WorldWideScience

Sample records for clay soils

  1. Clay Dispersibility and Soil Friability-Testing the Soil Clay-to-Carbon Saturation Concept

    DEFF Research Database (Denmark)

    Schjønning, Per; de Jonge, Lis Wollesen; Munkholm, Lars Juhl;

    2012-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC...... as a predictor of clay dispersibility and soil friability. Soil was sampled 3 yr in a field varying in clay content (∼100 to ∼220 g kg−1 soil) and grown with different crop rotations. Clay dispersibility was measured after end-over-end shaking of field-moist soil and 1- to 2-mm sized aggregates either air......-dried or rewetted to −100 hPa matric potential. Tensile strength of 1- to 2-, 2- to 4-, 4- to 8-, and 8- to 16-mm air-dried aggregates was calculated from their compressive strength, and soil friability estimated from the strength–volume relation. Crop rotation characteristics gave only minor effects on clay...

  2. CLAY SOIL STABILISATION USING POWDERED GLASS

    OpenAIRE

    2014-01-01

    This paper assesses the stabilizing effect of powdered glass on clay soil. Broken waste glass was collected and ground into powder form suitable for addition to the clay soil in varying proportions namely 1%, 2%, 5%, 10% and 15% along with 15% cement (base) by weight of the soil sample throughout. Consequently, the moisture content, specific gravity, particle size distribution and Atterberg limits tests were carried out to classify the soil using the ASSHTO classification system. Based on the...

  3. Quick clay and landslides of clayey soils

    NARCIS (Netherlands)

    Khaldoun, A.; Moller, P.; Fall, A.; Wegdam, G.; de Leeuw, B.; Méheust, Y.; Fossum, J.O.; Bonn, D.

    2009-01-01

    We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay s

  4. Soil clay content underlies prion infection odds

    Science.gov (United States)

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  5. Quick clay and landslides of clayey soils.

    Science.gov (United States)

    Khaldoun, Asmae; Moller, Peder; Fall, Abdoulaye; Wegdam, Gerard; De Leeuw, Bert; Méheust, Yves; Otto Fossum, Jon; Bonn, Daniel

    2009-10-30

    We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay soils. Reproducing landslides on a small scale in the laboratory shows that an additional factor that determines the violence of the slides is the inhomogeneity of the flow. We propose a simple yield stress model capable of reproducing the laboratory landslide data, allowing us to relate landslides to the measured rheology.

  6. Quantitative approach on SEM images of microstructure of clay soils

    Institute of Scientific and Technical Information of China (English)

    施斌; 李生林; M.Tolkachev

    1995-01-01

    The working principles of Videolab Image Processing System (VIPS), the examining methods of orientation of microstructural units of clay soils and analysing results on SEM images of some typical microstructures of clay soils using the VIPS are introduced.

  7. CLAY SOIL STABILISATION USING POWDERED GLASS

    Directory of Open Access Journals (Sweden)

    J. OLUFOWOBI

    2014-10-01

    Full Text Available This paper assesses the stabilizing effect of powdered glass on clay soil. Broken waste glass was collected and ground into powder form suitable for addition to the clay soil in varying proportions namely 1%, 2%, 5%, 10% and 15% along with 15% cement (base by weight of the soil sample throughout. Consequently, the moisture content, specific gravity, particle size distribution and Atterberg limits tests were carried out to classify the soil using the ASSHTO classification system. Based on the results, the soil sample obtained corresponded to Group A-6 soils identified as ‘fair to poor’ soil type in terms of use as drainage and subgrade material. This justified stabilisation of the soil. Thereafter, compaction, California bearing ratio (CBR and direct shear tests were carried out on the soil with and without the addition of the powdered glass. The results showed improvement in the maximum dry density values on addition of the powdered glass and with corresponding gradual increase up to 5% glass powder content after which it started to decrease at 10% and 15% powdered glass content. The highest CBR values of 14.90% and 112.91% were obtained at 5% glass powder content and 5mm penetration for both the unsoaked and soaked treated samples respectively. The maximum cohesion and angle of internal friction values of 17.0 and 15.0 respectively were obtained at 10% glass powder content.

  8. Clay mineral type effect on bacterial enteropathogen survival in soil.

    Science.gov (United States)

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific.

  9. STABILISATION OF SILTY CLAY SOIL USING CHLORIDE

    Directory of Open Access Journals (Sweden)

    TAMADHER T. ABOOD

    2007-04-01

    Full Text Available The object of this paper is to investigate the effect of adding different chloride compounds including (NaCl, MgCl2, CaCl2 on the engineering properties of silty clay soil. Various amounts of salts (2%, 4%, and 8% were added to the soil to study the effect of salts on the compaction characteristics, consistency limits and compressive strength. The main findings of this study were that the increase in the percentage of each of the chloride compounds increased the maximum dry density and decrease the optimum moisture content. The liquid limit, plastic limit and plasticity index decreased with the increase in salt content. The unconfinedcompressive strength increased as the salt content increased.

  10. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction...... is increased with increasing clay content, up to 30%, beyond which the mixture of silt and clay is not liquefied. Sand may become prone to liquefaction with the introduction of clay, contrary to the general perception that this type of sediment is normally liquefaction resistant under waves....

  11. Main Clay Minerals in Soils of Fujian Province,China

    Institute of Scientific and Technical Information of China (English)

    WANGGUO; ZHANGWEIMING; 等

    1996-01-01

    The clay minerals of more than 200 soil samples collected from various sites of Fujian Province were studied by the X-ray diffraction method and transmission electron microscopy to study their distribution and evolution.Montmorillonite was found in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit,and some lateritic red soil,red soil and yellow soil with a low weathering degree.Chlorite existed mainly in coastal solonchak and paddy soil developed from marine deposit.1.4nm intergradient mineral appeared frequently in yellow soil,red soil and lateritic red soil.The content of 1.4nm intergradient mineral increased with the decrease of weathering degree from lateritic red soil to red soil to yellow soil.Hydrous micas were more in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit.and puple soil from purple shale than in other soils.Kaolinte was the most important clay mineral in the soils iun this province.The higher the soil weathering degree,the more the kaolinite existed.From yellow soil to red soil to lateritic red soil,kaolinite increased gradually,Kaolinite was the predominant clay mineral accompanied by few other minerals in typical lateritic red soil. Tubular halloysite was a widespread clay mineral in soils of Fujian Province with varying quantities.The soil derived from the paent rocks rich in feldspar contained more tubular halloysite.Spheroidal halloysite was found in a red soil and a paddy soil developed from olivine basalt gibbsite in the soils in this district was largely“primary gibbsite” which formed in the early weathering stage.Gibbsite decreased with the increase of weathering degree from yellow soil to red soil to lateritic red soil.Goethite also decreased in the same sequence while hematite increased.

  12. Optimization method for quantitative calculation of clay minerals in soil

    Indian Academy of Sciences (India)

    Libo Hao; Qiaoqiao Wei; Yuyan Zhao; Zilong Lu; Xinyun Zhao

    2015-04-01

    Determination of types and amounts for clay minerals in soil are important in environmental, agricultural, and geological investigations. Many reliable methods have been established to identify clay mineral types. However, no reliable method for quantitative analysis of clay minerals has been established so far. In this study, an attempt was made to propose an optimization method for the quantitative determination of clay minerals in soil based on bulk chemical composition data. The fundamental principles and processes of the calculation are elucidated. Some samples were used for reliability verification of the method and the results prove the simplicity and efficacy of the approach.

  13. Charge Properties and Clay Mineral Composition of Tianbao Mountains Soils

    Institute of Scientific and Technical Information of China (English)

    HEJI-ZHENG; LIXUE-YUAN; 等

    1992-01-01

    The clay mineral association,oxides of clay fraction and surface charge properties of 7 soils,which are developed from granite,located at different altitudesof the Tianbao Mountains were studied.Results indicate that with the increase in altitude,1) the weathering process and desilicification of soil clay minerals became weaker,whereas the leaching depotassication and the formation process of hydroxy-aluminum interlayer got stronger;2)the contents of amorphous and complex aluminum and iron,and the activity of aluminum and iron oxides for soil clay fraction increased;and 3) the amount of variable negarive charge,anion exchange capacity and the values of PZC and PZNC also increased.The activity of aluminum and iron oxides,the accumulation of aluminum,and surface charge characteristics and their relation to clay oxides of the vertical zone soils were observed and recorded.

  14. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  15. Picloram and Aminopyralid Sorption to Soil and Clay Minerals

    Science.gov (United States)

    Aminopyralid sorption data are lacking, and these data are needed to predict off-target transport and plant available herbicide in soil solution. The objective of this research was to determine the sorption of picloram and aminopyralid to five soils and three clay minerals and determine if the pote...

  16. Clay dispersability in moist earthworm casts of different soils.

    NARCIS (Netherlands)

    Marinissen, J.C.Y.; Nijhuis, E.; Breemen, van N.

    1996-01-01

    Earthworms were fed soil from two polders, differing in soil age and land use (grass and arable). Sterilised and non-sterilised moist earthworm casts were, directly or after ageing (for 2, 4, 8 and 20 weeks), analysed for clay dispersability and polysaccharide content, either as such, or after treat

  17. Clay-illuvial soils in the Polish and international soil classifications

    Directory of Open Access Journals (Sweden)

    Kabała Cezary

    2015-12-01

    Full Text Available Soil with a clay-illuvial subsurface horizon are the most widespread soil type in Poland and significantly differ in morphology and properties developed under variable environmental conditions. Despite the long history of investigations, the rules of classification and cartography of clay-illuvial soils have been permanently discussed and modified. The distinction of clay-illuvial soils into three soil types, introduced to the Polish soil classification in 2011, has been criticized as excessively extended, non-coherent with the other parts and rules of the classification, hard to introduce in soil cartography and poorly correlated with the international soil classifications. One type of clay-illuvial soils (“gleby płowe” was justified and recommended to reintroduce in soil classification in Poland, as well as 10 soil subtypes listed in a hierarchical order. The subtypes may be combined if the soil has diagnostic features of more than one soil subtypes. Clear rules of soil name generalization (reduction of subtype number for one soil were suggested for soil cartography on various scales. One of the most important among the distinguished soil sub-types are the “eroded” or “truncated” clay-illuvial soils.

  18. "Clay grounds” in Denmark: from soil to canvas

    DEFF Research Database (Denmark)

    Buti, David; Vila, Anna; Haack Christensen, Anne;

    Poster Presentation Abstract: “Clay grounds” in Denmark: from soil to canvas In the framework of the CATS’ project to study the painting technique and materials in Dutch and Danish 17th Century paintings, with a key interest on the materials, techniques and trade of artists’ practice in Denmark...... decorative scheme showed that at least two grounds from those paintings consist mainly of clay mixed with iron and magnesium-containing compounds. Furthermore, both SEM-EDX and µRaman measurements clearly highlighted the presence of a large amount of quartz particles. It is well known that clay is a sheet...... from Rembrandt’s workshop after 1640. Written sources from outside the Netherlands -such as Francisco Pacheco and Pierre Lebrun- mention this practice, also before Rembrandt's time. It was known that clay was cheaper than chalk or earth pigments and it gave more flexibility to the painting support...

  19. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  20. Pesticide leaching in macroporous clay soils: field experiment and modeling

    NARCIS (Netherlands)

    Scorza Júnior, R.P.

    2002-01-01

    Keywords : pesticide leaching, macropores, preferential flow, preferential transport, cracked clay soil, pesticide leaching models, groundwater contamination, inverse modeling, bentazone and imidacloprid. The presence of macropores (i.e. shrinkage c

  1. Simulation of Soil Water Content Variability in a Heavy Clay Soil under Contrasting Soil Managements

    Science.gov (United States)

    Pedrera, A.; Vanderlinden, K.; Martínez, G.; Espejo, A. J.; Giráldez, J. V.

    2012-04-01

    Soil water content (SWC) is a key variable for numerous physical, chemical and biological processes that take place at or near the soil surface. Understanding the spatial and temporal variability of SWC at the field scale is of prime importance for implementing efficient measurement strategies in applications. The aim of this study was to characterize the spatial and temporal variation of gravimetric SWC in a heavy clay soil, in a wheat-sunflower-legume rotation under conventional (CT) and no-till (NT) using a simple water balance model. An experimental field in SW Spain, where conventional (CT) and no-till (NT) management of a heavy clay soil are being compared since 1983, was sampled for gravimetric SWC on 38 occasions during 2008 and 2009. Topsoil clay content across the six plots was on average 55%, with a standard deviation of 2.7%. The soil profile was sampled at 54 locations, evenly distributed over the three CT and NT plots, at depths of 0-10, 25-35, and 55-65 cm. Topsoil water retention curves (SWRC) were determined in the laboratory on undisturbed soil samples from each of the 54 locations. A weather station recorded daily precipitation and evapotranspiration, as calculated by the Penman-Monteith FAO equation. The water balance was calculated using the Thornthwaite-Mather model with a daily time step. Three parameters, water holding capacity, and water evaporation corrector coefficients for each of the two years, were inversely estimated at the 54 SWC observation points and probability density functions were identified. Spatial variability of SWC was estimated using a Monte Carlo approach, and simulated and observed variability were compared. This Monte Carlo scheme, using a simple water balance model with only three parameters, was found to be useful for evaluating the influence of soil management on the variability of SWC in heavy clay soils.

  2. Reversibility of soil forming clay mineral reactions induced by plant - clay interactions

    Science.gov (United States)

    Barré, P.; Velde, B.

    2012-04-01

    Recent data based upon observations of field experiments and laboratory experiments suggest that changes in phyllosilicate mineralogy, as seen by X-ray diffraction analysis, which is induced by plant action can be reversed in relatively short periods of time. Changes from diagenetic or metamorphic mineral structures (illite and chlorite) to those found in soils (mixed layered minerals in the smectite, hydroxy-interlayer mineral and illites) observed in Delaware Bay salt marsh sediments in periods of tens of years and observed under different biologic (mycorhize) actions in coniferous forests in the soil environment can be found to be reversed under other natural conditions. Reversal of this process (chloritisation of smectitic minerals in soils) has been observed in natural situations over a period of just 14 years under sequoia gigantia. Formation of smectite minerals from illite (potassic mica-like minerals) has been observed to occur under intensive agriculture conditions over periods of 80 years or so under intensive zea mais production. Laboratory experiments using rye grass show that this same process can be accomplished to a somewhat lesser extent after one growing season. However experiments using alfalfa for 30 year growing periods show that much of the illite content of a soil can be reconstituted or even increased. Observations on experiments using zea mais under various fertilizer and mycorhize treatments indicate that within a single growing season potassium can be extracted from the clay (illite layers) but at the end of the season the potassium can be restored to the clay structures and more replaced that extracted. Hence it is clear that the change in clay mineralogy normally considered to be irreversible, illite to smectite or chlorite to smectite observed in soils, is a reversible process where plant systems control the soil chemistry and the soil mineralogy. The changes in clay mineralogy concern mostly the chemical composition of the interlayer

  3. Clay content evaluation in soils through GPR signal processing

    Science.gov (United States)

    Tosti, Fabio; Patriarca, Claudio; Slob, Evert; Benedetto, Andrea; Lambot, Sébastien

    2013-10-01

    The mechanical behavior of soils is partly affected by their clay content, which arises some important issues in many fields of employment, such as civil and environmental engineering, geology, and agriculture. This work focuses on pavement engineering, although the method applies to other fields of interest. Clay content in bearing courses of road pavement frequently causes damages and defects (e.g., cracks, deformations, and ruts). Therefore, the road safety and operability decreases, directly affecting the increase of expected accidents. In this study, different ground-penetrating radar (GPR) methods and techniques were used to non-destructively investigate the clay content in sub-asphalt compacted soils. Experimental layout provided the use of typical road materials, employed for road bearing courses construction. Three types of soils classified by the American Association of State Highway and Transportation Officials (AASHTO) as A1, A2, and A3 were used and adequately compacted in electrically and hydraulically isolated test boxes. Percentages of bentonite clay were gradually added, ranging from 2% to 25% by weight. Analyses were carried out for each clay content using two different GPR instruments. A pulse radar with ground-coupled antennae at 500 MHz centre frequency and a vector network analyzer spanning the 1-3 GHz frequency range were used. Signals were processed in both time and frequency domains, and the consistency of results was validated by the Rayleigh scattering method, the full-waveform inversion, and the signal picking techniques. Promising results were obtained for the detection of clay content affecting the bearing capacity of sub-asphalt layers.

  4. Remediation of copper polluted red soils with clay materials

    Institute of Scientific and Technical Information of China (English)

    Gangya Zhang; Yunqing Lin; Mingkuang Wang

    2011-01-01

    Attapulgite and montmorillonite were utilized to remediate heavy metal polluted red soils in Guixi City, Jiangxi Province, China.The effects of clay minerals on availability, chemical distribution, and biotoxicity of Cu and Zn were evaluated.The results provided a reference for the rational application of clay materials to remediate heavy metal contaminated soils.From the sorption experiment,the maximum adsorbed Cu2+ by attapulgite and montmorillonite was 1501 and 3741 mg/kg, respectively.After polluted red soil was amended with attapulgite or montmorillonite and cultured at 30 and 60 days, soil pH increased significantly compared to the control.An 8% increase in the amount of montmorillonite in soil and 30 days incubation decreased acid exchangeable Cu by 24.7% compared to the control red soil.Acid exchangeable Cu decreased with increasing amounts of attapulgite and montmorillonite, with best remediation effect reached at a dose of 8%.Results also showed that the Cu poisoning effect on earthworms was reduced with the addition of attapulgite and montmorillonite.Montmoriilonite showed the best effect, with the addition of a 2% dose the mortality of earthworms decreased from 60% to zero compared to the control.Our results indicated that the bioavailability of Cu in soils was reduced more effectively with the application of montmorillonite than attapulgite.

  5. Predicting soil particle density from clay and soil organic matter contents

    DEFF Research Database (Denmark)

    Schjønning, Per; McBride, R.A.; Keller, T.

    2017-01-01

    Soil particle density (Dp) is an important soil property for calculating soil porosity expressions. However, many studies assume a constant value, typically 2.65Mgm−3 for arable, mineral soils. Fewmodels exist for the prediction of Dp from soil organic matter (SOM) content. We hypothesized...... that better predictions may be obtained by including the soil clay content in least squares prediction equations. A calibration data set with 79 soil samples from 16 locations in Denmark, comprising both topsoil and subsoil horizons, was selected from the literature. Simple linear regression indicated that Dp...... against a combined data set with 227 soil samples representing A, B, and C horizons from temperate North America and Europe. The new prediction equation performed better than two SOM-based models from the literature. Validation of the new clay and SOM model using the 227 soil samples gave a root mean...

  6. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  7. Diffusion of inorganic chemical species in compacted clay soil

    Science.gov (United States)

    Shackelford, Charles D.; Daniel, David E.; Liljestrand, Howard M.

    1989-08-01

    This research was conducted to study the diffusion of inorganic chemicals in compacted clay soil for the design of waste containment barriers. The effective diffusion coefficients ( D ∗) of anionic (Cl -, Br -, and I -) and cationic (K +, Cd 2+, and Zn 2+) species in a synthetic leachate were measured. Two clay soils were used in the study. The soils were compacted and pre-soaked to minimize mass transport due to suction in the soil. The results of the diffusion tests were analyzed using two analytical solutions to Fick's second law and a commercially available semi-analytical solution, POLLUTE 3.3. Mass balance calculations were performed to indicate possible sinks/sources in the diffusion system. Errors in mass balance were attributed to problems with the chemical analysis (I -), the inefficiency of the extraction procedure (K +), precipitation (Cd 2+ and Zn 2+), and chemical complexation (Cl - and Br -). The D ∗ values for Cl - reported in this study are in excellent agreement with previous findings for other types of soil. The D ∗ values for the metals (K +, Cd 2+, and Zn 2+) are thought to be high (conservative) due to: (1) Ca 2+ saturation of the exchange complex of the clays; (2) precipitation of Cd 2+ and Zn 2+; and (3) nonlinear adsorption behavior. In general, high D ∗ values and conservative designs of waste containment barriers will result if the procedures described in this study are used to determine D ∗ and the adsorption behavior of the solutes is similar to that described in this study.

  8. A Preliminary Study on Identification of Clay Minerals in Soils with Reference to Reflectance Spectra

    Institute of Scientific and Technical Information of China (English)

    XUBIN-BIN; LIDE-CHENG; 等

    1995-01-01

    The characteristics of the reflectance spectra of clay minerals and their influences on the reflectance spectra of soils are dealt with in the paper.The results showed that dominant clay minerals in soils could be distinguished in light of the spectral -form parameters of the reflectance spectra of soils,thus making it possible to develop a quick method to determine clay minerals by means of reflectance spectra of soils in the lab.and providing a theoretic basis for remote sensing of clay minerals in soils with a high resolution imaging spectrometer.

  9. Rapid Soil Stabilization of Soft Clay Soils for Contingency Airfields

    Science.gov (United States)

    2006-12-01

    LiquiBlock 40K and 41K are both potassium salts of crosslinked polyacrylic acids/ polyacrylamide copolymers in granular form that also gel in the presence...with the soil water and cure. Unlike strength loss due to the fibers bunching, adding the cement on the second day only results in a reduction of the...the method of treatment, which Maclean (1956) has found to have significantly different correlated CBR and UCS values, where soils with higher friction

  10. Microbial Decomposition of Extracellular DNA in Clay Soils

    Science.gov (United States)

    Morrissey, E. M.; McHugh, T. A.; Schwartz, E.; Preteska, L.; Hayer, M.; Hungate, B. A.

    2014-12-01

    Genomic analysis of soil communities can only be useful in predicting ecosystem processes if the genetic data gathered is representative of the microbial community. Consequently, extracellular DNA (eDNA) represents a pool of unexpressed genetic information that may skew genomic analyses. To date, our understanding of the representation of eDNA in metagenomic data and its decomposition in soil is very limited. To address this deficit, we performed a laboratory experiment wherein soils were amended with eDNA and/or clay minerals in a full factorial design. Specifically, the decomposition of 13C labeled E. coli DNA was monitored over a 30-day period in control, Kaolinite-amended, and Montmorillonite-amended soils. The amount of added eDNA carbon (C) remaining in the soil declined exponentially over time, with the majority of decomposition occurring in the first two weeks. Kaolinite significantly decreased eDNA decomposition rates and retained a higher fraction of eDNA-C (~70% remaining) than unamended and Montmorillonite-soils (~40% remaining) after 30 days. Phylogenetic (16S rRNA) sequencing of DNA extracted over the course of the incubation period enabled detection of the added eDNA. The relative abundance of added E. coli DNA decreased ~10-100 fold over 30 days. These results indicate that while a significant fraction of eDNA-C remained in the soil, this carbon was likely no longer in the form of intact strands of DNA amenable to sequencing. In addition, the eDNA affected the composition of the bacterial community. Specifically, the relative abundance of Planctomycetes and TM7 were elevated in soils that received eDNA regardless of clay addition, suggesting these phyla may be particularly effective at degrading eDNA and using it for growth. In conclusion these results indicate that the representation of eDNA in metagenomic sequence data declines rapidly, likely due to fragmentation. However, a fraction of eDNA material was resistant to decomposition, suggesting a

  11. Clay slurry and engineered soils as containment technologies for remediation of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.R. [Reclamation Technology, Inc., Athens, GA (United States); Dudka, S.; Miller, W.P. [Univ. of Georgia, Athens, GA (United States); Johnson, D.O. [Argonne National Lab., IL (United States)

    1997-12-31

    Clay Slurry and Engineered Soils are containment technologies for remediation of waste disposal sites where leaching, groundwater plumes and surface runoff of contaminants are serious ecological hazards to adjacent environments. This technology is a patent-pending process which involves the use of conditioned clay materials mixed with sand and water to form a readily pourable suspension, a clay slurry, which is either placed into a trench barrier system or allowed to de-water to create Engineered Soils. The Engineered Soil forms a layer impervious to water and air, therefore by inhibiting both water and oxygen from penetrating through the soil the material. This material can be installed in layers and as a vertical barrier to create a surface barrier containment system. The clay percentage in the clay slurry and Engineered Soils varies depending on site characteristics and desired performance standards. For example Engineered Soils with 1-2% of clay (dry wt.) had a hydraulic conductivity (K) of 10{sup -8} to 10{sup -1} cm/sec. Tests of tailing materials from a kyanite and pyrite mine showed that the clay slurry was effective not only in reducing the permeability of the treated tailings, but also in decreasing their acidity due to the inherent alkalinity of the clay. The untreated tailings had pH values in the range of 2.4 - 3.1; whereas, the effluent from clay and tailings mixtures had pH values in a slightly alkaline range (7.7-7.9). Pug-mills and high volume slurry pumps can be readily adapted for use in constructing and placing caps and creating Engineered Soils. Moreover, material on site or from a local sand supply can be used to create clay slurries and engineered soils. Clay materials used in cap construction are likewise readily available commercially. As a result, the clay slurry system is very cost effective compared to other capping systems, including the commonly used High Density Polyethylene (HDPE) liner systems.

  12. Effect of Clay Content and Soil-water Potential On Mobilization and Leaching of Colloids In Unsaturated Macroporous Soil

    Science.gov (United States)

    Kjaergaard, C.; de Jonge, L. W.; Moldrup, P.

    The transport of strongly sorbed environmental contaminants may be enhanced due to sorption to mobile soil colloids. The most common source of mobile colloids in soil is the in-situ release of water-dispersible colloids (WDC), however experimental investigations of colloid mobilization in unsaturated macroporous soil are scarce. An understanding of the arrangement of colloids in aggregates, and the influence of clay on the development of the soil fabric and pore-size distributions is essential for the in- terpretation of colloid mobilization in soils. This emphasizes the important role of clay content, when evaluating the susceptibility of soils to release colloids and associated contaminants. This study was conducted to determine the effect of clay content and initial soil- water potential on colloid mobilization and leaching. Intact soil cores were sampled from an arable field at six locations along a naturally occurring texture gradient. Soil dispersibility was investigated using capillary saturation and drainage of field-moist packed aggregates. The amount of WDC in the soil was measured for each com- bination of clay content and initial soil-water potential (-2.5, -98 and -15530 hPa). Mobilization and leaching of colloids was investigated from unsaturated intact soil cores. The soils were irrigated at low intensity (1 mm/h), and effluent sampling was conducted at 5 cm tension. The results showed that colloid dispersion was significantly affected by both clay con- tent and initial soil-water potential. With a soil-water potential of -15530 hPa the col- loid release was generally low and no variation occurred between the soils. With in- creasing soil-water potential there was an increase in the amount of WDC for all soils. The increase in WDC was negatively correlated with clay content. The leaching of colloids from intact soil cores also decreased with increasing clay content at an ini- tial soil-water potential of -98 and -2.5 hPa, and no difference between

  13. Magnitude, modeling and significance of swelling and shrinkage processes in clay soils.

    NARCIS (Netherlands)

    Bronswijk, J.J.B.

    1991-01-01

    The dynamic process of swelling and shrinkage in clay soils has significant practical consequences, such as the rapid transport of water and solutes via shrinkage cracks to the subsoil, and the destruction of buildings and roads on clay soils. In order to develop measuring methods and computer simul

  14. To what extent clay mineralogy affects soil aggregation? Consequences for soil organic matter stabilization

    Science.gov (United States)

    Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Chenu, C.; Ferrage, E.; Caner, L.

    2012-12-01

    Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil organic C on aggregation has been documented, much less is known about the role of soil mineralogy. Soils usually contain a mixture of clay minerals with contrasted surface properties, which should result on different abilities of clay minerals to aggregation. We took advantage of the intrinsic mineral heterogeneity of a temperate Luvisol to compare the role of clay minerals (illite, smectite, kaolinite, and mixed-layer illite-smectite) in aggregation. In a first step, grassland and tilled soil samples were fractionated in water in aggregate-size classes according to the hierarchical model of aggregation (Tisdall and Oades, 1982). Clay mineralogy and organic C in the aggregate-size classes were analyzed. The results showed that interstratified minerals containing swelling phases accumulated in aggregated fractions (>2 μm) compared to free clay fractions (500 μm) to micro-aggregates (50-250 μm). C concentration and C/N ratio followed the opposite trend. These results constitute a clay mineral-based evidence for the hierarchical model of aggregation, which postulates an increasing importance of the reactivity of clay minerals in the formation of micro-aggregates compared to larger aggregates. In the latter aggregates, formation relies on the physical enmeshment of particles by fungal hyphae, and root and microbial exudates. In a second step, micro-aggregates from the tilled soil samples were submitted to increasingly disaggregating treatments by sonication to evaluate the link between their water stability and clay mineralogy. Micro-aggregates with increasing stability showed an increase of interstratified minerals containing swelling phases and C concentration for low intensities of disaggregation (from 0 to 5 J mL-1). This suggests that swelling phases promote their stability. Swelling phases and organic C

  15. Effect of Clay Minerals on the Chemical Characteristics of Soil Humus

    Institute of Scientific and Technical Information of China (English)

    YEWEI; WENQIXIAO

    1996-01-01

    Chemical characteristics of humic substances in soils with different mineralogical characteristics and under different utilization paterns in Zhangpu,Fujian Province,together with two pairs of cultivated soils in North China Plain were studied by chemical analysis,visible and IR spectroscopy and 13C NMR spectrometry.For soils in Zhanpu the HA/FA ratio and both the aromaticity and the degree of humification of HA were higher in soils with montmorillonite as the predominant clay mineral than in those with kaolinite as the predominant clay mineral,provided these soils were under the same utilization pattern.While for each pair of soils with similar mineralogical characteristics the HA/FA ratio was higher and the C/H ratio and the contnet of carboxyl group of HA were lower in paddy soil than in upland soil.Among the upland soils(or paddy soils)studied the Ha/FA ratio of soil in Zhangpu with kaolinite as the predominant clay mineral was the lowest,and that of soil in Zhangpu with montmorillonite as the predominant clay mineral was the highest .the lowest.and that of soil in Zhangpu with montmorillonite as the predominant clay mineral was the highest It was concluded that the presence of montmorillonite favored the fromation and maturation of humic acid.

  16. Clays Can Decrease Gaseous Nutrient Losses from Soil-Applied Livestock Manures.

    Science.gov (United States)

    Pratt, Chris; Redding, Matthew; Hill, Jaye; Brown, Grant; Westermann, Maren

    2016-03-01

    Clays could underpin a viable agricultural greenhouse gas (GHG) abatement technology given their affinity for nitrogen and carbon compounds. We provide the first investigation into the efficacy of clays to decrease agricultural nitrogen GHG emissions (i.e., NO and NH). Via laboratory experiments using an automated closed-vessel analysis system, we tested the capacity of two clays (vermiculite and bentonite) to decrease NO and NH emissions and organic carbon losses from livestock manures (beef, pig, poultry, and egg layer) incorporated into an agricultural soil. Clay addition levels varied, with a maximum of 1:1 to manure (dry weight). Cumulative gas emissions were modeled using the biological logistic function, with 15 of 16 treatments successfully fitted ( clay addition level compared with no clay addition, but this difference was not significant ( = 0.17). Nitrous oxide emissions were significantly lower (×3; clay addition level compared with no clay addition. When assessing manures individually, we observed generally decreasing trends in NH and NO emissions with increasing clay addition, albeit with widely varying statistical significance between manure types. Most of the treatments also showed strong evidence of increased C retention with increasing clay additions, with up to 10 times more carbon retained in treatments containing clay compared with treatments containing no clay. This preliminary assessment of the efficacy of clays to mitigate agricultural GHG emissions indicates strong promise.

  17. Modified centroid for estimating sand, silt and clay from soil texture class

    Science.gov (United States)

    Models that require inputs of soil particle size commonly use soil texture class for input; however, texture classes do not represent the continuum of soil size fractions. Soil texture class and clay percentage are collected as a standard practice for many land management agencies (e.g., NRCS, BLM, ...

  18. Sorption and distribution of Zn in a sludge-amended soil: influence of the soil clay mineralogy

    OpenAIRE

    Proust, D.

    2015-01-01

    International audience; Purpose Conventional pedological survey generally assesses soil metal pollution by comparing total metal concentrations in soil to geochemical baselines in parent rock. This global approach overlooks the sorption capacities of the clay minerals which form at micrometric scale in weathering microsystems and are essential for the behaviour of metals in soil. Therefore, our aim was to investigate the impact of these weathering microsystems and their clay mineralogy upon Z...

  19. Bioremediation of a tropical clay soil contaminated with diesel oil.

    Science.gov (United States)

    Chagas-Spinelli, Alessandra C O; Kato, Mario T; de Lima, Edmilson S; Gavazza, Savia

    2012-12-30

    The removal of polyaromatic hydrocarbons (PAH) in tropical clay soil contaminated with diesel oil was evaluated. Three bioremediation treatments were used: landfarming (LF), biostimulation (BS) and biostimulation with bioaugmentation (BSBA). The treatment removal efficiency for the total PAHs differed from the efficiencies for the removal of individual PAH compounds. In the case of total PAHs, the removal values obtained at the end of the 129-day experimental period were 87%, 89% and 87% for LF, BS and BSBA, respectively. Thus, the efficiency was not improved by the addition of nutrients and microorganisms. Typically, two distinct phases were observed. A higher removal rate occurred in the first 17 days (P-I) and a lower rate occurred in the last 112 days (P-II). In phase P-I, the zero-order kinetic parameter (μg PAH g(-1) soil d(-1)) values were similar (about 4.6) for all the three treatments. In P-II, values were also similar but much lower (about 0.14). P-I was characterized by a sharp pH decrease to less than 5.0 for the BS and BSBA treatments, while the pH remained near 6.5 for LF. Concerning the 16 individual priority PAH compounds, the results varied depending on the bioremediation treatment used and on the PAH species of interest. In general, compounds with fewer aromatic rings were better removed by BS or BSBA, while those with 4 or more rings were most effectively removed by LF. The biphasic removal behavior was observed only for some compounds. In the case of naphthalene, pyrene, chrysene, benzo[k]fluoranthene and benzo[a]pyrene, removal occurred mostly in the P-I phase. Therefore, the best degradation process for total or individual PAHs should be selected considering the target compounds and the local conditions, such as native microbiota and soil type.

  20. Carbon saturation in the silt and clay particles in soils with contrasting mineralogy

    Directory of Open Access Journals (Sweden)

    Francisco Matus

    2016-07-01

    Full Text Available The silt and clay particles play a key role as stabilizing agents of soil organic carbon (SOC. Several lines of evidence indicate a theoretical maximum or C saturation in individual particles. In the present study, we hypothesized that a C fraction displaying linear accumulation relative to the SOC is not influenced by C saturation, while a fraction displaying an asymptotic relationship is regarded as saturated (Stewart et al., 2008. The aim of the present study was to compare the amount of C in the silt and clay sized fractions in temperate and subtropical cropping soils across a range of textures with different mineralogy. Twenty-one and 18 soil samples containing 1:1 and 2:1 clay of temperate soil from Chile under monoculture of maize (Zea maiz L. for at least 30 years and 9 subtropical soils from Mexico under maize and bean (Phaseolus vulgaris L. cropping for 9 years having mixed clay were collected at 0-0.1 m. The SOC of 2:1 soils was significantly higher (14±0.5 g kg-1 dry soil than 1:1 soils (10±0.7 g kg-1. However, subtropical soils showed the highest values (59±0.5 g kg-1. A positive (P < 0.01 relationship was observed between the SOC and the C in the silt fraction (R2 0.80-0.97, P < 0.01. In contrast, the clay fraction remained constant or showed asymptotic behavior. We conclude that the silt fraction, unlike clay, showed no evidence of C saturation, while clay accumulates C to a maximum. On average, the 2:1 clay was saturated at 1-2 g C kg-1 and 1:1 at 1 g C kg-1, and subtropical soils at 14 g C kg-1.

  1. Evaluation of Water Vapor Sorption Hysteresis in Soils: The Role of Organic Matter and Clay

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Hysteresis of the soil water characteristic (SWC) has been extensively studied for matric potentials between zero and −1.5 MPa. However, little information is available on how to quantify, evaluate, and identify the causes of hysteresis at potentials below −10 MPa where vapor sorption plays...... an important role. It is clear that modeling physical and biological soil processes is more accurate when SWC hysteresis is considered, particularly at low potentials where small differences in water content are associated with large changes in potential energy. The objectives of the presented study were to......: (i) evaluate and compare recently developed methods (MBET-n, Dh and SPN) for quantifying hysteresis in soils and pure clays, and (ii) investigate the role of organic matter (OM) and clay content and type on hysteresis. Five pure clays and two sets of soils with gradients in organic matter and clay...

  2. Organic farming effects on clay dispersion in carbon-exhausted soils

    OpenAIRE

    Schjønning, Per; de Jonge, Lis Wollesen; Olesen, Jørgen E.; Greve, Mogens Humlekrog

    2009-01-01

    Many Danish soils are depleted in organic matter (OM) after decades of intensive cereal cultivation (Schjønning et al., 2009). In this paper we show that clay particles (colloids) in soils that are low in OM content are easily dispersed in the soil water, which in turn has important effects on soil ecosystem functions and services. Organic farming systems generally tend to increase soil OM contents and may thus mitigate the negative effects.

  3. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    OpenAIRE

    Silva João Eudes da; Castro Fernando

    2002-01-01

    Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were sub...

  4. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals.

    Science.gov (United States)

    Chalermyanont, Tanit; Arrykul, Surapon; Charoenthaisong, Nanthanit

    2009-01-01

    The potential of a lateritic soil and a marine clay, typical of those found in hot and humid climatic regions, was assessed for use as a landfill liner material. A series of tests were conducted - physical and chemical, batch adsorption, column, hydraulic conductivity, etc., - to evaluate the heavy metal sorption capacity, chemical compatibility of hydraulic conductivity, and transport parameters of the soils. Experimental results showed that the marine clay had better adsorption capacity than that of the lateritic soil and that its hydraulic conductivity was an order of magnitude lower. In addition, the hydraulic conductivities of both soils when permeated with low concentration heavy metal solutions were below 1x10(-7)cm/s. When permeated with Cr, Pb, Cd, Zn, and Ni solutions, the retardation factors of the lateritic soil and the marine clay ranged from 10 to 98 and 37 to 165, respectively, while the diffusion coefficients ranged from 1.0x10(-5) to 7.5x10(-6) and 3.0 to 9.14x10(-7)cm2/s, respectively. For both soils, Cr and Pb were retained relatively well, while Cd, Zn, and Ni were more mobile. The marine clay had higher retardation factors and lower diffusion coefficients, and its hydraulic conductivity was more compatible with Cr solution, than that of the lateritic soil. In general, the properties of the marine clay indicate that it has significant advantages over the lateritic soil as landfill liner material.

  5. Advances in characterization of the soil clay mineralogy using X-ray diffraction: from decomposition to profile fitting

    OpenAIRE

    2009-01-01

    International audience; Structural characterization of soil clay minerals often remains limited despite their key influence on soil properties. In soils, complex clay parageneses result from the coexistence of clay species with contrasting particle sizes and crystal-chemistry and from the profusion of mixed layers with variable compositions. The present study aimed at characterizing the mineralogy and crystal chemistry of the < 2 μm fraction along a profile typical of soils from Western Europ...

  6. Colloid and Phosphorus Leaching From Undisturbed Soil Cores Sampled Along a Natural Clay Gradient

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Heckrath, Goswin Johann;

    2011-01-01

    The presence of strongly sorbing compounds in groundwater and tile drains can be a result of colloid-facilitated transport. Colloid and phosphorus leaching from macropores in undisturbed soil cores sampled across a natural clay gradient at Aarup, Denmark, were studied. The aim of the study...... was to correlate easily measurable soil properties, such as clay content and water-dispersible colloids, to colloid and phosphorus leaching. The clay contents across the gradient ranged from 0.11 to 0.23 kg kgj1. Irrigating with artificial rainwater, all samples showed a high first flush of colloids and phosphorus...

  7. Estimation of hydraulic conductivity on clay content in soil determined from resistivity data

    Energy Technology Data Exchange (ETDEWEB)

    Shevnin, Vladimir; Delgado-Rodriguez, Omar; Mousatov, Aleksandr [Mexican Petroleum Institute, Mexico, D.F. (Mexico); Ryjov, Albert [Moscow State Geological Prospecting Academy, Geophysical Faculty, Moscow (Russian Federation)

    2006-07-15

    The influence of clay content in sandy and clayey soils on hydraulic conductivity (filtration coefficient) is considered. A review of published experimental data on the relationship of hydraulic conductivity with soil lithology and grain size, as dependent on clay content is presented. Theoretical calculations include clay content. Experimental and calculated data agree, and several approximation formulas for filtration coefficient vs clay content are presented. Clay content in soil is estimated from electric resistivity data obtained from 2D VES interpretation. A two-step method is proposed, the first step including clay content calculating from soil resistivity and groundwater salinity, and the second step including filtration coefficient estimating from clay content. Two applications are presented. [Spanish] El contenido de arcilla en suelos areno-arcillosos influye sobre la permeabilidad hidraulica (coeficiente de filtracion). Se presenta una revision de datos experimentales publicados que relacionan el coeficiente de filtracion con el tipo litologico del suelo y el tamano de las particulas. A partir de calculos teoricos, se modifican las conocidas formulas que relacionan el coeficiente de filtracion con el contenido de arcilla. Se estima el contenido de arcilla a partir de los datos interpretados por el metodo SEV, y se propone un procedimiento para la estimacion del coeficiente de filtracion: (a) calculo del contenido de arcilla a partir de la resistividad del suelo y de la salinidad del agua subterranea, (b) estimacion del coeficiente de filtracion a partir del contenido de arcilla. Se presentan algunos ejemplos de la aplicacion de esta metodologia.

  8. Radiocesium sorption in relation to clay mineralogy of paddy soils in Fukushima, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Atsushi, E-mail: na_4_ka_triplochiton@kpu.ac.jp [Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho 1-5, Shimogamo, Sakyo-ku, Kyoto 606-8522 (Japan); Ogasawara, Sho [Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho 1-5, Shimogamo, Sakyo-ku, Kyoto 606-8522 (Japan); Sano, Oki; Ito, Toyoaki [Field Science Center, Graduate School of Agricultural Science, Tohoku University, Naruko-Onsen 232-3, Osaki, Miyagi 989-6711 (Japan); Yanai, Junta [Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho 1-5, Shimogamo, Sakyo-ku, Kyoto 606-8522 (Japan)

    2014-01-01

    Relationships between Radiocesium Interception Potential (RIP) and mineralogical characteristics of the clay fraction isolated from 97 paddy soils (Hama-dori, n = 25; Naka-dori, n = 36; Aizu, n = 36) in Fukushima Prefecture, Japan were investigated to clarify the mineralogical factors controlling the {sup 137}Cs retention ability of soils (half-life 30.1 y). Of all the fission products released by the Fukushima accident, {sup 137}Cs is the most important long-term contributor to the environmental contamination. The RIP, a quantitative index of the {sup 137}Cs retention ability, was determined for the soil clays. The composition of clay minerals in the soil clays was estimated from peak areas obtained using X-ray diffraction (XRD) analyses. The predominant clay mineral was smectite in soils from Hama-dori and Aizu, while this was variable for those from Naka-dori. Native K content of the soil clays was found to be an indicator of the amount of micaceous minerals. The average RIP for the 97 soil clays was 7.8 mol kg{sup −1}, and ranged from 2.4 mol kg{sup −1} to 19.4 mol kg{sup −1}. The RIP was significantly and positively correlated with native K content for each of the geographical regions, Hama-dori (r = 0.76, p < 0.001), Naka-dori (r = 0.43, p < 0.05), and Aizu (r = 0.76, P < 0.001), while it was not related to the relative abundance of smectite. The linear relationship between RIP and native K content not only indicate a large contribution of micaceous minerals to the {sup 137}Cs retention ability of the soil clays, but also could be used to predict the {sup 137}Cs retention ability of soil clays for other paddy fields in Fukushima and other areas. - Highlights: • RIP was measured for 97 paddy soils from Fukushima to assess {sup 137}Cs retention ability. • The dominant clay mineral was smectite, but this did not control RIP. • RIP was positively correlated with native K content. • Micaceous minerals were found to control the {sup 137}Cs retention

  9. Revealing Soil Structure and Functional Macroporosity along a Clay Gradient Using X-ray Computed Tomography

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Arthur, Emmanuel

    2013-01-01

    The influence of clay content in soil-pore structure development and the relative importance of macroporosity in governing convective fluid flow are two key challenges toward better understanding and quantifying soil ecosystem functions. In this study, soil physical measurements (soil......-water retention and air permeability) and x-ray computed tomography (CT) scanning were combined and used from two scales on intact soil columns (100 and 580 cm3). The columns were sampled along a natural clay gradient at six locations (L1, L2, L3, L4, L5 and L6 with 0.11, 0.16, 0.21, 0.32, 0.38 and 0.46 kg kg−1...... clay content, respectively) at a field site in Lerbjerg, Denmark. The water-holding capacity of soils markedly increased with increasing soil clay content, while significantly higher air permeability was observed for the L1 to L3 soils than for the L4 to L6 soils. Higher air permeability values...

  10. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    Directory of Open Access Journals (Sweden)

    Silva João Eudes da

    2002-01-01

    Full Text Available Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.

  11. Consequences of preferential flow in cracking clay soils for contamination-risk of shallow aquifers

    NARCIS (Netherlands)

    Oostindie, K.; Bronswijk, J.J.B.

    1995-01-01

    A method is presented to asses the contamination risk of aquifers covered with cracking clay soils, with special emphasis on preferential flow through shrinkage cracks. A water extraction area was divided into units with homogeneous soil types and hydrological conditions. For each unit, a one-dimens

  12. Comparing Kriging and Regression Approaches for Mapping Soil Clay Content in a diverse Danish Landscape

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mette Balslev

    2013-01-01

    technique at a given site has always been a major issue in all soil mapping applications. We studied the prediction performance of ordinary kriging (OK), stratified OK (OKst), regression trees (RT), and rule-based regression kriging (RKrr) for digital mapping of soil clay content at 30.4-m grid size using 6...

  13. Description of the phosphorus sorption and desorption processes in lowland peaty clay soils

    NARCIS (Netherlands)

    Schoumans, O.F.

    2013-01-01

    To determine phosphorus (P) losses from agricultural land to surface water, information is needed about the behavior of P in soils. In this study, the sorption and desorption characteristics of lowland peaty clay soils are described based on experimental laboratory studies. The maximum P sorption ca

  14. Chemical dispersants and pre-treatments to determine clay in soils with different mineralogy

    Directory of Open Access Journals (Sweden)

    Cristiane Rodrigues

    2011-10-01

    Full Text Available Knowledge of the soil physical properties, including the clay content, is of utmost importance for agriculture. The behavior of apparently similar soils can differ in intrinsic characteristics determined by different formation processes and nature of the parent material. The purpose of this study was to assess the efficacy of separate or combined pre-treatments, dispersion methods and chemical dispersant agents to determine clay in some soil classes, selected according to their mineralogy. Two Brazilian Oxisols, two Alfisols and one Mollisol with contrasting mineralogy were selected. Different treatments were applied: chemical substances as dispersants (lithium hydroxide, sodium hydroxide, and hexametaphosphate; pre-treatment with dithionite, ammonium oxalate, and hydrogen peroxide to eliminate organic matter; and coarse sand as abrasive and ultrasound, to test their mechanical action. The conclusion was drawn that different treatments must be applied to determine clay, in view of the soil mineralogy. Lithium hydroxide was not efficient to disperse low-CEC electropositive soils and very efficient in dispersing high-CEC electronegative soils. The use of coarse sand as an abrasive increased the clay content of all soils and in all treatments in which dispersion occurred, with or without the use of chemical dispersants. The efficiency of coarse sand is not the same for all soil classes.

  15. Effects of iron and aluminum oxides and clay content on penetration resistance of five Greek soils

    OpenAIRE

    2013-01-01

    The effect of amorphous and crystalline iron (Fe) and aluminum (Al) oxides and oxy-hydroxides as well as clay on soil penetration resistance of five Greek soils, as a function of soil water suction was studied for the whole range of soil moisture. The soils tested were of loamy texture and were collected from cultivated and non-cultivated areas of north and central Greece (Macedonia and Thessaly). The study aimed at understanding the role of the above mentioned soil components on penetration ...

  16. Interaction of Uranium Mill Tailings Leachate with Soils and Clay Liners

    Energy Technology Data Exchange (ETDEWEB)

    Gee, G. W.; Campbell, A. C.; Sherwood, D. R.; Strickert, R. G.; Phillips, S. J.

    1980-06-01

    This study evaluates leachate-soil interactions that will take place at the Morton Ranch for certain disposal alternatives. Laboratory tests were conducted to evaluate the following: 1) physical and chemical characteristics of geologic materials from the Morton Ranch. 2) physical and chemical characteristics of acid leach tailings and tallings solution, 3) leaching tests with selected tailings materials and leach solutions to evaluate the leachability of contaminants with time under specific disposal alternatives, 4) adsorption studies measuring the sorption characteristics of heavy metals and radionuclides on the geologic materials at Morton Ranch, 5) clay liner stability tests to evaluate effects of acid leachate on clay mineralogy and clay permeability.

  17. Effects of Organic Matter and Clay Content in Soil on Pesticide Adsorption Processes

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2009-01-01

    Full Text Available The effect of organic matter and clay content on the adsorption of atrazine, acetochlor, clomazone, pendimethalin and oxyfluorfen in soil samples was studied. In order to determine whether and to what degree different soil properties affect the process of determinationof selected pesticides, three soils with different clay and organic matter contents were used. An optimized liquid-solid extraction procedure followed by SPME measurement was applied to analyse the selected pesticides in soil samples. Detection and quantificationwere done by gas chromatography-mass spectrometry (GC/MS. Relative standard deviation (RSD values for multiple analyses of soil samples fortified at 30 μg/kg of each pesticide were below 19%. Limits of detection (LODs for all compounds studied were less than 2 μg/kg. The results indicate that soils with different physico-chemical properties have different effects on the adsorption of most pesticides, especially at higher concentration levels.

  18. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    Science.gov (United States)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  19. Can corn plants inoculated with arbuscular mycorrhiza fungi affect soil clay assemblage?

    Science.gov (United States)

    Adamo, P.; Cozzolino, V.; Di Meo, V.; Velde, B.

    2012-04-01

    Plants can extract K from exchangeable and non-exchangeable sites in the soil clay mineral structures. The latter, known as fixed K, is usually seen as an illite layer, i.e. an anhydrous K layer that forms a 1.0 nm structural layer unit as seen by X-ray diffraction. Nutrient availability can be enhanced in the root zone by arbuscular mycorrhiza fungi. In this study, the effects of non-inoculated and Glomus intraradices inoculated corn plant growth under different experimental conditions on soil K-bearing clay minerals were identified. The soil, a Vertic Xerofluvent, was planted in corn in a 2008-2010 randomized field experiment. Bulk and rhizosphere soil sampling was carried out from May to September 2010 from fertilized plots (N200P90K160 and N200P0K160) with and without plants. According to XRD analysis, three major K-bearing minerals were present in soil: smectite-rich mixed layer mineral, illite-rich mixed layer mineral and illite. Results at 40DAS indicate extraction of K from clay minerals by plant uptake, whereas at 130DAS much of the nutrient seems to be returned to the soil. There is an apparent difference between bulk and rhizophere clays. The XRD patterns are not unequivocally affected by Glomus inoculation. There are observable changes in clay mineralogy in fallow unfertilized compared with fertilized soil. In the studied soil, the illite rich mixed-layer minerals seem to be the source of K absorbed by plants, while illite acts as sink of K released from the plant-microorganisms system at the end of the growing season and as source for the following crop.

  20. Clay-associated organic matter in kaolinitic and smectitic soils

    NARCIS (Netherlands)

    Wattel-Koekkoek, E.J.W.

    2002-01-01

    The primary source of soil organic matter is plant debris of all kinds, such as dead roots, leaves and branches that enter into the soil and are then biologically decomposed at variable rates. Organic matter has many different important functions on a local and global scale. Soil organic matter is a

  1. Adsorption of chloroacetanilide herbicides on soil and its components Ⅲ. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca2 + -, Mg2 + -. Al3 + -and Fe3 + -saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ ≤ Fe3+ which coincided with the iucreasing aciditv of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  2. THE EFFECT OF REINFORCEMENT ON THE GBFS AND LIME TREATED MARINE CLAY FOR FOUNDATION SOIL BEDS

    Directory of Open Access Journals (Sweden)

    D. Koteswara Rao,

    2011-03-01

    Full Text Available India being peninsular country has large area coming under coastal region and also it has been the habitat for considerable percentage of population. The marine clays are generally found in the coastal region of West Bengal, Orissa, Andhra Pradesh, Tamilnadu, Kerala, Karnataka, Maharashtra and some parts of Gujarat. Marine or soft clays exists in these region are weak and deformative in nature. The present study deals with the strength characteristics of the marine clay collected from Kakinada Sea Port Ltd, Kakinada, A.P, India. The effect of lime on the strength characteristics of marine clay are studied in this investigation along with the reinforcement effect using geotextile as reinforcement and separator for the foundation soil bed.

  3. Zinc and copper sorption and fixation by an acid soil clay: effect of selective dissolutions

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, N.; McBride, M.B.

    Copper and zinc sorption-desorption studies were carried out over a range of pH values using clay fractions separated from two horizons of an acid soil from New York. In the pH range of high sorption, as much as 95% of the sorbed metal could not be desorbed and thus was considered fixed. Sorption and fixation of Cu and Zn increased rapidly above pH 4 and 5, respectively, for the whole soil clays. Following removal of the oxide fraction by oxalate and citrate-dethionite extractions, sorption and fixation were reduced considerably at pH values below the onset of hydrolysis of the metals in bulk solution. Citrate-dithionite extraction was more effective than oxalate in reducing Zn sorption and fixation. These extraction procedures had less effect on the ability of the clays to sorb and fix Cu. It is concluded that microcrystalline and noncrystalline oxides in the clay fraction of this soil, representing < 20% off the clay by weight, provide reactive surfaces for the chemisorption of Cu and Zn. At low pH, adsorption at these surfaces may be the dominant mechanism of heavy metal immobilization, especially in the subsoil horizons.

  4. Modified clay sorbents for wastewater treatment and immobilization of heavy metals in soils

    Science.gov (United States)

    Burlakovs, Juris; Klavins, Maris; Vincevica-Gaile, Zane; Stapkevica, Mara

    2014-05-01

    Soil and groundwater pollution with heavy metals is the result of both, anthropogenic and natural processes in the environment. Anthropogenic influence in great extent appears from industry, mining, treatment of metal ores and waste incineration. Contamination of soil and water can be induced by diffuse sources such as applications of agrochemicals and fertilizers in agriculture, air pollution from industry and transport, and by point sources, e.g., wastewater streams, runoff from dump sites and factories. Treatment processes used for metal removal from polluted soil and water include methodologies based on chemical precipitation, ion exchange, carbon adsorption, membrane filtration, adsorption and co-precipitation. Optimal removal of heavy metal ions from aqueous medium can be achieved by adsorption process which is considered as one of the most effective methods due to its cost-effectiveness and high efficiency. Immobilization of metals in contaminated soil also can be done with different adsorbents as the in situ technology. Use of natural and modified clay can be developed as one of the solutions in immobilization of lead, zinc, copper and other elements in polluted sites. Within the present study clay samples of different geological genesis were modified with sodium and calcium chlorides, iron oxyhydroxides and ammonium dihydrogen phosphate in variable proportions of Ca/P equimolar ratio to test and compare immobilization efficiency of metals by sorption and batch leaching tests. Sorption capacity for raw clay samples was considered as relatively lower referring to the modified species of the same clay type. In addition, clay samples were tested for powder X-ray difractometry, cation exchange, surface area properties, elemental composition, as well as scanning electron microscopy pictures of clay sample surface structures were obtained. Modified clay sorbents were tested for sorption of lead as monocontaminant and for complex contamination of heavy metals. The

  5. Sand and clay mineralogy of sal forest soils of the Doon Siwalik Himalayas

    Indian Academy of Sciences (India)

    Mukesh; R K Manhas; A K Tripathi; A K Raina; M K Gupta; S K Kamboj

    2011-02-01

    The peteromineralogical characterization of the soil was carried out for the 12 soil profiles exposed in the Shorea robusta dominated forests of the Siwalik forest division, Dehradun. The quartz was observed as the dominating light mineral fraction (64–80%) in all the profiles studied. Biotite, hornblende, zircon, tourmaline, rutile and opaques comprising of iron minerals constituted the heavy mineral fraction (20%). The mineralogy of both the sand and clay fractions revealed a mixed mineralogy. The clay minerals in the order of their dominance were vermiculite, illite, kaolinite and mixed layer minerals. The presence of vermiculite and illite in appreciable quantities indicates that these were synthesized from the K-rich soil solution, as orthoclase and micas were present in significant quantities in the sand minerals. The mineral suites identified in the study shows that the geological, climatological and topographical factors of the region collectively played a dominant role in their formation and transformation. After critical appraisal of the results, it may be deduced that the mineralogical composition, physicochemical properties and total elemental analysis of the soils do not show any deficiency of the bases and other plant nutrients in general. The inherent fertility of the soil is good as indicated by the sand and clay mineralogy of the soil and the biotite and feldspar together with the mica is an important source of nutrients for the vegetation in the soils of the Doon valley.

  6. Modeling Air Permeability in Variably Saturated Soil from Two Natural Clay Gradients

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda T K K; Arthur, Emmanuel; Møldrup, Per

    2013-01-01

    Understanding soil–gas phase properties and processes is important for finding solutions to critical environmental problems such as greenhouse gas emissions and transport of gaseous-phase contaminants in soils. Soil–air permeability, ka (μm2), is the key parameter governing advective gas movement...... in soil and is controlled by soil physical characteristics representing soil texture and structure. Models predicting ka as a function of air-filled porosity (ɛ) often use a reference-point measurement, for example, ka,1000 at ɛ1000 (where the measurement is done at a suction of –1000 cm H2O). Using ka...... measurements from two Danish arable fields, each located on natural clay gradients, this study presents a pore tortuosity–disconnectivity analysis to characterize the soil–gas phase. The main objective of this study is to investigate the effect of soil–moisture condition, clay content, and other potential...

  7. Rapid Stabilization/Polymerization of Wet Clay Soils; Literature Review

    Science.gov (United States)

    2009-01-15

    Conference, 182- 193. 70. Heller, H. and Keren, R. (2002). "Anionic Polyacrylamide Polymers Effect on Rheological Behavior of Sodium-Montmorillonite...34 Engineering Geology, 44(1-4), 107-120. 198. Zaitoun, A. and Berton, N. (1996). "Stabilization of Montmorillonite Clay in Porous Media by Polyacrylamides ."SPE...Rate Secondary Additive Secondary Rate Raub silty loam N/A Starch graft polymer Solid 0.04, 0.1, and 0.4% N/A N/A Fincastle silty loam N/A

  8. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    Science.gov (United States)

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  9. Simulation of pesticide leaching in a cracking clay soil with the PEARL model

    NARCIS (Netherlands)

    Scorza, R.P.; Boesten, J.J.T.I.

