WorldWideScience

Sample records for clay formation results

  1. Thermal Behaviour of clay formations

    International Nuclear Information System (INIS)

    Tassoni, E.

    1985-01-01

    The programme carried out by ENEA to model the thermal-hydraulic-mechanical behaviour of the clay formations and to measure, in situ and in laboratory, the thermal properties of these rocks, is presented. An in situ heating experiment has been carried out in an open clay quarry in the area of Monterotondo, near Rome. The main goal of the experiment was to know the temperature field and the thermal effects caused by the high level radioactive waste disposed of in a clayey geological formation. The conclusions are as follows: - the thermal conduction codes are sufficiently accurate to forecast the temperature increases caused in the clay by the dissipation of the heat generated by high level radioactive waste; - the thermal conductivity deduced by means of the ''curve fitting'' method ranges from 0.015 to 0.017 W.cm -1 . 0 C -1 - the temperature variation associated with the transport of clay interstitial water caused by temperature gradient is negligible. A laboratory automated method has been designed to measure the thermal conductivity and diffusivity in clay samples. A review of experimental data concerning thermomechanical effects in rocks as well as results of thermal experiments performed at ISMES on clays are presented. Negative thermal dilation has been found both in the elastic and plastic range under constant stress. Thermoplastic deformation appears ten times greater than the thermoelastic one. A mathematical model is proposed in order to simulate the above and other effects that encompass thermal-elastic-plastic-pore water pressure response of clays at high temperature and effective pressure with undrained and transient drainage conditions. Implementation of the two versions into a finite element computer code is described

  2. Study of radionuclide migration in clay formations

    International Nuclear Information System (INIS)

    Antonioli, F.; Bocola, W.

    1985-01-01

    This paper reports the studies on the migration of Cs, Sr and I in clay formations, which are presently considered for the geological disposal of radioactive wastes. The distribution and diffusion coefficients were evaluated by means of experimental techniques and computer procedures, which are presented in this report. The natural clays tested in the laboratory experiments were sampled from the most representative italian basins and from the zone of Mol (Belgium). In addition tests were performed on monomineral clays artificially remade in edometer. The experimental results are in accordance with data found in the literature and show the existence of a good correlation between the observed migration properties and the granulometric and mineralogic characteristics of the natural clays

  3. Repository tunnel construction in deep clay formations

    International Nuclear Information System (INIS)

    Clarke, B.G.; Mair, R.J.; Taylor, R.N.

    1992-01-01

    One of the objects of the Hades project at Mol, Belgium has been to evaluate the feasibility of construction of a deep repository in the Boom clay formation at depth of approximately 225 metres. The main objective of the present project was to analyse and interpret the detailed geotechnical measurements made around the Hades trial shaft and tunnel excavations and evaluate the safety of radioactive waste disposal in a repository facility in deep clay formations. Plasticity calculations and finite element analyses were used which gave results consistent with the in-situ measurements. It was shown that effective stress analysis could successfully predict the observed field behaviour. Correct modelling of the small-strain stiffness of the Boom clay was essential if reasonable predictions of the pore pressure response due to construction are to be made. The calculations undertaken indicated that, even in the long term, the pressures on the test drift tunnel lining are likely to be significantly lower than the overburden pressure. Larger long-term tunnel lining pressures are predicted for impermeable linings. A series of laboratory stress path tests was undertaken to determine the strength and stiffness characteristics of the Boom clay. The tests were conducted at appropriate effective stress levels on high-quality samples retrieved during construction of the test drift. The apparatus developed for the testing is described and the results discussed. The development of a self boring retracting pressure-meter is described. This novel in-situ testing device was specifically designed to determine from direct measurements the convergence/confinement curve relevant to tunnelling in clay formations. 44 refs., 60 figs., 3 tabs

  4. Impact-Induced Clay Mineral Formation and Distribution on Mars

    Science.gov (United States)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  5. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  6. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  7. Climatic control on clay mineral formation

    Indian Academy of Sciences (India)

    Many physico-chemical variables like rock-type,climate,topography and exposure age affect weathering environments.In the present study,an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering pro ...

  8. Comparative evaluation of clays from Abakaliki Formation with ...

    African Journals Online (AJOL)

    The characteristics of clays from Abakaliki Formation, Southeastern Nigeria was evaluated to establish its suitability as drilling mud when compared with commercial bentonite such as Wyoming bentonite. The chemical, mineralogical and geotechnical properties were employed in assessing the suitability of Abakaliki clay as ...

  9. Possibilities for the storage of radioactive waste in deep clay formations

    International Nuclear Information System (INIS)

    Le Pochat, G.; Lienhardt, M.J.; Peaudecerf, P.; Platel, J.P.; Simon, J.M.; Berest, P.; Charpentier, J.P.; Andre-Jehan, R.

    1984-02-01

    The possible storage sites in deep clay formations have been studied in parts of large French sedimentary basins which prima facie seem to have suitable characteristics. The most suitable areas were chosen on the basis of earlier oil prospecting data consisting of information on seismic movements, diagraphic well-logging data and old samples that happened to have been preserved. At the same time, the lithology of the clay formations can be determined from mineralogical studies on samples taken from boreholes or from outcrops. Before carrying out in situ experiments concerned with the geotechnical characterization of the deep clays, measurements were made in the laboratory on samples obtained in two ways: from tertiary clay outcrops and from cores taken at 950 m in the clay layers during oil well logging. The results of studies carried out on tertiary clays in Les Landes illustrate this procedure

  10. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  11. Stochastic Dynamics of Clay Translocation and Formation of Argillic Horizons

    Science.gov (United States)

    Calabrese, S.; Richter, D. D., Jr.; Porporato, A. M.

    2017-12-01

    The formation of argillic horizons in vertical soil profiles is mainly attributed to lessivage, namely the transport of clay from an upper E horizon to a deeper illuviated horizon. Because of the long timescales involved in this phenomenon, quantitative modeling is useful to explore the role of clay lessivage on soil formation and sub-surface clay accumulation. The limitations of detailed models of colloidal transport to short timescales make it necessary to resort to simple models. Here, we present a parsimonious model of clay transport in which lessivage is interpreted stochastically. Clay particles approach the soil surface at a speed equal to the erosion rate and are intermittently transported to deeper soil layers when percolation events occur or removed by erosion. Along with the evolution of clay particles trajectories, the model predicts the vertical clay profile, the depth of the B horizon, and the mean time to erosion. Dimensional analysis reveals the two dimensionless parameters governing the dynamics, leading to a new classification of soil types based on erosion rates and intensity of lessivage.

  12. Numerical Analysis of Diaphragm Wall Model Executed in Poznań Clay Formation Applying Selected Fem Codes

    Directory of Open Access Journals (Sweden)

    Superczyńska M.

    2016-09-01

    Full Text Available The paper presents results of numerical calculations of a diaphragm wall model executed in Poznań clay formation. Two selected FEM codes were applied, Plaxis and Abaqus. Geological description of Poznań clay formation in Poland as well as geotechnical conditions on construction site in Warsaw city area were presented. The constitutive models of clay implemented both in Plaxis and Abaqus were discussed. The parameters of the Poznań clay constitutive models were assumed based on authors’ experimental tests. The results of numerical analysis were compared taking into account the measured values of horizontal displacements.

  13. Effects of natural heating on a clay formation

    International Nuclear Information System (INIS)

    Polizzano, C.; Sensi, L.; Leoni, L.; Sartori, F.

    1985-01-01

    As a contribution to the characterization of clay deposits as possible sites for nuclear waste disposal, the metamorphic effects induced on Pliocene argillaceous sediments by the small subvolcanic body of Orciatico (Tuscany, Italy) were investigated. In areas close to marginal facies of the magmatic body, where temperatures were presumably ranging from 100 to 500 0 C, the thermo-metamorphic aureole thickness doesn't exceed 2 meters. In this zone the clay fraction (45-69% of the bulk rock) changes from an illite+illite/smectite interstratified+vermiculite+chloritic intergrades assemblage to a paragenesis characterized only by illite+smectite, the later being the most stable phase among the clay minerals. Within such zone alkalis (Na,K, and Rb) and alkaline-earths (Ca and Sr) result to be the most highly mobilized elements

  14. Geotechnical aspects of tunnel construction in deep clay formations for radioactive waste disposal

    International Nuclear Information System (INIS)

    De Moor, E.K.

    1987-01-01

    The significant factors affecting the construction of tunnels in deep clay formations for radioactive waste disposal were outlined. Two aspects of tunneling were discussed; the feasibility of tunnel construction and changes in pore water pressure that might occur with time. Some results of model tunnel tests and analyses were presented. (U.K.)

  15. Study of delayed behaviour of clays in deep geologic formations

    International Nuclear Information System (INIS)

    Rousset, G.; Bazargan, B.; Ouvry, J.F.; Bouilleau, M.

    1993-01-01

    This study is a cost-sharing contract with the European Atomic Energy Community within the framework of Research and Development Program on Management, Storage and Radioactive Waste Disposal. The aim of the work presented in this report is to study the time-dependent behaviour of deep clays in Laboratory or in situ, by means of tests of similar geometry, in order to get easy comparisons and to study scale effect. The cylindrical geometry has been chosen as it resembles in situ works (tunnels, galleries) more closely. The first part of the study concerns a new test on hollow-cylinder. The experimental system, set up specially for this study, has allowed to conduct experiments in which 3 loading parameters may be controlled independently. Different types of experiments can therefore be conducted to study various aspects of mechanical behavior of rocks. A comprehensive experimental program was conducted in the particular case of Boom clay. In the second part of the report devoted to in situ creep or relaxation dilatometer tests, by using new techniques or loading paths, it was shown that time-dependent convergence of boreholes can reach significant values, and is dependent on the direction of the borehole. The anisotropy of the initial state of stress was also put in evidence. The proposed constitutive model (part III) appears to be very suitable to explain the behavior of the Boom clay, in view of the experimental results. In particular, the scale effect is low for Boom clay. 15 refs., 58 figs., 10 tabs

  16. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Gainey, Seth R.; Hausrath, Elisabeth M.; Adcock, Christopher T.; Tschauner, Oliver; Hurowitz, Joel A.; Ehlmann, Bethany L.; Xiao, Yuming; Bartlett, Courtney L. (CIW); (UNLV); (CIT); (SBU)

    2017-11-01

    Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe3+ with small amounts of aqueous Mg2+. Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars.

  17. Surface Assisted Formation of methane Hydrates on Ice and Na Montmorillonite Clay

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teich-McGoldrick, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cygan, Randall Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    Methane hydrates are extremely important naturally-occurring crystalline materials that impact climate change, energy resources, geological hazards, and other major environmental issues. Whereas significant experimental effort has been completed to understanding the bulk thermodynamics of methane hydrate assemblies, little is understood on heterogeneous nucleation and growth of methane hydrates in clay-rich environments. Controlled synthesis experiments were completed at 265-285 K and 6.89 MPa to examine the impact of montmorillonite surfaces in clay-ice mixtures to nucleate and form methane hydrate. The results suggest that the hydrophilic and methane adsorbing properties of Namontmorillonite reduce the nucleation period of methane hydrate formation in pure ice systems.

  18. R and D programme on radioactive waste disposal into a clay formation

    International Nuclear Information System (INIS)

    Heremans, R.

    1984-01-01

    The present report presents the main results obtained during the period 1980-82 in the Belgian R and D work on geological disposal of conditioned radioactive waste in the boom clay beneath the Mol site. Multiple research projects have been continued: both experimental research in the field and in the laboratory and theoretical studies. A regional hydrological observation network has been set up which permitted an assessment of the hydrogeological system over- and underlying the Boom clay as well as the modelling of groundwater flow in the area. Clay samples collected during the drilling campaigns were submitted to a number of analyses with a view to chemical characterization and determination of geotechnical properties. Various studies were performed concerning the migration of radionuclides through the clay and an analytical computer model was developed. The corrosion behaviour of various candidate materials for HLW containers and repository linings were tested under different conditions possibly encountered in the clay formation. Furthermore, various backfill and sealing materials and mixtures have been selected and are being tested. Finally, the activities deployed for the safety analysis were continued, mainly concentrated upon two approaches: the probabilistic risk assessment and the performance assessment of a mined repository under normal evolution conditions

  19. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    Science.gov (United States)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  20. Climatic control on clay mineral formation: Evidence from ...

    Indian Academy of Sciences (India)

    due to the high water-to-rock ratio at the rock– atmosphere interface. Thus, thermodynamically unstable silicates undergo incongruent dissolution to form clays during weathering process. Clays respond to their chemical and thermal environment and their properties and species change accordingly. (Velde 1992, p. 3).

  1. Climatic control on clay mineral formation: Evidence from ...

    Indian Academy of Sciences (India)

    Many physico-chemical variables like rock-type,climate,topography and exposure age affect weathering environments.In the present study,an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering pro ...

  2. Mud peeling and horizontal crack formation in drying clays

    KAUST Repository

    Style, Robert W.

    2011-03-01

    Mud peeling is a common phenomenon whereby horizontal cracks propagate parallel to the surface of a drying clay. Differential stresses then cause the layer of clay above the crack to curl up to form a mud peel. By treating the clay as a poroelastic solid, we analyze the peeling phenomenon and show that it is caused by the gradient in tensile stress at the surface of the clay, analogously to the spalling of thermoelastic materials. For a constant water evaporation rate at the clay surface we derive equations for the depth of peeling and the time of peeling as functions of the evaporation rate. Our model predicts a simple relationship between the radius of curvature of a mud peel and the depth of peeling. The model predictions are in agreement with the available experimental data. Copyright 2011 by the American Geophysical Union.

  3. Preparation and characterization of bentonite clay for formation of nanocomposites

    International Nuclear Information System (INIS)

    Santos, J.J.M.; Silva, B.L.; Araujo, I.J.C.; Medeiros, A.M.; Melo, J.D.D.; Paskocimas, C.A.

    2011-01-01

    This study we used the linear medium density polyethylene (PELMD) as polymer matrix and introduced, as reinforcement to increase the mechanical and thermal properties, the green bentonite deposit of Boa Vista/PB, rich montmorillonite (MMT), previously characterized by XRD, that passed by three stages of purification. The first stage was to clean by washing and filtering for removal of coarse material (sand and organic matter), followed by an acid attack. In the second, we used the quaternary ammonium surfactant, in order to increase the distance between the layers of MMT, and the third was removed from the wastewater, using absolute ethanol, finishing the purification of process. Then, the clay was introduced into the polymer matrix by polymerization in solution by intercalation and characterized by XRD. The results showed a partial exfoliation, satisfying the increasing properties. (author)

  4. Performance assessment of an alpha waste deposit in a clay formation

    International Nuclear Information System (INIS)

    Quercia, F.; D'Alessandro, M.; Saltelli, A.

    1987-01-01

    The probabilistic code LISA (Long term Isolation Safety Assessment) has been used to assess the risk related to the disposal of alpha waste in a geological formation. The code has been modified to take into account waste form properties and leaching processes pertinent to alpha waste produced at fuel reprocessing plants. The exercise refers to a repository in a deep clay formation located at Harwell (U.K.) where some hydrogeological data were available. Radionuclide migration through repository and geological barriers has been simulated together with biosphere contamination. Results of the assessment are presented as dose rate (or risk) distributions; a sensitivity analysis on input parameters has been performed

  5. Micro-fabric damages in Boom Clay inferred from cryo-BIB-SEM experiment: recent results

    Science.gov (United States)

    Desbois, Guillaume; Schmatz, Joyce; Klaver, Jop; Urai, Janos L.

    2017-04-01

    The Boom Clay is considered as a potential host rock in Belgium for nuclear waste disposal in a deep geological formation. One of the keys to understand the long-term performance of such a host rock is the fundamental understanding of coupling between microstructural evolution, poromechanical behaviour and the state of hydration of the system. At in situ conditions, Boom Clay is a nearly water-saturated (>94%) clay-rich geomaterial. Subsequently, for measurement of mechanical and transport properties in laboratory, cores of Boom Clay are vacuum-packed in Al-coated-poly-ethylene barrier foil to be best preserved at original hydric state. Because clay microstructures are very sensitive to dehydration, the validity of investigations done on such preserved or/and dried samples is often questionable. Desbois et al. (2009, 2013, 2014) showed the possibility to image fluid-filled porosity in Boom Clay, by using the FIB-cryo-SEM (FIB: Focussed Ion Beam) and FIB-cryo-SEM (BIB: Broad Ion Beam) techniques. However, surprisingly in Desbois et al. (2014), BIB-cryo-SEM experiments on Boom Clay, shown that the majority of the pores were fluid-free, contrasting with result in Desbois et al. (2009). In Desbois et al. (2014), several reasons were discussed to explain such discrepancies. The likely ones are the sealing efficiency of the Al-barrier foil at long term and the volume expansion due to the release of in-situ stress after core extraction, contributing both to dehydration and microfabric damage. This contribution presents the newest results based on cryo-BIB-SEM. Small pieces (30 mm3) of Boom Clay were preserved in liquid nitrogen after the core extraction at the MOL/Dessel Underground Research Laboratory in Belgium. A maximum of ten minutes time span was achieved between opening the core, the sub-sample extraction and the quenching of sub-samples in liquid nitrogen. First results show that all pores visible at cryo-SEM resolution are water saturated. However, water

  6. Rare earth elements distribution in clay zones of sedimentary formation, Pondicherry, south India

    International Nuclear Information System (INIS)

    Tirumalesh, K.; Gursharan Singh

    2012-01-01

    Concentrations of five rare earth elements (REE) were measured in clay samples of a deep bore hole comprising major aquifers of Pondicherry region, south India in order to investigate the geochemical variations among various litho-units. Clay samples from Cretaceous formation show distinct gray to black color whereas Tertiary deposits have clays with color varying from pale yellow to brown to gray. All measured REEs exhibit lower concentrations than Upper Continental Crust (UCC) average values. Large variations in REEs contents were observed in different sedimentary formations (Tertiary and Cretaceous). Chondrite normalized ratio of La/Lu and Eu/Eu* indicate that the clays are derived from weathering of felsic rock and possibly under humid climate. All the samples showed positive Eu anomaly in North American Shale Composite (NASC) normalized plot which shows plagioclase feldspar as the major contributor to these clays. Positive Eu anomaly is also an indication of reduced condition of the formation. (author)

  7. Method and apparatus for determining characteristics of clay-bearing formations

    International Nuclear Information System (INIS)

    Fertl, W.H.; Ruhovets, N.

    1986-01-01

    This invention relates to methods and apparatus for determining characteristics of clay-bearing geological formations by radioactivity well logging. In its broadest aspect, the invention comprises the steps of determining the volume of clay contained in the earth formations; determining a first property of the formations functionally related to the volume of clay; and determining a second property functionally related to the first property, the second property indicating potential clay swelling. In particular, the volume of clay is determined using electrical signals generated in response to the energy and frequency of detected radiations. The method is carried out with a well logging instrument that includes a high-resolution gamma ray spectrometer that traverses a borehole, whereby natural radiation strikes a scintillation crystal contained therein

  8. Determination of geochemical characters of insterstitial waters of pleistocene Italian clay formations

    International Nuclear Information System (INIS)

    Fontanive, A.; Gragnani, R.; Mignuzzi, C.; Spat, G.

    1985-01-01

    The geochemical characters of clay formations and of their pore water are fundamental with regards to the mobility of the radionuclides as well as to the corrosion processes on enginered barriers. Experimental researches have been carried out in different types of clay, which represent Italian formations, for the characterization of pore water. A squeezer system, which reaches 1500 Kg/cm 2 in pressure, and an analytical micro-scale methodology, for the determination of dissolved constituents in pore water, were set up. The extracted pore water ranges from 60% to 85% in relation to consolidation state of clay. The chemical composition of the extracted fluid has been checked during the squeezing. During this step the observed variations were smaller than those between the different specimens of the same sample. The comparison between the results obtained by squeezing and by a multiple washing technique, using increasing water/sediment ratios, shows that the last one does not give reliable results on the chemical composition of pore water. This is due to the presence of easily weatherable minerals and to the exchange processes between the clayey minerals and the solution. Nevertheless both these techniques have supplied complementary information about geochemical processes in water-rock interaction. The salinity of pore water ranges from 0.45 g/l to 24.5 g/l and the chemism always shows a high content of calcium-magnesium sulfate, or sodium chloride or calcium-magnesium-sulfate with sodium chloride. The correlation between geochemical composition of pore water and mineralogical composition of clay is not significant

  9. Technetium migration in Boom Clay - Assessing the role of colloid-facilitated transport in a deep clay formation

    International Nuclear Information System (INIS)

    Bruggeman, C.; Martens, E.; Maes, N.; Jacops, E.; Van Gompel, M.; Van Ravestyn, L.

    2010-01-01

    Document available in extended abstract form only. The role of colloids - mainly dissolved natural organic matter (NOM, 50-150 mg/l) - in the transport of radionuclides in the Boom Clay formation (Mol, Belgium), has long since been a matter of (heavy) debate. For more than 20 years, batch experiments with Boom Clay suspensions showed a pronounced influence of the dissolved organic carbon concentration on the aqueous concentrations of different radionuclides like Tc, Np, Am and U. Moreover, small fractions of these radionuclides were also observed to elute almost un-retarded out of confined clay cores in percolation experiments. In the past years, a new conceptual model for the speciation of the long-lived fission product Technetium- 99 ( 99 Tc) under Boom Clay conditions has been drafted. In brief, the stable oxidation state of 99 Tc in these conditions is +IV, and, therefore, Tc solution concentrations are limited by the solubility of TcO 2 .nH 2 O(s). However, during reduction of TcVII (in the TcO 4 - form) to TcIV, precursor TcO 2 .nH 2 O colloids are formed, which are stabilised by the dissolved organic matter present in Boom Clay interstitial pore water, and in supernatants of Boom Clay batch suspensions. Moreover, this stabilisation process occurs in such a systematic way, that (conditional) interaction constants could be established, and the behaviour was described as a 'hydrophobic sorption', or, more accurately, a 'colloid-colloid' interaction. This conceptual model was implemented into PHREEQC geochemical and Hydrus transport code to come to a reactive transport model that was used to simulate both the outflow and the tracer profile in several long-term running percolation experiments (both in lab and under in situ conditions). To account for slow dissociation kinetics of Tc from the NOM colloid, a first-order kinetic rate equation was also added to the model. In order to describe the migration of colloidal particles (NOM), an

  10. Biogeochemical processes in a clay formation in situ experiment: Part E - Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Pearson, F.J.; Tournassat, Christophe; Gaucher, Eric C.

    2011-01-01

    Highlights: → Equilibrium models of water-rock reactions in clay rocks are reviewed. → Analyses of pore waters of the Opalinus Clay from boreholes in the Mont Terri URL, Switzerland, are tabulated. → Results of modelling with various mineral controls are compared with the analyses. → Best agreement results with calcite, dolomite and siderite or daphnite saturation, Na-K-Ca-Mg exchange and/or kaolinite, illite, quartz and celestite saturation. → This approach allows calculation of the chemistry of pore water in clays too impermeable to yield water samples. - Abstract: The chemistry of pore water (particularly pH and ionic strength) is an important property of clay rocks being considered as host rocks for long-term storage of radioactive waste. Pore waters in clay-rich rocks generally cannot be sampled directly. Instead, their chemistry must be found using laboratory-measured properties of core samples and geochemical modelling. Many such measurements have been made on samples from the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL). Several boreholes in that URL yielded water samples against which pore water models have been calibrated. Following a first synthesis report published in 2003, this paper presents the evolution of the modelling approaches developed within Mont Terri URL scientific programs through the last decade (1997-2009). Models are compared to the composition of waters sampled during dedicated borehole experiments. Reanalysis of the models, parameters and database enabled the principal shortcomings of the previous modelling efforts to be overcome. The inability to model the K concentrations correctly with the measured cation exchange properties was found to be due to the use of an inappropriate selectivity coefficient for Na-K exchange; the inability to reproduce the measured carbonate chemistry and pH of the pore waters using mineral-water reactions alone was corrected by considering clay mineral equilibria. Re

  11. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    Directory of Open Access Journals (Sweden)

    Li X.L.

    2010-06-01

    Full Text Available Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure, or it can be an indirect technique, deriving the stress from related quantities such as strain (changes in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter. Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  12. Clay colloid formation and release from MX-80 buffer

    International Nuclear Information System (INIS)

    Pusch, R.

    1999-12-01

    Flowing groundwater can tear off clay colloids from buffer clay that has penetrated into fractures and transport them and bring sorbed radionuclides up to the biosphere. The colloids are 2-50 μm particle aggregates that are liberated from expanded, softened buffer if the water flow rate in the fractures exceeds a few centimeters per second. Except for the first few months or years after application of the buffer in the deposition holes the flow rate will not be as high as that. The aperture of the fractures will not hinder transport of colloids but most of the fractures contain clastic fillings, usually chlorite, that attract and immobilize them. This condition and the flow rate criterion combine to reduce the chance of radionuclide-bearing clay colloids to reach the biosphere to practically zero except for certain cases that need to be considered

  13. Selection of a site adapted to the realization of an underground laboratory in clay formations

    International Nuclear Information System (INIS)

    Benvegnu, F.

    1984-01-01

    Research carried out in Italy by ENEA for site selection of an underground laboratory in a clay formation are presented. Mine roadways, abandoned tunnels, natural or artificial escarpments are prospected. The Pasquasia potash mine in Sicily was selected. The decline reach the lower pliocen starta from -110m to -200m below surface through a clay formation. The site selected for the laboratory is 160 m deep. A 50 meter-long horizontal tunnel will be dug. Experiments planned include thermal, hydrological, mechanical and thermomechanical behavior of clays. Data on temperature variations, interstitial fluid pressure, total pressure, deformations produced by a heater placed in clay will be obtained. Data related to mechanical behavior of formation will be recorded before, during and after the construction of the gallerie. Convergence of borehole will be also studied

  14. Clay mineral formation and fabric development in the DFDP-1B borehole, central Alpine Fault, New Zealand

    International Nuclear Information System (INIS)

    Schleicher, A.M.; Sutherland, R.; Townend, J.; Toy, V.G.; Van der Pluijm, B.A.

