activity by the visual analogue scale, morning stiffne...

  4. The BC energy plan : a vision for clean energy leadership

    International Nuclear Information System (INIS)

    Global warming is a pertinent environmental issue. This report presented a vision and plan for clean energy leadership in British Columbia (BC). The intent of the plan is make the province energy self-sufficient while taking responsibility for the natural environment and climate. The BC energy plan set out targets as well as a strategy for reducing greenhouse gas emissions. The plan outlines the steps that industry, environmental agencies, communities and citizens must take to reach goals for conservation, energy efficiency and clean energy. This report provided highlights of the BC energy plan and discussed energy conservation and efficiency targets. It also discussed electricity security and public ownership of electricity in addition to strategies and policy options for reducing greenhouse gas emissions from electricity. The report presented several policy options for alternative energy including an innovative clean energy fund; generating electricity from mountain pine beatlewood to turn wood waste into energy; and transportation strategies. The report also discussed electricity options such as bioenergy; coal thermal power; geothermal; hydrogen and fuel cell technology; large hydroelectric dams; natural gas; small hydro; solar; tidal energy; and wind. Other topics that were addressed in the report included skills, training and labour; and, oil and gas policy actions. A summary of policy actions was also presented. tabs., figs

  5. Technological roadmap for production, clean and efficient use of Brazilian mineral coal: 2012 to 2035; Roadmap tecnologico para producao, uso limpo e eficiente do carvao mineral nacional: 2012 a 2035

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Brazil has one of the largest coal reserves in the world, but it is not among the largest producers in the world. Coal in Brazil, has two main applications: use as fuel for power generation, including industrial energy use, and in the iron and steel industry for production of coke, pig iron and steel. In the updated rates of use, the coal reserves can provide coal for more than 500 years. A public policy to better take advantage of the mineral coal, with horizons in 2022 and 2035 and the guidelines and strategies proposed for the country to reach the production, clean and efficient use of the expressive quantity of the mineral national coal are presented.

  6. Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Liu, Fulai; Andersen, Mathias Neumann;

    2010-01-01

    Comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on stomatal conductance (gs), nitrogen accumulation and distribution in tomato (Lycopersicon esculentum L.) plants were investigated in a split-root pot experiment. Results showed that both PRI and DI saved 25......% water and led to 10.0% and 17.5% decreases in dry biomass, respectively, compared with the fully irrigated (FI) controls. Consequently, water use efficiency (WUE) was increased by 18.6% and 10.8% in the PRI and DI plants, respectively. The highest WUE in the PRI plants was associated with the highest...

  7. Physician strives to create lean, clean health care machine. Studies of manufacturing processes may one day help make your practice more efficient.

    Science.gov (United States)

    Hill, D

    2001-01-01

    Elisabeth Hager, MD, MMM, CPE, is teaming up with scientists and industrialists to teach physicians how to apply principles of lean, total-quality manufacturing to their practices. She believes innovation and efficiencies can help doctors resurrect their profession's image and their control over it--and perhaps even reinvent American health care.

  8. Utilization of Pine Nut Shell derived carbon as an efficient alternate for the sequestration of phthalates from aqueous system

    Directory of Open Access Journals (Sweden)

    Umair A. Qureshi

    2014-12-01

    Full Text Available This study highlights the importance of a cheap bio waste; Pine Nut Shell (PNS, from which a carbon is synthesized that can efficiently remove toxic phthalates from an aqueous system. PNS derived carbon shows high affinity toward phthalates in descending order along with adsorption capacity i.e., dibutyl phthalate (DBP 5.65 mg/g > diallyl phthalate (DAP 3.64 mg/g > diethyl phthalate (DEP and 2.87 mg/g > dimethyl phthalate (DMP 2.48 mg/g. Different characterization techniques such as FTIR, elemental analysis, point of zero electric charge (PZC, SEM, EDX and BET were employed to investigate the binding sites and surface area of the adsorbent. Adsorption experiments were performed both in batch and column modes. Equilibrium studies showed that the Langmuir isotherm fits best to experimental data. Kinetically, adsorption phenomena obeyed pseudo second order. Furthermore, thermodynamic results expressed the exothermic nature of adsorption on the basis of negative value of enthalpy change. Column sorption method was also adapted to check the feasibility of the adsorption process through the investigation of flow rate, breakthrough curve and pre-concentration factor which is found to be 13 for DMP and DEP and 16 for DAP and DBP. Methanol was found to be best solvent for the recovery of phthalates. Application in real water samples also showed good efficiency of PNS derived carbon for the removal of phthalates.

  9. US Clean Energy Sector and the Opportunity for Modeling and Simulation

    Science.gov (United States)

    Inge, Carole Cameron

    2011-01-01

    The following paper sets forth the current understanding of the US clean energy demand and opportunity. As clean energy systems come online and technology is developed, modeling and simulation of these complex energy programs provides an untapped business opportunity. The US Department of Defense provides a great venue for developing new technology in the energy sector because it is demanding lower fuel costs, more energy efficiencies in its buildings and bases, and overall improvements in its carbon footprint. These issues coupled with the security issues faced by foreign dependence on oil will soon bring more clean energy innovations to the forefront (lighter batteries for soldiers, alternative fuel for jets, energy storage systems for ships, etc).

  10. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    Science.gov (United States)

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  11. Clean Cities Technical Assistance Project (Tiger Teams)

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    This two-page fact sheet describes Clean Cities' technical assistance (Tiger Teams) capabilities and projects, both completed and ongoing. Tiger Teams are a critical element of the Clean Cities program, providing on-the-ground consultation to help inform program strategies. The knowledge Tiger Team experts gain from these experiences often helps inform other alternative fuels activities, such as needed research, codes and standards revisions, and new training resources.

  12. Optimization of Ultrasonic Fabric Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hand, T.E.

    1998-05-13

    The fundamental purpose of this project was to research and develop a process that would reduce the cost and improve the environmental efficiency of the present dry-cleaning industry. This second phase of research (see report KCP-94-1006 for information gathered during the first phase) was intended to allow the optimal integration of all factors of ultrasonic fabric cleaning. For this phase, Garment Care performed an extensive literature search and gathered data from other researchers worldwide. The Garment Care-AlliedSignal team developed the requirements for a prototype cleaning tank for studies and acquired that tank and the additional equipment required to use it properly. Garment Care and AlliedSignal acquired the transducers and generators from Surftran Martin-Walter in Sterling Heights, Michigan. Amway's Kelly Haley developed the test protocol, supplied hundreds of test swatches, gathered the data on the swatches before and after the tests, assisted with the cleaning tests, and prepared the final analysis of the results. AlliedSignal personnel, in conjunction with Amway and Garment Care staff, performed all the tests. Additional planning is under way for future testing by outside research facilities. The final results indicated repeatable performance and good results for single layered fabric swatches. Swatches that were cleaned as a ''sandwich,'' that is, three or more layers.

  13. Flue gas cleaning chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gutberlet, H. [VEBA Kraftwerke Ruhr AG, Gelsenkirchen (Germany)

    1996-12-01

    The introduction of modern flue gas cleaning technology into fossil-fueled power stations has repeatedly confronted the power station chemists with new and interesting problems over the last 15 - 20 years. Both flue gas desulphurization by lime washing and catalytic removal of nitrogen oxides are based on simple basic chemical reactions. Owing to the use of readily available starting materials, the production of safe, useful end products and, last but not least, the possibility of implementing all this on an industrial scale by means of efficient process engineering, limestone desulphurization and catalytic removal of nitrogen oxides dominate the world market and, little by little, are becoming still more widespread. The origin and thus the quality of fuels and starting materials, the firing method, the mode of operation and engineering peculiarities in each plant interact in a complex manner. Simple cause/effect relationships are frequently incapable of explaining phenomena; thinking in complex interrelationships is needed. (EG)

  14. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  15. Cleaning supplies and equipment

    Science.gov (United States)

    ... gov/ency/patientinstructions/000443.htm Cleaning supplies and equipment To use the sharing features on this page, ... to clean supplies and equipment. Disinfecting Supplies and Equipment Start by wearing the right personal protective equipment ( ...

  16. Heterogeneous catalysis and the challenges of powering the planet, securing chemicals for civilised life, and clean efficient utilization of renewable feedstocks.

    Science.gov (United States)

    Thomas, John Meurig

    2014-07-01

    This article reviews, first, the prospects, practices and principles of generating solar fuels. It does so with an analysis of recent progress in the light-driven emission of H2 (and other fuels) as well as O2 from water. To place this challenge in perspective, some current practices entailing the use of well-proven solid catalysts developed for fossil-based feedstocks, are described. The massive differences between proven methods of generating fuel and chemicals from non-renewable and from solar radiation are emphasized with the aid of numerous quantitative examples. Whilst it is acknowledged that a key action in reducing the liberation of greenhouse gases (GHG) is to tackle the challenge of decreasing their evolution in power generation and in the production of steel, aluminium and other bulk commodities (metals, alloys, concrete and ceramics), nevertheless much can be done to diminish the emission of CO2 (and to use it as feedstock) through the agency of new, designed solid catalysts and microalgae. Solar-thermal converters are also attractive alternatives, even though they are more likely to be used centrally rather than in small modular units like 'artificial leaves,' some of which are promising for the purposes of generating energy (and perhaps fuel) in a delocalized, modular manner. PMID:24988917

  17. Canada's Clean Air Act

    International Nuclear Information System (INIS)

    This paper provided an outline of Canada's Clean Air Act and examined some of the regulatory changes that will occur as a result of its implementation. The Act is being introduced to strengthen the legislative basis for taking action on reducing air pollution and GHGs, and will allow the government to regulate both indoor and outdoor air pollutants and GHGs. The Act will require the Ministers of the Environment and Health to establish national air quality objectives, as well as to monitor and report on their attainment. The Canadian Environmental Protection Act will be amended to enable the government to regulate the blending of fuels and their components. The Motor Vehicle Fuel Consumption Standards Act will also be amended to enhance the government's authority to regulate vehicle fuel efficiency. The Energy Efficiency Act will also be expanded to allow the government to set energy efficiency standards and labelling requirements for a wider range of consumer and commercial products. The Act will commit to short, medium and long-term industrial air pollution targets. Regulations will be proposed for emissions from industry; on-road and off-road vehicles and engines; and consumer and commercial products. It was concluded that the Government of Canada will continue to consult with provinces, territories, industries and Canadians to set and reach targets for the reduction of both indoor and outdoor air pollutants and GHG emissions. 6 figs

  18. Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp.

    Science.gov (United States)

    Cha, Thye-San; Chen, Chin-Fong; Yee, Willy; Aziz, Ahmad; Loh, Saw-Hong

    2011-03-01

    The use of acetosyringone in Agrobacterium-mediated gene transfer into plant hosts has been favored for the past few decades. The influence of other phenolic compounds and their effectiveness in Agrobacterium-mediated plant transformation systems has been neglected. In this study, the efficacy of four phenolic compounds on Agrobacterium-mediated transformation of the unicellular green alga Nannochloropsis sp. (Strain UMT-M3) was assessed by using β-glucuronidase (GUS) assay. We found that cinnamic acid, vanillin and coumarin produced higher percentages of GUS positive cells as compared to acetosyringone. These results also show that the presence of methoxy group in the phenolic compounds may not be necessary for Agrobacterium vir gene induction and receptor binding as suggested by previous studies. These findings provide possible alternative Agrobacterium vir gene inducers that are more potent as compared to the commonly used acetosyringone in achieving high efficiency of Agrobacterium-mediated transformation in microalgae and possibly for other plants.

  19. U.S. Department of Energy clean cities five-year strategic plan.

    Energy Technology Data Exchange (ETDEWEB)

    Cambridge Concord Associates

    2011-02-15

    Clean Cities is a government-industry partnership sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program, which is part of the Office of Energy Efficiency and Renewable Energy. Working with its network of about 100 local coalitions and more than 6,500 stakeholders across the country, Clean Cities delivers on its mission to reduce petroleum consumption in on-road transportation. In its work to reduce petroleum use, Clean Cities focuses on a portfolio of technologies that includes electric drive, propane, natural gas, renewable natural gas/biomethane, ethanol/E85, biodiesel/B20 and higher-level blends, fuel economy, and idle reduction. Over the past 17 years, Clean Cities coalitions have displaced more than 2.4 billion gallons of petroleum; they are on track to displace 2.5 billion gallons of gasoline per year by 2020. This Clean Cities Strategic Plan lays out an aggressive five-year agenda to help DOE Clean Cities and its network of coalitions and stakeholders accelerate the deployment of alternative fuel and advanced technology vehicles, while also expanding the supporting infrastructure to reduce petroleum use. Today, Clean Cities has a far larger opportunity to make an impact than at any time in its history because of its unprecedented $300 million allocation for community-based deployment projects from the American Recovery and Reinvestment Act (ARRA) (see box below). Moreover, the Clean Cities annual budget has risen to $25 million for FY2010 and $35 million has been requested for FY2011. Designed as a living document, this strategic plan is grounded in the understanding that priorities will change annually as evolving technical, political, economic, business, and social considerations are woven into project decisions and funding allocations. The plan does not intend to lock Clean Cities into pathways that cannot change. Instead, with technology deployment at its core, the plan serves as a guide for decision-making at both the

  20. Clean and efficient application of biomass for production of power and heat - Phase 3 in a long-term strategic research project

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Jensen, A.D.; Jensen, P.A.; Johnsson, J.E.; Dam-Johansen, K.

    2002-06-01

    This project contains activities on: Rheology of ashes from co-firing of coal and biomass; Investigation of ash and deposit formation in full-scale utility boilers; and Selective catalytic reduction: Deactivation under biomass combustion. A fly ash and deposit investigation was carried out as part of the SK Power Company test programme on co-firing of biomasses in a grate-fired boiler. The alternative biomasses (wood chips, olive stones and shea nuts) contain more K, S, and Cl, than wheat straw, and higher fly ash mass loading (mass of fly ash/volume of flue gas) was observed when co-firing alternative biomasses with wheat straw. Anyhow, no significant change in deposit structure when co-firing alkali-rich biomass was observed: KCl is glues residual ash particles together, independent of the feedstock mixture. Thus it can be concluded that co-firing of the actual biomasses in boilers designed for straw-firing, at the present shares is not problematic, from an ash formation and/or deposit build-up point-of-view. Anyhow the increase in ash mass loading in the flue gas, may cause increased build-up of particulate deposits in the convective pass of the boiler. Mature deposit samples from the Masnedoe and Ensted straw-fired boilers were investigated by SEM and EDX. Each deposit sample was classified into an inner, an intermediate, and an outer main layer. The outermost deposit layers at Masnedoe and Ensted looked chemically quite similar, even though they were of different colours. The intermediate layer at Ensted contained many Si- and Ca-rich particles glued together by melted KCI, while the intermediate deposit layers at Masnedoe were different. Since the straw fuels probably are similar, the differences observed in the deposit chemistry must be induced by the higher temperature of the Masnedoe deposit. An experimental method has been set up for viscosity determinations on ashes from co-firing with wheat straw. The method contains a pre-treatment of the ashes, where

  1. Clean and efficient application of biomass for production of power and heat - Phase 3 in a long-term strategic research project

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Jensen, A.D.; Jensen, P.A.; Johnsson, J.E.; Dam-Johansen, K.

    2002-06-01

    This project contains activities on: Rheology of ashes from co-firing of coal and biomass; Investigation of ash and deposit formation in full-scale utility boilers; and Selective catalytic reduction: Deactivation under biomass combustion. A fly ash and deposit investigation was carried out as part of the SK Power Company test programme on co-firing of biomasses in a grate-fired boiler. The alternative biomasses (wood chips, olive stones and shea nuts) contain more K, S, and Cl, than wheat straw, and higher fly ash mass loading (mass of fly ash/volume of flue gas) was observed when co-firing alternative biomasses with wheat straw. Anyhow, no significant change in deposit structure when co-firing alkali-rich biomass was observed: KCl is glues residual ash particles together, independent of the feedstock mixture. Thus it can be concluded that co-firing of the actual biomasses in boilers designed for straw-firing, at the present shares is not problematic, from an ash formation and/or deposit build-up point-of-view. Anyhow the increase in ash mass loading in the flue gas, may cause increased build-up of particulate deposits in the convective pass of the boiler. Mature deposit samples from the Masnedoe and Ensted straw-fired boilers were investigated by SEM and EDX. Each deposit sample was classified into an inner, an intermediate, and an outer main layer. The outermost deposit layers at Masnedoe and Ensted looked chemically quite similar, even though they were of different colours. The intermediate layer at Ensted contained many Si- and Ca-rich particles glued together by melted KCI, while the intermediate deposit layers at Masnedoe were different. Since the straw fuels probably are similar, the differences observed in the deposit chemistry must be induced by the higher temperature of the Masnedoe deposit. An experimental method has been set up for viscosity determinations on ashes from co-firing with wheat straw. The method contains a pre-treatment of the ashes, where

  2. Alternative Green Solvents Project

    Science.gov (United States)

    Maloney, Phillip R.