    2005-01-01

    Testing of pesticide leaching models is important to increase confidence in their use in pesticide registration procedures world-wide. The chromatographic PEARL model was tested against the results of a field leaching study on a cracking clay soil with a tracer (bromide), a mobile pesticide (bentazo

  10. Using digital elevation models as an environmental predictor for soil clay contents

    DEFF Research Database (Denmark)

    Greve, Mogens Humlekrog; Bou Kheir, Rania; Greve, Mette Balslev

    2012-01-01

    The objective of this study was to evaluate the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) as an environmental predictor for soil clay content (SCC). It was based on the applicability of different DEMs, i.e., SRTM with 90-m resolution and airborne Light Detection...

  11. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments

    Science.gov (United States)

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-01-01

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments. PMID:28233805

  12. Rapid nutrient leaching to groundwater and surface water in clay soil areas

    NARCIS (Netherlands)

    Bronswijk, J.J.B.; Hamminga, W.; Oostindie, K.

    1995-01-01

    The mechanism and magnitude of nitrate leaching from grassland on a heavy clay soil were investigated by measuring nitrogen input, and nitrate concentrations in groundwater and drain discharge for two years. A bromide tracer was applied to study solute transport mechanisms. Nitrate transport in the

  13. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model

    Science.gov (United States)

    Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...

  14. Effects of clay amendment on adsorption and desorption of copper in water repellent soils

    NARCIS (Netherlands)

    Xiong, X.; Stagnitti, F.; Allinson, G.; Turoczy, N.; Li, P.; LeBlanc, M.; Cann, M.A.; Doerr, S.H.; Steenhuis, M.M.; Parlange, J.Y.; Rooij, de G.; Ritsema, C.J.; Dekker, L.W.

    2005-01-01

    Copper is an important micronutrient and trace amounts are essential for crop growth. However, high concentrations of copper will produce toxic effects. Australia is increasingly developing production of crops in water repellent soils. Clay amendment, a common amelioration techniques used in Austral

  15. Peculiarities of strength and deformability properties of clay soils in districts of Western Siberia

    Science.gov (United States)

    Efimenko, Sergey; Efimenko, Vladimir; Sukhorukov, Alexey

    2016-01-01

    The article demonstrates the methodology of the substantiation of the calculated values of moisture, strength, and deformability characteristics of clay subgrade soils for the design of pavements by strength conditions in II, III, and IV road-climatic zones in West Siberia. The main purpose of the work is to ensure the quality of the design of roads in newly developed regions of Russia. To achieve this goal the following problems have been solved: the dislocation of boundary lines of road-climatic zones has been specified, zoning of the investigated territory for the design of roads has been detailed; regularities of changes in strength and deformability characteristics of clay subgrade soils of their moisture have been established; the territorial normalization of the calculated values of moisture, strength, and deformability of clay subgrade soils in relation to the allocated road districts has been carried out. Specification of boundary lines of road-climatic zones has been implemented on the basis of the taxonomic system "zone-subzone-road district". The calculated values of moisture, strength, and deformability characteristics of clay soils, established and differentiated according to road-climatic zones, will ensure the required level of the reliability of transport infrastructure facilities during the life cycle of roads.

  16. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments

    Science.gov (United States)

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-02-01

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.

  17. Multisensor on-the-go mapping of readily dispersible clay, particle size and soil organic matter

    Science.gov (United States)

    Debaene, Guillaume; Niedźwiecki, Jacek; Papierowska, Ewa

    2016-04-01

    Particle size fractions affect strongly the physical and chemical properties of soil. Readily dispersible clay (RDC) is the part of the clay fraction in soils that is easily or potentially dispersible in water when small amounts of mechanical energy are applied to soil. The amount of RDC in the soil is of significant importance for agriculture and environment because clay dispersion is a cause of poor soil stability in water which in turn contributes to soil erodibility, mud flows, and cementation. To obtain a detailed map of soil texture, many samples are needed. Moreover, RDC determination is time consuming. The use of a mobile visible and near-infrared (VIS-NIR) platform is proposed here to map those soil properties and obtain the first detailed map of RDC at field level. Soil properties prediction was based on calibration model developed with 10 representative samples selected by a fuzzy logic algorithm. Calibration samples were analysed for soil texture (clay, silt and sand), RDC and soil organic carbon (SOC) using conventional wet chemistry analysis. Moreover, the Veris mobile sensor platform is also collecting electrical conductivity (EC) data (deep and shallow), and soil temperature. These auxiliary data were combined with VIS-NIR measurement (data fusion) to improve prediction results. EC maps were also produced to help understanding RDC data. The resulting maps were visually compared with an orthophotography of the field taken at the beginning of the plant growing season. Models were developed with partial least square regression (PLSR) and support vector machine regression (SVMR). There were no significant differences between calibration using PLSR or SVMR. Nevertheless, the best models were obtained with PLSR and standard normal variate (SNV) pretreatment and the fusion with deep EC data (e.g. for RDC and clay content: RMSECV = 0,35% and R2 = 0,71; RMSECV = 0,32% and R2 = 0,73 respectively). The best models were used to predict soil properties from the

  18. [Occurrence relationship between iron minerals and clay minerals in net-like red soils: evidence from X-ray diffraction].

    Science.gov (United States)

    Yin, Ke; Hong, Han-Lie; Han, Weni; Ma, Yu-Bo; Li, Rong-Biao

    2013-04-01

    The high purity of clay minerals is a key factor to reconstruct the palaeoclimate in clay mineralogy, however, the existence of iron minerals (such as goethite and hematite) and organics lead to the intergrowth of clay minerals and other minerals, producing other mineral impurities in enriched clay minerals. Although the removal of organics in soil sediments has been fully investigated, the occurrence state of iron minerals remains controversial, hindering the preparation of high-purity clay minerals. Therefore, the occurrence relationship of iron minerals and clay minerals in Jiujiang net-like red soils of the middle to lower reaches of the Yangtze River was investigated using the sequential separation method, which provided some implications for the removal of iron minerals in soil sediments. The results indicated that goethite and hematite were mostly absorbed on the surface of hydroxy-interlayered smectite and illite in the form of films, and the rest were absorbed by kaolinite.

  19. Assessment of Fate of Thiodicarb Pesticide in Sandy Clay Loam Soil

    Directory of Open Access Journals (Sweden)

    M. A. Bajeer

    2015-06-01

    Full Text Available In present study the fate of thiodicarb pesticide in sandy clay loam soil was investigated through its adsorption and leaching using HPLC. Experimental results revealed that thiodicarb follows first order kinetic with rate constant value of 0.711 h-1 and equilibrium study showed that Freundlich model was best fitted with multilayer adsorption capacity 3.749 mol/g and adsorption intensity 1.009. Therefore, adsorption of thiodicarb was multilayer, reversible and non-ideal. Leaching study has indicated intermediate mobility of thiodicarb with water due to its solubility, while field study showed the non-leacher nature. However both adsorption and leaching were heavily affected by soil characteristics. As the soil taken was sandy clay loam hence due to clay texture adsorption was higher because of vacant sites existing and greater surface area. For this the pesticide has remained adsorbed in above 20 cm soil layer as clearly seen from field study, minor amount was recorded in third layer of soil having 21-30 cm depth. The leached amount of thiodicarb in first and last part of water was 1.075 and 0.003 ng/µl. The general trend observed for adsorption in column and field soil was decreased downwards from 2.027 to 0.618 and 5.079 to 0.009 ng/µl.

  20. Electrokinetic movement of hexachlorobenzene in clayed soils enhanced by Tween 80 and beta-cyclodextrin.

    Science.gov (United States)

    Yuan, Songhu; Tian, Meng; Lu, Xiaohua

    2006-09-21

    This study describes the comparative behavior of hexachlorobenzene (HCB) contaminated clayed soils in an electrokinetic (EK) system enhanced by Tween 80 and beta-cyclodextrin (beta-CD). The pH of the soils was controlled by Na2CO3/NaHCO3 buffer. Negligible HCB movement was observed when NaOH or Na2CO3/NaHCO3 buffer was used as anodic flushing solution. While Tween 80 or beta-CD was introduced to Na2CO3/NaHCO3 buffer, obvious HCB movement was achieved. Although beta-CD led to a less desorption of HCB from kaolin than Tween 80, the removal of HCB with beta-CD was much higher than that with Tween 80 in the EK system. Tween 80 could be sorped by kaolin more than beta-CD, which was responsible for the result. The mechanism of the movement of HCB was proposed as the enhanced desorption of HCB from soil, the dissolving of HCB in the soil pore fluid and the movement of HCB with the electroosmotic flow. Obvious movement of HCB was also observed in the EK treatment of real HCB-contaminated clayed soil enhanced by beta-CD. It is an alternative approach to use facilitating agents such as beta-CD to enhance the EK movement of HCB in the contaminated clayed soils.

  1. Distinguishing black carbon from biogenic humic substances in soil clay fractions

    Science.gov (United States)

    Laird, D.A.; Chappell, M.A.; Martens, D.A.; Wershaw, R. L.; Thompson, M.

    2008-01-01

    Most models of soil humic substances include a substantial component of aromatic C either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. We physically separated coarse (0.2-2.0????m e.s.d.), medium (0.02-0.2????m e.s.d.), and fine (> 0.02????m e.s.d.) clay subfractions from three Midwestern soils and characterized the organic material associated with these subfractions using 13C-CPMAS-NMR, DTG, SEM-EDX, incubations, and radiocarbon age. Most of the C in the coarse clay subfraction was present as discrete particles (0.2-5????m as seen in SEM images) of black carbon (BC) and consisted of approximately 60% aromatic C, with the remainder being a mixture of aliphatic, anomeric and carboxylic C. We hypothesize that BC particles were originally charcoal formed during prairie fires. As the BC particles aged in soil their surfaces were oxidized to form carboxylic groups and anomeric and aliphatic C accumulated in the BC particles either by adsorption of dissolved biogenic compounds from the soil solution or by direct deposition of biogenic materials from microbes living within the BC particles. The biogenic soil organic matter was physically separated with the medium and fine clay subfractions and was dominated by aliphatic, anomeric, and carboxylic C. The results indicate that the biogenic humic materials in our soils have little aromatic C, which is inconsistent with the traditional heteropolymer model of humic substances.

  2. Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste.

    Science.gov (United States)

    Taghipour, Marzieh; Jalali, Mohsen

    2015-10-30

    This study was conducted to investigate the effect of time, clay minerals and nanoparticles (NPs) on chromium (Cr) fractionation in a soil contaminated with leather factory waste (LFW). Soil was mixed with LFW, then, the contaminated soils were treated with clay minerals (bentonite and zeolite) and nanoparticles (MgO, TiO2 and ZnO) at 5% and 1%, respectively. The samples were incubated for 15-180 days at 25 °C and constant moisture. After incubation, Cr in control and treated soils was fractionated by the sequential extraction procedure. The distribution of various Cr fractions in control soil indicated that the greatest amounts of Cr were found in the residual fraction (RES) followed by the carbonate (CAR), organic matter (OM) and exchangeable (EXC) fractions. The addition of LFW in soils increased Cr concentration in all fractions. The higher proportion of EXC fraction in the soil treated with LFW indicates its higher potential of leaching and runoff transport. In all treated soils, the RES fraction was increased, while EXC and OM fractions were decreased during incubation. The results indicated that NPs are effective adsorbent for the removal of Cr ions from LFW treated soil, and they could be useful in reducing their environment risk.

  3. Effects of iron and aluminum oxides and clay content on penetration resistance of five Greek soils

    Directory of Open Access Journals (Sweden)

    Stefanos Stefanou

    2013-07-01

    Full Text Available The effect of amorphous and crystalline iron (Fe and aluminum (Al oxides and oxy-hydroxides as well as clay on soil penetration resistance of five Greek soils, as a function of soil water suction was studied for the whole range of soil moisture. The soils tested were of loamy texture and were collected from cultivated and non-cultivated areas of north and central Greece (Macedonia and Thessaly. The study aimed at understanding the role of the above mentioned soil components on penetration resistance. The findings showed that the increase of iron and aluminum oxides and oxy-hydroxides content resulted in an increase of soil penetration resistance and the relationships between them were significant. Crystalline iron forms found to have a more profound effect on penetration resistance as compared to amorphous iron forms. Finally, positive and significant relationships were also found between penetration resistance and clay content. However, it is not entirely clear which of the two soil components plays the most important role in penetration resistance changes in soils.

  4. FIELD STUDIES ON THE MARINE CLAY FOUNDATION SOIL BEDS TREATED WITH LIME, GBFS AND REINFORCEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    D. Koteswara Rao,

    2011-04-01

    Full Text Available Majority of the population in India are living in costal corridor, where the existing soils are weak and more deformative. It is becoming a great challenge for the civil engineers to design suitable foundation for the structures in these regions. The effect of GBFS, lime and geotextile as reinforcement & separator on the marine clay foundation soil bed in field has been investigated. A test track of 8m long and 2m wide was laid in the field for testing the treated and untreated conditions of the marine clay foundation soil beds. The ultimate load carrying capacity of the test tracks for untreated and treated conditions have been studied and also the degree of compaction of the test tract was found.

  5. Water retention of rigid soils from a two-factor model for clay

    CERN Document Server

    Chertkov, V Y

    2014-01-01

    Water retention is one of the key soil characteristics. Available models of soil water retention relate to the curve-fitting type. The objective of this work is to suggest a physical model of water retention (drying branch) for soils with a rigid matrix. "Physical" means the prediction based on the a priori measured or estimated soil parameters with a clear physical meaning. We rely on the two-factor model of clay that takes into account the factors of capillarity and shrinkage. The key points of the model to be proposed are some weak pseudo shrinkage that the rigid soils demonstrate according to their experimental water retention curves, and some specific properties of the rigid grain matrix. The three input parameters for prediction of soil water retention with the rigid grain matrix include inter-grain porosity, as well as maximum and minimum grain sizes. The comparison between measured and predicted sand water retention curves for four different sands is promising.

  6. Influence of crop residues on trifluralin mineralization in a silty clay loam soil.

    Science.gov (United States)

    Farenhorst, Annemieke

    2007-01-01

    Trifluralin is typically applied onto crop residues (trash, stubble) at the soil surface, or onto the bare soil surface after the incorporation of crop residues into the soil. The objective of this study was to quantify the effect of the type and amount of crop residues in soil on trifluralin mineralization in a Wellwood silty clay loam soil. Leaves and stubble of Potato (Solanum tuberosum) (P); Canola (Brassica napus) (C), Wheat (Triticum aestivum) (W), Oats (Avena sativa), (O), and Alfalfa (Medicago sativa) (A) were added to soil microcosms at rates of 2%, 4%, 8% and 16% of the total soil weight (25 g). The type and amount of crop residues in soil had little influence on the trifluralin first-order mineralization rate constant, which ranged from 3.57E-03 day(-1) in soil with 16% A to 2.89E-02 day(-1) in soil with 8% W. The cumulative trifluralin mineralization at 113 days ranged from 1.15% in soil with 16% P to 3.21% in soil with 4% C, again demonstrating that the observed differences across the treatments are not of agronomic or environmental importance.

  7. The Influence of Clay on the Rate of Decay of Amino Acid Metabolites Synthesized in Soils during Decomposition of Cellulose

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1975-01-01

    14C-labelled cellulose was added to seven different soils containing silt + clay (particles .... The amounts of labelled amino acid C in the soils were proportional to their content of silt + clay. After 30 days of incubation labelled amino acid C remaining in the soil with the lowest content of silt + clay constituted 6 per cent of the carbon added in cellulose, as compared with 18 per cent in the soil...... with the highest content of silt + clay. These values had decreased to 5 and 13 per cent respectively after 2 years of incubation. The order between the soils in the content of labelled amino acid C established during the first month of incubation, was thus roughly maintained throughout the period of incubation...

  8. Clay Components in Soil Dictate Environmental Stability and Bioavailability of Cervid Prions in Mice

    Science.gov (United States)

    Wyckoff, A. Christy; Kane, Sarah; Lockwood, Krista; Seligman, Jeff; Michel, Brady; Hill, Dana; Ortega, Aimee; Mangalea, Mihnea R.; Telling, Glenn C.; Miller, Michael W.; Vercauteren, Kurt; Zabel, Mark D.

    2016-01-01

    Chronic wasting disease (CWD) affects cervids and is the only known prion disease to affect free-ranging wildlife populations. CWD spread continues unabated, and exact mechanisms of its seemingly facile spread among deer and elk across landscapes in North America remain elusive. Here we confirm that naturally contaminated soil contains infectious CWD prions that can be transmitted to susceptible model organisms. We show that smectite clay content of soil potentiates prion binding capacity of different soil types from CWD endemic and non-endemic areas, likely contributing to environmental stability of bound prions. The smectite clay montmorillonite (Mte) increased prion retention and bioavailability in vivo. Trafficking experiments in live animals fed bound and unbound prions showed that mice retained significantly more Mte-bound than unbound prions. Mte promoted rapid uptake of prions from the stomach to the intestines via enterocytes and M cells, and then to macrophages and eventually CD21+ B cells in Peyer's patches and spleens. These results confirm clay components in soil as an important vector in CWD transmission at both environmental and organismal levels. PMID:27933048

  9. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.

    Science.gov (United States)

    Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C

    2015-01-01

    Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.

  10. Effect of biochar amendment on nitrate retention in a silty clay loam soil

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2016-08-01

    Full Text Available Biochar incorporation into agricultural soils has been proposed as a strategy to decrease nutrient leaching. The present study was designed to assess the effect of biochar on nitrate retention in a silty clay loam soil. Biochar obtained from the pyrogasification of fir wood chips was applied to soil and tested in a range of laboratory sorption experiments. Four soil treatments were considered: soil only (control, soil with 2, 4 and 8% of biochar by mass. The Freundlich sorption isotherm model was used to fit the adsorbed amount of nitrate in the soil-biochar mixtures. The model performed very well in interpreting the experimental data according to a general linear regression (analysis of co-variance statistical approach. Nitrate retention in the soilbiochar mixtures was always higher than control, regardless the NO3 – concentration in the range of 0-400 mg L–1. Different sorption capacities and intensities were detected depending on the biochar application rate. The highest adsorption capacity was observed in the soils added with 2 and 4% of biochar, respectively. From the results obtained is possible to infer that nitrate retention is higher at lower biochar addition rate to soil (2 and 4% and at lower nitrate concentration in the soil water solution. These preliminary laboratory results suggest that biochar addition to a typical Mediterranean agricultural soil could be an effective management option to mitigate nitrate leaching.

  11. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    Science.gov (United States)

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  12. Treatability of TCE-contaminated clay soils at the Rinsewater Impoundment, Michoud Assembly Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, A.J.; Gilbert, V.P.; Hewitt, J.D.; Koran, L.J. Jr.; Jennings, H.L.; Donaldson, T.L.; West, O.R.; Cline, S.R.; Marshall, D.S.

    1995-02-01

    The Oak Ridge National Laboratory has conducted treatability studies on clay soils taken from the Rinsewater Impoundment at the National Aeronautics and Space Administration Michoud Assembly Facility. The soils are contaminated with up to 3000 mg/kg of trichloroethylene and cis-1,2-dichloroethylene, less than 10 mg/kg of trans-1,2-DCE, and less than 10 mg/kg of vinyl chloride. The goal of the study described in this report was to identify and test in situ technologies and/or develop a modified treatment regime to remove or destroy volatile organic compounds from the contaminated clay soils. Much of the work was based upon previous experience with mixed-region vapor stepping and mixed-region peroxidation. Laboratory treatments were performed on intact soil cores that were taken from contaminated areas at the Rinsewater Impoundment at MAF. Treatability studies were conducted on soil that was close to in situ conditions in terms of soil structure and contaminant concentrations.

  13. Diversity of clay minerals in soils of solonetzic complexes in the southeast of Western Siberia

    Science.gov (United States)

    Chizhikova, N. P.; Khitrov, N. B.

    2016-12-01

    Data on the mineralogical composition of clay in soils of solonetzic complexes of the Priobskoe Plateau and the Kulunda and Baraba lowlands have been generalized. The parent materials predominating in these regions have loamy and clayey textures and are characterized by the association of clay minerals represented by dioctahedral and trioctahedral mica-hydromica, chlorite, kaolinite, and a number of irregular interstratifications. They differ in the proportions between the major mineral phases and in the qualitative composition of the minerals. Mica-hydromica and chlorites with a small amount of smectitic phase predominate on the Priobskoe Plateau and in the Kulunda Lowland; in the Baraba Lowland, the portion of mica-smectite interstratifications is higher. An eluvial-illuvial distribution of clay fraction in solonetzes is accompanied by the acid-alkaline destruction and lessivage of clay minerals, including the smectitic phase in the superdispersed state. This results in the strong transformation of the mineralogical composition of the upper (suprasolonetzic) horizons and in the enrichment of the solonetzic horizons with the products of mineral destruction; superdispersed smectite; and undestroyed particles of hydromica, kaolinite, and chlorite from the suprasolonetzic horizons. A significant decrease in the content of smectitic phase in the surface solodic horizons of solonetzic complexes has different consequences in the studied regions. In the soils of the Priobskoe Plateau and Kulunda Lowland with a relatively low content (10-30%) of smectitic phase represented by chlorite-smectite interstratifications, this phase virtually disappears from the soils (there are only rare cases of its preservation). In the soils of the Baraba Lowland developed from the parent materials with the high content (30-50%) of smectitic phase represented by mica-smectite interstratifications, the similar decrease (by 10-20%) in the content of smectitic phase does not result in its

  14. Comparison of revegetation techniques on mineral clay soil: analysis of quantitative response of vegetation cover

    Directory of Open Access Journals (Sweden)

    Enrico Muzzi

    2016-08-01

    Full Text Available Revegetation of mineral-clay soils is a notably complex ecological and technically challenging undertaking that depends on substrate profile and local micro-environmental conditions, factors making it a particularly long procedure as well. This study compared and assessed the medium-term effectiveness of four treatments employed to promote stable pedogenesis and herbaceous recolonisation of abandoned clay quarries in the Apennine foothills of northern Italy’s Emilia- Romagna region. The treatments included: slow-release N organic fertiliser, phosphate fertiliser, organic amendment and topsoil [the soil top layer (0-0.2 m of a local natural meadow]. The state of the vegetative cover was monitored monthly from 1994 through 2004, until problems of slope stability at the site compromised the integrity of the trial plots. Significant effects were achieved by the recycled topsoil through 8 years and by organic amendment through 6 years; the effects of slow-release nitrogen were notably limited over time and phosphorous delivered a medium-term response but of notable year-toyear swings. No interactions among factors emerged in the mediumterm. After 11 years, treatments did not induce effects statistical appreciable. Our results suggest that the tested agronomic strategies on mineral clay soil did not trigger, in the medium-term, secondary succession processes able to potentially alter the spontaneous revegetation course.

  15. Determination of essential and toxic elements in clay soil commonly consumed by pregnant women in Tanzania

    Science.gov (United States)

    Mwalongo, D.; Mohammed, N. K.

    2013-10-01

    A habit of eating clay soil especially among pregnant women is a common practice in Tanzania. This practice known as geophagy might introduce toxic elements in the consumer's body to endanger the health of the mother and her child. Therefore it is very important to have information on the elemental composition of the eaten soil so as to assess the safety nature of the habit. In this study 100 samples of clay soil, which were reported to be originating from five regions in Tanzania and are consumed by pregnant women were analyzed to determine their levels of essential and toxic elements. The analysis was carried out using energy dispersive X-ray fluorescent technique (EDXRF) of Tanzania Atomic Energy Commission, Arusha. Essential elements Fe, Zn, Cu, Se and Mn and toxic elements As, Pb, Co, Ni, U and Th were detected in concentrations above WHO permissible limits in some of the samples. The results from this study show that the habit of eating soil is exposing the pregnant mothers and their children to metal toxicity which is detrimental to their health. Hence, further actions should be taken to discourage the habit of eating soil at all levels.

  16. Impact of clay mineral on air oxidation of PAH-contaminated soils.

    Science.gov (United States)

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

    2014-09-01

    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

  17. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  18. THE EFFECT OF MIXING WITH ORGANIC SOIL ON CHANGES IN SOME PHYSICAL PROPERTIES OF A COMPACTED CLAY LOAM SOIL

    Directory of Open Access Journals (Sweden)

    Abdullah BARAN

    1996-01-01

    Full Text Available In this research, the effect of organic soil on changes in total pore space, aeration porosity, available water content and hydraulic conductivity of a compacted clay loam were investigated. By adding organic soil at rates of 0 %, 1 %, 2 % and 4 % to soil, mixtures were compacted at compaction levels of 0 kg/cm2, 0.21 kg/cm2, 1.98 kg/cm2 and 3.95 kg/cm2 Some physical properties of compacted soil were determined. Compaction decreased total pore space, areation porosity, available water content and hydraulic conductivity, but in samples with the mixing rate of 4 %, all properties inspected were affected positively in all compaction levels, except available water content

  19. Ammonia transformations and abundance of ammonia oxidizers in a clay soil underlying a manure pond.

    Science.gov (United States)

    Sher, Yonatan; Baram, Shahar; Dahan, Ofer; Ronen, Zeev; Nejidat, Ali

    2012-07-01

    Unlined manure ponds are constructed on clay soil worldwide to manage farm waste. Seepage of ammonia-rich liquor into underlying soil layers contributes to groundwater contamination by nitrate. To identify the possible processes that lead to the production of nitrate from ammonia in this oxygen-limited environment, we studied the diversity and abundance of ammonia-transforming microorganisms under an unlined manure pond. The numbers of ammonia-oxidizing bacteria and anammox bacteria were most abundant in the top of the soil profile and decreased significantly with depth (0.5 m), correlating with soil pore-water ammonia concentrations and soil ammonia concentrations, respectively. On the other hand, the numbers of ammonia-oxidizing archaea were relatively constant throughout the soil profile (10(7) amoA copies per g(soil)). Nitrite-oxidizing bacteria were detected mainly in the top 0.2 m. The results suggest that nitrate accumulation in the vadose zone under the manure pond could be the result of complete aerobic nitrification (ammonia oxidation to nitrate) and could exist as a byproduct of anammox activity. While the majority of the nitrogen was removed within the 0.5-m soil section, possibly by combined anammox and heterotrophic denitrification, a fraction of the produced nitrate leached into the groundwater.

  20. Smectite clays in Mars soil - Evidence for their presence and role in Viking biology experimental results

    Science.gov (United States)

    Banin, A.; Rishpon, J.

    1979-01-01

    Evidence for the presence of smectite clays in Martian soils is reviewed and results of experiments with certain active clays simulating the Viking biology experiments are reported. Analyses of Martian soil composition by means of X-ray fluorescence spectrometry and dust storm spectroscopy and Martian geological history strongly suggest the presence of a mixture of weathered ferro-silicate minerals, mainly nontronite and montmorillonite, accompanied by soluble sulphate salts, as major constituents. Samples of montmorillonite and nontronite incubated with (C-14)-formate or the radioactive nutrient medium solution used in the Viking Labeled Release experiment, were found to produce patterns of release of radioactive gas very similar to those observed in the Viking experiments, indicating the iron-catalyzed decomposition of formate as the reaction responsible for the Viking results. The experimental results of Hubbard (1979) simulating the results of the Viking Pyrolytic Release experiment using iron montmorillonites are pointed out, and it is concluded that many of the results of the Viking biology experiments can be explained in terms of the surface activity of smectite clays in catalysis and adsorption.

  1. Effects of Humic Acid and Solution pH on Dispersion of Na—and Ca—Soil Clays

    Institute of Scientific and Technical Information of China (English)

    LANYEQING; HUQIONGYING; 等

    1996-01-01

    Dispersed soil clays have a negative impact on soil structure and contribute to soil erosion and contaminant movement.In this study,two typical soils from the south of China were chosen for investigating roles of pH and humic acid(HA) on dispersion of soil clays.Critical flocculation concentration (CFC) of the soil clay suspension was determined by using light transmission at a wavelength of 600 nm.The results indicated that effects of pH and HA on dispersion of the soil clays were closely related to the type of the major minerals makin up the soil and to the valence of the exchangeable cations as well.At four rates of pH(4,6,8and 10),the CFC for the Na-yellow-brown soil treated with H2O2 was increased from 0.32 to 0.56,6.0 to 14.0,10.0 to 24.6 and 26.0 to 52.0mmol L-1 NaCl,respectively when Na-HA was added at the rate of from 0 to 40mgL-1,With the same Na-HA addition and three pH(6,8and 10)treatments,the CFC for the Na-red soil was incresed from 0.5 to 20.0,1.0 to 40.0 and 6.0 to 141.0mmol L-1 NaCl,respectively.Obviously,pH and HA has greater effects on clay dispersion of the red soil(dominated by 1:1 minerals and oxides) than on that of the yellow-brown soil(dominated by 2:1minerals).However,at three rates of pH(6,8and 10) and with the addition of Ca-HA from 0 to 40mg L-1,the CFC of the Ca-yellow-brown soil and Ca-red soil treated with H2O2 was increased from 0.55 to 0.81,0.75 to 1.28,0.55 to 1.45and 0.038 to 0.266.0.25 to 0.62,0.7to 1.6mmol CaCl2 L-1,respectively.So,Na-soil claye are more sensitive to pH and HA than Ca-soil clays.

  2. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation

    Science.gov (United States)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick

    2014-05-01

    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  3. Study of Various Techniques for Improving Weak and Compressible Clay Soil under a High Earth Embankment

    Directory of Open Access Journals (Sweden)

    Zein A.K. M.

    2014-04-01

    Full Text Available This paper investigates the suitability of three soil improvement techniques for the construction of a high earth embankment on thick weak and highly compressible clay soil. The eastern approach embankment of Alhalfaya Bridge on the River Nile linking Khartoum North and Omdurman cities was chosen as a case study and a comprehensive site investigation program was carried out to determine the properties the subsurface soils. The study results showed that unless the subsurface soils have been improved they may fail or undergo excessively large settlements due to the embankment construction. Three ground improvement techniques based on the principles of the “staged construction method, SCM”, “vertical sand drain, VSD” and “sand compaction piles, SCP” of embankment foundation soil treatment are discussed and evaluated. Embankment design options based on applications of the above methods have been proposed for foundation treatment to adequately support embankment loads. A method performance evaluation based on the improvement of soil properties achieved; the time required for construction and compared estimated costs criteria was made to assess the effectiveness and expected overall performance. Adoption of any of the soil improvement techniques considered depends mainly on the most critical and decisive factor governing the embankment design. Based on the overall performance for the embankment case studied, the sand drains is considered as the most appropriate improvement method followed by the sand compaction piles technique whereas the staged construction method showed the poorest overall performance.

  4. Construction and validation of two metagenomic DNA libraries from Cerrado soil with high clay content.

    Science.gov (United States)

    de Castro, Alinne Pereira; Quirino, Betania Ferraz; Allen, Heather; Williamson, Lynn L; Handelsman, Jo; Krüger, Ricardo Henrique

    2011-11-01

    A challenge of metagenomic studies is in the extraction and purification of DNA from environmental samples. The soils of the Cerrado region of Brazil present several technical difficulties to DNA extraction: high clay content (>55% w/w), low pH (4.7) and high iron levels (146 ppm). Here we describe for the first time the efficient recovery and purification of microbial DNA associated with these unusual soil characteristics and the construction and validation of two metagenomic libraries: a 150,000 clones library with insert size of approximately 8 kb and a 65,000 clones library with insert size of approximately 35 kb. The construction of these metagenomic libraries will allow the biotechnological exploitation of the microbial community present in the soil from this endangered biome.

  5. Clay content prediction using on-the-go proximal soil sensor fusion

    DEFF Research Database (Denmark)

    Tabatabai, Salman; Knadel, Maria; Greve, Mogens Humlekrog

    least squares regression (PLSR) and support vector machines regression (SVMR) were performed using VNIR spectra, EC and soil temperature as predictors and clay content as the response variable. PLSR and SVMR models were validated using full and 20-segment cross-validation respectively. The results were......There is a growing demand for high quality and reliable data on different soil constituents and properties in different scales. Research in the past decade has shown that traditional soil sampling cannot supply for this demand. Modern methods such as visible-near infrared (VNIR) and mid...... in different regions in Denmark. 125 calibration samples were collected from the points found by clustering the principal components (PC) of the spectra. Several pretreatments such as mean-centering, auto-scaling, spectral transformations and removal of faulty measurements were performed on the data. Partial...

  6. The Adsorption Capacity and Geotechnical Properties of Modified Clay Containing SSA Used as Landfill Liner-Soil Materials

    Directory of Open Access Journals (Sweden)

    Haijun Lu

    2015-01-01

    Full Text Available The potential of clay containing 0~5% sewage sludge ash (SSA is assessed for use as a landfill liner-soil material. Low temperature N2 adsorption, batch adsorption, permeability, and unconfined compressive strength tests are performed to evaluate pore structure, adsorption capacity, hydraulic conductivity, and unconfined compressive strength of the clays. The pore size distribution of the modified clay containing SSA is mainly composed of micropores (<2 nm and mesopores (2~7 nm. With the increasing of SSA from 0% to 5%, the adsorption capacity of Zn(II and Cu(II to the clay increases 37% and 273%, respectively. The hydraulic conductivity of modified clay is from 3.62 × 10−8 to 2.17 × 10−8 cm/s. At SSA = 3%, the unconfined compressive strength of the clay reaches the maximum value of 601.1 kPa. After the clay containing SSA is contaminated by acid and alkali chemical solutions, the amount of mesopores and hydraulic conductivity increase. The adsorption capacity and unconfined compressive strength of contaminated clay decrease about 2∼44% and 25.7∼38.2%, respectively. The modified clay containing SSA can meet the adsorption and geotechnical requirement of landfill liners.

  7. Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals.

    Science.gov (United States)

    Droge, Steven T J; Goss, Kai-Uwe

    2013-12-17

    This study evaluates a newly proposed cation-exchange model that defines the sorption of organic cations to soil as a summed contribution of sorption to organic matter (OM) and sorption to phyllosilicate clay minerals. Sorption to OM is normalized to the fraction organic carbon (fOC), and sorption to clay is normalized to the estimated cation-exchange capacity attributed to clay minerals (CECCLAY). Sorption affinity is specified to a fixed medium composition, with correction factors for other electrolyte concentrations. The model applies measured sorption coefficients to one reference OM material and one clay mineral. If measured values are absent, then empirical relationships are available on the basis of molecular volume and amine type in combination with corrective increments for specific polar moieties. The model is tested using new sorption data generated at pH 6 for two Eurosoils, one enriched in clay and the other, OM, using 29 strong bases (pKa > 8). Using experimental data on reference materials for all tested compounds, model predictions for the two soils differed on average by only -0.1 ± 0.4 log units from measured sorption affinities. Within the chemical applicability domain, the model can also be applied successfully to various reported soil sorption data for organic cations. Particularly for clayish soils, the model shows that sorption of organic cations to clay minerals accounts for more than 90% of the overall affinity.

  8. The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts

    Science.gov (United States)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-12-01

    In this study we evaluated CO2 emissions during composting of green wastes with clay and/or biochar in the presence and absence of worms (species of the genus Eisenia), as well as the effect of those amendments on carbon mineralization after application to soil. We added two different doses of clay, biochar or their mixture to pre-composted green wastes and monitored carbon mineralization over 21 days in the absence or presence of worms. The resulting co-composts and vermicomposts were then added to a loamy Cambisol and the CO2 emissions were monitored over 30 days in a laboratory incubation. Our results indicated that the addition of clay or clay/biochar mixture reduced carbon mineralization during co-composting without worms by up to 44 %. In the presence of worms, CO2 emissions during composting increased for all treatments except for the low clay dose. The effect of the amendments on carbon mineralization after addition to soil was small in the short term. Overall, composts increased OM mineralization, whereas vermicomposts had no effect. The presence of biochar reduced OM mineralization in soil with respect to compost and vermicompost without additives, whereas clay reduced mineralization only in the composts. Our study indicates a significant role of the conditions of composting on mineralization in soil. Therefore, the production of a low CO2 emission amendment requires optimization of feedstocks, co-composting agents and worm species.

  9. Acceptable levels of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) in soils, depending on their clay and humus content and cation-exchange capacity

    NARCIS (Netherlands)

    Haan, de S.; Rethfeld, H.; Driel, van W.

    1985-01-01

    Three sandy soils differing in humus content and three clay soils differing in clay content were supplied with heavy metals to determine which loading rate of each single metal should be regarded as critical from the viewpoint of crop yield and metal content dependent on soil cation exchange capacit

  10. Microwave Acid Extraction to Analyze K and Mg Reserves in the Clay Fraction of Soils

    Directory of Open Access Journals (Sweden)

    Araína Hulmann Batista

    Full Text Available ABSTRACT: Extraction of K and Mg with boiling 1 mol L-1 HNO3 in an open system for predicting K and Mg uptake by plants is a method of low reproducibility. The aim of this study was to compare the extraction capacity of different acid methods relative to hydrofluoric acid extraction for K and Mg. A further objective was to develop a chemical extraction method using a closed system (microwave for nonexchangeable and structural forms of these nutrients in order to replace the traditional method of extraction with boiling HNO3 on a hot plate (open system. The EPA 3051A method can be used to estimate the total content of K in the clay fraction of soils developed from carbonate and phyllite/mica schist rocks. In the clay fraction of soils developed from basalt, recoveries of K by the EPA 3051A (pseudo-total method were higher than for the EPA 3052 (total hydrofluoric extraction method. The relative abundance of K and Mg for soils in carbonate rocks, phyllite/mica schist, granite/gneiss, and basalt determined by aqua regia digestion is unreliable. The method using 1 mol L-1 HNO3 in an closed system (microwave showed potential for replacing the classical method of extraction of nonexchangeable forms of K (boiling 1 mol L-1 HNO3 in an open system - hot plate and reduced the loss of Si by volatilization.

  11. Simulation of water movement and isoproturon behaviour in a heavy clay soil using the MACRO model

    Directory of Open Access Journals (Sweden)

    T. J. Besien

    1997-01-01

    Full Text Available In this paper, the dual-porosity MACRO model has been used to investigate methods of reducing leaching of isoproturon from a structured heavy clay soil. The MACRO model was applied to a pesticide leaching data-set generated from a plot scale experiment on a heavy clay soil at the Oxford University Farm, Wytham, England. The field drain was found to be the most important outflow from the plot in terms of pesticide removal. Therefore, this modelling exercise concentrated on simulating field drain flow. With calibration of field-saturated and micropore saturated hydraulic conductivity, the drain flow hydrographs were simulated during extended periods of above average rainfall, with both the hydrograph shape and peak flows agreeing well. Over the whole field season, the observed drain flow water budget was well simulated. However, the first and second drain flow events after pesticide application were not simulated satisfactorily. This is believed to be due to a poor simulation of evapotranspiration during a period of low rainfall around the pesticide application day. Apart from an initial rapid drop in the observed isoproturon soil residue, the model simulated isoproturon residues during the 100 days after pesticide application reasonably well. Finally, the calibrated model was used to show that changes in agricultural practice (deep ploughing, creating fine consolidated seed beds and organic matter applications could potentially reduce pesticide leaching to surface waters by up to 60%.

  12. Enrichment of trace elements in the clay size fraction of mining soils.

    Science.gov (United States)

    Gomes, Patrícia; Valente, Teresa; Braga, M Amália Sequeira; Grande, J A; de la Torre, M L

    2016-04-01

    Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.

  13. EVALUATION OF THE POSSIBILITY OF ENERGY USE BLACK LOCUST (Robinia pseudoacacia L. DENDROMASS ACQUIRED IN FOREST STANDS GROWING ON CLAY SOILS

    Directory of Open Access Journals (Sweden)

    Artur KRASZKIEWICZ

    2013-03-01

    Full Text Available In this study, in the assessed capacity using for energy purposes dendromass black locust acquired in three forest stands growing on clay soils. It was found that the test conditions black locust grows well in clay soils very rich, and its timber, in terms of energy use, has a desirable physicochemical properties. Whereas the energy of black locust plantations located on clay soils may be an alternative to gain valuable energy resource.

  14. Dialysis experiments for assessing the pH-dependent sorption of sulfonamides to soil clay fractions.

    Science.gov (United States)

    Anskjær, G G; Krogh, K A; Halling-Sørensen, B

    2014-01-01

    Equilibrium dialysis experiments, a novel approach for conducting soil/water distribution experiments in environmental samples, were found to be applicable for assessing pH-dependent partitioning and to quantify the sorption of three sulfonamides, sulfadiazine, sulfadoxine, and sulfacetamide. Clay fractions from two agricultural soils including both particulate and dissolved soil matter were used in the experiments to achieve a high sorption capacity when varying pH in a relevant environmental range. Stabilizing and controlling pH was done by using organic buffers. In two clay fractions, Kd for sulfadiazine was determined to be 43 and 129 L kg(-1), and 1.3 and 4.6 L kg(-1) at pH 4.0 and pH 9.0, respectively. This corresponded to Kd for the neutral and ionized form of sulfadiazine, respectively. The difference in sulfadiazine sorption between the two clay fractions could to some extent be related to the difference in the amount of organic carbon. Sorption experiments with sulfacetamide and sulfadoxine also exhibited decreasing sorption when increasing pH. At low pH, maximum Kd for sulfacetamide and sulfadoxine was determined to be 83 and 211 L kg(-1), respectively, while at high pH minimum Kd was 4.8 and 1.2 L kg(-1), respectively. Hence, compound speciation was important for the quantity of sorbed sulfonamide, which was confirmed by a correlation (R(2)) close to unity, when using the experimentally obtained Kd values with a simple model weighing the contribution from the neutral and the ionized compound, respectively.

  15. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    Science.gov (United States)

    Karup, Dan; Moldrup, Per; Paradelo, Marcos; Katuwal, Sheela; Norgaard, Trine; Greve, Mogens H.; de Jonge, Lis W.

    2016-09-01

    Solute transport through the soil matrix is non-uniform and greatly affected by soil texture, soil structure, and macropore networks. Attempts have been made in previous studies to use infiltration experiments to identify the degree of preferential flow, but these attempts have often been based on small datasets or data collected from literature with differing initial and boundary conditions. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. From six agricultural fields in Denmark, 193 intact surface soil columns 20 cm in height and 20 cm in diameter were collected. The soils exhibited a wide range in texture, with clay and organic carbon (OC) contents ranging from 0.03 to 0.41 and 0.01 to 0.08 kg kg- 1, respectively. All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being near normally distributed to gradually skewed to the right along with an increase in the content of the mineral fines (particles ≤ 50 μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curves (BTCs), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5% and up to 50% of the tracer mass were found to be strongly correlated with volumetric fines content. Predicted tracer concentration breakthrough points as a function of time up to 50% of applied tracer mass could be well fitted to an analytical solution to the classical advection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer

  16. Dynamic compaction treatment technology research of red clay soil embankment in southern mountains

    Institute of Scientific and Technical Information of China (English)

    刘建华; 袁剑波; 熊虎; 陈伟

    2008-01-01

    High liquid limit soil generally adopted in expressway embankment construction of southern mountains, which often expresses some characteristics including high moisture content, high porosity ratio, low permeability, high compressibility, certain disintegration, and so on. Spring soil phenomenon and inhomogeneous compaction have effects on the quality of embankment construction, just because the water in soil is difficult to evaporate. Based on the study of reinforcement mechanism for high liquid limit soil, in situ tests for dynamic compaction treatment in Yizhang-Fengtouling expressway embankment were developed. The reliable and economical dynamic compaction treatment methods and the construction technology for large range high liquid limit soil embankment in southern mountains expressway were discussed. In the process, convenient measurement methods were adopted to evaluate the treatment effects. The test results show that the dynamic compaction method has good treatment effects on the local red clay embankment. The embankment compaction degree is improved with compactness coming to 90% around tamping pits and compactness over 95% in tamping pits interior after tamping. The bearing capacity, the physical mechanic-property and the shear strength for soil are obviously improved, which are enhanced with cohesive strength increasing over 10 kPa and compression modulus increasing over 3 MPa.

  17. Carbon-Nitrogen Relationships during the Humification of Cellulose in Soils Containing Different Amounts of Clay

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1981-01-01

    the 1st mo. of incubation at temperatures of 10, 20 and 30.degree. C, respectively, 38-65% of the labeled C added in cellulose had disappeared from the soils as CO2, and 60-nearly 100% of the labeled N added as NH4+ were incorporated into organic forms. The retention of total labeled C was largest....... Some of the labeled organic N when mineralized was re-incorporated into organic compounds containing increasing proportions of native soil-C, whereas labeled C when mineralized as CO2 disappeared from the soils. The amount of labeled amino acid-C, formed during decomposition of the labeled cellulose......14C-labeled cellulose and 15N-labeled (NH4)2SO4 were added to 4 soils with clay contents of 4, 11, 18 and 34%, respectively. Labeled cellulose was added to each soil in amounts corresponding to 1, 2 and 4 mg Cg-1 soil, respectively, and labeled NH4+ at the rate of 1 mg N/25 mg labeled C. After...

  18. Prediction of clay content from water vapour sorption isotherms considering hysteresis and soil organic matter content

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    vapour sorption, which can be measured within a shorter period of time, have recently been developed. Such models are often based on single-point measurements of water adsorption and do not account for sorption hysteresis or organic matter content. The present study introduces regression relationships...... for estimating clay content from hygroscopic water at different relative humidity (RH) levels while considering hysteresis and organic matter content. Continuous adsorption/desorption vapour sorption isotherm loops were measured for 150 differently textured soils with a state-of-the-art vapour sorption analyser...

  19. Different Behavior of Enteric Bacteria and Viruses in Clay and Sandy Soils after Biofertilization with Swine Digestate

    Science.gov (United States)

    Fongaro, Gislaine; García-González, María C.; Hernández, Marta; Kunz, Airton; Barardi, Célia R. M.; Rodríguez-Lázaro, David

    2017-01-01

    Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling. PMID:28197137

  20. Risk assessment of gas oil and kerosene contamination on some properties of silty clay soil.

    Science.gov (United States)

    Fallah, M; Shabanpor, M; Zakerinia, M; Ebrahimi, S

    2015-07-01

    Soil and ground water resource pollution by petroleum compounds and chemical solvents has multiple negative environmental impacts. The aim of this research was to investigate the impacts of kerosene and gas oil pollutants on some physical and chemical properties, breakthrough curve (BTC), and water retention curve (SWRC) of silty clay soil during a 3-month period. Therefore, some water-saturated soils were artificially contaminated in the pulse condition inside some glassy cylinders by applying half and one pore volume of these pollutants, and then parametric investigations of the SWRC were performed using RETC software for Van Genukhten and Brooks-Corey equations in the various suctions and the soil properties were determined before and after pollution during 3 months. The results showed that gas oil and kerosene had a slight effect on soil pH and caused the cumulative enhancement in the soil respiration, increase in the bulk density and organic matter, and reduction in the soil porosity and electrical and saturated hydraulic conductivity. Furthermore, gas oil retention was significantly more than kerosene (almost 40%) in the soil. The survey of SWRC indicated that the contaminated soil samples had a little higher amount of moisture retention (just under 15% in most cases) compared to the unpolluted ones during this 3-month period. The parametric analysis of SWRC demonstrated an increase in the saturated water content, Θ s, from nearly 49% in the control sample to just under 53% in the polluted ones. Contaminants not only decreased the residual water content, Θ r, but also reduced the SWRC gradient, n, and amount of α parameter. The evaluation of both equations revealed more accurate prediction of SWRC's parameters by Van Genukhten compared to those of Brooks and Corey.

  1. Irrigation with saline-sodic water: effects on two clay soils

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2013-05-01

    Full Text Available The results of a 4-year experiment aimed at evaluating the effect of irrigation with saline-sodic water on the soil are reported. The research was carried out at the Campus of the Agricultural Faculty of Bari University (Italy on 2 clay soils (Bologna – T1 and Locorotondo – T2. The soils were cropped to borlotto bean (Phaseolus vulgaris L., capsicum (Capsicum annuum L., sunflower (Helianthus annuus L., wheat (Triticum durum Desf grown in succession; the crops were irrigated with 9 saline-sodic types of water and subjected to two different leaching fractions (10% and 20% of the watering volume. The 9 solutions were obtained dissolving in de-ionised water weighted amounts of sodium chloride (NaCl and calcium chloride (CaCl2, deriving from the combination of 3 saline concentrations and 3 sodicity levels. The crops were irrigated whenever the water lost by evapotranspiration from the soil contained in the pots was equal to 30% of the soil maximum available water. The results showed that, though the soils were leached during the watering period, they showed a high salt accumulation. Consequently, the saturated soil extract electrical conductivity increased from initial values of 0.65 and 0.68 dS m-1 to 11.24 and 13.61 dS m-1 at the end of the experiment, for the soils T1 and T2, respectively. The saline concentration increase in irrigation water caused in both soils a progressive increase in exchangeable sodium, and a decrease in exchangeable calcium and non-significant variations in exchangeable potassium (K and magnesium (Mg.

  2. Measurements of the streaming potential of clay soils from tropical and subtropical regions using self-made apparatus.

    Science.gov (United States)

    Li, Zhong-Yi; Li, Jiu-Yu; Liu, Yuan; Xu, Ren-Kou

    2014-09-01

    The streaming potential has been wildly used in charged parallel plates, capillaries, and porous media. However, there have been few studies involving the ζ potential of clay soils based on streaming potential measurements. A laboratory apparatus was developed in this study to measure the streaming potential (ΔE) of bulk clay soils' coupling coefficient (C) and cell resistance (R) of saturated granular soil samples. Excellent linearity of ΔE versus liquid pressure (ΔP) ensured the validity of measurements. The obtained parameters of C and R can be used to calculate the ζ potential of bulk soils. The results indicated that the ζ potentials measured by streaming potential method were significantly correlated with the ζ potentials of soil colloids determined by electrophoresis (r (2) = 0.960**). Therefore, the streaming potential method can be used to study the ζ potentials of bulk clay soils. The absolute values of the ζ potentials of four soils followed the order: Ultisol from Jiangxi > Ultisol from Anhui > Oxisol from Guangdong > Oxisol from Hainan, and this was consistent with the cation exchange capacities of these soils. The type and concentration of electrolytes affected soil ζ potentials. The ζ potential became less negative with increased electrolyte concentration. The ζ potentials were more negative in monovalent than in divalent cationic electrolyte solutions because more divalent cations were distributed in the shear plane of the diffuse layer as counter-cations on the soil surfaces than monovalent cations at the same electrolyte concentration.

  3. Interactions of Cations with Electrodialyzed Clay Fraction of Soils as Inferred from Wien Effect in Soil Suspensions

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrical conductivities (ECs) of suspensions containing 25 and 30 g kg-1 solids prepared from theelectrodialyzed clay fraction (< 2 μm in diameter) of latosol, yellow-brown soil, and black soil, dispersed invarious nitrate solutions having concentrations of 1 × 10-4/z mol L-1, where z is the valence, and in distilledwater, were measured at field strengths ranging from 14 kV cm-1 to 210 kV cm-1. On the basis of analysesof the charge density and exchangeable ion composition on the surfaces of soil particles in the suspensions,and of the characters of the EC-field strength curves of the various suspensions, it was inferred that theincrement of EC (△EC) and/or relative electrical conductivity (REC) can indicate the bonding strengthbetween cations and soil particles. The bonding strengths of various cations with the soils diminished in theorder: K+ > Zn2+ > Mg2+ = Ca2+ > Na+ for latosol, Ca2+ > Zn2+ > Mg2+ = K+ > Na+ for yellow-brownsoil, and Zn2+ >Ca2+ > Mg2+ > K+ > Na+ for black soil.

  4. Influence of tebuconazole and copper hydroxide on phosphatase and urease activities in red sandy loam and black clay soils

    OpenAIRE

    B. Anuradha; Rekhapadmini, A.; Rangaswamy, V.

    2016-01-01

    The efficacy of two selected fungicides i.e., tebuconazole and coppoer hydroxide, was conducted experiments in laboratory and copper hydroxide on the two specific enzymes phosphatase and urease were determined in two different soil samples (red sandy loam and black clay soils) of groundnut (Arachis hypogaea L.) from cultivated fields of Anantapuramu District, Andhra Pradesh. The activities of the selected soil enzymes were determined by incubating the selected fungicides-treated (1.0, 2.5, 5....

  5. Microorganism-induced weathering of clay minerals in a hydromorphic soil

    Science.gov (United States)

    Hong, Hanlie; Fang, Qian; Cheng, Liuling; Wang, Chaowen; Churchman, Gordon Jock

    2016-07-01

    In order to improve the understanding of factors influencing weathering in hydromorphic soils, the clay mineral and chemical compositions, iron (hydr)oxides, organic compounds, and Sr and Nd isotopic compositions, of hydromorphic soils on the banks of the Liangzi Lake, Hubei province, south China, were investigated. The B horizon in the lower profile exhibits a distinct net-like pattern, with abundant short white veins within the red-brown matrix. Their various 87Sr/86Sr and 143Nd/144Nd isotopic compositions showed only small variations of 0.7270-0.7235 and 0.51200-0.51204, respectively, consistent with the composition of Yangtze River sediments, indicating that the soils were all derived from alluvium from the catchment. The white veins contained notably more SiO2, Al2O3, TiO2, and mobile elements relative to the red-brown matrix, while they both showed similar values for the chemical index of alteration of 86.7 and 87.1, respectively, and displayed similar degrees of weathering. The clay minerals in A, AE, and E horizons of the soil profile were illite, kaolinite, and mixed-layer illite-smectite. These same three clay minerals comprised the white net-like veins in the soil B horizon, whereas only illite and kaolinite were observed in the red-brown matrix. Iron (hydr)oxides in A, AE, and E horizons of the soil profile were hematite and goethite, whereas in the red-brown matrix of the B horizon they were hematite, goethite, and ferrihydrite. Different organic compounds were observed for the white vein and the red-brown matrix in the soil B horizon: an 18:2 fatty acid biomarker for fungi in the net-like vein, but not in the red-brown matrix. Compared with the red-brown matrix, the white net-like vein also clearly contained more mono-unsaturated fatty acids, which are sometimes associated with bacteria that have the capacity to reduce Fe(III). Thus, migration of iron and the formation of the net-like veins involved the participation of biota during the hydromorphic

  6. Clay and Soil Photolysis of the Pesticides Mesotrione and Metsulfuron Methyl

    Directory of Open Access Journals (Sweden)

    Marie Siampiringue

    2014-01-01

    Full Text Available Photolysis may represent an important degradation process of pollutants at the surface of soil. In the present work, we report a detailed study on the degradation of two pesticides: mesotrione and metsulfuron methyl using a sunlight simulator. In a first step, we studied the photochemical behaviour at the surface of clays from the kinetic as well as from the analytical point of view. In both cases, the quantum yields were found to be higher when compared to those obtained in aqueous solutions. The effect of iron(III, water, and humic substances contents was studied. In the former cases, an increase of the degradation rate was observed while an inhibition was observed with the latter owing to a filter effect phenomenon. In a second step, we studied the photodegradation at the surface of natural soil and identified the generated byproducts. They appear to mainly arise from photohydrolysis process.

  7. Water movement and isoproturon behaviour in a drained heavy clay soil: 1. Preferential flow processes

    Science.gov (United States)

    Haria, A. H.; Johnson, A. C.; Bell, J. P.; Batchelor, C. H.

    1994-12-01

    The processes and mechanisms that control pesticide transport from drained heavy clay catchments are being studied at Wytham Farm (Oxford University) in southern England. In the first field season field-drain water contained high concentrations of pesticide. Soil studies demonstrated that the main mechanism for pesticide translocation was by preferential flow processes, both over the soil surface and through the soil profile via a macropore system that effectively by-passed the soil matrix. This macropore system included worm holes, shrinkage cracks and cracks resulting from ploughing. Rainfall events in early winter rapidly created a layer of saturation in the A horizon perched above a B horizon of very low hydraulic conductivity. Drain flow was initiated when the saturated layer in the A horizon extended into the upper 0.06m of the soil profile; thereafter water moved down slope via horizontal macropores possibly through a band of incorporated straw residues. These horizontal pathways for water movement connected with the fracture system of the mole drains, thus feeding the drains. Overland flow occurred infrequently during the season.

  8. Degradation of the pesticide carbofuran on clay and soil surfaces upon sunlight exposure.

    Science.gov (United States)

    Mountacer, H; Atifi, A; Wong-Wah-Chung, P; Sarakha, M

    2014-03-01

    In the present study, the photolysis of carbofuran has been undertaken under sunlight conditions and at the surface of model supports such as clay films and different soils collected from two different sites in Morocco (Tirs and Dahs). In all conditions, an efficient degradation occurred owing to direct light absorption and also to photoinduced processes involving either clays or natural organic matter moities. On kaolin films, the photodegradation kinetics appears to follow a first-order process that clearly depends on the film thickness. The diffusion of carbofuran from the lower part to the illuminated surface was found to be negligible when compared to the photolysis process within the range of 20-70 μm. Thus, the photolysis rate constant at the surface of the solid support, k (0), was evaluated to be 7.0 × 10(-3) min(-1). Under these experimental conditions, the quantum yield was found equal to 2.1 × 10(-4). On soil surfaces, the disappearance rate constant was mainly attributed to photoinduced processes arising from natural organic matter. From the analytical point of view, the products were formed through (1) hydroxylation on the aromatic ring, (2) homolytic scission of the carbamate C-O bond leading to radical species formation, and (3) photohydrolysis of the carbamate C-O bond.

  9. Influence of Hillside Gradient on Forest Road Cross Section Components in a Loamy Clay Soil

    Directory of Open Access Journals (Sweden)

    Aidin Parsakhoo

    2009-01-01

    Full Text Available Problem statement: In this study to evaluate the effects of hillside gradient on forest road cross section components in a loamy clay soil the amount of cut and fill slopes gradient and length, road bed and earthwork width were taken on tangent sections in a lat talar forest roads of Iran. Approach: The objective of this study were: (i to evaluate the direct effects of hillside gradient on cross section components such as cut and fill slopes, road bed and earthwork width in a loamy clay soil, (ii to use the model to predict the effect of hillside gradient on cross section components. Results: Results indicated that the regression analysis between hillside gradient and cut slope length had a significant linear relationship (p2 = 0.60. The equation for the calculation of earthwork width (Y from hillside gradient was Y = 4.928+0.132 X (R2 = 0.44. A significant linear relationship (p Conclusion: Through analysis of variance it was also found that the hillside gradient had a significant influence (p<0.0001 on the cross section components.