    2015-01-01

    Clay minerals are increasingly recognised as important controls on the state and mechanical behaviour of fault systems in the upper crust. Samples retrieved by shallow drilling from two principal slip zones within the central Alpine Fault, South Island, New Zealand, offer an excellent opportunity to investigate clay formation and fluid-rock interaction in an active fault zone. Two shallow boreholes, DFDP-1A (100.6 m deep) and DFDP-1B (151.4 m) were drilled in Phase 1 of the Deep Fault Drilling Project (DFDP-1) in 2011. We provide a mineralogical and textural analysis of clays in fault gouge extracted from the Alpine Fault. Newly formed smectitic clays are observed solely in the narrow zones of fault gouge in drill core, indicating that localised mineral reactions are restricted to the fault zone. The weak preferred orientation of the clay minerals in the fault gouge indicates minimal strain-driven modification of rock fabrics. While limited in extent, our results support observations from surface outcrops and faults systems elsewhere regarding the key role of clays in fault zones and emphasise the need for future, deeper drilling into the Alpine Fault in order to understand correlative mineralogies and fabrics as a function of higher temperature and pressure conditions. (author).

  15. Distribution and origin of protodolomite from the late Miocene-Pliocene Red Clay Formation, Chinese Loess Plateau

    Science.gov (United States)

    He, Tong; Chen, Yang; Balsam, William; Sheng, Xuefeng; Liu, Lianwen; Chen, Jun; Ji, Junfeng

    2012-06-01

    The Pliocene epoch is considered the most recent analog of modern warming because CO2levels were similar to the present. To explore the carbonate minerals formed in the warmer Pliocene epoch, we studied two continuous sections of the Red Clay Formation on the Chinese Loess Plateau (CLP) by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Stable Isotope Mass Spectrometry. The Red Clay Formation on the CLP exhibits diagnostic FTIR absorption features of calcite and protodolomite. This allowed quantification of the two carbonate minerals by the FTIR method. Using the FTIR method we estimate the average concentration of protodolomite in Bajiazui is 3.6% whereas the Duanjiapo section is 6.0%. Protodolomite occurrence is more consistent and the concentration is higher from ˜6.5-4.2 Ma B.P. and decreases markedly from 4.2-2.6 Ma B.P. Red Clay protodolomite is depleted in bothδ13CPDB and δ18OPDB, ranging from -4.1‰ to -10.4 and from -6.7‰ to -11.6, respectively, and has a slightly higher δ18O value than the calcites. SEM observations show that Red Clay protodolomite is composed of euhedral rhombic crystals that range from 1-20 μm in diameter, grow into the soil voids and coexist with authigenic calcite and palygorskite. These observations imply that the protodolomite grew in situ and is authigenic from pedogenesis. Dolomitization in the Red Clay sequence appears to be the result of overcoming kinetic barriers. We propose that in the Red Clay a warm climate with seasonal dry conditions leads to the formation of calcrete from soil pore waters thereby enriching the pore solutions with respect to Mg2+ and significantly increasing the Mg/Ca ratio bringing about the formation of protodolomite.

  16. Hydro-mechanical behaviour of two reference Belgian clay formations under non-isothermal conditions

    International Nuclear Information System (INIS)

    Lima, A.; Romero, E.; Gens, A.; Li, X.L.

    2012-01-01

    Document available in extended abstract form only. Two deep clay formations are being investigated in Belgium in connection with the design of a repository for 'High-Level Radioactive Waste': Boom clay BC at Mol (located between 160 and 270 m depths), considered the reference host formation, and Ypresian clay YC at Kallo (located between 300 and 450 m depths) as an alternative one. A comprehensive experimental programme has been carried out on these materials to explore water permeability at different temperatures and sample orientations, as well as to analyse volume change behaviour on loading/unloading at different temperatures and sample orientations (including pre and post-yield compressibility, yield properties and volume changes on drained thermal loading). Table 1 summarises some properties of BC and YC. Figure 1 presents the pore size distribution PSD curves of both clays obtained by mercury intrusion porosimetry. They display contrasting features (bi-modal pore network in YP with larger dominant pore sizes). Larger water permeability values are expected on YC as indicated in Table 1 and Figure 2, not only as a consequence of its higher void ratio but also due to these double porosity features. Water retention properties, of particular concern on sample retrieval from large depths, are also affected due to desaturation processes that are associated with the double porosity network of YP and its effects on air-entry value (a lower initial suction is measured on YP, despite being retrieved from larger depths). Figure 2 shows vertical and horizontal water permeability results under constant volume conditions and different temperatures. BC and YC display small anisotropy at sample scale - permeability is slightly larger on horizontal direction-. With regard to temperature effects, the figure shows that water permeability dependency on temperature in YC is slightly higher than the water viscosity prediction for both orientations. Instead BC displayed a thermal

  17. Method for the determination of clay and mica concentrations in subsurface sandstone formations through radioactive logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1984-01-01

    A method is described for radioactivity well logging in a subsurface sandstone formation penetrated by a borehole. The invention relates particularly to clay and mica contents, which are determined from the natural gamma-ray activities. The natural sources of gamma radiation in the formation, are the trace elements thorium, uranium and potassium. (U.K.)

  18. Physicochemical Properties, Micromorphology and Clay Mineralogy of Soils Affected by Geological Formations, Geomorphology and Climate

    Directory of Open Access Journals (Sweden)

    A. Bayat

    2017-01-01

    Neogene conglomerates are among dominant geological formations of piedmont plain. Eleven pedons affected by young Quaternary sediments, Neogene and Cretaceous marls in aridic, aridic border to xeric, and xeric moisture regimes on above-mentioned geomorphic surfaces were described and sampled using Natural Resources Conservation Service (2012 guideline. Physicochemical properties, clay mineralogy, and micromorphology of soil samples investigated and soils were classified by Soil Taxonomy (2014 and WRB (2015 systems. Results and Discussion: Calcic, gypsic, argillic, and cambic diagnostic horizons investigated after field and laboratory studies. Typic Calcigypsids, Lithic Torriorthents, Typic Haplogypsids, Typic Haplocalcids, Typic Torrifluvents, Sodic Haplocambids, Typic Calciargids, and Xeric Haplocalcids subgroups were found using Soil Taxonomy (2014 system. Gypsisols, Calcisols, Luvisols, Cambisols, and Regosols reference soil groups identified by WRB (2015 classification system. Developed Alfisols, formed on piedmont plain geomorphic surface in xeric moisture regime. On the other hand, Entisols formed on rock pediments with aridic moisture regime. Soils in aridic moisture regimes were little developed with gypsic horizon, and where calcic horizon was formed, it was near the surface. Moving to the west with increasing humidity, gypsum was leached from the pedon and clay illuviation caused argillic horizon to be formed. Formation of Btk horizon in pedon 9 was attributed to a more paleoclimate. The maximum gypsum content of 44.7 % (gypsiferous soils was found in soils affected by Quaternary formations and Cretaceous marls, but the maximum calcium carbonate (44 %, calcareous soils was investigated in soils formed on Neogene conglomerate formations. Moreover, the maximum sodium adsorption ratio (SAR content (29.2 (mmol(± L-10.5 was determined for soils on unstable surface of alluvial plain. Smectite, vermiculite, illite, kaolinite, and chlorite clay minerals were

  19. Clay mineralogy of the Boda Claystone Formation (Mecsek Mts., SW Hungary)

    Science.gov (United States)

    Németh, Tibor; Máthé, Zoltán; Pekker, Péter; Dódony, István; Kovács-Kis, Viktória; Sipos, Péter; Cora, Ildikó; Kovács, Ivett

    2016-04-01

    Boda Claystone Formation (BCF) is the host rock of the planned site for high level nuclear waste repository inHungary. Samples representing the dominant rock types of BCF were studied: albitic claystone, claystone with high illite content, and analcime bearing claystone. Clay minerals in these three rock types were characterized by Xray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal analysis (DTA-TG), and the results were discussed from the point of view of the radionuclide sorption properties being studied in the future. Mineral compositions of bulk BCF samples vary in wide ranges. In the albitic sample, besides the dominant illite, few percent of chlorite represents the layer silicates in the clay fraction. Illite is the dominating phase in the illitic sample, with a few percent of chlorite. HRTEM study revealed that the thickness of illite particles rarely reaches 10 layers, usually are of 5-6 TOT layer thick. Illite crystals are generally thicker in the albitic sample than in the illitic one. The significant difference between the clay mineral characterisitics of the analcimous and the other two samples is that the former contains regularly interstratified chlorite/smectite beside the dominant illite. Based on the structural and chemical data two illite type minerals are present in the BCF samples: 1M polytype containing octahedral Fe and Mg besides Al, 2M polytype illite generally is free of Fe andMg. Close association of very thin illite plates and nanosized hematite crystals is typical textural feature for BCF. The goal of this study is to provide solid mineralogical basis for further studies focusing on radionuclide sorption properties.

  20. Evaluation of radiological safety assessment of a repository in a clay rock formation

    International Nuclear Information System (INIS)

    1999-01-01

    This report presents a comprehensive description of the post-closure radiological safety assessment of a repository for the spent fuel arisings resulting from the Spanish nuclear program excavated in a clay host rock formation. In this report three scenarios have been analysed in detail. The first scenario represents the normal in detail. The first scenario represents the normal evolution of the repository (Reference Scenario); and includes a set of variants to investigate the relative importance of the various repository components and examine the sensitivity of the performance to parameters variations. Two altered scenarios have also been considered: deep well construction and poor sealing of the repository. This document contains a detailed description of the repository system, the methodology adopted for the scenarios generation, the process modelling approach and the results of the consequences analysis. (Author)

  1. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    Science.gov (United States)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  2. Functionalization and formation of drinking water filter rod from lignite with zeolite, bentonite, and clay

    Directory of Open Access Journals (Sweden)

    Sumrit Mopoung

    2016-03-01

    Full Text Available A drinking water filter rod was functionalized and formed from a starting mixture of lignite, zeolite, bentonite, and clay. The formation of the filter was studied focusing on the effects of zeolite dosage and sintering temperature in a reducing atmosphere. The sintered filters were characterized by XRD, FTIR, and SEM-EDS. The physical and chemical properties of filters were measured. The results showed that the firing shrinkage, the total shrinkage and hardness increased with increasing sintering temperature. However, mass yield and fixed carbon decreased with increasing sintering temperature. The functional surface groups of the sintered filter exhibited a high content of aluminosilicates and carbon, which were derived from all starting materials. The macropores of sintered filter had dimensions of the channels between particles in the range of 0.2-2 µm.

  3. The HADES project - ten years of civil engineering practice in a plastic clay formation

    International Nuclear Information System (INIS)

    De Bruyn, D.J.; Neerdael, B.A.

    1991-01-01

    Various civil engineering works and underground experiments have been performed during the last ten years in Belgium to assess the technical feasibility of building a repository for high level waste (HLW) disposal in a plastic clay formation; they lead to the conclusion that the construction of tunnels for this purpose may now be considered as technically and economically feasible. (author)

  4. Early-middle Eocene birds from the Lillebaelt Clay Formation of Denmark

    DEFF Research Database (Denmark)

    Lindow, Bent Erik Kramer

    2009-01-01

    The marine Lillebaelt Clay Formation of central Denmark is of early-middle Eocene age (late Ypresian - middle Lutetian; microfossil zones NP 13-NP 15). Over 20 bird fossils collected by amateur palaeontologists have been acquired through the Danish national ‘Danekrae' fossil treasure trove...

  5. Methane Hydrate Formation and Dissociation in the Presence of Silica Sand and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Kumar Saw V.

    2015-11-01

    Full Text Available The formation and dissociation of methane hydrates in a porous media containing silica sand of different sizes and bentonite clay were studied in the presence of synthetic seawater with 3.55 wt% salinity. The phase equilibrium of methane hydrate under different experimental conditions was investigated. The effects of the particle size of silica sand as well as a mixture of bentonite clay and silica sand on methane hydrate formation and its dissociation were studied. The kinetics of hydrate formation was studied under different subcooling conditions to observe its effects on the induction time of hydrate formation. The amount of methane gas encapsulated in hydrate was computed using a real gas equation. The Clausius-Clapeyron equation is used to estimate the enthalpy of hydrate dissociation with measured phase equilibrium data.

  6. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution: The possible role of montmorillonite clays

    Science.gov (United States)

    Ferris, James P.; Ertem, Gözen; Kamaluddin; Agarwal, Vipin; Hua, Lu Lin

    The binding of adenosine to Na+-montmorillonite 22A is greater than 5'-AMP, at neutral pH. Adenine derivatives bind more strongly to the clay than the corresponding uracil derivatives. These data are consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. Other forces must be operative in the binding of uracil derivatives to the clay since the uracil ring system is not basic. The reaction of the 5'-AMP with water soluble carbodiimide in the presence of Na+-montmorillonite results in the formation of 2',5'-pApA (18.9%), 3',5'-pApA (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5',-pApA (15.5%), 3',5'-pApA (3.7%) and AppA (14.9%). The cyclic nucleotide, c(pA)2 is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. When 2'-deoxy-5'-AMP reacts with carbodiimide in the presence of Na+-montmorillonite 22A the products are dpApA (4.8%), dAppApA (4.5%) and dAppA (17.4%). Cyclic 3',5'-dAMP is the main product (14%) of the reaction of 2'-deoxy-3'-AMP.

  7. Possibility of disposing of conditioned nuclear waste in deep-lying clay formations

    International Nuclear Information System (INIS)

    Bonne, A.; Heremans, R.; Vandenberghe, N.

    1980-01-01

    Among the host rock types suitable for final disposal of nuclear waste, argillaceous formations display distinct advantages and disadvantages. In the present paper some of them will be examined. In order to render conceivable the possibilities for disposing of radwastes into a plastic clay formation, some main items of the Belgian R and D-programme in that matter will be discussed (site and rock investigation, conceptual design and feasibility, and risk analysis). (Auth.)

  8. Subsurface water and clay mineral formation during the early history of Mars.

    Science.gov (United States)

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-02

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

  9. Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: DFT and FTIR studies

    Science.gov (United States)

    Gu, Cheng; Liu, Cun; Johnston, Cliff T.; Teppen, Brian J.; Li, Hui; Boyd, Stephen A.

    2011-01-01

    Octachlorodibenzodioxin (OCDD) forms spontaneously from pentachlorophenol (PCP) on the surfaces of Fe(III)-saturated smectite clay (1). Here, we used in situ FTIR methods and quantum mechanical calculations to determine the mechanism by which this reaction is initiated. As the clay was dehydrated, vibrational spectra showed new peaks that grew and then reversibly disappeared as the clay rehydrated. First principle DFT calculations of hydrated Fe-PCP clusters reproduced these transient FTIR peaks when inner-sphere complexation and concomitant electron transfer produced Fe(II) and PCP radical cations. Thus, our experimental (FTIR) and theoretical (quantum mechanical) results mutually support the hypothesis that OCDD formation on Fe-smectite surfaces is initiated by the reversible formation of metastable PCP radical cations via single electron transfer from PCP to Fe(III). The negatively charged clay surface apparently selects for this reaction mechanism by stabilizing PCP radical cations. PMID:21254769

  10. Bacterial interactions and transport in geological formation of alumino-silica clays.

    Science.gov (United States)

    Vu, Kien; Yang, Guang; Wang, Boya; Tawfiq, Kamal; Chen, Gang

    2015-01-01

    Bacterial transport in the subsurface is controlled by their interactions with the surrounding environment, which are determined by the surface properties of the geological formation and bacterial surfaces. In this research, surface thermodynamic properties of Escherichia coli and the geological formation of alumino-silica clays were characterized based on contact angle measurements, which were utilized to quantify the distance-dependent interactions between E. coli and the geological formation according to the traditional and extended Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. E. coli attachment to alumino-silica clays was evaluated in laboratory columns under saturated and steady-state flow conditions. E. coli deposition coefficient and desorption coefficient were simulated using convection-dispersion transport models against E. coli breakthrough curves, which were then linked to interactions between E. coli and the geological formation. It was discovered that E. coli deposition was controlled by the long-ranged electrostatic interaction and E. coli desorption was attributed to the short-ranged Lifshitz-van der Waals and Lewis acid-base interactions. E. coli transport in three layers of different alumino-silica clays was further examined and the breakthrough curve was simulated using E. coli deposition coefficient and desorption coefficient obtained from their individual column experiments. The well-fitted simulation confirmed that E. coli transport observations were interaction-dependent phenomena between E. coli and the geological formation. Published by Elsevier B.V.

  11. Controls of Ca/Mg/Fe activity ratios in pore water chemistry models of the Callovian-Oxfordian clay formation

    International Nuclear Information System (INIS)

    Lerouge, C.; Grangeon, S.; Wille, G.; Flehoc, C.; Gailhanou, H.; Gaucher, E.C.; Tournassat, C.; Vinsot, A.; Made, B.; Altmann, S.

    2013-01-01

    In the pore water chemistry model of the Callovian-Oxfordian clay formation, the divalent cations Ca, Mg, and Fe are controlled by equilibrium reactions with pure carbonates: calcite for Ca, dolomite for Mg, and siderite for Fe. Results of a petrological study and computing of the Ca/Mg and Ca/Fe activity ratios based on natural pore water chemistry provide evidence that equilibrium with pure calcite and pure dolomite is a reasonable assumption for undisturbed pore waters; on the other hand, siderite cannot be considered at equilibrium with pore waters at the formation scale. (authors)

  12. Focusing on clay formation as host media of HLW geological disposal in China

    International Nuclear Information System (INIS)

    Zheng Hualing; Chen Shi; Sun Donghui

    2007-01-01

    Host medium is vitally important for safety for HLW geological disposal. Chinese HLW disposal effort in the past decades were mainly focused on granite formation. However, the granite formation has fatal disadvantage for HLW geological disposal. This paper reviews experiences gained and lessons learned in the international community and analyzes key factors affecting the site selection. It is recommended that clay formation should be taken into consideration and additional effort should be made before decision making of host media of HLW disposal in China. (authors)

  13. Geophysical Study of Clay Deposit Properties in Agbor Area of Delta ...

    African Journals Online (AJOL)

    The result of the resistivity survey showed that clay and clayey soil (clay mixed with other rock types) are present. The depths and thicknesses of each clay formation was then ascertained. Depth to probable clay formations varied from 0m to 85m while the thicknesses varied from 1.01m to 6.93m Area of probable clay ...

  14. Warmed up for ten-year test in the Boom Clay formation PRACLAY Heater Experiment is launched

    International Nuclear Information System (INIS)

    2015-01-01

    The article discusses latest developments concerning the PRACLAY Heater Experiment. The PRACLAY experiment investigates the impact of heat on the properties of clay adjacent to a repository for the geological disposal of radioactive waste. Results from the PRACLAY experiment will provide significant input for the NIRAS research programme on the disposal of high-level and long-lived radioactive waste in clay formations.The heating phase of the PRACLAY underground experiment was launched in 2014. The latest preparations comprised the improvement and installation of a back-up heating system. In the future, the control, monitoring, and analysis and interpretation of the measured data will receive the greatest attention in the PRACLAY Heater Experiment.

  15. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars

    Science.gov (United States)

    Bishop, Janice L.; Fairén, Alberto G.; Michalski, Joseph R.; Gago-Duport, Luis; Baker, Leslie L.; Velbel, Michael A.; Gross, Christoph; Rampe, Elizabeth B.

    2018-03-01

    The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.

  16. Early-middle Eocene birds from the Lillebaelt Clay Formation of Denmark

    DEFF Research Database (Denmark)

    Lindow, Bent Erik Kramer

    2009-01-01

    The marine Lillebaelt Clay Formation of central Denmark is of early-middle Eocene age (late Ypresian - middle Lutetian; microfossil zones NP 13-NP 15). Over 20 bird fossils collected by amateur palaeontologists have been acquired through the Danish national ‘Danekrae' fossil treasure trove...... legislation. The fossils are preserved in clay ironstone concretions and almost two-thirds are isolated skulls preserved three-dimensionally. Bird fossils of this age and degree of preservation are rare in an international context. The fossils indicate a very diverse assemblage consisting of both marine...... and terrestrial forms. These include at least one pelagornithid or 'pseudo-toothed bird'; two or three taxa with charadriiform affinities (shorebirds and allies); a massive, narrow-beaked psittaciform (parrots and allies); a large rallid (rail) and one lithornithid (extinct, volant palaeognaths). The Lillebaelt...

  17. Clay formation and metal fixation during weathering of coal fly ash

    International Nuclear Information System (INIS)

    Zevenbergen, C.; Bradley, J.P.; Reeuwijk, L.P. Van; Shyam, A.K.; Hjelmar, O.; Comans, R.N.J.

    1999-01-01

    The enormous and worldwide production of coal fly ash cannot be durably isolated from the weathering cycle, and the weathering characteristics of fly ash must be known to understand the long-term environmental impact. The authors studied the weathering of two coal fly ashes and compared them with published data from weathered volcanic ash, it's closest natural analogue. Both types of ash contain abundant aluminosilicate glass, which alters to noncrystalline clay. However, this study reveals that the kinetics of coal fly ash weathering are more rapid than those of volcanic ash because the higher pH of fresh coal fly ash promotes rapid dissolution of the glass. After about 10 years of weathering, the noncrystalline clay content of coal fly ash is higher than that of 250-year-old volcanic ash. The observed rapid clay formation together with heavy metal fixation imply that the long-term environmental impact of coal fly ash disposal may be less severe and the benefits more pronounced than predicted from previous studies on unweathered ash. Their findings suggest that isolating coal fly ash from the weathering cycle may be counterproductive because, in the long-term under conditions of free drainage, fly ash is converted into fertile soil capable of supporting agriculture

  18. Preliminary Results On The Use Of Clay To Control Pyrodinium Bloom - A Mitigation Strategy

    Directory of Open Access Journals (Sweden)

    Larry Padilla

    2006-06-01

    Full Text Available The frequent and expanded occurrence of Pyrodinium bahamense var compressum blooms in thePhilippines since 1983 has prompted the need to find mechanisms to control the harmful effects of thesetoxic dinoflagellates. A promising method now being explored is the use of powdered clay mineralswhich when added to the growth media is capable of flocculating with the algal cells. In this study, theefficiency of ball clay, brown bentonite, and Malampaya Sound sediments to remove Pyrodinium cellsin seawater was tested. The addition of 1 g/L of suspended ball clay to 50 mL of cultured Pyrodiniumcells (~1.037 x106 cells/L removed 99.56% of the algal cells after 2.5 hours. Prolonging the exposuretime to 5 and 24 hours showed no significant increase in flocculation. Brown bentonite and MalampayaSound sediments showed low to moderate removal efficiency not exceeding 70% and 50%, respectively.The effect of ball clay addition on seawater chemistry showed no change in ammonia concentration butnitrate decreased after 5 and 24 hours of clay addition. Results for nitrite and phosphate were howevermore variable.

  19. Effects of natural increase in temperature on clay formations and determination of the course and the effects of geothermal fluids

    International Nuclear Information System (INIS)

    Polizzano, C.; Benvegnu, F.; Giannotti, G.; Brandimarte, U.

    1986-01-01

    The behaviour of clay cover towards the geothermal fluids rising up to the surface may represent an excellent natural analogue of the potential migration processes from deep waste repositories in clay formations. The ENEA is conducting research in an appropriate area near M. Amiata in southern Tuscany in order to contribute to solving the problem of the expected impermeability of clay formations. Geothermal fields may namely give an opportunity of studying a case of clay behaviour at a scale corresponding to size and time considered in waste disposal. In the considered area a relevant geothermal field is still active. A clay complex represents the impermeable cover of the local geothermal field. Several endogenous phenomena indicate the preferential ways of migrations of fluids from the basement throughout the cover. The data obtained by the present research prove that the upward flow of fluids, is possible only in the points of reduced thickness of the cover where very important faulting or granulometric discontinuity occur. This situation typically occurs at the border and not in the central part of the clay basins

  20. Understanding the acquisition and regulation mechanisms of the water chemistry in a clay formation: the CEC/ANDRA Archimede-argile project

    International Nuclear Information System (INIS)

    Merceron, T.; Mossmann, J.R.; Neerdael, B.; Canniere, P. de; Beaucaire, C.; Toulhoat, P.; Daumas, S.; Bianchi, A.; Christen, R.

    1993-01-01

    Clay formations are candidate host environments to high level radioactive waste repository. The radioelements could be partially released from the waste into the host geological formation after a very long time. Understanding behaviour of the natural chemical species is considered as a fundamental prerequisite before the disturbed system will be studied. Additional laboratory studies are also essential in order to forecast, by analogy, the behaviour of radioelements released from the radioactive waste repository. The ARCHIMEDE-ARGILE project has two main goals. The first is to gain an understanding of the mechanisms of acquisition and regulation of the water chemistry in a clay environment. This step is essential to predict both the behaviour and the migration in solution of artificial elements which are initially absent in the clay formation. The second is to test and validate in clay the measured physico chemical parameters which are the basis for the geochemical modelling of the behaviour of the natural and artificial radioelements. The paper presents the main results previously obtained on granitic waters and the research strategy established for the ARCHIMEDE project. (authors). 2 figs., 2 refs

  1. Investigation on long-term safety aspects of a radioactive waste repository in a diagenic clay formation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M.; Gazul, R. [DBE Technology GmbH, Peine (Germany); Fluegge, J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Braunschweig (Germany); and others

    2017-03-28

    The report presents the sealing concept developed for a Russian near surface low/intermediate level (LILW) waste repository at the ''radon site'' in the lower Cambrian ''blue clay'' formation. The radioactive wastes will be transported to the repository through a tunnel that will connect the underground disposal areas with the surface facilities. Two ventilation shafts for fresh and exhaust air will also connect the underground facilities with the surface. Specific characteristics of the flow regime in the studied area have been simulated. For the construction of a potential repository site it is necessary to know the possible contaminant transport paths to the surface and the biosphere. Due to the lack of sufficient data the calculation can only indicate tendencies that can trigger future explorations. Simulations of the radionuclide (C-14, Cl-36, Se-79, I-129) release from the repository in the liquid phase show a similar behavior as for other repositories in clay. Probabilistic simulations show a large variation of obtained results as a result of the parameter uncertainty.