    2012-01-01

    Necessary for safe and proper functioning of equipment. Mainly halogenated solvents. Tetrachloride, Trichloroethylene (TCE), CFC-113. No longer used due to regulatory/safety concerns. Precision Cleaning at KSC: Small % of total parts. Used for liquid oxygen (LOX) systems. Dual solvent process. Vertrel MCA (decafluoropentane (DFP) and trons-dichloroethylene) HFE-7100. DFP has long term environmental concerns. Project Goals: a) Identify potential replacements. b) 22 wet chemical processes. c) 3 alternative processes. d) Develop test procedures. e) Contamination and cleaning. f) Analysis. g) Use results to recommend alternative processes. Conclusions: a) No alternative matched Vertrel in this study. b) No clear second place solvent. c) Hydrocarbons- easy; Fluorinated greases- difficult. d) Fluorinated component may be needed in replacement solvent. e) Process may need to make up for shortcoming of the solvent. f) Plasma and SCC02 warrant further testing.

  3. Preperation for a Clean Surface

    Directory of Open Access Journals (Sweden)

    Aurimas Ralys

    2012-12-01

    Full Text Available The article reviews techniques for preparing clean surfaces used in the manufacturing process, considers the types of clean surfaces and their role in modern production and provides the classification methods of arranging such surfaces. The paper also discusses the principles of methods for solvent cleaning, aqueous cleaning, ultrasonic cleaning, precision cleaning and mechanical cleaning. The study focuses on the possibility of adjusting a clean surface using a water flow, including cavitation.Article in Lithuanian

  4. Preperation for a Clean Surface

    Directory of Open Access Journals (Sweden)

    Aurimas Ralys

    2013-02-01

    Full Text Available The article reviews techniques for preparing clean surfaces used in the manufacturing process, considers the types of clean surfaces and their role in modern production and provides the classification methods of arranging such surfaces. The paper also discusses the principles of methods for solvent cleaning, aqueous cleaning, ultrasonic cleaning, precision cleaning and mechanical cleaning. The study focuses on the possibility of adjusting a clean surface using a water flow, including cavitation.Article in Lithuanian

  5. Preperation for a Clean Surface

    OpenAIRE

    Aurimas Ralys; Valdemar Prokopovič; Vytautas Striška

    2013-01-01

    The article reviews techniques for preparing clean surfaces used in the manufacturing process, considers the types of clean surfaces and their role in modern production and provides the classification methods of arranging such surfaces. The paper also discusses the principles of methods for solvent cleaning, aqueous cleaning, ultrasonic cleaning, precision cleaning and mechanical cleaning. The study focuses on the possibility of adjusting a clean surface using a water flow, including cavitati...

  6. Applying for and using CMAQ funds: Putting the pieces together. A Clean Cities guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This guide provides the basic concepts to aid in an alternative fuel vehicle market development program developing an application for Congestion Mitigation and Air Quality Improvement Program funding. The US Department of Energy`s Clean Cities Program is an aggressive, forward-thinking alternative fuel vehicle (AFV) market development program. The stakeholders in any Clean Cities Program subscribe to the common philosophy that, through participation in a team-oriented coalition, steady progress can be made toward achieving the critical mass necessary to propel the AFV market into the next century. An important component in the successful implementation of Clean Cities Program objectives is obtaining and directing funding to the capital-intensive AFV market development outside of the resources currently offered by the Department of Energy. Several state and local funding sources have been used over the past decade, including Petroleum Violation Escrow funds, vehicle registration fees, and state bond programs. However, federal funding is available and can be tapped to implement AFV market development programs across the nation. Historically, opportunities to use federal funding for AFV projects have been limited; however, the one remaining federal program that must be tapped into by Clean Cities Programs is the Congestion Mitigation and Air Quality (CMAQ) Improvement Program. CMAQ is a 6-year, $6 billion federal program formed by the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA).

  7. Green Solvents for Precision Cleaning

    Science.gov (United States)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul

    2013-01-01

    Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the moderate processing conditions of 323 K, 13.8 MPa, 30 min and 750 rpm.

  8. Laser cleaning on Roman coins

    Science.gov (United States)

    Drakaki, E.; Karydas, A. G.; Klinkenberg, B.; Kokkoris, M.; Serafetinides, A. A.; Stavrou, E.; Vlastou, R.; Zarkadas, C.

    Ancient metal objects react with moisture and environmental chemicals to form various corrosion products. Because of the unique character and high value of such objects, any cleaning procedure should guarantee minimum destructiveness. The most common treatment used is mechanical stripping, in which it is difficult to avoid surface damage when employed. Lasers are currently being tested for a wide range of conservation applications. Since they are highly controllable and can be selectively applied, lasers can be used to achieve more effective and safer cleaning of archaeological artifacts and protect their surface details. The basic criterion that motivated us to use lasers to clean Roman coins was the requirement of pulsed emission, in order to minimize heat-induced damages. In fact, the laser interaction with the coins has to be short enough, to produce a fast removal of the encrustation, avoiding heat conduction into the substrate. The cleaning effects of three lasers operating at different wavelengths, namely a TEA CO2 laser emitting at 10.6 μm, an Er:YAG laser at 2.94 μm, and a 2ω-Nd:YAG laser at 532 nm have been compared on corroded Romans coins and various atomic and nuclear techniques have also been applied to evaluate the efficiency of the applied procedure.

  9. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P. [Gas Turbine Efficiency, Jarfalla (Sweden)

    1998-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  10. Cleaning Massive Sonar Point Clouds

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Larsen, Kasper Green; Mølhave, Thomas;

    2010-01-01

    We consider the problem of automatically cleaning massive sonar data point clouds, that is, the problem of automatically removing noisy points that for example appear as a result of scans of (shoals of) fish, multiple reflections, scanner self-reflections, refraction in gas bubbles, and so on. We...... describe a new algorithm that avoids the problems of previous local-neighbourhood based algorithms. Our algorithm is theoretically I/O-efficient, that is, it is capable of efficiently processing massive sonar point clouds that do not fit in internal memory but must reside on disk. The algorithm is also...

  11. Clean Processing and Utilization of Coal Energy

    Institute of Scientific and Technical Information of China (English)

    陈如清; 王海峰

    2006-01-01

    The dominant status of coal on the energy production and consumption structure of China will not be changed in the middle period of this century. To realize highly efficient utilization of coal, low pollution and low cost are great and impendent tasks. These difficult problems can be almost resolved through establishing large-scale pithead power stations using two-stage highly efficient dry coal-cleaning system before coal burning, which is a highly efficient, clean and economical strategy considering the current energy and environmental status of China. All these will be discussed in detail in this paper.

  12. CAFE compliance by light trucks: economic impacts of clean diesel engine

    International Nuclear Information System (INIS)

    With the popularity of light trucks increasing in the United States, their share of the US light vehicle market had doubled between 1980 and 1996, climbing from 20 to 40%. By 1996, annual energy consumption for light trucks had risen to 5.97 x 1015 Btu [5.97 quadrillion Btu, or ''quad'', or 6.30 x 1018 joule (J)], compared to 7.94 quad (8.38 x 1018 J) for cars. In recent years (since 1995), the fuel economy of US-manufactured light trucks (almost 99% of which use gasoline engines) has been below the Corporate Average Fuel Economy (CAFE) standards. This paper analyzes a strategy to reduce the CAFE shortfalls by adopting the new, highly energy-efficient clean diesel engine. Research on such engines has been funded by the US Department of Energy, Office of Heavy Vehicle Technologies, under its Light Truck Clean Diesel Engine Program. A clean diesel engine market penetration trajectory is developed, representing an industry response to meet the CAFE standards. Whether the engine will be produced inside the country or imported remains uncertain, so two cases are defined. Values of exports/imports of clean diesel engines/trucks under these cases are estimated. The macroeconomic benefits are estimated by using a model of the US economy developed by Standard and Poor's Data Resources, Inc. On the basis of gains in the gross domestic product projected under the alternative cases, domestic production of the clean diesel engine is favored over importing it. (author)

  13. Automated spray cleaning using flammable solvents in a glovebox

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P.; Meirans, L.

    1998-05-01

    The phase-out of the ozone-depleting solvents has forced industry to look to solvents such as alcohol, terpenes and other flammable solvents to perform the critical cleaning processes. These solvents are not as efficient as the ozone-depleting solvents in terms of soil loading, cleaning time and drying when used in standard cleaning processes such as manual sprays or ultrasonic baths. They also require special equipment designs to meet part cleaning specifications and operator safety requirements. This paper describes a cleaning system that incorporates the automated spraying of flammable solvents to effectively perform precision cleaning processes. Key to the project`s success was the development of software that controls the robotic system and automatically generates robotic cleaning paths from three dimensional CAD models of the items to be cleaned.

  14. Brushless Cleaning of Solar Panels and Windows

    Science.gov (United States)

    Schneider, H. W.

    1982-01-01

    Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aparbolic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.

  15. High frequency of postcoital penis cleaning in Budongo chimpanzees.

    Science.gov (United States)

    O'Hara, Sean J; Lee, Phyllis C

    2006-01-01

    Cultural or tool use behaviours are typically conducted in social or food procurement contexts where the individual interacts with conspecifics, heterospecifics or environmental features. We report on postcoital penis cleaning in chimpanzees, an activity that does not fit this pattern. In penis cleaning, leaves are employed as 'napkins' to wipe clean the penis after sex. Alternatively, the same cleaning motion can be done without leaves, simply using the fingers. Not all chimpanzee communities studied across Africa clean their penes and, where documented, the behaviour is rare. By contrast, we identify postcoital penis cleaning in Budongo Forest, Uganda, as customary and corroborate penis cleaning as another cultural trait in chimpanzees, one that is specific to only a subset of the eastern subspecies of chimpanzee (Pan troglodytes schweinfurthii). PMID:16912503

  16. Clean Cities Now Vol. 19, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-24

    Now is the official bi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  17. Aqueous cleaning of flux residue from solder joints. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krska, C.M.

    1992-08-01

    Solder joints have traditionally been cleaned using chlorinated or fluorinated solvents. This study addressed alternate processing. One process involved using a saponifier/water solution to remove rosin flux residues; the other process involved using a water-soluble flux and water to remove the residues. Although both processes were satisfactory, the water-soluble flux with water cleaning proved to be the best.

  18. Aqueous cleaning of flux residue from solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Krska, C.M.

    1992-08-01

    Solder joints have traditionally been cleaned using chlorinated or fluorinated solvents. This study addressed alternate processing. One process involved using a saponifier/water solution to remove rosin flux residues; the other process involved using a water-soluble flux and water to remove the residues. Although both processes were satisfactory, the water-soluble flux with water cleaning proved to be the best.

  19. Clean Energy Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    For the past several years, the IEA and others have been calling for a clean energy revolution to achieve global energy security, economic growth and climate change goals. This report analyses for the first time progress in global clean energy technology deployment against the pathways that are needed to achieve these goals. It provides an overview of technology deployment status, key policy developments and public spending on RDD&D of clean energy technologies.

  20. Infrared steam laser cleaning

    OpenAIRE

    Frank, Pascal; Lang, Florian; Mosbacher, Mario; Boneberg, Johannes; Leiderer, Paul

    2008-01-01

    Steam Laser Cleaning with a pulsed infrared laser source is investigated. The infrared light is tuned to the absorption maximum of water (λ = 2.94 µm, 10 ns), whereas the substrates used are transparent (glass, silicon). Thus a thin liquid water layer condensed on top of the contaminated substrate is rapidly heated. The pressure generated during the subsequent phase explosion generates a cleaning force which exceeds the adhesion of the particles. We examine the cleaning threshold in single sh...

  1. Cleaning and surface properties

    CERN Document Server

    Taborelli, M

    2007-01-01

    Principles of precision cleaning for ultra high vacuum applications are reviewed together with the techniques for the evaluation of surface cleanliness. Methods to verify the effectiveness of cleaning procedures are discussed. Examples are presented to illustrate the influence of packaging and storage on the recontamination of the surface after cleaning. Finally, the effect of contamination on some relevant surface properties, like secondary electron emission and wettability is presented.

  2. Clean Energy: No Longer a Luxury! Resources in Technology.

    Science.gov (United States)

    Technology Teacher, 1991

    1991-01-01

    This learning activity provides an overview of the problem of clean energy sources and examination of alternatives. Student activity, quiz with answers, related activities, and nine references are provided. (SK)

  3. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration.

    Science.gov (United States)

    Singh, Shardendu K; Reddy, Vangimalla R

    2015-10-01

    To evaluate the response of CO2 assimilation rate (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition, soybean plants were grown in controlled environment with sufficient (0.50mM) and deficient (0.10 and 0.01 mM) phosphate (P) supply under ambient and elevated CO2 (aCO2, 400 and eCO2, 800 μmol mol(-1), respectively). Measurements were made at ambient (21%) and low (2%) O2 concentrations. Results showed strong correlation of leaf P concentration with PN and CF parameters. The P deficiency showed parallel decreases in PN, and CF parameters including quantum efficiency (Fv'/Fm'), quantum yield of photosystem II (ΦPSII), electron transport rate (JF), and photochemical quenching (qP). The Fv'/Fm' decreased as a result of greater decline in maximal (Fm') than minimal (Fo') fluorescence. The eCO2 stimulated PN especially under higher leaf P concentrations. Low O2 also stimulated PN but only at aCO2. The photosynthetic carbon reduction (PCR, signified by PN) and photorespiratory carbon oxidation cycles (PCO, signified photorespiration as indicated by ratio of JF to gross PN and % increase in PN at 2% O2) was the major electron sinks. However, the presence of alternative electron sink was also evident as determined by the difference between the electron transport calculated from chlorophyll fluorescence and gas exchange measurements. Alternative electron sink declined at lower leaf P concentration suggesting its minor role in photochemical energy consumption, thus dissipation of the excess excitation pressure of PSII reaction center under P deficiency. The JF/PG and % increase in PN at 2 versus 21% O2 remained consistent across leaf P concentration suggesting PCO cycle as an important mechanism to dissipate excess excitation energy in P deficient leaves. The severe decline of Fv'/Fm', ΦPSII, JF and qP under P deficiency also suggested the occurrences of excess radiant energy dissipation by non-photochemical quenching mechanisms. Critical

  4. Environmentally Clean Mitigation of Undesirable Plant Life Using Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; McGrann, T J; Yamamoto, R M; Parker, J M

    2009-07-01

    This concept comprises a method for environmentally clean destruction of undesirable plant life using visible or infrared radiation. We believe that during the blossom stage, plant life is very sensitive to electromagnetic radiation, with an enhanced sensitivity to specific spectral ranges. Small doses of irradiation can arrest further plant growth, cause flower destruction or promote plant death. Surrounding plants, which are not in the blossoming stage, should not be affected. Our proposed mechanism to initiate this effect is radiation produced by a laser. Tender parts of the blossom possess enhanced absorptivity in some spectral ranges. This absorption can increase the local tissue temperature by several degrees, which is sufficient to induce bio-tissue damage. In some instances, the radiation may actually stimulate plant growth, as an alternative for use in increased crop production. This would be dependent on factors such as plant type, the wavelength of the laser radiation being used and the amount of the radiation dose. Practical, economically viable realization of this concept is possible today with the advent of high efficiency, compact and powerful laser diodes. The laser diodes provide an efficient, environmentally clean source of radiation at a variety of power levels and radiation wavelengths. Figure 1 shows the overall concept, with the laser diodes mounted on a movable platform, traversing and directing the laser radiation over a field of opium poppies.