  10. Leaching of trifluralin, metolachlor, and metribuzin in a clay loam soil of Louisiana.

    Science.gov (United States)

    Kim, Jung-Ho; Feagley, Sam E

    2002-09-01

    Trifluralin[2,6-dinitro-N,N-dipropyl-4-(trifluormethyl)benzenamine], metolachlor[2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide], and metribuzin[4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)one] were applied in field plots located on a Commerce clay loam soil near Baton Rouge, Louisiana at the rate of 1683 g/ha, 2759 g/ha and 609 g/ha, respectively. The half-lives of trifluralin, metolachlor, and metribuzin in the top 0-15 cm soil depth were found to be 54.7 days, 35.8 days and 29.8 days, respectively. The proportion of trifluralin, metolachlor, and metribuzin in the top 0-15 cm soil depth was 94.7%, 86.6%, and 75.4%, respectively of that found in the top 0-60 cm soil depth 30 days after application. Trifluralin concentrations were within a range of 0.026 ng/mL to 0.058 ng/mL in 1 m deep well water, and between 0.007 ng/mL and 0.039 ng/mL in 2 m deep well water over a 62 day period after application. Metolachlor concentrations in the 1 m and 2 m wells ranged from 3.62 ng/mL to 82.32 ng/mL and 8.44 ng/mL to 15.53 ng/mL, respectively. Whereas metribuzin concentrations in the 1 m and 2 m wells ranged from 0.70 ng/mL to 27.75 ng/mL and 1.71 ng/mL to 3.83 ng/mL, respectively. Accordingly, trifluralin was found to be strongly adsorbed on the soil and showed negligible leaching. Although metolachlor and metribuzin were also both readily adsorbed on the soil, their leaching potential was high. As a result, in the clay loam soil studied, metribuzin concentration in groundwater with shallow aquifers is likely to exceed the 10 mg/L US Environmental Protection Agency (EPA) advisory level for drinking water early in the application season, whereas trifluralin and metolachlor concentrations are expected to remain substantially lower than their respective 2 ng/mL and 175 ng/mL EPA advisory levels.

  11. Comparing predictive abilities of three visible-near infrared spectrophotometers for soil organic carbon and clay determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Stenberg, Bo; Deng, Fan;

    2013-01-01

    -NIRS sensors for soil characterization. There is a need for more work on the effects of scanning strategies, and use of different soil instrumentation. We compared three vis-NIR sensors with varying resolution, signal-to-noise ratios and spectral range. Their performance was evaluated based on soil organic...... carbon (SOC) and clay calibrations for 194 Danish top soils. Scanning procedures for the three spectrophotometers where done according to uniform laboratory protocols. SOC and clay calibrations were performed using PLS regression. One third of the data was used as an independent test set. A range......Due to advances in optical technology a wide range of spectrometers is available. Recent interests in soil global libraries and sensor fusion presents a challenge with respect to combining data from different instrumentation. Only little research, however, has been done on the comparison of vis...

  12. Interface Shear Strength of Geosynthetic Clay Liner (GCL and Residual Soil

    Directory of Open Access Journals (Sweden)

    Mohd Izzuddin Zaini

    2012-01-01

    Full Text Available In this study, direct shear box with dimension of 100 mm x 100 mm was used to determine interface shear strength of a GCL and compacted residual soil at optimum moisture content. The tests were carried out using dry GCL sample at shearing rate of 0.5 mm/min. Normal stresses used were between 100 kPa to 300 kPa to represent the depth of 20 meters of solid waste (15 kN/m3. The needle-punched GCL was tested for both sides, woven and non-woven. Results showed that the residual soil, classified as CL according to the Unified Soil Classification System (USCS with a hydraulic conductivity of 7.05 to 5.54 x 10-9 m/s, was suitable to be used as compacted clay liner (CCL. Test results on the interface shear strength of woven and non-woven GCL with residual soil in terms of internal friction angle were 33° and 37°, respectively.

  13. Clay mineralogical evidence of a bioclimatically-affected soil, Rouge River basin, South-Central Ontario, Canada

    Science.gov (United States)

    Mahaney, W. C.

    2015-01-01

    Holocene soils in drainage basins of South-Central Ontario, Canada, are generally Fluvisols (Entisols) in floodplains transitioning to Brunisols (Inceptisols), Luvisols (Alfisols) and Podzols (Spodosols) in older terraces and in the glaciated tableland. A single landslide sourced from the highest fluvial terrace in the Rouge basin, with a rubble drop of ~ 12 m emplaced a lobe-shaped mass of reworked stream gravel, glaciolacustrine sediment and till, emplaced approximately 6 m above mean water level at a height roughly equivalent to previously dated mid-Holocene terraces and soils. Clay mineralogy of the soil formed in this transported regolith produced the usual semi-detrital/pedogenic distribution of 1:1 (Si:Al = 1:1), 2:1 and 2:1:1 clay minerals as well as primary minerals consisting of plagioclase feldspar, quartz, mica and calcite. Unexpectedly, the presence of moderate amounts of Ca-smectite in the Bk and Ck horizons, relative to a clay-mineral depleted parent material (Cuk), argues for a soil hydrological change affecting the wetting depth in the deposit. The presence of the uncommon 'maidenhair fern' (Adiantum pedantum) in the mass wasted deposit, a plant capable of high evapotranspiration, is interpreted as producing a bioclimatic disruption limiting soil water penetration to near root depth (wetting depth), thus producing a clay mineral anomaly.

  14. Light-assisted decomposition of dyes over iron-bearing soil clays in the presence of H2O2.

    Science.gov (United States)

    Wang, Zhaohui; Ma, Wanhong; Chen, Chuncheng; Zhao, Jincai

    2009-09-15

    Four types of soil clays from different sites in China have been chosen to simulate chemical remediation of soils contaminated with dyes by light-assisted Fenton-like method. X-Ray diffraction (XRD), X-ray photoelectron spectroscopic (XPS) and electron spin resonance (ESR) measurements indicated that these soil clays contain iron oxides such as magnetite and hematite, where nondistorted iron active sites (ESR spectra, g=2.3) predominate. Upon visible or UV irradiation, the soil clays were very effective for the degradation of nonbiodegradable cationic dyes such as Rhodamine B (RhB) by activating H(2)O(2) at neutral pH. The photodegradation rates of RhB were closely related to total Fe content in clays and H(2)O(2) dosage, indicating the mineral-catalyzed Fenton-like reactions operated. Soil organic matters (SOM) would remarkably inhibit the photodecomposition of RhB dye. The reaction products were some low-molecular-weight dicarboxylic acids and their derivatives, all of which are easily biodegradable. A possible mechanism was proposed based on the results obtained by spin-trapping ESR technique.

  15. Impact of Long-Term Alfalfa Cropping on Soil Potassium Content and Clay Minerals in a Semi-Arid Loess Soil in China

    Institute of Scientific and Technical Information of China (English)

    LI De-Cheng; B. VELDE; LI Feng-Min; ZHANG Gan-Lin; ZHAO Ming-Song; HUANG Lai-Ming

    2011-01-01

    Alfalfa cropping has been considered an efficient method of increasing soil fertility.Usually nitrogen increase in root nodules is considered to be the major beneficial effect.A 21-year time series (five sampling periods) of alfalfa cultivation plots on a loess soil,initially containing illite and chlorite,in Lanzhou of northwestern China was selected to investigate the relationships among alfalfa cropping,soil potassium (K) content and soil clay minerals.The results indicated that soil K significantly accumulated after cropping,with a peak value at about 15 years,and decreased afterwards.The accumulated K was associated with the K increase in the well-crystallized illite,which was not extracted by the traditional laboratory K extraction methods in assessing bioavailability.The steep decline in soil K content after 15-year cropping was in accord with the observed fertility loss in the alfalfa soil.Plant biomass productivity peaked at near 9 years of culture,whereas soil K and clay minerals continued to increase until cropping for 15 years.This suggested that K increased in the topsoil came from the deep root zone.Thus alfalfa continued to store K in clays even after peak production occurred.Nitrogen did not follow these trends,showing a general decline compared with the native prairie soils that had not been cropped.Therefore,the traditional alfalfa cropping can increase K content in the topsoil.

  16. THE EFFECT OF P-NITROCHLOROBENZENE ON HOMEOSTASIS QUANTITATIVE PARAMETERS OF KARST CAVE CLAYS AND ECUADOR SOILS MICROBIAL COMMUNITIES.

    Science.gov (United States)

    Tashyrev, O B; Suslova, O S; Rokitko, P V

    2015-01-01

    In this paper it was given the effect of p-nitrochlorobenzene (NCB) on the homeostasis quantitative parameters of cave clays microbial communities from Western Ukraine and Abkhazia (Mushkarova Yama, Kuybushevskaya) and soils of Ecuador tropical ecosystems. For these microbial communities were determined maximum permissible concentrations and types of responses on xenobiotic. Microbial communities of Mushkarova Yama cave clays and rainforest soils of Ecuador were characterized by the first type of response. Microbial communities of Kuybushevskaya clays and mountain jungles of Ecuador were characterized by the second type of response. Maximum permissible concentration of NCB for Mushkarova Yama was 200 mg/l, for the other studied microbial communities--300 mg/l. It was shown, that microbial communities were not only highly resistant to NCB but also interacted with it by destroying this xenobiotic and decreasing its concentration in 4 times.

  17. OPTIMIZATION OF A CALCULATION METHOD FOR PILEWORK PROTECTIVE STRUCTURES "STREAMLINED" BY LANDSLIDE CLAY SOILS

    Directory of Open Access Journals (Sweden)

    Leyer D. V.

    2016-05-01

    Full Text Available Expansion and increasing of the Krasnodar region transport infrastructure during the construction of the Olympic facilities together with the new land development created a necessity for construction in the remote areas of landslide slopes with the complex engineering-geological conditions. Constructions of bored piles, jammed by in nondisplaceable soil are often used as one of the measures for the protection of surface rocks landslide movement and tightening the slope weak sections. Such constructive solution is often being considered the best, and sometimes the only acceptable solution. When designing engineering protection it is recommended to consider the use of a number of active protection activities, aimed at the landslide processes stabilization. However, in case of construction production impossibility due to terms of organization, it is necessary to provide passive protection which would secure that the landslide streamlines the construction. Currently, the mechanism of the soil landslides interaction with constructions of detached objects spot protection isn’t studied enough. Known methods adopt simplifications and assumptions which lead to definite significant errors in the design of slope protection structures. Security and reliability of such structures can only be achieved with the adoption of high factor of safety values. This leads to increased material consumption and labor input for the erection of defensive structures also reduces the economic efficiency of these structures. In addition the process of designing protective structures in the Krasnodar region is further complicated by fact that the landslide of construction area is mainly folded by flowing clay soils

  18. Survival of Escherichia coli and Salmonella Typhimurium in slurry applied to clay soil on a Danish swine farm

    DEFF Research Database (Denmark)

    Boes, J.; Alban, L.; Bagger, J.;

    2005-01-01

    the survival times of E. coli and Salmonella in the soil surface following deposition of naturally contaminated pig slurry; and (3) simulate survival of Salmonella in different infection levels using E. coli data as input estimates. Slurry was deposited by four different methods: (1) hose applicator on black...... amended with contaminated pig slurry was an effective means to reduce environmental exposure to E. coli and Salmonella on this clay-soil farm....

  19. Distribution, fate and formation of non-extractable residues of a nonylphenol isomer in soil with special emphasis on soil derived organo-clay complexes.

    Science.gov (United States)

    Riefer, Patrick; Klausmeyer, Timm; Schäffer, Andreas; Schwarzbauer, Jan; Schmidt, Burkhard

    2011-01-01

    Anthropogenic contaminants like nonylphenols (NP) are added to soil, for instance if sewage-sludge is used as fertilizer in agriculture. A commercial mixture of NP consists of more than 20 isomers. For our study, we used one of the predominate isomers of NP mixtures, 4-(3,5-dimethylhept-3-yl)phenol, as a representative compound. The aim was to investigate the fate and distribution of the isomer within soil and soil derived organo-clay complexes. Therefore, (14)C- and (13)C-labeled NP was added to soil samples and incubated up to 180 days. Mineralization was measured and soil samples were fractionated into sand, silt and clay; the clay fraction was further separated in humic acids, fulvic acids and humin. The organo-clay complexes pre-incubated for 90 or 180 days were re-incubated with fresh soil for 180 days, to study the potential of re-mobilization of incorporated residues. The predominate incorporation sites of the nonylphenol isomer in soil were the organo-clay complexes. After 180 days of incubation, 22 % of the applied (14)C was mineralized. The bioavailable, water extractable portion was low (9 % of applied (14)C) and remained constant during the entire incubation period, which could be explained by an incorporation/release equilibrium. Separation of organo-clay complexes, after extraction with solvents to release weakly incorporated, bioaccessible portions, showed that non-extractable residues (NER) were preferentially located in the humic acid fraction, which was regarded as an effect of the chemical composition of this fraction. Generally, 27 % of applied (14)C was incorporated into organo-clay complexes as NER, whereas 9 % of applied (14)C was bioaccessible after 180 days of incubation. The re-mobilization experiments showed on the one hand, a decrease of the bioavailability of the nonylphenol residues due to stronger incorporation, when the pre-incubation period was increased from 90 to 180 days. On the other hand, a shift of these residues from the

  20. The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils.

    Science.gov (United States)

    Liu, Zhongzhen; He, Yan; Xu, Jianming; Huang, Panming; Jilani, Ghulam

    2008-03-01

    Thirteen soils collected from 11 provinces in eastern China were used to investigate the butachlor adsorption. The results indicated that the total organic carbon (TOC) content, clay content, amorphous Fe2O3 content, silt content, CEC, and pH had a combined effect on the butachlor sorption on soil. Combination of the data obtained from the 13 soils in the present study with other 23 soil samples reported by other researchers in the literature showed that Koc would be a poor predictive parameter for butachlor adsorption on soils with TOC content higher than 4.0% and lower than 0.2%. The soils with the ratio of clay content to TOC content (RCO) values less than 60 adsorbed butachlor mainly by the partition into soil organic matter matrix. The soils with RCO values higher than 60 apparently adsorbed butachlor by the combination of the partition into soil organic matter matrix and adsorption on clay surface.

  1. Swelling clays and salt-affected soils : demixing of Na / Ca clays as the rationale for discouraging the use of sodium adsorption ratio (SAR

    Directory of Open Access Journals (Sweden)

    Guilhem Bourrie

    2014-12-01

    Full Text Available Sodium adsorption ratio SAR defined as SAR = (Na / V w(Ca+Mg/2 here concentrations of cations in solution are expressed in meq/L has long been considered as correlated to exchangeable sodium percentage (ESP on clay minerals or soil exchange complex, and as the key concept to explain swelling of clay minerals and the difficulties of reclaiming salt-affected soils. Though its basis is empirical, it was alleged to be theoretically justified on the basis of ion exchange, derived from the Gapon convention. However, it has long been challenged on the basis of both field observations and experimental evidence : it fails to account for the fact that calcium and magnesium do not play the same role, while potassium is absent from the formula ; calcium concentration must be “corrected “when calcite is present etc. There exist specific ion effects. Experimental measurements of the decrease of permeability when solutions are diluted led Quirk and Schofield (1955 to define the concept of critical threshold, and to show that potassium and magnesium play an intermediate role between sodium and calcium. This threshold is simply determined by the concentration of calcium, irrespective of the value of SAR or ESP. Indeed, demixing of Ca-Na clay minerals during ion exchange, a phenomenon well known since Glaeser and Mering (1954, implies that there exists an interaction between adjacent sites. This undermines the theoretical basis of SAR : the derivation of SAR from ion exchange equilibria implies to use an equilibrium constant. This parameter is no more constant if demixing occurs. The results obtained are positive : demixing leads to expulsion of sodium from inner exchange surfaces and its replacement by calcium, according to the “three crystals pore”proposed by Quirk (2003b. Sodium can then be more easily leached, as permeability is maintained by clusters of Ca-sites. Calcium concentration in solution appears thus as the simpler parameter to guide

  2. An Improved Description of the Seismic Response of Sites with High Plasticity Soils, Organic Clays, and Deep Soft Soil Deposits

    Science.gov (United States)

    Carlton, Brian

    Near surface soils can greatly influence the amplitude, duration, and frequency content of ground motions. The amount of their influence depends on many factors, such as the geometry and engineering properties of the soils and underlying bedrock, as well as the earthquake source mechanism and travel path. Building codes such as the 2012 International Building Code (IBC) define six site categories for seismic design of structures, which are based on the sites defined by the National Earthquake Hazards Reduction Program (NEHRP). Site categories A, B, C, D, and E are defined by the time averaged shear wave velocity over the top 30 meters of the soil deposit. Site category F is defined as sites that include liquefiable or sensitive soils, as well as sites with more than 3 meters (10 ft) of peat or highly organic clays, more than 7.5 meters (25 ft) of soil with PI > 75, and more than 37 meters (120 ft) of soft to medium stiff clays. The IBC specifies simplified procedures to calculate design spectra for NEHRP sites A through E, and requires a site specific investigation for NEHRP F sites. However, established procedures for performing the required site specific investigations for NEHRP F sites are limited. The objective of this research is to develop a simplified procedure to estimate design spectra for non-liquefiable NEHRP F sites, specifically sites with organic soils, highly plastic soils, and deep soft soil deposits. The results from this research will directly affect US practice by developing much needed guidelines in this area. There is little empirical data on the seismic response of non-liquefiable NEHRP F sites. As a result, this study focused on generating data from site response analyses. To capture the variability of ground motions, this study selected five base case scenarios according to tectonic environments and representative cases encountered in common US practice. Suites of ground motions for each scenario were created by collecting ground motions

  3. Spatially Explicit Estimation of Clay and Organic Carbon Content in Agricultural Soils Using Multi-Annual Imaging Spectroscopy Data

    Directory of Open Access Journals (Sweden)

    Heike Gerighausen

    2012-01-01

    Full Text Available Information on soil clay and organic carbon content on a regional to local scale is vital for a multitude of reasons such as soil conservation, precision agriculture, and possibly also in the context of global environmental change. The objective of this study was to evaluate the potential of multi-annual hyperspectral images acquired with the HyMap sensor (450–2480 nm during three flight campaigns in 2004, 2005, and 2008 for the prediction of clay and organic carbon content on croplands by means of partial least squares regression (PLSR. Supplementary, laboratory reflectance measurements were acquired under standardized conditions. Laboratory spectroscopy yielded prediction errors between 19.48 and 35.55 g kg−1 for clay and 1.92 and 2.46 g kg−1 for organic carbon. Estimation errors with HyMap image spectra ranged from 15.99 to 23.39 g kg−1 for clay and 1.61 to 2.13 g kg−1 for organic carbon. A comparison of parameter predictions from different years confirmed the predictive ability of the models. BRDF effects increased model errors in the overlap of neighboring flight strips up to 3 times, but an appropriated preprocessing method can mitigate these negative influences. Using multi-annual image data, soil parameter maps could be successively complemented. They are exemplarily shown providing field specific information on prediction accuracy and image data source.

  4. [Mineralogy and genesis of mixed-layer clay minerals in the Jiujiang net-like red soil].

    Science.gov (United States)

    Yin, Ke; Hong, Han-Lie; Li, Rong-Biao; Han, Wen; Wu, Yu; Gao, Wen-Peng; Jia, Jin-Sheng

    2012-10-01

    Mineralogy and genesis were investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) to understand the mineralogy and its genesis significance of mixed-layer clay minerals in Jiujiang red soil section. XRD and FTIR results show that the net-like red soil sediments are composed of illite, kaolinite, minor smectite and mixed-layer illite-smectite and minor mixed-layer kaolinite-smectite. HRTEM observation indicates that some smectite layers have transformed into kaolinite layers in net-like red soil. Mixed-layer illite-smectite is a transition phase of illite transforming into smectite, and mixed-layer kaolinite-smectite is a transitional product relative to kaolinite and smectite. The occurrence of two mixed-layer clay species suggests that the weathering sequence of clay minerals in net-like red soil traversed from illite to mixed-layer illite-smectite to smectite to mixed-layer kaolinite-smectite to kaolinite, which indicates that net-like red soil formed under a warm and humid climate with strengthening of weathering.

  5. A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Paul [Cranfield Centre for EcoChemistry, Cranfield University, Shardlow Hall, Shardlow, Derby DE72 2GN (United Kingdom)]. E-mail: paul.kay@adas.co.uk; Blackwell, Paul A. [Cranfield Centre for EcoChemistry, Cranfield University, Shardlow Hall, Shardlow, Derby DE72 2GN (United Kingdom); Boxall, Alistair B.A. [Cranfield Centre for EcoChemistry, Cranfield University, Shardlow Hall, Shardlow, Derby DE72 2GN (United Kingdom)

    2005-03-01

    Pharmaceuticals used in livestock production may be present in manure and slurry as the parent compound and/or metabolites. The environment may therefore be exposed to these substances due to the application of organic fertilisers to agricultural land or deposition by grazing livestock. For other groups of substances that are applied to land (e.g. pesticides), preferential flow in clay soils has been identified as an extremely important mechanism by which surface water pollution can occur. This lysimeter study was therefore performed to investigate the fate of three antibiotics from the sulphonamide, tetracycline and macrolide groups in a clay soil. Only sulphachloropyridazine was detected in leachate and soil analysis at the end of the experiment showed that almost no antibiotic residues remained. These data were analysed alongside field data for the same compounds to show that soil tillage which breaks the connectivity of macropores formed over the summer months, prior to slurry application, significantly reduces chemical mobility. - This paper describes one of the first studies to investigate the fate of veterinary medicines in cracking clay soils.

  6. Carbon sequestration in clay and silt fractions of Brazilian soils under conventional and no-tillage systems

    Directory of Open Access Journals (Sweden)

    Cecília Estima Sacramento dos Reis

    2014-08-01

    Full Text Available The capacity of soils to sequestrate carbon (C is mainly related to the formation of organo-mineral complexes. In this study, we investigated the influence of soil management systems on the C retention capacity of soil with an emphasis on the silt and clay fractions of two subtropical soils with different mineralogy and climate. Samples from a Humic Hapludox and a Rhodic Hapludox, clayey soils cultivated for approximately 30 years under no-tillage (NT and conventional tillage (CT were collected from six layers distributed within 100-cm soil depth from each site and from an adjacent native forest. After the removal of particulate organic matter (POM, the suspension (<53 µm was sonicated, the silt and clay fractions were separated in accordance with Stokes' law and the carbon content of whole soil and physical fractions was determined. In the Humic Hapludox, the clay and silt fractions under NT showed a higher maximum C retention (72 and 52 g kg-1, respectively in comparison to those under CT (54 and 38 g kg-1, respectively. Moreover, the C concentration increase in both fractions under NT occurred mainly in the topsoil (up to 5 cm. The C retention in physical fractions of Rhodic Hapludox varied from 25 to 32 g kg-1, and no difference was observed whether under an NT or a CT management system. The predominance of goethite and gibbsite in the Humic Hapludox, as well as its exposure to a colder climate, may have contributed to its greater C retention capacity. In addition to the organo-mineral interaction, a mechanism of organic matter self-assemblage, enhanced by longer periods of soil non-disturbance, seems to have contributed to the carbon stabilization in both soils.

  7. Production of CO2 in crude oil bioremediation in clay soil

    Directory of Open Access Journals (Sweden)

    Sandro José Baptista

    2005-06-01

    Full Text Available The aim of the present work was to evaluate the biodegradation of petroleum hydrocarbons in clay soil a 45-days experiment. The experiment was conducted using an aerobic fixed bed reactor, containing 300g of contaminated soil at room temperature with an air rate of 6 L/h. The growth medium was supplemented with 2.5% (w/w (NH42SO4 and 0.035% (w/w KH2PO4. Biodegradation of the crude oil in the contaminated clay soil was monitored by measuring CO2 production and removal of organic matter (OM, oil and grease (OandG, and total petroleum hydrocarbons (TPH, measured before and after the 45-days experiment, together with total heterotrophic and hydrocarbon-degrading bacterial count. The best removals of OM (50%, OandG (37% and TPH (45% were obtained in the bioreactors in which the highest CO2 production was achieved.O objetivo do trabalho foi avaliar a biodegradação de petróleo em solo argiloso durante 45 dias de ensaios. Os ensaios de biodegradação foram conduzidos em biorreatores aeróbios de leito fixo, com 300 g de solo contaminado, à temperatura ambiente e com uma vazão de ar de 6 L/h. As deficiências nutricionais foram corrigidas com 2,5% (p/p (NH42SO4 e com 0,035% (p/p KH2PO4. O monitoramento foi realizado em função da produção de CO2, da remoção de matéria orgânica (OM, de óleos e graxas (OandG e de hidrocarbonetos totais de petróleo (TPH, além bactérias heterotróficas totais (BHT e hidrocarbonoclásticas (BHc, no início e após 45 dias. Nos biorreatores onde houve maior crescimento de bactérias hidrocarbonoclásticas e maior produção de CO2, obteve-se os melhores percentuais de remoções de MO (50%, OandG (37% e TPH (45%.

  8. Field corrosion characterization of soil corrosion of X70 pipeline steel in a red clay soil

    Directory of Open Access Journals (Sweden)

    Shengrong Wang

    2015-06-01

    Full Text Available The corrosion behavior of X70 pipeline steel buried in red soil environment has been studied. The surface morphology and elemental distribution were determined by scanning electron microscopy (SEM,energy dispersive X-ray spectroscopy (EDS, and X-ray diffraction (XRD. The corrosion kinetics was evaluated by weight loss measurement. The results show that in red soil, the corrosion rate of X70 steel decreases with time, and follows the exponential decay law. General corrosion with non-uniform and localized pitting occurred on the steel surface. α-FeOOH was the dominate products during corrosion in whole buried periods, and the corrosion products exhibited well protective properties. The potentiodynamic polarization tests revealed that icorr decreased with time, indicating the improvement of corrosion resistance. The results of Electrochemical impendence spectroscopy (EIS are consistent with potentiodynamic polarization tests.

  9. Field corrosion characterization of soil corrosion of X70 pipeline steel in a red clay soil

    Institute of Scientific and Technical Information of China (English)

    Shengrong Wang; Cuiwei Dun; Xiaogang Li; Zhiyong Liunn; Min Zhu; Dawei Zhang

    2015-01-01

    The corrosion behavior of X70 pipeline steel buried in red soil environment has been studied. The surface morphology and elemental distribution were determined by scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion kinetics was evaluated by weight loss measurement. The results show that in red soil, the corrosion rate of X70 steel decreases with time, and follows the exponential decay law. General corrosion with non-uniform and localized pitting occurred on the steel surface.α-FeOOH was the dominate products during corrosion in whole buried periods, and the corrosion products exhibited well protective properties. The potentiodynamic polarization tests revealed that icorr decreased with time, indicating the improvement of corrosion resistance. The results of Electrochemical impendence spectroscopy (EIS) are consistent with potentiodynamic polarization tests.

  10. Influence of the insecticides acetamiprid and carbofuran on arylamidase and myrosinase activities in the tropical black and red clay soils.

    Science.gov (United States)

    Mohiddin, G Jaffer; Srinivasulu, M; Maddela, N R; Manjunatha, B; Rangaswamy, V; Koch Kaiser, Alma Rosel; Maisincho Asqui, Jessica Cristina; Darwin Rueda, O

    2015-06-01

    The objective of this study was to determine the effects of two insecticides, namely, acetamiprid and carbofuran on the enzymatic activities of arylamidase (as glucose formed from sinigrin) and myrosinase (as β-naphthylamine formed from L-leucine β-naphthylamide) in the black and red clay soils collected from a fallow groundnut (Arachis hypogaea L.) fields in the Anantapur District, Andhra Pradesh, India. The study was realized within the framework of the laboratory experiments in which the acetamiprid and carbofuran were applied to the soils at different doses (1.0, 2.5, 5.0, 7.5, 10.0 kg ha(-1)). Initially, the physicochechemical properties of the soil samples were analyzed. After 10 days of pesticide application, the soil samples were analyzed for the enzyme activities. Acetamiprid and carbofuran stimulated the arylamidase and myrosinase activities at lower concentrations after 10 days incubation. Striking stimulation in soil enzyme activities was noticed at 2.5 kg ha(-1), persists for 20 days in both the soils. Overall, higher concentrations (5.0-10.0 kg ha(-1)) of acetamiprid and carbofuran were toxic or innocuous to the arylamidase and myrosinase activities. Nevertheless, the outcomes of the present study clearly indicate that the use of these insecticides (at field application rates) in the groundnut fields (black and red clay soils) stimulated the enzyme (arylamidase and myrosinase) activities.

  11. The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhongzhen; He Yan [College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Xu Jianming [College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China)], E-mail: jmxu@zju.edu.cn; Huang Panming [Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 (Canada); Jilani Ghulam [College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China)

    2008-03-15

    Thirteen soils collected from 11 provinces in eastern China were used to investigate the butachlor adsorption. The results indicated that the total organic carbon (TOC) content, clay content, amorphous Fe{sub 2}O{sub 3} content, silt content, CEC, and pH had a combined effect on the butachlor sorption on soil. Combination of the data obtained from the 13 soils in the present study with other 23 soil samples reported by other researchers in the literature showed that K{sub oc} would be a poor predictive parameter for butachlor adsorption on soils with TOC content higher than 4.0% and lower than 0.2%. The soils with the ratio of clay content to TOC content (RCO) values less than 60 adsorbed butachlor mainly by the partition into soil organic matter matrix. The soils with RCO values higher than 60 apparently adsorbed butachlor by the combination of the partition into soil organic matter matrix and adsorption on clay surface. - The relative importance of organic matter and clay in butachlor adsorption in soil will depend on the ratio of clay content to total organic carbon content.

  12. Microbial assimilation of 14C of ground and unground plant materials decomposing in a loamy sand and a clay soil

    DEFF Research Database (Denmark)

    Sørensen, P.; Ladd, J.N.; Amato, M.

    1996-01-01

    . More C-14 and N were mineralized and less microbial biomass C-14 accumulated in soils amended with unground than with ground subclover leaves. Differences in the amounts of (CO2)-C-14 and biomass C-14 were established during the initial 7 days of decomposition. At this time, biomass C-14 in the two...... of particle sizes >50 mu m accounted fro 5-6% input C-14 in the loamy sand; the proportions were little affected by grinding of the clover leaf amendment. In contrast, the amounts of biomass C-14 in the fraction of particle sizes soils. Thus......, the increased amounts of biomass C-14 in soils amended with ground leaves were mainly associated with clay plus silt size particles and microaggregates. After 7 d of decomposition, non-biomass C-14 in the two soil fractions accounted for about 40% of input C-14, irrespective of soil type and particle size...

  13. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    Science.gov (United States)

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  14. Leaching of Nutrient Elements in a Red Soil Derived from Quaternary Red Clay

    Institute of Scientific and Technical Information of China (English)

    SHENRENFANG; ZHAOQIGUO

    1998-01-01

    A red soil derived from Quaternary red clay was employed to study nutrient leaching with woil columns repacked in laboratory,The objective was to identify the effects of fertilization practices on leaching patterns and magnitudes of Ca2+,Mg2+,K+,NH4+,and NO3-,The treatments were CK (as a control),CaCO3, CaSO4,MgCO3,Ca(H2PO4)2,urea,KCl,and multiple (a mixture of the above-mentioned fertilizers),The fertilizers were added to the bare surface of the soil columns,and then the columns were leached with 120 mL deionized water daily through peristaltic pumps over a period of 92 days.Leaching processes of NH4+,and NO3- wer e only measured in CK,ured,and multiple treatments which were directly related to N leaching, Results showed that sole application of CaSO4,and Ca(H2PO4)2 scarcely hd any effect on the leching losses of Ca2+,Mg2+,and K+; the application of MgCO3 sthimulated the leaching of Mg2+;the application of CaCO3 promoted the leaching of Ca2+,Mg2+ and K+; urea treatment also promoted the leaching of K+ and NH4+,and NO3- leaching mainly occurred at late stage of leaching process in particular;under KCl treatment,leaching of Ca2+,Mg2+,and K+ was promoted to a large extent;under multiple treatment, leaching of Ca2+,Mg2+,K+,NH4+,and NO3- was all increased and NO3- was mainly leached at the end of leaching process and still had a trend of increase.

  15. The effect of motor vehicle emission towards lead (Pb content of rice field soil with different clay content

    Directory of Open Access Journals (Sweden)

    C.C.Wati

    2015-10-01

    Full Text Available Motor vehicle gas emission contains lead (Pb which is a hazardous and toxic substance. Agricultural land, especially rice field, which is located nearby roads passed by many motor vehicle, are susceptible to the accumulation of Pb. If Pb is permeated by plants cultivated in the rice field, it will be very hazardous for humans as they are the final consumers. Hence, it is essential to identify Pb content of rice-field soil initiated by motor vehicle gas emission. This study was aimed to identify the effects of motor vehicle density, the distance between rice-field and road, and the clay content of soil towards Pb content of soils in Blitar and Ngawi Regencies of East Java. The method used for the study was survey method managed by using three-factor nested design with three replicates. The results of this study showed that motor vehicle density and the distance of rice field to road provide significant affected the total of Pb content of soil. However, the dissemination pattern of Pb in the soil was irregular due to the factors of climate and environment. Before Pb reached soil surface, Pb was spread out in the air due to the effect of temperature, wind velocity, vehicle velocity, size of vehicle, and road density. Consequently, the location with low motor vehicle density and positioned faraway to the road had higher total rate of Pb than the location with high motor vehicle density and positioned nearby the road. Clay content affected the total rate of Pb content as much as 37%, every 1% increase of clay content increased the total rate of Pb as much as 0.08 mg/kg.

  16. Clay mineralogy of soils located on islands in the upper Paraná River, PR/MS

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Marques de Castro

    2014-10-01

    Full Text Available The Mutum and Porto Rico islands are part of the archipelago Mutum-Porto Rico, located in the upper Paraná River between the cities Porto Rico, PR and Taquaruçu, MS. The soils are formed by constituents inherited from parent materials, organic compounds, and various minerals with varying degrees of complexity and stages of weathering. Among the constituents inherited of the parent materials, the most active are called clay minerals, derived from the weathering or transformation of primary minerals. The clay minerals has a key role in behavior morphological, chemical, physical and hydraulic of soil. They comprise a large family of minerals that can be classified into several groups according to their crystalline structure, like the kaolinites, smectite and ilitas. The aim of this study was to conduct mineralogical analyzes by X-ray in eight soils from the Mutum and Porto Rico islands. The mineralogical data were generated from the Panalytical X-ray diffractometer and X’pert Highscore Plus software. The results show that all soils showed a pattern of peaks comprising illite, kaolinite and gibbsite. Some soils also had characteristic peaks of iron oxyhydroxide.

  17. {sup 222}Rn and CO{sub 2} soil-gas geochemical characterization of thermally altered clays at Orciatico (Tuscany, Central Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Voltattorni, N., E-mail: nunzia.voltattorni@ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome (Italy); Lombardi, S. [Earth Science Department, University ' La Sapienza' , Piazzale A. Moro 5, 00185 Rome (Italy); Rizzo, S. [Via Tito, 1/A, 00061 Anguillara Sabazia, Rome (Italy)

    2010-08-15

    Research highlights: {yields} Soil-gas technique is applied to study gas permeability of Orciatico clay units. {yields} Clay permeability depends on thermal and mechanical alteration degree. {yields} Soil-gas distributions are due to shallow fracturing of clays. {yields} Rn and CO{sub 2} soil-gas anomalies highlight secondary permeability in clay sequence. {yields} Soil-gas results are supported by detailed geoelectrical surveys. - Abstract: The physical properties of clay allow argillaceous formations to be considered geological barriers to radionuclide migration in high-level radioactive-waste isolation systems. As laboratory simulations are short term and numerical models always involve assumptions and simplifications of the natural system, natural analogues are extremely attractive surrogates for the study of long-term isolation. The clays of the Orciatico area (Tuscany, Central Italy), which were thermally altered via the intrusion of an alkali-trachyte laccolith, represent an interesting natural model of a heat source which acted on argillaceous materials. The study of this natural analogue was performed through detailed geoelectrical and soil-gas surveys to define both the geometry of the intrusive body and the gas permeability of a clay unit characterized by different degrees of thermal alteration. The results of this study show that gas permeability is increased in the clay sequences subjected to greater heat input from the emplacement of the Orciatico intrusion, despite the lack of apparent mineral and geotechnical variations. These results, which take into consideration long time periods in a natural, large-scale geological system, may have important implications for the long-term safety of underground storage of nuclear waste in clay formations.

  18. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?

    KAUST Repository

    Serrano, O.

    2016-01-18

    The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (Corg) content in terrestrial soils and marine sediments has been correlated with mud content (i.e. silt and clay), however, empirical tests of this theory are lacking for coastal vegetated ecosystems. Here, we compiled data (n = 1345) on the relationship between Corg and mud (i.e. silt and clay, particle sizes <63 μm) contents in seagrass ecosystems (79 cores) and adjacent bare sediments (21 cores) to address whether mud can be used to predict soil Corg content. We also combined these data with the δ13C signatures of the soil Corg to understand the sources of Corg stores. The results showed that mud is positively correlated with soil Corg content only when the contribution of seagrass-derived Corg to the sedimentary Corg pool is relatively low, such as in small and fast growing meadows of the genera Zostera, Halodule and Halophila, and in bare sediments adjacent to seagrass ecosystems. In large and long-living seagrass meadows of the genera Posidonia and Amphibolis there was a lack of, or poor relationship between mud and soil Corg content, related to a higher contribution of seagrass-derived Corg to the sedimentary Corg pool in these meadows. The relative high soil Corg contents with relatively low mud contents (i.e. mud-Corg saturation) together with significant allochthonous inputs of terrestrial organic matter could overall disrupt the correlation expected between soil Corg and mud contents. This study shows that mud (i.e. silt and clay content) is not a universal proxy for blue carbon content in seagrass ecosystems, and therefore should not be applied generally across all seagrass

  19. Some Fertility Characteristics and Fertilizer Requirements of a Newly Reclaimed Upland Red Soil Derived from Quaternary Red Clay

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A series of field experiments from 1990 to 1994 in Yingtan, Jiangxi Province, were conducted on an upland red soil derived from Quaternary red clay which had been reclaimed three years before the experiments, in order to study the fertility characteristics and fertilizer requirements of the newly reclaimed soil. The field experiments included that on nutrient characteristics and fertilizer effect, that on K-supplying potential and K-Mg relationship, that on fertilization rates of K and N, etc. The newly reclaimed upland soil was low in both N and P, and its responses to nitrogen and phosphate application were very significant. The K-supplying potential was also low, so the soil was highly responsive to K fertilizer. The effect of Ca and Mg fertilizers was not so great for the reason that certain amounts of Ca and Mg were incorporated into the soil through application of calcium magnesium phosphate during land leveling before the experiments. Among the four micronutrients, B, Mo, Zn and Cu, B had the greatest effect on the soil. The fertilizer requirements of the soil were in an order of P and N > K > lime and B > Mg > Mo, Zn and Cu. Eight crops tested had different fertilizer-requiring characteristics. Rapeseed was very sensitive to P and B fertilizers. Barely was especially sensitive to P and lime and it also responded to B, Mo, Zn and Cu. And sweet potato was especially sensitive to K.

  20. Short-term Effects of Tillage Practices on Organic Carbon in Clay Loam Soil of Northeast China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage management on SOC content and its distribution in surface layer (30 cm) of a clay loam soil in northeast China. NT did not lead to significant increase of SOC in topsoil (0-5 cm) compared with MP and RT; however, the SOC content in NT soil was remarkably reduced at a depth of 5-20 cm. Accordingly, short-term (3-year) NT management tended to stratify SOC concentration, but not necessarily increase its storage in the plow layer for the soil.

  1. The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management

    DEFF Research Database (Denmark)

    Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl; Schjønning, Per

    2016-01-01

    Tillage and residue management influence soil organic carbon (SOC) and lead to changes in soil physical behav-iour and functioning. We examined the effect of the clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management. Soil...... was sampled at the 0–10, 10–20 and 25–30 cm depths of a sandy loam soil at Flakkebjerg, Denmark in 2013. We used the experimental plots of a long-term field experiment with mouldboard ploughing (MP) and direct drilling (DD) treatments. The residue management included straw removal (−S) and straw retention (+S...... and DD and MP soil at 10–20 cm, while MP was higher than DD at 10–20 cm depth (p b 0.05). However, there was no difference in the effect of the contrasting tillage manage-ments on carbon sequestration when an equivalent soil mass and the entire topsoil layer were considered. In the top 10 cm soil, DD...

  2. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.

    Science.gov (United States)

    Chaturvedi, Pranav Kumar; Seth, Chandra Shekhar; Misra, Virendra

    2007-08-25

    Sorption efficacy of phosphatic clay and humus rich soil alone and on combination were tested towards heavy metals present in zinc mine tailing (Zawar Zinc Mine), Udaipur (India). Characterization of the zinc mine tailing sample indicated the presence of Pb, Cu, Zn and Mn in the concentration of 637, 186, 720 and 577microg(-1), respectively. For sorption efficacy, the zinc mine tailing soil were properly amended with phosphatic clay and humus rich soil separately and in combination and leachability study was performed by batch experiment at different pH range from 3 to 9. The data showed that the percent leachability of heavy metal in non-amended soil was 75-90%. After amendment with phosphatic clay percent leachability of heavy metals became 35-45%. Further, the addition of humus soil to phosphatic clay decreased the percent leachability up to 5-15% at all tested pH. Column leachability experiment was performed to evaluate the rate of leachability. The shape of cumulative curves of Pb, Cu, Zn and Mn showed an increase in its concavity in following order: PbCu>Zn>Mn. Further, Langmuir isotherms applied for the sorption studies indicated that phosphatic clay in the presence of humus soil had high affinity for Pb followed by Cu, Zn and Mn, with sorption capacities (b) 139.94, 97.02, 83.32 and 67.58microgg(-1), respectively.

  3. Effects of different fertilizers on the abundance and community structure of ammonia oxidizers in a yellow clay soil.

    Science.gov (United States)

    Yao, Huaiying; Huang, Sha; Qiu, Qiongfen; Li, Yaying; Wu, Lianghuan; Mi, Wenhai; Dai, Feng

    2016-08-01

    Yellow clay paddy soil (Oxisols) is a typical soil with low productivity in southern China. Nitrification inhibitors and slow release fertilizers have been used to improve nitrogen fertilizer utilization and reduce environmental impaction of the paddy soil. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in paddy soil have rarely been investigated. In the present work, we compared the influences of several slow release fertilizers and nitrification inhibitors on the community structure and activities of the ammonia oxidizers in yellow clay soil. The abundances and community compositions of AOA and AOB were determined with qPCR, terminal restriction fragment length polymorphism (T-RFLP), and clone library approaches. Our results indicated that the potential nitrification rate (PNR) of the soil was significantly related to the abundances of both AOA and AOB. Nitrogen fertilizer application stimulated the growth of AOA and AOB, and the combinations of nitrapyrin with urea (NPU) and urea-formaldehyde (UF) inhibited the growth of AOA and AOB, respectively. Compared with other treatments, the applications of NPU and UF also led to significant shifts in the community compositions of AOA and AOB, respectively. NPU showed an inhibitory effect on AOA T-RF 166 bp that belonged to Nitrosotalea. UF had a negative effect on AOB T-RF 62 bp that was assigned to Nitrosospira. These results suggested that NPU inhibited PNR and increased nitrogen use efficiency (NUE) by inhibiting the growth of AOA and altering AOA community. UF showed no effect on NUE but decreased AOB abundance and shifted AOB community.

  4. Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield

    NARCIS (Netherlands)

    Carvalho, M.T.M.; Madari, B.E.; Bastiaans, L.; Oort, van P.A.J.; Leal, W.G.O.; Heinemann, A.B.; Silva, da M.A.S.; Maia, A.H.N.; Parsons, D.; Meinke, H.

    2016-01-01

    We assessed the impact of a single application of wood biochar on soil chemical and physical properties and aerobic rice grain yield on an irrigated kaolinitic clay Ferralsol in a tropical Savannah. We used linear mixed models to analyse the response of soil and plant variables to application rat

  5. Runoff of trifluralin, metolachlor, and metribuzin from a clay loam soil of Louisiana.

    Science.gov (United States)

    Kim, Jung-Ho; Feagley, Sam E

    2002-09-01

    Trifluralin[2,6-dinitro-N,N-dipropyl-4-(trifluormethyl)benzenamine], metolachlor[2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] and metribuzin[4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)one] were applied as pre-emergent herbicides to soybean plots in Louisiana (LA) at the rate of 1683 g/ha, 2759 g/ha and 609 g/ha, respectively. The concentrations of trifluralin in the runoff water ranged between 0.09 ng/mL and 0.02 ng/mL, which is lower than the 2 ng/mL US Environmental Protection Agency (EPA) advisory level for trifuralin in drinking water. Metolachlor concentrations in the runoff water ranged from 9.0 ng/mL to 221.5 ng/mL, which is both lower and higher than the 175 ng/mL EPA advisory level for metolachlor. Similarly, metribuzin concentrations in the runoff water ranged between 1.5 ng/mL and 56.2 ng/mL, which is also lower and higher than the 10 ng/mL EPA advisory level for metribuzin. Accordingly, from the field plots located on a Commerce clay loam soil in LA, although the concentration of trifluralin in runoff water were substantially lower than the EPA advisory level, metolachlor and metribuzin concentrations are likely to exceed the EPA advisory levels early on in the application season with a subsequent rapid decrease to safe levels. The total loss of trifluralin in runoff water was 0.005% of the applied amount over an 89 day period after application. The total loss of metolachlor and metribuzin in the runoff water was 4.67% and 5.36% of the applied amount, respectively, over a 22 day period after application. As such, there was almost no movement of trifluralin in the runoff water, whereas metolachlor and metribuzin were much more easily moved.

  6. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?

    Science.gov (United States)

    Serrano, Oscar; Lavery, Paul S.; Duarte, Carlos M.; Kendrick, Gary A.; Calafat, Antoni; York, Paul H.; Steven, Andy; Macreadie, Peter I.

    2016-09-01

    The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (Corg) content in terrestrial soils and marine sediments has been correlated with mud content (i.e., silt and clay, particle sizes soil Corg content. We also combined these data with the δ13C signatures of the soil Corg to understand the sources of Corg stores. The results showed that mud is positively correlated with soil Corg content only when the contribution of seagrass-derived Corg to the sedimentary Corg pool is relatively low, such as in small and fast-growing meadows of the genera Zostera, Halodule and Halophila, and in bare sediments adjacent to seagrass ecosystems. In large and long-living seagrass meadows of the genera Posidonia and Amphibolis there was a lack of, or poor relationship between mud and soil Corg content, related to a higher contribution of seagrass-derived Corg to the sedimentary Corg pool in these meadows. The relatively high soil Corg contents with relatively low mud contents (e.g., mud-Corg saturation) in bare sediments and Zostera, Halodule and Halophila meadows was related to significant allochthonous inputs of terrestrial organic matter, while higher contribution of seagrass detritus in Amphibolis and Posidonia meadows disrupted the correlation expected between soil Corg and mud contents. This study shows that mud is not a universal proxy for blue carbon content in seagrass ecosystems, and therefore should not be applied generally across all seagrass habitats. Mud content can only be used as a proxy to estimate soil Corg content for scaling up purposes when opportunistic and/or low biomass seagrass species (i.e., Zostera, Halodule and Halophila) are present (explaining 34 to 91 % of variability), and in bare sediments (explaining 78 % of the variability). The results obtained could enable robust scaling up exercises at a low cost as part of blue carbon

  7. Mapping of Total Carbon and Clay Contents in Glacial Till Soil Using On-the-Go Near-Infrared Reflectance Spectroscopy and Partial Least Squares Regression

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhang-Quan; SHAN Ying-Jie; PENG Li; JIANG Yu-Gen

    2013-01-01

    Characterizing spatial variability of soil attributes,using traditional soil sampling and laboratory analysis,is cost prohibitive.The potential benefit of managing soils on a site-specific basis is well established.High variations in glacial till soil render detailed soil mapping difficult with limited number of soil samples.To overcome this problem,this paper demonstrates the feasibility of soil carbon and clay mapping using the newly developed on-the-go near-infrared reflectance spectroscopy (NIRS).Compared with the geostatistics method,the partial least squares regression (PLSR),with NIRS measurements,could yield a more detailed map for both soil carbon and clay.Further,by using independent validation dataset,the accuracy of predicting could be improved significantly for soil clay content and only slightly for soil carbon content.Owing to the complexity of field conditions,more work on data processing and calibration modeling might be necessary for using on-the-go NIRS measurements.

  8. Effects of Soil-Vegetation-Atmosphere Interaction on the Stability of a Clay Slope: A Case Study

    Directory of Open Access Journals (Sweden)

    Pedone Giuseppe

    2016-01-01

    Full Text Available Deep and slow landslide processes are frequently observed in clay slopes located along the Southern Apennines (Italy. A case study representative of these processes, named Pisciolo case study, is discussed in the paper. The geo-hydro-mechanical characteristics of the materials involved in the instability phenomena are initially discussed. Pluviometric, piezometric, inclinometric and GPS monitoring data are subsequently presented, suggesting that rainfall infiltration constitutes the main factor inducing slope movements. The connection between formation of landslide bodies and slope-atmosphere interaction has been demonstrated through a hydro-mechanical finite element analysis, whose results are finally reported in the work. This analysis has been conducted employing a constitutive model that is capable of simulating both saturated and unsaturated soil behaviour, as well as a boundary condition able to simulate the effects of the soil-vegetation-atmosphere interaction.

  9. Effect of Application of Increasing Concentrations of Contaminated Water on the Different Fractions of Cu and Co in Sandy Loam and Clay Loam Soils

    Directory of Open Access Journals (Sweden)

    John Volk

    2016-12-01

    Full Text Available This study aimed to establish the fate of copper (Cu and cobalt (Co in sandy loam and clay loam soils that had been irrigated with increasing concentrations of contaminated water. A sequential extraction procedure was used to determine the fractions of Cu and Co in these soils. The concentration of bioavailable Cu and Co on clay loam was 1.7 times that of sandy loam soil. Cu on sandy loam soil was largely in the organic > residual > exchangeable > water-soluble > carbonate fractions, whereas on clay loam soil the element was largely in organic > exchangeable > residual > carbonate > water-soluble fractions. Co was largely observed in the exchangeable, water-soluble, and carbonate fractions, but with no particular trend observed in both soil types. When crops are grown on sandy soils that have a low capacity to hold heavy metals, the resulting effect would be high uptake of the heavy metals in crop plants. Because the predominant forms of Cu and Co vary in soils, it is expected that the metals will behave differently in the soils.

  10. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents

    DEFF Research Database (Denmark)

    Resurreccion, Augustus C.; Møldrup, Per; Tuller, Markus;

    2011-01-01

    with ethylene glycol monoethyl ether (SA_EGME) only for organic soils with n > 10. A strong correlation between the ratio of the two surface area estimates and the Dexter number was observed and applied as an additional scaling function in the TO model to rescale the soil water retention curve at low water...... dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were...

  11. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste.

    Science.gov (United States)

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-01

    Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10(-10), 2.08 × 10(-9) and 6.8 × 10(-10)m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m(3)). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH=2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m(3)) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  12. Liquefaction Susceptibility of Soils With Clay Particles from Earthquake-induced Landslides

    Institute of Scientific and Technical Information of China (English)

    CHEN Chuan-sheng; JIANG Xin; ZHANG Xu

    2007-01-01

    The main reason for earthquake-induced landslides is liquefaction of soil, a process considered to occur mostly in sandy soils. Liquefaction can occur in clayey soils has also been reported and proven in the recent literature, but liquefaction in clayey soils still remains unclear and there are many questions that need to be addressed. In order to address these questions, an depth study on the liquefaction potential of clayey soils was conducted on the basis of field investigation and a series of laboratory tests on the samples collected from the sliding surface of the landslides. The liquefaction potential of the soils was studied by means of undrained cyclic ring-shear tests. Research results show that the liquefaction potential of sandy soils is higher than that of clayey soils given the same void ratio;the soil resistance to liquefaction rises with an increase in plasticity for clayey soils; relation between plasticity index and the liquefaction potential of soil can be used in practical application to estimate the liquefaction potential of soil.

  13. Coastal soil clay content estimation using reflectance spectroscopy%反射光谱估算滨海土壤黏粒含量

    Institute of Scientific and Technical Information of China (English)

    焦彩霞; 郑光辉; 赏刚; 孙东敏

    2016-01-01

    Clay content is an important soil property that affects the structure, nutrient supply and other characteristics of soils. Variations in clay content can indicate the degree of soil development or soil age. In traditional chemical analyses of soil properties, the extractant interacts in the solution and at the solution-particle interface, thus altering the equilibrium between the soil solid and solution phases. Soil reflectance spectroscopy has been developed as an effective alternative method of measuring soil properties primarily because it requires minimal sample preparation and it is fast, cost-effective, non-destructive and non-hazardous to the soil. In recent decades, research on the use of reflectance spectroscopy in soil science has achieved rapid advances. Reflectance spectroscopy can be successfully applied to estimate the soil clay content. However, the mechanisms of soil clay content estimation using reflectance spectroscopy are not very clear. The goals of this study were to identify the bands within the range of 360-2490 nm that can be used to estimate the clay content and explore the mechanisms of the clay content estimation using reflectance spectroscopy. A total of 150 coastal soil samples were collected. The soil reflectance spectra were measured in a dark room using a FieldSpec 3 portable spectrometer. Raw spectral data were pre-processed by smoothing (R) and then by first derivative (FD), continuum removal (CR) or reciprocal transformation (DS). Calibration (75 soil samples) and validation datasets (75 soil samples) were obtained from 1,000 random selections of the data. Stepwise multiple linear regression (SMLR) and partial least squares regression (PLSR) were performed to estimate the soil clay content and to further identify the bands useful for modeling this parameter. The results indicated that the SMLR analysis of CR and R spectra and the PLSR analysis of R and FD spectra were characterized by good calibration and validation accuracies

  14. THE SIDE-EFFECT OF ORGANIC INSECTICIDE SPINOSAD ON BIOCHEMICAL AND MICROBIOLOGICAL PROPERTIES OF CLAY SOIL

    Directory of Open Access Journals (Sweden)

    Arkadiusz Telesiński

    2015-09-01

    Full Text Available The aim of the study was to determine the effect of spinosad on soil biochemical and microbiological properties. The experiment was carried out on sandy loam with Corg content 10.91 g·kg-l. Spinosad, as Spintor 240 SC was added into soil in dosages: a recommended field dosage, and fivefold, tenfold, and twenty-fivefold higher dosages. The amount of spinosad introduced into soil was between 12.55 and 313.75 g·kg-l. Moreover, soil samples without spinosad supplement were prepared as a reference. Respective Spintor 240 SC doses were converted into 1 kg soil, taking into account 10 cm depth. After application of insecticide water emulsions, soil moisture was brought to 60% maximum holding water capacity. The soil was thoroughly mixed and stored in tightly-closed polyethylene bags at 20 °C for a period 4 weeks. During the experiment dissipation of spinosad, soil enzymes (dehydrogenase, alkaline phosphatase, acid phosphatase, urease and number of bacteria, fungi, actinomycetes were assayed. Obtained results showed, that dissipation of spinosad in soil was relatively fast – the DT50 of this insecticide was ranged between 1.11 and 2.21 days. Spinosad residues had different effects on soil microbiological and biochemical properties. However, over time the impact of this insecticide definitely decreased. This indicated that the use of spinosad in organic farming, particularly in the field dosage, does not pose a long-term threat to the soil environment.

  15. Determination of water content in clay and organic soil using microwave oven

    Science.gov (United States)

    Kramarenko, V. V.; Nikitenkov, A. N.; Matveenko, I. A.; Molokov, V. Yu; Vasilenko, Ye S.

    2016-09-01

    The article deals with the techniques of soil water content determination using microwave radiation. Its practical application would allow solving the problems of resource efficiency in geotechnical survey due to reduction of energy and resource intensity of laboratory analysis as well as its acceleration by means of decreasing labour intensity and, as a result, cost reduction. The article presents a detail analysis of approaches to soil water content determination and soil drying, considers its features and application. The study in soil of different composition, typical for Western Siberia including organic and organic-mineral ones, is a peculiarity of the given article, which makes it rather topical. The article compares and analyzes the results of the investigation into soil water content, which are obtained via conventional techniques and the original one developed by the authors, consisting in microwave drying. The authors also give recommendation on microwave technique application to dry soil.

  16. In Situ Characterization of Soils for Prediction of Stress Strain Relationship of Soft Clay.

    Science.gov (United States)

    1982-11-10

    measurements (the electrical ones) and hence be able to perform analysis of earth structures on the basis of the calibrated bounding surface soil plasticity model...of Mechanics, 31, 5, pp. 723-739, Warszawa, 1979. 13. Dafalias, Y.F. and Herrmann, L.R., "A Bounding Surface Soil Plasticity Model," Int. Symp. on...Surface Formulation of Soil Plasticity ," Chapter 10 in Soil Mechanics-Transient and Cyclic Loads, G.N. Pande and O.C. Zienkicwicz eds, 3. Wiley and Sons

  17. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?

    KAUST Repository

    Serrano, Oscar

    2016-09-07

    The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (C-org) content in terrestrial soils and marine sediments has been correlated with mud content (i.e., silt and clay, particle sizes <63 mu m), however, empirical tests of this theory are lacking for coastal vegetated ecosystems. Here, we compiled data (n = 1345) on the relationship between C-org and mud contents in seagrass ecosystems (79 cores) and adjacent bare sediments (21 cores) to address whether mud can be used to predict soil C-org content. We also combined these data with the delta C-13 signatures of the soil C-org to understand the sources of Corg stores. The results showed that mud is positively correlated with soil C-org content only when the contribution of seagrass-derived C-org to the sedimentary C-org pool is relatively low, such as in small and fast-growing meadows of the genera Zostera, Halodule and Halophila, and in bare sediments adjacent to seagrass ecosystems. In large and long-living seagrass meadows of the genera Posidonia and Amphibolis there was a lack of, or poor relationship between mud and soil C-org content, related to a higher contribution of seagrass-derived C-org to the sedimentary C-org pool in these meadows. The relatively high soil C-org contents with relatively low mud contents (e.g., mud-C-org saturation) in bare sediments and Zostera, Halodule and Halophila meadows was related to significant allochthonous inputs of terrestrial organic matter, while higher contribution of seagrass detritus in Amphibolis and Posidonia meadows disrupted the correlation expected between soil C-org and mud contents. This study shows that mud is not a universal proxy for blue carbon content in seagrass ecosystems, and therefore should not be applied generally across all seagrass habitats. Mud content can only be used as a proxy to estimate soil C-org content for

  18. Solid beef cattle manure application impacts on soil properties and 17β-estradiol fate in a clay loam soil.

    Science.gov (United States)

    Caron, Emmanuelle; Farenhorst, Annemieke; Hao, Xiying; Sheedy, Claudia

    2012-01-01

    Livestock manure applied to agricultural land is one of the ways natural steroid estrogens enter soils. To examine the impact of long-term solid beef cattle (Bos Taurus) manure on soil properties and 17β-estradiol sorption and mineralization, this study utilized a soil that had received beef cattle manure over 35 years. The 17β-estradiol was strongly sorbed and sorption significantly increased (P applied.