  2. A new avian fauna from the early-middle Eocene Lillebælt Clay Formation of Denmark

    DEFF Research Database (Denmark)

    Lindow, Bent Erik Kramer

    A number of hitherto undescribed fossil bird remains have been recovered from the Lillebælt Clay Formation of central Denmark, which is early-middle Eocene in age (~50 to 43 mya). The core of the material consists of fossils acquired through the Danish ‘Danekræ' fossil treasure trove legislation....... Almost two-thirds of the fossils are isolated skulls preserved three-dimensionally in clay ironstone concretions; bird fossils of this age and degree of preservation are extremely rare in an international context. A preliminary investigation has revealed the presence of at least one odontopterygid......, a member of the extinct 'pseudo-toothed birds' and the first representative of this group known from Denmark. Other taxa present include remains of Lithornithidae and a new taxon possessing a massive, psittacid-like beak. The Lillebælt Clay Formation birds are temporally placed just after the Early Eocene...

  3. Litho- and biostratigraphy of the Opalinus Clay and bounding formations in the Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Hostettler, B. [Naturhistorisches Museum der Burgergemeinde Berne, Berne (Switzerland); Reisdorf, A. G. [Geologisch-Paläontologisches InstitutUniversität Basle, Basle (Switzerland); Jaeggi, D. [Swisstopo, Federal Office of Topography, Wabern (Switzerland); and others

    2017-04-15

    A 250 m-deep inclined well, the Mont Terri BDB-1, was drilled through the Jurassic Opalinus Clay and its bounding formations at the Mont Terri rock laboratory (NW Switzerland). For the first time, a continuous section from (oldest to youngest) the topmost members of the Staffelegg Formation to the basal layers of the Hauptrogenstein Formation is now available in the Mont Terri area. We extensively studied the drill core for lithostratigraphy and biostratigraphy, drawing upon three sections from the Mont Terri area. The macropaleontological, micropaleontological, and palynostratigraphical data are complementary, not only spatially but they also cover almost all biozones from the Late Toarcian to the Early Bajocian. We ran a suite of geophysical logs to determine formational and intraformational boundaries based on clay content in the BDB-1 well. In the framework of an interdisciplinary study, analysis of the above-mentioned formations permitted us to process and derive new and substantial data for the Mont Terri area in a straightforward way. Some parts of the lithologic inventory, stratigraphic architecture, thickness variations, and biostratigraphic classification of the studied formations deviate considerably from occurrences in northern Switzerland that crop out further to the east. For instance, with the exception of the Sissach Member, no further lithostratigraphic subdivision in members is proposed for the Passwang Formation. Also noteworthy is that the ca. 130 m-thick Opalinus Clay in the BDB-1 core is 20 m thinner than that equivalent section found in the Mont Terri tunnel. The lowermost 38 m of the Opalinus Clay can be attributed chronostratigraphically solely to the Aalensis Zone (Late Toarcian). Deposition of the Opalinus Clay began at the same time farther east in northern Switzerland (Aalensis Subzone, Aalensis Zone), but in the Mont Terri area the sedimentation rate was two or three orders of magnitude higher. (authors)

  4. Numerous nanopores developed in organo-clay complexes during the shale formations

    Science.gov (United States)

    Wang, Q.; Wang, T.; Lu, H.; Liao, J.

    2017-12-01

    Shale gas as new energy resource is either stored in nano pores and microfractures or absorbed on the surface of kerogen and clay aggregate (Chalmers et al., 2012). Nano pores developed in organic matters is very important, because these organic pores have better connectivity than inorganic pores (Loucks et al., 2012) and can form an effective pore system where shale gas flows dominantly (Curtis et al., 2010). In order to figure out how the organic pores is affected by shale compositions, we conduct in-situ FE-SEM and EDS analysis on organic-rich Longmaxi shales. The data indicate that 1) organic matter, mixed with clay minerals, can form an organo-clay complex containing many nanopores; 2)furthermore, larger organic pores are developed in organo-clay complexes with higher clay content than in those with lower clay content(Wang et al., 2017). It seems that the presence of organo-clay complex raises the heterogeneous than pure organic matters. Organo-clay complex may bring in lots of intergranular nanopores between organic matter and clay minerals. Another potential interpretation is that clay minerals may influence kerogen thermal decomposition, generation of hydrocarbons and thus the development of organic pores. The presence of numerous nanopores in organo-clay complexes may promote the connectivity of the pore network and enhance the hydrocarbon production efficiency for shale gas field.

  5. Detection and cultivation of indigenous microorganisms in Mesozoic claystone core samples from the Opalinus Clay Formation (Mont Terri Rock Laboratory)

    Science.gov (United States)

    Mauclaire, L.; McKenzie, J. A.; Schwyn, B.; Bossart, P.

    Although microorganisms have been isolated from various deep-subsurface environments, the persistence of microbial activity in claystones buried to great depths and on geological time scales has been poorly studied. The presence of in-situ microbial life in the Opalinus Clay Formation (Mesozoic claystone, 170 million years old) at the Mont Terri Rock Laboratory, Canton Jura, Switzerland was investigated. Opalinus Clay is a host rock candidate for a radioactive waste repository. Particle tracer tests demonstrated the uncontaminated nature of the cored samples, showing their suitability for microbiological investigations. To determine whether microorganisms are a consistent and characteristic component of the Opalinus Clay Formation, two approaches were used: (i) the cultivation of indigenous micoorganisms focusing mainly on the cultivation of sulfate-reducing bacteria, and (ii) the direct detection of molecular biomarkers of bacteria. The goal of the first set of experiments was to assess the presence of cultivable microorganisms within the Opalinus Clay Formation. After few months of incubation, the number of cell ranged from 0.1 to 2 × 10 3 cells ml -1 media. The microorganisms were actively growing as confirmed by the observation of dividing cells, and detection of traces of sulfide. To avoid cultivation bias, quantification of molecular biomarkers (phospholipid fatty acids) was used to assess the presence of autochthonous microorganisms. These molecules are good indicators of the presence of living cells. The Opalinus Clay contained on average 64 ng of PLFA g -1 dry claystone. The detected microbial community comprises mainly Gram-negative anaerobic bacteria as indicated by the ratio of iso/anteiso phospholipids (about 2) and the detection of large amount of β-hydroxy substituted fatty acids. The PLFA composition reveals the presence of specific functional groups of microorganisms in particular sulfate-reducing bacteria ( Desulfovibrio, Desulfobulbus, and

  6. Trace fossils from the eocene Lillebælt clay formation, Røsnæs Peninsula, Denmark

    DEFF Research Database (Denmark)

    Nielsen, Jan Kresten; Milàn, Jesper; Mesfun, Daniel

    2015-01-01

    A cliff exposure of the Eocene Lillebælt Clay Formation, on the Røsnæs peninsula of Zealand, Denmark, has yielded a diverse trace-fossil assemblage. The trace fossils are described formally for the first time and assigned to Phymatoderma melvillensis, unnamed clusters of small burrows, Ophiomorph...

  7. Performance assessment of geological isolation systems for radioactive waste. Disposal in clay formations

    International Nuclear Information System (INIS)

    Marivoet, J.; Bonne, A.

    1988-01-01

    In the framework of the PAGIS project of the CEC Research Programme on radioactive waste, performance assessment studies have been undertaken on the geological disposal of vitrified high-level waste in clay layers at a reference site at Mol (B) and a variant site at Harwell (UK). The calculations performed for the reference site shown that most radionuclides decay to negligible levels within the first meters of the clay barrier. The maximum dose rates arising from the geological disposal of HLW, as evaluated by the deterministic approach are about 10 -11 Sv/y for river pathways. If the sinking of a water well into the 150 m deep aquifer layer in the vicinity of the repository is considered together with a climatic change, the maximum calculated dose rate rises to a value of 3.10 -7 Sv/y. The calculated maxima arise between 1 million and 15 million years after disposal. The maximum dose rates evaluated by stochastic calculations are about one order of magnitude higher due to the considerable uncertainties in the model parameters. In the case of the Boom clay the estimated consequences of a fault scenario are of the same order of magnitude as the results obtained for the normal evolution scenario. The maximum risk is estimated from stochastic calculations to be about 4.10 -8 per year. For the variant site the case of the normal evolution scenario has been evaluated. The maximum dose rates calculated deterministically are about 1.10 -6 Sv/y for river pathways and 6.10 -5 Sv/y for a water well pathways; these doses would occur after about 1 million years. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the granite (EUR 11777-FR), the salt (EUR 11778-EN) and the sub-seabed (EUR 11779-EN)

  8. Geochemical characterisation of kerogen from the Boom Clay Formation (Mol, Belgium) and evolution under different thermal stress

    International Nuclear Information System (INIS)

    Deniau, I.

    2002-12-01

    The Boom clay formation in Belgium has been chosen as test site for the disposal of high level radioactive wastes. The organic matter present in the clay (kerogen) is sensible to the thermal stress and can generate a huge number of gaseous and liquid compounds leading to local pH changes and to fracturing processes. In particular, some polar compounds can complex radionuclides. The samples analyzed in this work were taken in the underground laboratory of Mol at a 223 m depth. They have been analyzed in detail using geochemical methods (Rock-Eval pyrolysis, element analysis, transmission and scanning electron microscopy), spectroscopic methods (Fourier transformation infrared spectroscopy, solid state 13 C NMR, Raman) and pyrolytic methods (off-line, on-line and in sealed tubes combined with coupled CG/SM analyses). The study of a representative sample of this formation has permitted to characterize the organic matter at the molecular scale, to determine its fossilization mechanisms and the nature of the organic compounds trapped inside the kerogen. The organic matter of the Boom clays comes mainly from phyto-planktonic matter with an important contribution of terrestrial and bacterial matter. The degradation-recondensation played an important role in its preservation but the presence of numerous oxygenated molecules implies that oxidative incorporation also participated to this preservation. Finally, various products (hydrocarbons, oxygenated and nitrogenous polar compounds) trapped in significant amount inside the macro-molecular structure are released under a relatively weak thermal stress. Moreover several small polar organic molecules are released and can play a significant role in the retention or migration of radionuclides inside the geologic barrier. A sample submitted to a in-situ thermal stress of 80 deg. C during 5 years (Cerberus experiment) do not show any significant change in its kerogen structure with respect to the non-heated reference sample

  9. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life

    Science.gov (United States)

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-01-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  10. Modeling of ventilation experiment in opalinus clay formation of Mont Terri argillaceous rock tunnel

    International Nuclear Information System (INIS)

    Liu Xiaoyan; Liu Quansheng; Zhang Chengyuan

    2010-01-01

    Deep geological disposal is one of the most realistic methods of nuclear waste disposal, argillaceous rocks are being considered as potential host rocks for deep geological disposal. Our study starts with performing simulations of a laboratory drying test and a ventilation experiment for Mont Terri underground laboratory. It is an main interest of D2011, 5th stage of DECOVALEX. A 3-phase and 3-constituent hydraulic model is introduced to simulate the processes occurring during ventilation, including desaturation/resaturation in the rock, real phase change and air/rock interface, and to explore the Opalinus Clay parameter set There is a good agreement with experimental observations and calculation results from other D2011 participant teams. It means that the 3-phase and 2-constituent hydraulic model is accurate enough and it is a good start for full HMC understanding of the ventilation experiment on argillaceous rock. (authors)

  11. Assessment of Some Clay Deposits from Fatha Formation (M. Miocene for Brick Manufacturing in Koya Area, NE Iraq

    Directory of Open Access Journals (Sweden)

    Nawzat R. Ismail

    2014-06-01

    Full Text Available This paper deals with the evaluation of physical, chemical and mineralogical properties of claystone sediments of Miocene age (Fatha Formation and their suitability to use them as raw materials in manufacturing of building clay brick in Kurdistan (Koya city. The study based on the field reconnaissance for three sites of claystones which were selected from three different locations within Fatha Formation in Koya city, includes Haibat-Sultan area, Koya-Sulaimania road and central of Koya city. The clay samples were subjected to particle size distribution, chemical composition, mineralogical analysis, plasticity index and XRD tests. Clay tiles were produced by using Semi-dry method under load 78 kN/mm² and fired at 950 C°. The produced clay tiles were subjected to water absorption, efflorescence, shrinkage and compressive strength tests. The research has shown that the plasticity index depends on the mineral composition of the raw materials. The grain size analysis of raw materials, physical properties and mechanical properties of the produced tiles has shown the suitability of the used raw materials in producing class bricks of class A (first class according to the requirements of specification of the Iraqi Standard (1993.

  12. Chemical interaction of radioactive waste with clay engineered barriers: stability of the resulting immobilizer phase

    International Nuclear Information System (INIS)

    Galunin, Evgeny; Vidal, Miquel; Alba, Maria D.

    2010-01-01

    Document available in extended abstract form only. High-level radioactive waste containing long-lived actinides (Pu, Np, Am) originates from the spent fuel from nuclear power plants. The deep geological disposal is the main permanent solution that is considered by the scientific community as the most promising method for the long-term management of the radioactive waste. In a deep geological repository (DGR), which is based on an engineered and natural Multi-barrier system, the construction of engineered barriers composed of clays and concrete materials around the canister seems to be the most effective approach for the radionuclide immobilization. It has been recently observed that a chemical reaction takes place over a wide pH range when putting into contact a smectite sample with the salt of a rare-earth element (REE, actinide simulator) in an aqueous solution under pressure and temperature conditions compatible with the DGR scenario. The chemical reaction leads to the formation of an insoluble, persistent rare-earth di-silicate phase, REE 2 Si 2 O 7 . Taking into account that the di-silicate phase formation could be responsible of the success of the clay barrier once the smectite has lost its swelling and cation exchange capacity, its stability (e.g., the di-silicate dissolution at different pH values) should be considered as an influencing factor for the long-term performance of the DGR. Although to know the di-silicate phase stability in the DGR is a key aspect to evaluate its role in the overall performance of the DGR, it has not yet been found detailed explanation on the effect of the REE ionic radius and the pH on the di-silicate stability. Thus, the main goal of the present study is to investigate the effect of the REE ionic radius on the leaching of different REE (Sc, Lu, Y) and thus on the dissolution of REE 2 Si 2 O 7 (REE = Sc, Lu, Y) over a wide pH range. Scandium, lutetium and yttrium di-silicates were synthesized following the sol-gel method and

  13. Geomechanical behaviour of Opalinus Clay at multiple scales: results from Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Amann, F.; Wild, K.M.; Loew, S. [Institute of Geology, Engineering Geology, Swiss Federal Institute of Technology, Zurich (Switzerland); Yong, S. [Knight Piesold Ltd, Vancouver (Canada); Thoeny, R. [Grundwasserschutz und Entsorgung, AF-Consult Switzerland AG, Baden (Switzerland); Frank, E. [Sektion Geologie (GEOL), Eidgenössisches Nuklear-Sicherheitsinspektorat (ENSI), Brugg (Switzerland)

    2017-04-15

    The paper represents a summary about our research projects conducted between 2003 and 2015 related to the mechanical behaviour of Opalinus Clay at Mont Terri. The research summarized covers a series of laboratory and field tests that address the brittle failure behaviour of Opalinus Clay, its undrained and effective strength, the dependency of petro-physical and mechanical properties on total suction, hydro-mechanically coupled phenomena and the development of a damage zone around excavations. On the laboratory scale, even simple laboratory tests are difficult to interpret and uncertainties remain regarding the representativeness of the results. We show that suction may develop rapidly after core extraction and substantially modifies the strength, stiffness, and petro-physical properties of Opalinus Clay. Consolidated undrained tests performed on fully saturated specimens revealed a relatively small true cohesion and confirmed the strong hydro-mechanically coupled behaviour of this material. Strong hydro-mechanically coupled processes may explain the stability of cores and tunnel excavations in the short term. Pore-pressure effects may cause effective stress states that favour stability in the short term but may cause longer-term deformations and damage as the pore-pressure dissipates. In-situ observations show that macroscopic fracturing is strongly influenced by bedding planes and faults planes. In tunnel sections where opening or shearing along bedding planes or faults planes is kinematically free, the induced fracture type is strongly dependent on the fault plane frequency and orientation. A transition from extensional macroscopic failure to shearing can be observed with increasing fault plane frequency. In zones around the excavation where bedding plane shearing/shearing along tectonic fault planes is kinematically restrained, primary extensional type fractures develop. In addition, heterogeneities such as single tectonic fault planes or fault zones

  14. Trace fossils from the eocene Lillebælt clay formation, Røsnæs Peninsula, Denmark

    OpenAIRE

    Nielsen, Jan Kresten; Milàn, Jesper; Mesfun, Daniel

    2015-01-01

    A cliff exposure of the Eocene Lillebælt Clay Formation, on the Røsnæs peninsula of Zealand, Denmark, has yielded a diverse trace-fossil assemblage. The trace fossils are described formally for the first time and assigned to Phymatoderma melvillensis, unnamed clusters of small burrows, Ophiomorpha nodosa, Spongeliomorpha isp., Dreginozoum beckumensis, Bichordites isp., Chondrites isp., Atollites zitteli? and ?Rhizocorallium isp. The preservation of the trace fossils is strongly related to ear...

  15. Clay-Oil Droplet Suspensions in Electric Field

    OpenAIRE

    Kjerstad, Knut Brøndbo

    2012-01-01

    Silicone oil droplets containing synthetic smectite clay submerged in another immiscible organic oil have been studied by observing clay particle movement, oil circulation and drop deformation when an electric field is applied. Results show how electric field strength, electrohydrodynamics, dielectric and conductive properties determines the fluid flow, clay particle formation and drop deformation.

  16. Addition of an expansive clay facies of Corumbatai formation from Porto Ferreira city to ceramic mass used in ceramic pole Santa Gertrudes for dry process

    International Nuclear Information System (INIS)

    Souza, Paulo Eduardo de Campos e; Christofoletti, Sergio Ricardo

    2011-01-01

    In the search for diversification of ceramic products by the dry-process, in this work was added in the composition of a ceramic mass of Santa Gertrudes Ceramic Pole-PCSG, an expansive clay of Corumbatai Formation found in Porto Ferreira city. The ceramics characterization was carried out in Porto Ferreira Ceramic Industry following the standards (ABNT, 1997). The samples were first pressed resulting in specimens of dimension 10x3 cm which were burned in a laboratory furnace at a temperature of 1160 ° C. The tests were conducted of the flexion strength (raw, dry and burning), water absorption, bulk density, firing shrinkage in individual samples and the composition of 30% of sample Porto Ferreira (APF) plus 70% sample of Santa Gertrudes (ASG). The results showed that the ceramic samples showed good results from individual MRF and AA: 633.76 Kgf/cm 2 and 0.37% for a sample of Santa Gertrudes (ASG) and 437.32 and 3.06% for the sample of Porto Ferreira (APF). The result of the composition showed an increase in values or MRF= 722.20 Kgf/cm 2 and increased values of AA to 0.75%. The expansive clay type 'montmorillonite' clays found in the sample Porto Ferreira (APF) have contributed in improving the packaging and therefore the improvement of the ceramic properties. (author)

  17. Stress state variations among the clay and limestone formations of the molasse basin of Northern Switzerland

    International Nuclear Information System (INIS)

    Vietor, Tim; Mueller, Herwig; Frieg, Bernd; Klee, Gerd

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: The design of geological repositories for radioactive waste responds to the requirements of technical feasibility and long-term safety in the context of a specific geological setting. An important aspect of the geological setting is the primary stress field. To a large extent the stress state controls repository induced effects such as the excavation damage zone and the associated potential changes in the waste isolation properties of the host rock. Therefore the measurement of the stress state receives some attention where the site selection for geological repositories focuses onto relatively weak host rocks such as clay-stones and marly shales that tend to develop a significant excavation damage zone. Measurements of the minimum stress magnitudes in a recently drilled geothermal well in the Molasse Basin of northern Switzerland have yielded a stress profile reaching from 592 m to 1455 m depth. It straddles several rock units and includes the top of the crystalline basement. The sedimentary sequence consists of Marine limestones, shales and marls unconformably covered by Tertiary rocks of the Molasse. In other parts of the basin the evaporitic rocks of the Triassic Muschelkalk formation at the base of the sedimentary layer served as a regional detachment and enabled thin skinned thrusting and the formation of the Jura Fold and Thrust Belt in the Late Miocene. The stress measurements have been performed in the open hole by Mini-frac tests. The method uses a double packer system to isolate a one meter long interval of the borehole that is then pressurized at high injection rates up to the breakdown of the formation. Repeated pressurization of the interval allows to determine the stress that acts on the newly created fracture. The total injected volume during such a test is in the range of a few litres and the size of the fracture that extends from the borehole normal to the minimum

  18. Geomechanics of clays for radioactive waste disposal

    International Nuclear Information System (INIS)

    Come, B.

    1989-01-01

    Clay formations have been studied for many years in the European Community as potential disposal media for radioactive waste. This document brings together results of on-going research about the geomechanical behaviour of natural clay bodies, at normal and elevated temperatures. The work is carried out within the third Community R and D programme on Management and storage of radioactive waste

  19. The marine Abu Ballas formation of southern Egypt: a clay-mineralogic and microfloral reconstruction of the Aptian paleoclimate

    Science.gov (United States)

    Hendriks, F.; Schrank, E.

    Combined investigations on the clay minerals and the microfloras of the backshore to shallow marine offshore strata of the Abu Ballas Formation (Aptian of southern Egypt), give evidence of warm and semi-arid climatic conditions. The sedimentary successions studied, predominantly consist of alternating pelitic and psammitic siliciclastic deposits. Their clay-mineral association with kaolinite, high-cristallinity illite, illite-dominated randomly interstratified illite-smectite and chlorite is inherited from continental areas under erosion. The Abu Ballas clay minerals reflect only subordinate pedogenetic chemical alteration which suggests a restricted humidity and the absence of a major vegetation. They were transported into the marine environment by periodic river systems. Aeolian processes played a minor role. The Abu Ballas microfloras are overwhelmingly dominated by terrestrial pollen and spores. Marine phytoplankton is extremely rare. Important changes in the local Jurassic to Early Cretaceous microfloras include a decline of ferns and Araucariaceae and, starting with Barremian-Aptian time, the appearance and rise in frequency of early angiosperms and of ephedroids. This seems to indicate a paleoclimatic trend towards less humidity and rising aridity which may be supported by other Abu Ballas fossils such as the lung-fish Ceratodus and the palm fruit Hyphaeneocarpon aegyptiaca Vaudois-Miéja and Lejal-Nicol, 1987.

  20. Groundwater age and lifetime expectancy modelling approach for site characterization and performance assessment of radwaste repository in clay formation

    International Nuclear Information System (INIS)

    Cornaton, F.; Perrochet, P.; Benabderrahmane, H.

    2010-01-01

    Document available in extended abstract form only. A deep geological repository of high level and long lived radwaste requires an understanding of the far field and near field groundwater flow and of the transport properties, at actual and future climatic conditions. Andra, French National radioactive waste management Agency, is developing since last 15 years an integrated multi-scale hydrogeological model of whole Paris basin of 200000 km 2 of area (regional scale) to produce a regional flow field associated to groundwater behavior. It includes locally the Meuse/Haute Marne clay site of about 250 km 2 of area in the eastern part of the Paris basin that was chosen for the emplacement of a repository. The Callovo-Oxfordian host formation is a clay layer characterized by a very low permeability of the order 10 -14 m/s, a mean thickness of 130 m at about 500 m depth, and is embedded by calcareous aquifer formations (Dogger and Oxfordian). The hydrogeological conceptual model is based on stratigraphic and petro-physic modeling of the Paris basin and is accounting for the structural, geological, hydrogeological and geochemical data in an integrated way. This model represents 27 hydrogeological units at the scale of the Paris Basin, and it is refined at the scale of the sector to represent 27 different layers that range in age from the Trias to the Portlandian. The finite element flow and transport simulator Ground Water (GW) is used to solve for groundwater flow at steady-state in a 3 Million elements model, considering current climatic conditions. The model is calibrated against about 1250 hydraulic head measurements, and results in maximum absolute hydraulic head differences of 20 meters at the regional scale and 3 meters at the local scale. The calibrated reference model includes transmissive major faults as well as structures acting as barrier to flow. Groundwater age (the time elapsed since recharge) and lifetime expectancy (the time remaining prior to exit) are

  1. N-acyl-homoserine lactone dynamics during biofilm formation of a 1,2,4-trichlorobenzene mineralizing community on clay.

    Science.gov (United States)

    Sheng, Hongjie; Harir, Mourad; Boughner, Lisa A; Jiang, Xin; Schmitt-Kopplin, Philippe; Schroll, Reiner; Wang, Fang

    2017-12-15

    In Gram-negative bacteria, quorum sensing systems are based on the N-acyl-homoserine lactone (AHL) molecule. The objective of this study was to investigate the role of quorum sensing systems during biofilm formation by a microbial community while degrading the pollutant. Our model system included 1,2,4-trichlorobenzene (1,2,4-TCB) and its mineralizing Gram-negative bacterial community to investigate the relationships between AHL dynamics, cell growth and pollutant degradation. Biomineralization of 1,2,4-TCB was monitored for both the planktonic bacterial community with and without sterile clay particles in liquid cultures. The bacterial growth and production of AHLs were quantified by fluorescent in situ hybridization and immunoassay analysis, respectively. A rapid production of AHLs which occurred coincided with the biofilm formation and the increase of mineralization rate of 1,2,4-TCB in liquid cultures. There is a positive correlation between the cell density of Bodertella on the clay particles and mineralization rate of 1,2,4-TCB. 3-oxo-C 12:1 -HSL appears to be the dominant AHL with the highest intensity and rapidly degraded by the bacterial community via two main consecutive reactions (lactone hydrolysis and decarboxylic reaction). These findings suggest that the integrated AHLs and their degraded products play a crucial role in biofilm formation and biomineralization of 1,2,4-TCB in culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Design study for a macropermeability test in an argillaceous formation (Boom clay)

    International Nuclear Information System (INIS)

    Bronders, J.