  5. Alternative assessment of nano-TiO2 sedimentation under different conditions based on sedimentation efficiency at quasi-stable state

    International Nuclear Information System (INIS)

    The predictable significant increase in manufacture and use of engineered nanoparticles (ENPs) will cause their inevitable release into environment, and the potential harmful effects of ENPs have been confirmed. As representative ENPs, sedimentation behavior of nano-titanium dioxide (n-TiO2) should be better understood to control its environmental risk. In this study, an experimental methodology was established to set the sampling area and sampling time of n-TiO2 sedimentation. In addition, we defined a quasi-stable state and a precise index, i.e., sedimentation efficiency (SE) at this state, to describe the n-TiO2 sedimentation behavior. Both alternative concentration determination and conventional size measurement were applied to evaluate the sedimentation behavior of n-TiO2 with fulvic acid. Results showed that the sedimentation behavior described by SE was more precise and in disagreement with those predicted by particle size. Moreover, sedimentation experiments with salicylic acid (SA), under an electric field and different water temperatures or with sulfosalicylic acid under light irradiation were also performed. When the total organic carbon concentration of SA, the voltage of working electrodes, and water temperature increased, or the wavelength of light source decreased, the SE of n-TiO2 increased and n-TiO2 showed a tendency to settle in water. These findings might be important for deepening the understanding of n-TiO2 environmental behavior and exploring sedimentation behavior of other ENPs

  6. Alternative assessment of nano-TiO{sub 2} sedimentation under different conditions based on sedimentation efficiency at quasi-stable state

    Energy Technology Data Exchange (ETDEWEB)

    He, Guang’an; Chen, Rui; Lu, Shushen [Sun Yat-sen University, School of Chemistry and Chemical Engineering (China); Jiang, Chengchun [Shenzhen Polytechnic, School of Civil and Environmental Engineering (China); Liu, Hong, E-mail: liuhong@cigit.ac.cn [Sun Yat-sen University, School of Chemistry and Chemical Engineering (China); Wang, Chuan [Chinese Academy of Sciences, Chongqing Institute of Green and Intelligent Technology (China)

    2015-11-15

    The predictable significant increase in manufacture and use of engineered nanoparticles (ENPs) will cause their inevitable release into environment, and the potential harmful effects of ENPs have been confirmed. As representative ENPs, sedimentation behavior of nano-titanium dioxide (n-TiO{sub 2}) should be better understood to control its environmental risk. In this study, an experimental methodology was established to set the sampling area and sampling time of n-TiO{sub 2} sedimentation. In addition, we defined a quasi-stable state and a precise index, i.e., sedimentation efficiency (SE) at this state, to describe the n-TiO{sub 2} sedimentation behavior. Both alternative concentration determination and conventional size measurement were applied to evaluate the sedimentation behavior of n-TiO{sub 2} with fulvic acid. Results showed that the sedimentation behavior described by SE was more precise and in disagreement with those predicted by particle size. Moreover, sedimentation experiments with salicylic acid (SA), under an electric field and different water temperatures or with sulfosalicylic acid under light irradiation were also performed. When the total organic carbon concentration of SA, the voltage of working electrodes, and water temperature increased, or the wavelength of light source decreased, the SE of n-TiO{sub 2} increased and n-TiO{sub 2} showed a tendency to settle in water. These findings might be important for deepening the understanding of n-TiO{sub 2} environmental behavior and exploring sedimentation behavior of other ENPs.

  7. Clean Energy Manufacturing Initiative

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  8. In Situ Cleanable Alternative HEPA Filter Media

    International Nuclear Information System (INIS)

    The Westinghouse Savannah River Company, located at the Savannah River Site in Aiken, South Carolina, is currently testing two types of filter media for possible deployment as in situ regenerable/cleanable High Efficiency Particulate Air (HEPA) filters. The filters are being investigated to replace conventional, disposable, glass-fiber, HEPA filters that require frequent removal, replacement, and disposal. This is not only costly and subjects site personnel to radiation exposure, but adds to the ever-growing waste disposal problem. The types of filter media being tested, as part of a National Energy Technology Laboratory procurement, are sintered nickel metal and ceramic monolith membrane. These media were subjected to a hostile environment to simulate conditions that challenge the high-level waste tank ventilation systems. The environment promoted rapid filter plugging to maximize the number of filter loading/cleaning cycles that would occur in a specified period of time. The filters were challenged using nonradioactive simulated high-level waste materials and atmospheric dust; materials that cause filter pluggage in the field. The filters are cleaned in situ using an aqueous solution. The study found that both filter media were insensitive to high humidity or moisture conditions and were easily cleaned in situ. The filters regenerated to approximately clean filter status even after numerous plugging and in situ cleaning cycles. Air Techniques International is conducting particle retention testing on the filter media at the Oak Ridge Filter Test Facility. The filters are challenged using 0.3-mm di-octyl phthalate particles. Both the ceramic and sintered media have a particle retention efficiency > 99.97%. The sintered metal and ceramic filters not only can be cleaned in situ, but also hold great potential as a long life alternative to conventional HEPA filters. The Defense Nuclear Facility Safety Board Technical Report, ''HEPA Filters Used in the Department of

  9. Cleaning of South African coal using a compound dry cleaning apparatus

    Institute of Scientific and Technical Information of China (English)

    Li Haibin; Luo Zhenfu; Zhao Yuemin; Wu Wanchang; Zhang Cuiyu; Dai Ningning

    2011-01-01

    The compound dry cleaning principle is briefly described. A beneficiation test on South African coal was conducted using a model compound dry cleaning apparatus. Excellent results were obtained and the optimum operating parameters were determined. They are: an amplitude of 3.0 ram, a motor frequency of 47.5 Hz, an air volume of 50%, a transverse angle of 7°, and a longitudinal angle of -2°. These conditions yield a clean coal containing 11% ash and a coal production of 75%. The organic efficiency, η, is 95.86%. These results show that the South African coal can be separated effectively by compound dry cleaning, which will popularize the compound dry cleaning method.

  10. Investigation of aluminum surface cleaning using cavitating fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavičiaus str.28, 03224, Vilnius (Lithuania)

    2013-12-16

    This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

  11. CO2 (dry ice) cleaning system

    Science.gov (United States)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  12. CO2 (dry ice) cleaning system

    Science.gov (United States)

    Barnett, Donald M.

    1995-03-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  13. Supporting Clean Energy Development in Swaziland

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    Swaziland, a country largely dependent on regional fossil fuel imports to meet power needs, is vulnerable to supply changes and price shocks. To address this challenge, the country's National Energy Policy and Implementation Strategy prioritizes actions to enhance energy independence through scaling up renewable energy and energy efficiency. With approximately 70 percent of the country lacking electricity, Swaziland is also strongly committed to expanding energy access to support key economic and social development goals. Within this context, energy security and energy access are two foundational objectives for clean energy development in Swaziland. The partnership between the Swaziland Energy Regulatory Authority and the Clean Energy Solutions Center led to concrete outcomes to support clean energy development in Swaziland. Improving renewable energy project licensing processes will enable Swaziland to achieve key national objectives to expand clean energy access and transition to greater energy independence.

  14. Domestic energy alternatives

    International Nuclear Information System (INIS)

    These alternatives include biomass, clean coal, geothermal, hydropower, natural gas, nuclear, solar and photovoltaic, and wind. With the current, volatile situation in the Middle East, this nation's political leaders appear to be left scratching their heads in their attempts to come up with new, sound, energy policies to reduce our dependence on foreign oil. Therefore, the FORTNIGHTLY's editorial staff thought that this might be an opportune time to briefly examine some home-grown and environmentally responsible fuel alternatives to black gold. While some of these electricity-producing technologies are still on the horizon, others are available now

  15. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the

  16. Cleaning insertions and collimation challenges

    CERN Document Server

    Redaelli, S; Bertarelli, A; Bruce, R; Jowett, J M; Lechner, A; Losito, R

    2015-01-01

    High-performance collimation systems are essential for operating efficiently modern hadron machine with large beam intensities. In particular, at the LHC the collimation system ensures a clean disposal of beam halos in the superconducting environment. The challenges of the HL-LHC study pose various demanding requests for beam collimation. In this paper we review the present collimation system and its performance during the LHC Run 1 in 2010–2013. Various collimation solutions under study to address the HL-LHC requirements are then reviewed, identifying the main upgrade baseline and pointing out advanced collimation concept for further enhancement of the performance.

  17. Developments in surface contamination and cleaning fundamentals and applied aspects

    CERN Document Server

    Kohli, Rajiv

    2015-01-01

    Developments in Surface Contamination and Cleaning, Vol. 1: Fundamentals and Applied Aspects, Second Edition, provides an excellent source of information on alternative cleaning techniques and methods for characterization of surface contamination and validation. Each volume in this series contains a particular topical focus, covering the key techniques and recent developments in the area. This volume forms the heart of the series, covering the fundamentals and application aspects, characterization of surface contaminants, and methods for removal of surface contamination. In addition, new cleaning techniques effective at smaller scales are considered and employed for removal where conventional cleaning techniques fail, along with new cleaning techniques for molecular contaminants. The Volume is edited by the leading experts in small particle surface contamination and cleaning, providing an invaluable reference for researchers and engineers in R&D, manufacturing, quality control, and procurement specific...

  18. Ethyl-bridged hybrid column as an efficient alternative for HPLC analysis of plasma amino acids by pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate.

    Science.gov (United States)

    Castellanos, Mar; Van Eendenburg, Cecile Van; Gubern, Carme; Sanchez, Juan M

    2016-09-01

    Conventional C18 silica columns have proven to be useful for the analysis of amino acids (AA) from protein hydrolysates but undesirable peak overlapping is usually found when analyzing body fluids given that a large number of AAs are present in the samples. As an alternative to silica packings, an ethyl-bridged packing for reversed-phase liquid chromatography of derivatized AAs with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) has been evaluated. The new packing material improves the separation efficiency allowing better separations when analyzing biological fluids. Moreover, this packing has advantages for routine AA analysis, such as a decrease in the total running time and an increase in the life-time of the columns. The pH of the mobile phase has a significant effect on the elution behavior of the AQC hydrolysis product (AMQ) and on the AA derivatives. It is not possible to elute AMQ before detecting the first AA derivative, which requires an accurate adjustment of the pH in the range of 5.30-5.35 to obtain good separation and resolution for the most polar compounds. Under the conditions proposed, it is possible to separate all AAs except the Gly-Gln pair, which is not a problem when hydrolyzed samples are analyzed. The AMQ-Ser pair requires either the use of a different mobile phase pH for its baseline separation or the use of fluorescence detection. Two different procedures for protein removal from plasma samples have been evaluated, solvent precipitation and ultrafiltration (UF) and it has been found that UF gives better results as no significant losses of AAs were observed. The validation of the proposed method with UV detection gives method detection limits in the range of 8-12μM, with repeatability values<8% (n=6) and inter-day precision in plasma samples ranging from 4 to 13% (n=4). PMID:27428457

  19. Ethyl-bridged hybrid column as an efficient alternative for HPLC analysis of plasma amino acids by pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate.

    Science.gov (United States)

    Castellanos, Mar; Van Eendenburg, Cecile Van; Gubern, Carme; Sanchez, Juan M

    2016-09-01

    Conventional C18 silica columns have proven to be useful for the analysis of amino acids (AA) from protein hydrolysates but undesirable peak overlapping is usually found when analyzing body fluids given that a large number of AAs are present in the samples. As an alternative to silica packings, an ethyl-bridged packing for reversed-phase liquid chromatography of derivatized AAs with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) has been evaluated. The new packing material improves the separation efficiency allowing better separations when analyzing biological fluids. Moreover, this packing has advantages for routine AA analysis, such as a decrease in the total running time and an increase in the life-time of the columns. The pH of the mobile phase has a significant effect on the elution behavior of the AQC hydrolysis product (AMQ) and on the AA derivatives. It is not possible to elute AMQ before detecting the first AA derivative, which requires an accurate adjustment of the pH in the range of 5.30-5.35 to obtain good separation and resolution for the most polar compounds. Under the conditions proposed, it is possible to separate all AAs except the Gly-Gln pair, which is not a problem when hydrolyzed samples are analyzed. The AMQ-Ser pair requires either the use of a different mobile phase pH for its baseline separation or the use of fluorescence detection. Two different procedures for protein removal from plasma samples have been evaluated, solvent precipitation and ultrafiltration (UF) and it has been found that UF gives better results as no significant losses of AAs were observed. The validation of the proposed method with UV detection gives method detection limits in the range of 8-12μM, with repeatability values<8% (n=6) and inter-day precision in plasma samples ranging from 4 to 13% (n=4).

  20. Cleaning methods and philosophy of cleaning to prevent or mitigate microbiological influenced corrosion

    International Nuclear Information System (INIS)

    It is well established that clean material surfaces remain free of most forms of debilitating corrosion, including microbiological influenced corrosion (MIC). Therefore, the prevention of MIC depends on effective treatments and service conditions which precludes various fouling mechanisms, especially biofouling. Mitigation of MIC must begin by removal of fouling deposits which contribute to colonization of material surfaces by bacteria which influence corrosion. There are many cleaning methods and alternatives to consider which can be generally classified as chemical or mechanical processes. Selection of the cleaning process(es) involves technical, economic, and practical factors. Deposit characterization and cleaning trials are essential tot he success of any cleaning project. Procedures should identify all major steps of the cleaning, however, the project manager must have the latitude and technical support to facilitate changes to protect plant equipment and optimize the cleaning effectiveness. This review is most applicable to raw cooling water systems, where much of the emphasis on mitigation of MIC is needed. Closed loop cooling water systems are discussed briefly, as are fire protection systems and high purity water systems

  1. Alternative security

    International Nuclear Information System (INIS)

    This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview

  2. On-line chemical cleaning of pipelines; Limpieza quimica de ductos en linea

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Michael Brent [Brenntag Stinnes Logistics, Muelheim/Ruhr (Germany)

    2003-07-01

    The concern of efficiency and maintenance in the pipeline industry, due to fluids and sediments, has led the development of new methods of cleaning. Some methods of cleaning are described in this work with their advantages and disadvantages.

  3. Clean Cities 2012 Annual Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.

    2013-12-01

    The U.S. Department of Energy's (DOE) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. A national network of nearly 100 Clean Cities coalitions brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Each year DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterizes the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this report.

  4. Chemical cleaning of the condenser tubes of Baersebaeck 2 - Experiences

    International Nuclear Information System (INIS)

    During the summer of 1980 the condenser tubes of Barsebaeck 2 were acid cleaned due to the following reasons: 1) significant heat transfer losses 2) possible passivation of attacks filled with corrosion products 3) encouraging experiences from acid cleaning of Danish units 4) less encouraging experiences from mechanical cleaning. Prior to the acid cleaning some laboratory experiments were performed to investigate the effect of pH-value and temperature on the time required for cleaning. In spite of practical problems including loss of acid and cavitating pumps the acid cleaning was performed in less than 24 hours/condenser section. The result of the acid cleaning was better than the result of mechanical methods employed earlier. There was a significant increase in heat transfer efficiency. In two of the condenser sections the tubes were completely free of corrosion products after acid cleaning and cleaning with the Taprogge system. In the two remaining condenser sections some corrosion products were observed in a few deep attacks. This is due to a higher pH-value suring the cleaning of these two sections than during the cleaning of the two first sections. There were no indications of any acid leaking to the steam side of the condenser. (Author)

  5. Clean Water Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Clean Water Act (CWA) establishes the basic structure for regulating discharges of pollutants into U.S. waters and regulating quality standards for surface...

  6. Novel use of an ultrasonic cleaning device for fish reproductive studies

    Science.gov (United States)

    Barnes, L. M.; van der Meulen, D. E.; Orchard, B. A.; Gray, C. A.

    2013-02-01

    A major challenge commonly faced in reproductive studies of teleosts is to cost effectively and safely separate oocytes from one another and from surrounding ovarian tissue. This challenge is exacerbated when ovarian tissue has been chemically preserved. Using Platycephalus caeruleopunctatus, a platycephalid species found within oceanic waters along the east coast of Australia, as an example species, within this study we describe and assess the utility of an ultrasonic cleaning device to separate oocytes from preserved ovarian tissue. The ultrasonic cleaning device was observed to separate oocytes from the surrounding ovarian tissue within less than 80 min of treatment and had no deleterious effects on the number of oocytes present. Treatment within the ultrasonic cleaning device reduced oocyte diameters at a constant rate of 3.9 μm per hour among the samples tested. As the ultrasonic cleaning device was able to separate oocytes from connective tissue within 80 min, this observed rate of reduction in oocyte diameters is unlikely to be detected at the resolution at which oocytes are traditionally measured and is less than that reported to occur using alternate chemically derived methods to separate oocytes from preserved connective tissue. Following the assessment of using an ultrasonic cleaning device to separate oocytes from ovarian tissue for P. caeruleopunctatus, this technique has been successfully employed to separate oocytes from preserved ovarian tissue for a variety of other teleost species including Macquaria colonorum, Platycephalus longispinis and Ratabulus diversidens. The use of an ultrasonic cleaning device to separate oocytes from preserved ovarian tissue will increase the efficiency of future investigations into teleost reproductive biology and potentially in other fields of research where particle separation and analysis are required.