  19. The effect of kauri (Agathis australis) on grain size distribution and clay mineralogy of andesitic soils in the Waitakere Ranges, New Zealand

    NARCIS (Netherlands)

    Jongkind, A.G.; Buurman, P.

    2006-01-01

    Kauri (Agathis australis) is generally associated with intense podzolisation, but little research has been carried out to substantiate this. We studied soil profiles, grain size distribution patterns and clay mineralogy under kauri and broadleaf/tree fern vegetation in the Waitakere Ranges, North Is

  20. Sorption of VX to Clay Minerals and Soils: Thermodynamic and Kinetic Studies

    Science.gov (United States)

    2012-12-01

    diisopropylaminoethyl O-ethyl methylthioate in Soil: Phosphorus Containing Products. Pestic . Sci. 1976, 7(4), 355–362. 17. Kaaijk, J.; Frijlink, C...Degradation of S-2-diisopropylaminoethyl O-ethyl methylthioate in Soil. Sulphur Containing Products. Pestic . Sci. 1977, 8(5), 510–514. 18. Love, A.H

  1. Pyromorphite Formation And Stability After Quick Lime Neutralisation In The Presence Of Soil And Clay Sorbents

    Science.gov (United States)

    Soluble Pb is immobilised in pure systems as pyromorphite by adding sources of P, but doubts remain about the efectiveness of this approach in natural soil systems, particularly given the ability of soil humic substances to interfere with Pb-mineral formation. In addition, recen...

  2. Removal of Pah from clay soil contaminated with diesel oil by bioremediation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Changas-spinelli, A. C. O.; Kato, M. T.; Lima, E. S.; Gavazza, S.

    2009-07-01

    Diesel oil is one of the most common soil organic pollutants, as a consequence of spilling of storage tank spills and accidental leaks. In Pernambuco State, Northeast part of Brazil, there are several evidences of soil contamination by petroleum derivates due to gas station leaking. (Author)

  3. Root-Zone Redox Dynamics - In Search for the Cause of Damage to Treated-Wastewater Irrigated Orchards in Clay Soils

    Science.gov (United States)

    Yalin, David; Shenker, Moshe; Schwartz, Amnon; Assouline, Shmuel; Tarchitzky, Jorge

    2016-04-01

    Treated wastewater (TW) has become a common source of water for agriculture. However recent findings raise concern regarding its use: a marked decrease (up to 40%) in yield appeared in orchards irrigated with TW compared with fresh water (FW) irrigated orchards. These detrimental effects appeared predominantly in orchards cultivated in clay soils. The association of the damage with clay soils rather than sandy soils led us to hypothesize that the damage is linked to soil aeration problems. We suspected that in clay soils, high sodium adsorption ratio (SAR) and high levels of organic material, both typical of TW, may jointly lead to an extreme decrease in soil oxygen levels, so as to shift soil reduction-oxidation (redox) state down to levels that are known to damage plants. Two-year continuous measurement of redox potential, pH, water tension, and oxygen were conducted in the root-zone (20-35 cm depth) of avocado trees planted in clay soil and irrigated with either TW or FW. Soil solution composition was sampled periodically in-situ and mineral composition was sampled in tree leaves and woody organs biannually. In dry periods the pe+pH values indicated oxic conditions (pe+pH>14), and the fluctuations in redox values were small in both TW and FW plots. Decreases in soil water tension following irrigation or rain were followed by drops in soil oxygen and pe+pH values. TW irrigated plots had significantly lower minimum pe+pH values compared with FW-irrigated plots, the most significant differences occurred during the irrigation season rather than the rain season. A linear correlation appeared between irrigation volume and reduction severity in TW-irrigated plots, but not in the FW plots, indicating a direct link to the irrigation regime in TW-irrigated plots. The minimum pe+pH values measured in the TW plots are indicative of suboxic conditions (9soil solution and in

  4. Clay:organic-carbon and organic carbon as determinants of the soil physical properties: reassessment of the Complexed Organic Carbon concept

    Science.gov (United States)

    Matter, Adrien; Johannes, Alice; Boivin, Pascal

    2016-04-01

    Soil Organic Carbon (SOC) is well known to largely determine the soil physical properties and fertility. Total porosity, structural porosity, aeration, structural stability among others are reported to increase linearly with increasing SOC in most studies. Is there an optimal SOC content as target in soil management, or is there no limit in physical fertility improvement with SOC? Dexter et al. (2008) investigated the relation between clay:SOC ratio and the physical properties of soils from different databases. They observed that the R2 of the relation between SOC and the physical properties were maximized when considering the SOC fraction limited to a clay:SOC ratio of 10. They concluded that this fraction of the SOC was complexed, and that the additional SOC was not influencing the physical properties as strongly as the complexed one. In this study, we reassessed this approach, on a database of 180 undisturbed soil samples collected from cambiluvisols of the Swiss Plateau, on an area of 2400 km2, and from different soil uses. The physical properties were obtained with Shrinkage Analysis, which involved the parameters used in Dexter et al., 2008. We used the same method, but detected biases in the statistical approach, which was, therefore, adapted. We showed that the relation between the bulk density and SOC was changing with the score of visual evaluation of the structure (VESS) (Ball et al., 2007). Therefore, we also worked only on the "good" structures according to VESS. All shrinkage parameters were linearly correlated to SOC regardless of the clay:SOC ratio, with R2 ranging from 0.45 to 0.8. Contrarily to Dexter et al. (2008), we did not observed an optimum in the R2 of the relation when considering a SOC fraction based on the clay:SOC ratio. R2 was increasing until a Clay:SOC of about 7, where it reached, and kept, its maximum value. The land use factor was not significant. The major difference with the former study is that we worked on the same soil group

  5. Source zone remediation by ZVI-clay soil-mixing: Reduction of tetrachloroethene mass and mass discharge at a Danish DNAPL site

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Binning, Philip John;

    2012-01-01

    and mass discharge is obtained. The technology was tested at a Danish DNAPL site, where the secondary aquifer was heavily contaminated by tetrachloroethene (PCE). ZVI-Clay soil-mixing was tested at a small source zone (~200 m3) with soil concentrations ranging up to 12,000 mg/kg. The objective of the field...... test was to document in situ destruction of the contaminant mass and the down-gradient response in contaminant mass discharge. The field sampling consisted of baseline measurements and a 19-month monitoring program (7 sampling campaigns) subsequent to the implementation of ZVI-Clay soil mixing...... in magnitude) with ethene as the main degradation product. The down-gradient reduction of contaminant mass discharge occurred more slowly; after 19 months a mass discharge reduction of 76 % was obtained for PCE. However, due to a temporary increase in cis-DCE, the overall down-gradient reduction of all...

  6. Preferential flow of bromide, bentazon, and imidacloprid in a Dutch clay soil

    NARCIS (Netherlands)

    Scorza Júnior, R.P.; Smelt, J.H.; Boesten, J.J.T.I.; Hendriks, R.F.A.; Zee, van der S.E.A.T.M.

    2004-01-01

    Leaching to ground water and tile drains are important parts of the environmental assessment of pesticides. The aims of the present study were to (i) assess the significance of preferential flow for pesticide leaching under realistic worst-case conditions for Dutch agriculture (soil profile with thi

  7. Carbon storage in a heavy clay soil landfill site after biosolid application

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, N.S., E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Kunhikrishnan, A. [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Naidu, R. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia)

    2013-11-01

    Applying organic amendments including biosolids and composts to agricultural land could increase carbon (C) storage in soils and contribute significantly to the reduction of greenhouse gas emissions. Although a number of studies have examined the potential value of biosolids as a soil conditioner and nutrient source, there has been only limited work on the impact of biosolid application on C sequestration in soils. The objective of this study was to examine the potential value of biosolids in C sequestration in soils. Two types of experiments were conducted to examine the effect of biosolid application on C sequestration. In the first laboratory incubation experiment, the rate of decomposition of a range of biosolid samples was compared with other organic amendments including composts and biochars. In the second field experiment, the effect of biosolids on the growth of two bioenergy crops, Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) on a landfill site was examined in relation to biomass production and C sequestration. The rate of decomposition varied amongst the organic amendments, and followed: composts > biosolids > biochar. There was a hundred fold difference in the rate of decomposition between biochar and other organic amendments. The rate of decomposition of biosolids decreased with increasing iron (Fe) and aluminum (Al) contents of biosolids. Biosolid application increased the dry matter yield of both plant species (by 2–2.5 fold), thereby increasing the biomass C input to soils. The rate of net C sequestration resulting from biosolid application (Mg C ha{sup −1} yr{sup −1} Mg{sup −1} biosolids) was higher for mustard (0.103) than sunflower (0.087). Biosolid application is likely to result in a higher level of C sequestration when compared to other management strategies including fertilizer application and conservation tillage, which is attributed to increased microbial biomass, and Fe and Al oxide-induced immobilization of C

  8. Improvement of Soil Moisture Retrieval from Hyperspectral VNIR-SWIR Data Using Clay Content Information: From Laboratory to Field Experiments

    Directory of Open Access Journals (Sweden)

    Rosa Oltra-Carrió

    2015-03-01

    Full Text Available The aim of this work is to study the constraints and performance of SMC retrieval methodologies in the VNIR (Visible-Near InfraRed and SWIR (ShortWave InfraRed regions (from 0.4 to 2.5 µm when passing from controlled laboratory conditions to field conditions. Five different approaches of signal processing found in literature were considered. Four local criteria are spectral indices (WISOIL, NSMI, NINSOL and NINSON. These indices are the ratios between the spectral reflectances acquired at two specific wavelengths to characterize moisture content in soil. The last criterion is based in the convex hull concept and it is a global method, which is based on the analysis of the full spectral signature of the soil. The database was composed of 464 and 9 spectra, respectively, measured over bare soils in laboratory and in-situ. For each measurement, SMC and texture were well-known and the database was divided in two parts dedicated to calibration and validation steps. The calibration part was used to define the empirical relation between SMC and SMC retrieval approaches, with coefficients of determination (R2 between 0.72 and 0.92. A clay content (CC dependence was detected for the NINSOL and NINSON indices. Consequently, two new criteria were proposed taking into account the CC contribution (NINSOLCC and NINSONCC. The well-marked regression between SMC and global/local indices, and the interest of using the CC, were confirmed during the validation step using laboratory data (R² superior to 0.76 and Root mean square errors inferior to 8.3% m3∙m−3 in all cases and using in-situ data, where WISOIL, NINSOLCC and NINSONCC criteria stand out among the NSMI and CH.

  9. Size and Persistence of the Microbial Biomass Formed during the Humification of Glucose Hemicellulose Cellulose, and Straw in Soils Containing Different Amounts of Clay

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1983-01-01

    as CO2, compared with only 23% of the barley-C.The humified matter that remained in the soils after 3 months decayed at almost the same rate whether the origin of the matter was glucose, hemicellulose, cellulose or straw; this rate was, on the whole, independent of the caly content of the soils. Half...... straw. The half-life of labelled C in biomass during the second year of incubation ranged from 2 to 3 years.Native C in biomass ranged from 0.5 to 1.4% of the total C in native soil organic matter, the highest values occurring in the clay-rich soils. The half-life of native soil C, estimated from CO2......14C-labelled substrates were incubated at 20°C in 4 soils with clay contents ranging from 6 to 34%. Glucose was most readily decomposed, followed in order by hemicellulose, cellulose, maize straw, and barley straw. After the first 10 days of incubation, about 60% of the glucose-C had left the soils...

  10. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  11. Effect of blade vibration on mulch tillage performance under silt clay loam soil

    Directory of Open Access Journals (Sweden)

    B Goudarzi

    2015-09-01

    Full Text Available Introduction: Mulch tillage system is an intermediate system which covers some of disadvantages of no tillage and conventional tillage systems. In farms in which tillage is done with a chisel plow, runoff and soil erosion have a less important relation to moldboard and disk plow and naturally absorption of rainfall will be developed. Thus, the mulch tillage system is an appropriate alternative to conventional tillage and no tillage (Backingham and Pauli, 1993. The unwanted vibration in machinery and industry mainly processes most harmful factors, for example: bearing wear, cracking and loosening joints. And noise is produced in electrical systems by creating a short circuit (Wok, 2011. Self-induced and induced vibration are used in tillage systems. Induced vibration is created by energy consumption and self-induced vibration is created by collision among the blades and soil at the shank (Soeharsono and Setiawan, 2010. A study by Mohammadi-gol et al. (2005 was conducted. It was found that on the disk plow, plant residues maintained on the soil are more than that of moldboard plow. 99% frequency and amplitude, speed and rack angle of blade directly affect soil inversion and indirectly affect preservation of crop residue on the soil. The effect of vibration frequency and rack angle of blade to reduce the tensile strength is also clear. Moreover, in contrast to previous studies when speed progressing is less than (λ, not only the relative speed (λ, but also frequency can reduce the tensile strength (Beiranvand and Shahgoli, 2010; Awad-Allah et al., 2009. Therefore, aim of this study was to determine the effect of vibration and the speed of tillage on soil parameters and drawbar power in using electric power. Materials and Methods: To perform this test, three different modes of vibration (fixed, variable and induced vibration and two levels of speed in real terms at a depth of 20 cm were used for farming. The test was performed with a split plot

  12. Using GPR early-time amplitude analysis to monitor variations in soil water content at a clay-rich agricultural site in response to irrigation

    Science.gov (United States)

    Algeo, Jonathan; Van Dam, Remke; Slater, Lee

    2015-04-01

    Geophysical methods are increasingly used to analyze spatial variation in soil water content (SWC). Electrical resistivity (ER), ground-penetrating radar (GPR), and time-domain reflectometry (TDR) have all been applied to this problem. However, TDR is limited in terms of its ability to provide good spatial coverage over large areas, ER can be very time consuming depending on the survey, and GPR direct wave and reflection methods are ineffective in clay-rich environments. We employed a relatively new GPR methodology, early-time amplitude analysis, during an infiltration experiment conducted in a clay-rich agricultural field. The research took place at the Samford Ecological Research Facility, Queensland, Australia, with the goal of monitoring changes in SWC in response to irrigation. We hypothesize that early-time analysis can be used to detect and monitor infiltration in clay-rich soils where direct wave and reflection GPR fails, thus opening new avenues of hydrogeophysical research in the increasingly important field of water resource management. Initial field work showed that traditional methods of using GPR reflection surveys and ground wave velocity analysis were ineffective due to the excessive signal attenuation caused by the clay-rich soil at the site. GPR and TDR datasets were collected over a 20 meter by 15 meter section of the field. GPR datasets were collected once daily, at 10 am, and TDR measurements were collected once daily at 11 am from Thursday, August 28th, 2014 until Monday, September 1st, 2014. A sprinkler irrigation was carried out on the evening of Thursday, August 28th. The results suggest that the early-time GPR method is capable of monitoring the resulting changes in SWC due to infiltration in clayey soils despite the failure of reflection and ground wave velocity analysis. The early time GPR results are consistent with moisture content estimates from TDR and gravimetric analysis of soil cores taken in the field.

  13. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  14. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    DEFF Research Database (Denmark)

    Karup, Dan; Møldrup, Per; Paradelo Pérez, Marcos;

    2016-01-01

    . All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being normally distributed to having more preferential characteristics along with an increase in the content of the mineral fines...... (particles ≤ 50 μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curve (BTC), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability...

  15. In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, S. [IGB - Ingenieurbuero fuer Grundbau, Hamburg (Germany)

    1997-12-31

    Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m{sup 2} to 500 m{sup 2}. Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10{sup -10} m{sup 3} m{sup -2} s{sup -1} to 4 x 10{sup -8} m{sup 3} m{sup -2} s{sup -1}. Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates.

  16. Effects of Organic Anions on Phosphate Adsorption and Desorption from Variable—Charge Clay Minerals and Soil

    Institute of Scientific and Technical Information of China (English)

    HEZHEN-LI; YUANKE-NENG; 等

    1992-01-01

    Effects of citrate and tartrate on phosphate adsorption and desorption from kaolinite,goethite,amorphous Al-oxide and Ultisol were studied.P adsorption was significantly decreased as the concentration of the organic anions increased from 10-5 to 10-1 M.At 0.1 M and pH 7.0,tartrate decreased P adsorption by 27.6%-50.6% and citrate by 37.9-80.4%,depending on the kinds of adsorbent.Little Al and/or Fe were detected in the equilibrium solutions,even at the highest concentration of the organic anions.Effects of the organic anions on phosphate adsorption follow essentially the competitive adsorption mechanism.The selectivity coefficients for competitive adsorption can be used to compare the effectiveness of different organic anions in reducing P adsorption under given gonditions. Phosphate desorption was increased by 3 to 100 times in the presence of 0.001 M citrate or tartrate compared to that in 0.02 M KCl solution alone.However,for all the soil and clay minerals studied the amount of P desorbed by citrate or tartrate was generally lower than or close to that of isotopically exchangeable P.The effect of organic anions on phosphate desorption arises primarily from ligand exchange.

  17. Sedimentos arcillosos en un suelo del valle inferior del río Colorado (Argentina Clay sediments in a soil of the lower Colorado river valley (Argentina

    Directory of Open Access Journals (Sweden)

    Norman Peinemann

    2008-12-01

    Full Text Available Se describe la presencia de capas sedimentarias ricas en minerales de arcilla en un subsuelo del valle inferior del río Colorado por su importancia para el régimen hídrico de suelos bajo riego. Difractogramas de rayos X efectuados sobre la fracción arcilla fina de estos sedimentos revelaron que está compuesta por smectitas con muy buena cristalización. La caracterización fisicoquímica del perfil de suelo mostró que el fuerte incremento de minerales de arcilla en el subsuelo estuvo vinculado con un aumento de pH y PSI y en consecuencia una marcada disminución en la conductividad hidráulica, motivo por el cual la eventual presencia de estas capas sedimentarias debe ser muy tenida en cuenta en la programación de las prácticas de riego para evitar el posible deterioro de los suelos.The presence of sedimentary clay layers in subsoils of the lower Colorado river valley are described due to their impact on the water balance of soils under irrigation. X-ray difractograms of the fine clay fraction of these sediments show that they are composed of smectites with a very good crystallization. The physicochemical characterization of the soil profile indicates that the abrupt increase of clay minerals was associated with high pH and ESP values as well as a sharp decrease in hydraulic conductivity. Therefore, the presence of sedimentary clay layers in soils has to be considered when planning irrigation practices to avoid soil degradation.

  18. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Munier-Lamy, C. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France)], E-mail: colette.munier@limos.uhp-nancy.fr; Deneux-Mustin, S. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France); Mustin, C. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France)], E-mail: christian.mustin@limos.uhp-nancy.fr; Merlet, D. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France)], E-mail: denis.merlet@limos.uhp-nancy.fr; Berthelin, J. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France)], E-mail: jacques.berthelin@limos.uhp-nancy.fr; Leyval, C. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France)], E-mail: corinne.leyval@limos.uhp-nancy.fr

    2007-10-15

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil.

  19. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass.

    Science.gov (United States)

    Munier-Lamy, C; Deneux-Mustin, S; Mustin, C; Merlet, D; Berthelin, J; Leyval, C

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil.

  20. The Characteristic and Activation of Mixed Andisol Soil/Bayat Clays/Rice Husk Ash as Adsorbent of Heavy Metal Chromium (Cr)

    Science.gov (United States)

    Pranoto; Sajidan; Suprapto, A.

    2017-02-01

    Chromium (Cr) concentration in water can be reduced by adsorption. This study aimed to determine the effect of Andisol soil composition/Bayat clay/husk ash, activation temperature and contact time of the adsorption capacity of Cr in the model solution; the optimum adsorption conditions and the effectiveness of ceramic filters and purifiers to reduce contaminant of Cr in the water. The mixture of Andisol soil, Bayat clay, and husk ash is used as adsorbent of metal ion of Cr(III) using batch method. The identification and characterisation of adsorbent was done with NaF test, infrared spectroscopy (FTIR), X-ray diffraction (XRD). Cr metal concentrations were analyzed by atomic absorption spectroscopy. Sorption isotherms determined by Freundlich equation and Langmuir. The optimum conditions of sorption were achieved at 150°C activation temperature, contact time of 30 minutes and a composition Andisol soil / Bayat clay / husk ash by comparison 80/10/10. The results show a ceramic filter effectively reduces total dissolved solids (TDS) and Chromium in the water with the percentage decrease respectively by 75.91% and 9.44%.

  1. Point of zero salt effect: Relationships with clay mineralogy of representative soils of the S(a)o Paulo State, Brazil

    Institute of Scientific and Technical Information of China (English)

    M. E. ALVES; A. LAVORENTI

    2005-01-01

    The point of zero salt effect (PZSE) is the soil pH value at which the magnitude of the variable surface charges is not changed due to variations in the ionic concentration of the soil solution. This property influences not only electrochemical phenomena occurring at the solid-solution interface but also the flocculation degree of the soil particles. In this study we investigated the relationships between the clay mineralogy and the PZSE values of representative soils of the Sao Paulo State, Brazil. The results confirmed the usefulness of the difference between the soil pH values measured in 1 mol L-1 KCl (pHKC1) and in water (pHH2O) (2 pHKC1 - pHH2O) for estimating the PZSE of tropical soils, except for the ones rich in exchangeable Al; furthermore, the △pH index (pHKCI - pHH2O) was highly correlated with the difference between the PZSE and pHH2O values, reiterating the △pH utility for estimating both the signal and the magnitude of the net surface charge of tropical soils. Finally, correlation and multiple regression analyses showed that the PZSE value of weathered non-allophanic tropical soils tends to increase and to equal the soil pH due to the weathering-induced kaolinite destabilization and concomitant Fe- and Al-oxide accumulation.

  2. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene.

    Science.gov (United States)

    Babin, Doreen; Ding, Guo-Chun; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike.

  3. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  4. Mineralogy and geotechnical characteristics of some pottery clay

    OpenAIRE

    Mujib Olamide ADEAGBO; Samuel Akinlabi OLA; Olumide Oluwapelumi OJURI

    2016-01-01

    The physical properties of soils, which are tremendously influenced by the active clay minerals in soil, are of great importance in geotechnical engineering. This paper investigates the clay-sized particles of the Igbara-Odo pottery clay, and compares results obtained with available data on the bulk sample, to determine their correlation and underline the dependence of the geotechnical properties of the bulk clay material on the clay-sized particles. The bulk clay sample consists of 52% sand-...

  5. Micromorphology and stable-isotope geochemistry of historical pedogenic siderite formed in PAH-contaminated alluvial clay soils, Tennessee, U.S.A

    Science.gov (United States)

    Driese, S.G.; Ludvigson, Greg A.; Roberts, J.A.; Fowle, D.A.; Gonzalez, Luis A.; Smith, J.J.; Vulava, V.M.; McKay, L.D.

    2010-01-01

    Alluvial clay soil samples from six boreholes advanced to depths of 400-450 cm (top of limestone bedrock) from the Chattanooga Coke Plant (CCP) site were examined micromorphologically and geochemically in order to determine if pedogenic siderite (FeCO3) was present and whether siderite occurrence was related to organic contaminant distribution. Samples from shallow depths were generally more heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) than those at greater depth. The upper 1 m in most boreholes consisted of mixtures of anthropogenically remolded clay soil fill containing coal clinker, cinder grains, and limestone gravel; most layers of coarse fill were impregnated with creosote and coal tar. Most undisturbed soil (below 1 m depth) consisted of highly structured clays exhibiting fine subangular blocky ped structures, as well as redox-related features. Pedogenic siderite was abundant in the upper 2 m of most cores and in demonstrably historical (< 100 years old) soil matrices. Two morphologies were identified: (1) sphaerosiderite crystal spherulites ranging from 10 to 200 um in diameter, and (2) coccoid siderite comprising grape-like "clusters" of crystals 5-20 ??n in diameter. The siderite, formed in both macropores and within fine-grained clay matrices, indicates development of localized anaerobic, low-Eh conditions, possibly due to microbial degradation of organic contaminants. Stable-isotope compositions of the siderite have ??13C values spanning over 25%o (+7 to - 18%o VPDB) indicating fractionation of DIC by multiple microbial metabolic pathways, but with relatively constant ??18O values from (-4.8 ?? 0.66%o VPDB) defining a meteoric sphaerosiderite line (MSL). Calculated isotope equilibrium water ??18O values from pedogenic siderites at the CCP site are from 1 to 5 per mil lighter than the groundwater ??18O values that we estimate for the site. If confirmed by field studies in progress, this observation might call for a reevaluation of

  6. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching).

    Science.gov (United States)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin

    2014-05-01

    Despite best management practices, agriculture is still facing major challenges to reduce nutrients leaching to the aquatic environment. In deltas, most of total nutrient losses from artificially drained agricultural soils are discharged via drains. Controlled drainage is a promising measure to prevent drainage of valuable nutrients, improve water quality and agricultural yield and adapt to climate change (reduce peak runoff, manage water scarcity and drought). In The Netherlands, this technique has attracted much attention by water managers and farmers alike, yet field studies to determine the expected (positive) effects for Dutch conditions were scarce. Recently, a field experiment was set up on clay soils. Research questions were: how does controlled, subsurface drainage perform on clay soils? Will deeper tile drains function just as well? What are the effects on drain water quality (especially with respect to nitrogen and salt) and crop yield? An agricultural field on clay soils was used to test different tile drainage configurations. Four types of tile drainage systems were installed, all in duplicate: eight plots in total. Each plot has its own outlet to a control box, where equipment was installed to control drain discharge and to measure the flow, concentrations of macro-ions, pH, nitrogen, N-isotopes and heavy metals. In each plot, groundwater observation wells and suction cups are installed in the saturated and vadose zones, at different depths, and crop yield is determined. Four plots discharge into a hydrologic isolated ditch, enabling the determination of water- and nutrient balances. Automatic drain water samplers and innovative nitrate sensors were installed in four plots. These enable identification and unravelling so-called first flush effects (changes in concentrations after a storm event). Water-, chloride- and nitrogen balances have been set up, and the interaction between groundwater and surface water has been quantified. The hydrological

  7. Soil-Water and Deformation Characteristics of Unsaturated Shanghai Soft Clays%非饱和上海软土的土-水和变形特性

    Institute of Scientific and Technical Information of China (English)

    陈振新; 孙德安

    2012-01-01

    使用压力板法和滤纸法测量非饱和上海软土的吸力,得到第②,③,④层上海原状土和第②,③层上海重塑土的土·水特征曲线,以及土体脱水干燥过程中吸力和孔隙比之间的关系.土-水特性试验结果表明:第②,③,④层上海原状土和第②,③层上海重塑土的进气值分别为150 ~180,220~250,650 ~ 800,260 ~310,550 ~ 600 kPa.干燥收缩试验结果表明:上海黏土的收缩过程可分为3个阶段,即弹性阶段、弹塑性阶段和缩限阶段.当基质吸力较小时,收缩变形较小,土体处于弹性阶段;当基质吸力增大到一定值时,收缩变形明显,土体处于弹塑性阶段;当土体变形基本不随基质吸力变化时,土体处于缩限阶段.%Using the methods of pressure plate and filter paper to measure soil suction, the soil-water characteristic curves and shrinkage deformation curves of undisturbed Shanghai soft clays (layers (2), (3) and (4)) and reconstituted Shanghai soft clays (layers (2) and (3)) are obtained from drying tests. It is found from the soil-water characteristic tests that the air-entering values of undisturbed Shanghai soft clays (layers (2),(3) and (4)) and reconstituted Shanghai soft clays (layers (2) and (3)) are 150-180, 220 ~ 250, 650 -800, 260 -310, and 550 -600 kPa, respectively. The process of soil shrinkage can be divided into three stages: elastic stage, elastoplastic stage and stage of shrinkage limit. When the imposed matric suction is small, the soil is at the elastic stage. When the large suction is applied, the shrinkage deformation becomes noticeable, and the soil is at the elastoplastic stage. At the stage of shrinkage limit, almost no deformation occurs during the increase of matric suction.

  8. Clay-to-carbon ratio controls the effect of herbicide application on soil bacterial richness and diversity in a loamy field

    DEFF Research Database (Denmark)

    Herath, Lasantha; Møldrup, Per; de Jonge, Lis Wollesen

    2017-01-01

    application and increasing after glyphosate application. This indicated that the specific chemical nature of individual herbicides affected bacterial communities. This study reinforced the importance of including soil physical and chemical characteristics to explain the influence of pesticides....... Glyphosate and bentazon were used to evaluate the herbicidal effect on bacterial community under different conditions created by clay and OC gradients in a loamy field. Metabarcoding by highthroughput sequencing of bacterial rDNA was used to estimate bacterial richness and diversity using OTUs, abundance......-based coverage (ACE), Shannon diversity index, and phylogenetic diversity. In general, bacterial richness and diversity increased after bentazon application and decreased after glyphosate application. There was no significant effect for field locations with Dexter n (the ratio between clay and OC) values below 4...

  9. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil

    Science.gov (United States)

    Meunier, Jean-François; Martins-Silva, Elisângela R.; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the

  10. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil.

    Science.gov (United States)

    Barbiero, Laurent; Berger, Gilles; Rezende Filho, Ary T; Meunier, Jean-François; Martins-Silva, Elisângela R; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the

  11. Evaluation of Turf-Grass and Prairie-Vegetated Rain Gardens in a Clay and Sand Soil, Madison, Wisconsin, Water Years 2004-08

    Science.gov (United States)

    Selbig, William R.; Balster, Nicholas

    2010-01-01

    The U.S. Geological Survey, in cooperation with a consortium of 19 cities, towns, and villages in Dane County, Wis., undertook a study to compare the capability of rain gardens with different vegetative species and soil types to infiltrate stormwater runoff from the roof of an adjacent structure. Two rain gardens, one planted with turf grass and the other with native prairie species, were constructed side-by-side in 2003 at two locations with different dominant soil types, either sand or clay. Each rain garden was sized to a ratio of approximately 5:1 contributing area to receiving area and to a depth of 0.5 foot. Each rain garden, regardless of vegetation or soil type, was capable of storing and infiltrating most of the runoff over the 5-year study period. Both rain gardens in sand, as well as the prairie rain garden in clay, retained and infiltrated 100 percent of all precipitation and snowmelt events during water years 2004-07. The turf rain garden in clay occasionally had runoff exceed its confining boundaries, but was still able to retain 96 percent of all precipitation and snowmelt events during the same time period. Precipitation intensity and number of antecedent dry days were important variables that influenced when the storage capacity of underlying soils would become saturated, which resulted in pooled water in the rain gardens. Because the rooftop area that drained runoff to each rain garden was approximately five times larger than the area of the rain garden itself, evapotranspiration was a small percentage of the annual water budget. For example, during water year 2005, the maximum evapotranspiration of total influent volume ranged from 21 percent for the turf rain garden in clay to 25 percent for the turf rain garden in sand, and the minimum ranged from 12 percent for the prairie rain garden in clay to 19 percent for the prairie rain garden in sand. Little to no runoff left each rain garden as effluent and a small percentage of runoff returned to the

  12. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  13. Radionuclides in milk of dairy heifers raised on forages harvested from phosphatic clay soils on reclaimed mined land

    Energy Technology Data Exchange (ETDEWEB)

    Staples, C.R.; Umana, R.; Hayen, M.J. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1994-07-01

    Alfalfa (AR; Medicago sativa L.) and corn (CSR; Zea mays L.) were grown in phosphatic clay soils on phosphate-mined reclaimed land in central Florida. Corn (CSC) also was grown on unmined land and served as a control forage. Upon harvesting, plants were chopped and ensiled. Concentrations of {sup 226}Ra averaged 2.44, 0.26 and 0.15; {sup 210}Pb averaged 1.04, 0.63, and 0.52; and {sup 210}Po averaged 1.59, 0.59, and 1.26 Bq kg{sup -1} DM for AR, CSR, and CSC, respectively. These forages were fed separately to Holstein dairy replacement heifers (Bos taurus) (n=15 per forage) from approximately 9 to 25 mo of age. Heifers gave birth to calves at approximately 24 mo of age. Samples of milk were collected on d 1, 15, and 30 of lactation and analyzed for radionuclides. Averaged across sampling days, heifers fed AR had greater milk concentrations of {sup 226}Ra compared with those fed CSR (0.27 vs. 0.22 Bq kg{sup -1} DM; P < 0.10), which, in turn, had greater milk concentrations compared with heifers fed CSC (0.22 vs. 0.13 Bq kg{sup -1} DM; P < 0.05). Heifers fed AR also had greater milk concentrations of {sup 210}Po compared with heifers fed CSR (0.58 vs. 0.30 Bq kg{sup -1} DM; P < 0.10), but values of CSR-fed heifers were not different from CSC-fed heifers (0.45 Bq kg{sup -1} DM). Lead-210 was greater in milk from heifers fed CSR compared with those fed AR or CSC (1.38 vs. 0.94 and 0.92 Bq kg{sup -1} DM; P < 0.13), respectively. Plasma S and Cu concentrations suggested subclinical molybdenosis in heifers fed AR. However, all heifers grew at an acceptable rate, conceived normally, had normal gestation periods, gave high quality colostrum at calving, and produced similar amounts of milk. 17 refs., 9 tabs.

  14. Source Zone Remediation by ZVI-Clay Soil-Mixing: Reduction of Tetrachloroethene Mass and Mass Discharge at a Danish DNAPL Site

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Binning, Philip John;

    2012-01-01

    contaminant mass and contaminant mass discharge can be reduced. The technology was tested at a Danish tetrachloroethene (PCE) site. The field sampling consisted of baseline measurements and a 19-month monitoring program (7 sampling campaigns) subsequent to the implementation of ZVI-Clay soil...... degradation product. The down-gradient reduction of contaminant mass discharge was slower; after 19 months a mass discharge reduction of 76 % was obtained for the parent compound PCE, while the overall mass discharge reduction of chlorinated ethenes was 21 %....

  15. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.

    Science.gov (United States)

    Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne

    2015-09-01

    The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the

  16. Investigation of Cyclodextrin-Enhanced Electrokinetic Soil Remediation. Fate and Transport of Nitroaromatic Contaminants and Cyclodextrin Amendments in Expansive Clays

    Science.gov (United States)

    2004-09-01

    solubilized by the uncharged cyclo- dextrins : α, β, and γ. These molecules are functionally identical in shape with the exception of interior cavity size, as...Biotechnology. V. 75, 2000, 657-664. 22. Melton, L. D.; Slessor, K. N. Carbohydr . Res. 1971, 18, 29. 23. Mortland, M. M. “Clay-Organic Complexes

  17. Effects of subsoil compaction on hydraulic properties and preferential flow in a Swedish clay soil

    DEFF Research Database (Denmark)

    Mossadeghi-Björklund, M; Arvidsson, J.; Keller, Thomas;

    2016-01-01

    Soil compaction by vehicular traffic modifies the pore structure and soil hydraulic properties. These changes potentially influence the occurrence of preferential flow, which so far has been little studied. Our aim was to study the effect of compaction on soil hydraulic and transport properties in su...

  18. Disturbance of water-extractable phosphorus determination by colloidal particles in a heavy clay soil from the Netherlands

    NARCIS (Netherlands)

    Koopmans, G.F.; Chardon, W.J.; Salm, van der C.

    2005-01-01

    Received for publication January 25, 2005. Water extraction methods are widely used to extract phosphorus (P) from soils for both agronomic and environmental purposes. Both the presence of soil colloids in soil water filtrates, and the contribution of colloidal P to the molybdate-reactive phosphorus

  19. Major and Trace Element Variations in Impact Crater Clay from Chicxulub, Lonar, and Mistastin, Implications for the Martian Soil

    Science.gov (United States)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Rietmeijer, F. J. M.; Gakin, R.; Lee, K.

    2004-01-01

    The catastrophic Chicxulub event should have generated a large hydrothermal system with volatile element mobilization, producing interesting alteration materials and clays. The Yaxcopoil-1 (YAX) drill hole is located in the annular trough, about 70 km southwest of the crater center, in an area where the impactite layers are relatively thin (approx. 100 m thick). We have analyzed samples from the YAX drill core and from other impact craters including Mistastin and Lonar to determine the nature of alteration and trace element mobilization.

  20. Influence of Dimensions of UHMW-PE Protuberances on Sliding Resistance and Normal Adhesion of Bangkok Clay Soil to Biomimetic Plates

    Institute of Scientific and Technical Information of China (English)

    P. Soni; V. M. Salokhe

    2006-01-01

    A number of investigations into application of polymers for macro-morphological modification of tool surface have been carried out. These researches, with extensive stress on convex or domed protuberations as one of the widely used construction units, have tried to harness benefits from using polymers in agriculture. Ultra high molecular weight polyethylene (UHMW-PE)has proved an emerging polymer in its application to reduce soil adhesion. This research was conducted to study the effect of shape (flat, semi-spherical, semi-oblate, semi short-prolate and semi long-prolate) and dimensions (base diameter and dome height) on sliding resistance and normal adhesion of biomimetic plates. To incorporate both shape and size, a dimensionless ratio of height to diameter (HDR) was introduced to characterize the effect of construction unit's physique. Experiments were conducted in Bangkok clay soil with dry (19.8% d.b.), sticky (36.9% d.b.) and flooded (60.1% d.b.) soil conditions respectively. Soil at sticky limit exhibited the highest sliding resistance (77.8 N) and normal adhesion (3 kPa to 7 kPa), whereas these values were 61.7 N and <0.2 kPa in dry, and 53.7 N and 0.5 kPa to 1.5 kPa in flooded soil conditions. Protuberances with HDR ≤ 0.5 lowered sliding resistance by 10% - 30% and the same reduced normal adhesion by 10% - 60%. The amount of reduction in both sliding resistance and normal adhesion was higher in flooded soil. Lighter normal loads obviously produced lesser resistance and adhesion.

  1. Clay minerals in pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Tateo, F. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca sulle Argille, Tito Scalo, PZ (Italy)

    2000-07-01

    Clay minerals are fundamental constituents of life, not only as possible actors in the development of life on the Earth (Cairns-Smith and Hartman, 1986), but mainly because they are essential constituents of soils, the interface between the solid planet and the continental biosphere. Many, many authors have devoted themselves to the study of clays and clay minerals since the publication of the early modern studies by Grim (1953, 1962) and Millot (1964). In those years two very important associations were established in Europe (Association Internationale pour l'Etude des Argiles, AIPEA) and in the USA (Clay Mineral Society, CMS). The importance of these societies is to put together people that work in very different fields (agronomy, geology, geochemistry, industry, etc.), but with a common language (clays), very useful in scientific work. Currently excellent texts are being published, but introductory notes are also available on the web (Schroeder, 1998).

  2. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.

    Science.gov (United States)

    Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad

    2015-04-01

    Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured.

  3. Strength and Deformation Properties of Tertiary Clay at Moesgaard Museum

    DEFF Research Database (Denmark)

    Kaufmann, Kristine Lee; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    The tertiary clay at Moesgaard Museum near Aarhus in the eastern part of Jutland in Denmark is a highly plastic, glacially disturbed nappe of Viborg Clay. The clay is characterised as a swelling soil, which could lead to damaging of the building due to additional heave of the soil. To take...

  4. Previous Crop and Cultivar Effects on Methane Emissions from Drill-Seeded, Delayed-Flood Rice Grown on a Clay Soil

    Directory of Open Access Journals (Sweden)

    Alden D. Smartt

    2016-01-01

    Full Text Available Due to anaerobic conditions that develop in soils under flooded-rice (Oryza sativa L. production, along with the global extent of rice production, it is estimated that rice cultivation is responsible for 11% of global anthropogenic methane (CH4 emissions. In order to adequately estimate CH4 emissions, it is important to include data representing the range of environmental, climatic, and cultural factors occurring in rice production, particularly from Arkansas, the leading rice-producing state in the US, and from clay soils. The objective of this study was to determine the effects of previous crop (i.e., rice or soybean (Glycine max L. and cultivar (i.e., Cheniere (pure-line, semidwarf, CLXL745 (hybrid, and Taggart (pure-line, standard-stature on CH4 fluxes and emissions from rice grown on a Sharkey clay (very-fine, smectitic, thermic Chromic Epiaquerts in eastern Arkansas. Rice following rice as a previous crop generally had greater (p<0.01 fluxes than rice following soybean, resulting in growing season emissions (p<0.01 of 19.6 and 7.0 kg CH4-C ha−1, respectively. The resulting emissions from CLXL745 (10.2 kg CH4-C ha−1 were less (p=0.03 than those from Cheniere or Taggart (15.5 and 14.2 kg CH4-C ha−1, resp., which did not differ. Results of this study indicate that common Arkansas practices, such as growing rice in rotation with soybean and planting hybrid cultivars, may result in reduced CH4 emissions relative to continuous rice rotations and pure-line cultivars, respectively.

  5. Capacities of Clay Fraction of a Latosol to Retain Cations and Anions as Inferred from the Wien Effect in Soil Suspensions

    Institute of Scientific and Technical Information of China (English)

    LI CHENGBAO; S. P. FRIEDMAN; ZHAO ANZHEN

    2003-01-01

    Suspensions of a latosol with a clay concentration of 30 g kg-1 were prepared from electrodialyzed clay fractions, less than 2 μm in diameter, five nitrate solutions with a concentration of 1 × 10-4/z mol L-1,where z is the valence, and five sodium salt solutions with a concentration of 3.3 × 10-5/z mol L-1. The direct current (DC) electrical conductivities (ECs) of the colloidal suspensions were measured at a constant temperature of 25 ℃, using a newly established method of measuring the Wien effect in soil suspensions at field strengths ranging from 13.5 to 150 kV cm-1, to determine their electrical conductivity-field strength relationships and to infer the order of the bonding strength (retaining force) between soil particles and various ions. The measurements with the latosol suspensions in NaNO3, KNO3, Ca(NO3)2, Mg(NO3)2 and Zn(NO3)2 solutions resulted in increments of the suspension ECs, △ECs, of 7.9, 5.0, 7.1, 7.0 and 5.8μS cm-1,respectively, when the applied field strength increased from 14.5 to 142 kV cm-1. As for the suspensions in NaNO3, NaCl, Na2SO4, Na3PO4 and Na3AsO4 solutions, the △ECs were 6.2, 5.3, 4.1, 4.0 and 3.7μS cm-1,respectively, when the applied field strength increased from 13.5 to 90 kV cm-1. Thus, it can be deduced that the retaining forces of the clay fraction of the latosol for the cations were in the descending order K+ >Zn2+ > Mg2+ ≥ Ca2+ > Na+, and for the anions in the descending order H2AsO-4 > H2PO-4 ≥ SO42- > Gl- > NO-3.

  6. Amplification of plasmid DNA bound on soil colloidal particles and clay minerals by the polymerase chain reaction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Polymerase chain reaction (PCR) was used to amplify a 600-base pair (bp) sequence of plasmid pGEX-2T DNA bound on soil colloidal particles from Brown soil (Alfisol) and Red soil (Ultisol), and three different minerals (goethite, kaolinite, montmorillonite). DNA bound on soil colloids, kaolinite, and montmorillonite was not amplified when the complexes were used directly but amplification occurred when the soil colloid or kaolinite-DNA complex was diluted, 10- and 20-fold. The montmorillonite-DNA complex required at least 100-fold dilution before amplification could be detected. DNA bound on goethite was amplified irrespective of whether the complex was used directly, or diluted 10- and 20-fold. The amplification of mineral-bound plasmid DNA by PCR is, therefore, markedly influenced by the type and concentration of minerals used. This information is of fundamental importance to soil molecular microbial ecology with particular reference to monitoring the fate of genetically engineered microorganisms and their recombinant DNA in soil environments.

  7. Mars, clays and the origins of life

    Science.gov (United States)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  8. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps

    Science.gov (United States)

    Egli, Markus; Mirabella, Aldo; Sartori, Giacomo

    2008-12-01

    Interactions between climate and soil remain ambiguous, particularly when silicate weathering and clay mineral formation and transformation rates are considered in relation to global climate changes. Recent studies suggest that climate affects weathering rates much less than previously thought. Here we show that the climate in the central European Alps has a significant, but indirect, influence on the weathering of soils through vegetation. The pattern of element leaching and mineral transformations is not only due to precipitation and temperature. Element leaching was greatest in subalpine forests near the timberline; weathering is lessened at higher and lower altitudes. Vegetation, therefore, contributes significantly to weathering processes. The highest accumulation of organic matter was found in climatically cooler sites (subalpine range) where the production of organic ligands, which enhance weathering, is greatest. Patterns of smectite formation and distribution had strong similarities to that of the elemental losses of Fe and Al ( R = 0.69; P climate, element leaching (Fe, Al, Ca, Mg, K, Na), and smectite formation is strongly nonlinear and driven by the podzolisation process, which is more pronounced near the timberline because of the bioclimatic constellation. Climate warming will probably, in the future, lead to a decrease in SOM stocks in the subalpine to alpine range because of more favourable conditions for biodegradation that would also affect weathering processes.

  9. 金厂沟梁地区土壤含水粘土矿物含量短波红外光谱反演%Inversion of Hydrated Clay Mineral Content in Soil of Jinchanggouliang Area Based on SWIR

    Institute of Scientific and Technical Information of China (English)

    曹会; 邢立新; 潘军; 刘立文; 杨东旭; 王莹

    2013-01-01

    Based on the physical mechanism that clay mineral can produce characteristic spectrum at shortwave infrared ray ( SWIR) , we chose the characteristic wave band of clay mineral, used the actual analysis results and test data of the mineral components, and adopted multivariate linear regression analysis to build model for inversing the soil clay mineral content of Jinchanggouliang area of Inner Mongolia. The study results demonstrated that applying soil spectral reflectance which was corresponding with the characteristic wave band to establish forecast model could carry out the inversion of hydrated clay mineral content in the soil of this area. The clay mineral content influenced the discretion of the soil spectral reflectance.%基于粘土矿物在短波红外线处产生特征光谱的机理,选出其特征波段,利用矿物组分的实际分析结果和测试数据,采用多元线性回归方法建立模型,对内蒙古金厂沟梁地区的土壤粘土矿物含量进行了反演.研究结果表明:应用特征波段对应的土壤光谱反射率建立预测模型可以用于该地区土壤粘土矿物含量的反演;粘土矿物含量的多少影响光谱反射率的高低.

  10. The role of dissolved organic matter and its adsorption for the fate of heavy metals in clay-rich soil

    Science.gov (United States)

    Refaey, Yasser B.; Jansen, Boris; El-Shater, Abdel-Hamid; El-Haddad, Abdel-Aziz; Kalbitz, Karsten

    2014-05-01

    Heavy metals (HMs), due to their toxic and hazardous nature, are possibly the most widespread contaminants imposing a serious threat to human health. To find out the effect of dissolved organic matter (DOM) and soil constituents on the uptake of Cu, Ni, and Zn, batch adsorption experiments were conducted using five soils sampled from Egypt. Sorption data were interpreted in terms of the initial mass (IM) isotherm model. In all soils, for all metals and in all experiments, the majority of the HMs were immobilized on the solid phase. The addition of DOM and timing thereof was found to play a pivotal role in determining the affinity of the HMs for the solid phase. When DOM and HMs were added simultaneously, Cu affinity decreased in Fe-(hydr)oxide rich soils (by 7%) and increased in soils poor in Fe-(hydr)oxide (by 6-10%). When DOM was added first, followed by HMs in a later stage affinity of Cu strongly increased in most soils. In contrast, for both Ni and Zn the affinity to the solid phase was enhanced (3-18%) in presence of DOM regardless of whether the DOM was added simultaneously with or prior to HMs addition. The difference is explained by Cu binding to the solid phase and to DOM through strong inner-sphere complexes, whereas Ni and Zn interacted predominantly through weaker electrostatic interactions. As a result Cu was able to bind more strongly to previously adsorbed DOM on the solid phase in case of smectite, while this effect was counteracted by the coating of available specific binding sites on Fe-(hydr)oxides.

  11. Soil Water Repellency of Sands and Clay as Affected by Particle Size%砂土和黏土的颗粒差异对土壤斥水性的影响

    Institute of Scientific and Technical Information of China (English)

    杨松; 吴珺华; 董红艳; 张燕明

    2016-01-01

    斥水性土壤广泛存在于自然界中,并且对土壤环境和作物生长等有重要影响。建立理想化的土壤颗粒模型对砂土和黏土的斥水特性进行计算分析。结果表明:当接触角很小时,砂土中不存在斥水现象。随着接触角的增大,砂土斥水性与含水率密切相关,砂土的密实度对其斥水性也有重要影响,当砂土比较密实时,土壤的“亲水”与“斥水”特性对含水率特别敏感,随着含水率的变化,砂土可能由亲水性较好的土壤转变为斥水性土壤;当砂土比较松散时,土壤颗粒的斥水性对含水率并不敏感。当黏土接触角略小于90°且湿润半径b也较小时,黏土也存在斥水现象。如果黏土颗粒的接触角较小或接触角小于90°且湿润半径b较大,黏土总是亲水的。黏土含水率较大时,斥水特性由土壤颗粒的接触角决定。%Water-repellent soils,existing widely in nature,have some important effects on soil environment and crop growth. In order to analyze water repellency of sand and clay,models of sand and clay different in particle size were built. Results showed that no phenomenon of water repellency was found in sand soil when the contact angle of water with sand was small. Water repellency of sand soil was closely related to soil water content when the sand-water contact angle was big. Compactness of the soil was another important factor affecting soil water repellency. When the sand soil was highly compacted,whether the soil was hydrophilic or hydrophobic was very sensitive to water content,and it might switch from one state to another with changing soil water content. When the sand soil was quite loose,it was no longer sensitive to soil water content. In clay soil with soil-water contact angle being slightly less than 90°and wetting radius b being small,the phenomenon of water repellency was observed. But when the clay soil was much smaller than 90°in soil-water and

  12. Interaction Effects of Insecticides on Enzyme Activities in Black Clay Soil from Groundnut (Arachis hypogaea L. Fields

    Directory of Open Access Journals (Sweden)

    C. Nasreen

    2012-06-01

    Full Text Available In practice pesticides are extensively used in agriculture as a part of pest control strategies. Two insecticides, endosulfan (organochlorine and profenophos (organophosphate, were assessed for their effects on the activities of protease (in terms of tyrosine formed from casein and urease (as ammonia released from urea in soil, collected from a fallow groundnut field by applications of insecticides at normal field rates and at higher concentrations (1.0, 2.5, 5.0, 7.5, 10.0 kg ha-1, in a laboratory study. The results showed a strong positive influence on protease and urease enzyme activities in soil treated with 2.5 and 5.0 kg ha-1 dry soil and they were significantly (P ≤ 0.05 higher than the control over the course of incubation. In soil treatment, there was a significant increase in protease and decrease in urease activities after 24h of incubation which continued up to 20 days. However, a significant decrease in both protease and urease enzyme activities was observed in 30 and 40 days of incubation.DOI: http://dx.doi.org/10.5755/j01.erem.60.2.671

  13. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio.

    Science.gov (United States)

    Winston, Ryan J; Dorsey, Jay D; Hunt, William F

    2016-05-15

    Green infrastructure aims to restore watershed hydrologic function by more closely mimicking pre-development groundwater recharge and evapotranspiration (ET). Bioretention has become a popular stormwater control due to its ability to reduce runoff volume through these pathways. Three bioretention cells constructed in low permeability soils in northeast Ohio were monitored for non-winter quantification of inflow, drainage, ET, and exfiltration. The inclusion of an internal water storage (IWS) zone allowed the three cells to reduce runoff by 59%, 42%, and 36% over the monitoring period, in spite of the tight underlying soils. The exfiltration rate and the IWS zone thickness were the primary determinants of volume reduction performance. Post-construction measured drawdown rates were higher than pre-construction soil vertical hydraulic conductivity tests in all cases, due to lateral exfiltration from the IWS zones and ET, which are not typically accounted for in pre-construction soil testing. The minimum rainfall depths required to produce outflow for the three cells were 5.5, 7.4, and 13.8mm. During events with 1-year design rainfall intensities, peak flow reduction varied from 24 to 96%, with the best mitigation during events where peak rainfall rate occurred before the centroid of the rainfall volume, when adequate bowl storage was available to limit overflow.

  14. Satellite based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations

    NARCIS (Netherlands)

    Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as

  15. Constitutive model for overconsolidated clays

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the relationships between the Hvorslev envelope,the current yield sur-face and the reference yield surface,a new constitutive model for overconsolidated clays is proposed. It adopts the unified hardening parameter,to which the potential failure stress ratio and the characteristic state stress ratio are introduced. The model can describe many characteristics of overconsolidated clays,including stress-strain relationships,strain hardening and softening,stress dilatancy,and stress path dependency. Compared with the Cam-clay model,the model only re-quires one additional soil parameter which is the slope of the Hvorslev envelope. Comparisons with data from triaxial drained compression tests for Fujinomori clay show that the proposed model can rationally describe overconsolidated properties. In addition,the model is also used to predict the stress-strain relationship in the isotropic consolidation condition and the stress paths in the undrained triaxial compression tests.

  16. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Science.gov (United States)

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  17. 描述黏粒含量对土-水特征曲线影响规律的分形模型%A fractal model describing the relation between clay content and soil-water characteristic curve

    Institute of Scientific and Technical Information of China (English)

    陶高梁; 张季如; 庄心善; 杨琳

    2014-01-01

    Clay content of soil has an important influence on soil-water characteristic curve. To establish a theoretical model describing the influence of clay content on soil-water characteristic curve, the relation be-tween the clay content and fractal dimension in terms of mass has been established by means of a fractal theory. This relation was verified by test data and used to explain the basic rule that the fractal dimension increases with the increase of clay content. On this basis, a fractal model which reflects the influence of clay content on soil-water characteristic curve was suggested based on the previous results. The results show that the soil-water characteristic curves predicted by the model are in good agreement with several tests data. The model was applied to predict the soil-water characteristic curves of some soils with different clay content and shows the influence of clay content on the soil-water characteristic curve, i.e., large clay content corresponds to large water content of volume in the case of same soil suction.%土体黏粒含量对土-水特征曲线有重要影响。为了建立描述黏粒含量对土-水特征曲线影响规律的理论模型,本文基于分形理论,建立了质量分维数与黏粒含量的关系式,利用已有试验数据验证了该式的合理性,并从理论上解释了质量分维数随黏粒含量增大的基本规律。在此基础上,结合已有的研究成果,建立了分形模型描述土体黏粒含量对土-水特征曲线影响规律,该模型预测的土-水特征曲线与已有不同土类样本的试验数据吻合较好,从而证明了该模型的有效性。最后,利用该模型同时预测了不同黏粒含量典型土体的土-水特征曲线,阐明了黏粒含量对土-水特征曲线影响的基本规律,即相同吸力条件下,黏粒含量越高,则体积含水率越高。

  18. Field Performance of the Disk Harrow, Power Harrow and Rotary Tiller at Different Soil Moisture Contents on a Clay Loam Soil in Mazandaran

    Directory of Open Access Journals (Sweden)

    M Rajabi Vandechali

    2015-03-01

    Full Text Available About 60% of the mechanical energy consumed in mechanized agriculture is used for tillage operations and seedbed preparation. On the other hand, unsuitable tillage system resulted in soil degradation, affecting soil physical properties and destroying soil structure. The objective of this research was to compare the effects of three types of secondary tillage machines on soil physical properties and their field performances. An experiment was conducted in a wheat farm in Jouybar area of Mazandaran as split plots based on randomized complete block design with three replications. The main independent variable (plot was soil moisture with three levels (23.6-25, 22.2-23.6 and 20.8-22.2 percent based on dry weight and the subplot was three types of machine (two-disk perpendicular passing harrow, Power harrow and Rotary tiller. The measured parameters included: clod mean weight diameter, soil bulk density, specific fuel consumption, machine efficiency and machine capacity. The effects of treatments and their interactions on the specific fuel consumption, machine efficiency and machine capacity and also the effects of treatments on bulk density were significant (P

  19. Contact micromechanics in granular media with clay

    Energy Technology Data Exchange (ETDEWEB)

    Ita, Stacey Leigh [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.

  20. 瘦西湖隧道下蜀黏土土水特征研究%Soil-water Characteristic of Xiashu Clay in Slender West Lake Tunnel

    Institute of Scientific and Technical Information of China (English)

    薛光桥

    2015-01-01

    土水特征曲线(SWCC)作为表征非饱和土吸力与含水率关系的重要参数是研究非饱和土的关键,对于膨胀土而言,土水特征曲线又是分析其膨胀性能的重要指标。本文以扬州瘦西湖隧道下蜀黏土为研究对象,通过大尺寸渗析法和气相法两种方法测量了其土水特征曲线,在低吸力范围内(0~160 MPa)曲线存在明显回滞现象。结合3种不同数学模型对曲线进行拟合分析,发现 Fredlund and Xing 公式拟合最为准确。利用扫描电镜分析了不同含水率条件下的细观特征,试验表明:随着含水率的增加,下蜀黏土中的蒙脱石颗粒不断吸水膨胀,从而填充土体孔隙。%Soil-water characteristic curve (SWCC)is the key to reflect the relationship between matric suction and mois-ture content of unsaturated soil.As for expansive soil,SWCC is also an important indicator to represent its expansion per-formance.In this paper,SWCC of Xiashu clay in Slender West Lake Tunnel of Yangzhou is measured by large size osmotic method and vapor phase technique,it shows obvious hysteresis phenomenon during lower matric suction (0 ~160MPa). Fitting it with three kinds of mathematical model,Fredlund and Xing formula is found to be matched best.The meso-char-acteristics under different moisture conditions are analyzed through scanning electron microscope.Tests show that with the increase of moisture content,montmorillonite granules are continuously expanding and thus the soil pores between them can be filled.

  1. Probing the water interactions in clay

    Energy Technology Data Exchange (ETDEWEB)

    Powell, D.H. [Lausanne Univ., Lausanne (Switzerland); Fischer, H.E. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Skipper, N.T. [Univ. College, London (United Kingdom)

    1999-11-01

    Clays, the microscopic mineral fraction of soils, are probably the most important substrate for interactions between water, the mineral world and the biosphere. A knowledge of the structuring of water and hydrated metal ions near clays surfaces is of importance in environmental science, including toxic and radioactive waste disposal, and in the industrial application of clays. The smectite clays, with their large hydrated internal surface areas represent excellent model systems for the interactions of aqueous phases with solid surface. We present the results of neutron diffraction experiments using isotopic substitutions to probe the structure in the aqueous interlayer region of Li-montmorillonite. (authors) 6 refs., 3 figs.