    1992-01-01

    In the present report a test design has been developed for determining the in-situ permeability of the Boom clay on a large scale at the Mol site (Belgium). Since in the Boom clay at the Mol site an Underground Repository Facility (URF) is operational the test has been designed to be run in or from this facility. The proposal is an in-situ macropermeability test with a set-up comprising a central borehole (metric scale in length) designed to allow various types of control of the water-level, surrounded by a lattice of piezometers installed in the clay mass for the monitoring of the interstitial water pressure changes in function of the various water-level controls. In one part the report describes the potential set-ups and a theoretical background as far as it can be done on the basis of existing literature and experiments. In a second part the method (technical and practical data of a test set-up) is described and documented. The method proposed is largely based on the several years of expertise gained within the field of in-situ migration and hydrogeologic investigations in the Hades-URF. 14 refs., 9 figs., 2 tabs

  3. Pacoma: Performance assessment of the confinement of medium-active and alpha-bearing wastes. Assessment of disposal in a clay formation in the United Kingdom

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Klos, R.A.; Martin, J.S.; Laurens, J.M.; Winters, K.H.

    1991-01-01

    This report describes the PACOMA assessment of the radiological impact of disposal of intermediate level and alpha-bearing wastes in a hypothetical repository situated in the clay formations below the Harwell site in the United Kingdom. The assessment includes: best estimate calculations, uncertainty analyses, sensitivity analyses and model comparisons. Results of the radiological impact calculations are in the form of doses and risks to individuals and time-integrated doses to populations, for a normal evolution scenario and a number of altered evolution scenarios. The calculated risks to individuals are well below the limit recommended by the ICRP, and the calculated collective dose over the first 10,000 years after disposal is zero. Thus the radiological impact of the disposal intermediate level and alpha-bearing wastes in a clay formation is predicted to be small. The uncertainty analyses showed that, for the normal evolution scenario, the range of predicted risks to individuals is very wide. However, these results must be treated with caution because a formal methodology for eliciting judgments about model parameter values was only applied in the case of geosphere data. The sensitivity analyses and model comparisons indicated the need for improved models and data for water and radionuclide movement in the near-surface environment

  4. Clay mineralogy and depositional history of the Frio Formation in two geopressured wells, Brazoria County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Freed, R.L.

    1982-01-01

    Twenty-three shale samples ranging in depth from 5194 ft to 13,246 ft from Gulf Oil Corporation No. 2 Texas State Lease 53034 well and 33 shale samples ranging in depth from 2185 ft to 15,592 ft from General Crude Oil Company/Department of Energy No. 1 Pleasant Bayou well were examined by x-ray techniques to determine the mineralogy of the geopressured zone in the Brazoria Fairway. Both wells have similar weight-percent trends with depth for a portion of the mineralogy. Calcite decreases, and plagioclase, quartz and total clay increase slightly. Within the clays, illite in mixed-layer illite/smectite (I/S) increases and smectite in mixed-layer I/S decreases. Four minerals have distinctly different trends with depth for each well. In the No. 2 Texas State Lease 53034 well, potassium feldspar and mixed-layer I/S decrease, kaolinite increases, and discrete illite is constant. In the No. 1 Pleasant Bayou well, potassium feldspar and kaolinite are constant, mixed-layer I/S increases, and discrete illite decreases.

  5. Mechanical behavior of an instrumented shotcrete drifts definitive lining in a 500 m deep clay formation

    International Nuclear Information System (INIS)

    Zghondi, Jad; Armand, Gilles; Noiret, Aurelien

    2012-01-01

    Document available in extended abstract form only. At the Meuse/Haute Marne Underground Research Laboratory (URL), Andra has developed a technical and scientific program to test excavation methods in a 500 m deep Callovo Oxfordian clay-stone to demonstrate feasibility of nuclear waste disposal Different types of drift excavations and reinforcements methods has been and will be tested at the URL,in order to evaluate the impact on the surrounding rock behavior, especially the EDZ, and to optimize the design of the reinforcement. At the beginning soft support has been used to let drifts converge, and from time to time the stiffness of support has been increase up to emplace gasketed pre-cast concrete segmental rings just after an open face tunneling excavation end of 2013. In this previous experiment, the target was to apply and on a short time a stiff reinforcement that can have a similar behavior as a pre-cast concrete ring. This paper will present the experimental layout, the measurement tools as well as the first results. The instrumented drift section 'BPE' is 15 m long and 6,3 m diameter; it was excavated by a BRH machine. The excavation sequence was realized with a one meter excavation pass. After each pass, a 10 cm layer of wet mixed fiber reinforced shotcrete was applied on the vault, and 45 cm on the counter vault. The vault 45 cm thickness was reached after three other layers added respectively while proceeding with the three following pass of excavation. Different kinds of measurements were carried out before, during and after excavation, in a way to evaluate the loading of the shotcrete reinforcement as well as the hydro-mechanical behavior of the host rock. Before the excavation of the drift, three standard diameter boreholes have been drilled around the planned drift. They have been equipped with pressure and deformation measurements in a way to monitor the hydro-mechanical impact of the excavation on the surrounding rock. While excavating, the

  6. Palaeomagnetic results from some panchet clay beds, Karanpura coalfield. Northeastern India

    NARCIS (Netherlands)

    Klootwijk, C.T.

    1974-01-01

    Reversely magnetized Panchet clay samples of Early Triassic or possibly Late Permian age, from the North Karanpura coalfield (Damodar Valley, NE. India) revealed, after thermal cleaning, the mean direction: D = llO.S”, I = +69” (k = 49, tugs = 6” , N = 13). The corresponding pole position is:

  7. Underground openings in clay formations - Technical requirements on drifting technology and support systems for underground openings and their impact on retreat systems for the installation of engineered barriers

    International Nuclear Information System (INIS)

    Mischo, Helmut

    2012-01-01

    Document available in extended abstract form only. Several countries are currently investigating the possibility of long-term storage of nuclear waste in clay formations, with a special focus on mud-stone formations. During the last decades extensive research has been conducted on the suitability of mud-stone as repository and the related special requirements of the clay matrix - with significant success. The knowledge base on the behaviour of the host formations during the mining phase of the excavations on the other hand is relatively limited compared to that of other investigated host rock formations, e.g. salt. With the low value of mud-stone and its relatively limited industrial application range, there have not been any large scale commercial underground mining activities in recent years to provide a significant and independent database on the behaviour of the selected mud-stone formations or their geological analogue during mining activities. Most information currently used for the assessment of this type of sediment and the planning of the mining activities has been gathered either during the execution of logistics and tunneling projects or during the excavation of today's underground laboratories. There is, however, a database on a vast variety of clay deposit types and morphologies available from commercial underground clay mining activities worldwide. The data available on commercial clay mining shows significant differences for each and every technological stage of clay mining as compared to the stages of any other mining operation. This is, amongst other things, due to the high and partly extreme ductility and creeping properties of typical clay formations, especially when considering their sensitiveness to a changing water content. In general the technical and technological differences include the applicable mining technology for the excavation of underground openings, the need for an advancement of any available technology to waterless variants as

  8. Pyromorphite formation and stability after quick lime neutralisation in the presence of soil and clay sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, Mark A.; Scheckel, Kirk G. (EPA); (USACE-ERDC)

    2008-06-16

    Soluble Pb is immobilised in pure systems as pyromorphite by adding sources of P, but doubts remain about the effectiveness of this approach in natural soil systems, particularly given the ability of soil humic substances to interfere with Pb-mineral formation. In addition, recent thermodynamic modelling predicts that pyromorphite formed by the addition of phosphoric acid to Pb-contaminated soils, followed by neutralisation with quick lime (Ca(OH){sub 2}) will destabilise the mineral, reverting the Pb back to more soluble species such as cerussite or anglesite. In this paper, we describe experiments to form pyromorphite in the presence of two different sorbents: a reference smectite called Panther Creek Bentonite, and a commercially available, organically rich potting mixture. We present X-ray diffraction (XRD) evidence suggestive of pyromorphite formation, yet, like similar studies, the evidence is less than conclusive. Linear combination fits of Pb X-ray absorption fine-structure spectroscopy (XAFS) data collected at the Advanced Photon Source at Argonne National Laboratory show that pyromorphite is the major Pb species formed after the addition of phosphoric acid. Furthermore, XAFS data shows that neutralising with quick lime enhances (as opposed to reducing) pyromorphite content in these systems. These results call into question relying solely on XRD data to confirm or deny the existence of minerals like pyromorphite, whose complex morphology give less intense and more complicated diffraction patterns than some of the simpler Pb minerals.

  9. Mechanisms of erosion in miocene clays from the Tudela formation (Bardenas Reales, Navarra, Spain)

    International Nuclear Information System (INIS)

    Marin, C.; Desir, G.

    2009-01-01

    In Bardenas Reales area (located in the central-western part of the Ebro Depression) several erosion rates have been measured along the last years. The mean annual erosion rates are of 32 Tm/Ha/yr. Due to semiarid conditions, precipitation is irregularly distributed along the year with maximums on spring and autumn when the great erosion is produced. There are intensity and quality thresholds below which erosion does not take place. In Bardenas Reales some erosion processes act (mud slides and armoured mud balls among others). Mud slides are mobilised on spring when the sediment have reached its plastic limit and could slide due to heavy rains. Armored mud balls are produced by the enhancement of popcorn cracks that individualize clays cores which are rounded by water. The same kind of strong precipitation that mobilised mud slides is the responsible of armoured mud balls destruction because the conditions to its maintenance are very limited. (Author) 9 refs.

  10. Geochemistry of rare earths in main media of clay formation and sedimentation

    International Nuclear Information System (INIS)

    Bonnot-Courtois, C.

    1981-01-01

    This work aims i) at a better knowledge of rare earth behavior in surface conditions and ii) possible use of rare earth as a marker for argilaceous mineral genesis. Chemical properties of rare earths and geochemistry of these elements in main rocks are recalled. Rare earth behaviour during continental alteration process, experimental hydrolysis of various magmatic materials and rare earth geochemistry in argilaceous minerals in continental shelf are examined. Then some aspects of rare earth behaviour in oceans are studied: alteration of sea bed and hydrothermalism rare earth distribution in pelagic sediments red clays of deep seas and manganese nodules. In conclusion rare earth behaviour in sedimentary processes of the exogenous cycle is summarized [fr

  11. THE CLAY CONTENT EFFECT ON THE FORMATION OF SHALLOW MOLE DRAINAGE AND THE RATE OF LOWERING SOIL MOISTURE CONTENT

    Directory of Open Access Journals (Sweden)

    Siti Suharyatun

    2014-10-01

    loam soil did not infl uence the rate of lowering soil moisture content. Contrary, the mole drainage installed in clay soil has effected to increase the rate of lowering soil moisture content. Keywords: Mole drainage, soil moisture content, clay content

  12. Ball clay

    Science.gov (United States)

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  13. Evaluation of radiological safety assessment of a repository in a clay rock formation. Evaluacion del comportamiento y de la seguridad de un almacenamiento profundo en arcilla

    Energy Technology Data Exchange (ETDEWEB)

    1999-12-15

    This report presents a comprehensive description of the post-closure radiological safety assessment of a repository for the spent fuel arisings resulting from the Spanish nuclear program excavated in a clay host rock formation. In this report three scenarios have been analysed in detail. The first scenario represents the normal in detail. The first scenario represents the normal evolution of the repository (Reference Scenario); and includes a set of variants to investigate the relative importance of the various repository components and examine the sensitivity of the performance to parameters variations. Two altered scenarios have also been considered: deep well construction and poor sealing of the repository. This document contains a detailed description of the repository system, the methodology adopted for the scenarios generation, the process modelling approach and the results of the consequences analysis. (Author)

  14. Raw material of the Corumbatai formation at the region of ceramic pole of Santa Gertrudes - Sao Paulo, Brazil, with natural characteristics for fabrication of expanded clay

    International Nuclear Information System (INIS)

    Moreno, M.M.T.; Zanardo, A.; Rocha, R.R.; Roveri, C.D.

    2009-01-01

    This paper refers to the study of the bases material of the Corumbatai Formation (Parana Basin) from a clay mine, which presents limits for its use in ceramic tiles in dry grinding process due to its hardness and, especially, the high content of organic matter in relation to the clay overlaid. The characterization of the raw material and the product was accomplished by organic carbon analysis, X-ray diffraction, optical microscopy and test-firing. Firing conditions were determined to get expanded clay, using fast firing static kiln and a continuous roller kiln, both from laboratory equipment, getting samples with variable density up to the limit of expansion, with density that can reach values lower than 0,5g.cm -3 because of the formation of closed pores and an external vitreous foil which provide a high mechanical resistance to the particles. (author)

  15. Natural isotope tracing of hydric transfers in a very low porosity clay-stone formation: the argilites of Tournemire (France)

    International Nuclear Information System (INIS)

    Moreau-Le Golvan, Yann

    1997-01-01

    Since 1988, the experimental site of the French Institute for Protection and Nuclear Safety (IPSN) situated in a tunnel near Toumemire (Aveyron, France), is studied in order to develop techniques and methods for the characterization of water behaviour in a clay-stone formation with very low water content and very low permeability. Isotope geochemistry was used to define the fluid transfer modalities. After the development or the improvement of sampling techniques, the measurement of the stable isotope contents (oxygen-18, deuterium, carbon-13) and radioactive isotope contents (tritium, carbon-14, chlorine-36) of fluids (pore water, fracture water) and solids (calcite fracture fillings) allowed to distinguish several origins and behaviours of water in the massif. The stable isotope distribution of pore water could be due to a diffusion driven mixing between argilite formation water and water from karsts, over and underlying the argilite formation. In this hypothesis, the time needed to establish the distribution profile should be longer than 5 million years. The role of the fractures seems complex, with indications of local paleo-transfers from the matrix to the fracture, and indications of transfers from the karstic aquifer. (author) [fr

  16. Feasibility studies for a radioactive waste repository in a deep clay formation

    International Nuclear Information System (INIS)

    Chapman, N.; Tassoni, E.

    1985-01-01

    This report assesses the feasibility of deep geological disposal of long-lived, heat-emitting radioactive wastes produced from the Italian nuclear power programme. Disposal is envisaged in argillaceous formations of medium plasticity at depths between 200 and 3000 metres. Thermal and geotechnical data, together with information on cost and feasibility of construction techniques are used to devise two conceptual designs (repository or deep borehole disposal) for a facility to contain all the high-level wastes arising from a 10 GWe power programme. Alternative designs and their merits are discussed and assessed. The two reference designs are used to construct a simple model of long-term performance and safety of the proposed disposal system. Recommendations are made for further work required to develop these concepts into an operational facility. It should be borne in mind that since no definite area or site has yet been identified for a disposal facility, all considerations are purely generic. Consequently data on rock properties and geological environment represent average values or best estimates for those likely to be encountered in the regions currently being considered as suitable for deep diposal purposes, and several broad assumptions have had to be made. However, the designs presented could be adapted without difficulty on a site-specific basis when the results of further research become available

  17. Investigation of Phosphate Retention in some Allophanic and Non-Allophanic Nano-Clays from Karaj Formation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Monajjem

    2017-02-01

    and iron oxides from the soil, clay fraction was prepared for X-ray diffraction analyses. The nanoclay fraction was extracted using the method described by Li and Hu (2003. The specific surface area were determined using EGME method. Different forms of extractable aluminum, including pyrophosphate (Alp and ammonium oxalate (Alo extractable forms, as well as silica extractable by ammonium oxalate (Sio were measured. Routine chemical analyses for organic carbon (OC, cation exchange capacity (CEC were determined by standard methods. Particle size distribution was determined by the hydrometer method (after ultrasound dispersion. Allophane percentage was calculated using the formula provided in the soils under study by Mizota and Van Reeuwijk (1989. Nano particles were inspected using scanning electron microscope (SEM. Results and Discussion: The studied soils were classified as Entisols, Andisols and Inceptisols. The results showed that the bulk of soil mineralogy was consisted of combination of illitic, chloritic, smectite and hydroxy interlayer minerals. In addition to sesquioxides, the crystallization degree of soil minerals was also important in phosphate retention. Results of SEM studies of Andisols implied the existence of different types of aluminosilicate nano particles as nano ball (Allophane, nano tubes (imogolite and smectitic minerals. Hollow spherical structure was proposed for allophane. According to the SEM results, nano particles extracted from non andic soils were dominated by layered silicates (probably montmorillonite. Among physical properties which are effective on phosphate retention, the shape, size and porosity of the particles can be mentioned, all of which have impacts on the specific surface area of the particles. Soils with higher amounts of Alp and Sio were comprised more nanoclay (25,8 g per kg and higher phosphate retention (%55. Various mechanisms were suggested by soil scientists for phosphate sorption on allophane (Nanoclays. Some of are

  18. Preservation of carbohydrates through sulfurization in a Jurassic euxinic shelf sea: Examination of the Blackstone Band TOC-cycle in the Kimmeridge Clay Formation, UK

    NARCIS (Netherlands)

    Dongen, B.E. van; Schouten, S.; Sinninghe Damsté, J.S.

    2006-01-01

    A complete total organic carbon (TOC) cycle in the Upper Jurassic Kimmeridge Clay Formation (KCF) comprising the extremely TOC-rich (34%) Blackstone Band was studied to investigate the controlling factors on TOC accumulation. Compared with the under- and overlying strata, TOC in the Blackstone

  19. Assessment of radioactive waste disposal in clay

    International Nuclear Information System (INIS)

    Mobbs, S.; Bonne, A.; Marivoet, J.; Dalrymple, G.J.; Laurens, J.M.; Winters, K.H.

    1990-09-01

    Two assessments of the potential radiological impact of disposal of medium-level and alpha-bearing wastes in clay formations have been carried out for the CEC PACOMA project. Both studies included uncertainty and sensitivity analyses. The results indicate that the radiological impact of disposal of these wastes in clay will be small, but a number of topics are identified for further study in order to confirm these results and produce more definitive estimates of the uncertainties associated with them. (author)

  20. Ectomycorrhizal formation in herbicide-treated soils of differing clay and organic matter content

    Science.gov (United States)

    Matt D. Busse; Gary O. p Fiddler; Alice W. Ratcliff

    2004-01-01

    Herbicides are commonly used on private timberlands in the western United States for site preparation and control of competing vegetation. How non-target soil biota respond to herbicide applications, however, is not thoroughly understood. We tested the effects of triclorpyr, imazapyr, and sulfometuron methyl on ectomycorrhizal formation in a greenhouse study. Ponderosa...

  1. Formation of porous clay ceramic using sago waste ash as a prospective additive material with controllable milling

    Directory of Open Access Journals (Sweden)

    Aripin H.

    2014-01-01

    Full Text Available A novel type of ceramic material was produced by mixing sago waste ash from the sago processing industry in Indonesia with clay. The composition was prepared by adding 50 %wt amount of sago waste into the clay, then a series of samples was milled for 6 h, 12 h, 24 h and 48 h, respectively. The samples were dry pressed and sintered at temperatures ranging from 800°C to 1200°C. The influence of the sintering temperature and the milling time on bulk density, firing shrinkage, water adsorption, and hardness was studied in detail. The results demonstrate that the low water absorption of less than 0.5% and the highest hardness of 5.82 GPa were obtained for the sample sintered at 1100°C and milled for 48 h. The investigation of the absorptive properties of such ceramics indicates that they could be recommended as a promising material for manufacturing of unglazed floor tiles.

  2. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  3. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  4. Coupled transport phenomena in a clay from a Callovo-Oxfordian formation; Phenomenes de transport couples dans les argiles du Callovo-Oxfordien

    Energy Technology Data Exchange (ETDEWEB)

    Paszkuta, M

    2005-06-15

    Low permeability materials containing clay play an important role in practical life and natural environment. Indeed, the ability of clay soils to act as semi permeable membranes, that inhibit the passage of electrolytes, is of great interest. The major objective of this thesis is to evaluate the transport properties of natural clays and in particular coupled transports when a pressure gradient, an electrical field, a concentration gradient and a temperature gradient interact. The material is a compact argillite extracted in East France from a Callovo-Oxfordian formation which was supplied to us by ANDRA. NaCl was used as the main solute. Two series of experiments were performed to measure permeability, diffusion, conductivity, the electro-osmotic coefficient and the Soret coefficient. (author)

  5. The safety case for a HLW repository in Opalinus clay: aims, methodology, first results

    International Nuclear Information System (INIS)

    Zuidema, Piet

    2002-01-01

    Piet Zuidema (Nagra, Switzerland) described the development of the safety case for a high level waste repository in Opalinus clay in which canisters would be placed in large vaults. The current phase of work was concerned with demonstrating the feasibility of the disposal concept. The Safety Case is taken to mean a set of arguments to support a statement that the proposed facility will meet relevant safety criteria and will include arguments giving the basis for confidence that those arguments are correct and properly taking account of uncertainties. The safety strategy was concerned both with the inherent robustness of the disposal concept and the adequacy of the assessment capability. As regards the former, the arguments being advanced were primarily qualitative. Key issues in terms of the documentation of the Safety Case were traceability and transparency of information, including how to ensure that key arguments did not become obscured because of the need to make available very large quantities of information

  6. Diffusion and electromigration in clay bricks influenced by differences in the pore system resulting from firing

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Ottosen, Lisbeth M.; Hansen, Kurt Kielsgaard

    2012-01-01

    to the distance to the surface.The influence of the pore system on ion transport through the water saturated pore system of the bricks was supported by measurements for calculation of the electrical resistance and an increasing resistance was found for increasing brick firing temperatures. The effective diffusion......Ion transport in porous materials has been subject of study for several decades. However, the interaction between the pores and the overall pore system make it complicated to obtain a clear picture and predict diffusion and electromigration (transport induced by an applied electric field). Specific...... coefficient was empirically determined for chloride and sodium through the application of an electric DC field across the bricks. The lowest effective diffusion coefficient was found for the dark colored brick, increasing for the medium and bright colored respectively. This finding suggests that in clay...

  7. Clays causing adhesion with tool surfaces during mechanical tunnel driving

    Science.gov (United States)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.

    2009-04-01

    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the

  8. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    Science.gov (United States)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  9. THE EARLY OLIGOCENE FLORA OF SANTA GIUSTINA (LIGURIA, ITALY - REVISION AND COMPARISON WITH THE FLORA OF THE TARD CLAY FORMATION

    Directory of Open Access Journals (Sweden)

    LILLA HABLY

    2010-11-01

    Full Text Available Based on palaeobotanical material preserved at the University of Genoa, Italy (DIP.TE.RIS., a revision of the Early Oligocene flora of Santa Giustina, as well as the 1916 monograph of Principi, was undertaken. It is shown that apart from members of the Lauraceae family, Eotrigonobalanus furcinervis and Sloanea olmediaefolia were dominant in the flora, which was mainly composed of warmth-demanding species. The site is primarily characterized by remnants of the vegetation developed under warm and moist climate and abundant water supply. A few additional plants from the neighboring zonal vegetation are also present. The flora is quite reminiscent of that of the Tard Clay Formation, part of the Inner Carpathian Region, providing a proven link to the floristic relationships of these areas. Up to the Pre-Neogene, the Inner Carpathian Region and the surrounding Alpine-Carpathian-Dinaric Region was composed of a composite terrane that 1 existed independently from Stable Europe, and, 2 had a much more southerly position than today. This terrane collage was sharply bordered from all directions except west, as is supported by new evidences of the floristic affinities with the Santa Giustina flora. 

  10. Possibility of inferring some general characters of deep clay deposits by means of superficial observations

    International Nuclear Information System (INIS)

    Anselmi, B.; Antonioli, F.; Brondi, A.; Ferretti, O.; Gerini, V.

    1984-02-01

    The aim of this work has been to infer mineralogical and sedimentological characteristics of deep clay deposits by means of low cost observations on surficial clay outcroppings. Main research objectives considered in the programme have been: a) assessing regional distribution pattern of different, if existing, clay mineralogical associations; b) assessing possible relationships between parent rock of clay formations and mineralogy of sediments derived from; c) assessing important variations of clay bodies according to the evolution of the basins. The researches have been developed on the most representative Italian clay basins, following this programme: a) systematic sampling and mineralogic analysis of the pliocenic clay formations; b) assessment and development of investigations on clay mineralogic provinces, possibly identified in the preceding general phase by means of investigations on the variations of structural and mineralogical characteristics of significative clay deposits. The final results have been: a) clay mineralogic associations show a regional distribution pattern, i.d. the existence of many mineralogic provinces at the Italian scale is demonstrated; b) besides depositional mechanisms the mineralogic differential distribution pattern is due also to the lithologic nature of parent rock of the clay. These results account for the possibility of forecasting general mineralogic composition of deep clay bodies starting from low cost observations on surficial clay outcroppings. A practical implication is the possibility of orienting detailed expensive researches only toward those situations probabilistically displaying more appropriate characters

  11. Comparing uranyl sorption complexes on soil and reference clays

    International Nuclear Information System (INIS)

    Chisholm-Brause, C.J.; Berg, J.M.; Conradson, S.D.; Morris, D.E.; McKinley, J.P.; Zachara, J.M.