  7. Alternative fuelds in urban fleets

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, T.

    1994-12-31

    In this presentation the author addresses four main objectives. They are to: discuss programs that are driving the introduction of alternative fuels into fleet operations in urban areas around the country; define alternative fuels; quantify the present use and future projections on alternative fuel vehicles (AVFs) in the Chicago metropolitan statistical area; and discuss benefits of increased use of alternative fuels in urban areas. Factors which touch on these points include: present domestic dependence on petroleum for autos, with usage exceeding production; the large populations in urban areas which do not meet Clean Air Standards; recent legislative initiatives which give guidance and aid in the adoption of such strategies.

  8. Alternative fuelds in urban fleets

    International Nuclear Information System (INIS)

    In this presentation the author addresses four main objectives. They are to: discuss programs that are driving the introduction of alternative fuels into fleet operations in urban areas around the country; define alternative fuels; quantify the present use and future projections on alternative fuel vehicles (AVFs) in the Chicago metropolitan statistical area; and discuss benefits of increased use of alternative fuels in urban areas. Factors which touch on these points include: present domestic dependence on petroleum for autos, with usage exceeding production; the large populations in urban areas which do not meet Clean Air Standards; recent legislative initiatives which give guidance and aid in the adoption of such strategies

  9. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  10. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  11. Textile Dry Cleaning Using Carbon Dioxide: Process, Apparatus and Mechanical Action

    OpenAIRE

    Sutanto, S.

    2014-01-01

    Fabrics that are sensitive to water, may wrinkle or shrink when washed in regular washing machines and are usually cleaned by professional dry cleaners. Dry cleaning is a process of removing soils from substrate, in this case textile, using a non-aqueous solvent. The most common solvent in conventional dry cleaning is perchloroethylene (PER). Despite its satisfactory cleaning performance, PER has several drawbacks. One approach is to develop an alternative solvent for PER. CO2 is chosen in th...

  12. Cleaning of GaN(2110) surfaces

    International Nuclear Information System (INIS)

    The cleaning of GaN(2110) surfaces was investigated by x-ray photoelectron spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction. Two different two-step cleaning methods, performed under ultrahigh-vacuum conditions, were carried out and compared. The first cleaning step of both methods is thermal degassing. The second step is either the deposition of metallic gallium followed by redesorption or an exposure to active nitrogen from a radio frequency nitrogen plasma source. Upon storage in a glovebox (N2 atmosphere) and transfer to ultrahigh vacuum under dry nitrogen, carbon and oxygen were identified as the major contaminants. A significant decrease in oxygen and carbon was achieved by thermal degassing at 750 deg. C under ultrahigh-vacuum conditions. By applying a subsequent Ga deposition/redesorption or N2-plasma cleaning step, a further reduction in oxygen and carbon could be achieved. In comparison, the Ga deposition/redesorption cleaning showed a better performance in oxygen removal, whereas the N2 plasma exhibits a better efficiency in carbon removal. Furthermore scanning tunneling microscopy and low-energy electron diffraction investigations showed a drastic improvement of the morphology and atomic structure of the clean surfaces in contrast to the sample surfaces after N2 storage and transfer.

  13. Cleaning of GaN(2110) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Ch.; Kuhr, S.; Geffers, H.; Schmidt, Th.; Flege, J. I.; Aschenbrenner, T.; Hommel, D.; Falta, J. [Institute of Solid State Physics, University Bremen, P.O. Box 330440, Bremen 28334 (Germany)

    2011-01-15

    The cleaning of GaN(2110) surfaces was investigated by x-ray photoelectron spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction. Two different two-step cleaning methods, performed under ultrahigh-vacuum conditions, were carried out and compared. The first cleaning step of both methods is thermal degassing. The second step is either the deposition of metallic gallium followed by redesorption or an exposure to active nitrogen from a radio frequency nitrogen plasma source. Upon storage in a glovebox (N{sub 2} atmosphere) and transfer to ultrahigh vacuum under dry nitrogen, carbon and oxygen were identified as the major contaminants. A significant decrease in oxygen and carbon was achieved by thermal degassing at 750 deg. C under ultrahigh-vacuum conditions. By applying a subsequent Ga deposition/redesorption or N{sub 2}-plasma cleaning step, a further reduction in oxygen and carbon could be achieved. In comparison, the Ga deposition/redesorption cleaning showed a better performance in oxygen removal, whereas the N{sub 2} plasma exhibits a better efficiency in carbon removal. Furthermore scanning tunneling microscopy and low-energy electron diffraction investigations showed a drastic improvement of the morphology and atomic structure of the clean surfaces in contrast to the sample surfaces after N{sub 2} storage and transfer.

  14. Alternative energies; Energies alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.; Rossetti, P

    2007-07-01

    The earth took millions years to made the petroleum, the gas the coal and the uranium. Only a few centuries will be needed to exhaust these fossil fuels and some years to reach expensive prices. Will the wold continue on this way of energy compulsive consumption? The renewable energies and some citizen attitudes are sufficient to break this spiral. This book proposes to discuss these alternative energies. It shows that this attitude must be supported by the government. It takes stock on the more recent information concerning the renewable energies. it develops three main points: the electricity storage, the housing and the transports. (A.L.B.)

  15. Dimethyl ether as alternative fuel for CI engine and vehicle

    Institute of Scientific and Technical Information of China (English)

    Zhen HUANG; Xinqi QIAO; Wugao ZHANG; Junhua WU; Junjun ZHANG

    2009-01-01

    As a developing and the most populous country in the world, China faces major challenges in energy supply and environmental protection. It is of great importance to develop clean and alternative fuels for internal combustion engines. On the basis of researches on DME engine and vehicle at Shanghai Jiaotong University in the last twelve years, fuel injection, combustion, performance and exhaust emissions of DME engine and DME vehicle are introduced in this paper. The results indicate that DME engines can achieve high thermal efficiency and ultra low emissions, and will play a significant role in meeting the energy demand while minimizing environmental impact in China.

  16. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  17. Clean Water for Developing Countries.

    Science.gov (United States)

    Pandit, Aniruddha B; Kumar, Jyoti Kishen

    2015-01-01

    Availability of safe drinking water, a vital natural resource, is still a distant dream to many around the world, especially in developing countries. Increasing human activity and industrialization have led to a wide range of physical, chemical, and biological pollutants entering water bodies and affecting human lives. Efforts to develop efficient, economical, and technologically sound methods to produce clean water for developing countries have increased worldwide. We focus on solar disinfection, filtration, hybrid filtration methods, treatment of harvested rainwater, herbal water disinfection, and arsenic removal technologies. Simple, yet innovative water treatment devices ranging from use of plant xylem as filters, terafilters, and hand pumps to tippy taps designed indigenously are methods mentioned here. By describing the technical aspects of major water disinfection methods relevant for developing countries on medium to small scales and emphasizing their merits, demerits, economics, and scalability, we highlight the current scenario and pave the way for further research and development and scaling up of these processes. This review focuses on clean drinking water, especially for rural populations in developing countries. It describes various water disinfection techniques that are not only economically viable and energy efficient but also employ simple methodologies that are effective in reducing the physical, chemical, and biological pollutants found in drinking water to acceptable limits.

  18. CleanFleet. Volume 2, Project Design and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The CleanFleet alternative fuels demonstration project evaluated five alternative motorfuels in commercial fleet service over a two-year period. The five fuels were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), M-85 (85 percent methanol and 15 percent RFG), and electric vans. Eight-four vans were operated on the alternative fuels and 27 vans were operated on gasoline as baseline controls. Throughout the demonstration information was collected on fleet operations, vehicle emissions, and fleet economics. In this volume of the CleanFleet findings, the design and implementation of the project are summarized.

  19. Self-cleaning geopolymer concrete - A review

    Science.gov (United States)

    Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor

    2016-06-01

    Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.

  20. Una alternativa limpia para el tratamiento de las aguas residuales galvánicas: revisión bibliográfica A clean alternative for galvanic wastewater treatment: literature review

    Directory of Open Access Journals (Sweden)

    Álvaro Chávez Porras

    2009-01-01

    Full Text Available Este estudio presenta una revisión bibliográfica sobre las aguas residuales generadas por industrias galvánicas y una posibilidad de tratamiento para disminuir los contaminantes propios de estos efluentes. La actividad produce fundamentalmente efluentes líquidos con alta carga contaminante en volúmenes relativamente pequeños, como también efluentes con cargas contaminantes diluidas en grandes volúmenes; adicionalmente a esto, la generación de desechos sólidos o semisólidos es el principal problema en importancia después de los vertidos líquidos. Se concluye que las aguas residuales pueden alcanzar un alto nivel tóxico para el medio ambiente y el hombre; se generan, así, alternativas para su tratamiento y la posible recuperación de los metales pesados, específicamente para estas industrias que son las grandes generadoras de los contaminantes, donde los tratamientos convencionales no logran eliminarlos en sus procesos, lo que requiere una combinación de alternativas tecnológicas para tratar las aguas residuales. Se considera el proceso de electrocoagulación como efectivo para eliminar contaminantes del agua residual, que permite recuperar parte de las aguas para reúso.This study presents a literature review on wastewater produced in galvanic industry, and a possible treatment alternative in order to decrease contaminants of such effluents. This industry basically generates liquid wastes with a big contaminating load in relatively small volumes. Additionally, generation of solid and semisolid wastes is the second main problem after discharge of liquids. It is concluded that wastewaters can reach a high level of toxicity for both environment and man. Then, some alternatives are proposed for treatment and possible recovery of heavy metals, especially for this industry which are important producers of contaminants, since conventional treatments are not totally effective for their elimination during the processes. This requires a

  1. Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction.

    Science.gov (United States)

    Santos Macedo, Elisete; Cardoso, Hélia G; Hernández, Alejandro; Peixe, Augusto A; Polidoros, Alexios; Ferreira, Alexandre; Cordeiro, António; Arnholdt-Schmitt, Birgit

    2009-12-01

    Olive (Olea europaea L.) trees are mainly propagated by adventitious rooting of semi-hardwood cuttings. However, efficient commercial propagation of valuable olive tree cultivars or landraces by semi-hardwood cuttings can often be restricted by a low rooting capacity. We hypothesize that root induction is a plant cell reaction linked to oxidative stress and that activity of stress-induced alternative oxidase (AOX) is importantly involved in adventitious rooting. To identify AOX as a source for potential functional marker sequences that may assist tree breeding, genetic variability has to be demonstrated that can affect gene regulation. The paper presents an applied, multidisciplinary research approach demonstrating first indications of an important relationship between AOX activity and differential adventitious rooting in semi-hardwood cuttings. Root induction in the easy-to-root Portuguese cultivar 'Cobrançosa' could be significantly reduced by treatment with salicyl-hydroxamic acid, an inhibitor of AOX activity. On the contrary, treatment with H2O2 or pyruvate, both known to induce AOX activity, increased the degree of rooting. Recently, identification of several O. europaea (Oe) AOX gene sequences has been reported from our group. Here we present for the first time partial sequences of OeAOX2. To search for polymorphisms inside of OeAOX genes, partial OeAOX2 sequences from the cultivars 'Galega vulgar', 'Cobrançosa' and 'Picual' were cloned from genomic DNA and cDNA, including exon, intron and 3'-untranslated regions (3'-UTRs) sequences. The data revealed polymorphic sites in several regions of OeAOX2. The 3'-UTR was the most important source for polymorphisms showing 5.7% of variability. Variability in the exon region accounted 3.4 and 2% in the intron. Further, analysis performed at the cDNA from microshoots of 'Galega vulgar' revealed transcript length variation for the 3'-UTR of OeAOX2 ranging between 76 and 301 bp. The identified polymorphisms and 3'-UTR

  2. Clean Elements in Abelian Rings

    Indian Academy of Sciences (India)

    Angelina Y M Chin

    2009-04-01

    Let be a ring with identity. An element in is said to be clean if it is the sum of a unit and an idempotent. is said to be clean if all of its elements are clean. If every idempotent in is central, then is said to be abelian. In this paper we obtain some conditions equivalent to being clean in an abelian ring.

  3. Research of the heliostat cleaning method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiliang; Liu, Xiaobin [Himin Solar Energy Group Co., Ltd, Dezhou City (China); Wang, Zhifeng [CAS, Beijing (China). Inst. of Electrical Engineering

    2008-07-01

    Heliostat is the core component of Solar Power Tower system. It can straightly affect the efficiency of whole system. Because the heliostats run outside, and are discovered in the air, dust and dirt accumulates gradually on the surface of reflector. Then, it will gradually decrease the reflectivity of mirror so that reduce the whole efficiency. The article analyzed environment factors, and researched selecting availably cleaning method of heliostat for different conditions. (orig.)

  4. Air Cleaning at the USAEC Y-12 Plant

    International Nuclear Information System (INIS)

    This paper describes some of the air-cleaning requirements of production, research, development and biological facilities in the Y-12 area. Problems and their solutions in hazardous-material containment, air cleaning, contamination control, and air pollution control are enumerated. Bioclean and laminar-flow clean rooms, germ-free supply air systems, exhaust systems for handling toxic and radioactive materials, virus containment and exhaust facilities are described. The Plant's practices regarding air cleaning are discussed including standardization of specifications for high-efficiency particulate air filters and mounting frames, DOP testing of air filter systems, and the replacement of sub-standard filter installations. (author)

  5. Alternative additives; Alternative additiver

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-15

    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  6. Tunable droplet momentum and cavitation process for damage-free cleaning of challenging particles

    Science.gov (United States)

    Gouk, Roman; Papanu, James; Li, Fred; Jeon, Jason; Liu, Tong; Yalamanchili, Rao

    2008-10-01

    Particle removal without damage has been demonstrated for cleaning technology that employs NanoDropletTM mixed-fluid jet nozzle. Although 99%+ particle removal efficiency can be achieved for standard Si3N4 particles with broad size distribution, there are some cleaning challenges with small (500nm) particles. It was found that tunable uniform cavitation can provide the additional physical assist force needed to improve cleaning efficiency of these challenging particles while meeting the damage-fee cleaning requirement. An integrated cleaning process was developed that combines both droplet momentum and damage-free cavitation technology. Cleaning tests were performed with different types of challenging particles. The results showed 5-8% particle removal efficiency improvement as compared to momentum based only cleaning. All masks were processed using the TetraTM mask cleaning tool configured with NanoDropletTM mixed fluid jet technology and full face megasonics.

  7. Laser cleaning of Rakowicze sandstone

    OpenAIRE

    Nijland, T.G.; Wijffels, T.J.

    2003-01-01

    Decisions about the cleaning of natural stone should always be made within the awareness of direct and indirect damage that may be the result of cleaning. During the last decade, laser cleaning of objects and monuments of natural stone has become increasingly popular. Whereas a considerable amount of literature has been devoted to the effect of laser cleaning on marble and limestone, research into the effects on sandstone is limited. In the present paper, the effect of two cleaning methods, v...

  8. LensClean revisited

    CERN Document Server

    Wucknitz, O

    2004-01-01

    We discuss the LensClean algorithm which for a given gravitational lens model fits a source brightness distribution to interferometric radio data in a similar way as standard Clean does in the unlensed case. The lens model parameters can then be varied in order to minimize the residuals and determine the best model for the lens mass distribution. Our variant of this method is improved in order to be useful and stable even for high dynamic range systems with nearly degenerated lens model parameters. Our test case B0218+357 is dominated by two bright images but the information needed to constrain the unknown parameters is provided only by the relatively smooth and weak Einstein ring. The new variant of LensClean is able to fit lens models even in this difficult case. In order to allow the use of general mass models with LensClean, we develop the new method LenTil which inverts the lens equation much more reliably than any other method. This high reliability is essential for the use as part of LensClean. Finally...