  2. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    Science.gov (United States)

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  3. 几种土壤及黏土矿物对多氯联苯吸附特性的研究%Adsorption Charcteristics of PCBs in Soils and Clay Minerals

    Institute of Scientific and Technical Information of China (English)

    司雄元; 王寅; 陈倩倩; 司友斌

    2012-01-01

    采用批量平衡试验,研究了不同土壤及长黏土矿物对多氯联苯吸附特性。结果表明:多氯联苯浓度范围为0.25~5.0mg L-1时,不同土壤及黏土矿物对多氯联苯的吸附均能用Freundlich方程很好地拟合,随着溶液中多氯联苯浓度的增加,土壤及黏土矿物对多氯联苯的吸附量增加;几种土壤对多氯联苯吸附量大小顺序为:红壤〉黄褐土〉砂姜黑土,土壤有机质、粘粒等对多氯联苯吸附起主要作用,土壤更易吸附高氯代PCB77;黏土矿物对多氯联苯吸附量大小顺序为:纳米蒙脱石〉纳米SiO2〉凹凸棒石,黏土矿物吸附多氯联苯能力的大小与黏土矿物的比表面积、粒径、层状结构等有关;多氯联苯本身分子的大小影响其在黏土矿物上的吸附;土壤中添加黏土矿物可以提高对多氯联苯的吸附。%Adsorption characteristics of PCBs in soils and clay minerals were studied using the batch equilibration technique.Results showed that the adsorption of PCBs conformed to the Freundlich equation when the concentrations of PCBs were from 0.25 mg L-1 to 5.0 mg L-1,and the adsorption of PCBs in soils and clay minerals increased with the increase of initial concentration.The adsorption capacity of soils for PCBs followed the order red soil yellow brown soil shajiang black soil.The contents of organic matter and clay in soil governed adsorption of PCBs,and the high chlorine of PCBs were easier to be absorbed by soils.The adsorption capacity of clay minerals for PCBs followed the order nanometer-sized montmorillonite nanometer-sized SiO2 attapulgite.The adsorption ability of clay minerals for PCBs related to the surface area,diameter and layered structure of clay minerals.The molecular size of PCBs also affected the adsorption.Adding clay minerals to soil could improve the adsorption ability.

  4. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions Extração de cátions em solos areno-argilosos do vale do cávado, portugal, utilizando soluções de sais de sódio

    OpenAIRE

    João Eudes da Silva; Fernando De Castro

    2002-01-01

    Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were sub...

  5. Membrane behavior of clay liner materials

    Science.gov (United States)

    Kang, Jong Beom

    Membrane behavior represents the ability of porous media to restrict the migration of solutes, leading to the existence of chemico-osmosis, or the flow of liquid in response to a chemical concentration gradient. Membrane behavior is an important consideration with respect to clay soils with small pores and interactive electric diffuse double layers associated with individual particles, such as bentonite. The results of recent studies indicate the existence of membrane behavior in bentonite-based hydraulic barriers used in waste containment applications. Thus, measurement of the existence and magnitude of membrane behavior in such clay soils is becoming increasingly important. Accordingly, this research focused on evaluating the existence and magnitude of membrane behavior for three clay-based materials that typically are considered for use as liners for waste containment applications, such as landfills. The three clay-based liner materials included a commercially available geosynthetic clay liner (GCL) consisting of sodium bentonite sandwiched between two geotextiles, a compacted natural clay known locally as Nelson Farm Clay, and compacted NFC amended with 5% (dry wt.) of a sodium bentonite. The study also included the development and evaluation of a new flexible-wall cell for clay membrane testing that was used subsequently to measure the membrane behaviors of the three clay liner materials. The consolidation behavior of the GCL under isotropic states of stress also was evaluated as a preliminary step in the determination of the membrane behavior of the GCL under different effective consolidation stresses.

  6. Adjustment of the expedite method for clay content determination in Rondônia soils Ajuste de método expedito para determinação de teor de argila em solos de Rondônia

    Directory of Open Access Journals (Sweden)

    Jairo André Schlindwein

    2011-12-01

    Full Text Available Soil clay content is an important soil attribute and has been used to classification of phosphorus status in the soil in order to determinate the needing of phosphorus amounts to be applied to crops production. The aim of this research was to adjust the method for soil clay content determination, adopted by the laboratories of Southern Brazil (ROLAS-RS/SC, for soil clay content evaluation in Rondônia soils. The study was conducted using 50 soil samples from Rondônia State with wide range clay content. It was tested shaking periods (1.5, 2.0 and 2.5h associated with periods for soil particles decantation (1.5 and 2.0h to correlate with the standard method for soil texture testing, known as the pipette method. Clay content determined through this method was significantly correlated with pipette method. The better treatment was the combination of 2.0h of shaking and 1.5h of decantation, resulted in total period of 3.5h, which reduced the period to determine the soil clay content without loss of accuracy.O teor de argila é um importante atributo de solo e é utilizado na determinação de faixas de teores de fósforo para fins de recomendação de adubação. O objetivo deste trabalho foi ajustar o método de determinação de argila utilizado pelos laboratórios da ROLAS-RS/SC para avaliar os teores de argila dos solos de Rondônia. O estudo foi conduzido com 50 amostras de solos do Estado de Rondônia, com diferentes teores de argila. O teor de argila foi determinado utilizando-se o método da ROLAS-RS/SC, com diferentes períodos de agitação (1,5; 2,0 e 2,5h e de decantação das partículas do solo (1,5 e 2,0h e o método da pipeta, considerado padrão para essa determinação. Os teores de argila determinados nas combinações de períodos de agitação e de decantação se correlacionaram significativamente com os teores determinados pelo método da pipeta. O melhor tratamento foi a combinação de 2,0h de agitação e 1,5h de decanta

  7. Thermal Properties of Soils

    Science.gov (United States)

    1981-12-01

    plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no

  8. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe

    Institute of Scientific and Technical Information of China (English)

    Willis Gwenzi; Moreblessing Muzava; Farai Mapanda; Tonny P Tauro

    2016-01-01

    Soil application of biochar from sewage could potentialy enhance carbon sequestration and close urban nutrient balances. In sub-Saharan Africa, comparative studies investigating plant growth effect and nutrients uptake on tropical soils amended with sewage sludge and its biochar are very limited. A pot experiment was conducted to investigate the effects of sewage sludge and its biochar on soil chemical properties, maize nutrient and heavy metal uptake, growth and biomass partitioning on a tropical clayey soil. The study compared three organic amendments; sewage sludge (SS), sludge biochar (SB) and their combination (SS+SB) to the unamended control and inorganic fertilizers. Organic amendments were applied at a rate of 15 t ha–1 for SS and SB, and 7.5 t ha–1 each for SS and SB. Maize growth, biomass production and nutrient uptake were signiifcantly improved in biochar and sewage sludge amendments compared to the unamended control. Comparable results were observed with F, SS and SS+SB on maize growth at 49 d of sowing. Maize growth for SB, SS, SS+SB and F increased by 42, 53, 47, and 49%, respectively compared to the unamended control. Total biomass for SB, SS, SS+SB, and F increased by 270, 428, 329, and 429%, respectively compared with the unamended control. Biochar amendments reduced Pb, Cu and Zn uptakes by about 22% compared with sludge alone treatment in maize plants. However, there is need for future research based on the current pot experiment to determine whether the same results can be produced under ifeld conditions.

  9. Mineralogy of the clay fraction of soils from the moray cusco archaeological site: a study by energy dispersive X-ray fluorescence, X-ray diffractometry and Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ceron Loayza, Maria L., E-mail: malucelo@hotmail.com; Bravo Cabrejos, Jorge A.; Mejia Santillan, Mirian E. [Universidad Nacional Mayor de San Marcos, Laboratorio de Analisis de Suelos, Laboratorio de Espectroscopia Moessbauer, Facultad de Ciencias Fisicas (Peru)

    2011-11-15

    The purpose of this work is to report the advances in the elemental and structural characterization of the clay fraction of soils from the terraces of the Moray Archaeological site, located 38 km north of the city of Cusco, Cusco Region. One sample was collected from each of the twelve terraces of this site and its clay fraction was separated by sedimentation. Previously the pH of the raw samples was measured resulting that all of the samples were from alkaline to strongly alkaline. Energy dispersive X-ray fluorescence (EDXRF) was used for the elemental characterization, and X-ray diffractometry (XRD) and transmission Moessbauer spectroscopy (TMS), using the {gamma} 14.4 keV nuclear resonance transition in {sup 57}Fe, were used for the structural characterization of the clays and clay minerals present in each sample. The EDXRF analyses of all the samples show the presence of relatively high concentrations of sulfur in some of the samples and relatively high concentrations of calcium in all of the samples, which may be related to the high alkalinity of the samples. By XRD it is observed the presence of quartz, calcite, gypsum, cronstedtite, 2:1 phyllosilicates, and iron oxides. The mineralogical analysis of Fe by TMS shows that it is present in the form of hematite and occupying Fe{sup 2 + } and Fe{sup 3 + } sites in phyllosilicates, cronstedtite, and other minerals not yet identified.

  10. Mineralogy of the clay fraction of soils from the moray cusco archaeological site: a study by energy dispersive X-ray fluorescence, X-ray diffractometry and Mössbauer spectroscopy

    Science.gov (United States)

    Cerón Loayza, María L.; Bravo Cabrejos, Jorge A.; Mejía Santillán, Mirian E.

    2011-11-01

    The purpose of this work is to report the advances in the elemental and structural characterization of the clay fraction of soils from the terraces of the Moray Archaeological site, located 38 km north of the city of Cusco, Cusco Region. One sample was collected from each of the twelve terraces of this site and its clay fraction was separated by sedimentation. Previously the pH of the raw samples was measured resulting that all of the samples were from alkaline to strongly alkaline. Energy dispersive X-ray fluorescence (EDXRF) was used for the elemental characterization, and X-ray diffractometry (XRD) and transmission Mössbauer spectroscopy (TMS), using the γ 14.4 keV nuclear resonance transition in 57Fe, were used for the structural characterization of the clays and clay minerals present in each sample. The EDXRF analyses of all the samples show the presence of relatively high concentrations of sulfur in some of the samples and relatively high concentrations of calcium in all of the samples, which may be related to the high alkalinity of the samples. By XRD it is observed the presence of quartz, calcite, gypsum, cronstedtite, 2:1 phyllosilicates, and iron oxides. The mineralogical analysis of Fe by TMS shows that it is present in the form of hematite and occupying Fe2 + and Fe3 + sites in phyllosilicates, cronstedtite, and other minerals not yet identified.

  11. 粘土矿物固定化微生物对土壤中阿特拉津的降解研究%Biodegradation of Atrazine in Soils by Clay Minerals Immobilized a Degradation Bacterium

    Institute of Scientific and Technical Information of China (English)

    汪玉; 王磊; 司友斌; 孟雪梅

    2009-01-01

    Biodegradation of atrazine in soils by clay minerals immobilized a degradation bacterium were studied. The bacterium which was isolated from activated sludge by enrichment using atrazine as sole source of carbon and nitrogen was preliminarily identified as Ochrobac-trum sp., according to its physiological-biochemical characteristics, photos of ESEM and the similarity analysis of its 16S rDNA gene sequence. The strains growed well on clay minerals, and reached logarithmic phase at 48 h. The degradation rate of atrazine was larger signifi-cally when adding degradation bacteria into soils. The biodegradation capacity by immobilized microorganism on clay minerals was improved compared with free microorganism. The smaller the particle size of clay minerals, the more the biodegradation of atrazine. The effect of immobilized nano-clay minerals was better than corresponding clays. The degradation of atrazine were 42.47%, 46.19%, 56.31 % respectively, after adding free microorganism into vertisol, alfisol and red soil on 28 d. When adding immobilized microorganism by montmorillonite, nano-mont-morillonite, the degradation of atrazine were 52.16%, 63.97% in vertisol, 59.28%, 63.91% in alfisol, and 68.03%, 76.59% in red soil. The degradation of atrazine in the soil without microorganism was 29.16% in vertisol, 30.63% in alfisol, 41.47% in red soil. Atrazine degradation in soils could be described by first-order kinetic equation. The effect of degradation varied from different soils. The(t_(1/2) of atrazine was 36.9 d in red soil, 49.1 d in vertisol, and 55.0 d in alfisol without microorganism. When adding immobilized microorganism by nano-montmorillonite, half-life was 16.3 d, 25.3 d, 21.7 d respectively.%以粘土矿物为载体,采用吸附挂膜法对已筛选的阿特拉津降解菌株进行固定化,并应用固定化微生物降解土壤中的阿特拉津.结果表明,该菌株在粘土矿物上生长良好,根据菌种生理生化特性、

  12. CLAY AND CLAY-SUPPORTED REAGENTS IN ORGANIC SYNTHESES

    Science.gov (United States)

    CLAY AND CLAY-SUPPORTED REAGENTS HAVE BEEN USED EXTENSIVELY FOR SYNTHETIC ORGANIC TRANSFORMATIONS. THIS OVERVIEW DESCRIBES THE SALIENT STRUCTURAL PROPERTIES OF VARIOUS CLAY MATERIALS AND EXTENDS THE DISCUSSION TO PILLARED CLAYS AND REAGENTS SUPPORTED ON CLAY MATERIALS. A VARIET...

  13. 易盐渍区粘土夹层对土壤水盐运动的影响特征%Effect of clay interlayers on soil water-salt movement in easily-salinized regions

    Institute of Scientific and Technical Information of China (English)

    余世鹏; 杨劲松; 刘广明

    2011-01-01

    Large-scale soil column experiments for simulation water-salt movement in clay interlayers under normal growing conditions were carried out in an easily-salinized region for different textures of soils and groundwater conditions in the Huang-Huai-Hai alluvial plain of China. In this study, the 20-year measurement was analyzed to examine the effect of clay interlayers on soil water-salt movement in easily-salinized regions. Results show that the clay inter-layer has a significant positive effect on the water-holding capacity in the soil and acts as a filter obstructing the salinity infiltration. This is especially true for restraining the penetration of surface accumulated salts. The thicker the clay interlayer is, the greater the effect will be. The range of depth to groundwater is likely to be smaller in the area with surface accumulated salts and clay interlayers around 1.0 m than that with silt loam soils around 1.5 m. And in the latter case, the salinization of soils is easily induced when the groundwater level is lower than a threshold value of 2.5 m. The amount of accumulated salts is found to be higher in clay interlayers than that in silt loam soils. Thus, proper monitoring and measures are necessary to prevent the secondary salinization of soils in the practice of water resources management.%针对黄淮海冲积平原土壤剖面中粘土夹层普遍存在的现象,在典型易盐渍区开展模拟易盐农田常规种植条件下水盐运移的大型土柱实验,基于长达20年的长系列监测数据分析,系统研究易盐渍区不同土体构型和地下水位等代表性条件下的土壤水盐运移规律和粘土夹层的影响特征.研究结果表明:粘土层有良好的保水和隔盐能力,尤其对表土积盐的抑制效果显著,且抑盐效果随粘土层厚度增加而提升;含粘土夹层土体表土积盐的地下水埋深范围更小,表土积盐高峰出现在l m左右地下水埋深,全剖面粉砂壤土土体

  14. Common clay and shale

    Science.gov (United States)

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.

  15. Mineralogy and geotechnical characteristics of some pottery clay

    Directory of Open Access Journals (Sweden)

    Mujib Olamide ADEAGBO

    2016-12-01

    Full Text Available The physical properties of soils, which are tremendously influenced by the active clay minerals in soil, are of great importance in geotechnical engineering. This paper investigates the clay-sized particles of the Igbara-Odo pottery clay, and compares results obtained with available data on the bulk sample, to determine their correlation and underline the dependence of the geotechnical properties of the bulk clay material on the clay-sized particles. The bulk clay sample consists of 52% sand-size particles, 21% silt and 27% clay. Analysis of the clay-sized particles and the bulk materials shows: specific gravity of 2.07 and 2.66, liquid limit of 91.0% and 33.0%, plastic limit of 27.5% and 14.3%, plasticity index of 63.5% and 18.7% and a linear shrinkage of 7.9% and 5.4%, for both clay-sized particles and bulk clay respectively. The activity value of the clay material (0.64 suggests the presence of Kaolinite and Ilite; and these were confirmed with X-Ray diffraction on the bulk sample and clay-sized particles. X-Ray diffraction patterns shows distinctive peaks which highlight the dominance of Kaolinite (with 8 peaks in the pottery clay sample for both clay-sized particles and bulk material; while traces of other clay minerals like Illite and Halloysite and rock minerals like Mica, Feldspar and Chrysotile were also found. These results suggest that the clay possesses high viability in the manufacturing of ceramics, refractory bricks, paper, fertilizer and paint. The clay material can be used as a subgrade in road construction, since it possesses low swelling characteristics.

  16. Feasibility study using improved clay as landfill liner-soil materials%改良黏土作为填埋场衬里土料的可行性研究

    Institute of Scientific and Technical Information of China (English)

    陆海军; 栾茂田; 张金利

    2011-01-01

    To prevent effectively the transport of heavy metal ions in landfill leachate, adding materials, granular activated carbon (GAC) and acid-activated bentonite capable of strongly adsorbing pollutants to the conventional compacted clay liner is one method that has been tried. The adsorption of Cr(VI) to clay, clay containing 3% or 6% GAC and 3 or 6% acid-activated bentonite were investigated by laboratory batch tests. In order to evaluate the feasibility of liner-soil materials, geotechnical properties, including volumetric swelling, proved clay used as volumetric shrinkage, hydraulic conductivity and unconfined compressive strength, were measured in laboratory geotechnical tests. The results of hatch tests indicate that the Cr(VI) sorption to clay containing GAC and acidactivated bentonite is much greater than Cr (VI) sorption to natural clay. GAC and acid-activated bentonite are two potential materials for use as sorptive amendments for trapping heavy metals in clay landfill liners. The results of geotechnical tests show that the clay containing GAC or acid-activated bentonite exhibits ≤4% of volumetric shrinkage, 〈1 × 10^-7 cm/s of hydraulic conductivity and 〉200 kPa of unconfined compressive strength in some scope of water content at modified compaction. These findings suggest that the clay containing GAC or acid-activated bentonite can be potentially utilized as compacted liner-soil materials.%针对传统压实黏土衬里不能有效阻止渗滤液中重金属离子迁移的缺点,采用颗粒活性炭、酸活化膨润土两种吸附剂改良黏土衬里以达到提高其吸附能力的目的.通过室内平衡吸附试验,对黏土、3%或6%颗粒活性炭改良的黏土以及3%或6%酸活化膨润土改良的黏土吸附重金属Cr(Ⅵ)的性质进行了观察.为了评价改良黏土作为填埋场衬里土料的可靠性,通过室内土工试验对衬里土料的体膨胀率、体缩率、渗透系数以及无

  17. Remaining phosphorus and sodium fluoride pH in soils with different clay contents and clay mineralogies Fósforo remanescente e pH em fluoreto de sódio em solos com diferentes teores e qualidades de argila

    Directory of Open Access Journals (Sweden)

    Marcelo Eduardo Alves

    2004-03-01

    Full Text Available The remaining phosphorus (Prem has been used for estimating the phosphorus buffer capacity (PBC of soils of some Brazilian regions. Furthermore, the remaining phosphorus can also be used for estimating P, S and Zn soil critical levels determined with PBC-sensible extractants and for defining P and S levels to be used not only in P and S adsorption studies but also for the establishment of P and S response curves. The objective of this work was to evaluate the effects of soil clay content and clay mineralogy on Prem and its relationship with pH values measured in saturated NaF solution (pH NaF. Ammonium-oxalate-extractable aluminum exerts the major impacts on both Prem and pH NaF, which, in turn, are less dependent on soil clay content. Although Prem and pH NaF have consistent correlation, the former has a soil-PBC discriminatory capacity much greater than pH NaF.O fósforo remanescente (Prem tem sido utilizado para estimar o fator capacidade de P (FCP de solos de algumas regiões do Brasil. Entre outras finalidades, o P remanescente pode também ser utilizado para estimar níveis críticos de P, S e Zn no solo, determinados com extratores sensíveis ao FCP, e para a definição das doses de P e S a serem usadas, tanto em estudos de adsorção como no estabelecimento de curvas de resposta a esses elementos. O objetivo deste trabalho foi avaliar os efeitos do teor e da composição mineralógica da fração argila do solo sobre o Prem, e sua relação com o pH medido em solução saturada de NaF (pH NaF. Tanto o Prem quanto o pH NaF são mais influenciados pelo teor de Al extraído com oxalato de amônio e menos dependentes do teor de argila. Embora a correlação entre o Prem e o pH NaF seja consistente, o Prem apresenta maior capacidade de estratificar solos quanto ao fator capacidade de fósforo que o pH NaF.

  18. Modified clay sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Fogler, H.S.; Srinivasan, K.R.

    1990-04-10

    This patent describes a clay-based sorbent. It comprises a clay having an external surface and lamellar layers; and cationic surfactant ions having a hydrocarbon portion and a cationic head portion, the cationic surfactant ions being irreversibly bound to the external surface by the hydrocarbon portion. This patent also describes cetylpyridinium-aluminum hydroxy-montmorillonite; the clay-based sorbent wherein the clay is a non-expandable clay; and the clay-based sorbent wherein the cationic surfactant ions are selected from the group consisting of ionized cetylpyridinium chloride and cetylakonium chloride.

  19. Major soil classes of the metropolitan region of Curitiba (PR, Brazil: I - mineralogical characterization of the sand, silt and clay fractions

    Directory of Open Access Journals (Sweden)

    Ana Christina Duarte Pires

    2007-03-01

    Full Text Available The aim of this work was to evaluate the mineralogical and chemical characteristics of most representative soils of the Region of Curitiba, Paraná State. Samples were collected at different depths. The results showed: (a the quartz was the only identified mineral at the silt and sand fractions. The dominant clay mineral was Kaolinite, with contents ranging from 676.7 to 820.8 g kg-1. The gibbsite was also an important constituent of the most weathered horizons and the hematite and goethite contents were low, mainly in the Histosol; (b at the C horizon of the Inceptisol, high intensity of vermiculite/smectite reflections were detected (X-ray diffraction, justifying the high capacity of expansion and contraction, normally showed for this soil horizon; (c was observed a good relation between pedogenetic degree and crystallographic mineral characteristics.Devido a grande importância dos minerais, notadamente aqueles da fração argila, sobre o planejamento de uso e sobre os impactos das atividades antrópicas, estudos detalhados da composição dos solos das regiões metropolitanas são imprescindíveis. Para avaliar as características mineralógicas e químicas de solos mais representativos da Região Metropolitana de Curitiba, estado do Paraná, foram coletadas amostras das classes Organossolo, Latossolo e Cambissolo, em diferentes profundidades. As frações areia, silte e argila foram estudadas por difratometria de Raios-X (DRX e a fração mais fina foi submetida a análise térmica e extrações químicas com oxalato de amônio (OA, ditionito-citrato-bicarbonato (DCB e solução de NaOH 5 mol L-1 fervente. As características cristalográficas da hematita (Hm, goethita (Gt, gibbsita (Gb e caulinita (Ct foram determinadas por DRX. Os resultados permitiram concluir que: (a o quartzo foi o único mineral identificado nas frações areia e silte. Na fração argila, verificou-se o predomínio de Ct, com teores variando de 661,7 a 820,8 g kg-1

  20. 农业利用对东北黑土黏粒矿物组成及养分的影响%Effect of Agricultural Use on Clay Minerals and Nutrient of Black Soil in Northeast of China

    Institute of Scientific and Technical Information of China (English)

    郑庆福; 赵兰坡

    2011-01-01

    为了明确农业利用对土壤的黏粒矿物组成差异及养分的影响;通过在东北黑土定点和历时8年的现代农业开垦利用,以研究东北黑土的黏粒矿物组成差异及养分的影响;经过8年的农业开垦利用后,东北黑土的风化进程加强,0.002~0.02 mm粉粒含量显著降低(F=5.84>P001=0.026),而黏粒含量因水土流失,增加未达到显著;土壤交换性离子活性较强,酸化程度加重,有机质含量降低,对养分保蓄能力明显下降.土壤中的伊利石含量极显著降低(F=11.25>P001=0.003),而高岭石和蒙脱石含量极显著增加(F=11.67>P001=0.003;F=13.89>P001=0.001),S/I混层矿物含量也较8年前的高;土壤黏粒矿物是极为敏感的胶体类型,它的改变会影响土壤肥力特征.%In order to identify the effect of agricultural use on clay minerals and nutrient of soil, th study of modern agriculture use of black soil in Northeast China has lasted for 8 years. Clay mineral com position and nutrient of black soil were investigated. The results showed that the weathering process of th black soil was strengthened. The content of silt fraction between 0.002 and 0.02mm was significantly de creased, while the content of clay fraction increase was not significant for soil erosion. Soil exchangeabl ion activity was strong, degree of acidification was increased, organic matter content decreased, and th nutrient holding capability decreased. The content of illite in soil was significantly lower, while the con tent of kaolinite and montmorillonite were significantly increased. The content of S / I mixed-layer miner al is higher than before 8 years. Soil clay minerals were a very sensitive type colloid, and its changes af fected soil fertility characteristics.

  1. On The Thermal Consolidation Of Boom Clay

    CERN Document Server

    Delage, Pierre; Cui, Yu-Jun

    2012-01-01

    When a mass of saturated clay is heated, as in the case of host soils surrounding nuclear waste disposals at great depth, the thermal expansion of the constituents generates excess pore pressures. The mass of clay is submitted to gradients of pore pressure and temperature, to hydraulic and thermal flows, and to changes in its mechanical properties. In this work, some of these aspects were experimentally studied in the case of Boom clay, so as to help predicting the response of the soil, in relation with investigations made in the Belgian underground laboratory at Mol. Results of slow heating tests with careful volume change measurements showed that a reasonable prediction of the thermal expansion of the clay-water system was obtained by using the thermal properties of free water. In spite of the density of Boom clay, no significant effect of water adsorption was observed. The thermal consolidation of Boom clay was studied through fast heating tests. A simple analysis shows that the hydraulic and thermal trans...

  2. Centrifuge modelling of rigid piles in soft clay

    DEFF Research Database (Denmark)

    Klinkvort, R.T.; Poder, M.; Truong, P.;

    2016-01-01

    of this study is to employ centrifuge modelling in order to derive experimental p-y curves for rigid piles embedded in over-consolidated soft clay. A kaolin clay sample was prepared and pre-consolidated by applying a constant pressure at the soil surface, while different over-consolidation ratios were achieved...

  3. Simulation and model comparison of unsaturated movement of pesticides from a large clay lysimeter.

    NARCIS (Netherlands)

    Vink, J.P.M.; Gottesbüren, B.; Diekkrüger, B.; Zee, van der S.E.A.T.M.

    1997-01-01

    A long-term (>10 months) leaching experiment was conducted with a large clay soil column and a rain simulator to study unsaturated transport of the nematicide aldicarb and the herbicide simazine in a cracked clay soil. Water retention and soil conductivity were derived from experimental outflow data

  4. RESEARCH OF SWELLING OF SUZAKH CLAYS

    Directory of Open Access Journals (Sweden)

    Kubetskiy Valeriy Leonidovich

    2012-07-01

    Full Text Available In the course of construction of Sangtudinsky hydropower plant-1 on the River Vakhsh, it was deemed necessary to identify clay swelling properties in the event of alterations of the humidity mode of fructured half-rock soils, or the Suzakh clay, that accommodated tunnel-shaped water outlets within a section that was 75 meters long. The depth of tunnels was about 100 m. Any interaction with swelling soils could lead to destruction of the tunnel lining. Suzakh clays demonstrated the following physical and mechanical properties: density of particles of soil ρ= 2,69 g/cm; soil density ρ = 2.40-2.47 g/cm; porosity of 8.2-10.8 %; ultimate resistance to uniaxial compression = 13.1-31.0 MPa. Water saturated clay samples disintegrated into cloddy fragments; the rate of a longitudinal ultrasonic wave in the area of unaltered soils was equal to = 2500 m/c; repulse coefficient k was equal to 15 MPa/m; solidity coefficient (according to Protodyakonov was equal to 1,5; modulus of deformation in the massif was equal to 0.23 х10 MPa. The author proposed a methodology and designed a pilot set of equipment units designated for the identification of the swelling properties of fractured half-rock soils. Results of the pilot unit operation are presented in the article. Swelling properties are based on the monolith testing results. The programme contemplated a set of experiments held in various limit states on the surface of monoliths. Dependence between the swelling pressure and the swelling deformation in the course of water saturation was identified. The experiment demonstrates that alterations of the humidity mode of free surface Suzakh clays cause the relative deformation of swelling up to 1.1 %, and if the lining is rigid, the swelling pressure can exceed 4 MPa.

  5. Transport of inorganic compounds through compacted clay

    Energy Technology Data Exchange (ETDEWEB)

    Liao, W.P.

    1989-01-01

    Compacted clay liners are widely utilized as leachate barrier in landfills for waste. The main purpose of this research was to study the transport of inorganic compounds through compacted clay. The subjects of interest included the diffusional migration of chemicals at low flow rates, the effective porosity of fine-grained soils, the transport of solutes in unsaturated clays, and the effect of adsorption processes on the transport of reactive solutes. Two clay soils, kaolinite and Lufkin clay, were used in the laboratory column tests and subjected to constant hydraulic gradients of 1 to 50. Inorganic tracers (Cl{sup {minus}} Br{sup {minus}}, K{sup +}, and Zn{sup 2+}) were added to the permeating water as a step input. Conclusions are: (a) the experimental data from soil specimens subjected to various gradients showed that diffusional transport did affect the migration of the tracers in fine-grained media. At low gradients, hydrodynamic dispersion was almost solely related to molecular diffusion rather than mechanical mixing; (b) the breakthrough curves for kaolinite specimens showed that the ratios of effective porosity to total porosity were 0.25 to 1.0. The effect of low effective porosity on transport of the tracers was much greater than that of diffusion; (c) the soils that were not presoaked before tracers were introduced had lower effective porosity and greater dispersion of solutes that did the presoaked soils; (d) no evidence of the existence of a threshold gradient was observed; and (e) the retardation factors predicted from batch equilibrium tests matched the results from column tests poorly, probably due to hydrodynamic effects or geochemical differences between the two soil/solution systems.

  6. Resin injection in clays with high plasticity

    Science.gov (United States)

    Nowamooz, Hossein

    2016-11-01

    Regarding the injection process of polyurethane resins in clays with high plasticity, this paper presents the experimental results of the pressuremeter and cone penetration tests before and after injection. A very important increase in pressure limit or in soil resistance can be observed for all the studied depths close to the injection points. An analytical analysis for cylindrical pore cavity expansion in cohesive frictional soils obeying the Mohr-Coulomb criterion was then used to reproduce the pressuremeter tests before and after injection. The model parameters were calibrated by maintaining constant the elasticity parameters as well as the friction angel before and after injection. A significant increase in cohesion was observed because of soil densification after resin expansion. The estimated undrained cohesions, derived from the parameters of the Mohr-Coulomb criterion, were also compared with the cone penetration tests. Globally, the model predictions show the efficiency of resin injection in clay soils with high plasticity.

  7. Calculation of the debris flow concentration based on clay content

    Institute of Scientific and Technical Information of China (English)

    CHEN Ningsheng; CUI Peng; LIU Zhonggang; WEI Fangqiang

    2003-01-01

    The debris flow clay content has very tremendous influence on its concentration (γC). It is reported that the concentration can be calculated by applying the relative polynomial based on the clay content. Here one polynomial model and one logarithm model to calculate the concentration based on the clay content for both the ordinary debris flow and viscous debris flow are obtained. The result derives from the statistics and analysis of the relationship between the debris flow concentrations and clay content in 45 debris flow sites located in the southwest of China. The models can be applied for the concentration calculation to those debris flows that are impossible to observe. The models are available to calculate the debris flow concentration, the principles of which are in the clay content affecting on the debris flow formation, movement and suspending particle diameter. The mechanism of the relationship of the clay content and concentration is clear and reliable. The debris flow is usually of micro-viscous when the clay content is low (<3%), by analyzing the developing tendency on the basics of the relationship between the clay content and debris flow concentration. Indeed, the less the clay content, the less the concentration for most debris flows. The debris flow tends to become the water rock flow or the hyperconcentrated flow with the clay content decrease. Through statistics it is apt to transform the soil into the viscous debris flow when the clay content of ranges is in 3%-18%. Its concentration increases with the increasing of the clay content when the clay content is between 5% and 10%. But the value decreases with the increasing of the clay content when the clay content is between 10% and 18%. It is apt to transform the soil into the mudflow, when the clay content exceeds 18%. The concentration of the mudflow usually decreases with the increase of the clay content, and this developing tendency reverses to that of the micro-viscous debris flow. There is

  8. Geotechnical studies of Jaitapur marine clay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Nayak, B.U.

    characterisEd. by high water content and high Atterberg limits. Undrained shear strength varied from 1.8 to 6 KPa. These were moderately sensitive clays. Carbonate content which varied from 3 to 27%, was found to influence engineering properties of the soil...

  9. Black Carbon, The Pyrogenic Clay Mineral?

    Science.gov (United States)

    Most soils contain significant amounts of black carbon, much of which is present as discrete particles admixed with the coarse clay fraction (0.2–2.0 µm e.s.d.) and can be physically separated from the more abundant diffuse biogenic humic materials. Recent evidence has shown that naturally occurring...

  10. Visualizing and Quantifying Bioaccessible Pores in Field-Aged Petroleum Hydrocarbon-Contaminated Clay Soils Using Synchrotron-based X-ray Computed Tomography

    Science.gov (United States)

    Chang, W.; Kim, J.; Zhu, N.; McBeth, J. M.

    2015-12-01

    Microbial hydrocarbon degradation is environmentally significant and applicable to contaminated site remediation practices only when hydrocarbons (substrates) are physically bioaccessible to bacteria in soil matrices. Powerful X-rays are produced by synchrotron radiation, allowing for bioaccessible pores in soil (larger than 4 microns), where bacteria can be accommodated, colonize and remain active, can be visualized at a much higher resolution. This study visualized and quantified such bioaccessible pores in intact field-aged, oil-contaminated unsaturated soil fractions, and examined the relationship between the abundance of bioaccessible pores and hydrocarbon biodegradation. Using synchrotron-based X-ray Computed Tomography (CT) at the Canadian Light Source, a large dataset of soil particle characteristics, such as pore volumes, surface areas, number of pores and pore size distribution, was generated. Duplicate samples of five different soil fractions with different soil aggregate sizes and water contents (13, 18 and 25%) were examined. The method for calculating the number and distribution of bioaccessible pores using CT images was validated using the known porosity of Ottawa sand. This study indicated that the distribution of bioaccessible pore sizes in soil fractions are very closely related to microbial enhancement. A follow-up aerobic biodegradation experiment for the soils at 17 °C (average site temperature) over 90 days confirmed that a notable decrease in hydrocarbon concentrations occurred in soils fractions with abundant bioaccessible pores and with a larger number of pores between 10 and 100 μm. The hydrocarbon degradation in bioactive soil fractions was extended to relatively high-molecular-weight hydrocarbons (C16-C34). This study provides quantitative information about how internal soil pore characteristics can influence bioremediation performance.

  11. Nanoporous clay with carbon sink and pesticide trapping properties

    OpenAIRE

    Woignier, Thierry; Duffours, L.; Colombel, P.; Dieudonné, P.

    2015-01-01

    A thorough understanding of the mechanisms and factors involved in the dynamics of organic carbon in soils is required to identify and enhance natural sinks for greenhouse gases. Some tropical soils, such as Andosols, have 3-6 fold higher concentrations of organic carbon than other kinds of soils containing classical clays. In the tropics, toxic pesticides permanently pollute soils and contaminate crops, water resources, and ecosystems. However, not all soils are equal in terms of pesticide c...

  12. Actual cation exchange capacity of agricultural soils and its relationship with pH and content of organic carbon and clay

    NARCIS (Netherlands)

    Erp, van P.J.; Houba, V.J.G.; Beusichem, van M.L.

    2001-01-01

    For the set up of a multinutrient 0.01 M calcium chloride (CaCl2) soil testing program a conversion from conventional soil testing programs to a CaCl2 program has been proposed in literature. Such conversion should be based on the relationship between test values of the conventional method and the C

  13. Determinación de parámetros para los modelos elastoplásticos mohr-coulomb y hardening soil en suelos arcillosos Parameter determination for the elasto-plastic models Mohr-coulomb and Hardening soil in clay soils

    Directory of Open Access Journals (Sweden)

    Andrés Nieto Leal

    2009-07-01

    Full Text Available Este artículo presenta un programa de investigación desarrollado para la evaluación y determinación de los parámetros para los modelos constitutivos Mohr-Coulomb y Hardening Soil en suelos arcillosos. La metodología incluye el análisis de algunas correlaciones, ensayos básicos de caracterización y pruebas de compresión triaxial no drenada sobre muestras de suelo reconstituidas en laboratorio. A partir de los parámetros obtenidos se simuló el comportamiento esfuerzo-deformación en el programa de elementos finitos PLAXIS, evaluando a partir de un análisis comparativo, el desempeño de los modelos en relación con el comportamiento experimental del suelo. Del análisis realizado se aprecia que para el conjunto de parámetros considerados, los resultados computacionales muestran una correspondencia razonable y satisfactoria con los resultados experimentales, donde se observa una mejor aproximación al comportamiento descrito por las pruebas, en las simulaciones realizadas con el modelo Hardening Soil, cuyos resultados evidencian un mayor ajuste a la relación hiperbólica creciente, típica del tipo de suelo ensayado. De igual forma, los resultados obtenidos constituyen una validación importante de la metodología desarrollada.This article presents a research program developed for the evaluation and determination of the Morh-Coulomb model parameters and the Hardening Soil model parameters in clay soils. The metodology includes the analysis of some correlations, basic characterization soil tests and undrained compression triaxial tests carried out on reconstituted soil samples in laboratory (kaolin. From the obtained parameters the behavior stress-strain was simulated in the element finite software PLAXIS, examiningthe performance of the models by comparing the numeric calculation results with the experimental soil behavior. For the sets of considered model parameters, the analysis shows that the computational results have a reasonable

  14. Corrosion Behavior of Copper-Clad Steel Bars with Unclad Two-End Faces for Grounding Grids in the Red Clay Soil

    Science.gov (United States)

    Shao, Yupei; Mu, Miaomiao; Zhang, Bing; Nie, Kaibin; Liao, Qiangqiang

    2017-02-01

    Iron-aluminum oxides in the red soil have a significant impact on the corrosion behavior of the metal for grounding grids. Effects of iron-aluminum oxides on the corrosion behavior of the cross section of copper-clad steel in the red soil have been investigated using electrochemical impedance spectroscopy and Tafel polarization. All the data indicate that the iron-aluminum oxides can promote the corrosion of copper-clad steel in the red soil. The corrosivity of the red soil greatly increases after iron-aluminum oxides are added into the soil. Iron-aluminum oxides promote galvanic corrosion of copper-clad steel and increase the corrosion degree of the center steel layer. The iron-aluminum oxides stimulate corrosion process of copper-clad steel acting as a cathodic depolarizing agent. XRD results further validate that the corrosion products of the copper-clad steel bar mainly consist of Fe3O4 and Cu2O.

  15. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil

    Science.gov (United States)

    Harter, Johannes; Guzman-Bustamante, Ivan; Kuehfuss, Stefanie; Ruser, Reiner; Well, Reinhard; Spott, Oliver; Kappler, Andreas; Behrens, Sebastian

    2016-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of N2O emissions with nitrogen fertilizer application being the main driver of rising atmospheric N2O concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate N2O emissions from soils. However, the underlying processes that cause N2O emission suppression in biochar-amended soils are still poorly understood. We set up microcosm experiments with fertilized, wet soil in which we used 15N tracing techniques and quantitative polymerase chain reaction (qPCR) to investigate the impact of biochar on mineral and gaseous nitrogen dynamics and denitrification-specific functional marker gene abundance and expression. In accordance with previous studies our results showed that biochar addition can lead to a significant decrease in N2O emissions. Furthermore, we determined significantly higher quantities of soil-entrapped N2O and N2 in biochar microcosms and a biochar-induced increase in typical and atypical nosZ transcript copy numbers. Our findings suggest that biochar-induced N2O emission mitigation is based on the entrapment of N2O in water-saturated pores of the soil matrix and concurrent stimulation of microbial N2O reduction resulting in an overall decrease of the N2O/(N2O + N2) ratio.

  16. Engineering property test of kaolin clay contaminated by diesel oil

    Institute of Scientific and Technical Information of China (English)

    刘志彬; 刘松玉; 蔡奕

    2015-01-01

    Engineering property of kaolin clay contaminated by diesel oil was studied through a series of laboratory experiments. Oil contents (mass fraction) of 4%, 8%, 12%, 16% and 20% were selected to represent different contamination degrees, and the soil specimens were manually prepared through mixing and static compaction method. Initial water content and dry density of the test kaolin clay were controlled at 10% and 1.58 g/cm3, respectively. Test results indicate that since part of the diesel oil will be released from soil by evaporation, the real water content should be derived through calibration of the quasi water content obtained by traditional test method. As contamination degree of the kaolin clay increases, both liquid limit and plastic limit decrease, but there’s only a slight increase for plasticity index. Swelling pressure of contaminated kaolin clay under confined condition will be lowered when oil-content gets higher. Unconfined compressive strength (UCS) of the oil-contaminated kaolin clay is influenced by not only oil content but also curing period. Increase of contamination degree will continually lower UCS of the kaolin clay specimen. In addition, electrical resistivity of the contaminated kaolin clay with given water content decreases with the increase of oil content. However, soil resistivity is in good relationship with oil content and UCS. Finally, oil content of 8% is found to be a critical value for engineering property of kaolin clay to transit from water-dominated towards oil-dominated characteristics.

  17. Clay Mineral: Radiological Characterization

    Science.gov (United States)

    Cotomácio, J. G.; Silva, P. S. C.; Mazzilli, B. P.

    2008-08-01

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and 40K in these clay minerals. The objective of this work is to determine the concentrations of 238U, 232Th, 226Ra, 228Ra, 210Pb and 40K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay. Measurement for the determination of 238U and 232Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for 226Ra, 228Ra, 210Pb and 40K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906±340 Bq kg-1 for 40K, 40±9 Bq kg-1 for 226Ra, 75±9 Bq kg-1 for 228Ra, 197±38 Bq kg-1 for 210Pb, 51±26 Bq kg-1 for 238U and 55±24 Bq kg-1 for 232Th, considering both kinds of clay.

  18. Clay Portrait Boxes

    Science.gov (United States)

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  19. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  20. Siderophore sorption to clays.

    Science.gov (United States)

    Maurice, Patricia A; Haack, Elizabeth A; Mishra, Bhoopesh

    2009-08-01

    Siderophores are low molecular weight organic ligands exuded by some aerobic organisms and plants to acquire Fe under Fe-limited conditions. The hydroxamate siderophores may sorb to aluminosilicate clays through a variety of mechanisms depending upon the nature of the clay and of the siderophore along with solution conditions such as pH, ionic strength, and presence of metal cations. They may also affect metal binding to clays. Here, we review previous studies of siderophore sorption to aluminosilicate clays; briefly discuss how the techniques of X-ray diffractometry, Fourier-transform infrared spectroscopy, and X-ray absorption spectroscopy may be applied to such studies; review effects of siderophores on metal sorption to clays; and highlight some areas for future research.

  1. The Influence of Stress Treatments on the Microbial Biomass and the Rate of Decomposition of Humified Matter in Soils Containing Different Amounts of Clay

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1983-01-01

    with CHCl3. Air-drying, C addition (unlabeled glucose), heating (80.degree. C), and grinding of the soils accelerated the evolution of labeled CO2. Grinding and heating had the largest effect, increasing CO2 evolution during the first 10 days by a factor of 15 to 22 relative to untreated soil. Air......-drying had the least effect; it increased the CO2 evolution 7-9 times. The accelerating effect was still measurable during the 3rd month of incubation when the CO2 evolution was 1.2 to 1.9 times that from untreated soil. The treatments also affected the labeled biomass; air-drying had the least effect...... originating from straw. The addition of unlabeled glucose accelerated the evolution of labeled CO2-C in all 4 soils. The size of the effect on CO2 evolution and on the biomass was similar to that of air-drying. Grinding killed a larger percentage of the biomass in the sandy soil than in the soils with a high...

  2. Contracción de agregados de Argiudoles de la Pampa Ondulada diferenciados en su mineralogía de arcillas Shrinkage of soil aggregates from rolling Pampa Argiudolls differentiated by their clay mineralogy

    Directory of Open Access Journals (Sweden)

    Mario Guillermo Castiglioni

    2005-07-01

    propiedades que mejor se relacionaron con la tasa de contracción residual, mientras que la presencia de carbono orgánico disminuyó sensiblemente su valor.Swelling and shrinking affect soil physical and chemical behavior. Mc Garry & Malafant improved a model with three shrinkage areas, through which it is possible to estimate parameters with physical significance to compare different soils. The objective of the present work was to determine which soil properties and characteristics of Rolling Pampa Argiudolls with different clay mineralogy, affect the model parameters of Mc Garry & Malafant. Clods of distinct horizons of three non-disturbed soils were used to set the specific volume change / gravimetric water content relationship. Estimated parameters of the three straight lines model, were correlated with soils properties and characteristics. Whereas the distinct behavior in the volume change of argilic horizons with contrasting mineralogy was mainly at low soil water contents, the influence of clay percentage was best appreciated with normal shrinkage slope and at high soil water contents. Independently of clay mineralogy, the air entry point in the argilic horizons was registered at soil moisture seldom registered in the field. In the BC and C horizons, the joined consideration of clay and CEC gave a better correlation with the residual shrinkage slope, than the values obtained pondering those parameters individually. In the A and BA horizons the CEC was the better predictive parameter of the residual shrinkage slope. Analyzing the A, BA, BC and C horizons together, equivalent moisture and particle density were the best soil properties for predicting the residual contraction rate, whereas organic carbon decreased this value significantly.

  3. Experimental study on soil moisture content of geogrid-reinforced clay under freezing-thawing cycle%冻融循环下格栅加筋粘土土体含水率试验研究

    Institute of Scientific and Technical Information of China (English)

    赵荣飞; 宓永宁; 姜广田; 金丹; 高微

    2012-01-01

    通过一系列室内含水率测试试验,研究了格栅加筋粘土在多次冻融循环条件下土体含水率的变动情况,探讨了填料压实度,加筋层数和初始含水率对冻融后土体含水率变动的影响规律.结果表明,压实度对土体ωi影响最大,低压实度时,△ω1为正值,高压实度时,△ω1为负值;加筋层数次之,ω1值随加筋层数增加而减小,在压实度高的土体中尤为显著;初始含水率影响最弱,仅在土体压实度较低时,较大的初始含水率会引起较大的△ω1值.%Through a series of lab-tests on moisture content of soil, the change of the moisture content of the grid-reinforced clay under freezing-thawing cycle is studied herein, and then the law of the impact from the compaction degree, the reinforcement layers and the initial moisture content of the soil on the moisture content of the soil under freezing-thawing cycles are discussed. The result shows that the compaction degree has the greatest impact on the soil body ωi, i. e. △ω1 is positive when the compaction degree is low and △ω1, is negative when the compaction degree is high; meanwhile, the number of the reinforcement layers only has a secondary impact on the soli body, i. e. the value of ω1, is decreased along with the increase of the number of the reinforcement layers, while it is significant in the highly compacted soil; moreover, the impact from the initial moisture content is much less and the greater value of △ω1 is to be only arisen from a greater initial moisture content when the compaction degree of soil is low.

  4. Mineralogia e cristalografia da fração argila de horizontes coesos de solos nos tabuleiros costeiros Crystallography and mineralogy of the clay fraction of hardsetting horizons in soils of coastal tablelands in Brazil

    Directory of Open Access Journals (Sweden)

    Neyde Fabíola Balarezo Giarola

    2009-02-01

    -related physical and chemical factors, but an influence of mineralogical and crystallographic properties of clay minerals was also suggested by some researchers. In this study we tested the possibility that clay fraction of hardsetting horizons of soils from the Barreiras sediments of Coastal Tablelands are predominantly kaolinitic and highly crystalline and organized, which can favor a face-to-face arrangement of the crystals. The purpose of this study was to evaluate the crystallographic and mineralogical characteristics of clay minerals in hardsetting soil horizons from the sediment group Barreiras and their contribution to the hardsetting character. One non-hardsetting and five hardsetting horizons were studied along the coastal tableland. A kaolinite sample with high crystallinity degree was also included as reference. All profiles were analyzed for taxonomic classification and location of the horizons of interest. Organic matter and oxides were removed from the samples of the selected horizons. After soil dispersion, the clay fraction was individualized, treated and examined by X-ray diffraction (XRD to determine the minerals and structure degree of order/disorder, according to the method described by Plançon & Zacarie (1990. The degree of structural organization of the kaolinites of the hardsetting and non-hardsetting horizons was similar to and lower than the kaolinite used as reference. Results indicated that the hardsetting behavior of the studied soils could not be explained by clay packaging.

  5. The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work

    Science.gov (United States)

    McKissock, I.; Walker, E. L.; Gilkes, R. J.; Carter, D. J.

    2000-05-01

    In Western Australia water repellency mostly occurs in soils with sandy texture; the severity of water repellency is influenced by very small changes in clay content. Additions of 1-2% clay can prevent water repellency and for some time clay amendments have been used by farmers to overcome water repellency. The aim of this study was to assess the effectiveness of clays in ameliorating water repellency. Clays were assessed for effectiveness in reducing water repellency by mixing with water repellent sands and measuring water drop penetration time (WDPT) on the resultant mixtures. WDPT was measured on the initial mixtures, a wetting and drying cycle was imposed and WDPT measured again. Two sets of clays were assessed: four simple clays containing kaolinite (2) or smectite (2) group minerals and a group of clayey subsoil materials which had been collected by farmers. For the simple clays, clay mineral type was the most significant factor in determining response. Kaolin was much more effective than smectite. Imposition of a wetting and drying cycle greatly reduced water repellency. The dominant exchangeable cation of the clays (sodium or calcium) had little effect on the ability of the clays to reduce water repellency. The factor that was most predictive of the effectiveness of clayey subsoils materials in reducing water repellency was texture: clay content ( r2=0.18) or clay+silt content ( r2=0.23). These properties were more predictive of water repellency values after the wetting and drying cycle treatment ( r2=0.36, r2=0.44). The proportion of the clay fraction that consisted of kaolinite was next most predictive in determining effectiveness which is again indicative of kaolin group minerals being more effective than smectite group minerals. The exchangeable sodium percentage and clay dispersibility had no systematic effect on the ability of these clays to reduce water repellency. These results provide a basis for developing a practical field procedure to enable

  6. Solos sob vegetação de restinga na Ilha do Cardoso (SP: II - Mineralogia das frações silte e argila Soils under restinga vegetation on the Cardoso Island (SP: II - Mineralogy of silt and clay fractions

    Directory of Open Access Journals (Sweden)

    Felipe Haenel Gomes

    2007-12-01

    Full Text Available A vegetação de restinga é uma formação típica que ocorre na costa brasileira em materiais de origem quartzosa e pobres em nutrientes. Os solos que ocorrem nesses ambientes são principalmente Espodossolos e Neossolos Quartzarênicos, com incipiente processo de podzolização. A podzolização é freqüentemente estudada em regiões de clima frio, sendo escassos os estudos mineralógicos de Espodossolos em clima tropical e material de origem quartzoso. Neste trabalho foram estudados solos sob vegetação de restinga na Ilha do Cardoso-SP, com o objetivo de identificar a assembléia mineralógica da fração silte e argila deles, no intuito de dar subsídios para melhor entendimento de sua gênese. Os principais minerais encontrados na fração argila foram quartzo e caulinita e, na fração silte, feldspato e quartzo. Isso indica que nesses solos a assembléia mineralógica é relativamente mais intemperizada do que os Espodossolos encontrados sob clima mais frio, e mesmo em relação a outros solos estudados no litoral brasileiro, devido ao próprio material de origem, pobre em minerais primários intemperizáveis, e à migração de complexos organometálicos insaturados, o que aumenta seu poder de dissolução. Em alguns horizontes (2Cgj foram identificadas esmectitas, as quais podem ser herdadas ou neoformadas, e sua gênese é dissociada da podzolização.Restinga is a typical vegetation on quartzitic, sandy, nutrient-poor parent materials along the Brazilian coast.. Podzolization is the main pedogenic process in restinga soils and Spodosols and Quartzipsamments with incipient podzolization are the most common soils. Podzolization is frequently studied in cold climate regions, while mineralogical studies of Spodosols in tropical climate on quartzitic parent material are scant. In this work, soils under restinga vegetation on the Ilha do Cardoso-SP, Brazil were studied to identify the mineralogical assembly of silt and clay fractions

  7. Assessment of the Effectiveness of Clay Soil Covers as Engineered Barriers in Waste Disposal Facilities with Emphasis on Modeling Cracking Behavior

    Science.gov (United States)

    2008-06-01

    52 Figure 36. Tekscan ™ pressure calibration unit and accompanying Phidget™ pressure sensors...pressure. To accomplish this task, a Tekscan ™ pressure calibration machine (Figure 36) was obtained and modified with a digital pressure recorder. This...pressure in the soil from Experiment 3. ERDC TR-08-7 54 Figure 36. Tekscan ™ pressure calibration unit and accompanying Phidget™ pressure sensors

  8. Clay goes patchy

    NARCIS (Netherlands)

    Kegel, W.K.; Lekkerkerker, H.N.W.

    2011-01-01

    Empty liquids and equilibrium gels have so far been only theoretical possibilities, predicted for colloids with patchy interactions. But evidence of both has now been found in Laponite, a widely studied clay.

  9. Measurement and conceptual modelling of herbicide transport to field drains in a heavy clay soil with implications for catchment-scale water quality management.

    Science.gov (United States)

    Tediosi, A; Whelan, M J; Rushton, K R; Thompson, T R E; Gandolfi, C; Pullan, S P

    2012-11-01

    Propyzamide and carbetamide are essential for blackgrass control in oilseed rape production. However, both of these compounds can contaminate surface waters and pose compliance problems for water utilities. The transport of propyzamide and carbetamide to an instrumented field drain in a small clay headwater tributary of the Upper Cherwell catchment was monitored over a winter season. Despite having very different sorption and dissipation properties, both herbicides were transported rapidly to the drain outlet in the first storm event after application, although carbetamide was leached more readily than propyzamide. A simple conceptual model was constructed to represent solute displacement from mobile pore water and preferential flow to drains. The model was able to reproduce the timing and magnitude of herbicide losses well, lending support to its conceptual basis. Measured losses in drainflow in the month following application were 1.1 and 8.1%, respectively, for propyzamide and carbetamide. Differences were due to a combination of differences in herbicide mobility and due to the fact that the monitoring period for carbetamide was hydrologically more active. For both compounds, losses were greater than those typically reported elsewhere for other herbicides. The data suggest that drainflow is the dominant pathway for the transfer of these herbicides to the catchment outlet, where water is abstracted for municipal supply. This imposes considerable constraints on the management options available to reduce surface water concentrations of herbicides in this catchment.

  10. Germination of nine species of a pioneer plant community of pliocene clay soils of central western italy under different photo- and thermo-periods

    Directory of Open Access Journals (Sweden)

    Aldemaro Boscagli

    2014-02-01

    Full Text Available Germination response under different photo- and thermo-periods was investigated in nine species of the association Parapholido-Artemisietum cretaceae, a typical plant community of clay badland vegetation in central western Italy. The species showed: (i more rapid germination under the photo- and thermo-period emulating autumn conditions than under the one emulating early spring conditions; (ii different germination rates under condition emulating periods with high diurnal insolation followed by high or low nocturnal heat dispersion: Aegilops geniculata, Parapholis strigosa and Artemisia cretacea were indifferent, Hordeum maritimum, Trifolium scabrum, Brachypodium distachyum and Parapholis incurva responded positively to higher thermal dispersion, whereas Medicago minima and Scorpiurus muricatus responded negatively; (iii different responses to a constant low temperature of 2oC: Artemisia cretacea, Parapholis incurva, Parapholis strigosa and Scorpiurus muricatus showed complete or very high dormancy; the other species showed a germination capacity between 55 and 87% in the following decreasing order: Medicago minima > Hordeum maritimum > Trifolium scabrum > Aegilops geniculata > Brachypodium distachyum. All species had delayed and reduced germination responses at 2oC. Grasses showed prompt, quick and high germination as environmental conditions became more favourable; legumes showed a similar response when their coat-imposed dormancy was removed, while the asteracea A. cretacea showed only a moderate germination capacity and one of the lowest germination rates. Nomenclaure: Pignatti (1982.

  11. Clay particle retention in small constructed wetlands.

    Science.gov (United States)

    Braskerud, B C

    2003-09-01

    Constructed wetlands (CWs) can be used to mitigate non-point source pollution from arable fields. Previous investigations have shown that the relative soil particle retention in small CWs increases when hydraulic load increases. This paper investigates why this phenomenon occurs, even though common retention models predict the opposite, by studying clay and silt particle retention in two Norwegian CWs. Retention was measured with water flow proportional sampling systems in the inlet and outlet of the wetlands, and the texture of the suspended solids was analyzed. The surface area of the CWs was small compared to the watershed area (approximately 0.07%), giving high average hydraulic loads (1.1 and 2.0 md(-1)). One of the watersheds included only old arable land, whereas the other included areas with disturbed topsoil after artificial land leveling. Clay particle retention was 57% for the CW in the first watershed, and 22% for the CW in the disturbed watershed. The different behavior of the wetlands could be due to differences in aggregate size and stability of the particles entering the wetlands. Results showed that increased hydraulic loads did affect CW retention negatively. However, as runoff increased, soil particles/aggregates with higher sedimentation velocities entered the CWs (e.g., the clay particles behaved as silt particles). Hence, clay particle settling velocity is not constant as assumed in many prediction models. The net result was increased retention.

  12. Late Precambrian oxygenation; inception of the clay mineral factory.

    Science.gov (United States)

    Kennedy, Martin; Droser, Mary; Mayer, Lawrence M; Pevear, David; Mrofka, David

    2006-03-10

    An enigmatic stepwise increase in oxygen in the late Precambrian is widely considered a prerequisite for the expansion of animal life. Accumulation of oxygen requires organic matter burial in sediments, which is largely controlled by the sheltering or preservational effects of detrital clay minerals in modern marine continental margin depocenters. Here, we show mineralogical and geochemical evidence for an increase in clay mineral deposition in the Neoproterozoic that immediately predated the first metazoans. Today most clay minerals originate in biologically active soils, so initial expansion of a primitive land biota would greatly enhance production of pedogenic clay minerals (the "clay mineral factory"), leading to increased marine burial of organic carbon via mineral surface preservation.

  13. Can we map swelling clays with remote sensing?

    Science.gov (United States)

    van der Meer, Freek

    Swelling soils are soils containing clay minerals that change volume with water content. The original volume of natural soils may change up to 150 percent with increasing water content, which creates major geological hazards that cause extensive damage worldwide. Current engineering practice for delineating areas of potential high swell builds on extensive laboratory analysis, including X-ray diffraction analysis for establishing clay mineralogy and Atterberg limits for deriving the swelling index. This is labour-intensive and thus expensive. Of key importance in assessing the swelling potential of soils is accurate mapping of clay mineralogy and amount (particularly of high swelling smectite and low swelling kaolinite-group minerals) and mapping of soil moisture. For applications related to slope instability processes, surface height and surface deformation need to be examined. Results from spectral analysis of clay mineral spectra presented in this paper show that careful examination of absorption bands allows the characterization and mapping of the clay mineralogy of the soil, which, in conjunction with spectral unmixing, may lead to surface fractions of the various clay minerals. This can potentially be empirically linked with current engineering tests. Remote sensing perspectives for spatial reproduction of these results are further examined in this paper. Imaging spectrometry ( ie, data acquisition in many narrow spectral bands that allow images of reflectance spectra to be derived) may provide insight in surface mineralogy, while microwave remote sensing could deliver soil moisture information. Interferometric SAR (InSAR) is one method of remotely sensed elevation mapping; other remote sensing approaches include radar and laser altimetry and the derivation of digital terrain data from stereoscopic imagery ( ie, Spot, MOMS, etc). This paper could form the basis for formulating a number of research projects within a framework of mapping swelling potential of

  14. Clay mineralogy in agrochernozems of western Ukraine

    Science.gov (United States)

    Papish, I. Ya.; Chizhikova, N. P.; Poznyak, S. P.; Varlamov, E. B.