    1993-01-01

    Clay minerals and other components in natural soils may play a key role in limiting the mobility of uranium in the environment through the formation of sorption complexes. Reference clays are frequently used as models to study sorption processes because they have well-known chemical and physical properties, but they may differ chemically and morphologically from clays derived from natural soils. Therefore, inferences based on reference clay data have been questioned. The authors have used luminescence and x-ray absorption spectroscopies to characterize the sorption complexes of aqueous uranyl (UO 2 2+ ) species on two soil smectites from the Kenoma and Ringold formations, and compared these results to those obtained on reference smectite clays. The pH dependence of uptake suggests that the ratio of sorption on amphoteric edge sites is greater for the soil smectites than for reference clays such as Wyoming montmorillonite (SWy-1). The luminescence spectra for uranyl sorbed to the soil clays are very similar to those for uranyl sorbed principally to the edge sites of SWy-1. This observation supports the solution data suggesting that adsorption to amphoteric sites is a more important mechanism for soil clays. However, the spectral data indicate that the sorption complexes on natural and reference clays are quite similar. Furthermore, as with the reference clays, the authors have found that the chemistry of the solution plays a greater role in defining the sorption complex than does the clay matrix. Thus, if differences in surface properties are adequately taken into account, the reference clays may serve as useful analogs for soil clays in investigations of metal-ion sorption

  12. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  13. Ichnofabrics and biologically mediated changes in clay mineral assemblages from a deep-water, fine-grained, calcareous sedimentary succession : an example from the Upper Cretaceous Wyandot Formation, offshore Nova Scotia

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.; McIlroy, D. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). Dept. of Earth Sciences

    2010-09-15

    This paper documented the ichnology and ichnofabrics of the Upper Cretaceous Wyandot Formation, a 400-metre thick succession of fine-grained calcareous mudstone located offshore Nova Scotia, and examined changes in the ichnofabric that may be the result of paleoenvironmental perturbations. The formation has two lithofacies, one pure chalk and the other an interbedded, kaolinite-bearing, argillaceous and calcareous claystone, both of which have components derived from primary production in the photic zone, which is rich in foraminifera and coccoliths. The formation is bioturbated in which low pelagic sediment accumulations rates resulted in tiering and continual overprinting of trace fossils. The ichnological analysis unveiled the trends in environmental deterioration and amelioration. Fluctuations in the input of organic matter resulted in a rise of the redox front and low porewater/sediment oxygenation, which excluded many endobenthic organisms and resulted in changes in the trace fossil assemblages. Bioturbation alters the authigenic clay mineral assemblages and thereby affects sediment texture, as shown in the mineralogical differences between burrow fill and host sediment. The clay mineral assemblage was more diverse within the burrows than in the surrounding sediment. This is likely due to the authigenesis in the digestive system of deposit-feeding endobenthos. The effects of bioturbation are reflected in the chalk and interlayed marlstone of the formation. Biologically induced textural heterogeneities have a significant effect on reservoir quality. It was concluded that large-scale biodeposition may notably alter the texture of fine-grained sediments. 66 refs., 1 tab., 9 figs.

  14. Formation of free hydrogen during radiolysis in a bed of clay

    International Nuclear Information System (INIS)

    Eriksen, T.; Lind, J.

    1983-01-01

    Measurements of the amount of molecular hydrogen formed radiolytically in γ-irradiated sodium bentonite with varying water content have been carried out. Experiments have been carried out with 0.1 to 5 MPa Ar pressure and 2 to 5 MPa mechanical (mercury) pressure applied to the bentonite. The results clearly show that a water content and pressure-dependent equilibrium is obtained with hydrogen concentrations well below the hydrogen solubility in water. Titrations of slurries of 10 g irradiated and unirradiated bentonite in 100 g water with NaOH show a dose dependent increase in the surface acidity of the bentonite

  15. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  16. A comparison of zircon U-Pb age results of the Red Clay sequence on the central Chinese Loess Plateau.

    Science.gov (United States)

    Gong, Hujun; Nie, Junsheng; Wang, Zhao; Peng, Wenbin; Zhang, Rui; Zhang, Yunxiang

    2016-08-19

    Single grain zircon U-Pb geochronology has demonstrated great potentials in extracting tectonic and atmospheric circulation signal carried by aeolian, fluvial, and fluviolacustrine sediments. A routine in this sort of studies is analyzing 100-150 grains and then compares zircon U-Pb age spectra between the measured sample and the potential sources. Here we compared the zircon U-Pb age results of the late Miocene-Pliocene Red Clay sequence of two neighboring sites from the Chinese Loess Plateau where similar provenance signal is expected. Although the results from the 5.5 Ma sediment support this prediction, the results from the 3 Ma sediment at these two sites differ from each other significantly. These results emphasize the importance of increasing analysis number per sample and combining the zircon U-Pb geochronology with other provenance tools in order to get reliable provenance information.

  17. Dewatering of the Clayton Formation during construction of the Walter F George Lock and Dam, Fort Gaines, Clay County, Georgia

    Science.gov (United States)

    Stewart, J.W.

    1973-01-01

    Walter F. George Lock and Dam, the largest manmade structure in the South, extends over 2llz miles across the flood plain of the Chattahoochee River at Fort Gaines, Clay County, in southwest Georgia and in Henry County, in southeast Alabama. The multipurpose dam consists of two rolled-filled earth dikes, a concrete spillway, a single-stage lock with an 88-foot lift, and a 130,000 kilowatt capacity powerhouse. The foundation of the dam at the river is constructed in the Clayton Formation, and the earth dikes are constructed on river terraces at about 150 feet above msl (mean sea level). At the damsite, the top of the Clayton Formation consists of an "earthy" limestone, which is about 35 feet thick except in the river channel, where it is 12 to 15 feet thick; a "shell" limestone, which averages about 40 feet thick; and a basal "sandy" limestone, which averages about 35 feet thick. The Providence Sand underlies the "sandy" limestone and its thickness is about 175 feet at the damsite. These formations contain water under artesian conditions. The "shell" unit of the Clayton was the principal water-bearing formation pumped during construction of the lock and dam. The large yields of the wells from concentrated areas over extended periods of time indicate that in the vicinity of the Chattahoochee River, the Clayton Formation is a productive aquifer with transmissivity ranging from 48,000 to 77,000 gpd per ft. (gallons per day per foot) and storage coefficient ranging from 2.5 x 10?3 to 2.8 x 10?5. At the spillway site, pumpage ranged from an average of 1,700 to 8,400 gpm (gallons per minute) during the period April 1957 to July 1959; at the powerhouse site, pumpage ranged from 1,600 to 5,000 gpm during the period October 1957 to September 1961; and at the lock site, pumpage ranged from 4,000 to 5,000 gpm during the period July 1960 through December 1961. The large yields represent a source of large quantities of ground water available for industrial and other uses in an

  18. Impact of the electron donor on in situ microbial nitrate reduction in Opalinus Clay: results from the Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Bleyen, N.; Smets, S. [Belgian Nuclear Research Centre SCK-CEN, Mol (Belgium); Small, J. [National Nuclear Laboratory NLL, Warrington (United Kingdom); and others

    2017-04-15

    At the Mont Terri rock laboratory (Switzerland), an in situ experiment is being carried out to examine the fate of nitrate leaching from nitrate-containing bituminized radioactive waste, in a clay host rock for geological disposal. Such a release of nitrate may cause a geochemical perturbation of the clay, possibly affecting some of the favorable characteristics of the host rock. In this in situ experiment, combined transport and reactivity of nitrate is studied inside anoxic and water-saturated chambers in a borehole in the Opalinus Clay. Continuous circulation of the solution from the borehole to the surface equipment allows a regular sampling and online monitoring of its chemical composition. In this paper, in situ microbial nitrate reduction in the Opalinus Clay is discussed, in the presence or absence of additional electron donors relevant for the disposal concept and likely to be released from nitrate-containing bituminized radioactive waste: acetate (simulating bitumen degradation products) and H{sub 2} (originating from radiolysis and corrosion in the repository). The results of these tests indicate that - in case microorganisms would be active in the repository or the surrounding clay - microbial nitrate reduction can occur using electron donors naturally present in the clay (e.g. pyrite, dissolved organic matter). Nevertheless, non-reactive transport of nitrate in the clay is expected to be the main process. In contrast, when easily oxidizable electron donors would be available (e.g. acetate and H{sub 2}), the microbial activity will be strongly stimulated. Both in the presence of H{sub 2} and acetate, nitrite and nitrogenous gases are predominantly produced, although some ammonium can also be formed when H{sub 2} is present. The reduction of nitrate in the clay could have an impact on the redox conditions in the pore-water and might also lead to a gas-related perturbation of the host rock, depending on the electron donor used during denitrification

  19. Monitoring of IL/HL, LL waste repository in a clay formation: objectives, technical know-how, implementation strategy

    International Nuclear Information System (INIS)

    Grevoz, Arnaud; Mayer, Stefan; Dubois, Jean-Philippe

    2005-01-01

    In France, with regards to the monitoring of a reversible repository in a clay host formation, Andra utilised international references as input to develop its own strategy and program, e.g. IAEA TECDOC 1208 and DS-154 2004, NEA 2001 (reversibility and retrievability), EUR 21025 EN. Additionally, the French safety rule RFSIII.2.f, which aims to provide guidelines but is not a regulatory requirement, deals with 'general provisions concerning explorations'. The RFSIII.2.f distinguishes between exploration conducted from the surface, investigations to be carried out in the Underground Research Laboratory (URL) and monitoring of changes in the site while the repository is in operation. The monitoring programme responds to the three main motivations: 1. the respect of operational safety and regulatory requirements; 2. the acquisition of data to improve the understanding of processes and parameters underlying the long term safety assessment; and 3. reversibility. In that respect, Andra defines monitoring terminology by distinguishing two main activities: (i) observation (for scientific and engineering understanding and reversibility) and (ii) surveillance (related to operational and long term safety). Surveillance to contribute to the operational safety of a repository, e.g. surveillance of drift stability, fire and radiological hazards, is in line with other classical and nuclear operational safety principles and practices. Surveillance to contribute to long term safety can provide input to periodic re-evaluations of the safety analysis of a geologic repository, with a view of improving system understanding and confirming data in situ, prior to final closure of the repository. As such, it is in line with the usual regulatory guidance for Nuclear Power Plant (NPP) facilities. While it will not provide direct data on the long-term evolution of the system, it may provide some data, for example related to initial conditions or to an early transient phase, for

  20. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  1. Poly(N-isopropylacrylamide)–clay based hydrogels controlled by the initiating conditions: evolution of structure and gel formation

    Czech Academy of Sciences Publication Activity Database

    Strachota, Beata; Matějka, Libor; Zhigunov, Alexander; Konefal, Rafal; Spěváček, Jiří; Dybal, Jiří; Puffr, Rudolf

    2015-01-01

    Roč. 11, č. 48 (2015), s. 9291-9306 ISSN 1744-683X R&D Projects: GA ČR(CZ) GAP108/12/1459; GA ČR(CZ) GA13-23392S Institutional support: RVO:61389013 Keywords : thermoresponsive hydrogel * hybrid nanocomposite * polymer clay hydrogel Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.798, year: 2015

  2. Are the Kimmeridge Clay deposits affected by “burn-down” events? Palynological and geochemical studies on a 1 metre long section from the Upper Kimmeridge Clay Formation (Dorset, UK)

    Science.gov (United States)

    Kodrans-Nsiah, Monika; März, Christian; Harding, Ian C.; Kasten, Sabine; Zonneveld, Karin A. F.

    2009-12-01

    Two independent analytical approaches, palynology and inorganic geochemistry, were applied to identify potential oxygen "burn-down" events in the Late Jurassic Kimmeridge Clay Formation (KCF). The KCF interval of the rotunda ammonite zone, spanning 121.82-122.72 m depth was sampled from the Swanworth Quarry 1 borehole (Dorset, UK) at 2.5-5.0 cm resolution. Samples were analysed for total organic carbon (TOC), concentrations of elements that are known to be productivity- and/or nutrient-related (e.g. Cu, P), detrital (e.g. Al, Ti, Zr) and redox-sensitive/sulphide-forming (e.g. V, Mo, Fe, Mn, S), and palynofacies components including analysis of organic-walled dinoflagellate cysts (dinocysts) on a species level. The TOC contents generally exceed 2 wt.%, with a maximum of 8.8 wt.% at 122.37 cm depth and elevated values in the central part of the investigated interval. This interval of relatively higher TOC values correlates well with the maximum recovery of marine palynomorphs and low Al values, suggesting that the TOC is primarily of marine organic matter (OM). Changes in V/Al, Mo/Al, Fe/Al, Mn/Al and S patterns at 122.37 m depth mark a shift from anoxic conditions in the lower part of the studied interval to more oxic conditions in its upper part. Such a shift could explain the relatively high TOC and marine palynomorph concentrations in the lower part of the studied interval as a result of better preservation, and the subsequent decrease as an effect of a post-depositional "burn-down", i.e. OM oxidation. As the amount of marine palynomorphs and TOC content diminishes from the middle part of the section upwards, species-specific changes in dinocyst assemblages can be observed. In particular, concentrations of Circulodinium spp., Cyclonephelium spp., Sirmiodinium grossi, Senoniasphaera jurassica and Systematophora spp. decrease rapidly in comparison to other species, such as Glossodinium dimorphum and Cribroperidinium sp. 1, which may suggest selective degradation of

  3. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom

    Science.gov (United States)

    Fishman, Neil S.; Hackley, Paul C.; Lowers, Heather; Hill, Ronald J.; Egenhoff, Sven O.; Eberl, Dennis D.; Blum, Alex E.

    2012-01-01

    Analyses of organic-rich mudstones from wells that penetrated the Upper Jurassic Kimmeridge Clay Formation, offshore United Kingdom, were performed to evaluate the nature of both organic and inorganic rock constituents and their relation to porosity in this world-class source rock. The formation is at varying levels of thermal maturity, ranging from immature in the shallowest core samples to mature in the deepest core samples. The intent of this study was to evaluate porosity as a function of both organic macerals and thermal maturity. At least four distinct types of organic macerals were observed in petrographic and SEM analyses and they all were present across the study area. The macerals include, in decreasing abundance: 1) bituminite admixed with clays; 2) elongate lamellar masses (alginite or bituminite) with small quartz, feldspar, and clay entrained within it; 3) terrestrial (vitrinite, fusinite, semifusinite) grains; and 4) Tasmanites microfossils. Although pores in all maceral types were observed on ion-milled surfaces of all samples, the pores (largely nanopores with some micropores) vary as a function of maceral type. Importantly, pores in the macerals do not vary systematically as a function of thermal maturity, insofar as organic pores are of similar size and shape in both the immature and mature Kimmeridge rocks. If any organic pores developed during the generation of hydrocarbons, they were apparently not preserved, possibly because of the highly ductile nature of much of the rock constituents of Kimmeridge mudstones (clays and organic material). Inorganic pores (largely micropores with some nanopores) have been observed in all Kimmeridge mudstones. These pores, particularly interparticle (i.e., between clay platelets), and intraparticle (i.e., in framboidal pyrite, in partially dissolved detrital K-feldspar, and in both detrital and authigenic dolomite) are noteworthy because they compose much of the observable porosity in the shales in both

  4. Clay properties

    NARCIS (Netherlands)

    De Wit, P.J.

    1992-01-01

    In this report an overview will be given of the basic properties of (suspended) clay particles. In section 2 the structure of clay minerals will be described. The forces between suspended particles (section 3) and the possible consequences of them, flocculation or deflocculation (sections 4 and 5)

  5. Corrosion behaviour of carbon steel in the Tournemire clay

    Energy Technology Data Exchange (ETDEWEB)

    Foct, F.; Dridi, W. [EDF R and D MMC, Site des Renardieres, 77818 Moret sur Loing Cedex (France); Cabrera, J.; Savoye, S. [IRSN/DEI/SARG, bat 76/2, BP 17, 92262 Fontenay-aux Roses (France)

    2004-07-01

    Carbon steels are possible materials for the fabrication of nuclear waste containers for long term geological disposal in argillaceous environments. Experimental studies of the corrosion behaviour of such materials has been conducted in various conditions. Concerning the numerous laboratory experiments, these conditions (water and clay mixture or compacted clay) mainly concern the bentonite clay that would be used for the engineered barrier. On the opposite, only few in-situ experiments has been conducted directly in the local clay of the repository site (such as Boom clay, etc.). In order to better estimate the corrosion behaviour of carbon steels in natural clay site conditions, an experimental study has been conducted jointly by EDF and IRSN in the argillaceous French site of Tournemire. In this study, A42 carbon steel specimens have been exposed in 3 different zones of the Tournemire clay formation. The first type of environmental conditions concerns a zone where the clay has not been affected by the excavation (EDZ) of the main tunnel neither by the main fracture zone of the clay formation. The second and third ones are located in the EDZ of the tunnel. In the second zone, an additional aerated water flows from the tunnel, whereas it does not in the third place. Some carbon steel specimens have been extracted after several years of exposure to these conditions. The average corrosion rate has been measured by the weight loss technique and the pitting corrosion depth has been evaluated under an optical microscope. Corrosion products have also been characterised by scanning electron microscopy and X-ray diffraction technique. Results are then discussed regarding the surrounding environmental conditions. Calculations of the oxygen transport from the tunnel through the clay and of the clay re-saturation can explain, in a first approach, the corrosion behaviour of the carbon steel in the different tested zones. (authors)

  6. Corrosion behaviour of carbon steel in the Tournemire clay

    International Nuclear Information System (INIS)

    Foct, F.; Dridi, W.; Cabrera, J.; Savoye, S.

    2004-01-01

    Carbon steels are possible materials for the fabrication of nuclear waste containers for long term geological disposal in argillaceous environments. Experimental studies of the corrosion behaviour of such materials has been conducted in various conditions. Concerning the numerous laboratory experiments, these conditions (water and clay mixture or compacted clay) mainly concern the bentonite clay that would be used for the engineered barrier. On the opposite, only few in-situ experiments has been conducted directly in the local clay of the repository site (such as Boom clay, etc.). In order to better estimate the corrosion behaviour of carbon steels in natural clay site conditions, an experimental study has been conducted jointly by EDF and IRSN in the argillaceous French site of Tournemire. In this study, A42 carbon steel specimens have been exposed in 3 different zones of the Tournemire clay formation. The first type of environmental conditions concerns a zone where the clay has not been affected by the excavation (EDZ) of the main tunnel neither by the main fracture zone of the clay formation. The second and third ones are located in the EDZ of the tunnel. In the second zone, an additional aerated water flows from the tunnel, whereas it does not in the third place. Some carbon steel specimens have been extracted after several years of exposure to these conditions. The average corrosion rate has been measured by the weight loss technique and the pitting corrosion depth has been evaluated under an optical microscope. Corrosion products have also been characterised by scanning electron microscopy and X-ray diffraction technique. Results are then discussed regarding the surrounding environmental conditions. Calculations of the oxygen transport from the tunnel through the clay and of the clay re-saturation can explain, in a first approach, the corrosion behaviour of the carbon steel in the different tested zones. (authors)

  7. Modeling Radionuclide Transport in Clays

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Lianchong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Hui -Hai [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    Clay/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated or plastic clays (Tsang and Hudson, 2010). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. During the lifespan of a clay repository, the repository performance is affected by complex thermal, hydrogeological, mechanical, chemical (THMC) processes, such as heat release due to radionuclide decay, multiphase flow, formation of damage zones, radionuclide transport, waste dissolution, and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) of the repository. These coupled processes may affect radionuclide transport by changing transport paths (e.g., formation and evolution of excavation damaged zone (EDZ)) and altering flow, mineral, and mechanical properties that are related to radionuclide transport. While radionuclide transport in clay formation has been studied using laboratory tests (e,g, Appelo et al. 2010, Garcia-Gutierrez et al., 2008, Maes et al., 2008), short-term field

  8. Modification of bentonite clay and application on polypropylene nano composites

    International Nuclear Information System (INIS)

    Oliveira, Akidauana D.B.; Rodrigues, Andre W.B.; Agrawal, Pankaj; Araujo, Edcleide M.; Melo, Tomas J.A.

    2009-01-01

    This work consisted on the modification of Brasgel PA clay with ionic surfactant Praepagen WB and its incorporation into polypropylene. The results of infrared and DR-X was showed that the intercalation of surfactant in the clay and the incorporation of organoclay in PP matrix resulted in the formation of an intercalated structure. The impact strength of PP increased with the incorporation of organoclay. (author)

  9. Fault-tree analysis for probabilistic assessment of radioactive-waste segregation: an application to a plastic clay formation at a specific site

    International Nuclear Information System (INIS)

    D'Alessandro, M.; Bonne, A.

    1982-01-01

    This study concerns a probabilistic safety analysis of potential nuclear-waste repository which may be mined into a Tertiary clay formation underlying the Nuclear Research Centre at Mol (Belgium). The value of the geological barrier has been analyzed in probabilistic terms through the application of the Fault-Tree Analysis (FTA) which can answer two main questions: how can the barrier fail (query) and what is the failure probability (query). FTA has been applied to conceptual radioactive-waste disposal systems. In this paper this methodology has been applied to a specific clay formation, to test the applicability of the procedure to a potential site. With this aim, release probabilities to three different receptors (groundwater, land surface, and atmosphere) were estimated for four different time periods. Because of obvious uncertainties in geology predictive capabilities, a probability band has been obtained. Faulting phenomena are among the main mechanisms having the potential to cause release to groundwater, whereas direct releases to land surface may be linked to various glacial phenomena; on short term, different types of human actions may be important. The overall failure probabilities seem to be sufficiently low to offer a good safety margin. (author)

  10. Low cost estimation of deep argilaceous basins characteristics from prospection of outcrops. Application to Italian clays

    International Nuclear Information System (INIS)

    Brondi, A.

    1984-01-01

    Research is carried out on the more representative italian argilaceous basins. The work includes systematic sampling and mineralogic analyses of pliocene clay formations, in the area identified variations of mineralogic and structural characteristics are studied. Results obtained show a regional distribution for mineralogic associations, mineralogic distribution comes from deposition mechanisms and lithologic nature of parent rock producing clay formations. Forecasting of mineralogic composition of deep clay formation from surface observations is possible and more expensive detailed studies can be realized on a reduced number of geologic formations suitable for radioactive waste storage

  11. Long-term variations of clay mineral composition in the Andaman Sea (IODP Exp. 353 Site U1447): preliminary result

    Science.gov (United States)

    Lee, J.; Khim, B. K.; Cho, H. G.; Kim, S.; 353 Scientists, I. E.

    2016-12-01

    Clay mineral studies in the Bengal Fan have allowed the reconstruction of the erosional history of the Himalayan-Tibetan complex since the Early Miocene. Several factors such as climate change and tectonic activity are important for the erosion rate of the Himalaya-Tibet complex. IODP Expedition 353 Site U1447 (10°47.4'N, 93°00'E; 1391 mbsl) was drilled on a ridge 45 km offshore Little Andaman Island in the Andaman Sea, penetrating to total depths of 738 m. Riverine sediments supplied mainly by the Irrawaddy and Salween (draining the Indo-Burman Ranges; smectite-rich) and the Ganga/Brahmaputra (draining the Himalaya; illite-rich) via the surface currents have been known to deposit in the Andaman Sea. We measured clay minerals of 38 sediment samples collected from 150 to 737 m CSF-A at Site U1447 in order to reveal long-term variation patterns of clay minerals and their controlling factors. Age reconstruction of Site U1447 aided by shipboard biostratigraphic and paleomagnetic data defined the study interval spanning from the Late Miocene ( 10 Ma) to Early Pleistocene ( 1.25 Ma). At this interval, clay minerals consist mainly of smectite (28-61% with an average of 47%) followed by illite (20-41% with an average of 29%), kaolinite (9-19% with an average of 14%), and chlorite (5-15% with an average of 10%). Variation of clay mineral compositions is divided into three stages; almost consistent variations of all clay minerals (from 750 to 570 m CSF-A; 10.0 to 7.5 Ma), gradual decrease of smectite and increase of illite and chlorite (from 570 to 400 m CSF-A; 7.5 to 4.5 Ma), and great fluctuation of all clay minerals (from 400 to 150 m CSF-A; 4.5 to 1.1 Ma). Such long-term clay mineral changes may be related to provenance switches, tectonic evolution of the source regions, climatic variations, degree of volcanism with basin evolution, sedimentation history by sea level changes or some combination of these factors.

  12. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  13. Clay and concrete brick

    CSIR Research Space (South Africa)

    Dlamini, MN

    2014-03-01

    Full Text Available Brick is one of the most used and versatile building materials in use today. Bricks can be defined as modular units connected by mortar in the formation of a building system or product. Commonly the word brick is used to refer to clay bricks, which...

  14. Geochemical and technological characterization of clays of Corumbataí Formation, Paraná Basin, in the state of São Paulo, Brazil for the application in the ceramic industry.