  9. Cleaning with solvents methods and machinery

    CERN Document Server

    Durkee, John

    2014-01-01

    High-precision cleaning is required across many sectors, including aerospace, defense, medical device manufacturing, pharmaceutical processing, semiconductor/electronics, and more. In this comprehensive reference work, solvent cleaning equipment is thoroughly covered with a focus on the engineering details of its operation and selection. Key data is provided alongside practical guidance, giving scientists and engineers in multiple sectors the information they need not only to choose the correct machine in the first place, but also how to operate it effectively and efficiently. Low emission

  10. High-voltage live cleaning robot design based on security

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-peng; XIA Hong-wei; YANG Ru-qing

    2005-01-01

    High-Voltage Live Cleaning Robot works in a hot-line environment (220 kV/330 kV), and so the safety of its application and equipment is most important. In terms of safety, the designs of robot mechanism and control system have been discussed, and the test data are given regarding the control system of a model machine. The model machine of a high-voltage live cleaning robot can satisfy the needs of basic cleaning in common conditions. From manual operation to automation, the cleaning efficiency is improved. The robot can decrease the amount of work, and guarantee security. Among high-voltage live cleaning equipment in China, the cleaning robot is advanced in automation and intelligence.

  11. A core alternative[Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, R.H. [Chart Heat Exchangers, Wisconsin (United States)

    2001-09-01

    The development of the efficient Core-in-kettle heat exchangers by Chart Heat Exchangers as an alternative to shell and tube exchangers is reported, and its use as condensers and reboilers in ethylene plants and refrigerant condensers and chillers in natural gas processing and liquid natural gas (LNG) plants are discussed. The novel technology is described with details given of the replacement of the tube bundle with a Chart brazed aluminium plate-fin heat exchanger core, the operation of the exchanger, the savings achieved by installing these heat exchangers in new or existing plants, and Core-in-Kettle retrofits of existing shell and tube heat exchangers. The limitations of the use of Core-in-Kettle heat exchangers to clean fluids typical of hydrocarbon processing, and temperature and pressure limitations are noted.

  12. Affordable High Performance Electromagnetically Clean Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an Electromagnetically Clean Solar Array (ECSA) with enhanced performance, in Watts/kg and Watts/m2, using flight proven, high efficiency solar cells....

  13. Alternative Solvents through Green Chemistry Project

    Science.gov (United States)

    Hintze, Paul E.; Quinn, Jacqueline

    2014-01-01

    Components in the aerospace industry must perform with accuracy and precision under extreme conditions, and surface contamination can be detrimental to the desired performance, especially in cases when the components come into contact with strong oxidizers such as liquid oxygen. Therefore, precision cleaning is an important part of a components preparation prior to utilization in aerospace applications. Current cleaning technologies employ a variety of cleaning agents, many of which are halogenated solvents that are either toxic or cause environmental damage. Thus, this project seeks to identify alternative precision cleaning solvents and technologies, including use of less harmful cleaning solvents, ultrasonic and megasonic agitation, low-pressure plasma cleaning techniques, and supercritical carbon dioxide extraction. Please review all data content found in the Public Data tab located at: https:techport.nasa.govview11697public

  14. Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Freihaut, Jim

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  15. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis;

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning....... Chemical cleaning can be optimized with regard to electricity, heat and methanol use for the hydrothermal washing step, and could have environmental impact comparable to that of physical cleaning if the overall resource intensiveness of chemical cleaning is reduced by a factor 5 to 10, depending...

  16. EUV mask cleans comparison of frontside and dual-sided concurrent cleaning

    Science.gov (United States)

    Cheong, Lin Lee; Kindt, Louis; Turley, Christina; Leonhard, Dusty; Boyle, John; Robinson, Chris; Rankin, Jed; Corliss, Daniel

    2015-03-01

    The cleaning requirements for EUV masks are more complex than optical masks due to the absence of available EUVcompatible pellicles. EUV masks must therefore be capable of undergoing more than 100 cleaning cycles with minimum impact to lithographic performance. EUV masks are created on substrates with 40 multilayers of silicon and molybdenum to form a Bragg reflector, capped with a 2.5nm-thick ruthenium layer and a tantalum-based absorber; during usage, both ruthenium and absorber are exposed to the cleaning process. The CrN layer on the backside is used to enable electrostatic clamping. This clamp side must also be free of particles that could impact printing and overlay, and particles could also potentially migrate to the frontside and create defects. Thus, the cleaning process must provide decent particle removal efficiencies on both front- and backside while maintaining reflectivity with minimal surface roughness change. In this paper, we report progress developing a concurrent patterned-side and clamped-side cleaning process that achieves minimal reflectivity change over 120 cleaning cycles, with XPS and EDS indicating the presence of ruthenium after 125 cleaning cycles. The change in surface roughness over 100 cleaning cycles is within the noise (0.0086nm) on a mask blank, and SEM inspection of 100nm and 200nm features on patterned masks after undergoing 100 cleaning cycles show no indications of ruthenium pitting or significant surface damage. This process was used on test masks to remove particles from both sides that would otherwise inhibit these masks from being used in the scanner.

  17. Preparation for B4C/Mo2C multilayer deposition of alternate multilayer gratings with high efficiency in the 0.5-2.5 keV energy range

    Science.gov (United States)

    Choueikani, Fadi; Delmotte, Franck; Bridou, Françoise; Lagarde, Bruno; Mercere, Pascal; Otero, Edwige; Ohresser, Philippe; Polack, François

    2013-03-01

    This paper presents a study of B4C/Mo2C multilayers mirrors with the aim of using it in the achievement of Alternate MultiLayer (AML) grating. Such component allows a high efficiency in the 500-2500 eV energy range for the DEIMOS beamline. Multilayers were deposited on silicon substrate. They are characterized by reflectometry under grazing incidence. Numerical adjustments were performed with a model of two layers in the period without any interfacial. A prototype of AML grating was fabricated and characterized. The efficiency of the first order of diffraction was worth 15% at 1700 eV.

  18. American Recovery and Reinvestment Act: Clean Cities Project Awards

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-01

    Each Clean Cities project award under the American Recovery and Reinvestment Act included a diverse group of stakeholders who worked together to lay the foundation for their communities to adopt alternative fuels and petroleum reduction strategies. This document provides a snapshot of the impact of each project and highlights the partners and Clean Cities coalitions who helped transform local and regional transportation markets through 25 projects impacting 45 states.

  19. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  20. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  1. Northwest Region Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Sjoding, David

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  2. Neutrino Detection With CLEAN

    CERN Document Server

    McKinsey, D N

    2005-01-01

    This article describes CLEAN, an approach to the detection of low-energy solar neutrinos and neutrinos released from supernovae. The CLEAN concept is based on the detection of elastic scattering events (neutrino-electron scattering and neutrino-nuclear scattering) in liquified noble gases such as liquid helium, liquid neon, and liquid xenon, all of which scintillate brightly in the ultraviolet. Key to the CLEAN technique is the use of a thin film of wavelength-shifting fluor to convert the ultraviolet scintillation light to the visible. This allows the same liquid to be used as both a passive shielding medium and an active self-shielding detector, allowing lower intrinsic radioactive backgrounds at low energies. Liquid neon is a particularly promising medium for CLEAN. Because liquid neon has a high scintillation yield, has no long-lived radioactive isotopes, and can be easily purified by use of cold traps, it is an ideal medium for the detection of rare nuclear events. In addition, neon is inexpensive, dense...

  3. Road-Cleaning Device

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    Roadways are literally soaked with petrochemical byproducts, oils, gasoline, and other volatile substances that eventually run off into sewers and end up in rivers, waterways, and other undesirable places. Can the roads be cleaned of these wastes, with their proper disposal? Can vehicles, robots, or other devices be designed that could be driven…

  4. Cleanly: trashducation urban system

    DEFF Research Database (Denmark)

    Reif, Inbal; Alt, Florian; Ramos, Juan David Hincapie;

    are exacerbated by a poor personal trash management culture. In this paper we present Cleanly, an urban trashducation system aimed at creating awareness of garbage production and management, which may serve as an educational plat-form in the urban environment. We report on data collected from an online survey...

  5. WINDOW-CLEANING

    CERN Multimedia

    Environmental Section / ST-TFM

    2001-01-01

    The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

  6. Transforming Global Markets for Clean Energy Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper looks at three clean energy product categories: equipment energy efficiency; low-carbon transport, including high-efficiency vehicles and electric/plug-in hybrid electric vehicles (EV/PHEVs); and solar photovoltaic (PV) power. Each section identifies ways to enhance global co-operation among major economies through case studies and examples, and ends with specific suggestions for greater international collaboration on market transformation efforts. An annex with more detailed case studies on energy-efficient electric motors, televisions, external power supplies and compact fluorescent lights is included in the paper.

  7. Innovative and Alternative Technology Assessment Manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    This four chapter, six appendix manual presents the procedures and methodology as well as the baseline costs and energy information necessary for the analysis and evaluation of innovative and alternative technology applications submitted for federal grant assistance under the innovative and alternative technology provisions of the Clean Water Act of 1977. The manual clarifies and interprets the intent of Congress and the Environmental Protection Agency in carrying out the mandates of the innovative and alternative provisions of the Clean Water Act of 1977. [DJE 2005

  8. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  9. Multi-objective genetic algorithm for the optimization of road surface cleaning process

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; GAO Dao-ming

    2006-01-01

    The parameters affecting road surface cleaning using waterjets were researched and a fuzzy neural network method of calculating cleaning rate was provided. A genetic algorithm was used to configure the cleaning parameters of pressure, standoff distance, traverse rate and angle of nozzles for the optimization of the cleaning effectiveness, efficiency, energy and water consumption, and a multi-objective optimization model was established. After calculation, the optimized results and the trend of variation of cleaning effectiveness, efficiency, energy and water consumption in different weighting factors were analyzed.

  10. Clean Energy Solutions Center Services

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  11. Efficient and Cost-Effective Alternative Treatment for Recurrent Urinary Tract Infections and Interstitial Cystitis in Women: A Two-Case Report

    Directory of Open Access Journals (Sweden)

    Anthony Mansour

    2014-01-01

    Full Text Available Urinary tract infections (UTIs are among the most common bacterial infections affecting women. UTIs are primarily caused by Escherichia coli, which increases the likelihood of a recurrent infection. We encountered two cases of recurrent UTIs (rUTIs with a positive E. coli culture, not improving with antibiotics due to the development of antibiotic resistance. An alternative therapeutic regimen based on parsley and garlic, L-arginine, probiotics, and cranberry tablets has been given. This regimen showed a significant health improvement and symptoms relief without recurrence for more than 12 months. In conclusion, the case supports the concept of using alternative medicine in treating rUTI and as a prophylaxis or in patients who had developed antibiotic resistance.

  12. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  13. Clean Cities Now, Vol. 20, No. 1, Summer 2016 - Tackling Transportation: Clean Cities and NPS Team Up to Steer National Parks Toward a Sustainable Future.

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  14. Laser cleaning of Rakowicze sandstone

    NARCIS (Netherlands)

    Nijland, T.G.; Wijffels, T.J.

    2003-01-01

    Decisions about the cleaning of natural stone should always be made within the awareness of direct and indirect damage that may be the result of cleaning. During the last decade, laser cleaning of objects and monuments of natural stone has become increasingly popular. Whereas a considerable amount o

  15. Clean Cities 2014 Annual Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-12-22

    Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2014 Annual Metrics Report.

  16. Clean Cities 2013 Annual Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Singer, M.

    2014-10-01

    Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2013 Annual Metrics Report.

  17. Fuel assemblies chemical cleaning

    International Nuclear Information System (INIS)

    NPP Paks found a thermal-hydraulic anomaly in the reactor core during cycle 14 that was caused by corrosion product deposits on fuel assemblies (FAs) that increased the hydraulic resistance of the FAs. Consequently, the coolant flow through the FAs was insufficient resulting in a temperature asymmetry inside the reactor core. Based on this fact NPP Paks performed differential pressure measurements of all fuel assemblies in order to determine the hydraulic resistance and subsequently the limit values for the hydraulic acceptance of FAs to be used. Based on the hydraulic investigations a total number of 170 FAs was selected for cleaning. The necessity for cleaning the FAs was explained by the fact that the FAs were subjected to a short term usage in the reactor core only maximum of 1,5 years and had still a capacity for additional 2 fuel cycles. (authors)

  18. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  19. Indonesia's Clean Air Program

    OpenAIRE

    Budy P. Resosudarmo

    2002-01-01

    Unprecedented industrial development in Indonesia during the last two decades, accompanied by a growing population, has increased the amount of environmental damage. One of the most important environmental problems is that the level of air pollution in several large cities has become alarming, particularly in the last few years. This high pollution level has stimulated the government to develop a national clean air program designed to control the quantity of pollutants in the air. However, th...

  20. Clean Power on Tap

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China adopts the most advanced nuclear power technologies to meet long-term energy needs Nuclear power has taken center stage in China’s nationwide cam-paign to develop new and clean energy sources. In the latest effort, Chinese state-owned nuclear power giants invested over 40 billion yuan ($5.86 billion) as an initial funding injection to build a new plant under the

  1. A Clean Market

    Institute of Scientific and Technical Information of China (English)

    MAGGIECHEN

    2004-01-01

    If you have US$1 million, do you invest in car production or cleaning car emissions? More cars than ever are hitting the roads and demand is rising.Cleaner cars are being called for, as the government strives to reduce car emission. So there is an obvious market both for cars and for new emission control technologies.Theoretically, you should make money by investing in either of them in China today.

  2. Clean energy deployment: addressing financing cost

    Science.gov (United States)

    Ameli, Nadia; Kammen, Daniel M.

    2012-09-01

    New methods are needed to accelerate clean energy policy adoption. To that end, this study proposes an innovative financing scheme for renewable and energy efficiency deployment. Financing barriers represent a notable obstacle for energy improvements and this is particularly the case for low income households. Implementing a policy such as PACE—property assessed clean energy—allows for the provision of upfront funds for residential property owners to install electric and thermal solar systems and make energy efficiency improvements to their buildings. This paper will inform the design of better policies tailored to the creation of the appropriate conditions for such investments to occur, especially in those countries where most of the population belongs to the low-middle income range facing financial constraints.

  3. Clean steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.

    1995-03-01

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

  4. Saltstone Clean Cap Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C

    2005-04-22

    The current operation strategy for using Saltstone Vault 4 to receive 0.2 Ci/gallon salt solution waste involves pouring a clean grout layer over the radioactive grout prior to initiating pour into another cell. This will minimize the radiating surface area and reduce the dose rate at the vault and surrounding area. The Clean Cap will be used to shield about four feet of Saltstone poured into a Z-Area vault cell prior to moving to another cell. The minimum thickness of the Clean Cap layer will be determined by the cesium concentration and resulting dose levels and it is expected to be about one foot thick based on current calculations for 0.1 Ci Saltstone that is produced in the Saltstone process by stabilization of 0.2 Ci salt solution. This report documents experiments performed to identify a formulation for the Clean Cap. Thermal transient calculations, adiabatic temperature rise measurements, pour height, time between pour calculations and shielding calculations were beyond the scope and time limitations of this study. However, data required for shielding calculations (composition and specific gravity) are provided for shielding calculations. The approach used to design a Clean Cap formulation was to produce a slurry from the reference premix (10/45/45 weight percent cement/slag/fly ash) and domestic water that resembled as closely as possible the properties of the Saltstone slurry. In addition, options were investigated that may offer advantages such as less bleed water and less heat generation. The options with less bleed water required addition of dispersants. The options with lower heat contained more fly ash and less slag. A mix containing 10/45/45 weight percent cement/slag/fly ash with a water to premix ratio of 0.60 is recommended for the Clean Cap. Although this mix may generate more than 3 volume percent standing water (bleed water), it has rheological, mixing and flow properties that are similar to previously processed Saltstone. The recommended

  5. Clean fuel technologies and clean and reliable energy: a summary

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, Igor [The University of Manchester, Centre for Process Integration, CEAS, Manchester (United Kingdom); Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary)

    2011-08-15

    There are two major areas covered by this current Special Issue: Cleaner Fuel Technologies and Waste Processing. In addition, the Special Issue, also includes some recent developments in various fields of energy efficiency research. The first group of contributions considers in detail, hydrogen production from biomass and hydrogen production by the sorption-enhanced steam methane reforming process (SE-SMR). Biomass-related technologies are also discussed for a design of an integrated biorefinery, production of clean diesel fuel by co-hydrogenation of vegetable oil with gas oil and utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Waste Processing aspects are considered in the second group of papers. This section includes integrated waste-to-energy plants, utilisation of municipal solid waste in the cement industry and urban supply and disposal systems. The third topic is intentionally made rather loose: it includes different research topics on various aspects of energy efficiency, e.g. resource-saving network design, new research on divided wall columns, vehicle logistics as process-network synthesis for energy consumption and CO{sub 2} reduction.