    2016-10-01

    The mineralogy of clay fractions separated from deep low-humus deep-gleyic loamy typical agrochernozems on loess-like loams of the Upper Bug and Dniester uplands in the Central Russian loess province of Ukraine consists of complex disordered interstratifications with the segregation of mica- and smectite-type layers (hereafter, smectite phase), tri- and dioctahedral hydromicas, kaolinite, and chlorite. The distribution of the clay fraction is uniform. The proportions of the layered silicates vary significantly within the profile: a decrease in the content of the smectite phase and a relative increase in the content of hydromicas up the soil profile are recorded. In the upper horizons, the contents of kaolinite and chlorite increase, and some amounts of fine quartz, potassium feldspars, and plagioclases are observed. This tendency is observed in agrochernozems developed on the both Upper Bug and Dniester uplands. The differences include the larger amounts of quartz, potassium feldspars, and plagioclases in the clay material of the Upper Bug Upland, while the contents of the smectite phase in the soil profiles of the areas considered are similar. An analogous mineral association is noted in podzolized agrochernozems on loess-like deposits in the Cis-Carpathian region of the Southern Russian loess province developed on the Prut-Dniester and Syan-Dniester uplands. The distribution of particle-size fractions and the mineralogy of the clay fraction indicate the lithogenic heterogeneity of the soil-forming substrate. When the drifts change, the mineral association of the soils developed within the loess-like deposits gives place to minerals dominated by individual smectite with some mica-smectite inter stratifications, hydromicas, and chlorite.

  15. Shear Strength Behavior of Two Landfill Clay Liners

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Direct shear tests were conducted to obtain both the shear strength of compacted clay liners (CCLs) specimens and the interface shear strength between compacted clay liner and base soil. These experiments were conducted under the conditions of five different water contents. The experimental results show that shear strength of both CCLs and CCLs/base interface decreases with the increase in the water content of CCLs and base soil. In addition, the considerate concentration of NaCl in leachate has no deteriorating effect on the shear strength of liners. Triaxial shear tests were also conducted on clay liner specimens to obtain total and effective shear strength under a fast compression. The shear strength c'=100 kPa for sand-bentonite, respectively. These results indicate that the compacted clay-bentonite shows normal consolidation, but that the compacted sand-bentonite exhibits over-consolidation.

  16. Macro-and Micro- Properties of Two Natural Marine Clays in China

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-jing; PENG Li-cai; ZHU He-hua; LIN Yi-xi; HUANG Liang-ji

    2009-01-01

    In this paper,macro- and micro- properties of natural marine clay in two different and representative regions of China are investigated in detail.In addition to in-situ tests,soil samples are collected by use of Shelby tubes for laboratory examination in Shanghai and Zhuhai respectively,two coastal cities in China.In the laboratory tests,macro-properties such as consolidation characteristics and undrained shear strength are measured.Moreover,X-ray diffraction test,scanning electron microscope test,and mercury intrusion test are carried out for the investigation of their micro-properties including clay minerals and microstructure.The study shows that:(1) both clays are Holocene series formations,classified as either normal or underconsolidated soils.The initial gradient of the stress-strain curves shows their increase with increasing consolidation pressure;however,the Shanghai and the Zhuhai clays are both structural soils with the latter shown to be more structured than the former.As a result,the Zhuhai clay shows strain softening behavior at low confining pressures,but strain hardening at high pressures.In contrast,the Shanghai clay mainly manifests strain-hardening.(2) An activity ranges from 0.75 to 1.30 for the Shanghai marine clay and from 0.5 to 0.85 for the Zhuhai marine clay.The main clay mineral is illite in the Shanghai clay and kaolinite in the Zhuhai clay.The Zhuhai clay is mainly characterized by a flocculated structure,while the typical Shanghai clay shows a dispersed structure.The porous structure of the Shanghai clay is characterized mainly by large and medium-sized pores,while the Zhuhai clay porous structure is mainly featreed by small and medium-sized pores.The differences in their macro- and micro- properties can he attributed to different sedimentation environments.

  17. Matéria orgânica e aumento da capacidade de troca de cátions em solo com argila de atividade baixa sob plantio direto Soil organic matter and cation exchange capacity increase in a low activity clay soil under no-tillage system

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2003-12-01

    Full Text Available O sistema de manejo afeta a matéria orgânica do solo, o que pode ter expressivo efeito na CTC de solos com argila de atividade baixa. Neste estudo, avaliou-se o efeito da utilização durante 21 anos do sistema plantio direto (SPD sobre os estoques de carbono orgânico (CO, bem como a sua relação com o aumento da CTC de um Latossolo bruno (629 g kg-1 de argila, em Guarapuava, PR. O SPD promoveu acúmulo de CO na camada superficial do solo (0-6cm, o que refletiu-se num aumento de 2,63t ha-1 no estoque de CO, na camada de 0-20cm, em comparação ao preparo convencional. A baixa taxa de acúmulo de CO (0,12t ha-1 ano-1 foi relacionada à alta estabilidade física da matéria orgânica neste solo argiloso e oxídico. Apesar do pequeno acúmulo de CO no solo sob SPD, este teve reflexo positivo na CTC do solo, com um aumento médio, na camada de 0-8cm, de 15,2mmol c kg-1 na CTC efetiva, e de 20,7mmol c kg-1 na CTC a pH 7,0, em comparação ao solo em preparo convencional. Os resultados obtidos reforçam a importância do SPD quanto ao seu efeito nos estoques de matéria orgânica e, em consequência, na CTC de solos tropicais e subtropicais com predominância de argila de atividade baixa.Soil management affects the organic matter stocks, and thus the CEC especially in low activity clay soils. The main goal of this study was to evaluate the long-term (21 years effect of the no-tillage on soil organic carbon (SOC stocks and its relationship with CEC increase in a clayey Oxisol (Hapludox, in Guarapuava (PR, Southern Brazil. No-tillage soil had only 2.63t ha-1 more SOC than conventionally tilled soil at 0-20cm, and the highest net accumulation occurred in soil surface layers (0-6cm. The low accumulation rate of SOC in the no-tilled soil (0,12t ha-1 yr-1 was related to the high physical stability of soil organic matter in this clayey Oxisol. Despite the small effect on SOC contents, the no-tilllage had an expressive influence on the CEC of 0-8cm soil

  18. Adsorption of diethyl phthalate ester to clay minerals.

    Science.gov (United States)

    Wu, Yanhua; Si, Youbin; Zhou, Dongmei; Gao, Juan

    2015-01-01

    Phthalate esters are a group of plasticizers, which have been widely detected in China's agricultural and industrial soils. In this study, batch adsorption experiments were conducted to investigate the environmental effects on the adsorption of diethyl phthalate ester (DEP) to clay minerals. The results showed that DEP adsorption isotherms were well fitted with the Freundlich model; the interlayer spacing of K(+) saturated montmorillonite (K-mont) was the most important adsorption area for DEP, and di-n-butyl ester (DnBP) was limited to intercalate into the interlayer of K-mont due to the bigger molecular size; there was no significant effect of pH and ionic strength on DEP adsorption to K-mont/Ca-mont, but to Na-mont clay. The adsorption to kaolinite was very limited. Data of X-ray diffraction and FTIR spectra further proved that DEP molecules could intercalate into K-/Ca-mont interlayer, and might interact with clay through H-bonding between carbonyl groups and clay adsorbed water. Coated humic acid on clay surface would enhance DEP adsorption at low concentration, but not at high concentration (eg. Ce>0.26 mM). The calculated adsorption enthalpy (ΔHobs) and adsorption isotherms at varied temperatures showed that DEP could be adsorbed easier as more adsorbed. This study implied that clay type, compound structure, exchangeable cation, soil organic matter and temperature played important roles in phthalate ester's transport in soil.

  19. MAX--An Interactive Computer Program for Teaching Identification of Clay Minerals by X-ray Diffraction.

    Science.gov (United States)

    Kohut, Connie K.; And Others

    1993-01-01

    Discusses MAX, an interactive computer program for teaching identification of clay minerals based on standard x-ray diffraction characteristics. The program provides tutorial-type exercises for identification of 16 clay standards, self-evaluation exercises, diffractograms of 28 soil clay minerals, and identification of nonclay minerals. (MDH)

  20. Breakdown of Clays by Ectomycorrhizal Fungi Through Changes in Oxidation State of Iron

    Science.gov (United States)

    Arocena, J. M.; Velde, B.

    2012-04-01

    Organisms are known to play a significant role in the transformation of clay minerals in soils. In our earlier work on canola, barley and alfalfa, we reported that Glomus, an arbuscular mycorrhizae, selectively transformed biotite into 2:1 expanding clays through the oxidation of Fe (II) in biotite to Fe(III). In this presentation, we will share similar results on clay transformations mediated by ectomycorrhizal fungi colonizing the roots of coniferous trees. Clay samples were isolated from rhizosphere soils of sub-alpine fir (Abies lasiocarpa (Hook.) Nutt.) in northern British Columbia (Canada). Chemical and mineralogical properties of these soils had been reported in our earlier paper. In this study, we subjected the clay samples to iron X-ray Absorption Near Edge Spectroscopy (Fe-XANES) at the Canadian Light Source synchrotron facility in Saskatoon (Canada). Our initial results showed relatively higher amounts of Fe (III) than Fe(II) in clays collected from rhizosphere of Piloderma (an ectomycorrhizal fungus) compared to soils influenced by non-Piloderma species and Control (non-rhizosphere soil). Coupled with the results of X-ray diffraction (XRD) analysis, there seems to be a positive relationship between the relative amounts of Fe(III) and the 2:1 expanding clays. This relationship is consistent with our results on agricultural plants in laboratory experiments on biotites where we suggested that oxidation of Fe(II) to Fe(III) results in the formation of 2:1 expanding clays. In a related data set on chlorite alteration we observed that after dithionite-citrate-bicarbonate (DCB) treatment, the d-spacing of a slight portion of chloritic expanding clays shifted to higher angles indicating decreased d-spacing towards micaceous clays. The reductive process initiated through the action of the DCB treatment seems to indicate the collapsed of expandable clays upon the reduction of Fe(III) to Fe(II). Initial results from the Fe-XANES and XRD analysis of DCB

  1. Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms.

    Science.gov (United States)

    Yao, Aijun; Wang, Yani; Ling, Xiaodan; Chen, Zhe; Tang, Yetao; Qiu, Hao; Ying, Rongrong; Qiu, Rongliang

    2017-04-01

    Economic and highly effective methods of in situ remediation of Cd and As polluted farmland in mining areas are urgently needed. Pot experiments with Brassica chinensis L. were carried out to determine the effects of three soil amendments [a novel iron-silicon material (ISM), a synthetic zeolite (SZ) and an alkaline clay (AC)] on vegetable uptake of As and Cd. SEM-EDS and XRD analyses were used to investigate the remediation mechanisms involved. Amendment with ISM significantly reduced the concentrations of As and Cd in edible parts of B. chinensis (by 84-94 % and 38-87 %, respectively), to levels that met food safety regulations and was much lower than those achieved by SZ and AC. ISM also significantly increased fresh biomass by 169-1412 % and 436-731 % in two consecutive growing seasons, while SZ and AC did not significantly affect vegetable growth. Correlation analysis suggested that it was the mitigating effects of ISM on soil acidity and on As and Cd toxicity, rather than nutrient amelioration, that contributed to the improvement in plant growth. SEM-EDS analysis showed that ISM contained far more Ca, Fe and Mn than did SZ or AC, and XRD analysis showed that in the ISM these elements were primarily in the form of silicates, oxides and phosphates that had high capacities for chemisorption of metal(loid)s. After incubation with solutions containing 800 mg L(-1) AsO4(2-) or Cd(2+), ISM bound distinctly higher levels of As (6.18 % in relative mass percent by EDS analysis) and Cd (7.21 % in relative mass percent by EDS analysis) compared to SZ and AC. XRD analysis also showed that ISM facilitated the precipitation of Cd(2+) as silicates, phosphates and hydroxides, and that arsenate combined with Fe, Al, Ca and Mg to form insoluble arsenate compounds. These precipitation mechanisms were much more active in ISM than in SZ or AC. Due to the greater pH elevation caused by the abundant calcium silicate, chemisorption and precipitation mechanisms in ISM

  2. Magnificent Clay Murals

    Science.gov (United States)

    Kirker, Sara Schmickle

    2007-01-01

    Each August, third grade artists at Apple Glen Elementary in Bentonville, Arkansas, start the school year planning, creating, and exhibiting a clay relief mural. These mural projects have helped students to acquire not only art knowledge and techniques, but an even more important kind of knowledge: what it means to plan and successfully complete a…

  3. Nanoporous clay with carbon sink and pesticide trapping properties

    Science.gov (United States)

    Woignier, T.; Duffours, L.; Colombel, P.; Dieudonné, P.

    2015-07-01

    A thorough understanding of the mechanisms and factors involved in the dynamics of organic carbon in soils is required to identify and enhance natural sinks for greenhouse gases. Some tropical soils, such as Andosols, have 3-6 fold higher concentrations of organic carbon than other kinds of soils containing classical clays. In the tropics, toxic pesticides permanently pollute soils and contaminate crops, water resources, and ecosystems. However, not all soils are equal in terms of pesticide contamination or in their ability to transfer pollution to the ecosystem. Andosols are generally more polluted than the other kinds of soils but, surprisingly, they retain and trap more pesticides, thereby reducing the transfer of pesticides to ecosystems, water resources, and crops. Andosols thus have interesting environmental properties in terms of soil carbon sequestration and pesticide retention. Andosols contain a nano porous clay (allophane) with unique structures and physical properties compared to more common clays; these are large pore volume, specific surface area, and a tortuous and fractal porous arrangement. The purpose of this mini review is to discuss the importance of the allophane fractal microstructure for carbon sequestration and pesticide trapping in the soil. We suggest that the tortuous microstructure (which resembles a labyrinths) of allophane aggregates and the associated low accessibility partly explain the poor availability of soil organic matter and of any pesticides trapped in andosols.

  4. Physical Properties of Latvian Clays

    OpenAIRE

    2012-01-01

    Physical and chemical properties of clays mostly depends on its mineral and chemical composition, particle size and pH value. The mutual influence of these parameters is complex. Illite is the most abundant clay mineral in Latvia and usually used in building materials and pottery. The viscosity and plasticity of Latvian clays from several deposits were investigated and correlated with mineral composition, particle size and pH value. Fractionated and crude clay samples were used. The p...

  5. Clay fraction mineralogy of a Cambisol in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Anastacio, A. S.; Fabris, J. D., E-mail: jdfabris@ufmg.br [Federal University of Minas Gerais, Campus - Pampulha, Department of Chemistry (Brazil); Stucki, J. W. [Department of Natural Resources and Environmental Sciences (United States); Coelho, F. S.; Pinto, I. V. [Federal University of Minas Gerais, Campus - Pampulha, Department of Chemistry (Brazil); Viana, J. H. M. [Embrapa Milho e Sorgo (Brazil)

    2005-11-15

    Clay minerals having a 2:1 (tetrahedral:octahedral sheet) structure may be found in strongly weathering soils only if the local pedo-climatic environment prevents them from further weathering to other minerals such as iron oxides. The clay minerals impart important chemical properties to soils, in part by virtue of changes in the redox state of iron in their crystal structures. Knowing the chemical nature of soil clays is a first step in evaluating their potential reactivity with other soil constituents and processes, such as the chemical decomposition of organic substrates to be potentially used in environmental remediation. The purpose of this work was to characterize the iron oxides and iron-bearing clay minerals from a B horizon of a Cambisol developed on tuffite in the State of Minas Gerais, Brazil, using chemical analysis, powder X-ray diffraction, Moessbauer spectroscopy, and thermal analysis. The iron oxides of this NaOH-treated clay-fraction were found to contain mainly maghemite ({gamma}Fe{sub 2}O{sub 3}) and superparamagnetic goethite ({alpha}FeOOH). Kaolinite (Al{sub 2}Si{sub 2}O{sub 5}(OH){sub 4}), smectite, and minor portions of anatase (TiO{sub 2}) were identified in the CBD-treated sample.

  6. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  7. Escoamento superficial e desagregação do solo em entressulcos em solo franco-argilo-arenoso com resíduos vegetais Interrill surface runoff and soil detachment on a sandy clay loam soil with residue cover

    Directory of Open Access Journals (Sweden)

    Elemar Antonino Cassol

    2004-07-01

    Full Text Available A presença de resíduos vegetais sobre a superfície do solo altera as características do escoamento superficial gerado pela chuva e a desagregação e transporte de sedimento resultantes do processo erosivo. O objetivo deste trabalho foi avaliar as condições hidráulicas e as relações de desagregação do solo e de resistência ao escoamento com a presença de resíduos vegetais na erosão em entressulcos. O experimento foi realizado no laboratório, com um Argissolo Vermelho distrófico típico, em parcelas com 0,10 m m-1 de declive sob chuva simulada. O solo foi coberto por resíduos vegetais de palha de soja, nas doses de 0, 0,05, 0,1, 0,2, 0,4 e 0,8 kg m-2. O aumento na cobertura do solo (CS com resíduos vegetais elevou a altura da lâmina de escoamento e a rugosidade hidráulica e reduziu a velocidade média do escoamento, provocada pelo aumento das forças viscosas promovida pela interposição física dos resíduos ao escoamento. O resultado é a redução na taxa de desagregação do solo (Di. A Di foi de 5,35x10-4 kg m-2 s-1 para solo descoberto e 1,50x10-5 kg m-2 s-1 em solo com 100% de cobertura na maior dose de palha. Os modelos de Laflen e potencial foram adequados para estimar o coeficiente de cobertura para resíduo em contato direto com a superfície do solo em função da cobertura do solo.Soil surface cover with crop residue modifies surface flow characteristics, generated by excess rainfall, and soil detachment and sediment transport resulting from the erosion process. The objective of this study was to evaluate the hydraulic conditions, detachment and flow resistance on interrill erosion on soil covered with residue. The experiment was conducted in the laboratory, on a Hapludult soil at a slope of 0.10 m m-1, under simulated rainfall and soil surface covered with soybean residue at the rates of 0, 0.05, 0.1, 0.2, 0.4, and 0.8 kg m-2. The increase in soil surface cover (SC with residue, caused an increase in water flow

  8. Clay membrane made of natural high plasticity clay:

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1999-01-01

    Leachate containment in Denmark has throughout the years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R4669. It states that natural clay deposits may be used as membrane material provided the membrane and drainage system contains at least 95% of all leachate created...... into account advective ion transport as well as diffusion. Clay prospecting for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island of Lolland. The natural clay contains 60-75% smectite, dominantly as a sodium......-type. The clay material has been evaluated using the standardized methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15-0.3 m thick clay membrane...

  9. Fixation of Selenium by Clay Minerals and Iron Oxides

    DEFF Research Database (Denmark)

    Hamdy, A. A.; Nielsen, Gunnar Gissel

    1977-01-01

    In studying Se fixation, soil components capable of retaining Se were investigated. The importance of Fe hydrous oxides in the fixation of Se was established. The clay minerals common to soils, such as kaolinite, montmorillonite and vermiculite, all exhibited Se fixation, but greater fixation...... occurred with the 1:1 than the 2:1 clay type. Experiments with finely ground minerals showed that the pH of the systems greatly influenced the rate of fixation, reaching a maximum between pH 3 and 5 and decreasing rapidly as the pH increased. With the Fe2O3 system fixed Se was slightly reduced as the p......H was increased to over 8. The extractability of Se from the clay minerals indicated that 1:1 clay type minerals fix selenite more indissolubly than 2:1 clays and that selenite was adsorbed on the clays mainly by a surface exchange reaction. The major part of the selenite added to the Fe2O3 system was found...

  10. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.

  11. Thermostability of montmorillonitic clays

    Directory of Open Access Journals (Sweden)

    Petr Jelínek

    2014-05-01

    Full Text Available Bentonite is one of the most widespread used clays connected with various applications. In the case of foundry technology, bentonite is primarily used as a binder for mold manufacture. Thermal stability of bentonites is a natural property of clay minerals and it depends on the genesis, source and chemical composition of the clay. This property is also closely connected to bentonite structure. According to DTA analysis if only one peak of dehydroxylation is observed (about 600 ºC, the cis- isomerism of bentonite is expected, while two peaks of de-hydroxylation (about 550 and 850 ºC are expected in the trans- one. In this overview, the bentonite structure, the water – bentonite interaction and the swelling behavior of bentonite in connection with the general technological properties of bentonite molding mixture are summarized. Further, various types of methods for determination of bentonite thermostability are discussed, including instrumental analytical methods as well as methods that employ evaluation of various technological properties of bentonite binders and/or bentonite molding mixtures.

  12. Clay at Nili Fossae

    Science.gov (United States)

    2006-01-01

    This image of the Nili Fossae region of Mars was compiled from separate images taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and the High-Resolution Imaging Science Experiment (HiRISE), two instruments on NASA's Mars Reconnaissance Orbiter. The images were taken at 0730 UTC (2:30 a.m. EDT) on Oct. 4, 2006, near 20.4 degrees north latitude, 78.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36 to 3.92 micrometers, and shows features as small as 18 meters (60 feet) across. HiRISE's image was taken in three colors, but its much higher resolution shows features as small as 30 centimeters (1 foot) across. CRISM's sister instrument on the Mars Express spacecraft, OMEGA, discovered that some of the most ancient regions of Mars are rich in clay minerals, formed when water altered the planet's volcanic rocks. From the OMEGA data it was unclear whether the clays formed at the surface during Mars' earliest history of if they formed at depth and were later exposed by impact craters or erosion of the overlying rocks. Clays are an indicator of wet, benign environments possibly suitable for biological processes, making Nili Fossae and comparable regions important targets for both CRISM and HiRISE. In this visualization of the combined data from the two instruments, the CRISM data were used to calculate the strengths of spectral absorption bands due to minerals present in the scene. The two major minerals detected by the instrument are olivine, a mineral characteristic of primitive igneous rocks, and clay. Areas rich in olivine are shown in red, and minerals rich in clay are shown in green. The derived colors were then overlayed on the HiRISE image. The area where the CRISM and HiRISE data overlap is shown at the upper left, and is about 5 kilometers (3 miles) across. The three boxes outlined in blue are enlarged to show how the different minerals in the scene match up with different landforms. In the image at the upper right

  13. Thermostability of montmorillonitic clays

    Institute of Scientific and Technical Information of China (English)

    Petr Jelnek; Stanisaw M.Dobosz; Jaroslav Beo; Katarzyna Major-Gabry

    2014-01-01

    Bentonite is one of the most widespread used clays connected with various applications. In the case of foundry technology, bentonite is primarily used as a binder for mold manufacture. Thermal stability of bentonites is a natural property of clay minerals and it depends on the genesis, source and chemical composition of the clay. This property is also closely connected to bentonite structure. According to DTA analysis if only one peak of dehydroxylation is observed (about 600 ºC), thecis- isomerism of bentonite is expected, while two peaks of de-hydroxylation (about 550 and 850 ºC) are expected in thetrans- one. In this overview, the bentonite structure, the water - bentonite interaction and the sweling behavior of bentonite in connection with the general technological properties of bentonite molding mixture are summarized. Further, various types of methods for determination of bentonite thermostability are discussed, including instrumental analytical methods as wel as methods that employ evaluation of various technological properties of bentonite binders and/or bentonite molding mixtures.

  14. Program and Abstracts for Clay Minerals Society 28th Annual Meeting

    Science.gov (United States)

    1991-01-01

    This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.

  15. Deformation mechanisms in experimentally deformed Boom Clay

    Science.gov (United States)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  16. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  17. Chlordecone retention in the fractal structure of volcanic clay

    Energy Technology Data Exchange (ETDEWEB)

    Woignier, Thierry, E-mail: thierry.woignier@imbe.fr [IRD, UMR 237, IMBE, PRAM B.P. 214 Petit Morne, 97232, Le Lamentin, Martinique (France); CNRS, UMR 7263, IMBE, PRAM B.P. 214 Petit Morne, 97232, Le Lamentin, Martinique (France); Aix Marseille Universite, IMBE, Faculte des Sciences et Techniques de Saint Jerome, avenue Escadrille Normandie Niemen, F-13397 Marseille Cedex 20 (France); Clostre, Florence [Cirad/PRAM, UPR fonctionnement agroecologique et performances des systemes de culture horticoles, B.P. 214 Petit Morne, 97232, Le Lamentin, Martinique (France); Macarie, Herve [IRD, UMR 237, IMBE, PRAM B.P. 214 Petit Morne, 97232, Le Lamentin, Martinique (France); Cirad UR HortSys, TA B-103/PS4, Boulevard de la Lironde, 34398, Montpellier Cedex 5 (France); Jannoyer, Magalie [Cirad/PRAM, UPR fonctionnement agroecologique et performances des systemes de culture horticoles, B.P. 214 Petit Morne, 97232, Le Lamentin, Martinique (France); Cirad UR HortSys, TA B-103/PS4, Boulevard de la Lironde, 34398, Montpellier Cedex 5 (France)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Allophanic soils are highly polluted but less contaminant for cultivated vegetables. Black-Right-Pointing-Pointer SAXS and TEM show the fractal structure of allophane aggregates at the nanoscale. Black-Right-Pointing-Pointer Allophane aggregates play the role of a labyrinth which fixes and traps chlordecone. Black-Right-Pointing-Pointer Allophane physical properties contribute to chlordecone retention in andosols. - Abstract: Chlordecone (CHLD), a soil and foodstuff pollutant, as well as an environmentally persistent organochlorine insecticide, was used intensively in banana fields. The chlordecone uptake of three crops was measured for two types of polluted soils: allophanic and non-allophanic. The uptake is lower for allophanic soils even if their chlordecone content is higher than with non-allophanic soils. The fractal structure of the allophane aggregates was characterized at the nanoscale by small angle X-rays scattering, pore size distribution and transmission electron microscopy. We showed that clay microstructures should be an important physico-chemical factor governing the fate of chlordecone in the environment. Allophanic clays result in two counterintuitive findings: higher contaminant trappings yet lower contaminant availability. We propose that this specific, tortuous structure, along with its associated low accessibility, partly explains the low availability of chlordecone confined in allophanic soils. Capsule The fractal and tortuous microstructure of allophane clay favours the chlordecone retention in soils and disfavours the crop uptake.

  18. Potential bioavailability of mercury in humus-coated clay minerals.

    Science.gov (United States)

    Zhu, Daiwen; Zhong, Huan

    2015-10-01

    It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%-13.7%) and MeHg (0.8%-52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%-59.8% for CaCl2 and 2.1%-5.0% for BSA) and MeHg (8.9%-74.6% for CaCl2 and 0.5%-8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils.

  19. Influence of clay content on wave-induced liquefaction

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2014-01-01

    of measurements were carried out: (1) pore-water pressure measurements across the soil depth and (2) water-surface elevation measurements. These measurements were synchronized with video recordings of the liquefaction process from the side. The ranges of the various quantities in the experiments were wave height......:17 mmwas partially liquefied with CC as small as 2.9%. Remarks are made as to how to check for liquefaction of clayey soils exposed to waves in real-life situations......This paper presents the results of an experimental study of the influence of clay content (CC) on liquefaction of seabed beneath progressive waves. Experiments were, for the most part, conducted with silt and silt-clay mixtures; in supplementary tests, sand-clay mixtures were used. Two types...

  20. Selected Properties and Systematic Position of Soils Developed from Red Sandstones and Clays of the Lower Triassic Buntsandstein in the Nw Part of the Holy Cross Mountains (Poland / Niektóre właściwości i pozycja systematyczna gleb wytworzonych z czerwonych piaskowców i iłów dolnego triasu w NW obrzeżeniu Gór Świętokrzyskich

    Directory of Open Access Journals (Sweden)

    Zagórski Zbigniew

    2015-09-01

    Full Text Available The aim of the study was to compare the properties of soils developed from the Lower Triassic Buntsandstein sediments in the north-western part of the Holy Cross Mountains (Poland. These are deposits of continental genesis and unique features such as red beds. Two representative soil pedons - the Bartków profile (pBK developed from clay and the Góra Czerwona profile (pGC developed from sandstone were selected for detailed analyzes. The morphology of profiles, their micromorphological features, mineralogical composition, and physico-chemical properties were examined. Most of the properties of the soils are a consequence of the original parent rock lithology. A specific feature of the morphology of the soils are the presence of red color (about 10R by the Munsell color scale related to the presence of hematite. As shown by the XRD data, hematite is not the product of the current soil-forming processes, but it is a lithogenic component, which was inherited from the parent rock. Under the influence of climatic factors primary rock structure has been transformed into a new pedogenic one. Soils developed from clays have a characteristic angular blocky structure. Micromorphological analysis showed that an important role in the formation of soil structure involves geogenic susceptibility of Triassic clays to specific cuboid disintegration. This is indicated by the pore system of planes as an orthogonal nets visible in thin section. The soils developed from sandstone have a weak (unstable subangular blocky structure. The main reason is the insufficient dispersion of the clay-ferruginous fraction from the sandstone matrix. Microscopic observations indicate that fine factions occurs as loose microaggregates, which results in a feature that smaller rock fragments and individual quartz grains are not bonded into soil aggregates. The studied soils are characterized by specific physical-chemical properties. Some of them strongly depend on the mineralogical

  1. Multi-dimensional electro-omosis consolidation of clays

    NARCIS (Netherlands)

    Yuan, J.; Hicks, M.A.; Dijkstra, J.

    2012-01-01

    Electro-osmosis consolidation is an innovative and effective ground improvement method for soft clays. But electro-osmosis is also a very complicated process, as the mechanical behaviour, and hydraulic and electrical properties of the soil are changing rapidly during the treatment process; this make

  2. Carbon Stabilization by Clays in the Environment: Process and Characterization Methods

    Science.gov (United States)

    Organic matter (OM) in soil plays vital roles with respect to global climate change, as the largest terrestrial reservoir of organic carbon, and with respect to soil quality through the stabilization of soil structure and the retention and cycling of plant nutrients. The interactions between clay mi...

  3. Effect of Injecting Hydrogen Peroxide into Heavy Clay Loam Soil on Plant Water Status, NET CO2 Assimilation, Biomass, and Vascular Anatomy of Avocado Trees Efecto de la Inyección de Peróxido de Hidrógeno en Suelo Franco Arcilloso Pesado, sobre el Estado Hídrico, Asimilación Neta de CO2, Biomasa y Anatomía Vascular de Paltos

    OpenAIRE

    2009-01-01

    In Chile, avocado (Persea americana Mill.) orchards are often located in poorly drained, low-oxygen soils, situation which limits fruit production and quality. The objective of this study was to evaluate the effect of injecting soil with hydrogen peroxide (H2O2) as a source of molecular oxygen, on plant water status, net CO2 assimilation, biomass and anatomy of avocado trees set in clay loam soil with water content maintained at field capacity. Three-year-old ‘Hass’ avocado trees were planted...

  4. Cyclic Shearing Deformation Behavior of Saturated Clays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay's strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The deformations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deformation and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used.

  5. Spectromicroscopy of Fe distributions in clay microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Grundl, T. [Univ. of Wisconsin, Milwaukee, WI (United States); Cerasari, S.; Garcia, A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Clays are ubiquitous crystalline particles found in nature that are responsible for contributing to a wide range of chemical reactions in soils. The structure of these mineral particles changes when the particle is hydrated ({open_quotes}wet{close_quotes}), from that when it is dry. This makes a study of the microscopic distribution of chemical content of these nanocrystals difficult using standard techniques that require vacuum. In addition to large structural changes, it is likely that chemical changes accompany the drying process. As a result, spectroscopic measurements on dried clay particles may not accurately reflect the actual composition of the material as found in the environment. In this work, the authors extend the use of the ALS Spectromicroscopy Facility STXM to high spectral and spatial resolution studies of transition metal L-edges in environmental materials. The authors are studying mineral particles of montmorillonite, which is an Fe bearing clay which can be prepared with a wide distribution of Fe concentrations, and with Fe occupying different substitutional sites.

  6. Prediction of Settlements of Soft Clay Subjected to Long-Term Dynamic Load

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    -Presented is the numerical analysis of settlements of soft soil by a 2-D dynamic effective stress FEM method. The model based on the results of cyclic triaxial tests on the reconstituted soft Ariake clay is used to predict the wave induced excess pore water pressure and residual strain of soft clay. The settlements of two types of breakwaters on the soft clay under ocean wave load, a low embankment subjected to traffic load and the tunnel surrounded by soft clay in Shanghai subjected to locomotive load are calculated as examples.

  7. Distribución de la porosidad de un suelo franco arcilloso (alfisol en condiciones semiáridas después de 15 años bajo siembra directa Soil porosity distribution of a clay loam soil (alfisol in semi-arid conditions after 15 years under direct drilling

    Directory of Open Access Journals (Sweden)

    Cecilia Isabel Cerisola

    2005-12-01

    Full Text Available A partir de un estudio más amplio sobre evolución de las propiedades físicas de un suelo sometido a tres sistemas de labranza, se realizó, en dos campañas consecutivas, un seguimiento de la distribución de la porosidad del suelo según su origen, en parcelas cultivadas bajo siembra directa continua durante 15 años. En el ensayo se consideró un trayecto de 2 metros de longitud, perpendicular a la dirección de las labores, donde se realizaron mediciones de densidad aparente seca y contenido de humedad. El cultivo extensivo de secano (cereal, en cada una de las dos campañas, fue cebada de ciclo corto y de ciclo largo. El calendario de la toma de datos de las variables medidas se fijó en 5 fechas por campaña. La porosidad estructural del suelo, debida principalmente a la alternancia de ciclos de humectación - desecación, fue calculada cada 5 cm y hasta 35 cm de profundidad. Este proceso de fisuración natural resulta suficiente para asegurar un buen drenaje y facilitar el desarrollo radicular de las plantas, siempre y cuando el contenido de humedad se mantenga dentro de la capacidad de retención de agua.On a long-term essay under direct drilling, the evolution of the physical properties of a clay loam soil, such as distribution by origin of soil porosity, has been assessed during two growing seasons. The cereal crops in each growing seasons were spring barley and winter barley, respectively. Soil physical properties were measured on a 2 m length transect located in a perpendicular line to the direction of vehicular traffic for field operations. Five sampling opportunities, within crop cycle, were used to measure the variables. Structural soil porosity, due principally to shrinkage and swelling cycles, was assessed in the 0 to 35 cm depth soil profile. This natural process seemed to be sufficient to guarantee good drainage and normal crop development, unless in the moisture content range included in field capacity.

  8. 80 FR 65469 - NESHAP for Brick and Structural Clay Products Manufacturing; and NESHAP for Clay Ceramics...

    Science.gov (United States)

    2015-10-26

    ... Clay Products Manufacturing; and NESHAP for Clay Ceramics Manufacturing; Final Rule #0;#0;Federal...; and NESHAP for Clay Ceramics Manufacturing AGENCY: Environmental Protection Agency (EPA). ACTION... NESHAP for Clay Ceramics Manufacturing. All major sources in these categories must meet...

  9. Water Absorbing Plantation Clay for Vertical Greenery System

    Directory of Open Access Journals (Sweden)

    Yu Lih-Jiun

    2016-01-01

    Full Text Available With the arises of environmental conscious, the usage of vertical garden system has become more popular in urban cities. Citizens can enjoys the benefits of energy and cost saving besides ornamental effect. More investigations have been conducted on green facades led to the cities ecological enhancement.However, limited plants species can be planted for green facades systems as this system does not provide sufficient soil and nutrients for common plants. Alternative plantation methods such as planted box and felt system required additional maintenance attention. The idea of using clay composite which consists of nutritious soil, water absorbing polymer and flexible cement clay potentially become alternative vertical greenery systems that offers economic and sustainable plantation platform for more variety of plants.The fabricating of clay composite involved three processes, they are: mixing, moulding and drying. Physical properties characterisation (density, pH, compression test, aging test and water immersion test were tested on the dried fabricated clay composite to ensure their sustainability in tropical climate. The results showed that clay composite with 1.5 wt% of cement and 0.3 wt% superabsorbent polymer shows optimum water absorbing properties. This system are expected to enable more agriculture activities in urban living.

  10. 黏粒含量对泥石流源区砾石土体强度影响的实验研究%Experimental study of the influence of the clay content on the gravel soil mass from the upstream area of a debris flow

    Institute of Scientific and Technical Information of China (English)

    杨成林; 陈宁生; 邓明枫; 周伟

    2011-01-01

    The clay content of the gravel soil from the upstream area of a debris flow has significant influence on the pore pressure and shearing strength. This is a problem that has to be solved in studying the debris flow initiation mechanism. Based on the three-axial experiment, this paper studies the relationship among the shearing strength, pore pressure, collapsibility and clay content of the sample from Jiangjia ravine of Dongchuan in Yunnan of China. The experiment indicates that (1) when the clay content is 3. 75%~7. 50%, the collapsibility of the sample is greater and when it is 5%, that of the sample is the maximum; (2) in the UU experiment, the pore water pressure of the samples with 3. 75%~7. 50% clay content has the greater increase, and in the CD experiment, the pore water pressure of the sample with 12. 5% clay content has the greater increase; (3) the gravel soil with 5% clay content is the easiest to demolish; (4) under the same conditions of rainfall and gradient, the gravel soil with 3. 75% ~ 7. 50% clay content is most likely to motivate a large-scale devastative debris flow.%泥石流源区砾石土的黏粒颗粒含量对砾石土孔隙水压力和强度的影响是泥石流形成机理中的重要问题之一.采用室内静三轴实验研究云南东川蒋家沟支沟大凹子沟源区的砾石土体强度、孔隙水压力、湿陷性与黏粒颗粒含量的关系,发现黏粒的质量分数在3.75%~7.50%范围内的砾石土试样湿陷性较大;黏粒的质量分数为5%左右的砾石土湿陷性最大;黏粒的质量分数在3.75%~7.50%范围内砾石土试样在不固结不排水剪切过程中孔压上升较高;黏粒质量分数在12.5%的砾石土试样在固结排水剪切过程中孔压上升较高;黏粒的质量分数为5%的砾石土强度最低,在相同条件下最容易被破坏.结合实验结果与泥石流启动机理分析,认为中等黏粒含量(质量分数为3.75%~7.50%)的砾石土在相同降雨

  11. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    Science.gov (United States)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  12. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    Science.gov (United States)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  13. Viscous property of dried clay

    Institute of Scientific and Technical Information of China (English)

    XU Li-sheng; LI Jian-zhong

    2006-01-01

    One dimensional and triaxial compression tests of air-dried and oven-dried Fujinomori clay and Pisa clay were carried out. Water content is less than 4.5 % and 1.0% for air-dried and oven-dried clay specimens, respectively. In all tests, axial strain rate was changed stepwise many times and drained creep tests were performed several times during monotonic loading at a constant strain rate. Global unloading (and also reloading in some tests) was applied during which creep loading tests were performed several times. Cyclic loading with small stress amplitude and several cycles was also performed to calculate the modulus of elasticity of the clay in tests. Local displacement transducer was used in triaxial compression test to increase measuring accuracy of axial strain. The results show that air-dried and oven-dried clay have noticeable viscous properties; during global unloading, creep deformation changes from positive to negative, i.e. there exist neutral points (zero creep deformation or no creep deformation point) in global unloading part of strain-stress curve; viscous property of Fujinomori clay decreases when water content decreases, i.e. viscous property of air-dried Fujinomori clay is more significant than that of oven-dried Fujinomori clay.

  14. Clay resources in the Netherlands

    NARCIS (Netherlands)

    Meulen, M.J. van der; Maljers, D.; Gessel, S.F. van; Gruijters, S.H.L.L.

    2007-01-01

    Clay is a common lithology in the Dutch shallow subsurface. It is used in earth constructions such as dikes, and as raw material for the fabricationof bricks, roof tiles etc. We present a new national assessment of Dutch clay resources, as part of a project that provides mineral-occurrenceinformatio

  15. Clay resources in the Netherlands

    NARCIS (Netherlands)

    Meulen, M.J. van der; Maljers, D.; Gessel, S.F. van; Gruijters, S.H.L.L.

    2007-01-01

    Clay is a common lithology in the Dutch shallow subsurface. It is used in earth constructions such as dikes, and as raw material for the fabrication of bricks, roof tiles etc. We present a new national assessment of Dutch clay resources, as part of a project that provides mineral-occurrence informat

  16. Mineral resource of the Month: Clay

    Science.gov (United States)

    Virta, Robert L.

    2010-01-01

    Clays were one of the first mineral commodities used by people. Clay pottery has been found in archeological sites that are 12,000 years old, and clay figurines have been found in sites that are even older.

  17. Viscosity and Plasticity of Latvian Illite Clays

    OpenAIRE

    2012-01-01

    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  18. Characterization of clays found in soils of the indian territories in Rio Grande do Sul State by using the {sup 57} Fe Moessbauer spectroscopy; Caracterizacao de argilas encontradas em solos de terras indigenas do RS com o auxilio da espectroscopia Moessbauer de {sup 57} Fe

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.A.S.; Gobbi, D.; Marcos, J.L.N. [Universidade de Passo Fundo, RS (Brazil), Inst. de Ciencias Exatas e Geociencias; Paduani, C. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Fisica; Ardisson, J.D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    2004-06-01

    Clay samples collected from soils of indian territories of the middle plateau in Rio Grande do Sul were analyzed with the aim to obtain characterization data and technical parameters for their potential use as raw material for ceramic products. The mineralogical study in samples by using the X-ray diffraction technique demonstrated that the predominant clay mineral is kaolinite. Others minerals as quartz and rutile also are present in small amounts. Chemical analysis shows low percentages for oxides of Mg, Mn, K, Na, Ca, Cu and Zn (overall percentages smaller than 0.97%). The samples also were analyzed with the {sup 57} Fe Moessbauer spectroscopy. The Moessbauer spectra at room temperature confirm the presence of the mineral kaolinite. At 77 K they reveal the existence of the minerals goethite and hematite as ultrafine magnetic particles in a superparamagnetic state. The physical tests performed in the samples show that these soils are very fine material and present appropriate granulometric characteristics and plasticity, which can be taken in advantage for the production of materials for construction or production of ornamental artifacts. (author)

  19. Clays and Clay Minerals and their environmental application in Food Technology

    Science.gov (United States)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    -del Hoyo, C. (2007). Applied Clay Science. 36, 103-121.Layered Double Hydroxides and human health: An overview. -Valderrábano, M., Rodríguez-Cruz, S., del Hoyo, C., Sánchez-Martín, M.J. (2006). 4th International Workshop "Bioavalailability of pollutants and soil remediation". 1, 5-6. Physicochemical study of the adsorption of pesticides by lignins. -Volzone, C. (2007). Applied Clay Science. 36, 191-196. Retention of pollutant gases: Comparison between clay minerals and their modified products.

  20. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Chen, R., E-mail: chenrui1005@hotmail.com [Shenzhen Key Laboratory of Urban and Civil Engineering for Disaster Prevention and Mitigation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China); Zhou, C. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  1. Importância das espécies minerais no potássio total da fração argila de solos do Triângulo Mineiro Importance of mineral species in total potassium content of clay fraction in soils of the Triângulo Mineiro, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    V. F. Melo

    2003-10-01

    arenito da Formação Uberaba, migmatito/micaxisto do Grupo Araxá e basalto da Formação Serra Geral.Few studies relate the K reserve in soils developed in a humid tropic climate with the minerals found in the clay fraction. Nineteen soils were collected for this purpose in the Triângulo Mineiro region, Minas Gerais State, Brazil, developed from different parent materials and different weathering degrees. Due to the greater occurrence, a larger number of samples of the Bauru Group was collected, comprising all the geological formations found in the region. The total K content in soil and the sand, silt, and clay fractions were determined after the digestion of the soil samples by HF, HNO3 and H2SO4. To quantify the contribution of each mineral species to the total K content, Na-saturated clay samples were submitted by a sequential and selective mineral extraction procedure, following the order: amorphous Al and Fe oxides; crystalline Fe oxides; kaolinite and gibbsite; mica and other 2:1 minerals and; feldspar and resistant minerals. The clay mineralogy composition reflects the high weathering and leaching degree in soils of the Triângulo Mineiro, with low contents of amorphous minerals, a predominant proportion of kaolinite and the presence of other secondary resistant minerals. In spite of this mineral composition, the clay fraction presented the highest total K content, mainly in the most weathered soils. Due to the high proportion of kaolinite in the clay fraction, this mineral was an important source of non-exchangeable K forms. On the other hand, the contribution of amorphous Fe and Al oxides and crystalline Fe oxides to the total K content of the clay fraction was negligible. In general, easily weathered primary minerals (mica and feldspar contributed largely to the total K of the clay fraction, principally to the youngest soils developed from the Uberaba (sandstone and Serra Geral (basalt Formations, and the Araxá Group (migmatite/micaschist.

  2. Hidráulica do escoamento e transporte de sedimentos em sulcos em solo franco-argilo-arenoso Flow hydraulics and sediment transport in rills of a sandy clay loam soil

    Directory of Open Access Journals (Sweden)

    José Ramon Barros Cantalice

    2005-07-01

    capacity to deform the rill and alter flow hydraulics, responsible for rill formation dynamics. The objective of this study was to evaluate flow hydraulic conditions that can provide important information on erosion relationships, soil erodibility and sediment transport in furrows of a recently-tilled Palleudult. Rills were pre-formed in a sandy clay loam soil with an average slope of 0.067 m m-1. Simulated rainfall with an intensity of 74 mm h-1 was applied during 80 min, while rainfall and extra inflows of 0, 10, 20, 30, 40, and 50 L min-1 were jointly applied for the last 20 min of each run in the rill. Results indicated that the rill flow regime varied from transitional subcritical to turbulent subcritical. The rill erosion detachment rates were linear to shear stress. Rill erodibility (Kr was 0.0024 kg-1 s-1 N and critical shear stress (tauc was 2.75 Pa. Two functions to predict sediment transport based on stream power explained 53% of data variability, which indicates the inherent difficulty of predicting solid transport through shallow flows on eroding agricultural lands, and the physical and mineralogical diversity of particles and aggregates of the studied soil.

  3. Hydrogeology in Clay Tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Klint, Knud Erik; Nilsson, Bertel;

    2012-01-01

    Low-permeability soils such as clayey tills constitute geological boundaries to underlying chalk aquifers that are commonly used as a drinking water resource. Fractures and sand lenses within till sequences represent hydraulic avenues with high hydraulic conductivites limiting the protective func...

  4. Fluoride retention by kaolin clay

    DEFF Research Database (Denmark)

    Kau, P. M. H.; Smith, D. W.; Binning, Philip John

    1997-01-01

    To evaluate the potential effectiveness of kaolin clay liners in storage of fluoride contaminated waste, an experimental study of the sorption and desorption behaviour of fluoride in kaolin clay was conducted. The degree of fluoride sorption by kaolin was found to depend on solution p......H and available fluoride concentration with equilibrium being achieved within 24 h. A site activation process involving the uptake of fluoride was also observed at the initial stages of sorption. This behaviour was attributed to a layer expansion process of the clay during sorption. The maximum fluoride sorption...

  5. Shear Strength of Remoulding Clay Samples Using Different Methods of Moulding

    Science.gov (United States)

    Norhaliza, W.; Ismail, B.; Azhar, A. T. S.; Nurul, N. J.

    2016-07-01

    Shear strength for clay soil was required to determine the soil stability. Clay was known as a soil with complex natural formations and very difficult to obtain undisturbed samples at the site. The aim of this paper was to determine the unconfined shear strength of remoulded clay on different methods in moulding samples which were proctor compaction, hand operated soil compacter and miniature mould methods. All the samples were remoulded with the same optimum moisture content (OMC) and density that were 18% and 1880 kg/m3 respectively. The unconfined shear strength results of remoulding clay soils for proctor compaction method was 289.56kPa with the strain 4.8%, hand operated method was 261.66kPa with the strain 4.4% and miniature mould method was 247.52kPa with the strain 3.9%. Based on the proctor compaction method, the reduction percentage of unconfined shear strength of remoulded clay soil of hand operated method was 9.66%, and for miniature mould method was 14.52%. Thus, because there was no significant difference of reduction percentage of unconfined shear strength between three different methods, so it can be concluded that remoulding clay by hand operated method and miniature mould method were accepted and suggested to perform remoulding clay samples by other future researcher. However for comparison, the hand operated method was more suitable to form remoulded clay sample in term of easiness, saving time and less energy for unconfined shear strength determination purposes.

  6. Water balance of an earth fill built of organic clay

    Directory of Open Access Journals (Sweden)

    Birle Emanuel

    2016-01-01

    Full Text Available The paper presents investigations on the water balance of an earth fill built of organic clay in humid climate. As the organic soil used for the fill contains geogenetically elevated concentrations of arsenic, particular attention is paid on the seepage flow through the fill. The test fill is 5 m high, 30 m long and 25 m wide. The fill consists of the organic clay compacted at water contents wet and dry of Proctor Optimum covered by a drainage mat and a 60 cm thick top layer. For the determination of the water balance extensive measuring systems were installed. The seepage at the bottom measured so far was less than 2 % of the precipitation. The interflow in the drainage mat above the compacted organic clay was of similar magnitude. The estimated evapotranspiration reached approx. 84 % of the precipitation. According to these measurements the percolation is much lower than the percolation of many landfill covers in humid climates.

  7. Prions, Radionuclides and Clays: Impact of clay interlayer "acidity" on toxic compound speciation

    Science.gov (United States)

    Charlet, L.; Hureau, C.; Sobolev, O.; Cuello, G.; Chapron, Y.

    2007-05-01

    The physical and chemical processes that are the basis of contaminant retardation in clay rich medium, such as soil or nuclear waste repository, have been studied at the molecular level by a combination of molecular dynamics (MD), electron paramagnetic spectroscopy (EPR) and neutron diffraction with isotopic substitution (NDIS). The speciation of contaminants such as Sm, a radionuclide analogue, and Cu, bound to Prion protein (PrP), has been studied upon adsorption in clay interlayers. We used as molecular probe the P5-Cu(II) complex, where the P5 pentapeptide(92-96 PrP residues) represents one of the five Cu(II) binding site present in PrP, the key protein involved in diseases known as transmissible spongiform encephalopathies. In both cases, the pH of the interlayer has been inferred from the metal ion coordination, here used as a molecular reporter. In circum neutral pH waters, samarium is present as Sm(OH)3° species and should not be adsorbed in clay interlayer by "cation exchange" unless its hydrolysis is altered. Samarium NDIS results indicate that whether the number of oxygen nearest neighbours varies only from 8.5 to 7, as Sm penetrates the interlayer, the number of hydrogen nearest neighbours drops from 12 to 6. The high affinity of clay for Sm shows that a change in Sm hydrolysis occurs in the clay interlayer, but is directly followed by the formation of a surface complex with montmorillonite siloxane plane functional groups which prevents the determination of a "local pH". Conversely, has been found to be a much more sensitive interlayer water pH probe. and this peptide domain is involved in the misfolding of the protein,a transconformation which may lead to the pathogenic PrPSc form. We have therefore studied by EPR spectroscopy the adsorption of Cu(II)-P5 complexes on montmorillonite, and found the clay to have a large and selective adsorption capacity for the various [Cu(P5)H-n](2-n)+ complexes where n is the number of deprotonated amido function

  8. Spatial and temporal variability of soil electrical conductivity related to soil moisture

    OpenAIRE

    José Paulo Molin; Gustavo Di Chiacchio Faulin

    2013-01-01

    Soil electrical conductivity (ECa) is a soil quality indicator associated to attributes interesting to site-specific soil management such as soil moisture and texture. Soil ECa provides information that helps guide soil management decisions, so we performed spatial evaluation of soil moisture in two experimental fields in two consecutive years and modeled its influence on soil ECa. Soil ECa, moisture and clay content were evaluated by statistical, geostatistical and regression analyses. Semiv...

  9. Soil proteomics

    DEFF Research Database (Denmark)

    Oonk, S.; Cappellini, Enrico; Collins, M.J.

    2012-01-01

    In this work, two sets of experiments were carried out to assess the potential of soil proteomics for archaeological site interpretation. First, we examined the effects of various protein isolation reagents and soil constituents on peptide mass fingerprinting (PMF) of soil-like materials spiked...... with bovine serum albumin (BSA). In a subsequent case study, we assessed the relative age of soils from an ancient clay floor of a Roman farmhouse using amino acid racemization and then applied MALDI-TOF-MS-MS to detect and identify biomarkers for human occupation. The results from the first experiments......) are more susceptible to isolation than other regions and this suggest that soil proteins can be only partly isolated. Soil-protein interactions were also found to inhibit tryptic cleavage of BSA, resulting in an enhanced specificity of BSA peptides. Our results further stress the importance of multiple...

  10. Microbial Impacts on Clay Mineral Transformation and Reactivity

    Science.gov (United States)

    Dong, H.; Jaisi, D.; Fredrickson, J.; Plymale, A.

    2006-05-01

    Clays and clay minerals are ubiquitous in soils, sedimentary rocks, and pelagic oozes. They play important roles in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. Iron is a major constituent in clay minerals, and its mobility and stability in different environmental processes is, in part, controlled by the oxidation state. Recent studies have shown that biological reduction of structural Fe(III) in clay minerals can change the physical and chemical properties of clay minerals, such as swelling, cation exchange and fixation capacity, specific surface area, color, and magnetic exchange interactions. As a result of biological reduction of Fe(III), clay minerals also undergo mineral transformations, such as dissolution of smectite and precipitation of illite, siderite and vivianite. These chemical, structural and mineralogical changes of clay minerals have a profound effect on clay mineral reactivity, such as their reactivity with organic and inorganic (i.e., heavy metals and radionuclides) contaminants. Our latest data show that biologically reduced nontronite (a smectite variety) is much more effective in reducing soluble and mobile Tc(VII) to Tc(IV) than unreduced nontronite. The reduced Tc(IV) is insoluble in groundwater and soil and thus is immobile. Biologically reduced nontronite can be prepared by microbially reducing Fe(III) in nontronite by Shewanella putrefaciens in the absence of oxygen. Approximately 30% of structurally Fe(III) can be reduced in this manner. Biogenic Fe(II) can then serve as an electron donor to reduce Tc(VII). Nearly all Fe(II) is available to reduce Tc(VII), with the rate of reduction (typically within weeks) possibly depending on the speciation of Fe(II) (surface sorbed Fe(II) vs. structural Fe(II)). Further investigations are underway to further assess the reversibility of Tc reduction upon exposure to oxygen and to elucidate Tc reduction

  11. Colloidal gels: Clay goes patchy

    Science.gov (United States)

    Kegel, Willem K.; Lekkerkerker, Henk N. W.

    2011-01-01

    Empty liquids and equilibrium gels have so far been only theoretical possibilities, predicted for colloids with patchy interactions. But evidence of both has now been found in Laponite, a widely studied clay.

  12. Porosity Investigation of Kosova's Clay

    OpenAIRE

    Makfire Sadiku; Naim Hasani; Altin Mele

    2011-01-01

    Problem statement: Acid activated clay minerals are used as catalysts in the desulphurization of crude oil or as catalyst carrier, as drilling mud, as bleaching earth. Approach: The efficiency of the acid activation can be described in two ways. As increase of the surface and as increase of the cumulative pore volume after the activation. Results: In different samples of the clay mineral the activation was done with different sulfuric acid concentrations for two and 3h. Afterwards the specifi...

  13. Clays in radioactive waste disposal

    OpenAIRE

    Delage, Pierre; Cui, Yu-Jun; Tang, Anh-Minh

    2010-01-01

    Clays and argillites are considered in some countries as possible host rocks for nuclear waste disposal at great depth. The use of compacted swelling clays as engineered barriers is also considered within the framework of the multi-barrier concept. In relation to these concepts, various research programs have been conducted to assess the thermo-hydro-mechanical properties of radioactive waste disposal at great depth. After introducing the concepts of waste isolation developed in Belgium, Fran...

  14. Emprego de calcário e de superfosfato simples na cultura do algodoeiro em solo argiloso ácido Use of lime and of ordinary superphosphate for cotton cultivated on acid clay soil

    Directory of Open Access Journals (Sweden)

    Nelson M. da Silva

    1980-01-01

    liming experiment with cotton are discussed. This experiment was conducted on Latosolic B Terra Roxa soil, acid, with a pH index of 5.0, originally under "cerradão" vegetation, with 66% of clay, 4.3% of organic mater, 0.9, 0.8 and 0.5 (meq/100 ml of Al3+, Ca2+and Mg2+, respectively. The experimental design was a split-plot, with four replications. Dolomitic limestone was applied in the first year, on main plots at the levels of 0, 1.5, 3.0 and 6.0 t/ha. P and K were annually applied on split-plots, as a factorial 3 x 2, at the levels of 0, 60 and 120 kg/ha of P2O5, and 40 and 80 kg/ha of K2O, respectively, with ordinary superphosphate and potassium chloride. Four months after lime application, the neutralization of the exchangeable aluminum found by soil analysis was observed, at the highest level, the pH value increased up to 5.5 and values of calcium plus magnesium reached 3.0 meq. The linear effect upon cotton yield, due to liming, was significant during all the period of this study, increasing from the first to the third year. The effect of phosphorus was smaller, but positive and significant. Cotton plants did not react to potassium fertilization and interactions were not observed. Lime increased the concentrations of P, Ca and Mg in leaf blades, and decreased those of K, Fe, Mn and Al in the year when it was applied. There were no symptoms of K or micronutrient deficiencies due to the use of lime at high level.

  15. What makes a natural clay antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (2+ solubility.

  16. COLLOID RELEASE FROM DIFFERENT SOIL DEPTH

    OpenAIRE

    Gang Chen; Yue Niu; Boya Wang; Kamal Tawfiq

    2013-01-01

    Naturally occurring clay colloidal particles are heavily involved in sediment processes in the subsurface soil. Due to the import ance of these processes in the subsurface environment, the transport of clay colloidal particles has been studied in several disciplines, including soil sciences, petr ology, hydrology, etc. Specifically, in environmental engineering, clay colloid re lease and transport in the sediments have been extensively investigated, which are motiv ated by environmental conce...

  17. Clay-cement suspensions - rheological and functional properties

    Science.gov (United States)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  18. First Direct Detection of Clay Minerals on Mars

    Science.gov (United States)

    Singer, R. B.; Owensby, P. D.; Clark, R. N.