    Science.gov (United States)

    Christofoletti, Sergio Ricardo; Torres Moreno, Maria Margarita; Batezelli, Alessandro; Zanardo, Antenor

    2014-05-01

    The Corumbataí Formation is a geological unit of the Paraná Basin comprises a range of predominantly argillaceous facies. These clays are important from an economic point of view, because they represent important mineral deposits suppliers of raw materials for the ceramic industry in the production of ceramic tiles.The study presents preliminary results of a research that aims to study the clays municipalities Tambaú, Ferreira and Santa Rosa of Viterbo in the State of São Paulo for their application and diversification of ceramic products. The methodology used was based on a detailed description of facies using the methodology in principles of analysis of Basin Miall (1984), followed by mineralogical identification by X-ray Diffraction, chemical analysis of major elements by X-ray Fluorescence and technological tests ceramic. According to the geological surveys of mines studied through columnar sections were identified the following lithofacies from base to top: Massive, Laminated, Intercalated and Altered. The mineralogy present on these lithofacies is composed by minerals: quartz, microclineo, albite, calcite, dolomite and hematite and by clay minerals illite, kaolinite and montmorillonite. The quartz represents the mineral more present in diffraction and occurs with d001 of 3.33Å in all lithofacies studied. The illite clay mineral represents the most frequent in studied samples presenting d 001 10Å in three conditions (natural, heated and treated with ethylene glycol) in which the blade was subjected to the analysis of X-ray diffraction, the presence of kaolinite or montmorillonite occurs or not in samples. It was observed a increased frequency of some minerals in the lithofacies studied, carbonates (calcite and dolomite), hematite and feldspar occurring in the intermediate portions of the profile with a predominance in lithofacies Intercalated. The illita clay mineral occurs throughout the profile, but with greater frequency in the lithofacies Massive and

  15. Clay 2001 dossier: progress report on feasibility studies and research into deep geological disposal of high-level, long-lived waste; Dossier 2001 argile: sur l'avancement des etudes et recherches relatives a la faisabilite d'un stockage de dechets a haute activite et a vie longue en formation geologique profonde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    A French Act of Parliament passed on 30 December 1991 set out the main areas of research required to prepare solutions for the long-term management of high-level, long-lived radioactive waste. The three avenues of research listed in the Act included a feasibility study of the deep geological disposal of these waste, with responsibility for steering the study given to ANDRA, France National Agency for Radioactive Waste Management. Following government decisions taken in 1998, the study focused on two types of geological medium, clay and granite. The clay formations study is essentially based on results from an underground laboratory sited at the border between the Meuse and Haute-Marne departments, where the Callovo-Oxfordian argillite beds are being investigated. No site has yet been chosen for an underground laboratory for the granite study, so for the time being this will draw on generic work and on research carried out in laboratories outside France. ANDRA has decided to present an initial report on the results of its research programme, publishing a dossier on the work on clay formations in 2001 with a second dossier covering the work on granite due for release in 2002. This dossier is thus a review of the work carried out by ANDRA on the feasibility study into a radioactive waste repository in a clay formation. It represents one step in a process of studies and research work leading up to the submission of a report due in 2005 containing ANDRA conclusions on the feasibility of a repository in the clay formation. (author)

  16. On the role of clay minerals in the disposal of radioactive waste in a clay geological formation; Les mineraux argileux. Leur role et importance dans un site de stockage de dechets radioactifs en couche argileuse profonde

    Energy Technology Data Exchange (ETDEWEB)

    Clauer, N. [Centre National de la Recherche Scientifique (CNRS), Centre de Geochimie de la Surface, 67 - Strasbourg (France)

    2005-05-01

    Clay minerals represent appropriate candidates in the search of geological sites and man-made barriers for potential underground storage of nuclear waste, because of their cation-exchange capabilities and swelling properties. However, this statement needs also to take into consideration other aspects such as physical parameters specific (imbrication of the mineral aggregates, occurrence of oxy-hydroxides and/or organic matter), or not of the rocks (temperature, compaction, etc), and the evolutionary history of the target units as they might indirectly modify the above potentials. Alternatively, original micro-discontinuities (micro-fractures) or those induced by the construction of the site do not appear to represent potential drains for fluid escapes, at least over long distances. The few examples presented here emphasize also that one should be careful about generalizing any conclusion, and that analytical data acquisition should be privileged in order to control better the reliability of the results and the potentials of the applied method. (author)

  17. Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry.

    Science.gov (United States)

    Adazabra, A N; Viruthagiri, G; Shanmugam, N

    2017-04-15

    The peculiar challenge of effective disposing abundant spent shea waste and the excellent compositional variation tolerance of clay material offered an impetus to examine the incorporation of spent shea waste into clay material as an eco-friendly disposal route in making clay bricks. For this purpose, the chemical constituent, mineralogical compositions and thermal behavior of both clay material and spent shea waste were initially characterized from which modelled brick specimens incorporating 5-20 wt% of the waste into the clay material were prepared. The clay material showed high proportions of SiO 2 (52.97 wt%) and Al 2 O 3 (27.10 wt%) indicating their rich kaolinitic content: whereas, the inert nature of spent shea waste was exhibited by their low oxide content. The striking similarities in infrared absorption bands of pristine clay material and clay materials incorporated with 15 wt% of spent shea waste showed that the waste incorporation had no impact on bond formation of the clay bricks. Potential performance benefits of developing bricks from clay material incorporated with spent shea waste included improved fluxing agents, economic sintering and making of sustainable bricks. Consequently, the analytical results authenticate the incorporation of spent shea waste into clay materials for various desired benefits aside being an environmental correct route of its disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  19. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction...... is increased with increasing clay content, up to 30%, beyond which the mixture of silt and clay is not liquefied. Sand may become prone to liquefaction with the introduction of clay, contrary to the general perception that this type of sediment is normally liquefaction resistant under waves....

  20. Clay jojoba oil facial mask for lesioned skin and mild acne--results of a prospective, observational pilot study.

    Science.gov (United States)

    Meier, Larissa; Stange, Rainer; Michalsen, Andreas; Uehleke, Bernhard

    2012-01-01

    External application of clay facial masks is a cosmetic procedure generally used to reduce skin lesions and to improve overall skin condition. Collecting pilot data about self-treatment with clay jojoba oil masks on participants with acne-prone, lesioned skin and acne. Open, prospective, observational pilot study: Participants received written information, instructions, and questionnaires without direct contact with the study physician. For 6 weeks, they applied the masks 2-3 times per week. The primary outcome is the difference of skin lesions: baseline vs. after 6 weeks. 194 participants (192 female, 2 male, mean age (± SE) (32.3 ± 0.7 years) returned questionnaires and diaries. 133 of these participants returned complete and precise lesion counts (per-protocol (PP) collective). A 54% mean reduction in total lesion count was observed after 6 weeks of treatment with clay facial mask. Both inflammatory and non-inflammatory skin lesions were reduced significantly after treatment compared to baseline: Median counts (MC) of pustules per affected participant were reduced from 7.0 ± 0.9 to 3.0 ± 0.5 (mean individual reduction (MIR) = 49.4%), the MC of the papules from 3.5 ± 2.2 to 1.0 ± 0.4 (MIR = 57.3%), the MC of cysts from 2.0 ± 0.8 to 0.5 ± 0.4 (MIR = 68.6%) and the MC of comedones from 26.5 ± 6.3 to 16.0 ± 4.0 (MIR = 39.1%). DLQI-average score decreased from 5.0 ± 4.5 (mean ± SE) before to 2.1 ± 2.8 after treatment. The present study gives preliminary evidence that healing clay jojoba oil facial masks can be effective treatment for lesioned skin and mild acne vulgaris. Copyright © 2012 S. Karger AG, Basel.

  1. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil

    Science.gov (United States)

    Meunier, Jean-François; Martins-Silva, Elisângela R.; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the

  2. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil.

    Science.gov (United States)

    Barbiero, Laurent; Berger, Gilles; Rezende Filho, Ary T; Meunier, Jean-François; Martins-Silva, Elisângela R; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the

  3. Characterization of Swelling Clays as Components of the Engineered Barrier System for Geological Repositories. Results of an IAEA Coordinated Research Project 2002-2007

    International Nuclear Information System (INIS)

    2013-11-01

    At the request of the Member States, the IAEA coordinates research into subjects of common interest in the context of the peaceful application of nuclear technology. The coordinated research projects (CRPs) are intended to promote knowledge and technology transfer between Member States and are largely focused on subjects of prime interest to the international nuclear community. This report presents the results of a CRP carried out between 2002 and 2007 on the subject of swelling clays proposed for use as a component in the engineered barrier system (EBS) of the multibarrier concept for disposal of radioactive waste. In 2002, under the auspices of the IAEA, a number of Member States came together to form a Network of Centres of Excellence on Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities (URF Network). This network identified the general subject of the application of high swelling clays to seal repositories for radioactive waste, with specific emphasis on the isolation of high level radioactive waste from the biosphere, as being suitable for a CRP. Existing concepts for geological repositories for high level radioactive waste and spent nuclear fuel require the use of EBSs to ensure effective isolation of the radioactive waste. There are two major materials proposed for use in the EBS, swelling clay based materials and cementitious/concrete materials. These materials will be placed between the perimeter of the excavation and the waste container to fill the existing gap and ensure isolation of the waste within the canister (also referred to as a container in some EBS concepts) by supporting safety through retardation and confinement. Cementitious materials are industrially manufactured to consistent standards and are readily available in most locations and therefore their evaluation is of less value to Member States than that of swelling clays. There exists a considerable range of programme development regarding

  4. clay nanocomposites

    Indian Academy of Sciences (India)

    The present work deals with the synthesis of specialty elastomer [fluoroelastomer and poly (styrene--ethylene-co-butylene--styrene (SEBS)]–clay nanocomposites and their structure–property relationship as elucidated from morphology studies by atomic force microscopy, transmission electron microscopy and X-ray ...

  5. Analysis of a gas-phase partitioning tracer test conducted in an unsaturated fractured-clay formation.

    Science.gov (United States)

    Simon, Michelle A; Brusseau, Mark L

    2007-03-20

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confining layer for the underlying regional aquifer. Three suites of three tracers were injected into wells located 14, 24, and 24 m from a single, central extraction well. The tracers comprised noble gases (traditionally thought to be nonsorbing), alkanes (primarily water partitioning), perfluorides (primarily NAPL partitioning), and halons (both NAPL and water partitioning). Observations of vacuum response were consistent with flow in a fractured system. The halon tracers exhibited the greatest amount of retardation, and helium and the perfluoride tracers the least. The alkane tracers were unexpectedly more retarded than the perfluoride tracers, indicating low NAPL saturations and high water saturations. An NAPL saturation of 0.01, water saturation of 0.215, and gas saturation of 0.775 was estimated based on analysis of the suite of tracers comprising helium, perfluoromethylcyclohexane and dibromodifluoromethane, which was considered to be the most robust set. The estimated saturations compare reasonably well to independently determined values.

  6. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    Science.gov (United States)

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  7. Catalyzed Synthesis of Zinc Clays by Prebiotic Central Metabolites.

    Science.gov (United States)

    Zhou, Ruixin; Basu, Kaustuv; Hartman, Hyman; Matocha, Christopher J; Sears, S Kelly; Vali, Hojatollah; Guzman, Marcelo I

    2017-04-03

    How primordial metabolic networks such as the reverse tricarboxylic acid (rTCA) cycle and clay mineral catalysts coevolved remains a mystery in the puzzle to understand the origin of life. While prebiotic reactions from the rTCA cycle were accomplished via photochemistry on semiconductor minerals, the synthesis of clays was demonstrated at low temperature and ambient pressure catalyzed by oxalate. Herein, the crystallization of clay minerals is catalyzed by succinate, an example of a photoproduced intermediate from central metabolism. The experiments connect the synthesis of sauconite, a model for clay minerals, to prebiotic photochemistry. We report the temperature, pH, and concentration dependence on succinate for the synthesis of sauconite identifying new mechanisms of clay formation in surface environments of rocky planets. The work demonstrates that seeding induces nucleation at low temperatures accelerating the crystallization process. Cryogenic and conventional transmission electron microscopies, X-ray diffraction, diffuse reflectance Fourier transformed infrared spectroscopy, and measurements of total surface area are used to build a three-dimensional representation of the clay. These results suggest the coevolution of clay minerals and early metabolites in our planet could have been facilitated by sunlight photochemistry, which played a significant role in the complex interplay between rocks and life over geological time.

  8. The molecular aggregation of pyronin Y in natural bentonite clay suspension

    International Nuclear Information System (INIS)

    Meral, Kadem; Yilmaz, Nuray; Kaya, Mehmet; Tabak, Ahmet; Onganer, Yavuz

    2011-01-01

    The molecular aggregation and spectroscopic properties of Pyronin Y (PyY) in the suspension containing natural bentonite clay were studied using molecular absorption, steady-state and time-resolved fluorescence spectroscopy techniques. Interaction between the clay particles and the cationic dye compounds in aqueous solution resulted in significant changes in spectral properties of PyY compared to its molecular behavior in deionized water at the same concentration. These changes were due to the formation of dimer and aggregate of PyY in the clay suspension as well as the presence of the dye monomer. The H-type aggregates of PyY in the clay suspension were identified by the observation of a blue-shifted absorption band of the dye compared to that of its monomer. In spite of diluted dye concentrations, the H-aggregate of PyY in the clay suspension was formed. The intensive aggregation in the clay suspension attributed to the localized high dye concentration on the negatively charged clay surfaces. Adsorption sites of PyY on the clay particles were discussed by deconvulated absorption and excitation spectra. Fluorescence spectroscopy studies revealed that the fluorescence intensity of PyY in the clay suspension is decreased by H-aggregates drastically. Moreover, the presence of H-aggregates in the clay suspension resulted in the decrease of fluorescence lifetime and quantum yield of PyY compared to those in deionized water. - Highlights: → Molecular behavior of PyY adsorbed on clay surface was followed spectroscopically. → H-aggregates of PyY in the clay suspension were formed at very low dye concentrations. → The intensive H-aggregate structure drastically reduced the fluorescence intensity of PyY. → The fluorescence lifetime and quantum yield of PyY in the clay suspension was discussed.

  9. Summary and conclusions of the faults-in-clay project

    International Nuclear Information System (INIS)

    Hallam, J.R.; Brightman, M.A.; Jackson, P.D.; Sen, M.A.

    1992-01-01

    This report summarises a research project carried out by the British Geological Survey, in cooperation with ISMES of Italy, into the geophysical detection of faults in clay formations and the determination of the hydrogeological effects of such faults on the groundwater flow regime. Following evaluation of potential research sites, an extensive programme of investigations was conducted at Down Ampney, Gloucester, where the Oxford Clay formation is underlain by the aquifers of the Great Oolite Limestone group. A previously unknown fault of 50 m throw was identified and delineated by electrical resistivity profiling; the subsequent development of a technique utilising measurements of total resistance improved the resolution of the fault 'location' to an accuracy of better than one metre. Marked anisotropy of the clay resistivities complicates conventional geophysical interpretation, but gives rise to a characteristic anomaly across the steeply inclined strata in the fault zone. After exploratory core drilling, an array of 13 boreholes was designed and completed for cross-hole seismic tomography and hydrogeological measurement and testing. The groundwater heads in the clays were found to be in disequilibrium with those in the aquifers, as a result of water supply abstraction. The indication is that the hydraulic conductivity of the fault zone is higher than that of the surrounding clay by between one and two orders of magnitude. Methodologies for the general investigation of faults in clay are discussed. (Author)

  10. Water circulation control on carbonate-{delta}{sup 18}O records in a low permeability clay formation and surrounding limestones: The Upper Dogger-Oxfordian sequence from the eastern Paris basin, France

    Energy Technology Data Exchange (ETDEWEB)

    Lavastre, Veronique, E-mail: veronique.lavastre@univ-st-etienne.fr [Universite de Lyon, Universite Jean Monnet, F-42023 Saint Etienne (France)] [CNRS, UMR 6524, LMV, F-42023 Saint Etienne (France)] [Laboratoire de Geochimie des Isotopes Stables, Institut de Physique du Globe de Paris and Universite Paris 7 - UMR CNRS 7154, 4, place Jussieu, 75252 Paris cedex 05 (France); Ader, Magali [Laboratoire de Geochimie des Isotopes Stables, Institut de Physique du Globe de Paris and Universite Paris 7 - UMR CNRS 7154, 4, place Jussieu, 75252 Paris cedex 05 (France); Buschaert, Stephane [Andra, Parc de la Croix Blanche, 7-8 rue Jean Monnet, 92 298 Chatenay-Malabry Cedex (France); Petit, Eddy; Javoy, Marc [Laboratoire de Geochimie des Isotopes Stables, Institut de Physique du Globe de Paris and Universite Paris 7 - UMR CNRS 7154, 4, place Jussieu, 75252 Paris cedex 05 (France)

    2011-05-15

    effective since Jurassic/Cretaceous transition times. Inversely, the carbonate-{delta}{sup 18}O content trends observed for the Callovo-Oxfordian data show that changes were controlled by post-depositional fluid-rock interaction with water/rock ratio (0.02-0.15) similar to the present-day porewater/rock ratio. The 130 m thick Callovo-Oxfordian claystone appears remarkably homogenous regarding its hydrogeological properties. This study suggests an initial marine porewater replacement by meteoric water only after porosity was reduced to its present value, thus demonstrating that the Callovo-Oxfordian clay has mainly been isolated from advective meteoric water circulation. Only the upper 20 m of the Callovo-Oxfordian claystone Formation underwent heterogeneous water-rock exchange (W/R from 0.01 to 0.3), probably as a result of its mineralogical heterogeneity and proximity to the advective Oxfordian Limestone aquifer. This study of carbonate-{delta}{sup 18}O confirms the hydrogeological barrier properties of the Callovo-Oxfordian clay and suggests that it has been a natural hydrological barrier since the earliest times of its diagenesis.

  11. Water circulation control on carbonate-δ18O records in a low permeability clay formation and surrounding limestones: The Upper Dogger-Oxfordian sequence from the eastern Paris basin, France

    International Nuclear Information System (INIS)

    Lavastre, Veronique; Ader, Magali; Buschaert, Stephane; Petit, Eddy; Javoy, Marc

    2011-01-01

    carbonate-δ 18 O content trends observed for the Callovo-Oxfordian data show that changes were controlled by post-depositional fluid-rock interaction with water/rock ratio (0.02-0.15) similar to the present-day porewater/rock ratio. The 130 m thick Callovo-Oxfordian claystone appears remarkably homogenous regarding its hydrogeological properties. This study suggests an initial marine porewater replacement by meteoric water only after porosity was reduced to its present value, thus demonstrating that the Callovo-Oxfordian clay has mainly been isolated from advective meteoric water circulation. Only the upper 20 m of the Callovo-Oxfordian claystone Formation underwent heterogeneous water-rock exchange (W/R from 0.01 to 0.3), probably as a result of its mineralogical heterogeneity and proximity to the advective Oxfordian Limestone aquifer. This study of carbonate-δ 18 O confirms the hydrogeological barrier properties of the Callovo-Oxfordian clay and suggests that it has been a natural hydrological barrier since the earliest times of its diagenesis.

  12. Influence of diaphragm wall installation in overconsolidated sandy clays on in situ stress disturbance and resulting wall deformations

    Directory of Open Access Journals (Sweden)

    Truty Andrzej Adam

    2016-09-01

    Full Text Available Numerical modeling of deep excavations becomes a standard practice in modern geotechnical engineering. A detailed numerical model for a given case is able to reproduce major effects of soil-structure interaction by taking into account any kind of drainage conditions, strong stiffness variation due to effective stress and strain changes, creep and cracking, when reinforced concrete is used as a structural material, but also interface effects between subsoil and structure. Calibrating soil constitutive models is one of the most difficult tasks and due to several sources of uncertainty there is no one unique set of the data that should be used in numerical predictions. Lack or incompleteness of experimental data, significant mismatch between laboratory and field tests is an another source of difficulty. Contrary to several simplified methods, that are usually limited to two dimensions, numerical models allow a full 3D analysis in which many simplifications can be eliminated. This paper is devoted to the problem of in situ stress disturbance caused by diaphragm wall installation in overconsolidated quaternary sandy clays and its influence on final wall deformations.

  13. Thermal Analysis: A Complementary Method to Study the Shurijeh Clay Minerals

    Directory of Open Access Journals (Sweden)

    Golnaz Jozanikohan

    2015-06-01

    Full Text Available Clay minerals are considered the most important components of clastic reservoir rock evaluation studies. The Shurijeh gas reservoir Formation, represented by shaly sandstones of the Late Jurassic-Early Cretaceous age, is the main reservoir rock in the Eastern Kopet-Dagh sedimentary Basin, NE Iran. In this study, X-ray diffraction (XRD, X-ray fluorescence (XRF, scanning electron microscopic (SEM studies, and thermal analysis including differential thermal analysis (DTA, and thermogravimetric analysis (TGA techniques were utilized in the characterization of the Shurijeh clay minerals in ten representative samples. The XRF studies showed that silica and aluminum oxides are present quantities. The XRD test was then used to determine the mineralogical composition of bulk components, as well as the clay fraction. The XRD patterns indicated the presence of dominant amount of quartz and plagioclase, with moderate to minor amounts of alkali feldspar, anhydrite, carbonates (calcite and dolomite, hematite and clay minerals. The most common clays in the Shurijeh Formation were illite, chlorite, and kaolinite. However, in very few samples, glauconite, smectite, and mixed layer clay minerals of both illite-smectite and chlorite-smectite types were also recognized. The XRD results were quantified, using the elemental information from the XRF test, showing that each Shurijeh exhibited low to moderate amounts of clay minerals, typically up to 21%. The amount of illite, the most dominant clay mineral, reached maximum of 13.5%, while the other clay types were significantly smaller. Based on the use of SEM and thermal data, the results of the identification of clay minerals, corresponded with the powder X-ray diffraction analysis, which can be taken into account as an evidence of the effectiveness of the thermal analysis technique in clay typing, as a complementary method besides the XRD.

  14. Breakdown of Clays by Ectomycorrhizal Fungi Through Changes in Oxidation State of Iron

    Science.gov (United States)

    Arocena, J. M.; Velde, B.

    2012-04-01

    Organisms are known to play a significant role in the transformation of clay minerals in soils. In our earlier work on canola, barley and alfalfa, we reported that Glomus, an arbuscular mycorrhizae, selectively transformed biotite into 2:1 expanding clays through the oxidation of Fe (II) in biotite to Fe(III). In this presentation, we will share similar results on clay transformations mediated by ectomycorrhizal fungi colonizing the roots of coniferous trees. Clay samples were isolated from rhizosphere soils of sub-alpine fir (Abies lasiocarpa (Hook.) Nutt.) in northern British Columbia (Canada). Chemical and mineralogical properties of these soils had been reported in our earlier paper. In this study, we subjected the clay samples to iron X-ray Absorption Near Edge Spectroscopy (Fe-XANES) at the Canadian Light Source synchrotron facility in Saskatoon (Canada). Our initial results showed relatively higher amounts of Fe (III) than Fe(II) in clays collected from rhizosphere of Piloderma (an ectomycorrhizal fungus) compared to soils influenced by non-Piloderma species and Control (non-rhizosphere soil). Coupled with the results of X-ray diffraction (XRD) analysis, there seems to be a positive relationship between the relative amounts of Fe(III) and the 2:1 expanding clays. This relationship is consistent with our results on agricultural plants in laboratory experiments on biotites where we suggested that oxidation of Fe(II) to Fe(III) results in the formation of 2:1 expanding clays. In a related data set on chlorite alteration we observed that after dithionite-citrate-bicarbonate (DCB) treatment, the d-spacing of a slight portion of chloritic expanding clays shifted to higher angles indicating decreased d-spacing towards micaceous clays. The reductive process initiated through the action of the DCB treatment seems to indicate the collapsed of expandable clays upon the reduction of Fe(III) to Fe(II). Initial results from the Fe-XANES and XRD analysis of DCB

  15. Strength Properties of Aalborg Clay

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    In the northern part of Vendsyssel, Denmark, the deposits made in the late glacial time are formed by the sea. The deposits are named after two mussels: Yoldia clay and Saxicava sand. However, in the southern part of Vendsyssel and in the area of Aalborg the clay and sand deposits from the late...... glacial time are characterised by the absence of this mussel. These deposits are named Aalborg Clay and Aalborg Sand. In the city of Aalborg, a fill layer superposes Aalborg Clay. This layer is at some places found to be 6m thick. This fill layer does not provide sufficient bearing capacity, which has...... resulted in many damaged buildings in Aalborg. To provide sufficient bearing capacity it is therefore necessary either to remove the fill or to construct the building on piles. Both methods imply that the strength of Aalborg Clay is important for the construction. This paper evaluates the strength...

  16. Research of possibilities for use domestic kaolin clays for production of metakaolin

    Directory of Open Access Journals (Sweden)

    Mitrović Aleksandra A.

    2009-01-01

    Full Text Available Environmental concerns coming from the high energy consumption and CO2 emission associated with cement production have brought about pressures to reduce cement consumption through the use of new materials which can be applied for substitution of a part of clinker in Portland cement or a part of cement in concrete. One of the materials that satisfy requirements of sustainable development and, when added in appropriate shares, improves the properties of cement, mortars and concrete, is metakaolin (MK, a processed pozzolana. The main and widely used raw material for production of metakaolin is kaolin clay. MK is produced by calcination or 'thermal activation' of kaolin clay. The possibilities for metakaolin production are strongly related to the characteristics of the used kaolin clay. The samples of domestic kaolin clay used in this study were provided by factories Kaolin, Valjevo, and Keramika, Mladenovac. Chemical composition, mineralogical composition and thermal properties of these samples were determined. Thermal analysis (simultaneous recording of TG, DTG and DTA signals was carried out at the temperature range from 20 to 1200 °C. For both clays the results show that the loss of mass occurred in two stages. The dehydroxillation of kaolinite and formation of metakaolin occurred in the second stage. Minerals quartz and kaolinite are dominant in the clay Kaolin, Valjevo. Dehydroxillation of kaolinite and formation of metakaolin took place in the temperature range 350-800 °C. This clay does not have clearly distinct exothermic and endothermic peaks. Clay from Keramika, Mladenovac, has a higher content of the kaolinite mineral, i.e. 81.51%. The dehydroxillation of kaolinite and formation of metakaolin occurred in the temperature range 400-700 °C. This clay has two distinct endothermic peaks at 60 and 490 °C. All these results show that both clays can be used for production of metakaolin.

  17. Hydrodynamic erosion process of undisturbed clay

    NARCIS (Netherlands)

    Zhao, G.; Visser, P.J.; Vrijling, J.K.