  6. Clean fuel technologies and clean and reliable energy: a summary

    International Nuclear Information System (INIS)

    There are two major areas covered by this current Special Issue: Cleaner Fuel Technologies and Waste Processing. In addition, the Special Issue, also includes some recent developments in various fields of energy efficiency research. The first group of contributions considers in detail, hydrogen production from biomass and hydrogen production by the sorption-enhanced steam methane reforming process (SE-SMR). Biomass-related technologies are also discussed for a design of an integrated biorefinery, production of clean diesel fuel by co-hydrogenation of vegetable oil with gas oil and utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Waste Processing aspects are considered in the second group of papers. This section includes integrated waste-to-energy plants, utilisation of municipal solid waste in the cement industry and urban supply and disposal systems. The third topic is intentionally made rather loose: it includes different research topics on various aspects of energy efficiency, e.g. resource-saving network design, new research on divided wall columns, vehicle logistics as process-network synthesis for energy consumption and CO2 reduction.

  7. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 9: Closed-cycle MHD. [energy conversion efficiency of electric power plants using magnetohydrodynamics

    Science.gov (United States)

    Tsu, T. C.

    1976-01-01

    A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.

  8. Financing clean energy market creation. Clean energy ventures, venture capitalists and other investors

    Energy Technology Data Exchange (ETDEWEB)

    Teppo, T. [Helsinki Univ. of Technology, Espoo (Finland). Development and Management in Industry

    2006-07-01

    Many factors have emerged for change towards cleaner and more efficient technologies and services: climate change, increasing oil demands, and rising living standards in many parts of the world are putting an ever-increasing strain on the environment. Recently, these drivers have fueled the formation of a clean energy venture capital market where both independent venture capitalists (VCs) and corporate venture capitalists (CVCs) have invested in clean energy start-ups. Financing of clean energy market creation is the focus of this dissertation. The dissertation contributes to several bodies of literature in the area of entrepreneurship, new industry creation, corporate venturing, and venture capital research. The dissertation uses a grounded theory approach. The study is guided by three data collection approaches with an emphasis on the first two. First, interviews with European and North American VC and CVC firms that have invested in the clean energy sector were carried out. Second, a clean energy venture financing survey that consisted of qualitative, essay-format questions and some quantitative questions was carried out. Third, interviews with clean energy stakeholders were carried out in order to gain a better understanding of the emerging sector. The research results consist of three main findings. First, the research results suggest that clean energy ventures face the following three main entrepreneurial challenges: financing, market education, and growth management. A further study of three clean energy industry categories revealed additional challenges that varied according to the industry development stage. Second, the results demonstrate that, from a venture capitalist perspective, clean energy venture risk characteristics can be divided into two groups: generally recognized risk characteristics and cognitive risk characteristics. The identified generally recognized risk characteristics were market demand and adaptation, incompatibility with the VC model

  9. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the

  10. Alternative Waste Forms for Electro-Chemical Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  11. 40 CFR 63.447 - Clean condensate alternative.

    Science.gov (United States)

    2010-07-01

    ... demonstrate to the satisfaction of the Administrator, by meeting all the requirements below, that the total... clarifiers and storage tanks, slakers, slaker grit washers, lime kilns, green liquor clarifiers and storage... effluent limitation guidelines and standards in 40 CFR part 430, subparts A, B, D, and E; and (iii)...

  12. Flux recovery of ceramic tubular membranes fouled with whey proteins: Some aspects of membrane cleaning

    OpenAIRE

    Popović Svetlana S.; Milanović Spasenija D.; Iličić Mirela D.; Lukić Nataša Lj.; Šijački Ivana M.

    2008-01-01

    Efficiency of membrane processes is greatly affected by the flux reduction due to the deposits formation at the surface and/or in the pores of the membrane. Efficiency of membrane processes is affected by cleaning procedure applied to regenerate flux. In this work, flux recovery of ceramic tubular membranes with 50 and 200 nm pore size was investigated. The membranes were fouled with reconstituted whey solution for 1 hour. After that, the membranes were rinsed with clean water and then cleane...

  13. Irradiation alternative method of manganese sulfate solution by a Pu-Be source for efficiency measurements; Metodo alternativo de irradiacao da solucao de sulfato de manganes por uma fonte de Pu-Be para medicoes de eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fellipe Souza da; Martins, Marcelo Marques; Pereira, Walsan Wagner, E-mail: fellipess@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This study intends to create an alternative irradiation system from a Plutonium-Beryllium source for manganese sulphate solution using the Monte Carlo code. Thus seeking to eliminate the issue of institutes that do not have reactors or particle accelerators in its infrastructure, in order to optimize and provide independence for them to carry out efficiency measurements of MnSO{sub 4} solution in their own locality. The Monte Carlo simulations defined the technical features of this new system so that the solution reaches the maximum neutron capture by manganese in solution. (author)

  14. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  15. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 10: Liquid-metal MHD systems. [energy conversion efficiency of electric power plants using liquid metal magnetohydrodynamics

    Science.gov (United States)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    Electric Power Plant costs and efficiencies are presented for two basic liquid-metal cycles corresponding to 922 and 1089 K (1200 and 1500 F) for a commercial applications using direct coal firing. Sixteen plant designs are considered for which major component equipment were sized and costed. The design basis for each major component is discussed. Also described is the overall systems computer model that was developed to analyze the thermodynamics of the various cycle configurations that were considered.

  16. In-Water Hull Cleaning & Filtration System

    Science.gov (United States)

    George, Dan

    2015-04-01

    through a multi stage filtration unit on the surface. Solids greater than 50 micron are separated through a 1st stage separator and deposited into a disposal bin. Filtrate is then pumped through a series of high flow, back-flushable filters that remove particulate material greater than 5 micron. After the 1st and 2nd stage filtration the filtrate is then disinfected by passing through an automated UV reactor where the treated water is then released back into the ocean. This advancement in hull cleaning technology will allow vessels to be cleaned in areas where dry docking is not possible or viable along with being a preventive measure to reduce Biofouling in the environment. The in-water hull cleaning system certainly has earned its place as being an innovative leader in improving efficiencies and reducing environmental impact. https://www.linkedin.com/groups?mostRecent=&gid=6724648&trk=my_groups-tile-flipgrp

  17. The Efficient Use of the Productive Potential of Technical Plant Cultures With the Purpose of Providing an Alternative Energetic Fuel Source

    Directory of Open Access Journals (Sweden)

    Florica Morar

    2009-12-01

    Full Text Available The identification of secure, non-polluting and renewable sources of biofuel, as an alternative to the fossil fuel, which are finite in time, constituted a concern of scientists long before the energetic crisis of 1973. According to Directive 2003/30/CE, the European Union policy considers the decrease of dependency and of the energetic import, as well as the decrease of gas emissions. By 2020, EU Member States, need to replace gasoline and diesel at a rate of 20%, with renewable fuels. In our country, in order to obtain biodiesel from vegetable oils researches are made on some crops such as sunflower, soybean, apeseed. In Mures County, have done research on the composition and production of oil of rapeseed cultivation for autumn and spring. As a mean value for the three years, varieties Bolero (spring and Digger (autumn accumulated the highest oil content.

  18. Enhancement of the Excitation Efficiency of the Non-Contact Magnetostrictive Sensor for Pipe Inspection by Adjusting the Alternating Magnetic Field Axial Length

    Directory of Open Access Journals (Sweden)

    Pengfei Sun

    2014-01-01

    Full Text Available The non-contact magnetostrictive sensor (MsS has been widely used in the guided wave testing of pipes, cables, and so on. However, it has a disadvantage of low excitation efficiency. A new method for enhancing the excitation efficiency of the non-contact MsS for pipe inspection using guided waves, by adjusting the axial length of the excitation magnetic field, is proposed. A special transmitter structure, in which two copper rings are added beside the transmitter coil, is used to adjust the axial length at the expense of weakening the excitation magnetic field. An equivalent vibration model is presented to analyze the influence of the axial length variation. The final result is investigated by experiments. Results show that the excitation efficiency of the non-contact MsS is enhanced in the whole inspection frequency range of the L(0,2 mode if the axial length is adjusted to a certain value. Moreover that certain axial length is the same for pipes of different sizes but made of the same material.

  19. Hybrid Cleaning Technology for Enhanced Post-Cu/Low-Dielectric Constant Chemical Mechanical Planarization Cleaning Performance

    Science.gov (United States)

    Ramachandran, Manivannan; Cho, Byoung-Jun; Kwon, Tae-Young; Park, Jin-Goo

    2013-05-01

    During chemical mechanical planarization (CMP), a copper/low-k surface is often contaminated by abrasive particles, organic materials and other additives. These contaminants need to be removed in the subsequent cleaning process with minimum material loss. In this study, a dilute amine-based alkaline cleaning solution is used along with physical force in the form of megasonic energy to remove particles and organic contaminants. Tetramethylammonium hydroxide (TMAH) and monoethanolamine (MEA) are used as an organic base and complexing agent, respectively, in the proposed solution. Ethanolamine acts as a corrosion inhibitor in the solution. Organic residue removal was confirmed through contact angle measurements and X-ray photoelectron spectroscopy analysis. Electrochemical studies showed that the proposed solution increases protection against corrosion, and that the hybrid cleaning technology resulted in higher particle removal efficiency from both the copper and low-k surfaces.

  20. Elements of Clean-room Technology and Contamination Control

    OpenAIRE

    J. C. Kapoor; Meenakshi Gupta

    2003-01-01

    The heart of the clean room is the high efticiency particualte air (HEPA)/ultra-low penetration air (ULPA) filter, which provides the highest level of air cleaning ever achieved by a singleprocess step. Filter technology has seen tremendous growth in terms of ultimate performance and air handling capacity. Mere installation of ULPA filters of 99.99995 per cent efficiency for 0.2 um aerosol is not sufficient for achieving the desired performance of a clean room. Other design aspects like flow ...

  1. Investigation of laser cleaning on bronze cultural relics

    Science.gov (United States)

    Ling, Xiulan; Wang, Gao; Zhang, Chen

    2016-05-01

    The effects of laser cleaning on the corrosion layers of bronze cultural relics were studied using a pulsed fiber laser. The laser cleaning threshold value of the corrosion layers was obtained. It was found that the corrosion layer was removed successfully by employing a laser fluence value of 0.32 J cm-2 and scanning for three times. To obtain experimental evidence, laser con-focal scanning microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), laser induced breakdown spectroscopy (LIBS) and laser Raman spectroscopy were employed to investigate the cleaning efficiency of corrosion layers on specimens.

  2. Clean fuels from biomass

    Science.gov (United States)

    Hsu, Y.-Y.

    1976-01-01

    The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.

  3. Study on characteristics of pipeline transportation and sulfur fixing of cleaned coal logs

    Institute of Scientific and Technical Information of China (English)

    LIN Yu; LIN Qun; TANG Jun; LIU Tong-cheng

    2006-01-01

    As special cylindrical briquettes of coal for long distance pipeline transportation and directly cleaned combustion the cleaned coal logs should possess two characteristics of transportation in pipeline and cleaned combustion. In order to make cleaned coal logs a rational technology for manufacturing, cleaned coal logs was designed and compound sulfur fixing binders with high effects of binding and sulfur-fixing was selected and combined. In addition, by means of characteristic experiments of strength, wear, waterproof and sulfur-fixing five different cleaned coal logs made with different compound sulfur fixing binders in different compaction conditions was tested and measured. Experimental results indicated that the manufacturing technology of cleaned coal logs was reasonable and the combination of compound sulfur fixing binders was scientific. Cleaned coal logs made up with the fourth group of coal mixture had high strength, good waterproof property, efficient sulfur-fixing, good characteristic of transportation, and achieved the performance requirement for pipeline transportation and sulfur fixing.

  4. Influence of cleaning process on the laser-induced damage threshold of substrates.

    Science.gov (United States)

    Shen, Zhengxiang; Ding, Tao; Ye, Xiaowen; Wang, Xiaodong; Ma, Bin; Cheng, Xinbin; Liu, Huasong; Ji, Yiqin; Wang, Zhanshan

    2011-03-20

    The cleaning process of optical substrates plays an important role during the manufacture of high-power laser coatings. Two kinds of substrates, fused silica and BK7 glass, and two cleaning processes, called process 1 and process 2 having different surfactant solutions and different ultrasonic cleaning parameters, are adopted to compare the influence of the ultrasonic cleaning technique on the substrates. The evaluation standards of the cleaning results include contaminant-removal efficiency, weak absorption, and laser-induced damage threshold of the substrates. For both fused silica and BK7, process 2 is more efficient than process 1. Because acid and alkaline solutions can increase the roughness of BK7, process 2 is unsuitable for BK7 glass cleaning. The parameters of the cleaning protocol should be changed depending on the material of the optical components and the type of contamination.

  5. The clean development mechanism in a globalized carbon market

    OpenAIRE

    Thierry Bréchet; Yann Ménière; Picard, Pierre M

    2011-01-01

    This paper discusses the role of the Clean DevelopmentMechanisms (CDM) on the market for carbon quotas and countries' commitments to reduce their carbon emission levels. We show that the CDM contributes to an efficient funding of clean technology investments in least developed countries. How- ever, the CDM is not neutral on the global level of carbon emissions as it entices countries to raise their emission caps. The CDM may also make inap- propriate the inclusion of any country that makes no...

  6. Mathematical model of dust cleaning process in centrifugal-inertial dust collector

    OpenAIRE

    Batluk, V.; Paranyak, N.; Makarchuk, V.

    2013-01-01

    The article is devoted to the problem of providing air cleaning from dust in various industries, using highly efficient apparatus, with the aim of bringing the volume of harmful emissions to the sanitary standards. The article presents new directions in creating of dust cleaning apparatus, based on the usage of centrifugal, inertial forces, by which the efficiency of dust collection could be significantly increased.

  7. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  8. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 8: Open-cycle MHD. [energy conversion efficiency and design analysis of electric power plants employing magnetohydrodynamics

    Science.gov (United States)

    Hoover, D. Q.

    1976-01-01

    Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.

  9. Clean Cities 2011 Vehicle Buyer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

  10. International Clean Energy Coalition

    Energy Technology Data Exchange (ETDEWEB)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  11. Colloidal interactions in liquid CO2 - A dry-cleaning perspective

    NARCIS (Netherlands)

    Banerjee, S.; Sutanto, S.; Kleijn, J.M.; Roosmalen, van M.J.; Witkamp, G.J.; Cohen Stuart, M.A.

    2012-01-01

    Liquid CO2 is a viable alternative for the toxic and environmentally harmful solvents traditionally used in dry-cleaning industry. Although liquid CO2 dry-cleaning is being applied already at a commercial scale, it is still a relatively young technique which poses many challenges. The focus of this

  12. Laser shock cleaning of radioactive particulates from glass surface

    Science.gov (United States)

    Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd.; Kumar, Arun; Nilaya, J. P.; Biswas, D. J.

    2014-06-01

    Efficient removal of Uranium-di-oxide (UO2) particulates from glass surface was achieved by Nd-YAG laser induced airborne plasma shock waves. The velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures and the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The efficacy of the process was estimated monitoring the alpha activity of the samples before and after laser shock cleaning using a ZnS (Ag) scintillation detector. Significant cleaning efficiency could be achieved when the substrate was exposed to multiple laser shocks that could be further improved by geometrically confining the plasma. No visual damage or loss in optical quality was observed when the shock cleaned surfaces were analysed by optical microscopy and spectrophotometry. The area cleaned by laser shock cleaning was found to be significantly larger than that possible by conventional laser cleaning. Theoretical estimate of the shock force generated has been found to exceed the van der Waal`s binding force for spherical contaminant particulate.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    Science.gov (United States)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  14. Advanced clean coal utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moritomi, Hiroshi [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  15. High-efficiency B₄C/Mo₂C alternate multilayer grating for monochromators in the photon energy range from 0.7 to 3.4 keV.