    1985-01-01

    Magnesian clays or clay-type minerals were conclusively detected in the martian regolith. Near-IR spectral observations of Mars using the Mauna Kea 2.2-m telescope show weak but definite absorption bands near microns. The absorption band positions and widths match those produced by combined OH stretch and Mg-OH lattice modes and are diagnostic of minerals with structural OH such as clays and amphiboles. Likely candidate minerals include serpentine, talc, hectorite, and sponite. There is no spectral evidence for aluminous hydroxylated minerals. No distinct band occurs at 2.55 microns, as would be expected if carbonates were responsible for the 2.35 micron absorption. High-albedo regions such as Elysium and Utopia have the strongest bands near 2.35 microns, as would be expected for heavily weathered soils. Low-albedo regions such as Iapygia show weaker but distinct bands, consistent with moderate coatings, streaks, and splotches of bright weathered material. In all areas observed, the 2.35-micron absorption is at least three times weaker than would be expected if well-crystallized clay minerals made up the bulk of bright soils on Mars.

  19. 81 FR 31234 - NESHAP for Brick and Structural Clay Products Manufacturing; and NESHAP for Clay Ceramics...

    Science.gov (United States)

    2016-05-18

    ... AGENCY NESHAP for Brick and Structural Clay Products Manufacturing; and NESHAP for Clay Ceramics... Brick and Structural Clay Products (BSCP) Manufacturing and the final NESHAP for Clay Ceramics... No. EPA-HQ-OAR-2013-0290 for Clay Ceramics Manufacturing. All documents in the dockets are listed...

  20. Formation of stable nanocomposite clays from small peptides reacted with montmorillonite and illite-smectite mixed layer clays

    Science.gov (United States)

    Block, K. A.; Katz, A.; LeBlanc, J.; Peña, S.; Gottlieb, P.

    2015-12-01

    Understanding how organic compounds interact with clay minerals and which functional groups result in the strongest bonds is pivotal to achieving a better understanding of how mineral composition affects the residence time of carbon and nitrogen in soils. In this work, we describe how small peptides derived from tryptone casein digest are dissolved and suspended with clay minerals to examine the nature of OM adsorption to mineral surfaces and the resulting effect on clay mineral structure. XRD analyses indicate that peptides intercalation results in expansion of the d001 spacing of montmorillonite (Mt) and the smectite component of a 70-30 illite-smectite mixed layer clay (I-S) and poorer crystallinity overall as a result of exfoliation of tactoids. Peptide adsorption is concentration-dependent, however, surface adsorption appears to mediate interlayer adsorption in Mt reaching a maximum of 16% of the mass of the organoclay complex, indicating that at a critical concentration, peptide intercalation will supersede surface adsorption resulting in a more stable attachment. In I-S the degree of surface adsorption and intercalation is proportional to concentration, however, surface adsorption is not a priming mechanism for interlayer adsorption. Thermogravimetric analysis of the organoclay complexes determined by TGA coupled to GC-MS indicate that the most prominent product species measured was 1-(1-Trimethylsiloxyethenyl)-3-trimethylsiloxy-benzene, likely from tryptophan monomer decomposition. The compound was detected over a broad temperature range, greater than 300 oC, during pyrolysis and suggests a carbon-silicon covalent bond formed between the peptide and tetrahedral layers in the clay. An additional silicon-bearing VOC detected at lower pyrolysis temperature by GC was N,N-Diethyl-1-(trimethylsilyl)-9,10-didehydroergoline-8-carboxamide, likely derived from a lysine-bearing peptide derivative. We hypothesize that hydrophobic (non-ionic) peptides react with silanol

  1. Factors affecting the hydraulic performance of infiltration based SUDS in clay

    DEFF Research Database (Denmark)

    Bockhorn, B.; Klint, K.E.S.; Locatelli, Luca;

    2017-01-01

    with hydraulic properties ranging from sand to clay showed that infiltration capacities vary greatly for the different soil types observed in glacial till. The inclusion of heterogeneities dramatically increased infiltration volume by a factor of 22 for a soil with structural changes above and below the CaC03...

  2. How mobile are sorbed cations in clays and clay rocks?

    Science.gov (United States)

    Gimmi, T; Kosakowski, G

    2011-02-15

    Diffusion of cations and other contaminants through clays is of central interest, because clays and clay rocks are widely considered as barrier materials for waste disposal sites. An intriguing experimental observation has been made in this context: Often, the diffusive flux of cations at trace concentrations is much larger and the retardation smaller than expected based on their sorption coefficients. So-called surface diffusion of sorbed cations has been invoked to explain the observations but remains a controversial issue. Moreover, the corresponding surface diffusion coefficients are largely unknown. Here we show that, by an appropriate scaling, published diffusion data covering a broad range of cations, clays, and chemical conditions can all be modeled satisfactorily by a surface diffusion model. The average mobility of sorbed cations seems to be primarily an intrinsic property of each cation that follows inversely its sorption affinity. With these surface mobilities, cation diffusion coefficients can now be estimated from those of water tracers. In pure clays at low salinities, surface diffusion can reduce the cation retardation by a factor of more than 1000.

  3. The effect of soil type on the bioremediation of petroleum contaminated soils.

    Science.gov (United States)

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil.

  4. Geosynthetic clay liners - slope stability field study

    Energy Technology Data Exchange (ETDEWEB)

    Carson, D.A. [Environmental Protection Agency, Cincinnati, OH (United States); Daniel, D.E. [Univ. of Illinois, Urbana, IL (United States); Koerner, R.M. [Geosynthetic Research Institute, Philadelphia, PA (United States); Bonaparte, R. [GeoSyntec Consultants, Atlanta, GA (United States)

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  5. Determination of spatial variability of aluminum according to the clay distribution in soils of Querência do Norte/Paraná State, BrazilDeterminação da variabilidade espacial de alumínio em função da distribuição de argila em solos de Querência do Norte/Paraná, Brasil

    Directory of Open Access Journals (Sweden)

    Marcelo Luiz Chicati

    2011-10-01

    Full Text Available The major part of Brazilian soils shows elevated aluminum contents and in several cases this element occurs in phytotoxic levels. Aluminum is a constituent of the soil´s clay minerals. Its release can occur to the exchangeable fraction or to the soil solution. The objective of this work was to demonstrate the relationship between the spatial variability of aluminum and the distribution of soil clay. In order to achieve that, a grid of soil samples was collected in field, defined by means of photointerpretation and observation of images. The results obtained in laboratory were submitted to statistical analyses to verify spatial dependence, which was proven later. The space continuity was studied by means of the semivariogram’s elaboration using different models. The best semivariograms were chosen by cross validation performed through "ordinary kriging". Thus, it could be observed that these variables showed structure of spatial dependence, with a positive correlation between them, besides it was possible to make maps in order to allow a better agricultural exploitation.A maior parte dos solos brasileiros possui altos teores de alumínio e, em muitos casos, este elemento ocorre em níveis fitotóxicos. Constituinte dos minerais de argila, pode ter sua liberação diretamente na forma trocável ou para a solução do solo. O objetivo deste trabalho foi demonstrar a relação entre a variabilidade espacial do alumínio e a distribuição de argila do solo. Para isto, foi coletada uma malha de amostras de solo em campo, definida por meio de fotointerpretação e observação de imagens. Os resultados obtidos em laboratório foram submetidos a análises estatísticas visando a verificação da dependência espacial, que foi comprovada posteriormente. A continuidade espacial foi estudada mediante a elaboração de semivariogramas utilizando-se diferentes modelos. Os melhores semivariogramas foram escolhidos mediante a validação cruzada executada

  6. Vulnerability of shallow ground water and drinking-water wells to nitrate in the United States: Model of predicted nitrate concentration in shallow, recently recharged ground water -- Input data set for clay sediment (gwava-s_clay)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the amount of clay sediment in the soil, in percent times 1000, in the conterminous United States. The data set was used as an input data...

  7. Evaluation of the Efficiency of Clay Pots in Removal of Water Impurities

    Directory of Open Access Journals (Sweden)

    K Naddafi , AH Mahvi, S Nasseri, M Mokhtari, H Zeraati

    2005-04-01

    Full Text Available Recently, inexpensive technologies for drinking water supply in small communities are highly considered in developing countries. One of these technologies is the application of ceramic filters that are usually made of diatomaceous earth or clay soil. This research was carried out to determine the efficiency of clay pots (as a filter in removing water impurities. Pilot and the related clay parts were manufactured and its efficiency in removing TDS, hardness, NO3-, color and turbidity was measured by passing water through the clay pipes. The results showed that the clay filters had not the potential to remove hardness, EC, TDS and nitrate of water. However, they showed excellent efficiency in turbidity removal (≥ 90% and could significantly decrease the color of the water (≥ 60%.

  8. Assessment of Time Functions for Piles Driven in Clay

    DEFF Research Database (Denmark)

    Augustesen, Anders; Andersen, Lars; Sørensen, Carsten Steen

    The vertical bearing capacity of piles situated in clay is studied with regard to the long-term set-up. A statistical analysis is carried out on the basis of data from numerous static loading tests. The database covers a wide range of both soil and pile properties, which ensures a general....... Hence, it is suggested that a constant set-up factor should be applied for the prediction of pile capacities at a given time after initial driving....

  9. Charm of Purple Clay A private museum in Wuxi is devoted to purple-clay art

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Purple-clay art pieces will be on display in a museum opening soon in Wuxi, Jiangsu Province. The museum, named Shuaiyuan Purple Clay Museum, is part of the Shuaiyuan Purple Clay Art Exhibition Center

  10. Preconsolidation of Søvind Marl - a highly fissured Eocene clay

    DEFF Research Database (Denmark)

    Grønbech, Gitte Lyng; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2015-01-01

    Determination of the preconsolidation stresses is a key tool in geotechnical engineering used to evaluate and estimate the behavior of soils. However, it has been proven difficult to accurately estimate the preconsolidation in highly fissured overconsolidated clays, due to the effect of the fissu......Determination of the preconsolidation stresses is a key tool in geotechnical engineering used to evaluate and estimate the behavior of soils. However, it has been proven difficult to accurately estimate the preconsolidation in highly fissured overconsolidated clays, due to the effect...... of the fissured structure of the clay. This article presents oedometer tests performed on Søvind Marl, a plastic Eocene clay, with a high presence of fissures and slickensides. Four incremental loading oedometer tests and four continuous loading oedometer tests were performed in order to determine...

  11. The soil reference shrinkage curve

    CERN Document Server

    Chertkov, V Y

    2014-01-01

    A recently proposed model showed how a clay shrinkage curve is transformed to the soil shrinkage curve at the soil clay content higher than a critical one. The objective of the present work was to generalize this model to the soil clay content lower a critical one. I investigated (i) the reference shrinkage curve, that is, one without cracks; (ii) the superficial layer of aggregates, with changed pore structure compared with the intraaggregate matrix; and (iii) soils with sufficiently low clay content where there are large pores inside the intraaggregate clay (so-called lacunar pores). The methodology is based on detail accounting for different contributions to the soil volume and water content during shrinkage. The key point is the calculation of the lacunar pore volume variance at shrinkage. The reference shrinkage curve is determined by eight physical soil parameters: (1) oven-dried specific volume; (2) maximum swelling water content; (3) mean solid density; (4) soil clay content; (5) oven-dried structural...

  12. 80 FR 75817 - NESHAP for Brick and Structural Clay Products Manufacturing; and NESHAP for Clay Ceramics...

    Science.gov (United States)

    2015-12-04

    ... NESHAP for Clay Ceramics Manufacturing: Correction AGENCY: Environmental Protection Agency (EPA). ACTION...; and NESHAP for Clay Ceramics Manufacturing. These amendments make two technical corrections to...

  13. Three Soil Quality Demonstrations for Educating Extension Clientele

    Science.gov (United States)

    Hoorman, James J.

    2014-01-01

    There is a renewed interest in educating youth, Master Gardeners, and agricultural producers about soil quality. Three soil demonstrations show how soil organic matter increases water holding capacity, improves soil structure, and increases nutrient retention. Exercise one uses clay bricks and sponges to represent mineral soils and soil organic…

  14. Clays on Mars: Review of chemical and mineralogical evidence

    Science.gov (United States)

    Banin, Amos; Gooding, James L.

    1991-01-01

    Mafic igneous bedrock is inferred for Mars, based on spectrophotometric evidence for pyroxene (principally in optically dark areas of the globe) and the pyroxenite-peridotite petrology of shergottite nakhlite chassignite (SNC) meteorites. Visible and infrared spectra of reddish-brown surface fines (which dominate Martian bright areas) indicate ferric iron and compare favorably (though not uniquely) with spectra of palagonitic soils. Laboratory studies of SNC's and Viking Lander results support a model for Martian soil based on chemical weathering of mafic rocks to produce layer structured silicates (clay minerals), salts, and iron oxides.

  15. Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture

    Science.gov (United States)

    Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor

    2016-11-01

    Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by

  16. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  17. Strength Properties of Aalborg Clay

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    resulted in many damaged buildings in Aalborg. To provide sufficient bearing capacity it is therefore necessary either to remove the fill or to construct the building on piles. Both methods imply that the strength of Aalborg Clay is important for the construction. This paper evaluates the strength...... of Aalborg Clay by use of triaxial tests from four different locations. Both the drained strength (c and ϕ) and the undrained strength (cu) are assessed through two different methods: one where the strength is assumed to vary with the effective stress and another where the strength is found to be constant....

  18. Clay membrane made of natural high plasticity clay

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1998-01-01

    Leachate containment in Denmark has through years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R 466). It states natural clay deposits may be used for membrane material provided the membrane and drainage system may contain at least 95% of all leachate created throughout...

  19. Magnetic properties of the Tertiary red clay from Gansu Province, China and its paleoclimatic significance

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The study on magnetic properties of the red clay indicates that the red clay and loess- paleosol sequence have a common magnetic mineralogy, with magnetite, maghemite, hematite (and possibly goethite) contributing to the magnetic behavior. The red clay magnetic susceptibility is also found to have a positive relation with extrafine superparamagnetic grains. This suggests that, like the Quaternary loess-paleosols, an ultrafine ferrimagnetic component produced during pe-dogenesis in the red clay under humid conditions also plays an important role in susceptibility enhancement in the soil units. This is supported by the correlation between Rb/Sr ratio and magnetic susceptibility. This signifies that, like the above loess-paleosol sequence, the magnetic susceptibility of the red clay can be used as a general proxy paleoclimatic indicator, although whether its susceptibility in the red clay is comparable to pedogenesis intensity and requires further investigation. Magnetic susceptibility variation in the red clay thus also provides an eo-lian/pedogenic record of paleoclimatic evolution. Study of the background susceptibility indicates that, on average, the absolute scale of the paleoclimatic shift from red clay development to Quaternary loess deposition is similar to the climatic shift from stage 5 (S1) to stage 2-4 (L1). This may suggest that during the Quaternary there is an evident strengthening of the absolute wind intensity to bring more (about double) coarser and less weathered (non-SP fraction) eolian magnetic input from the source regions to the Loess Plateau than during the Pliocene. The presence of eolian red clay since 7.5 Ma BP in central-northern China implies an important envi-ronmental change from the underlying Cretaceous red sandstone. The red clay development was closely related to global drying and climate cooling since the Cretaceous and closely associated with the abrupt uplift of the Qinghai-Xizang Plateau at about that time. This uplift of the

  20. Distribution, characteristics, and worldwide inventory of dioxins in kaolin ball clays.

    Science.gov (United States)

    Horii, Yuichi; Ohtsuka, Nobutoshi; Minomo, Kotaro; Nojiri, Kiyoshi; Kannan, Kurunthachalam; Lam, Paul K S; Yamashita, Nobuyoshi

    2011-09-01

    Distribution, characteristics, and global inventory of dioxins (polychlorinated dibenzo-p-dioxins [PCDDs] and dibenzofurans [PCDFs] and dioxin like polychlorinated biphenyls) in kaolin clays collected from 10 countries were investigated. Dioxins were found in all kaolin clay samples analyzed, at total concentrations ranging from 1.2 pg/g (Brazil) to 520,000 pg/g (USA). Dioxin concentrations in kaolin clays from a few countries (e.g., Brazil and UK) were lower than those reported for background soils in Japan. Dioxin profiles in kaolin clays were characterized by the domination of the congener octachlorodibenzo-p-dioxin (OCDD), and the concentrations of other congeners decreased in the order of reduction in the levels of chlorination. Furthermore, specific distribution of congeners, with predominant proportions of 1,4,6,9-substituted PCDDs within each homologue group, was found in most clay samples. The ratios of concentrations of PCDD to PCDF and 1,2,3,7,8,9-HxCDD to 1,2,3,6,7,8-HxCDD indicated differences in the profiles found for anthropogenic sources (including pentachlorophenol) and kaolin clays. Concentrations of PCDD/Fs in kaolin clays, except for American ball clays, did not exceed the environmental criteria set by the Law Concerning Special Measures against Dioxins in Japan. Based on the average concentrations measured in our study, inventories of PCDD/Fs from the production/usage of ball clays on a global scale were estimated to be 650 kg/yr; the corresponding value on a TEQ basis is 2400 g-TEQ/yr. More than 480 kg of OCDD is estimated to be released annually from the production of kaolin clays worldwide, suggesting that kaolin clays can be a major contributor for additional source of dioxins, especially OCDD, in the environment.

  1. Numerical verification of similar Cam-clay model based on generalized potential theory

    Institute of Scientific and Technical Information of China (English)

    钟志辉; 杨光华; 傅旭东; 温勇; 张玉成

    2014-01-01

    From the mathematical principles, the generalized potential theory can be employed to create constitutive model of geomaterial directly. The similar Cam-clay model, which is created based on the generalized potential theory, has less assumptions, clearer mathematical basis, and better computational accuracy. Theoretically, it is more scientific than the traditional Cam-clay models. The particle flow code PFC3D was used to make numerical tests to verify the rationality and practicality of the similar Cam-clay model. The verification process was as follows: 1) creating the soil sample for numerical test in PFC3D, and then simulating the conventional triaxial compression test, isotropic compression test, and isotropic unloading test by PFC3D; 2) determining the parameters of the similar Cam-clay model from the results of above tests; 3) predicting the sample’s behavior in triaxial tests under different stress paths by the similar Cam-clay model, and comparing the predicting results with predictions by the Cam-clay model and the modified Cam-clay model. The analysis results show that the similar Cam-clay model has relatively high prediction accuracy, as well as good practical value.

  2. Correlation Between Soil Water Retention Capability and Soil Salt Content

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The soil moisture retention capability of Chao soil and coastal saline Chao soil in Shandong and Zhejiang provinces were measured by pressure membrane method. The main factors influencing soil moisture retention capability were studied by the methods of correlation and path analyses. The results indicated that < 0.02mm physical clay and soil salt content were the main factors influencing soil moisture retention capability. At soil suction of 30~50 kPa, the soil salt content would be the dominant factor.

  3. Technetium diffusion in clay-based materials under oxic and anoxic conditions. AECL research No. AECL-11419

    Energy Technology Data Exchange (ETDEWEB)

    Hume, H.B.

    1995-12-31

    Describes experiments to determine diffusion coefficients for technetium in compacted clay-based material (soils) saturated with a synthetic groundwater solution whose principal ions were calcium, sodium, and chlorine. Tests were conducted in anoxic conditions established by conducting the experiments in a low- oxygen glove box and by mixing 0.5% by weight of powdered iron with the soils (Lake Agassiz clay and a 1:3 mix of dry mass of clay and crushed granite aggregate). Effective diffusion coefficients were also measured in oxic conditions in Avonlea bentonite, Lake Agassiz clay, and illite/smectite. Implications of the results for transport of radionuclides through backfill material and clay barriers used in underground disposal of nuclear fuel waste are discussed.

  4. Sorption and desorption of carbamazepine from water by smectite clays.

    Science.gov (United States)

    Zhang, Weihao; Ding, Yunjie; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2010-11-01

    Carbamazepine is a prescription anticonvulsant and mood stabilizing pharmaceutical administered to humans. Carbamazepine is persistent in the environment and frequently detected in water systems. In this study, sorption and desorption of carbamazepine from water was measured for smectite clays with the surface negative charges compensated with K+, Ca2+, NH4+, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) cations. The magnitude of sorption followed the order: TMPA-smectite≥HDTMA-smectite>NH4-smectite>K-smectite>Ca-smectite⩾TMA-smectite. The greatest sorption of carbamazepine by TMPA-smectite is attributed to the interaction of conjugate aromatic moiety in carbamazepine with the phenyl ring in TMPA through π-π interaction. Partitioning process is the primary mechanism for carbamazepine uptake by HDTMA-smectite. For NH4-smectite the urea moiety in carbamazepine interacts with exchanged cation NH4+ by H-bonding hence demonstrating relatively higher adsorption. Sorption by K-, Ca- and TMA-smectites from water occurs on aluminosilicate mineral surfaces. These results implicate that carbamazepine sorption by soils occurs primarily in soil organic matter, and soil mineral fractions play a secondary role. Desorption of carbamazepine from the sorbents manifested an apparent hysteresis. Increasing irreversibility of desorption vs. sorption was observed for K-, Ca-, TMA-, TMPA- and HDTMA-clays as aqueous carbamazepine concentrations increased. Desorption hysteresis of carbamazepine from K-, Ca-, NH4-smectites was greater than that from TMPA- and HDTMA-clays, suggesting that the sequestrated carbamazepine molecules in smectite interlayers are more resistant to desorption compared to those sorbed by organic phases in smectite clays.

  5. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    Science.gov (United States)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    While most magnetic resonance imaging (MRI) applications concern medical research, there is a rapidly increasing number of MRI studies in the field of environmental science and technology. In this presentation, MRI will be introduced from the latter perspective. While many processes in these areas are similar to those addressed in medical applications of MRI, parameters and experimental implementations are often quite different and, in many respects, far more demanding. This hinders direct transfer of existing methods developed for biomedical research, especially when facing the challenging task of obtaining spatially resolved quantitative information. In MRI investigation of soils, clays, and rocks, mainly water signal is detected, similarly to MRI of biological and medical samples. However, a strong variation of water mobility and a wide spread of water spin relaxation properties in these materials make it difficult to use standard MRI approaches. Other significant limitations can be identified as following: T2 relaxation and probe dead time effects; molecular diffusion artifacts; varying dielectric losses and induced currents in conductive samples; limited dynamic range; blurring artifacts accompanying drive for increasing sensitivity and/or imaging speed. Despite these limitations, by combining MRI techniques developed for solid and liquid states and using independent information on relaxation properties of water, interacting with the material of interest, true images of distributions of both water, material and molecular properties in a wide range of concentrations can be obtained. Examples of MRI application will be given in the areas of soil and mineral research where understanding water transport and erosion processes is one of the key challenges. Efforts in developing and adapting MRI approaches to study these kinds of systems will be outlined as well. Extensive studies of clay/water interaction have been carried out in order to provide a quantitative

  6. Biodegradable Pectin/clay Aerogels

    Science.gov (United States)

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...

  7. Picasso Masks: Cubism in Clay

    Science.gov (United States)

    Daddino, Michelle

    2010-01-01

    This article describes an art project developed by the author which provides a way to further the children's understanding of Picasso's Cubism style in 3-D. Through this project, upper-elementary students learn a bit about the life and art of Picasso as they gain a firm understanding of the style of art known as Cubism, and apply clay techniques…

  8. Geotechnical properties of Karwar marine clay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Nayak, B.U.; Naik, R.L.

    Karwar marine clay possesses high plasticity characteristics with natural water content higher than the liquid limit. Liquidity index was as high as 1.7. Predominant clay mineral was kaolinite. Undrained shear strength showed an increasing trend...

  9. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  10. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects.

    Science.gov (United States)

    Droge, Steven T J; Goss, Kai-Uwe

    2013-12-17

    Sorption to the phyllosilicate clay minerals Illite, kaolinite, and bentonite has been studied for a wide variety of organic cations using a flow-through method with fully aqueous medium as the eluent. Linear isotherms were observed at concentrations below 10% of the cation-exchange capacity (CEC) for Illite and kaolinite and below 1 mmol/kg (<1% CEC) for bentonite. Sorption to clays was strongly influenced by the electrolyte composition of the eluent but with a consistent trend for a diverse set of compounds on all clays, thus allowing for empirical correction factors. When sorption affinities for a given compound to a given clay are normalized to the CEC of the clay, the differences in sorption affinities between clays are reduced to less than 0.5 log units for most compounds. Although CEC-normalized sorption of quaternary ammonium compounds to clay was up to 10-fold higher than CEC-normalized sorption to soil organic matter, CEC-normalized sorption for most compounds was comparable between clays and soil organic matter. The clay fraction is thus a potentially relevant sorption phase for organic cations in many soils. The sorption data for organic cations to clay showed several regular trends with molecular structure but also showed quite a few systematic effects that we cannot explain. A model on the basis of the molecular size and charge density at the ionized nitrogen is used here as a tool to obtain benchmark values that elucidate the effect of specific polar moieties on the sorption affinity.

  11. Spatial and temporal variability of soil electrical conductivity related to soil moisture

    Directory of Open Access Journals (Sweden)

    José Paulo Molin

    2013-02-01

    Full Text Available Soil electrical conductivity (ECa is a soil quality indicator associated to attributes interesting to site-specific soil management such as soil moisture and texture. Soil ECa provides information that helps guide soil management decisions, so we performed spatial evaluation of soil moisture in two experimental fields in two consecutive years and modeled its influence on soil ECa. Soil ECa, moisture and clay content were evaluated by statistical, geostatistical and regression analyses. Semivariogram models, adjusted for soil moisture, had strong spatial dependence, but the relationship between soil moisture and soil ECa was obtained only in one of the experimental fields, where soil moisture and clay content range was higher. In this same field, coefficients of determinations between soil moisture and clay content were above 0.70. In the second field, the low soil moisture and clay content range explain the absence of a relationship between soil ECa and soil moisture. Data repetition over the years, suggested that ECa is a qualitative indicator in areas with high spatial variability in soil texture.

  12. Nitrate Adsorption on Clay Kaolin: Batch Tests

    Directory of Open Access Journals (Sweden)

    Morteza Mohsenipour

    2015-01-01

    Full Text Available Soils possessing kaolin, gibbsite, goethite, and hematite particles have been found to have a natural capacity to attenuate pollution in aqueous phase. On the other hand, the hydroxyl group in soil increases anion exchange capacity under a low pH condition. The main objective of this paper was to evaluate effects of kaolin on nitrate reduction under acidic condition. In order to analyze the kaolin adsorption behaviour under various conditions, four different concentrations of nitrate, 45, 112.5, 225, and 450 mgNO3-/L, with a constant pH equal to 2, constant temperature equal to 25°C, and exposure period varying from 0 to 150 minutes were considered. The capacity of nitrate adsorption on kaolin has also been studied involving two well-known adsorption isotherm models, namely, Freundlich and Longmuir. The results revealed that approximately 25% of the nitrate present in the solution was adsorbed on clay kaolin. The laboratory experimental data revealed that Freundlich adsorption isotherm model was more accurate than Longmuir adsorption model in predicting of nitrate adsorption. Furthermore, the retardation factor of nitrate pollution in saturated zone has been found to be approximately 4 in presence of kaolin, which indicated that kaolin can be used for natural scavenger of pollution in the environment.

  13. Resposta à aplicação e recuperação de enxofre em cultivos de casa de vegetação em solos com diferentes teores de argila e matéria orgânica Responses to sulfur application and recuperation in greenhouse crops in soils with different clay and organic matter content

    Directory of Open Access Journals (Sweden)

    Danilo dos Santos Rheinheimer

    2007-04-01

    after each crop and analyzed for S-SO4-2. It was evaluate the dry matter production and S-SO4-2 absorbed by plants. Only canola responded to sulphur application. Soybean, black bean, sesame, clover and wheat did not response to sulfur application. There was not observed correlation between soil S-SO4-2 available in 10cm topsoil and crop yields. Soils with different clay and organic matter content showed similar behavior of crop response to sulfur application. The increase of S-SO4-2 availability with fertilization was greater in soils with more clay content.

  14. Hydrodynamic erosion process of undisturbed clay

    NARCIS (Netherlands)

    Zhao, G.; Visser, P.J.; Vrijling, J.K.

    2011-01-01

    This paper describes the hydrodynamic erosion process of undisturbed clay due to the turbulent flow, based on theoretical analysis and experimental results. The undisturbed clay has the unique and complicated characteristics of cohesive force among clay particles, which are highly different from dis

  15. Clay Cuffman: A Cool, Calm, Relaxed Guy

    Science.gov (United States)

    Booth, Gina

    2010-01-01

    This article describes Clay Cuffman, a simple clay-sculpture project that requires two or three sessions, and works for students from the upper-elementary level through high school. It takes about 1.5 pounds of clay per student--about the size of a small grapefruit. The Cuffman project is a great way for upper-elementary through high-school…

  16. Field model tests on effective dewateringtechnology of geotextile tube filled by soil with high clay (silt) particle content%高含黏(粉)粒土料充填管袋高效脱水工艺现场模型试验

    Institute of Scientific and Technical Information of China (English)

    吴海民; 束一鸣; 常广品; 刘云锋; 刘欣欣; 顾克

    2016-01-01

    针对高含黏(粉)粒土料充填管袋脱水固结速率慢,无法满足一天一层管袋施工要求的问题,通过现场大型充填管袋脱水模型试验来验证前期室内试验研究提出的放水排泥、充排结合的快速脱水施工方法。通过现场实时监测管袋充填施工及脱水过程中不同部位土体的孔隙水压力、固结度、含水率、级配和干密度等指标的变化情况,对比分析了不同施工方法的优劣,验证了室内试验提出的高含黏(粉)粒土料充填管袋坝高效脱水施工工艺的可行性和实际效果。%The dewatering velocity of geotextile tubes filled by soil with high clay (silt) particle content is very slow. That cannot meet the requirements of construction speed that a layer of geotextile tubes must be completely filled and preliminary solidified within one day. Several large-scale field model tests are conducted to verify the previously proposed construction methods, which combines actively discharging muddy water with the alternately filling and discharging methods. The indexes including pore water pressure, consolidation degree, water content, particle gradation and dry density of the filled soil in different positions within the geotextile tubes are real-time monitored during the whole filling and discharging process. Through the monitoring data, the comprehensive dewatering velocities of different construction methods are comparatively analyzed. The results have verified the feasibility and actual effect of the proposed dewatering method for high clay (silt) particle-content soil-filled geotextile tubes.

  17. Factors affecting the hydraulic performance of infiltration based SUDS in clay

    DEFF Research Database (Denmark)

    Bockhorn, B.; Klint, K.E.S.; Locatelli, Luca;

    2015-01-01

    The influence of small scale soil heterogeneity on the hydraulic performance of infiltration based SUDS was studied using field data from a clayey glacial till and groundwater simulations with the integrated surface water and groundwater model HydroGeoSphere. Simulations of homogeneous soil blocks...... that exclusion of small scale soil physical features may greatly underestimate hydraulic performance of infiltration based SUDS....... with hydraulic properties ranging from sand to clay showed that infiltration capacities vary greatly for the different soil types observed in glacial till. The inclusion of heterogeneities dramatically increased infiltration volume by a factor of 22 for a soil with structural changes above and below the CaC03...

  18. The systems containing clays and clay minerals from modified drug release: a review.

    Science.gov (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied.

  19. Transformation of anthracene on various cation-modified clay minerals.

    Science.gov (United States)

    Li, Li; Jia, Hanzhong; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe-smectite > Cu-smectite > Al-smectite ≈ Ca-smectite ≈ Mg-smectite ≈ Na-smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)-smectite exhibits the highest catalytic activity followed by Fe(III)-illite, Fe(III)-pyrophyllite, and Fe(III)-kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies.

  20. Engineered clay-shredded tyre mixtures as barrier materials

    Energy Technology Data Exchange (ETDEWEB)

    Al-Tabbaa, A.; Aravinthan, T. [Univ. of Birmingham (United Kingdom)

    1997-12-31

    An engineered clay consisting of kaolin and bentonite was mixed with shredded tyre in various weight percentages and examined for use as a constituent in a landfill liner. The clay-tyre mixtures properties in terms of compaction, unconfined compressive strength, permeability to water and paraffin, leachability, stress-strain behaviour, free swell behaviour and swelling pressure were investigated. The results show that the dry density and strength reduced with the addition of tyre and also with increased tyre content but that good interaction was developed between the clay and tyre. The strain at failure increased showing reinforcing effect of the tyre. The permeability to paraffin was considerably reduced compared to that to water due to the presence of the tyre which caused high swelling pressures to develop. The leachability results indicate initial high concentrations leaching out of the soil-tyre mixtures which will be subjected to dilution in the environment. This work adds evidence to the potential advantages of using soil-tyre mixtures as a landfill liner material.

  1. Determining the clay/organic carbon ratio by visible near infrared spectroscopy

    DEFF Research Database (Denmark)

    Knadel, Maria; Peng, Yi; Hermansen, Cecilie

    /OC ratio directly would be valuable. Visible near infrared spectroscopy (vis-NIRS) is a cost-effective method for soil analysis and was tested here for the prediction of clay/OC ratio. Soil samples from two agricultural fields in Denmark (N=115) were analyzed. Partial Least Squares regression (full cross...... absorption bands related to both clay minerals (1421, 1910 and 2206 nm – OH bonds and 429, 720 nm – Fe oxides) and organic carbon (1730, 2160 nm and 2310 nm). The results of this study show that vis-NIRS can provide very successful and direct determination of Dexter index on a field scale through its...

  2. Water Retention Curves of Opalinus Clay

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Romero, F. J.

    2012-11-01

    The water retention curve of Opalinus clay samples was determined under different conditions: total and matric suction, stress or no-stress conditions, wetting and drying paths. Through the fitting of these results to the van Genuchten expression the P parameter, related to the air entry value (AEV), was obtained. The AEV is the suction value above which air is able to enter the pores of the sample, and consequently, above which 2-phase flow can take place in the soil pore structure. The samples used in this research came from two different boreholes, BHT-1 and BHG-D1, but the behaviour of them did not depend on their location, what was probably due to the fact that both were drilled in the shay facies of the Opalinus clay. There was not a distinct difference between the results obtained under total or matric suctions. In the drying paths, both the water contents and the degrees of saturation tended to be higher when total suction was applied, however the reverse trend was observed for the water contents reached in wetting paths. As well, no clear difference was observed in the water retention curves obtained in odometers under matric and total suctions, what points to the osmotic component of suction in Opalinus clay not being significant. Overall, the water contents were lower and the degrees of saturation higher when suction was applied under vertical stress, what would indicate that the water retention capacity was lower under 8 MPa vertical stress than under free volume conditions. This vertical stress value is slightly higher than the maximum in situ stress. Also, the samples showed hysteresis according to the expected behaviour, i.e. the water contents for a given suction were higher during a drying path than during a wetting path. The P values obtained were between 6 and 34 MPa, and tended to be higher for the samples tested under stress, in drying paths and when total suction was used. The air entry value calculated from the mercury intrusion porosimetry

  3. Study of adsorption of Phenanthrene on Different Types of Clay Minerals; Estudio de Adsorcion de Fenentreno en Diferentes Tipos de Arcillas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, M. L.; Escolano, O.; Rodriguez, V.; Diaz, F. J.; Perez, R.; Garcia, S.; Garcia Frutos, F. J.

    2003-07-01

    The fate and behaviour of non-ionic hydrophobic organic compounds in deep soil is mainly controlled by the mineral fraction present in the soil due to the very low organic carbon content of the deep soil. The mineral fraction that may greatly influence the fate and transport of these compounds due to its presence and properties are the clay minerals. Clay mineral also become increasingly important in low organic matter content soils. There tree, studies of non-ionic hydrophobic organic compounds adsorption on clay minerals without organic matter are necessary lo better understand the fate and transport of these compounds. In this work we used phenanthrene as model compound of non-ionic hydrophobic organic compound and four pure clay minerals: kaolinite, illite, montmorillonite, and vermiculite including muscovite mica. These clays minerals are selected due to its abundance in represent ve Spanish soils and different properties as its structural layers and expanding capacity. Batch experiments were performed using phenanthrene aqueous solutions and the clays selected. Phenanthrene sorption isotherms for all clays, except muscovite mica, were best described by the Freundlich model. Physical sorption on the external surfaces is the most probable adsorption mechanisms. In this sense, the presence of non-polar nano-sites on clay surfaces could determine the adsorption of phenanthrene by hydrophobic interaction on these sites. (Author) 22 refs.

  4. Relationship Between Soil Properties and Different Fractions of Soil Hg

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing, China. Results showed that clay (< 2 m) could increase water-soluble Hg (r = 0.700*). Soil organic matter (OM) could enhance the increase of elemental Hg (r = 0.674*). The higher the base saturation percentage (BSP), the more the residual Hg (r = 0.684*). Organic Hg, the sum of acid-soluble organic Hg. and alkali-soluble Hg, was positively affected by silt (2~20μm) but negatively affected by pH, with the direct path coefficients amounting to 1.0487 and 0.5121, respectively. The positive effect of OM and negative effect of BSP on organic Hg were the most significant, with the direct path coefficients being 0.7614 and -0.8527, respectively. The indirect effect of clay (< 2 μm) via BSP (path coefficient = 0.4186) was the highest, showing that the real influencing factor in the effect of clay (< 2 μm) on acid-soluble organic Hg was BSP. Since the available Hg fraction, water-soluble Hg, was positively affected by soil clay content, and the quite immobile and not bioavailable residual Hg by soil BSP, suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.

  5. Effect of Grain Size on Selected Physico-Chemical Properties of Clay

    Directory of Open Access Journals (Sweden)

    Osumanu H. Ahmed

    2009-01-01

    Full Text Available Problem statement: Mixture of the right proportion of expanding and non-expanding clays to improve plasticity (moldability of clays used in the pot industry of Malaysia is yet to be well investigated. In addition, little is known about the choice of the right clay size to eliminate or reduce the content of undesirable compounds such as Fe2O3, Al2O3 to improve the strength of pots and roofing tiles in the country. The objective of this study was to investigate how selected physico-chemical properties of pottery clay relate to grain size of Nyalau series ((Typic Paleudults. Approach: Soil samples were refined into 25, 20 and 63 µm using size grading method. The mineralogical composition of the samples was determined using X-Ray Diffraction (XRD. The chemical composition of the samples was also determined using standard procedures. Firing was done at 800°C in a muffle furnace and the cracks of the samples recorded. Results: The clay particles with sizes 20 and 25 µm were higher in LOI and total C than that those of 63 µm regardless of grain size, the clay investigated had quartz (SiO2, illite-montmorillonite, Anatase ((TiO2 and kaolinite. Grading affected the concentrations of Fe, Al and Si as clays with particle sizes 20 and 25 µm had higher contents of the aforementioned elements compared with those of 63 µm. The clay with particles 63 µm had the best strength and this was so because the clay particles had the lowest amount of Fe, Al and Si. Conclusion: The strength of Malaysian pots could be improved upon proper grading of the clay particles.

  6. Improvement of Bearing Capacity of Shallow Foundation on Geogrid Reinforced Silty Clay and Sand

    Directory of Open Access Journals (Sweden)

    P. K. Kolay

    2013-01-01

    Full Text Available The present study investigates the improvement in the bearing capacity of silty clay soil with thin sand layer on top and placing geogrids at different depths. Model tests were performed for a rectangular footing resting on top of the soil to establish the load versus settlement curves of unreinforced and reinforced soil system. The test results focus on the improvement in bearing capacity of silty clay and sand on unreinforced and reinforced soil system in non-dimensional form, that is, BCR. The results show that bearing capacity increases significantly with the increased number of geogrid layers. The bearing capacity for the soil increases with an average of 16.67% using one geogrid layer at interface of soils with equal to 0.667 and the bearing capacity increases with an average of 33.33% while using one geogrid in middle of sand layer with equal to 0.33. The improvement in bearing capacity for sand underlain silty clay maintaining and equal to 0.33; for two, three and four number geogrid layer were 44.44%, 61.11%, 72.22%, respectively. The finding of this research work may be useful to improve the bearing capacity of soil for shallow foundation and pavement design for similar type of soil available elsewhere.

  7. Mineral acquisition from clay by budongo forest chimpanzees

    NARCIS (Netherlands)

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consum

  8. Clay mineralogy and magnetic susceptibility of Oxisols in geomorphic surfaces

    Directory of Open Access Journals (Sweden)

    Livia Arantes Camargo

    2014-06-01

    Full Text Available Studies analyzing the variability of clay minerals and magnetic susceptibility provide data for the delineation of site-specific management areas since many of their attributes are important to agronomy and the environment. This study aimed to evaluate the spatial variability of clay minerals, magnetic susceptibility, adsorbed phosphorus and physical attributes in Oxisols of sandstones in different geomorphic surfaces. For that purpose, soil samples were collected every 25 m along a transect located within the area where the geomorphic surfaces were identified and mapped. The transect occupied the central portion of 500 ha, where it was also sampled for density purposes with one sample per six hectares. Soil samples were collected at a depth of 0.0-0.2 m. The results of the physical, chemical, mineralogical and magnetic susceptibility analyses were subjected to statistical and geostatistical analyses. The nature of the clay minerals and magnetic susceptibility was dependent on the variation of the soil parent material. High values of magnetic susceptibility were associated with the presence of maghemite and magnetite of coarse size. The spatial variability of crystallinity and the content of Fe oxides, as well as magnetic susceptibility, were dependent on the age of the geomorphic surfaces. The youngest surface had greater spatial variability of these attributes. The iron (goethite and hematite and aluminum (gibbsite oxides in the youngest geomorphic surface influenced the low values of soil density and high values of total pore volume, micropores and P adsorption. The characterization of the spatial variability of Fe oxides and susceptibility allowed for the delineation of homogeneous areas.

  9. Nonlinear elastic model for compacted clay concrete interface

    Institute of Scientific and Technical Information of China (English)

    R. R. SHAKIR; Jungao ZHU

    2009-01-01

    In this paper, a nonlinear elastic model was developed to simulate the behavior of compacted clay concrete interface (CCCI) based on the principle of transition mechanism failure (TMF). A number of simple shear tests were conducted on CCCI to demonstrate different failure mechanisms; i.e., sliding failure and deformation failure. The clay soil used in the test was collected from the "Shuang Jang Kou" earth rockfill dam project. It was found that the behavior of the interface depends on the critical water contents by which two failure mechanisms can be recognized. Mathematical relations were proposed between the shear at failure and water content in addition to the transition mechanism indicator.The mathematical relations were then incorporated into the interface model. The performance of the model is verified with the experimental results. The verification shows that the proposed model is capable of predicting the interface shear stress versus the total shear displacement very well.

  10. The Adsorption Capacity, Pore Structure, and Thermal Behavior of the Modified Clay Containing SSA

    Directory of Open Access Journals (Sweden)

    Haijun Lu

    2016-01-01

    Full Text Available Sewage sludge ash (SSA was created by burning municipal sludge. The potential of clay containing 1 or 3 or 5% SSA was assessed for use as a landfill liner-soil material. Batch adsorption, low temperature N2 adsorption, and TG-DTA tests were performed to evaluate the adsorption capacity, micropore structure, thermostability, and components of soils under Cr(VI and Pb(II chemical solutions. With the increasing amount of SSA in modified clay, the adsorption capacity of Cr(VI and Pb(II to the modified clay increases gradually. After absorption, the pore size of modified clay ranges from 2 nm to 8 nm. With the increasing amount of absorption, the pore volume decreases and the specific surface area increases. With the increasing of adsorption concentration of Cr(VI and Pb(II, the mass loss percentage of modified clay increases to 23.4% and 12.6%, respectively. The modified clay containing SSA may be used as a good barrier material to attenuate contamination of Cr(VI and Pb(II in landfills.

  11. Reactivity of clay minerals with acids and alkalies

    Science.gov (United States)

    Carroll, D.; Starkey, H.C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6??45 N, 1:1), acetic acid (4??5 N, 1:3), sodium hydroxide (2??8 N), sodium chloride solution (pH 6??10; Na = 35???; Cl = 21??5???), and natural sea water (pH 7??85; Na = 35??5???; Cl = 21??5???) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective. ?? 1971.

  12. Porosity Investigation of Kosova's Clay

    Directory of Open Access Journals (Sweden)

    Makfire Sadiku

    2011-01-01

    Full Text Available Problem statement: Acid activated clay minerals are used as catalysts in the desulphurization of crude oil or as catalyst carrier, as drilling mud, as bleaching earth. Approach: The efficiency of the acid activation can be described in two ways. As increase of the surface and as increase of the cumulative pore volume after the activation. Results: In different samples of the clay mineral the activation was done with different sulfuric acid concentrations for two and 3h. Afterwards the specific surface was measured by means of nitrogen adsorption. All the measured isotherms belong to the pseudo-two kind. After the activation the surface enhanced from around 100-180 m2 g-1. The mesopore distribution is calculated out of the hysteresis between adsorption-desorption isotherms of the nitrogen. Conclusion: It is shown that the activation increases significantly the amount of mesopores which is reflected in the cumulative volume. The macrospore volume of the clay samples were measured by means of mercury intrusion porosimetry for pore sizes up to 320 nm. The volume of the macrospores results to an increase up to two times after the activation. The cumulative volume of all the pores is shown like a good parameter of the efficiency of the acid activation. The measurements were fulfilled in the newly equipped laboratory of the surface characterizations of the Tirana University. These analyses are of big interest for the industry in Albania and Kosove.

  13. Thermal magnetic behaviour of Al-substituted haematite mixed with clay minerals and its geological significance

    Science.gov (United States)

    Jiang, Zhaoxia; Liu, Qingsong; Zhao, Xiangyu; Jin, Chunsheng; Liu, Caicai; Li, Shihu

    2015-01-01

    Clay minerals and Al-substituted haematite (Al-hm) usually coexist in soils and sediments. However, effects of clay minerals on Al-hm during thermal magnetic measurements in argon environment have not been well studied. In order to quantify such effects, a series of Al-hm samples were synthesized, and were then mixed with clay minerals (illite, chlorite, kaolinite and Ca-montmorillonite). The temperature dependence of magnetic susceptibility curves in an argon environment showed that Al-substituted magnetite was produced during the thermal treatment via the reduction of Al-hm by the clay mineral, which leads to a significant magnetic enhancement of the thermal products. In addition, the reductive capacity varies among different types of clay minerals, that is, illite > chlorite > kaolinite > Ca-montmorillonite. Furthermore, the iron content in the clay minerals and Al content of Al-hm are two predominant factors controlling the reduced haematite content. The iron is released from the clay minerals and provides the reducing agent, while Al decreases the crystallinity of haematite and thus facilitates the chemical reaction. Therefore, the thermal magnetic measurements can be used to quantify the Al content of Al-hm in natural samples. Our study provides significant information for palaeomagnetism and environmental magnetism studies, such as thermal magnetic analysis and palaeomagnetic intensity reconstruction using ancient pottery and kilns.

  14. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation.

    Science.gov (United States)

    Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian

    2016-03-01

    Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.

  15. Modelling unfrozen water content in a silty clay permafrost deposit

    DEFF Research Database (Denmark)

    Agergaard, Frederik Ancker; Ingeman-Nielsen, Thomas

    2011-01-01

    The mechanical properties of both unfrozen soils and permafrost soils are influenced by the amount of unfrozen water in the pore space. When dealing with foundation engineering in permafrost areas it is essential to estimate the unfrozen water content (wu). This paper deals with the establishing...... of a calibration equation for determining the unfrozen water content of a Greenlandic silty clay permafrost deposit. Calibration experiments have been conducted for water contents in the interval 0 – 10 % at both 5 °C and 22 °C. Calibration equations are verified against permittivity data from a permafrost core...... of material properties similar to the test soil. The calibration for 5°C is seen to make a good fit to the permafrost core data. Further experiments should be performed in order to extend the range of water contents tested and hence the range of validity of the calibration equation....

  16. [Effects of soil texture and water content on the mineralization of soil organic carbon in paddy soils].

    Science.gov (United States)

    Sun, Zhong-lin; Wu, Jin-shui; Ge, Ti-da; Tang, Guo-yong; Tong, Cheng-li

    2009-01-01

    To understand how soil texture and water content affect the mineralization of organic C in paddy soil, 3 selected soils (sandy loam, clay loam, and silty clay) were incubated (25 degrees C) with 14 C-labelled rice straw (1.0 g x kg(-1)) at water content varied from 45% to 105% of water holding capacity (WHC). Data indicated that, in the sandy loam and clay loam, the mineralization rate of 14 C-labelled rice straw reached the maximum at 75% WHC, as 53% and 58% of the straw C mineralized in the incubation period of 160 d, whereas in the silty clay, it increased gradually (from 41.8% to 49.0%) as water content increased up to 105% WHC. For all of the three soils, the mineralization rate of soil native organic C reached the maximum at 75% WHC, with 5.8% of the organic C mineralized in the same period for the sandy loam, and 8.0% and 4.8% for the clay loam and silty clay, respectively. As water content increased further, the mineralization rate of native organic C in the three soils significantly declined. The mineralization rate of added rice straw and native organic C in all the three soils, was well fitted with a conic curve. These results suggest that water-logging can decrease the mineralization of organic C in paddy soils.

  17. Modeling of Cation Binding in Hydrated 2:1 Clay Minerals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David E.

    2000-09-14

    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique role in determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swelling and ion exchange properties of Hydrated 2:1 clay minerals, and the subsequent analysis and theoretical modeling with a view toward improving contaminant transport modeling as well as soil remediation and radionuclide containment strategies. Project results included the (a) development of simulation methods to treat clays under environmentally relevant conditions of variable water vapor pressure; (b) calculation of clay swelling thermodynamics as a function of interlayer ion size and charge (calculated quantities include immersion energies, free energies, and entropies of swelling); and (c) calculation of ion exchange free energies, including contributions from changing interlayer water contents and layer spacing.

  18. CLAY MINERAL ASSEMBLAGES AND THEIR IMPLICATIONS IN SHIHEZI FORMATION FROM THE HUAIBEI COAL-BEARING STRATA

    Institute of Scientific and Technical Information of China (English)

    黄文辉; 许光泉; 刑军

    1998-01-01

    Clay mineral assemblages in Shihezi Formation of Huaibei coal-bearing strata are determined by X-ray diffraction and Differential Thermal Analyzer, that is restated to the sedimentfaces and climatic changes in the source area, and to a lesser extent, alterations during burial diagenesis. In the Upper Shihezi Formation, the clay fraction is dominated by kaolinite in norther npart of the coal field, which was formed in alluvial sediment environment. But in the South ofHuaibei coal field, the clay mineral assemblage consists of mainly illite that reflects the influenceof sea water. The predominately kaolinite and sederite composition of the clay fraction in the lower Shihezi Formation sediments documents less relief and gentle erosion of kaolinite rich soils developing under warm source area. In the lower part of Shihezi Formation, some chlorite is detected, which suggests transformation of illite or kaolinite to chlorite under conditions of burial diagenesis.

  19. Modernity and putty-clay

    Science.gov (United States)

    Ganesh, Trichur Kailas

    This dissertation addresses issues arising out of the problems of capital accumulation, productivity growth and 'putty-clay' technology. The concept of economic modernity occupies a central place in the subject-matter studied here in that it expresses both the incessant drive for newness that characterizes economic reality and the persistence of dated techniques that successfully resist replacement. This study examines the way in which an expansive development-theoretic 'putty-clay' framework may be employed to explain the historical processes behind both the avalanche of newness (innovations) and the conservatism of technology in the U.S. economy. The guiding link is the fixity of investments in physical capital equipment over time and space. The dilemma of fixed capital is studied in the context of the constant entrepreneurial search for flexibility and liquidity. The thesis advanced is that a development (Entwicklung)-theoretic 'putty-clay' conceptualization of the economic system adequately addresses the recurring problems of fixity, flexibility, and liquidity, and thereby permits important insights into the enigma surrounding the persistent productivity growth slowdown and 'stagflation' of the late sixties and seventies and the related phenomena of physical 'capital obsolescence' and the financial or 'speculative explosions' of our times. The notion of 'putty-clay' used here is an innovative one in that it departs from the growth-theoretic literature to re-appear as a Schumpeterian theory of modernity modified by a Veblenite view of an economic system directed by the exigencies of the 'machine-process'. The empirical aptitude of a macroeconomic 'putty-clay' model to explain capital obsolescence mediated by the energy 'crises' (supply shocks) of the seventies and eighties is examined in a separate chapter with results that differ markedly from the standard (Berndt and Wood) conclusions for the U.S. economy. The final chapter in the dissertation reverts to the

  20. Searching for reciclability of modified clays for an environmental application

    Science.gov (United States)

    Del Hoyo Martínez, Carmen; Solange Lozano García, Marina; Sánchez Escribano, Vicente; Antequera, Jorge

    2014-05-01

    prevention of the health. We have used the FT-IR spectroscopy and DTA/TG studies to confirm the reciclability of these materials and the possible application in the industry to prevent the contamination. References -del Hoyo, C. (2007). Applied Clay Science. 36, 103-121.Layered Double Hydroxides and human health: An overview. -Valderrábano, M., Rodríguez-Cruz, S., del Hoyo, C., Sánchez-Martín, M.J. (2006). 4th International Workshop "Bioavalailability of pollutants and soil remediation". 1, 5-6. Physicochemical study of the adsorption of pesticides by lignins. -Volzone, C. (2007). Applied Clay Science. 36, 191-196. Retention of pollutant gases: Comparison between clay minerals and their modified products.

  1. Caracterização de argilas encontradas em solos de Terras Indígenas do RS com o auxílio da espectroscopia Mössbauer de 57Fe Characterization of clays found in soils of the Indian Territories in Rio Grande do Sul State by using the 57Fe Mössbauer spectroscopy

    Directory of Open Access Journals (Sweden)

    C. A. S. Pérez

    2004-06-01

    Full Text Available As argilas encontradas em amostras de solos, provenientes de Terras Indígenas do planalto médio do Rio Grande do Sul, foram caracterizadas com o intuito de fornecer dados e parâmetros técnicos para seu uso como matéria prima de produtos cerâmicos. O estudo mineralógico efetuado nas amostras utilizando a técnica de difração de raios X demonstrou que o argilomineral predominante é a caulinita. Outros minerais, como quartzo e rutilo, encontram-se presentes em menor quantidade. As análises químicas demonstram que as quantidades de óxido de Mg, Mn, K, Na, Ca, Cu e Zn são baixas (a soma das porcentagens é menor que 0,97 %. As amostras foram analisadas por espectroscopia Mössbauer de 57Fe. Os espectros Mössbauer obtidos na temperatura ambiente confirmam a presença do mineral caulinita. Os espectros a 77 K revelam a existência dos minerais goetita e hematita, na forma de partículas magnéticas ultrafinas (nanopartículas em estado superparamagnético. Os testes físicos efetuados nas amostras indicam que os solos são finos e apresentam características granulométricas e de plasticidade, que podem ser aproveitadas para a produção de materiais cerâmicos para construção ou objetos ornamentais.Clay samples collected from soils of indian territories of the middle plateau in Rio Grande do Sul were analyzed with the aim to obtain characterization data and technical parameters for their potential use as raw material for ceramic products. The mineralogical study in samples by using the X-ray diffraction technique demonstrated that the predominant clay mineral is kaolinite. Others minerals as quartz and rutile also are present in small amounts. Chemical analysis shows low percentages for oxides of Mg, Mn, K, Na, Ca, Cu and Zn (overall percentages smaller than 0.97%. The samples also were analyzed with the 57Fe Mössbauer spectroscopy. The Mössbauer spectra at room temperature confirm the presence of the mineral kaolinite. At 77 K they

  2. Nouvelle méthode expérimentale pour déterminer le gonflement libre des sols argileux Novel experimental method to determine clay soil free swelling

    Directory of Open Access Journals (Sweden)

    Essaaidi M.

    2012-09-01

    Full Text Available Le dispositif est un interferometre de Michelson modifie. En effet sur le miroir mobile est colle un echantillon d’fargile cylindrique, seche, de longueur L, de rayon R et faconnee de maniere a retenir les gouttes d’feau a sa surface pour controler la teneur en eau. Lorsqu’fon injecte un volume d’feau distillee (quelques gouttes a la surface de l’fechantillon, celui-ci se gonfle et le miroir se deplace. On observe le defilement des franges et on procede au comptage de leur nombre durant le temps t que dure le gonflement (environ 40 mn. On peut ainsi mesurer le deplacement libre du miroir et determiner: la valeur du gonflement exprime en % ou g/cm3, le gonflement sous contrainte σ (pour comparer avec l’foedometre et sa vitesse au cours du temps t. The propose device is based on Michelson interferometer. In fact, we put the a sample of cylindrical shape dry clay of length L and radius R on the mobile mirror, This sample can retain a drop of water on its surface in order to monitor water content. When injecting a volume of distilled water (a few drops to the surface of the sample, it swells and moves the mirror. Consequently, we see scrolling fringes and we proceed to count their number during the time t during this swelling (about 40 min. We can measure the free displacement of the mirror and to establish the value of swelling expressed in% or g/cm3, the swelling under stress σ (to compare with the oedometer and speed during a time t.

  3. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 1. Site description and contaminant source mass reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Riis, Charlotte; Christensen, Anders G.;

    2012-01-01

    Field investigations on the effects of ZVI-Clay soil mixing were conducted at a small DNAPL source zone with PCE as the parent compound. In a one-year monitoring program, soil samples were collected at three horizontal sampling planes (2.5, 5.0 and 7.5m bgs.). PCE was found to have a pseudo first...

  4. Thermal stability of PMMA–clay hybrids

    Indian Academy of Sciences (India)

    Tanushree Choudhury; Nirendra M Misra

    2010-04-01

    Materials with small particle size are being extensively used in composites and hybrid materials. Exfoliated clay–polymer hybrids show enhanced properties. Exfoliation of clay platelets can be affected by selecting dispersing agents. In the present work, clay dispersed by natural dispersant (soap stone powder), cetyl trimethyl ammonium bromide (CTAB) dispersed clay and acid clay (amorphous clay) are taken. They are then polymerized with poly methyl methacrylate (PMMA) by solution intercalation method. The thermal stability of these different clay–PMMA hybrids have been studied and compared with that of pure PMMA by differential scanning calorimeter (DSC). The bonding of clay with PMMA has been studied by IR. Morphology of clay–PMMA hybrids has been shown by SEM and XRD which indicate partially exfoliated structure in T606-4 and intercalated structures in T606-6 and T606-2.

  5. Interactions in surfactant/pollutant/soil mineral systems. Adsorption of 2-naphthol on clay minerals in the presence of cationic tensides. Wechselwirkungen in Tensid/Schadstoff/Bodenmineralsystemen. Adsorption von 2-Naphtol an Schichtsilikaten in Gegenwart von Kationtensid

    Energy Technology Data Exchange (ETDEWEB)

    Klumpp, E.; Heitmann, H.; Schwuger, M.J. (Forschungszentrum Juelich GmbH (Germany). Inst. fuer Angewandte Physikalische Chemie)

    Pollutant adsorption on soil components (layer silicates) is influenced by cationic surface-active substances. They produce synergistic effects at low concentrations due to the formation of hydrophobic adsorbate layers and antagonistic effects at higher concentrations due to the simultaneous formation of micelles in the solution. The latter compete with the hydrophobic adsorbate layers for pollutant molecules. At low cationic surfactant concentrations the charge density of the adsorbent is an important parameter for the formation of coherent hydrophobic zones due to surfactant adsorption. (orig.).