    2011-01-01

    This paper describes the hydrodynamic erosion process of undisturbed clay due to the turbulent flow, based on theoretical analysis and experimental results. The undisturbed clay has the unique and complicated characteristics of cohesive force among clay particles, which are highly different from

  18. Evaluation of the healing activity of therapeutic clay in rat skin wounds.

    Science.gov (United States)

    Dário, Giordana Maciel; da Silva, Geovana Gomes; Gonçalves, Davi Ludvig; Silveira, Paulo; Junior, Adilson Teixeira; Angioletto, Elidio; Bernardin, Adriano Michael

    2014-10-01

    The use of clays for therapeutic practice is widespread in almost all regions of the world. In this study the physicochemical and microbiological healing characteristics of a clay from Ocara, Brazil, popularly used for therapeutic uses, were analyzed. The presence of Ca, Mg, Al, Fe, and Si was observed, which initially indicated that the clay had potential for therapeutic use. The average particle size of the clay (26.3 μm) can induce the microcirculation of the skin and the XRD analysis shows that the clay is formed by kaolinite and illite, a swelling clay. During the microbiological evaluation there was the need to sterilize the clay for later incorporation into the pharmaceutical formula. The accelerated stability test at 50°C for 3 months has showed that the pharmaceutical formula remained stable with a shelf life of two years. After the stability test the wound-healing capacity of the formulation in rats was evaluated. It was observed that the treatment made with the formulation containing the Ocara clay showed the best results since the formula allowed greater formation of collagen fibers and consequent regeneration of the deep dermis after seven days of treatment and reepithelialization and continuous formation of granulation tissue at the 14th day. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  20. Boron Enrichment in Martian Clay

    Science.gov (United States)

    Nagashima, Kazuhide; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  1. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    Science.gov (United States)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  2. Collapsed state of polyglutamic acid results in amyloid spherulite formation

    Science.gov (United States)

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly. PMID:28232889

  3. Nucleation of Salt Crystals in Clay Minerals: Molecular Dynamics Simulation.

    Science.gov (United States)

    Dashtian, Hassan; Wang, Haimeng; Sahimi, Muhammad

    2017-07-20

    Nucleation of salt crystals in confined media occurs in many processes of high importance, such as injection of CO 2 in geological formations for its sequestration. In particular, salt precipitation in clays, a main component of sedimentary rock, is an important phenomenon. The crystals precipitate on the pores' surface, modify the pore space morphology, and reduce its flow and transport properties. Despite numerous efforts to understand the mechanisms of nucleation of salt crystals in confined media, the effect of the clay's chemistry on the growth, distribution, and properties of the crystals is not well understood. We report the results of extensive molecular dynamics simulation of nucleation and growth of NaCl crystals in a clay pore using molecular models of two types of clay minerals, Na-montmorillonite and kaolinite. Clear evidence is presented for the nucleation of the salt crystals that indicates that the molecular structure of clay minerals affects their spatial distribution, although the nucleation mechanism is the same in both types of clays.

  4. Effects of the dolomite from Irati formation as additive in a refractory clay used as raw material in Santa Gertrudes ceramic cluster (SP)

    International Nuclear Information System (INIS)

    Souza, M.H.O.; Gaspar Junior, L.A.; Moreno, M.M.T.

    2011-01-01

    The effects of addition of carbonates in clays used as floor tiles have been intensively studied, but the focus usually is the pure calcite or calcitic limestone, which has nobler uses in industry, especially for cement production. However, in the important area known as Santa Gertrudes Ceramic Cluster, in Sao Paulo State, occurs mainly the dolomitic limestone, which is little studied as a potential additive which could be used in order to improve the properties of the floor tiles. This work aimed to check out the potentiality of dolomitic limestone as additive in ceramic products, especially floor tiles. Using as ingredients dolomitic limestones and refractory clay collected inside the area of the referred cluster, ceramic bodies were obtained with different dolomitic limestones contents incorporated to the refractory clay, and these ceramic bodies were mineralogically, chemically and physically analyzed. The conclusions are the dolomitic limestone can be particularly useful when incorporated to refractory clays, due to its fluxing properties. (author)

  5. Killer clays! Natural antibacterial clay minerals

    Science.gov (United States)

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  6. CLAY AND CLAY-SUPPORTED REAGENTS IN ORGANIC SYNTHESES

    Science.gov (United States)

    CLAY AND CLAY-SUPPORTED REAGENTS HAVE BEEN USED EXTENSIVELY FOR SYNTHETIC ORGANIC TRANSFORMATIONS. THIS OVERVIEW DESCRIBES THE SALIENT STRUCTURAL PROPERTIES OF VARIOUS CLAY MATERIALS AND EXTENDS THE DISCUSSION TO PILLARED CLAYS AND REAGENTS SUPPORTED ON CLAY MATERIALS. A VARIET...

  7. Photophysics of Auramine O adsorbed on solid clays

    Energy Technology Data Exchange (ETDEWEB)

    Valandro, Silvano R.; Poli, Alessandra L.; Neumann, Miguel G.; Schmitt, Carla C., E-mail: carla@iqsc.usp.br

    2015-05-15

    The dye loading effect on the photophysical behavior of Auramine O adsorbed onto solid clays was studied. When the dye concentration is increased, solid samples of Auramine O incorporated in SYn-1, SAz-1 and SWy-1 clays show an enhancement of the β-band in the UV–vis-DR spectra and the band at 450 nm shifts to the blue. This behavior can be attributed to the formation of H-type dye aggregates. For SYn-1 and SAz-1 clays, which show higher charge density, the formation of H-aggregates of the dye is favored. The fluorescence intensity and lifetime values of AuO decrease with the increasing of dye loading in these clays, since H aggregates do not exhibit fluorescence. The basal spacing of SAz-1 and SYn-1 containing 5% of AuO remains the same as that for pure SAz-1 and SYn-1. The adsorption of the dye predominantly occurs on the external surface of the SAz-1 and SYn-1 clays. On the other hand, for SWy-1 clay, UV–vis results suggest the presence of H- and J- aggregates. The fluorescence emission and lifetimes increase with the AuO concentration. XRD measurements confirm the penetration of the Auramine O into interlayer regions of the SWy-1 clay. When the Auramine is in the interlamellar regions of clay, the rotation of its phenyl rings is restricted, diminishing the internal conversion rate, therefore increasing the emission. The adsorption of the dye occurs on the external surface and in the interlamellar layers of SWy-1. - Highlights: • AuO incorporated in SYn-1, SAz-1 and SWy-1 shows formation of H-aggregates. • The formation of H-aggregates of the dye is favored in SYn-1 and SAz-1 clays. • Adsorption of the dye occurs on the external surface of SAz-1 and SYn-1. • Auramine O penetrates into the interlayer regions of the SWy-1. • Fluorescence emission increases for AuO in the interlayer regions.

  8. Characterization of two clays - attapulgite and sepiolite - before and after acid activation

    International Nuclear Information System (INIS)

    Oliveira, R.N.; Soares, G.A.

    2009-01-01

    Among the special clays, two of them are distinguished by their large surface area: attapulgite and sepiolite. Although, being natural clays, when they are removed from the formation sites, their structural channels may be filled of impurities. The process done to clean these channels is called acid activation. The present work aim to treated samples from both clays by using 3M and 5M HCl solution under ultrasonic waves for 1 hour. The characterization of the clays before and after activation was carried out by SEM/EDS, XRD and surface area measure by method BET. The acid treatments employed were too aggressive, in special that with 5M HCl solution, which results in partial lixiviation of these clays. (author)

  9. The colloidal chemistry of ceramic clays

    Science.gov (United States)

    Phelps, G. W.

    1984-01-01

    The colloidal chemistry and mineralogy of two argil minerals were studied. Deposits of kaolin and of ceramic clays in the United States and England are discussed for the probable mechanism of formation. The structural modifications of the bed, original material associated with the clays and the proper use of flocculants are discussed.

  10. From clay bricks to deep underground storage

    International Nuclear Information System (INIS)

    2012-05-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted

  11. Preparation and characterization of bentonite organo clay

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Almeida Neto, A.F.; Silva, M.G.C.

    2009-01-01

    Bentonite clays organically modified have great potential use for environmental remediation, especially in the separation of organic compounds from the water. The aim of this work was the preparation of organophilic clays from 'Verde-Lodo' bentonite clay with the quaternary ammonium salts cetyl-pyridinium chloride and benzalkonium chloride. The materials obtained were characterized by XRD, thermogravimetric analyses, Helium picnometry, SEM and energy dispersive X-ray techniques. The results show consistently successful synthesis of the organoclay through the increase in the basal spacing, as well as salt elimination picks and presence of carbon and chlorine in the modified clays; they are inexistent elements in the natural clay. (author)

  12. Thermal volume changes in clays and clay-stones

    International Nuclear Information System (INIS)

    Delage, P.; Sulem, J.; Mohajerani, M.; Tang, A.M.; Monfared, M.

    2012-01-01

    Document available in extended abstract form only. The disposal of high activity exothermic radioactive waste at great depth in clay host rocks will induce a temperature elevation that has been investigated in various underground research laboratories in Belgium, France and Switzerland through in-situ tests. Thermal effects are better known in clays (in particular Boom clay) than in clay-stone (e.g. Opalinus clay and Callovo-Oxfordian clay-stone). In terms of volume changes, Figure 1 confirms the findings of Hueckel and Baldi (1990) that volume changes depend on the over-consolidation ratio (OCR) of the clay. In drained conditions, normally consolidated clays exhibit plastic contraction when heated, whereas over-consolidated clay exhibit elastic dilation. The nature of thermal volume changes in heated clays obviously has a significant effect on thermally induced pore pressures, when drainage is not instantaneous like what occurs in-situ. Compared to clays, the thermal volume change behaviour of clay-stones is less well known than that of clays. clay-stone are a priori suspected to behave like over-consolidated clays. In this paper, a comparison of recent results obtained in the laboratory on the drained thermal volume changes of clay-stones is presented and discussed. It is difficult to run drained mechanical tests in clay-stones like the Opalinus clay and the Callovo-Oxfordian clay-stone because of their quite low permeability (10 -12 - 10 -13 m/s). This also holds true for thermal tests. Due to the significant difference in thermal expansion coefficient between minerals and water, it is necessary to adopt very slow heating rate (0.5 - 1 C/h) to avoid any thermal pressurization. To do so, a new hollow cylinder apparatus (100 mm external diameter, 60 mm internal diameter) with lateral drainages reducing the drainage length to half the sample thickness (10 mm) has been developed (Monfared et al. 2011). The results of a drained cyclic thermal test carried out on

  13. The reactivity of clay materials in a context of metallic corrosion: application to disposal of radioactive wastes in deep argillaceous formations

    International Nuclear Information System (INIS)

    Perronnet, M.

    2004-10-01

    In order to confine radioactive wastes in deep settings, it is envisaged to use some natural clay materials and bentonites. Their stability when in contact with metallic iron, main component of the canisters, is studied. These studies show that the reactivity of such materials is mainly controlled by those of their di-octahedral smectites and kaolinites. On the contrary, the presence of sulfides stops the Fe(0)-clays reaction. The kind of reaction products depends on the quantity of available metallic iron. When pH is over 7, the Fe(0) is oxidized consecutive to a physical contact with the oxidant agents of the smectite (H + , OH - et Fe 3+ ). This reaction is favored by the heterogeneities of the lateral surfaces of the smectite, which then describes a micro-environments in which some serpentines grow up if the iron supply is sufficient. Such new-crystallization imply a decrease of the confinement properties of the clay barrier. (author)

  14. The project ANSICHT. Safety and demonstration methodology for a final repository in clay formations in Germany; Projekt ANSICHT. Sicherheits- und Nachweismethodik fuer ein Endlager im Tongestein in Deutschland. Synthesebericht

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, Michael; Bebiolka, Anke; Jahn, Steffen; and others

    2017-03-30

    Based on the status of science and technology and under consideration of international repository concepts the fundamental methodology for safety demonstration for a high-level radioactive waste final repository in clay formations Germany was developed. Basic elements of the safety concept are the geological site description and the geo-scientific long-term prognosis on future performance. Another important section is the closure and sealing concept for the mine shafts. In the frame of the project the fundamental elements were developed and documented for model regions in northern and southern Germany. Three independent safety proofs have to be performed: the demonstration of the geological barrier integrity (clay), the demonstration of the geo-technical barrier system integrity - i.e. closure constructions and backfilling of the shafts, and the radiological demonstration that the radionuclide release in the area is lower than the respective limiting value.

  15. Corrosion of cementitious materials under geological disposal conditions with resulting effects on the geochemical stability of clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, H.J.; Meyer, Th. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koln (Germany)

    2001-07-01

    The long-term behaviour of cemented fly ashes and bentonite (MX80) has been investigated in high saline solutions by means of a cascade experiment, batch experiment and by the geochemical modelling of the observed reactions. In contact to IP21 the degradation of CSH phases in the cementitious material could be proposed indicated by the accumulation of Ca in solution. In contact to NaCl brine only a small amount of Ca in solution could be detected indicating a slight dissolution of CSH phases in the cementitious material. Considering the good agreement between the time accelerating laboratory scale cascade experiment and the modelled reaction path using the computer code EQ3/6 we conclude, that it is possible to predict the chemical behaviour of cementitious materials in salt solutions. The degradation experiments with MX80 and cementitious material in NaCl and IP21 solution showed an accumulation of Si and Al in solution and then a remove possibly indicating the formation of new phases. In contact to high saline solutions a reduction of swelling pressure of MX80 at various reduced initial dry densities could be observed in comparison to pure water. Moreover a reduced water-uptake of MX80 in contact to high saline and alkaline solution was obtained. (authors)

  16. Corrosion of cementitious materials under geological disposal conditions with resulting effects on the geochemical stability of clay minerals

    International Nuclear Information System (INIS)

    Herbert, H.J.; Meyer, Th.

    2001-01-01

    The long-term behaviour of cemented fly ashes and bentonite (MX80) has been investigated in high saline solutions by means of a cascade experiment, batch experiment and by the geochemical modelling of the observed reactions. In contact to IP21 the degradation of CSH phases in the cementitious material could be proposed indicated by the accumulation of Ca in solution. In contact to NaCl brine only a small amount of Ca in solution could be detected indicating a slight dissolution of CSH phases in the cementitious material. Considering the good agreement between the time accelerating laboratory scale cascade experiment and the modelled reaction path using the computer code EQ3/6 we conclude, that it is possible to predict the chemical behaviour of cementitious materials in salt solutions. The degradation experiments with MX80 and cementitious material in NaCl and IP21 solution showed an accumulation of Si and Al in solution and then a remove possibly indicating the formation of new phases. In contact to high saline solutions a reduction of swelling pressure of MX80 at various reduced initial dry densities could be observed in comparison to pure water. Moreover a reduced water-uptake of MX80 in contact to high saline and alkaline solution was obtained. (authors)

  17. Study of the chemo-hydro-mechanical behavior of stiff clays in the context of radioactive waste disposal

    International Nuclear Information System (INIS)

    Nguyen, Xuan Phu

    2013-01-01

    The present research aims to understand the chemo-hydro-mechanical behavior of stiff clays through two geological formations, the Boom Clay and the Ypresian clays which are considered as possible host formations for the radioactive wastes disposal in Belgium. The volume change behavior was studied in both intact and reconstituted states, and under different conditions: under K0 and isotropic loading, under loading/unloading loops. The results show that the volume change behavior is governed by the competition between the physico-chemical effect and the mechanical effect, characterized by a threshold stress which corresponds to the swelling stress in terms of structure changes. A constitutive law was developed to capture this aspect. The permeability was determined, compared with the results in literature and correlated with the parameters as void ratio. The permeability variation with depth shows the important role of macro-pores in fluids' transfer. The volume change behavior and permeability of intact Boom Clay and Ypresian clays are also influenced by pore water chemical composition changes which modify the diffuse double layer and give rise to the aggregation of clay particles. The elastic parameters, yield curve and failure envelope of Boom Clay and Ypresian clays were identified. A conceptual elasto-plastic model was developed, accounting for the swelling effects and the competition between the physico-chemical effect and the mechanical effect. (author)

  18. Mars, clays and the origins of life

    Science.gov (United States)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  19. Dynamic Strength and Accumulated Plastic Strain Development Laws and Models of the Remolded Red Clay under Long-Term Cyclic Loads: Laboratory Test Results

    Directory of Open Access Journals (Sweden)

    Li Jian

    2015-09-01

    Full Text Available The dynamic strength and accumulated plastic strain are two important parameters for evaluating the dynamic response of soil. As a special clay, the remolded red clay is often used as the high speed railway subgrade filling, but studies on its dynamic characteristics are few. For a thorough analysis of the suitability of the remolded red clay as the subgrade filling, a series of long-term cyclic load triaxial test under different load histories are carried out. Considering the influence of compactness, confining pressure, consolidation ratio, vibration frequency and dynamic load to the remolded red clay dynamic property, the tests obtain the development curves of the dynamic strength and accumulated plastic strain under different test conditions. Then, through curve fitting method, two different hyperbolic models respectively for the dynamic strength and accumulated plastic strain are built, which can match the test datum well. By applying the dynamic strength model, the critical dynamic strength of the remolded red clay are gained. Meanwhile, for providing basic datum and reference for relevant projects, all key parameters for the dynamic strength and accumulated plastic strain of the remolded red clay are given in the paper.

  20. Characterization of clay used for red ceramic fabrication

    International Nuclear Information System (INIS)

    Pereira, P.S.; Morais, A.S.C.; Caldas, T.C.C.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    The objective of this work is to characterize a clay used in the red ceramics fabrication, from Campos dos Goytacazes north of the State of Rio de Janeiro. The clay was submitted for physical, chemical and mineralogical tests. The results showed that the clay has a high content of clay minerals with kaolinitic predominance, high loss on ignition and low flux oxides. It is recommended that this clay is mixed with non-plastic materials. (author)

  1. Study of clay chemical composition in formation of new phases in crystalline materials ceramic; Estudo da composicao quimica de argilas na formacao de novas fases cristalinas em materiais ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Lima, L.K.S.; Goncalves, W.P.; Silva, V.J.; Dias, G.; Neves, G.A.; Santana, L.N.L., E-mail: lizandralima15@gmail.com, E-mail: lisiane@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia dos Materiais

    2016-07-01

    The knowledge of the characteristics of raw materials and the behavior of these during the heat treatment is crucial before starting any manufacturing process of clay-based products. The objective of this work was to study phase transformations of clay under different heat treatments using conventional oven. To achieve the same were used two clays coming from the municipality of Cubati - PB and kaolin from an industry in the Northeast. The samples were subjected to beneficiation process, crushing, grinding and sieving and further characterized: chemical analysis, particle size, thermal and mineralogical. For heat treatment temperatures employed were 1000, 1100 and 1200 ° C, heating rate 5 ° C / min and residence time of 60min. After this step, the mineralogical characterization was performed by x-ray diffraction technique. Clays with larger particle size fraction below 2um and greater amount of flux oxides showed higher amount of mullite for the temperatures studied. The results also showed nucleation of mullite phase from 1100 °C, a band 2theta in the range of between 20 and 25°, characteristic of amorphous silica and the temperature rise was observed intensification of crystalline phases. (author)

  2. The geochemical behaviour of selenium in the Boom Clay system - a XANES and EXAFS study

    International Nuclear Information System (INIS)

    2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Breynaert, Eric; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Dom, Dirk; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Vancluysen, Jacqueline; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Kirschhock, Christine E.A.; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Maes, Andre; Scheinost, Andreas C.

    2010-01-01

    Document available in extended abstract form only. In Belgium, the Boom Clay formation is studied as a reference host formation for the geological disposal of high-level and long-lived radioactive waste for more than 30 years. This formation mainly consists of mixed clay minerals (illite, inter-stratified illite-smectite), pyrite and immobile and dissolved natural organic matter. Since it provides good sorption capacities, very low permeability, and chemically reducing conditions due to the presence of pyrite (FeS 2 ), the Boom clay formation itself is considered to be the main barrier preventing radionuclide migration from the geological repository. Within this concept for geological storage Se 79 has been identified as one of the critical elements contributing to the final dose to man. Although the sorption and migration behaviour of Se in the Boom Clay system has been thoroughly studied, the speciation of Se in the Boom Clay system has never been identified spectroscopically. In all previous studies, the interpretation of the behaviour of Se in Boom Clay conditions has always been based on circumstantial evidence such as solubility measurements or comparison with the spectroscopically identified speciation of Se in model systems. Based on the XANES analysis, selenite is transformed into Se 0 confirming the previously proposed reduction of selenite in the Boom Clay system. Combination of the mass-balance for Se with the results from linear combination analysis of the XANES spectra provided new evidence for the sorption-reduction mechanism proposed to explain the interaction between Se(IV) and the BC solid phase. In addition, evidence was found that that the fate of Se(IV) in the BC system is completely dominated by its interaction with pyrite present in the Boom Clay. The combined EXAFS analysis of Se in Se 0 reference phases (hexagonal, monoclinic, Se-loaded pyrite) allowed to elucidate further details on the short-range structure of the reaction products formed

  3. Identification of clays and its application to investigations of ancient ceramics

    International Nuclear Information System (INIS)

    Hulthen, B.

    1982-01-01

    There are many cases when the identification of clays is important. A comparison of clay layers within a sedimentation basin and an investigation of clay content in ancient ceramics are typical examples. Systematic investigations in specially equipped laboratories have given promising results in connection with the comparison and identification of clays. Various methods for clay analysis are described in this paper. Of special interest is the possibility of relating the clay contents of ceramic artefacts to local clay deposits. (author)

  4. Hydro-mechanical properties of the red salt clay (T4) - Natural analogue of a clay barrier

    International Nuclear Information System (INIS)

    Minkley, W.; Popp, T.; Salzer, K.; Gruner, M.; Boettge, V.

    2010-01-01

    transition to the stable conditions is characterized by the change of mineral composition from Montmorillonite to Illite - Chlorite. This process is accompanied with a decrease of swelling pressure to a minimum and the change of mechanical behaviour, i.e. a decrease of plasticity corresponds with increasing rock stiffness. An extensive laboratory programme has been conducted using samples from different locations and focusing on the determination of geomechanical and hydraulic properties. The measured strength and creep data clearly demonstrate the influence of burial depth and temperature on the mechanical properties. The test results delivered a comprehensive basis for the subsequent performed rock mechanical modelling. Permeability was measured in the lab on core samples with gas- and water injection tests, which demonstrated low permeabilities in the order of 10 -19 to 10 -21 m 2 and lower. Because in repositories for radioactive or toxic waste a gas pressure may develop in the long term its potential impact on the integrity of a low permeable clay barrier has to be assessed. A long term field test (duration more than two years) has been performed in ∼ 500 m depth in a salt mine of NW-Germany where the Red Salt Clay is partly exposed. A funnel-shape oriented borehole array was installed consisting of the nearly horizontal central injection borehole (Diam. = 60 mm, sealed using a hydro-mechanical packer system) and four surrounding boreholes. Two of them were used for the detection of gas transport. In addition, in the other two boreholes a micro-seismic monitoring array was installed, each equipped with two seismic sensors. The performed multi-stage pulse tests showed very limited gas pressure decay, thus confirming the low permeability of the clay formation. In addition, although a gas-break occurred as the minimal stress criterion was transgressed, spontaneous self sealing was confirmed resulting in recovery of tightness after the gas pressure decreased. The large

  5. Clays in natural and engineered barriers for radioactive waste confinement - 4. International meeting. Book of abstracts

    International Nuclear Information System (INIS)

    2010-01-01

    The 4. edition of the International Meeting 'Clays in Natural and Engineered Barriers for Radioactive Waste Confinement' took place at the 'Cite Internationale des Congres' of Nantes (France). Approximately 500 participants (from about 20 different countries) attended the meeting. All the abstracts (oral and poster sessions) are included in these proceedings. The purpose of this 4. international conference is to gather specialists in the different disciplines related to clays and clay minerals, with scientists from organisations engaged in radioactive waste disposal, in order to evaluate the progress of the research conducted in that field. Multidisciplinary approaches including geology, mineralogy, geochemistry, rheology, geomechanics of clays are required in order to provide a detailed characterisation of the geological host formations considered for the disposal of radioactive waste and to assess the behaviour of engineered and natural barriers when submitted to various types of perturbations induced by disposal facilities. The major objectives for the experimental programs are constituted by the performance evaluation for the natural barrier as well as the impact of repository-induced disturbances upon the confinement properties of clay-rich geological formations. This is being or will be conducted in underground research laboratories, for interpreting the subsequent scientific results, for modelling the long-term behaviour of radioactive waste repositories and for carrying out safety assessment exercises. This conference covers all the aspects of clay characterisation and behaviour relevant to the confinement of radionuclides in clay, considered at various time scales and locations, from the descriptions of basic phenomenological processes to the global understanding of the performance and safety at repository and geological scales. Most of the topics covered by the programme of the conference are in line with the general objectives

  6. Treatment of an underground formation

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, P.E.; Braden, W.B. Jr.

    1974-03-12

    A method is described for treating underground formations, especially those containing clays or clay-like materials which are sensitive to fresh water. The treatment densensitizes the clays so they will not swell or disperse on contact with fresh water. The procedure consists of contacting the clay-containing formation with solutions which accomplish the electroless deposition of metal on the clay particles. Optionally, the formation can be resin coated prior to electroless plating. (9 claims)

  7. Geological explorations of clay deposit near Pragersko and clay quality tests

    Directory of Open Access Journals (Sweden)

    Duška Rokavec

    2002-12-01

    Full Text Available A series of illite clays located near Pragersko, at the southern boundary of the Maribor – Ptuj depression, was investigated. The results of mining geological investigations showed the extension and characteristics of clay occurrences in the area. Primary characteristics of single types of raw clay from the deposit (mineral composition, grain size distribution, plasticity, etc., and the quality of biscuit were determined with laboratory tests.In a 4-9 m thick bed of clay we identified four different types of clay, which are, as a mixture, suitable for use in brick industry.

  8. Natural analogues and evidence of long-term isolation capacity of clays occurring in Italy

    International Nuclear Information System (INIS)

    Benvegnu, F.; Brondi, A.; Polizzano, C.