    Science.gov (United States)

    Choueikani, Fadi; Lagarde, Bruno; Delmotte, Franck; Krumrey, Michael; Bridou, Françoise; Thomasset, Muriel; Meltchakov, Evgueni; Polack, François

    2014-04-01

    An alternate multilayer (AML) grating has been prepared by coating an ion etched lamellar grating with a B4C/Mo2C multilayer (ML) having a layer thickness close to the groove depth. Such a structure behaves as a 2D synthetic crystal and can reach very high efficiencies when the Bragg condition is satisfied. This AML coated grating has been characterized at the SOLEIL Metrology and Tests Beamline between 0.7 and 1.7 keV and at the four-crystal monochromator beamline of Physikalisch-Technische Bundesanstalt (PTB) at BESSY II between 1.75 and 3.4 keV. A peak diffraction efficiency of nearly 27% was measured at 2.2 keV. The measured efficiencies are well reproduced by numerical simulations made with the electromagnetic propagation code CARPEM. Such AML gratings, paired with a matched ML mirror, constitute efficient monochromators for intermediate energy photons. They will extend the accessible energy for many applications as x-ray absorption spectroscopy or x-ray magnetic circular dichroism experiments.

  16. Northeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Tom

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: • Reduction of greenhouse gas emissions and criteria pollutants • Improvements in energy efficiency resulting in lower costs of doing business • Productivity gains in industry and efficiency gains in buildings • Lower regional energy costs • Strengthened energy security • Enhanced consumer choice • Reduced price risks for end-users • Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops

  17. Essays in Efficiency Analysis

    Science.gov (United States)

    Demchuk, Pavlo

    Today a standard procedure to analyze the impact of environmental factors on productive efficiency of a decision making unit is to use a two stage approach, where first one estimates the efficiency and then uses regression techniques to explain the variation of efficiency between different units. It is argued that the abovementioned method may produce doubtful results which may distort the truth data represent. In order to introduce economic intuition and to mitigate the problem of omitted variables we introduce the matching procedure which is to be used before the efficiency analysis. We believe that by having comparable decision making units we implicitly control for the environmental factors at the same time cleaning the sample of outliers. The main goal of the first part of the thesis is to compare a procedure including matching prior to efficiency analysis with straightforward two stage procedure without matching as well as an alternative of conditional efficiency frontier. We conduct our study using a Monte Carlo simulation with different model specifications and despite the reduced sample which may create some complications in the computational stage we strongly agree with a notion of economic meaningfulness of the newly obtained results. We also compare the results obtained by the new method with ones previously produced by Demchuk and Zelenyuk (2009) who compare efficiencies of Ukrainian regions and find some differences between the two approaches. Second part deals with an empirical study of electricity generating power plants before and after market reform in Texas. We compare private, public and municipal power generators using the method introduced in part one. We find that municipal power plants operate mostly inefficiently, while private and public are very close in their production patterns. The new method allows us to compare decision making units from different groups, which may have different objective schemes and productive incentives. Despite

  18. Self-Cleaning Glazing Products: A State-of-the-Art Review and Future Research Pathways

    OpenAIRE

    Midtdal, Krister

    2012-01-01

    Self-cleaning technology is used in a variety of products today, with glazing products being the foremost area of application. However, there are several self-cleaning technologies in use and their self-cleaning efficiency may be unclear. This study aims to give a comprehensive state-of-the-art review of the self-cleaning glazing products available on the market today and investigate methods for measuring the self-cleaning effect. Various future research pathways and opportunities for the sel...

  19. Evaluation of boiler chemical cleaning techniques

    International Nuclear Information System (INIS)

    The EPRI/SGOG process, which has been selected by Ontario Hydro for use at the Bruce A station, is described. This process consists of alternating iron removal and copper removal steps, the two metals which comprise the bulk of the deposit in the Bruce A SGs. The iron removal solvent consists of ethylenediameinetetraacetic acid (EDTA), hydrazine, ammonium hydroxide and a proprietary corrosion inhibitor CCI-801. The copper removal solvent consists of EDTA, ethylene diamine and hydrogen peroxide. Ontario Hydro proposes to clean a bank of four SGs in parallel employing a total of six copper removal steps and four iron removal steps. Cleaning all eight SGs in a single Bruce A unit will generate 2,200 m3 of liquid waste which will be treated by a wet air oxidation process. The iron and copper sludges will be buried in a landfill site while the liquid waste will be further treated by the Bruce sewage treatment plant. Some ammonia vapour will be generated through the wet air oxidation process and will be vented through a stack on top of the high bay of the spent solvent treatment plant. With the exception of the proprietary corrosion inhibitor, all chemicals that will be employed in the cleaning and waste treatment operations are standard industrial chemicals which are well characterized. No extraordinary hazards are anticipated with their use as long as adequate safety precautions are taken

  20. Clean coal technologies market potential

    Energy Technology Data Exchange (ETDEWEB)

    Drazga, B. (ed.)

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  1. Development and Demonstration of a High Efficiency, Rapid Heating, Low NOx Alternative to Conventional Heating of Round Steel Shapes, Steel Substrate (Strip) and Coil Box Transfer Bars

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Harry; Wagner, John

    2010-01-25

    Direct Flame Impingement involves the use of an array of very high-velocity flame jets impinging on a work piece to rapidly heat the work piece. The predominant mode of heat transfer is convection. Because of the locally high rate of heat transfer at the surface of the work piece, the refractory walls and exhaust gases of a DFI furnace are significantly cooler than in conventional radiant heating furnaces, resulting in high thermal efficiency and low NOx emissions. A DFI furnace is composed of a successive arrangement of heating modules through or by which the work piece is conveyed, and can be configured for square, round, flat, and curved metal shapes (e.g., billets, tubes, flat bars, and coiled bars) in single- or multi-stranded applications.

  2. Alternative Treatments

    Science.gov (United States)

    ... Find your chapter: search by state Home > Alzheimer's Disease > Treatments > Alternative Treatments Overview What Is Dementia? What Is Alzheimer's? Younger/Early Onset Facts and Figures Know the 10 Signs Stages Inside the Brain: ...

  3. Clean Energy Works Oregon Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andria [City of Portland; Cyr, Shirley [Clean Energy Works

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  4. Clean Salt integrated flowsheet

    International Nuclear Information System (INIS)

    The Clean Salt Process (CSP) is a novel waste management scheme that removes sodium nitrate and aluminum nitrate nonahydrate as decontaminated (low specific activity) salts from Hanford's high-level waste (HLW). The full scale process will separate the bulk of the waste that exists as sodium salts from the small portion of the waste that is by definition radioactive and dangerous. This report presents initial conceptual CSP flowsheets and demonstrates the benefit of integrating the process into the Tank Waste Remediation Systems (TWRS) Reference Flowsheet. Total HLW and low-level (LLW) volumes are reported for two different CSP integration options and are compared to the TWRS Reference Flowsheet values. The results for a single glass option eliminating LLW disposal are also reported

  5. Flue Gas Cleaning

    DEFF Research Database (Denmark)

    Fehrmann, Rasmus

    2014-01-01

    and sulfuric acid in the atmosphere causing precipitation of acid rain resulting in death of forests and destruction of buildings and monuments in addition to human health problems. The most common state-of-the-art methods applied today industrially for cleaning of flue gases will be addressed, including wet...... and dry scrubbing for sulfur oxides (SO2) and catalytic removal of nitrogen oxides (NOx). There is however, a desire of increasing the energy produced in electrical power plants by firing CO2-neutral biomass/waste or biomass/waste in combination with fossil fuels. Thus, the EU reached agreement in March...... 2007 specifying that 20 % and recently in 2014 this was increased to 40 % of the energy should be produced from renewable fuels by 2020 and 2030, respectively to cut emissions of the greenhouse gas CO2. This, however, challenges not only the power plant itself due to enhanced slagging, fouling...

  6. Ultrasound cleaning of microfilters

    DEFF Research Database (Denmark)

    Hald, Jens; Bjørnø, Irina; Jensen, Leif Bjørnø

    1999-01-01

    The aim of the present work is to develop, design, and manufacture a high-power ultrasound transducer module to be used for preventing the blocking of plastic-based microfilters by organic materials, and possibly to prolong the lifetime of the filters in industry using the cavitation on the surface...... suitable for cleaning of microfilters without damaging the filter structure. The filter surface was studied using an optical microscope before and after the experiment. When high-power ultrasound (max. 75 W/cm2) was applied to the surface of some microfilters, no visible damage was found, while others...... filters were damaged. The results of the laboratory experiments formed background for the final design of an ultrasound transducer module for use by foodstuff filtration plants. [This work was financed by the EU Project WAMBIO PL96-3257 (FAIR Programme).]...

  7. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, a significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full

  8. Clean air Hamilton

    Energy Technology Data Exchange (ETDEWEB)

    McCarry, B.E. [McMaster Univ., Hamilton, ON (Canada)

    2002-07-01

    The industrial City of Hamilton is located on Lake Ontario, downwind from the Ohio Valley. The Hamilton Air Quality Initiative (HAQI) was divided in several phases, one of which is Clean Air Hamilton. This most recent phase was described in this presentation. Two major goals of this phase were: to ensure that the City of Hamilton has the best air quality of any major urban area in Ontario, and to reduce the emissions of greenhouse gases by 20 per cent compared to the levels in 1990. There were five main objectives to this initiative, namely: (1) the identification of priority air quality issues, (2) achieving an understanding of air quality issues, (3) the identification of sources, the evaluation of impacts and the recommendation of solutions, (4) the assessment of human health, and (5) the identification of further research. The reduction of air quality impacts is progressing through the support provided to the Drive Clean Program, the discouragement of vehicle idling, the support to car pooling initiatives, and the promotion of green vehicles. The implementation of pollution control technologies is taking place on the industrial side, as well as the development of plans to reduce steel industry emissions, the development of energy conservation measures and the promotion of green building practices. Efforts are being deployed over fleet greening partnerships, community tree planting program, an international air conference, an electronic information network linking the United States and the communities of Southern Ontario, a road dust study, a truck emissions research project, the assessment of human health impacts, and finally methods for the monitoring of local improvements. figs.

  9. Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technological, and socioeconomic futures in a regional integrated-assessment model

    International Nuclear Information System (INIS)

    Improving the energy efficiency of building stock, commercial equipment, and household appliances can have a major positive impact on energy use, carbon emissions, and building services. Sub-national regions such as the U.S. states wish to increase energy efficiency, reduce carbon emissions, or adapt to climate change. Evaluating sub-national policies to reduce energy use and emissions is difficult because of the large uncertainties in socioeconomic factors, technology performance and cost, and energy and climate policies. Climate change itself may undercut such policies. However, assessing all of the uncertainties of large-scale energy and climate models by performing thousands of model runs can be a significant modeling effort with its accompanying computational burden. By applying fractional–factorial methods to the GCAM-USA 50-state integrated-assessment model in the context of a particular policy question, this paper demonstrates how a decision-focused sensitivity analysis strategy can greatly reduce computational burden in the presence of uncertainty and reveal the important drivers for decisions and more detailed uncertainty analysis. - Highlights: • We evaluate building energy codes and standards for climate mitigation. • We use an integrated assessment model and fractional factorial methods. • Decision criteria are energy use, CO2 emitted, and building service cost. • We demonstrate sensitivity analysis for three states. • We identify key variables to propagate with Monte Carlo or surrogate models

  10. Programmed Cleaning and Environmental Sanitation.

    Science.gov (United States)

    Gardner, John C., Ed.

    Maintenance of sanitation in buildings, plants, offices, and institutions; the selection of cleaning materials for these purposes; and the organization and supervision of the cleaning program are becoming increasingly complex and needful of a higher cost of handling. This book describes these problems and gives helpful information and guidance for…

  11. Reactor vessel stud cleaning machine

    International Nuclear Information System (INIS)

    A device is described for cleaning and decontaminating an elongate member having a three dimensional surface topography comprising: an enclosure; means for rotatingly supporting the elongate member proximate the ends thereof within the enclosure; means for driving the elongate member supporting means, to rotate the elongate member; a supply tank for holding water; a spray nozzle connected to the supply tank and disposed within the enclosure operable to move transversely with respect to the elongate member for spraying a cleaning agent comprising high pressure water and abrasive grit against the rotating elongate member; a self-contained means for supplying the cleaning agent to the spray nozzle and removing spent cleaning agent from the enclosure, the self-contained means including the supply tank and means for disposing of any contaminated solids in the spent cleaning agent. The means for disposing further comprises means for removing spent cleaning agent from the enclosure, means for removing solid particles from the spent cleaning agent and means for recycling water from the spent cleaning agent back to the spray nozzle; and a control system for selectively controlling at least one of the rate of rotation of the elongate member and rate of trasversal of the elongate member and by the spray nozzle in accordance with the topography of the elongate member

  12. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Laatikainen-Luntama, J. [VTT Energy, Espoo (Finland). Energy Production Technologies] [and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  13. A Note on Clean Rings

    Institute of Scientific and Technical Information of China (English)

    Zhou Wang; Jianlong Chen

    2007-01-01

    Let R be a ring and g(x) a polynomial in C[x],where C=C(R) denotes the center of R.Camillo and Sim6n called the ring g(x)-clean if every element of R can be written as the sum of a unit and a root of g(x).In this paper,we prove that for a,b (E) C,the ring R is clean and b - a is invertible in R if and only if R is g1(x)-clean,where gl(x) = (x - a)(x - b).This implies that in some sense the notion of g(x)-clean rings in the Nicholson-Zhou Theorem and in the Camillo-Sim6n Theorem is indeed equivalent to the notion of clean rings.

  14. Air transportation energy efficiency

    Science.gov (United States)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  15. VIRTUAL EXPERIMENTAL ANALYSIS ON CLEANING ELEMENT OF SUGARCANE HARVESTER

    Institute of Scientific and Technical Information of China (English)

    Ma Fanglan; Li Shangping; He Yulin; Meng Yanmei; Chen Weixu

    2005-01-01

    The laws of influence of different factors have been analyzed in order to enhance the working efficiency and fatigue life of the cleaning element in brush shape of the sugarcane harvester.Based on the principle of orthogonal experiment design, the virtual-orthogonal-experimental analysis for the cleaning element is carried out on the finite element analysis (FEA) software-ANSYS after analyzing the nonlinear structural behavior in the working procedure. The results are analyzed with the overall balancing method, and then the optimal combination is got, which is made up of different levels of different factors. Also the optimal combination of design parameters of the cleaning element received from the virtual experimental analysis is conducted an experiment to confirm that the virtual analysis model and results are right, and the effect of factors on the function of the cleaning element is obtained by more analysis and further optimizing.

  16. Cosmic alternatives?

    Science.gov (United States)

    Gregory, Ruth

    2009-04-01

    "Cosmologists are often in error but never in doubt." This pithy characterization by the Soviet physicist Lev Landau sums up the raison d'être of Facts and Speculations in Cosmology. Authors Jayant Narlikar and Geoffrey Burbidge are proponents of a "steady state" theory of cosmology, and they argue that the cosmological community has become fixated on a "Big Bang" dogma, suppressing alternative viewpoints. This book very much does what it says on the tin: it sets out what is known in cosmology, and puts forward the authors' point of view on an alternative to the Big Bang.

  17. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  18. Electrodeposited ZnO thin film as an efficient alternative blocking layer for TiCl4 pre-treatment in TiO2-based dye sensitized solar cells

    Science.gov (United States)

    Kouhestanian, E.; Mozaffari, S. A.; Ranjbar, M.; SalarAmoli, H.; Armanmehr, M. H.

    2016-08-01

    Recently, ZnO nanostructures have received considerable attention in fabrication of dye sensitized solar cell (DSSC) photoanodes due to their unique transport properties. In the present study, a chronoamperometric method was performed to fabricate the ZnO nanostructures as an appropriate alternative of TiCl4 pre-treatment to reduce the recombination reactions, while retaining the TiO2-based DSSC performance. The effect of polyvinyl alcohol (PVA) on ZnO electrodeposition to control the growth and crystallization of ZnO nanostructures was investigated. ZnO/TiO2 based-DSSCs were fabricated using N719 ruthenium dye and all photovoltaic parameters were characterized. Incident photon to current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and VOC decay techniques were employed for studying the cell properties which is resulted in a significant enhancement in cell performance.