  6. Colloid Release from Soil Aggregates

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Schjønning, Per;

    2012-01-01

    The content of water-dispersible colloids (WDC) has a major impact on soil functions and structural stability. In addition, the presence of mobile colloids may increase the risk of colloid-facilitated transport of strongly sorbing environmental contaminants. The WDC content was measured in 39 soils......, using laser diffraction, by agitating the samples using a wet-dispersion unit. This approach eliminated the need for long sedimentation times required by the more classical end-over-end shaking approach and provided information about the time-dependent release of WDC. The total clay content of the soils...... ranged from 0.1 to 0.44 kg kg−1. The WDC content was measured on air-dry and moist 1- to 2-mm aggregates. The WDC content at a reference time was highly correlated to the total clay content (r > 0.91, P soils. Only for two sites was the WDC content correlated to the content of clay...

  7. A new isotropic cell for studying the thermo-mechanical behavior of unsaturated expansive clays

    CERN Document Server

    Tang, Anh-Minh; Barnel, Nathalie

    2007-01-01

    This paper presents a new suction-temperature controlled isotropic cell that can be used to study the thermo-mechanical behavior of unsaturated expansive clays. The vapor equilibrium technique is used to control the soil suction; the temperature of the cell is controlled using a thermostat bath. The isotropic pressure is applied using a volume/pressure controller that is also used to monitor the volume change of soil specimen. Preliminary experimental results showed good performance of the cell.

  8. Clay surface catalysis of formation of humic substances: potential role of maillard reactions

    Science.gov (United States)

    The mechanisms of the formation of humic substances are poorly understood, especially the condensation of amino acids and reducing sugars products (Maillard reaction) in soil environments. Clay minerals behave as Lewis and Brönsted acids and catalyze several reactions and likely to catalyze the Mai...

  9. Spectral characteristics of clay minerals in the 2.5 - 14 µm wavelength region

    NARCIS (Netherlands)

    Yitagesu, F.A.; Meer, F.D. van der; Werff, H.M.A. van der; Hecker, C.A.

    2011-01-01

    Identification and quantification of clay minerals, particularly those that are responsible for susceptibility of soils to expansion and shrinkage, is a constant focus of research in geotechnical engineering. The visible, near infrared and short wave infrared wavelength regions are well explored. Ho

  10. Ceramic clays from the western part of the Tamnava Tertiary Basin, Serbia: Deposits and clay types

    Directory of Open Access Journals (Sweden)

    Radosavljević Slobodan

    2014-01-01

    Full Text Available Based on geological, mineralogical, physical, chemical and technological investigations in the Tamnava Tertiary Basin near Šabac town (western Serbia, deposits of ceramic clays were studied. These ceramic clays are composed of kaolin-illite with a variable content of quartz, feldspars, mica, iron oxides and hydroxides, and organic matter. Four main types of commercial clays were identified: i red-yellow sandy-gravely (brick clays; ii grey-white poor sandy (ceramic clays; iii dark-carbonaceous (ceramic clays; and iv lamellar (“interspersed” fatty, poor sandy (highly aluminous and ferrous clays. Ceramic clays are defined as medium to high plastic with different ranges of sintering temperatures, which makes them suitable for the production of various kinds of materials in the ceramic industry. [Projekat Ministarstva nauke Republike Srbije, br. OI-176016

  11. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    Science.gov (United States)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  12. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Michael Rajamathi; Grace S Thomas; P Vishnu Kamath

    2001-10-01

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange properties together with surface basicity making them materials of importance for many modern applications. In this article, we discuss many different ways of making anionic clays and compare and contrast the rich diversity of this class of materials with the better-known cationic clays.

  13. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.

    Science.gov (United States)

    Sarkar, Binoy; Naidu, Ravi; Krishnamurti, Gummuluru S R; Megharaj, Mallavarapu

    2013-01-01

    Unlike lower valent iron (Fe), the potential role of lower valent manganese (Mn) in the reduction of hexavalent chromium (Cr(VI)) in soil is poorly documented. In this study, we report that citrate along with Mn(II) and clay minerals (montmorillonite and kaolinite) reduce Cr(VI) both in aqueous phase and in the presence of dissolved organic carbon (SDOC) extracted from a forest soil. The reduction was favorable at acidic pH (up to pH 5) and followed the pseudo-first-order kinetic model. The citrate (10 mM) + Mn(II) (182.02 μM) + clay minerals (3% w/v) system in SDOC accounted for complete reduction of Cr(VI) (192.32 μM) in about 72 h at pH 4.9. In this system, citrate was the reductant, Mn(II) was a catalyst, and the clay minerals acted as an accelerator for both the reductant and catalyst. The clay minerals also serve as a sink for Cr(III). This study reveals the underlying mechanism of the Mn(II)-induced reduction of Cr(VI) by organic ligand in the presence of clay minerals under certain environmental conditions.

  14. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    Directory of Open Access Journals (Sweden)

    Yankai Wu

    2014-01-01

    Full Text Available Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil’s strength and improves the soil’s mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  15. Influence of Humic Acid on Interaction of Ammonium and Potassium Ions on Clay Minerals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Zhao; CHEN Xiao-Qin; ZHOU Jian-Min; LIU Dai-Huan; WANG Huo-Yan; DU Chang-Wen

    2013-01-01

    Interaction of ammonium (NH4+) and potassium (K+) is typical in field soils.However,the effects of organic matter on interaction of NH4+ and K+ have not been thoroughly investigated.In this study,we examined the changes in major physicochemical properties of three clay minerals (kaolinite,illite,and montmorillonite) after humic acid (HA) coating and evaluated the influences of these changes on the interaction of NH4+ and K+ on clay minerals using batch experiments.After HA coating,the cation exchange capacity (CEC) and specific surface area (SSA) of montmorillonite decreased significantly,while little decrease in CEC and SSA occurred in illite and only a slight increase in CEC was found in kaolinite.Humic acid coating significantly increased cation adsorption and preference for NH4+,and this effect was more obvious on clay minerals with a lower CEC.Results of Fourier transform infrared spectrometry analysis showed that HA coating promoted the formation of H-bonds between the adsorbed NH4+ and the organo-mineral complexes.HA coating increased cation fixation capacity on montmorillonite and kaolinite,but the opposite occurred on illite.In addition,HA coating increased the competitiveness of NH4+ on fixation sites.These results showed that HA coating affected both the nature of clay mineral surfaces and the reactions of NH4+ and K+ with clay minerals,which might influence the availability of nutrient cations to plants in field soils amended with organic matter.

  16. [Effect of treatments of hydrogen peroxide and sodium dithionite-citrate-bicarbonate on clay minerals of red earth sediments].

    Science.gov (United States)

    Li, Rong-Biao; Hong, Han-Lie; Yin, Ke; Wang, Chao-Wen; Gao, Wen-Peng; Han, Wen; Wu, Qing-Feng

    2013-04-01

    As classical procedures for pretreatment of soil sediments, hydrogen peroxide (H2O2) and sodium dithionite-citrate-bicarbonate (DCB) treatment methods are very important in removing the organic matter and iron oxides acting as cementing agents in the soils. However, both of these methods have less been focused on the effect on the clay minerals when separating. Here, we report the comparable methods between H2O2 and DCB to reveal their effect on clay minerals in red earth sediments using X-ray diffraction (XRD). The XRD results suggested that mineral particles can be totally decentralized by either H2O2 or DCB method in the soils and high purity clay minerals can be obtained by separating quartz and other impurities from clay minerals effectively. However, the XRD data were distorted by the DCB treatment owning to the cation exchange between Na+ and interlayer cation. On the contrary, the authentic data can be obtained by H2O2 treatment. Therefore, the H2O2 treatment seems to be a more appropriate method to obtain authentic information of clay mineralogy when separating of clay minerals from red earth sediments.

  17. Relationship Between Soil Properties and Different Fractions of Soil Hg

    Institute of Scientific and Technical Information of China (English)

    WUHONGTAO; YUGUIFEN; 等

    2001-01-01

    Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing,China,Results showed that clay(<2m) could increase water-soluble Hg(r=0.700*).Soil organic matter (OM) could enhance the increase of elemental Hg(r=0.674*),The higher the base saturation percentage (BSP) ,the more the residual Hg(R=0.684*) .Organic Hg,the sum of said-soluble organic He and alkali-soluble Hg,was positively affected by silt(2-20μm)but negatively affected by pH,with the direct path coefficients amounting to 1.0487 and 0.5121,respectively .The positive effect of OM and negative effect of BSP on organic Hg were the most significant ,with the direct path coefficients being 0.7614 and -0.8527,respectively. The indirect effect of clay(<2μm) iva BSP (path coefficient=0.4186) was the highest,showing that the real influencing factor in the effect of clay(<2μm) via BSP (path coefficient=0.4186) was the highest,showing that the real influencing factor in the effect of clay(<2μm) on acid-soluble organic Hw was BSP.since the available Hg fraction,water-soluble Hg,was positively affected by soil clay content,and the quite immobile and not bioavailable residual Hg by soil BSP,suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.

  18. Analysis of Risk Management of Soil Nailing Wall for Expansive Red Clay Cut Slope%某膨胀性红土路堑边坡土钉墙风险管理实例分析

    Institute of Scientific and Technical Information of China (English)

    丁兆锋; 魏永幸; 罗一农

    2013-01-01

    研究目的:铁路路基工程类风险管理技术处于刚起步阶段,可供借鉴的风险管理资料有限,在风险数据库的建设、风险因素的识别、预测模型的建立、风险因素动态变化的定量刻画,承灾体识别和易损性定量评价等方面存在诸多难题.本文针对上述难题以某膨胀土路堑边坡土钉墙工点为例,在阐述风险管理流程的基础上,详细介绍综合层次分析法、专家调查法、模糊评价法的科学风险管理方法体系及其具体操作步骤,以为铁路路基工程类风险管理技术方法研究提供借鉴和指导.研究结论:以层次分析法、专家调查法、模糊评价法相结合的风险管理体系,具有层次鲜明、步骤清晰,分析细致的特点,其分析结果与实际情况相符,是可靠的.自然与环境风险、施工风险以及设计风险对该段膨胀土土钉墙风险评价结果影响较大,因此在充分考虑自然与环境因素的前提下,合理的设计并严格按照设计施工,是降低该段膨胀性红土路堑边坡土钉墙工点坍塌风险的关键.%Research purposes:The risk management technology for the railway subgrade engineering is just in the beginning stage and there is a little reference information on it. There are many problems in the establishment of the risk database, the identification of the risk factors, the establishment of the prediction model, the quantitative characterization of the dynamic changes of the risk factors, the recognition of the hazard - affected body and the quantitative evaluation of the vulnerability. Aiming at the problems mentioned above, and taking an expansive soil nailing wall for the cut slope as an example, this paper expounds the risk management process and introduces the scientific risk management system composes of the analytic hierarchy process method, expert investigation method and fuzzy evaluation method and its operation steps for providing the reference and guidance to

  19. Painting with Clay Van Gogh Style.

    Science.gov (United States)

    Skophammer, Karen

    1999-01-01

    Discusses Vincent Van Gogh's painting "Starry Night" and describes a lesson where fifth- and sixth-grade students created their own version of the artwork. Explains that the students utilized four colors of Permoplast clay, using their hands and fingers as brushes and blending tools and the clay as paint. (CMK)

  20. Moessbauer Spectra of Clays and Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, F. E.; Wagner, U. [Technische Universitaet Muenchen (Germany)

    2004-06-15

    The physical, chemical and mineralogical aspects of the use of Moessbauer spectroscopy in studies of clay-based ceramics are described. Moessbauer spectra of pottery clays fired under oxidising, reducing and changing conditions are explained, and the possibilities of using Moessbauer spectra to derive information on the firing temperatures and the kiln atmosphere during firing in antiquity are discussed and illustrated by examples.

  1. Dehydration-induced luminescence in clay minerals

    Science.gov (United States)

    Coyne, L. M.; Lahav, N.; Lawless, J. G.

    1981-01-01

    Reports of triboluminescent phenomena in organic crystalline materials prompted a search for related processes in clay minerals. The reported extensive mechanical distortion produced on freezing and drying of montmorillonite was particularly interesting because of studies of condensation reactions in a wet/dry cycled reaction sequence. The discovery of an unusual luminescent process in several clay minerals is reported and its characteristics are described.

  2. Sectioning Clay Models Makes Anatomy & Development Tangible

    Science.gov (United States)

    Howell, Carina Endres; Howell, James Endres

    2010-01-01

    Clay models have proved to be useful teaching aids for many topics in biology that depend on three-dimensional reasoning. Students studying embryonic development struggle to mentally reconstruct the three-dimensional structure of embryos and larvae by observing prepared slides of cross-sectional slices. Students who build clay models of embryos…

  3. Diffusion of inorganic chemical wastes in compacted clay

    Energy Technology Data Exchange (ETDEWEB)

    Shackelford, C.D.

    1988-01-01

    The factors that were investigated included the water content/dry unit weight, the method of compaction, the mineralogy of the soil, and the concentration of the ions. The effective diffusion coefficients (D{asterisk}) of three anions (Cl{sup {minus}}, Br{sup {minus}}, and I{sup {minus}}) and three cations (K{sup +}, Cd{sup 2+}, and Zn{sup 2+}) in a simulated waste leachate were measured. Two clay soils (kaolinite and Lufkin clay) and a sand were used in the study. The clay samples were compacted and pre-soaked to minimize hydraulic gradients due to negative pore pressures. Mass balance calculations were performed to indicate possible sinks/sources in the diffusion system. The results of the diffusion tests were analyzed using two analytical solutions to Fick's second law and a commercially available semi-analytical solution. The D{asterisk} values for tests using high-concentration (0.04 N) leachate generally fell in the narrow range of about 4.0 {times} 10{sup {minus}6} to 2.0 {times} 10{sup {minus}5} cm{sup 2}/s, and were relatively insensitive to compaction water content/dry unit weight and to compaction method. The variability in the results from the tests with low-concentration (0.013 N) leachate precluded any definite conclusions from these tests. The values of D{asterisk} measured in this study were compared to values from previous studies, and the D{asterisk} values from this study were found to be slightly conservative (i.e., high). However, the results of the tests may be affected by several chemical and physical factors, and care should be taken to ensure that the soils used in the tests are representative of those used in the application of the test results. Recommendations are made for estimating D{asterisk} values for use in the design of compacted clay barriers for the containment of inorganic chemical wastes.

  4. Clay mineralogy in different geomorphic surfaces in sugarcane areas

    Science.gov (United States)

    Camargo, L.; Marques, J., Jr.

    2012-04-01

    The crystallization of the oxides and hydroxides of iron and aluminum and kaolinite of clay fraction is the result of pedogenetic processes controlled by the relief. These minerals have influence on the physical and chemical attributes of soil and exhibit spatial dependence. The pattern of spatial distribution is influenced by forms of relief as the geomorphic surfaces. In this sense, the studies aimed at understanding the relationship between relief and the distribution pattern of the clay fraction attributes contribute to the delineation of specific areas of management in the field. The objective of this study was to evaluate the spatial distribution of oxides and hydroxides of iron and aluminum and kaolinite of clay fraction and its relationship with the physical and chemical attributes in different geomorphic surfaces. Soil samples were collected in a transect each 25 m (100 samples) and in the sides of the same (200 samples) as well as an area of 500 ha (1 sample each six hectare). Geomorphic surfaces (GS) in the transect were mapped in detail to support mapping the entire area. The soil samples were taken to the laboratory for chemical, physical, and mineralogical analysis, and the pattern of spatial distribution of soil attributes was obtained by statistics and geostatistics. The GS I is considered the oldest surface of the study area, with depositional character, and a slope ranging from 0 to 4%. GS II and III are considered to be eroded, and the surface II plan a gentle slope that extends from the edge of the surface until the beginning of I and III. The crystallographic characteristics of the oxides and hydroxides of iron and aluminum and kaolinite showed spatial dependence and the distribution pattern corresponding to the limits present of the GS in the field. Surfaces I and II showed the best environments to the degree of crystallinity of hematite and the surface III to the greatest degree of crystallinity of goethite agreeing to the pedoenvironment

  5. Permeation properties of polymer/clay nanocomposites

    Science.gov (United States)

    Kalendova, A.; Merinska, D.; Gerard, J. F.

    2012-07-01

    The important characteristics of polymer/clay nanocomposites are stability, barrier properties and in the case of polyvinyl chloride also plasticizer migration into other materials. Therefore, the permeation properties of polymer/clay nanocomposites are discussed in this paper. The attention was focused to the polyethylene (PE) and polyvinyl chloride (PVC). Natural type of montmorillonite MMTNa+ and modified types of montmorillonite from Southern Clay Products were used as the inorganic phase. As the compounding machine, one screw Buss KO-kneader was employed. The principal aim is to fully exfoliate the clay into polymer matrix and enhanced the permeation properties. Prepared samples were tested for O2 and CO2 permeability. Polymer/clay nanocomposite structure was determined on the base of X-ray diffraction and electron microscopy (TEM).

  6. Active containment systems incorporating modified pillared clays

    Energy Technology Data Exchange (ETDEWEB)

    Lundie, P. [Envirotech (Scotland) Ltd., Aberdeen (United Kingdom)]|[Environmental Resource Industries Disposal Pty Ltd., Perth (Australia); McLeod, N. [Envirotreat Ltd., Kingswinford (United Kingdom)

    1997-12-31

    The application of treatment technologies in active containment systems provides a more advanced and effective method for the remediation of contaminated sites. These treatment technologies can be applied in permeable reactive walls and/or funnel and gate systems. The application of modified pillared clays in active containment systems provides a mechanism for producing permeable reactive walls with versatile properties. These pillared clays are suitably modified to incorporate reactive intercalatants capable of reacting with both a broad range of organic pollutants of varying molecular size, polarity and reactivity. Heavy metals can be removed from contaminated water by conventional ion-exchange and other reactive processes within the clay structure. Complex contamination problems can be addressed by the application of more than one modified clay on a site specific basis. This paper briefly describes the active containment system and the structure/chemistry of the modified pillared clay technology, illustrating potential applications of the in-situ treatment process for contaminated site remediation.

  7. Change of microstructure of clays due to the presence of heavy metal ions in pore water

    Directory of Open Access Journals (Sweden)

    Saiyouri N.

    2010-06-01

    Full Text Available The compressibility of engineered barrier clays is, to a large extent, controlled by microstructure change due to the presence of chemical ions in clay-water system. This paper aims to investigate the change of microstructure of clays due to the presence of heavy metal ions in pore water. We use two pure clays (kaolinite and bentonite in the study. One-dimensional consolidation tests were performed on reconstituted samples, which are prepared with distilled water and three types of heavy metal solutions (Pb(NO32, Cu(NO32, Zn(NO32,. In order to better understand the impact of chemical pore fluid on microstructure of the two clays, following the consolidation test, scanning electron microscope (SEM observations and mercury intrusion pore size distribution measurements (MIP were conducted. Due to the measurement range of MIP, which is only allowed to measure the minimal pore size 20 Å, BET method by gas sorption, whose measurement pore size range is from 3.5 Å to 500 Å, is used to measure the micropore size distribution. By this method, specific surface area of the soils can be also determined. It can be employed to demonstrate the difference of creep performance between the soils. Furthermore, a series of batch equilibrium tests were conducted to better understand the physical-chemical interactions between the particles of soils and the heavy metal ions. With the further consideration of the interparticle electrical attractive and repulsive force, an attempt has been made to predict the creep behaviour by using the modified Gouy-Chapman double layer theory. The results of calculation were compared with that of tests. The comparison shows that the prediction of compressibility of the clays according to the modified double diffuse layer theory can be reasonably agreement with the experimental data.

  8. 1st International Conference on Calcined Clays for Sustainable Concrete

    CERN Document Server

    Favier, Aurélie

    2015-01-01

    This volume focuses on research and practical issues linked to Calcined Clays for Sustainable Concrete. The main subjects are geology of clays, hydration and performance of blended systems with calcined clays, alkali activated binders, economic and environmental impacts of the use of calcined clays in cement based materials. Topics addressed in this book include the influence of processing on reactivity of calcined clays, influence of clay mineralogy on reactivity, geology of clay deposits, Portland-calcined clay systems, hydration, durability, performance, Portland-calcined clay-limestone systems, hydration, durability, performance, calcined clay-alkali systems, life cycle analysis, economics and environmental impact of use of calcined clays in cement and concrete, and field applications. This book compiles the different contributions of the 1st International Conference on Calcined Clays for Sustainable Concrete, which took place in Lausanne, Switzerland, June, 23-25, 2015.The papers present the latest  res...

  9. The role of clay in enhancing attenuation of trace organic contaminants during managed aquifer recharge

    Science.gov (United States)

    Regnery, J.; Strasser, A.; Hake, E.; Wing, A.; Drewes, J. E.

    2013-12-01

    For more hydrophobic trace organic contaminants present in surface water or reclaimed water applied for managed aquifer recharge (MAR), sorption onto organic matter can play a major role in attenuation in subsurface systems as the retardation allows more time for biotransformation. In case of low organic matter, other sorptive processes such as interactions with mineral surfaces gain importance. Especially for positively charged molecules, sorption onto clay materials by cation exchange will play a significant role. However, if the cation exchange capacity is limited or sorption of trace organic contaminants to clay materials is reversible due to changes in geochemical conditions (i.e., pH, ion strength), this might not provide a sustainable removal pathway. The objective of this study is to investigate how sorption to clay can enhance the removal of trace organic contaminants during MAR with the goal of evaluating the feasibility (i.e., infiltration capacity) and benefit (i.e., retardation of recalcitrant compounds) of introducing clay materials as reactive barriers in MAR systems. Laboratory-scale soil column experiments and batch sorption experiments using well characterized soil mixtures with different clay percentages under abiotic conditions and spiked at environmentally relevant concentration levels were conducted to derive soil water distribution coefficients for a suite of 15 trace organic chemicals (i.e., pharmaceutical residues, personal care products, household chemicals) and to quantify their sorption/desorption potential. All clay materials used in this study were characterized by X-ray diffraction to obtain information regarding their sorption processes. Furthermore, results were compared with geochemical field data from a full-scale MAR site in Colorado where significant amounts of clay in the subsurface were present. Preliminary results indicated that certain clay materials bear a great potential to retain moderately hydrophobic compounds such as

  10. Relevance of pore fluid composition for the drained strength of clays

    Science.gov (United States)

    Spagnoli, Giovanni; Fernández-Steeger, Tomás.; Arnhardt, Christian; Stanjek, Helge; Azzam, Rafig; Feinendegen, Martin

    2010-05-01

    Classical soil mechanics based on the effective stress concept with water as second phase does not apply anymore for fine-grained materials. Since clays particles are per definition colloidal in size, their properties are determined and dominated by their large surface area and hence, by their surface forces. Therefore, other mechanism plays a role. Geotechnical properties of soils with different pore fluid are especially important for clays used in hydraulic barriers for landfills. Also in the petroleum engineering or in tunnelling engineering the mechanical properties of clays with different pore fluids could be very useful. Since for clays physical and chemical interactions are decisive, the pure mechanical model (e.g. shearing and contact among the particles) is coupled by other forces, typical for colloidal sized materials. If the diffuse double layer develops from the surface of the clay particles, the interactions of the layers should develop a repulsion. That would resist part of the normal stress and producing no shearing resistance. However, the clays show different properties, dependent on their mineralogy, which complicates their behaviour. Several drained shear stress with shear box have been performed on pure Kaolinite, Illite, Na-Smectite and Ca-smectite. Since the shear behaviour of clays is also controlled by chemical interactions, the clays were mixed with pore fluids with different dielectric constant (water, ethanol), electrolyte concentration (NaCl and CaCl2) and pH (ranging from 3 to 8). Different consolidation pressures (from 15 kPa to 400 kPa) have been used in order to better understand the influence of the pore fluids on the drained cohesion (c') and on friction angle (φ'). The materials were mixed with different consistency to form a paste. The consistency ranges from 0.65 to 0.85. The results show how the sensitive the clays to different pore fluids are. Besides, Kaolinite and Illite shows a shearing behaviour almost entirely controlled

  11. The effect of intrinsic soil properties on soil quality assessments

    Directory of Open Access Journals (Sweden)

    Alessandro Samuel-Rosa

    2013-10-01

    Full Text Available The assessment of soil quality is based on indicators and indices derived from soil properties. However, intrinsic soil properties may interfere with other soil properties that vary under different land uses and are used to calculate the indices. The aim of this study was to assess the extent to which intrinsic soil properties (clay and iron oxide contents explain variable soil properties (sum of bases, potential acidity, organic carbon, total porosity, and bulk density under different land uses (native forest, no-tillage and conventional agriculture on small family farms in Southern Brazil. The results showed that the five properties evaluated can be included in soil quality assessments and are not influenced by the clay and iron oxide contents. It was concluded that for little weathered 1:1 and 2:1 phyllosilicate rich-soils, if the difference between the maximum and the minimum clay content under the different land uses is less than about 200 g kg-1 and the iron oxide content less than about 15 g kg-1, the physico-chemical soil properties in the surface layer are determined mostly by the land use.

  12. An experimental study on the relationship between acoustic parameters and mechanical properties of frozen silty clay

    Institute of Scientific and Technical Information of China (English)

    Xing Huang; DongQing Li; Feng Ming; JianHong Fang

    2013-01-01

    To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of−1 °C to−5 °C. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul-trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com-pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.

  13. Consolidation Properties of Highly Plastic Clay During Osmotic Pressure Consolidation Test

    Institute of Scientific and Technical Information of China (English)

    魏静; 王建华

    2003-01-01

    For the very soft clay with high water content, its void ratio, compressibility coefficient and permeability varied with stress during consolidation. It is necessary to use large strain consolidation based on the permeabilityvoid ratio relationship and effective stressvoid ratio relationship to analyze these properties. To overcome the disadvantages of conventional oedometer test, and determine the effective stressvoid relations of this kind of soil, osmotic pressure consolidation test for highly plastic clay study and the expression of permeabilityvoid ratio are performed. Therefore, the decided properties will be reasonably used for solving the large strain consolidation equation.

  14. Comparing the Thixotropic and Lightly Solidified Hardening Behavior of a Dredged Marine Clay

    Directory of Open Access Journals (Sweden)

    C. M. Chan

    2014-10-01

    Full Text Available When a soil is disturbed upon remolding, it may lose part or all of its strength. As time passes, the structural arrangement of the soil particles would be restored to a stable form and the soil would regain hardness under constant volume and water content. The process is known as “thixotropic hardening”. On another note, dredged marine soils of the fine-grained type can be reused as a backfill material instead of being disposed to the open sea. The rest period required for the relocated soil to regain strength and stiffness, i.e. thixotropic hardening, needs to be estimated precisely. For this purpose, a study on the phenomena of strength and stiffness gain by a dredged marine clay was carried out. The strength and stiffness improvement with time was measured using the vane shear and fall cone tests respectively. The clay was remolded at different water contents in multiples of the soil’s liquid limit (LL, namely 0.75LL, 1.00LL and 1.25LL, in order to evaluate the effect of initial water content on thixotropic hardening. A separate series of samples were prepared with light solidification using cement, to examine the possibilities of enhancing the soil’s improvement in a shorter rest period. The results showed the dredged marine clay can potentially be used as a backfill material for reclamation works, with lower initial water content and light solidification contributing to accelerated better performance

  15. Effect of temperature on volume change behaviour of statically compacted kaolin clay

    Directory of Open Access Journals (Sweden)

    Ileme Ogechi

    2016-01-01

    Full Text Available Several soils are subjected to high temperature due to the environment where they are located or activities around them. For instance, upper layer of soils in tropical regions, soils around geothermal structures, clay barriers around nuclear waste repository systems. Numerous studies have pointed out that high temperature affects the hydro-mechanical properties of soils. Notwithstanding already existing studies, the influence of temperature on soils is still a challenge, as most of these studies are soil specific and cannot be inferred as the behaviour of all soils. This paper presents an experimental study on the influence of temperature on the volume change behaviour of statically compacted kaolin clay. Compacted samples were tested at varying temperatures using a suction controlled oedometer cell. The influence of temperature on the magnitude of volumetric strain occurring during mechanical and thermal loading was investigated. The study showed that an increase in temperature increased the magnitude of volumetric strain of the soil on loading. Additionally, the results presented in the light of LC curve showed that an increase in temperature resulted in the contraction and a change in the position of the LC curve.

  16. Organo-clays and nanosponges for acquifer bioremediation: adsorption and degradation of triclopyr.

    Science.gov (United States)

    Baglieri, Andrea; Nègre, Michèle; Trotta, Francesco; Bracco, Pierangiola; Gennari, Mara

    2013-01-01

    To avoid the problem of groundwater contamination, mitigation techniques have been proposed that consist of creating barriers made of suitable materials that can facilitate the adsorption and degradation of the pollutants. This study aims at evaluating the capacity of two organo-clays (Dellite 67 G and Dellite 43 B) and one nanosponge to adsorb the herbicide, triclopyr. Triclopyr was chosen because it is a good example of a moderately mobile, leacheable molecule. The rate of degradation of the molecule in the soil, both with and without the presence of the materials under examination, was also determined. Both the organo-clays adsorbed more than 90% of the herbicide. The nanosponge and the soil adsorbed less than 10% triclopyr. When the soil was added with the two organoclays, adsorption increased to 92%. When added to the soil, the materials accelerated the degradation of triclopyr. The half-life in soil was 30 days, whereas in soil with Dellite 67 G and Dellite 43 B it was 10 and 6 days respectively. The addition of the nanosponge to the soil decreased the half life by 50%. These results lead us to suggest that they be used in creating reactive barriers for the remediation of soils and aquifers.

  17. COLLOID RELEASE FROM DIFFERENT SOIL DEPTH

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2013-01-01

    Full Text Available Naturally occurring clay colloidal particles are heavily involved in sediment processes in the subsurface soil. Due to the import ance of these processes in the subsurface environment, the transport of clay colloidal particles has been studied in several disciplines, including soil sciences, petr ology, hydrology, etc. Specifically, in environmental engineering, clay colloid re lease and transport in the sediments have been extensively investigated, which are motiv ated by environmental concerns such as colloid-facilitated contaminant transport in groundwater and the subsurface soil. Clay colloid release is resulted from physical alteration of subsurface sediments. Despite the potential importance of clay colloid activiti es, the detailed mechanisms of release and transport of clay colloidal particles with in natural sediments are poorly understood. Pore medium structure, properties and flow dynamics, etc. are factors that affect clay colloid generation, mobilization, and subse quent transport. Possible mechanisms of clay colloid generation in the sediments in clude precipitation, erosion and mobilization by changes in pore water chemistry and clay colloid release depends on a balance of applied hydrodynamic and resisting adhesive torques and forces. The coupled role of pore water chemistry and fluid hydrodynamics thus play key roles in controlling clay colloid release and transport in the sediment s. This paper investigated clay colloidal particle release and transport, especially th e colloidal particle release mechanisms as well as the process modeling in the sediments. In this research, colloidal particle release from intact sediment columns with variable length was examined and colloidal particle release curves were simulated using an im plicit, finite-difference scheme. Colloidal particle release rate coefficient was found to be an exponential function of the sediment depth. The simulated results demonstrated that transport parameters were

  18. THE EFFECT OF CLAY DISPERSION ON THE CRYSTALLIZATION AND MORPHOLOGY OF POLYPROPYLENE/CLAY COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Qin Zhang; Xiao-lin Gao; Ke Wang; Qiang Fu

    2004-01-01

    PP/clay composites with different dispersions, namely, exfoliated dispersion, intercalated dispersion and agglomerates and panicle-like dispersion, were prepared by direct melt intercalation or compounding. The effect of clay dispersion on the crystallization and morphology of PP was investigated via PLM, SAXS and DSC. Experimental results show that exfoliated clay layers are much more efficient than intercalated clay and agglomerates of clay in serving as nucleation agent due to the nano-scale dispersion of clay, resulting in a dramatic decrease in crystal size (lamellar thickness and spherulites) and an increase of crystallization temperature and crystallization rate. On the other hand, a decrease of melting temperature and crystallinity was also observed in PP/clay composites with exfoliated dispersion, due to the strong interaction between PP and clay. Compared with exfoliated clay layers, the intercalated clay layers have a less important effect on the crystallization and crystal morphology. No effect is seen for samples with agglomerates and panicle-like dispersion, in regard to melting temperature, crystallization temperature, crystal thickness and crystallinity.

  19. Bioavailability of radiocaesium in soil: parameterization using soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Syssoeva, A.A.; Konopleva, I.V. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)

    2004-07-01

    It has been shown that radiocaesium availability to plants strongly influenced by soil properties. For the best evaluation of TFs it necessary to use mechanistic models that predict radionuclide uptake by plants based on consideration of sorption-desorption and fixation-remobilization of the radionuclide in the soil as well as root uptake processes controlled by the plant. The aim of the research was to characterise typical Russian soils on the basis of the radiocaesium availability. The parameter of the radiocaesium availability in soils (A) has been developed which consist on radiocaesium exchangeability; CF -concentration factor which is the ratio of the radiocaesium in plant to that in soil solution; K{sub Dex} - exchangeable solid-liquid distribution coefficient of radiocaesium. The approach was tested for a wide range of Russian soils using radiocaesium uptake data from a barley pot trial and parameters of the radiocaesium bioavailability. Soils were collected from the arable horizons in different soil climatic zones of Russia and artificially contaminated by {sup 137}Cs. The classification of soils in terms of the radiocaesium availability corresponds quite well to observed linear relationship between {sup 137}Cs TF for barley and A. K{sub Dex} is related to the soil radiocaesium interception potential (RIP), which was found to be positively and strongly related to clay and physical clay (<0,01 mm) content. The {sup 137}Cs exchangeability were found to be in close relation to the soil vermiculite content, which was estimated by the method of Cs{sup +} fixation. It's shown radiocaesium availability to plants in soils under study can be parameterized through mineralogical soil characteristics: % clay and the soil vermiculite content. (author)

  20. Some Tests on Heather Field Moraine Clay

    DEFF Research Database (Denmark)

    Jørgensen, Mogens B.; Jacobsen, Moust

    This report deals with oedometer tests on three samples of moraine clay from the Heather Field in the English part of the North Sea. The tests have been carried out in the very unelastic apparatus used in Denmark and with special test procedures differing from the ones used elsewhere. In Denmark...... the English North Sea moraine clays with the corresponding Danish Moraine Clays. The Danish test procedures are explained in details and some comments are given in the hope that they may not be banalities all of them....

  1. Ni clay neoformation on montmorillonite surface.

    Science.gov (United States)

    Dähn, R; Scheidegger, A; Manceau, A; Schlegel, M; Baeyens, B; Bradbury, M H

    2001-03-01

    Polarized extended X-ray absorption fine structure spectroscopy (P-EXAFS) was used to study the sorption mechanism of Ni on the aluminous hydrous silicate montmorillonite at high ionic strength (0.3 M NaClO4), pH 8 and a Ni concentration of 0.66 mM. Highly textured self-supporting clay films were obtained by slowly filtrating a clay suspension after a reaction time of 14 days. P-EXAFS results indicate that sorbed Ni has a Ni clay-like structural environment with the same crystallographic orientation as montmorillonite layers.

  2. Selenium in soil

    Directory of Open Access Journals (Sweden)

    Čuvardić Maja S.

    2003-01-01

    Full Text Available Selenium (Se is an essential microelement, necessary for normal functioning of human and animal organisms. Its deficiency in food and feed causes a number of diseases. In high concentrations, selenium is toxic for humans animals and plants. Soil provision with selenium affects its level in food and feed via nutrition chain. However, selenium reactivity and bioavailability depends not only on its total content in soil but also on its chemical forms. Distribution of the different forms of selenium depends on soil properties such as reaction, aeration, contents of clay and organic matter and microbiological activity.

  3. Temperature effects on solute diffusion and adsorption in differently compacted kaolin clay

    DEFF Research Database (Denmark)

    Mon, Ei Ei; Hamamoto, Shoichiro; Kawamoto, Ken

    2016-01-01

    °C for Cl− and K+. Overall, Arrhenius equation describing temperature dependent solute diffusion was applicable for both ions in samples at different bulk densities. At 40 °C, the liquid-phase impedance factor decreased, while liquid-phase pore-network tortuosity increased, suggesting changes...... diffusion process in soils has been poorly understood and rarely documented. In this study, solute diffusion experiments as well as equilibrium adsorption experiments using pure kaolin clay were conducted under different temperature conditions. The experiments of K+ adsorption on kaolin clay showed more...... enhanced adsorption of K+ at elevated temperature likely because surface charge characteristics were affected at different temperature conditions for the kaolin clay. The temperature dependent solute diffusion showed that the solute diffusion coefficient at 40 °C was around two times higher than that at 6...

  4. Measurement of the adsorption of radiocaesium on clays: factors affecting the extrapolation to in situ conditions

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, S.; Roubaud, M. [INRA-ENSAM, 34 - Montpellier (France)

    1994-12-31

    The aim of the study is to identify the factors most likely to cause discrepancies between measured and true Kd values (distribution coefficient) used for the measure of adsorption of radiocaesium on solid particles. Values of a trace amount of caesium 137 have been measured in dilute suspensions containing clay minerals (clay may be used as barrier for radioactive wastes disposal). Parameters such as clay mineralogy, charge compensating cation, ionic strength and pH of the solution, concentration of caesium and presence of a soil extracted fulvic acid, were varied and their effects analyzed. Only the pH has no effect on Kd. The Kd is always a function of the caesium concentration. 3 figs., 49 refs.

  5. Modified Liu-Carter Compression Model for Natural Clays with Various Initial Water Contents

    Directory of Open Access Journals (Sweden)

    Sen Qian

    2016-01-01

    Full Text Available The initial water content has a significant effect on the compression behaviour of reconstituted clays. This effect has to be considered in the Liu-Carter model to ensure the addition voids ratio only related to soil structure. A modified Liu-Carter compression model is proposed by introducing the empirical equations for reconstituted clays at different initial water contents into the Liu-Carter model. The proposed model is verified against the experimental results from the literature. The simulations by the proposed method are also compared with that by old method where the influence of initial water content is not considered. The results show that the predicted virgin compression curves of natural clays are similar, but the values of b and Δey may be very different.

  6. NEXAFS microscopy studies of the association of hydrocarbon thin films with fine clay particles

    Energy Technology Data Exchange (ETDEWEB)

    Covelli, Danielle [Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9 (Canada); Hernandez-Cruz, Daniel [Brockhouse Institute for Material Research, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Haines, Brian M. [Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9 (Canada); Munoz, Vincente; Omotoso, Oladipo; Mikula, Randy [CANMET Energy Technology Centre Natural Resources Canada, Devon, AB, T9G 1A8 (Canada); Urquhart, Stephen [Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9 (Canada)], E-mail: stephen.urquhart@usask.ca

    2009-06-15

    The nature of organic species associated with clay minerals plays a significant role in several processes, from hydrocarbon recovery in oil sands to contaminated soil remediation and water treatment. In this work, we address the use of scanning transmission X-ray microscopy (STXM) in conjunction with near edge X-ray absorption fine structure (NEXAFS) spectroscopy to study the microstructure and chemistry of organic-clay associations in situ. A model system based on methylene blue and illite is used to explore the sensitivity of NEXAFS microscopy to these interactions, and to identify and resolve experimental challenges in these measurements. We find that sample contamination from X-ray induced photodeposition is a significant problem in STXM microscopy, but also that this problem can be substantially reduced with a liquid nitrogen cooled anticontaminator. With appropriate sample preparation and experimental procedures, we find that STXM microscopy is sensitive to thin carbon adsorbates on clay surfaces.

  7. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties.

    Science.gov (United States)

    Uematsu, Shinichiro; Vandenhove, Hildegarde; Sweeck, Lieve; Van Hees, May; Wannijn, Jean; Smolders, Erik

    2016-03-01

    Food chain contamination with radiocaesium (RCs) in the aftermath of the Fukushima accident calls for an analysis of the specific factors that control the RCs transfer. Here, soil-to-plant transfer factors (TF) of RCs for grass were predicted from the potassium concentration in soil solution (mK) and the Radiocaesium Interception Potential (RIP) of the soil using existing mechanistic models. The mK and RIP were (a) either measured for 37 topsoils collected from the Fukushima accident affected area or (b) predicted from the soil clay content and the soil exchangeable potassium content using the models that had been calibrated for European soils. An average ammonium concentration was used throughout in the prediction. The measured RIP ranged 14-fold and measured mK varied 37-fold among the soils. The measured RIP was lower than the RIP predicted from the soil clay content likely due to the lower content of weathered micas in the clay fraction of Japanese soils. Also the measured mK was lower than that predicted. As a result, the predicted TFs relying on the measured RIP and mK were, on average, about 22-fold larger than the TFs predicted using the European calibrated models. The geometric mean of the measured TFs for grass in the affected area (N = 82) was in the middle of both. The TFs were poorly related to soil classification classes, likely because soil fertility (mK) was obscuring the effects of the soil classification related to the soil mineralogy (RIP). This study suggests that, on average, Japanese soils are more vulnerable than European soils at equal soil clay and exchangeable K content. The affected regions will be targeted for refined model validation.

  8. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per;

    2012-01-01

    carbon (CCC resistance and resilience of the three soils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile...... at both soil-water potentials than the MCC and CCC soils possibly due to higher biotic binding of soil particles by the greater organic carbon content. The water dispersible clay was negatively correlated with the level of clay saturation by organic carbon. The resistance of the soils to compaction......, quantified by both the compression index and a proposed functional index, was significantly greater for the MFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles...

  9. NOrth AMerica Soil (NOAM-SOIL) Database

    Science.gov (United States)

    Miller, D. A.; Waltman, S. W.; Geng, X.; James, D.; Hernandez, L.

    2009-05-01

    NOAM-SOIL is being created by combining the CONUS-SOIL database with pedon data and soil geographic data coverages from Canada and Mexico. Completion of the in-progress NOrth AMerica Soil (NOAM-SOIL) database will provide complete North America coverage comparable to CONUS. Canadian pedons, which number more than 500, have been painstakingly transcribed to a common format, from hardcopy, and key- entered. These data, along with map unit polygons from the 1:1,000,000 Soil Landscapes of Canada, will be used to create the required spatial data coverages. The Mexico data utilizes the INEGI 1:1,000,000 scale soil map that was digitized by U. S. Geological Survey EROS Data Center in the mid 1990's plus about 20,000 pedons. The pedon data were published on the reverse side of the paper 1:250,000 scale Soil Map of Mexico and key entered by USDA and georeferenced by Penn State to develop an attribute database that can be linked to the 1:1,000,000 scale Soil Map of Mexico based on taxonomic information and geographic proximity. The essential properties that will be included in the NOAM-SOIL data base are: layer thickness (depth to bedrock or reported soil depth); available water capacity; sand, silt, clay; rock fragment volume; and bulk density. For quality assurance purposes, Canadian and Mexican soil scientists will provide peer review of the work. The NOAM-SOIL project will provide a standard reference dataset of soil properties for use at 1km resolution by NACP modelers for all of North America. All data resources, including metadata and selected raw data, will be provided through the Penn State web site: Soil Information for Environmental Modeling and Ecosystem Management (www.soilinfo.psu.edu). Progress on database completion is reported.

  10. Mullins' effect in polymer/clay nanocomposites

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Klitkou, Rasmus

    2012-01-01

    Abstract. Experimental data are reported on polypropylene/clay nanocomposites in uniaxial cyclic tensile tests at room temperature (oscillations between maximum strains and the zero minimum stress with maximum strains increasing monotonically with number of cycles). Observations reveal fading of ...

  11. The Basics in Pottery: Clay and Tools.

    Science.gov (United States)

    Larson, Joan

    1985-01-01

    Art teachers at the middle school or junior high school level usually find themselves in a program teaching ceramics. The most essential tools needed for a ceramics class are discussed. Different kinds of clay are also discussed. (RM)

  12. Toward Accurate Adsorption Energetics on Clay Surfaces

    CERN Document Server

    Zen, Andrea; Cox, Stephen J; Hu, Xiao L; Sorella, Sandro; Alfè, Dario; Michaelides, Angelos

    2016-01-01

    Clay minerals are ubiquitous in nature, and the manner in which they interact with their surroundings has important industrial and environmental implications. Consequently, a molecular-level understanding of the adsorption of molecules on clay surfaces is crucial. In this regard computer simulations play an important role, yet the accuracy of widely used empirical force fields (FF) and density functional theory (DFT) exchange-correlation functionals is often unclear in adsorption systems dominated by weak interactions. Herein we present results from quantum Monte Carlo (QMC) for water and methanol adsorption on the prototypical clay kaolinite. To the best of our knowledge, this is the first time QMC has been used to investigate adsorption at a complex, natural surface such as a clay. As well as being valuable in their own right, the QMC benchmarks obtained provide reference data against which the performance of cheaper DFT methods can be tested. Indeed using various DFT exchange-correlation functionals yields...

  13. Interaction of Auramine O with montmorillonite clays

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Avelardo U.C.; Poli, Alessandra L.; Gessner, Fergus; Neumann, Miguel G. [Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, 13560-970 São Carlos SP (Brazil); Schmitt Cavalheiro, Carla C., E-mail: carla@iqsc.usp.br [Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, 13560-970 São Carlos SP (Brazil)

    2013-04-15

    The spectroscopic behaviour of Auramine O (AuO) in aqueous suspensions of montmorillonite clays was studied using absorption and static and dynamic fluorescence techniques. The fluorescence of Auramine O increases immediately after mixing the dye solution with the suspension of clay due to its adsorption on the external surface of the clays, which restricts the torsional molecular motion of Auramine. At longer times, the dye molecules migrate into the interlamellar region of the clay particles. Aggregation of the dye molecules can occur in the interlayer region, leading to the decrease of the fluorescence emission. The fluorescence quantum yields (Φ{sub F}) of AuO on the natural montmorillonites SAz-1, SWy-1, Syn-1 and Laponite clays were 0.015, 0.007, 0.016 and 0.017, respectively. These values are higher than the Φ{sub F} of AuO in aqueous solution and are of the same order of magnitude of the Φ{sub F} found for viscous solvents such as n-hexanol and n-heptanol (0.014 and 0.015). Time-resolved fluorescence spectroscopy studies of adsorbed Auramine on clays revealed multi-exponential decays with components in the 25–36, 219–362 and 1300–1858 ps ranges. The short-lived components can be attributed to species bound to external surface and the longer lifetime is assigned to dye molecules in interlayer spaces interacting strongly with the clay. It seems clear that the binding of Auramine to clays causes a significant reduction of the rate of internal conversion that does involve rotational diffusion, so that the clay will be locked in a conformational geometry unfavourable for internal conversion. -- Highlights: ► Auramine O was dissolved in dispersions of different clays. ► The fluorescence quantum yields were higher than in aqueous solution. ► Decrease of the emission and triexponential decays were observed on SAz-1, LapRDS and SYn-1. ► On Swy-1 the decrease was slower and the decay monoexponential. ► The dye produces aggregates on the internal

  14. Relationship between soil texture and soil organic matter content on mined-out lands in Berau, East Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    WAHJUNI HARTATI

    2016-01-01

    Full Text Available Abstract. Hartati, Sudarmadji T. 2016. Relationship between soil texture and soil organic matter content on mined-out lands in Berau, East Kalimantan, Indonesia. Nusantara Bioscience 8: 83-88. Post open pit mining may in most cases leave unarable and degraded lands due to heavy soil disturbances and therefore reclamation efforts of such area should be addressed on the revitalization of the soil functions for plant growth. The capability of tropical humid soils, including post open pit mining soils, to support plant growth is largely determined by their organic matter content-nutrient pool, soil aggregation, microbial activity, etc. However, soil organic matter content is, to large extent, governed by the soil clay content which is most likely permanent. This may imply that the soil texture couple with soil organic matter content could be a sound measurement to assess the recovery stages of the mined-out lands in term of soil functions for plant growth. This research was conducted in three sites of reclamation area in Berau, East Kalimantan. Soil texture varied from moderately fine (35-40% clay to fine (40-50% clay and very fine (>50% clay for the BMO, SMO and LMO sites respectively. Soil clay eluviations were found in both of SMO (8 years old revegetation and BMO (>12 years old revegetation sites but not in LMO site. Soil organic matter content ranged from very low (12 and 8 years old revegetation when the organic matter content reaching its maximum. The very fine soil texture does not show clay eluviations process until > 12 years old revegetation even containing the highest organic C content and reaches its maximum at 8-10 years old revegetation.

  15. Dynamic properties of composite cemented clay

    Institute of Scientific and Technical Information of China (English)

    蔡袁强; 梁旭

    2004-01-01

    In this work,the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.

  16. Cobalt sorption in silica-pillared clays.

    Science.gov (United States)

    Sampieri, A; Fetter, G; Bosch, P; Bulbulian, S

    2006-01-03

    Silicon pillared samples were prepared following conventional and microwave irradiation methods. The samples were characterized and tested in cobalt sorption. Ethylenediammine was added before cobalt addition to improve the amount of cobalt retained. The amount of cobalt introduced in the original clay in the presence of ethylenediammine was the highest. In calcined pillared clays the cobalt retention with ethylenediammine was lower (ca. 40%). In all cases the presence of ethylenediammine increased twice the amount of cobalt sorption measured for aqueous solutions.

  17. 2 nd Mid-European Clay Conference

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The 2nd Mid-European Clay Conference (MECC'04) was held between 20-24th September 2004, in Miskolc, Hungary. The idea to hold common conferences was accepted by the national clay groups of four neighbouring countries, Poland, Slovakia, Hungary and Croatia, during the EUROCLAY Meeting in Cracow, Poland, in 1999. The first conference was held in 2001 at Stará Lesná, in the High Tatra Mts. in Slovakia.

  18. In situ clay formation : evaluation of a proposed new technology for stable containment barriers.

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Kathryn L. (University of Illinois at Chicago, Chicago, IL); DiGiovanni, Anthony Albert; Fredrich, Joanne T.

    2004-03-01

    Containment of chemical wastes in near-surface and repository environments is accomplished by designing engineered barriers to fluid flow. Containment barrier technologies such as clay liners, soil/bentonite slurry walls, soil/plastic walls, artificially grouted sediments and soils, and colloidal gelling materials are intended to stop fluid transport and prevent plume migration. However, despite their effectiveness in the short-term, all of these barriers exhibit geochemical or geomechanical instability over the long-term resulting in degradation of the barrier and its ability to contain waste. No technologically practical or economically affordable technologies or methods exist at present for accomplishing total remediation, contaminant removal, or destruction-degradation in situ. A new type of containment barrier with a potentially broad range of environmental stability and longevity could result in significant cost-savings. This report documents a research program designed to establish the viability of a proposed new type of containment barrier derived from in situ precipitation of clays in the pore space of contaminated soils or sediments. The concept builds upon technologies that exist for colloidal or gel stabilization. Clays have the advantages of being geologically compatible with the near-surface environment and naturally sorptive for a range of contaminants, and further, the precipitation of clays could result in reduced permeability and hydraulic conductivity, and increased mechanical stability through cementation of soil particles. While limited success was achieved under certain controlled laboratory conditions, the results did not warrant continuation to the field stage for multiple reasons, and the research program was thus concluded with Phase 2.

  19. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...

  20. Effects of Clay on Properties of Polycarboxylate Superplasticizer and Solutions

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; WANG Dongmin

    2015-01-01

    The inlfuence law of clay on mortar lfuidity mixed with polycarboxylate superplasticizer was studied. Several methods of inhibiting clay adsorption of polycarboxylate superplasticizer were discussed. The experimental results show that clay has signiifcant effect on the dispersion of polycarboxylate superplasticizer and montmorillonite clay has more signiifcant impact on mortar lfuidity than other clays. The pH value and the salts of the solution can affect the adsorption of clay to polycarboxylate superplasticizer. The incorporation of a small amount of sodium hydroxide solution, sodium silicate or cationic surfactants can improve the effect of the clay on the dispersion of polycarboxylate superplasticizer.

  1. Computer controlled chamber measurements for clay adherence relevant for potential dioxin exposure through skin.

    Science.gov (United States)

    Ferguson, Alesia; Bursac, Zoran; Johnson, Wayne; Davis, Jasmine

    2012-01-01

    A computer-controlled mechanical chamber was used to control the contact between aluminum sheet samples laden with clay, and cotton sheet samples for the measurement of mass transfer. The contact parameters of pressure (20 to 60 kPa) and time (10 to 70 sec) were varied for 160 multiple experiments of mass soil transfer. Before log transformation the average transfer for 'First Transfer' of clay particles was 34.4 ± 6.3 mg/8.97 cm(2) while that for 'Total Transfer' was 36.1 ± 6.8 mg/8.97 cm(2). Second contact, therefore, resulted in an average transfer of 1.70 ± 0.76 mg/8.97 cm(2). These values are well above adherence values measured for potting soil and sand as reported for previous experiments using the same methodologies. Based on the univariate analysis and the multiple regression analysis we were able to see some effect of parameters on the clay adherence values. The effect of pressure increases was significant for the higher levels of 50 and 60 kPa. In addition, we observed that increases in temperature were significant for 'First Transfer,' and less so for 'Total Transfer'. Past experiments using potting soil and play sand show high adherence values to human cadaver skin over cotton sample; the same scenario would be expected for clay. This data set can be used to improve estimates of dermal exposure to dioxins found in ball clays often used by artisans in the making of pottery.

  2. Transmission x-ray diffraction of undisturbed soil microfabrics obtained by microdrilling in thin sections

    NARCIS (Netherlands)

    Denaix, L.; Oort, van F.; Pernes, M.; Jongmans, A.G.

    1999-01-01

    Clay mineralogical studies by X-ray diffraction performed on extracted <2-μm fractions do not always represent all clay mineral constituents present in the soil. In this work, transmission X-ray diffraction (TXRD) was applied to undisturbed microsamples of optically homogeneous mineral soil fabrics

  3. Method of Numerical Modeling for Constitutive Relations of Clay

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to study the method of numerical modeling for constitutive relations of clay, on the basis of the principle of interaction between plastic volumetric strain and plastic generalized shear strain, the two constitutive functionals that include the function of stress path were used as the basic framework of the constitutive model, which are able to demonstrate the dependence of stress path.The two partial differential cross terms appear in the expression of stress-strain increment relation, which are used to demonstrate the interaction between plastic volumetric strain and plastic generalized shear strain.The elasoplastic constitutive models of clay under two kinds of stress paths, CTC and TC, have been constructed using the triaxial test results.The three basic characteristics of deformation of soils, pressure sensitivity, dilatancy, and dependence of stress path, are well explained using these two models.Using visualization, the three-dimensional surfaces of shear and volume strains in the whole stress field under stress paths of CTC and TC are given.In addition, the two families of shear and volumetric yield loci under CTC and TC paths are plotted respectively.By comparing the results of deformation under these two stress paths, it has been found that, there are obvious differences in the strain peaks, the shapes of strain surfaces, and the trends of variation of volumetric yield loci, however both families of shear yield loci are similar.These results demonstrate that the influences of stress path on the constitutive relations of clay are considerably large and not negligible.The numerical modeling method that can sufficiently reflect the dependence of stress path is superior to the traditional one.

  4. Fate and Tranport of MTBE in Clay-Rich Materials

    Science.gov (United States)

    lenczewski, m e

    2001-12-01

    A recent report by the U.S. Geological Survey identified methyl tert-butyl ether (MTBE), a constituent of reformulated gasoline, as the most common contaminant of urban aquifers in the United States. MTBE has been released into groundwater supplies by leaking underground fuel tanks. In Illinois, it has been found in 26 of the 1,800 public water supplies and although detection was intermittent, levels were high enough to be offensive to users in some Illinois communities. MTBE is also being used in Mexico to solve the problem of air quality; however, it has the potential to harm the drinking water quality in the process. Early research on MTBE considered it resistant to biodegradation and unable to adsorb to soils and sediments. However, recent evidence indicates that biodegradation does occur under certain conditions and that sorption can occur to organic materials. This research project will investigate the biodegradation of MTBE and its sorption to the clay-rich glacial till found in northern Illinois and lacustrine clays found in the Chalco Basin, Mexico City, Mexico whose interaction with MTBE has not previously been studied. The principal hypothesis of this research is that the microorganisms and environmental factors in clay-rich materials will increase the biodegradation and sorption of MTBE as compared to sandy materials. The experiments will simulate a spill of MTBE or downgradient from a gasoline spill. Microcosms and batch isotherm experiments will be used to demonstrate the potential for biodegradation and sorption in these materials; however, laboratory results are not considered reliable estimates of actual field sorption and biodegradation rates. Therefore long-term column experiments will also be conducted in which large sample volumes of material that simulate the heterogeneities naturally observed in the environment. This research will increase understanding of the biodegradation and sorption of MTBE and lay the necessary groundwork to implement

  5. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    Directory of Open Access Journals (Sweden)

    Feinan Hu

    Full Text Available Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+ at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.

  6. ESTIMATING SOIL PARTICLE-SIZE DISTRIBUTION FOR SICILIAN SOILS

    Directory of Open Access Journals (Sweden)

    Vincenzo Bagarello

    2009-09-01

    Full Text Available The soil particle-size distribution (PSD is commonly used for soil classification and for estimating soil behavior. An accurate mathematical representation of the PSD is required to estimate soil hydraulic properties and to compare texture measurements from different classification systems. The objective of this study was to evaluate the ability of the Haverkamp and Parlange (HP and Fredlund et al. (F PSD models to fit 243 measured PSDs from a wide range of 38 005_Bagarello(547_33 18-11-2009 11:55 Pagina 38 soil textures in Sicily and to test the effect of the number of measured particle diameters on the fitting of the theoretical PSD. For each soil textural class, the best fitting performance, established using three statistical indices (MXE, ME, RMSE, was obtained for the F model with three fitting parameters. In particular, this model performed better in the fine-textured soils than the coarse-textured ones but a good performance (i.e., RMSE < 0.03 was detected for the majority of the investigated soil textural classes, i.e. clay, silty-clay, silty-clay-loam, silt-loam, clay-loam, loamy-sand, and loam classes. Decreasing the number of measured data pairs from 14 to eight determined a worse fitting of the theoretical distribution to the measured one. It was concluded that the F model with three fitting parameters has a wide applicability for Sicilian soils and that the comparison of different PSD investigations can be affected by the number of measured data pairs.

  7. Premiminary tests on modified clays for electrolyte contaminated drilling fluids

    OpenAIRE

    den Hamer, Davina; Di Emidio, Gemmina; Bezuijen, Adam; Verastegui Flores, Daniel

    2015-01-01

    The quality of a bentonite suspension declines in aggre