  19. Effects of alternate different irrigation amount modes on yield and water use efficiency of Cassava%不同水量交替灌溉对木薯产量和水分利用的影响

    Institute of Scientific and Technical Information of China (English)

    赵馀; 杨启良; 王亓剑; 刘小刚; 王卫华

    2016-01-01

    为探讨作物旱后复水的补偿效应,采用不同水量交替灌溉方式研究木薯的生长、产量及水分利用效率的变化规律,设计了5种水分处理模式,分别为3种常规灌水处理(处理 T1,T2和 T3的灌水定额分别为10,20,30 mm)和2种交替灌水处理(处理 T4:即对灌水定额10和20 mm 进行轮回交替;处理 T5:即对灌水定额10和30 mm 进行轮回交替).结果表明:与处理 T2相比,处理 T5的总叶面积、总干物质量、产量和水分利用效率分别显著增加31.1%,20.3%,64.6%和114.0%.与处理 T3相比,处理 T5节水33.3%,其总干物质量下降较小,而根系干物质量、水分利用效率和产量分别显著增加11.2%,119.0%和13.3%.因此,处理 T5是有利于木薯产量和水分利用效率提高的最佳灌溉模式.%In order to explore a compensatory effect of crops after encountering drought stress and then rehydration,the change of growth,yield and water use efficiency of Cassava under alternate different irrigation amount modes was studied.Five watering treatment modes were designed in this experiment, three conventional watering treatments:T1,T2,T3 (every time the irrigation amount of 10,20,30 mm, respectively),and two alternate watering treatments:T4 (repeated alternate two kinds of combined irrigation amount as 10 or 20 mm),T5(repeated alternate two kinds of combined irrigation amount as 10 or 30 mm).The results show that compared to T2 treatment,T5 treatment significantly increased total leaf area,total dry mass,yield and total water use efficiency by 31.1%,20.3%,64.6% and 114.0%,respectively.Compared to T3 treatment,T5 treatment saved irrigation water by 33.3%,the total dry mass reduced a little,but the root mass,total water use efficiency and yield significantly increased by 11.2%,119.0% and 13.3%,respectively.Therefore,T5 treatment is the best mode to improve yield and water use efficiency of Cassava in greenhouse.

  20. Economic evaluation of IGCC plants with hot gas cleaning

    International Nuclear Information System (INIS)

    Highlights: ► Techno-economic evaluation of hot gas cleaning IGCC power plants in Germany. ► Scenario analysis in light of nuclear phase-out and outdated coal-fired power plants. ► Consideration of Enhanced Oil Recovery (EOR) and combined heat and power (CHP). ► Economic viability is sensitive to heat-to-power ratio, CHP subsidy, and CO2 price. ► Least-cost investment is not necessarily the one with the lowest GHG emissions. -- Abstract: This paper investigates whether coal-fired Integrated Gasification Combined-Cycle (IGCC) power plants can be an economically viable future technology for providing less carbon-intensive electricity and heat energy in Germany than today. In the context of CO2 emission mitigation in power generation, energy conversion technologies enabling the implementation of Carbon Capture and Storage (CCS) need to be considered. IGCC is such a technology, as it utilizes coal but does not necessarily emit CO2. In our study we investigate, from an economic perspective, whether IGCC plants can be an alternative to nuclear and/or conventional coal-fired power plants. The research is based on scenario analysis. The starting point is the expected shut-down of nuclear power stations and outdated coal-fired power plants, as well as the projected evolution of the CO2 price. The hot gas cleaning option in IGCC plants is of particular interest, as it allows a significant enhancement of the efficiency of the IGCC technology and the use of combined heat and power production (CHP). Corresponding supplementary earnings (incl. subsidies) are compared with an increase in specific investment costs. Besides hot gas cleaning, we also investigate the economic impact of injecting pure CO2 (separated from the IGCC process) into oilfields, as Enhanced Oil Recovery (EOR) can help to reduce the costs of CO2 transport and storage. Based on the results from our analysis we find that the replacement of currently operating power plants by IGCC facilities is only

  1. Separations Technology for Clean Water and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, Gordon D [Los Alamos National Laboratory

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  2. Clean hydrogen and power from impure water

    Science.gov (United States)

    Acar, Canan; Dincer, Ibrahim; Naterer, Greg F.

    2016-11-01

    This paper presents a new photoelectrochemical (PEC) H2 production system which is capable of providing clean energy and water, and multi-generation of H2, electricity, heat and industrial chemicals from a single clean, abundant and renewable source: sun. This novel system maximizes solar spectrum utilization and increases system efficiencies by generating more outputs from solar energy alone. The hybrid PEC-chloralkali system, coupled with PV/T (Photovoltaic Thermal), is capable of producing H2, Cl2, electricity, and heat simultaneously. Incoming solar light is split into high-energy photons (with wavelengths lower than 400 nm) and low-energy photons. The high-energy portion is used to generate photocurrent in the reactor, and the remaining part is sent to the PV/T. This PV/T supports the electricity needs of the system and also provides electricity output for the end user. Moreover, the heat recovered from PV/T is a system output. The findings suggest that this system is capable of producing H2 and Cl2 as well as heat and electricity with higher efficiencies than the reported PV electrolysis and PEC-based H2 production efficiencies in the literature.

  3. Method of cleaning sodium-contaminated equipments

    International Nuclear Information System (INIS)

    Purpose: To efficiently remove hydrogen resulted from chemical reaction between sodium and cleaning liquid out of a cleaning tank and regenerate the removed hydrogen as water under the safety oxidizing treatment. Constitution: Exhaust gases from a cleaning system from which alcoholic vapors have been separated are conditioned for the flow rate so that the hydrogen concentration is kept higher than 75 volume %, that is, the explosive limit and sent to a hydrogen gas processing device. The hydrogen-containing exhaust gases adjusted to such a safety flow rate are reacted in an oxidizer with oxygen contained in air supplied thereto and converted into steams. The steam, airs or the likes treated in the oxidizer are cooled in contact with a cooling pipe introduced from a cooler and only the steams are condensated and recovered as water. Then, the water is stored from the cooler to a water-store tank and the amount is monitored by a level meter disposed at the upper portion of the tank. Remaining airs are discharged by way of the cooler. (Yoshihara, H.)

  4. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  5. Clean tracks for ATLAS

    CERN Multimedia

    2006-01-01

    First cosmic ray tracks in the integrated ATLAS barrel SCT and TRT tracking detectors. A snap-shot of a cosmic ray event seen in the different layers of both the SCT and TRT detectors. The ATLAS Inner Detector Integration Team celebrated a major success recently, when clean tracks of cosmic rays were detected in the completed semiconductor tracker (SCT) and transition radiation tracker (TRT) barrels. These tracking tests come just months after the successful insertion of the SCT into the TRT (See Bulletin 09/2006). The cosmic ray test is important for the experiment because, after 15 years of hard work, it is the last test performed on the fully assembled barrel before lowering it into the ATLAS cavern. The two trackers work together to provide millions of channels so that particles' tracks can be identified and measured with great accuracy. According to the team, the preliminary results were very encouraging. After first checks of noise levels in the final detectors, a critical goal was to study their re...

  6. Growing Alternatives

    DEFF Research Database (Denmark)

    Bagger-Petersen, Mai Corlin

    2014-01-01

    From 2014, Anhui Province will pilot a reform of the residential land market in China, thus integrating rural Anhui in the national housing market. In contrast, artist and activist Ou Ning has proposed the Bishan time money currency, intending to establish an alternative economic circuit in Bishan...

  7. Degreasing and cleaning superconducting RF Niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  8. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    Science.gov (United States)

    Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon, is capable of recovering all the oxygen from carbon dioxide, and it is a promising alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon, and the resulting carbon buildup eventually fouls the catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  9. Precision Cleaning - Path to Premier

    Science.gov (United States)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  10. Gulf Coast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Dillingham, Gavin

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  11. The fuel cells: Truths on the generation of clean and efficient electricity electrochemical way; Las celdas de combustible: Verdades sobre la generacion de electricidad limpia y eficiente via electroquimica

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    In the search of alternative technologies for the generation of electrical energy, the Instituto de Investigaciones Electricas (IIE) has put special attention in a technology that promises to be key in the next years: The fuel cells, it is for this reason that in this article a review of this type of cells is presented, as well as its basic characteristics and benefits as a result of its use for the generation of electrical energy. [Spanish] En la busqueda de tecnologias alternativas de generacion de energia electrica, el Instituto de Investigaciones Electricas (IIE) ha puesto atencion especial en una tecnologia que promete ser clave en los proximos anos: Las celdas de combustible, es por ello que en este articulo se presenta una resena de este tipo de celdas, asi como sus caracteristicas principales y beneficios como resultado de su utilizacion para la generacion de energia electrica.

  12. Solvothermal Process Assisted Sensitization of 1D Anodized TiO2 Nanotubes with 0D Cadmium Chalcogenides (CdTe, CdS) for Efficient Solar to Clean Energy Generation

    Science.gov (United States)

    Sarker, Swagotom

    The creation of an n-n heterojunction between TiO2 nanotubes (T_NT) and CdTe nanocrystals (which mostly exist as p-type) is crucial for realizing the benefits of efficient directional charge transport in a photoanode of 1D/0D architecture. The presented one-pot solvothermal approach leverages temperature control to achieve linker-free spatial distribution of CdTe nanocrystals (NCs) on T_NT resulting in highly efficient optical and photoelectrochemical responses. As a result of this positive outcome, a comparative study between the solvothermal approach and the linker mediated approach was performed on water oxidation with CdS NC decorated T_NT. Solvothermally synthesized T_NT/CdS photoelectrode presents ˜600% higher value of short-circuit current density (Isc) than that of the plain T_NT (0.95 mA/cm2); in addition, it demonstrates 4.20-fold increased applied-bias-to photoconversion efficiency (ABPE) in comparison with the lone T_NT (0.77%). However, linker mediated T_NT/MPA-CdS photoelectrode exhibits relatively lower value of I sc (2.51 mA/cm2) and ABPE (1.79 %).

  13. Final Technical Report_Clean Energy Program_SLC-SELF

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Glenn; Coward, Doug

    2014-01-22

    This is the Final Technical Report for DOE's Energy Efficiency and Conservation Block Grant, Award No. DE-EE0003813, submitted by St. Lucie County, FL (prime recipient) and the Solar and Energy Loan Fund (SELF), the program's third-party administrator. SELF is a 501(c)(3) and a certified Community Development Financial Institution (CDFI). SELF is a community-based lending organization that operates the Clean Energy Loan Program, which focuses on improving the overall quality of life of underserved populations in Florida with an emphasis on home energy improvements and cost-effective renewable energy alternatives. SELF was launched in 2010 through the creation of the non-profit organization and with a $2.9 million Energy Efficiency and Conservation Block (EECBG) grant from the U.S. Department of Energy (DOE). SELF has its main office and headquarters in St. Lucie County, in the region known as the Treasure Coast in East-Central Florida. St. Lucie County received funding to create SELF as an independent non-profit institution, outside the control of local government. This was important for SELF to create its identity as an integral part of the business community and to help in its quest to become a Community Development Financial Institution (CDFI). This goal was accomplished in 2013, allowing SELF to focus on its mission to increase energy savings while serving markets that have struggled to find affordable financial assistance. These homeowners are most impacted by high energy costs. Energy costs are a disproportionate percentage of household expenses for low to moderate income (LMI) households. Electricity costs have been steadily rising in Florida by nearly 5% per year. Housing in LMI neighborhoods often includes older inefficient structures that further exacerbate the problem. Despite the many available clean energy solutions, most LMI property owners do not have the disposable income or equity in their homes necessary to afford the high upfront cost

  14. CLEAN Technique for Polarimetric ISAR

    Directory of Open Access Journals (Sweden)

    M. Martorella

    2008-01-01

    Full Text Available Inverse synthetic aperture radar (ISAR images are often used for classifying and recognising targets. To reduce the amount of data processed by the classifier, scattering centres are extracted from the ISAR image and used for classifying and recognising targets. This paper addresses the problem of estimating the position and the scattering vector of target scattering centres from polarimetric ISAR images. The proposed technique is obtained by extending the CLEAN technique, which was introduced in radar imaging for extracting scattering centres from single-polarisation ISAR images. The effectiveness of the proposed algorithm, namely, the Polarimetric CLEAN (Pol-CLEAN is tested on simulated and real data.

  15. Multi-turn losses and cleaning in 2011 and 2012

    CERN Document Server

    Valentino, G; Bellodi, G; Bruce, R; Burkart, F; Cauchi, M; Deboy, D; Jowett, J M; Lari, L; Redaelli, S; Rossi, A; Salvachua Ferrando, B; Wollmann, D

    2012-01-01

    LHC beam collimation is based on a hierarchical multistage cleaning system. Maintaining the correct hierarchy ensures maximal cleaning efficiency and machine protection. The operational collimator positions are established from the beam centres and sizes at each collimator measured in beam-based alignments. These are verified periodically during the year. The improvements made to the collimator alignment algorithm in 2011 are described. The time spent on setup and qualification by loss maps is summarized in detail. The stability of the collimator setup and cleaning efficiency is presented. An outlook to 2012 is given, including detailed considerations on improved setup speed, required frequency of setup and qualification and other possible improvements overall reducing beam time consumption for collimation.

  16. A Clean Break

    Science.gov (United States)

    Kennedy, Mike

    2010-01-01

    Many education institutions have embraced the growing push for sustainable design and have built environmentally friendly facilities that use resources more efficiently. But the plaudits that administrators receive for LEED certification and other recognition of their efforts may be meaningless if the green commitment ends when a building is…

  17. Application of response surface methodology to the chemical cleaning process of ultrafiltration membrane☆

    Institute of Scientific and Technical Information of China (English)

    Caihong Wang; Aishu Wei; Hao Wu; Fangshu Qu; Weixiong Chen; Heng Liang; Guibai Li

    2016-01-01

    A numerical model was established to predict and optimise the chemical cleaning process of Polyvinylidene Fluo-ride (PVDF) Ultrafiltration (UF) membranes with the results from the experiment that applied the Response Sur-face Method (RSM) and Central Composite Design (CCD). The factors considered in the experimental design were sodium hydroxide (NaOH) concentration, sodium hypochlorite concentration (NaClO), citric acid concentration and cleaning duration. The interactions between the factors were investigated with the numerical model. Humic acid (20 mg·L−1) was used as the model foulant, and chemical enhanced backflush (CEB) was employed to sim-ulate the chemical cleaning process. The concentrations of sodium hydroxide, sodium hypochlorite, citric acid and cleaning duration tested during the experiments were in the range of 0.1%–0.3%, 100–300 mg·L−1, 1%–3%and 0.5–1.5 h, respectively. Among the variables, the sodium hypochlorite concentration and the cleaning dura-tion showed a positive relationship involving the increased efficiency of the chemical cleaning. The chemical cleaning efficiency was hardly improved with increasing concentrations of sodium hydroxide. However, the data was sharply decreased when at a low level of sodium hydroxide concentration. In total, 54 sets of cleaning schemes with 80%to 100%cleaning efficiency were observed with the RSM model after calibration.

  18. Hansen Cleaning Solvent Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental regulation will force current baseline  precision cleaning solvent (AK-225) to be phased out starting 2015. We plan to develop  a new...

  19. Ultrasonic cleaning of root canals

    Science.gov (United States)

    Verhaagen, Bram; Boutsioukis, Christos; Jiang, Lei-Meng; Macedo, Ricardo; van der Sluis, Luc; Versluis, Michel

    2011-11-01

    A crucial step during a dental root canal treatment is irrigation, where an antimicrobial fluid is injected into the root canal system to eradicate all bacteria. Agitation of the fluid using an ultrasonically vibrating miniature file has shown significant improvement in cleaning efficacy over conventional syringe irrigation. However, the physical mechanisms underlying the cleaning process, being acoustic streaming, cavitation or chemical activity, and combinations thereof, are not fully understood. High-speed imaging allows us to visualize the flow pattern and cavitation in a root canal model at microscopic scales, at timescales relevant to the cleaning processes (microseconds). MicroPIV measurements of the induced acoustic streaming are coupled to the oscillation characteristics of the file as simulated numerically and measured with a laser vibrometer. The results give new insight into the role of acoustic streaming and the importance of the confinement for the cleaning of root canals.

  20. Advanced cleaning by mass finishing

    Science.gov (United States)

    McCoy, M. W.

    1983-10-01

    The effectiveness of vibratory finishing for removing a variety of radioactively contaminated soils was investigated by measuring the radiation levels of the test material, the lining of the vibratory finishing tub, and the media. Many soils including corrosion products, scale, oil, grease and paint were removed from steels, aluminum, polyvinyl chloride, plexiglass, glass and flexible materials such as rubber. Zinc, copper, and lead were not cleaned. Results indicate that vibratory finishing should be an effective cleaning process or a variety of manufacturing operations.