    1988-01-01

    This work concerns the results of the studies conducted at many sites in Italy aimed at collecting information on natural evidences of the isolation capacity of clay. Field observations allow to get the opportunity to know directly or infer the evolutive geological processes which are of concern for the waste disposal problems. As a major advantage such observations concern natural phenomena acting at the same, or at a greater, time-space scale involved in the geological disposal of wastes. The explored situations regard the secondary permeability of clay, detected by means of natural tracers (Hg, He, hydrothermal and geothermal fluids, ....) at the ground surface or directly studied in deep civilian tunnels. Another treated topic is the meaning of the oxido-reduction front as a control factor of the physico-chemical environment of clay as well as of the radionuclides migration. The mechanical and thermal effects which accompany the intrusion of a subvolcanic body within clay represent an extreme worst case for a comparison of the effects on clay due to heat developed by radionuclide decay. Finally the case of a fossil forest maintained almost inaltered by the clay cover for over 1,500,000 years is described. All the results of the geological researches point univocally to an almost total and long lasting isolation capacity of clay formations

  9. A new microenvironment for the formation of clay minerals: the example of authigenic halloysite-7Å and gibbsite in a stalactite from Agios Georgios Cave, Kilkis, north Greece

    Directory of Open Access Journals (Sweden)

    Elena Ifandi, University of Patras

    2015-09-01

    Full Text Available An unusual authigenic origin for halloysite and gibbsite is reported in a stalactite from Agios Georgios Cave, Kilkis. This speleothem includes mostly pure calcite whereas minor areas of Mg-rich calcite and scarce dolomite are present in four growth phases. Abundant pores are created due to imperfect coalescence of the calcite crystals. Several of them contain detrital muscovite, which was presumably transferred from the dripping water, during the formation of speleothem and has been variably altered to halloysite. Several pores in the stalactite contain different mineral assemblages that we interpret as in situ: halloysite-7Å, halloysite + silica, gibbsite + silica and gibbsite. The breakdown of the muscovite and the formation of halloysite require acidic conditions, which we suggest to have been established by potassium solubilising microorganisms. The silica minerals include spheroidal assemblages or needle-like and blade-like quartz and can be explained by further dissolution of halloysite, under the same acidic conditions in the presence of microorganisms. In our model, the precipitation of gibbsite is the result of direct formation from muscovite, promoted from abundant and undisturbed water percolation, at moderately low pH, also induced by the presence of bacteria. Given that microbial activities promote: (1 breakdown of muscovite and formation of halloysite, silica, and gibbsite, and (2 formation of Mg-calcite and dolomite after calcite, then it is likely that two or more different microbial communities may exist in the same speleothem. The first creates mild acidic conditions, aiming at the decomposition of muscovite in the microenvironment of the pores antagonising the second that produces alkaline microregimes and the local precipitation of Mg-rich carbonate minerals.

  10. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    Energy Technology Data Exchange (ETDEWEB)

    Jove-Colon, Carlos F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weck, Philippe F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kim, Kunhwi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheshire, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaich, Sarah [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolery, Thomas J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, Terry [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, William L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-04

    Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barrier system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive

  11. Ziegler-Natta Catalyst Based on MgCl₂/Clay/ID/TiCl₄ for the Synthesis of Spherical Particles of Polypropylene Nanocomposites.

    Science.gov (United States)

    Cardoso, Renata da Silva; Oliveira, Jaqueline da Silva; Ramis, Luciana Bortolin; Marques, Maria de Fátima V

    2018-07-01

    In the present work, we have designed MgCl2/clay/internal donor (ID)/TiCl4 based bisupported Ziegler-Natta catalysts containing varying amounts of organoclay (montmorillonite) in order to synthesize spherical particles of polypropylene/clay nanocomposites (PCN). The organoclay was introduced into the catalyst support formulation and PCN was obtained using the in situ polymerization technique. Decreasing the reaction time, it was possible to obtain nanocomposites with high concentrations of clay (masterbatches). Micrographs of SEM confirmed the spherical morphology of the catalysts. In addition, XRD patterns show that the active sites for polymerization were inserted in the clay galleries. The catalytic performance was evaluated in slurry propylene polymerization using triethylaluminium as cocatalyst and silane as external electron donor at 70 °C, 4 bar, and different reaction times. The PCNs obtained containing different clay amounts were characterized by X-ray diffraction, thermal analyses, transmission electronic microscopy, and extractables in heptane. The results revealed that the synthesized PP/clay particles were also spherical showing that the morphological control is possible even using catalysts containing high amounts of clay. The PCN presented high degradation temperature (459 °C). The XRD peak related to the clay interlamellar distance has shifted to lower angles, and TEM images confirmed the formation of exfoliated/intercalated clay on the PP matrix and absence of microparticles of clay.

  12. Radiological impact of a spent fuel disposal in a deep geological granite formation - results of the european spa project

    International Nuclear Information System (INIS)

    Baudoin, P.; Gay, D.; Certes, C.; Serres, C.

    2000-01-01

    The SPA project (Spent fuel disposal Performance Assessment) is the latest of four integrated performance assessment exercises on nuclear waste disposal in geological formations, carried out in the framework of the European Community 'Nuclear Fission' Research Programmes. The SPA project, which was undertaken by ENRESA, GRS, IPSN, NRG, SCK.CEN and VTT between May 1996 and April 1999, was devoted to the study of disposal of spent fuel in various host rock formations (clay, crystalline rocks and salt formation). This project is a direct continuation of the efforts made by the European Community since 1982 to build a common understanding of the methods applicable to deep disposal performance assessment. (authors)

  13. Primordial clays on Mars formed beneath a steam or supercritical atmosphere.

    Science.gov (United States)

    Cannon, Kevin M; Parman, Stephen W; Mustard, John F

    2017-12-06

    On Mars, clay minerals are widespread in terrains that date back to the Noachian period (4.1 billion to 3.7 billion years ago). It is thought that the Martian basaltic crust reacted with liquid water during this time to form hydrated clay minerals. Here we propose, however, that a substantial proportion of these clays was formed when Mars' primary crust reacted with a dense steam or supercritical atmosphere of water and carbon dioxide that was outgassed during magma ocean cooling. We present experimental evidence that shows rapid clay formation under conditions that would have been present at the base of such an atmosphere and also deeper in the porous crust. Furthermore, we explore the fate of a primordial clay-rich layer with the help of a parameterized crustal evolution model; we find that the primordial clay is locally disrupted by impacts and buried by impact-ejected material and by erupted volcanic material, but that it survives as a mostly coherent layer at depth, with limited surface exposures. These exposures are similar to those observed in remotely sensed orbital data from Mars. Our results can explain the present distribution of many clays on Mars, and the anomalously low density of the Martian crust in comparison with expectations.

  14. Primordial clays on Mars formed beneath a steam or supercritical atmosphere

    Science.gov (United States)

    Cannon, Kevin M.; Parman, Stephen W.; Mustard, John F.

    2017-12-01

    On Mars, clay minerals are widespread in terrains that date back to the Noachian period (4.1 billion to 3.7 billion years ago). It is thought that the Martian basaltic crust reacted with liquid water during this time to form hydrated clay minerals. Here we propose, however, that a substantial proportion of these clays was formed when Mars’ primary crust reacted with a dense steam or supercritical atmosphere of water and carbon dioxide that was outgassed during magma ocean cooling. We present experimental evidence that shows rapid clay formation under conditions that would have been present at the base of such an atmosphere and also deeper in the porous crust. Furthermore, we explore the fate of a primordial clay-rich layer with the help of a parameterized crustal evolution model; we find that the primordial clay is locally disrupted by impacts and buried by impact-ejected material and by erupted volcanic material, but that it survives as a mostly coherent layer at depth, with limited surface exposures. These exposures are similar to those observed in remotely sensed orbital data from Mars. Our results can explain the present distribution of many clays on Mars, and the anomalously low density of the Martian crust in comparison with expectations.

  15. Prions, Radionuclides and Clays: Impact of clay interlayer "acidity" on toxic compound speciation

    Science.gov (United States)

    Charlet, L.; Hureau, C.; Sobolev, O.; Cuello, G.; Chapron, Y.

    2007-05-01

    The physical and chemical processes that are the basis of contaminant retardation in clay rich medium, such as soil or nuclear waste repository, have been studied at the molecular level by a combination of molecular dynamics (MD), electron paramagnetic spectroscopy (EPR) and neutron diffraction with isotopic substitution (NDIS). The speciation of contaminants such as Sm, a radionuclide analogue, and Cu, bound to Prion protein (PrP), has been studied upon adsorption in clay interlayers. We used as molecular probe the P5-Cu(II) complex, where the P5 pentapeptide(92-96 PrP residues) represents one of the five Cu(II) binding site present in PrP, the key protein involved in diseases known as transmissible spongiform encephalopathies. In both cases, the pH of the interlayer has been inferred from the metal ion coordination, here used as a molecular reporter. In circum neutral pH waters, samarium is present as Sm(OH)3° species and should not be adsorbed in clay interlayer by "cation exchange" unless its hydrolysis is altered. Samarium NDIS results indicate that whether the number of oxygen nearest neighbours varies only from 8.5 to 7, as Sm penetrates the interlayer, the number of hydrogen nearest neighbours drops from 12 to 6. The high affinity of clay for Sm shows that a change in Sm hydrolysis occurs in the clay interlayer, but is directly followed by the formation of a surface complex with montmorillonite siloxane plane functional groups which prevents the determination of a "local pH". Conversely, has been found to be a much more sensitive interlayer water pH probe. and this peptide domain is involved in the misfolding of the protein,a transconformation which may lead to the pathogenic PrPSc form. We have therefore studied by EPR spectroscopy the adsorption of Cu(II)-P5 complexes on montmorillonite, and found the clay to have a large and selective adsorption capacity for the various [Cu(P5)H-n](2-n)+ complexes where n is the number of deprotonated amido function

  16. Pure and impure clays and their firing products

    International Nuclear Information System (INIS)

    Murad, E.; Wagner, U.

    1989-01-01

    Moessbauer spectroscopy is highly suited for the study of clays whose industrial uses depend on the iron content. Reactions that take place during clay firing can be readily monitored by Moessbauer spectroscopy. Following dehydroxylation of clay minerals, the quadrupole splitting of octahedrally coordinated iron (III) increases abruptly, but reverts to lower values upon the formation of new, better ordered phases at higher temperatures. It is also shown that iron oxides may account for a considerably higher proportion of the total iron content of many clays than is commonly recognized, and their existence must be taken into consideration for a correct interpretation of the Moessbauer spectra of clays. (orig.)

  17. Adsorption of lecithin liposomes to acid clay.

    Science.gov (United States)

    Matsunaga, Naoki; Kato, An-Na; Murase, Norio

    2011-01-01

    The interaction between lecithin liposomes and acid clay was investigated to clarify the mechanism for liposome adsorption to the clay. It was found that the multilamellar vesicular structure of the liposomes was broken as a result of primary adsorption. The acid clay particles aggregated and were eventually covered by the lecithin layer structure. In the case of kaolin, on the other hand, the liposomes were weakly adsorbed to the clay and maintained the vesicular structure. The amount of primary adsorption to the clay surface, which was estimated from the adsorption isotherm, was more for acid clay than for kaolin, and the total amount adsorbed to the acid clay was also more than to kaolin. This result can be explained by the much higher density of the negative charge on the acid clay surface than that for kaolin. The liposomes are therefore considered to be adsorbed to the acid clay mainly by the choline positive charge residing at the end of the lecithin molecule, although this is of no net charge as a whole.

  18. Early Pottery Making in Northern Coastal Peru. Part I: Moessbauer Study of Clays

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, I. [Southern Illinois University (United States); Haeusler, W.; Hutzelmann, T.; Wagner, U. [Technische Universitaet Muenchen, Physik-Department E15 (Germany)

    2003-09-15

    We report on an investigation of several ancient clays which were used for pottery making in northern coastal Peru at a kiln site from the Formative period (ca. 2000-800 BC) in the Poma Canal and at a Middle Sican pottery workshop in use between ca. AD 950 and 1050 at Huaca Sialupe in the lower La Leche valley. Neutron activation analysis, {sup 57}Fe Moessbauer spectroscopy and X-ray diffraction were used for the characterisation of the clays. The changes that occur in iron-bearing compounds in the clays depending on the kiln atmosphere and on the maximum firing temperature were studied by Moessbauer spectroscopy and X-ray diffraction. Laboratory firing series under varying controlled conditions were performed to obtain a basic understanding of the different reactions taking place in the clays during firing. The results can be used as models in the interpretation of the Moessbauer spectra observed in ancient ceramics from the same context.

  19. Early Pottery Making in Northern Coastal Peru. Part I: Moessbauer Study of Clays

    International Nuclear Information System (INIS)

    Shimada, I.; Haeusler, W.; Hutzelmann, T.; Wagner, U.

    2003-01-01

    We report on an investigation of several ancient clays which were used for pottery making in northern coastal Peru at a kiln site from the Formative period (ca. 2000-800 BC) in the Poma Canal and at a Middle Sican pottery workshop in use between ca. AD 950 and 1050 at Huaca Sialupe in the lower La Leche valley. Neutron activation analysis, 57 Fe Moessbauer spectroscopy and X-ray diffraction were used for the characterisation of the clays. The changes that occur in iron-bearing compounds in the clays depending on the kiln atmosphere and on the maximum firing temperature were studied by Moessbauer spectroscopy and X-ray diffraction. Laboratory firing series under varying controlled conditions were performed to obtain a basic understanding of the different reactions taking place in the clays during firing. The results can be used as models in the interpretation of the Moessbauer spectra observed in ancient ceramics from the same context.

  20. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Removal of Phenol in Aqueous Solution Using Kaolin Mineral Clay

    International Nuclear Information System (INIS)

    Sayed, M.S.

    2008-01-01

    Kaolin clay were tested for phenol removal as toxic liquid waste from aqueous waste water. Several experimental conditions such as weight and particle size of clay were investigated to study batch kinetic techniques, also the ph and concentration of the phenol solution were carried out. The stability of the Langmuir adsorption model of the equilibrium data were studied for phenol sorbent clay system. Infrared spectra, thermogravimetric and differential thermal analysis techniques were used to characterize the behavior of kaolin clay and kaolin clay saturated with phenol. The results obtained showed that kaolin clay could be used successfully as an efficient sorbent material to remove phenol from aqueous solution

  2. Mineralogical and Micro-fabric investigation of the Sandy Facies of Opalinus Clay (Mont Terri)

    International Nuclear Information System (INIS)

    Kaufhold, Annette; Siegesmund, Siegfried; Dohrmann, Reiner; Graesle, Werner; Plischke, Ingo

    2013-01-01

    In the field of geological disposal of radioactive waste in many countries argillaceous formations are considered as potential host rock. For the understanding of the long-term behaviour of clay host rock, it is important to understand the interaction between mechanical behaviour, micro-fabric, and mineral composition. Previous publications showed that particularly the carbonate content and the arrangement of the carbonate grains (as cement in the matrix or as shells) determines the mechanical strength of Opalinus Clay and Callovo-Oxfordian Clay specimens, respectively. Klinkenberg et al. (2009) studied the shaly facies of Opalinus Clay, however, the actual deposit is planned to be built in the sandy facies of Opalinus Clay. The aim of the present study is to investigate the relation between micro-fabric, mineral composition, and mechanical properties of different samples derived from the sandy facies (BLT-A2). Image analysis showed that the carbonates in the sandy facies mainly occur as 1) matrix which in turn acts as cement. Carbonates also occur 2) in the fine sand fraction and 3) biogenic carbonates as traces. The carbonates of the sandy facies, therefore, appear to be similar to the carbonates of the Callovo-Oxfordian Clay with respect to their possible influence on failure strength. The mechanical testing showed that the shear strength increases with increasing carbonate content. This phenomenon was also observed for the samples of the Callovo-Oxfordian Clay, while the opposite relation was found for the shaly facies of the Opalinus Clay. Preliminary results presented here, indicate that the sandy facies (drilling BLT-A2) and Callovo-Oxfordian Clay show similar mechanical properties - in detail: 1) Micro-fabric: carbonates predominate in the matrix, 2) Mineralogy: high carbonate content and 3) Mechanical testing: shear strength increases with increasing carbonate content, where the type of carbonates which controls the increase of strength has to be

  3. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    -serpentines, berthierine or odinite mainly or precipitates under the form of magnetite in low amount. Even if COx-iron and COxCF-iron interactions appear somehow similar, significant differences can be noticed in both the liquid and solid compartments of the reaction products. As far as solutions are concerned, pH is lower and Eh higher for COx compared with COxCF. In the solid phase, after 9 months of reaction, metallic iron is totally consumed in COx whereas it is still present for COxCF. In parallel, the formation of magnetite is negligible for COx. Upon reaction, the Al:Si ratio decreases in COx clay particles whereas it remains stable for COxCF. Finally, the evolution of specific surface areas (SSA) with reaction time is significantly different as an increase in SSA is observed for COx in contrast with a decrease for COxCF. The addition of either calcite or pyrite to COxCF does not significantly influence its interaction with iron. In contrast, the addition of quartz to COxCF leads to a pH decrease and an Eh increase. It also results in the quasi-complete absence of magnetite, a decrease of Al:Si ratio in clay particles and an increase in SSA. Upon quartz addition COxCF almost behaves as COx with regard to interactions with iron. Such a trend can be assigned to the partial dissolution of quartz, that provides additional silica for the precipitation of Fe-serpentines. As a conclusion, the main differences between COx-iron and COxCF-iron interactions can thus be explained by the presence and reactivity of quartz which modify the reaction pathway and products. (authors)

  4. Methylene blue adsorption in clay mineral dealt with organic cation

    International Nuclear Information System (INIS)

    Silva, T.L.; Lemos, V.P.

    2011-01-01

    The interaction among organic cations, as the methylene blue (AM) and benzyltrimethylammonium (BTMA), and clay minerals of the group of the smectite they result in the formation of applied materials in the adsorption of organic pollutant presents in waters, soils and you cultivate. In this work they were prepared the adsorbents (organic-clays) smectite - AM and smectite-BTMA. The precursory sample of smectite was collected in Rio Branco-Acre. We were also used an smectite sample collected in Sena Madureira (SM)-Acre already characterized in previous work and a sample of standard smectite Swy-2-Na-Montmorillonite (SWy-2) of Wymong - USA. The organic agents selected for this study they were: Blue of Methylene, denominated AM and Benzyltrimethylammonium, denominated BTMA. They were appraised the capacities adsorptive of the treated samples with BTMA being used AM as adsorbate. The results of these evaluations detected that ran total adsorption of AM (concentrations varying from 1 to 10 ppm) for the treated samples with BTMA. The organic cation, BTMA, interacting with the surfaces of the natural clay was more efficient in the adsorption of AM than the clay without the previous treatment with this salt. (author)

  5. Potential Of Fired Clay Bricks Produced From Aponmu Clay Deposits

    African Journals Online (AJOL)

    The potential of fired clay obtained from Aponmu river, Ondo State. Nigeria for brick production have been investigated. Properties of produced bricks investigated was compressive strength, density and water absorption. The results shows that the Compressive strength, density and water absorption values ranged from 2.48 ...

  6. FORMATION OF SCIENCE-ORIENTED ART: CAUSES AND RESULTS

    Directory of Open Access Journals (Sweden)

    Denis Aleksandrovich Popov

    2016-02-01

    Full Text Available Purpose: identify the causes of the phenomenon of science-oriented art of the 19-20th century.Methodology: theoretical analysis of possibilities and ways of interaction between science and art in the analyzed period.Results The author defines science-oriented art as artistic trends that embodied concepts of a human formed by the humanities. The author identifies the following reasons for its emergence: the high status of science in the 19th century, the ability of art, as a special form of activity, to converge with other types of activity, identification of science and truth, and appropriation of reflective functions towards art by science.Art, which is not a rational activity, had to rely on the findings and conclusions, which science made about it. Even theorizing artists were forced to rely on ideas of scientists that were far from art.In the 19-20th century, socio-biological theories, Marxism, and psychoanalysis claimed the role of fundamental scientific research programmes that reveal the essence of man. Each of them found its artistic embodiment in the form of naturalism, socialist realism, surrealism, and psychological novel. This kind of art was used by scientists to prove the truth of their own concepts.The author comes to the conclusion that the rise or decline of a science-oriented art movement depended on credibility of the scientific research programme that was close to it. Success of a particular scientific movement resulted in the emergence of a corresponding art movement; disappointment in it became the reason behind its fading.

  7. Clay smear: Review of mechanisms and applications

    Science.gov (United States)

    Vrolijk, Peter J.; Urai, Janos L.; Kettermann, Michael

    2016-05-01

    Clay smear is a collection of fault processes and resulting fault structures that form when normal faults deform layered sedimentary sections. These elusive structures have attracted deep interest from researchers interested in subsurface fluid flow, particularly in the oil and gas industry. In the four decades since the association between clay-smear structures and oil and gas accumulations was introduced, there has been extensive research into the fault processes that create clay smear and the resulting effects of that clay smear on fluid flow. We undertake a critical review of the literature associated with outcrop studies, laboratory and numerical modeling, and subsurface field studies of clay smear and propose a comprehensive summary that encompasses all of these elements. Important fault processes that contribute to clay smear are defined in the context of the ratio of rock strength and in situ effective stresses, the geometric evolution of fault systems, and the composition of the faulted section. We find that although there has been progress in all avenues pursued, progress has been uneven, and the processes that disrupt clay smears are mostly overlooked. We highlight those research areas that we think will yield the greatest benefit and suggest that taking these emerging results within a more process-based framework presented here will lead to a new generation of clay smear models.

  8. More Than a Decade Research of Clay-Microbe Interactions: Past Achievements and Future Perspectives

    Science.gov (United States)

    Dong, H.

    2017-12-01

    In pedogenic and diagenetic processes, clay minerals transform from pre-existing phases to other clay minerals via intermediate interstratified clays. Temperature, pressure, the chemical composition of fluids, and time are traditionally considered to be the important geological variables for clay mineral transformations. In 2004, the role of microbes was recognized for the first time, where microbial reduction of structural Fe(III) in smectite was demonstrated to result in formation of illite under ambient conditions within two weeks. Our recent work has shown that the opposite process, e.g., microbial oxidation of structural Fe(II) in illite, results in the back reaction, e.g., transformation of illite back to smectite. This discovery of microbially-mediated smectite-illite reaction completes the iron redox and mineral transformation cycles. Because of secondary mineralization, such as biogenic silica and siderite formation during microbial conversion of smectite to illite, and kaolinite formation during microbial conversion of illite to smectite, these cycles may not be completely reversible. Although it is now well-recognized that clay mineral transformation is promoted through microbially mediated Fe redox cycling, it remains unclear if reduction/oxidation extent or rate is correlated with such transformation and secondary mineralization. It is also poorly understood if these microbially catalyzed biomineralization can readily be recognized from abiotic pathways of clay mineral reactions. In this context, characteristic biogenic minerals are important because they may serve as biosignatures. Recognition of these mineral assemblages in rock records will likely provide clues for involvement of microorganisms in ancient geological processes. Future work should focus on the relative importance of biotic versus abiotic pathways in promoting clay mineral transformation with a combined investigation of model systems and natural samples.

  9. Contrast in clay mineralogy and their effect on reservoir properties in ...

    African Journals Online (AJOL)

    Adigrat sandstone formation in the Blue Nile Basin is dominated by quartz arenite and subarkosic arenite, and cemented by carbonate, clay minerals and quartz overgrowths. Clay minerals in the Adigrat sandstone formation are dominated by kaolinite, illite and chlorite. Illite is the common grain-coating clay mineral.

  10. Recent advances in clay mineral-containing nanocomposite hydrogels.

    Science.gov (United States)

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  11. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  12. 222Rn and CO2 soil-gas geochemical characterization of thermally altered clays at Orciatico (Tuscany, Central Italy)

    International Nuclear Information System (INIS)

    Voltattorni, N.; Lombardi, S.; Rizzo, S.

    2010-01-01

    Research highlights: → Soil-gas technique is applied to study gas permeability of Orciatico clay units. → Clay permeability depends on thermal and mechanical alteration degree. → Soil-gas distributions are due to shallow fracturing of clays. → Rn and CO 2 soil-gas anomalies highlight secondary permeability in clay sequence. → Soil-gas results are supported by detailed geoelectrical surveys. - Abstract: The physical properties of clay allow argillaceous formations to be considered geological barriers to radionuclide migration in high-level radioactive-waste isolation systems. As laboratory simulations are short term and numerical models always involve assumptions and simplifications of the natural system, natural analogues are extremely attractive surrogates for the study of long-term isolation. The clays of the Orciatico area (Tuscany, Central Italy), which were thermally altered via the intrusion of an alkali-trachyte laccolith, represent an interesting natural model of a heat source which acted on argillaceous materials. The study of this natural analogue was performed through detailed geoelectrical and soil-gas surveys to define both the geometry of the intrusive body and the gas permeability of a clay unit characterized by different degrees of thermal alteration. The results of this study show that gas permeability is increased in the clay sequences subjected to greater heat input from the emplacement of the Orciatico intrusion, despite the lack of apparent mineral and geotechnical variations. These results, which take into consideration long time periods in a natural, large-scale geological system, may have important implications for the long-term safety of underground storage of nuclear waste in clay formations.

  13. The secondary permeability of Italian clays. A review

    International Nuclear Information System (INIS)

    Gera, F.

    1998-01-01

    Over the years several studies have been performed in Italy on the permeability of various argillaceous formations for the purpose of assessing their potential utilization for the isolation of long-lived radioactive waste. An extensive survey was made of tunnels intersecting clay formations for the purpose of identifying water inflows and of interpreting them in relation to the nature of the water-bearing features present outside the lining. The main objective of the 'Faults in Clays' project was to improve the sensitivity and resolution of geophysical techniques for identifying and characterizing faults intersecting clay strata. The first obvious conclusion is that generalizations are not possible: argillaceous formations are characterized by extreme variability in respect to intrinsic properties, sedimentological and structural set-up, consolidation history and regional stress conditions. As a result of this complexity widely different permeability, for both gas and water, has been observed even in apparently similar materials. In addition, gas data indicate that flow, at a particular location, can vary also as a function of time. (R.P.)

  14. Generic Community System Specification: A Proposed Format for Reporting the Results of Microgrid Optimization Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Antonio [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-14

    This document provides a proposed format for reporting the results of microgrid optimization analysis. While the proposed format assumes that the modeling is conducted as part of a renewable energy retrofit of an existing diesel micro-grid, the format can certainly be adopted for other situations.

  15. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    Science.gov (United States)

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  16. A new and improved methodology for qualitative and quantitative mineralogical analysis of Boom Clay

    International Nuclear Information System (INIS)

    Zeelmaekers, E.; Vandenberghe, N.; Honty, M.; De Craen, M.; Derkowski, A.; Van Geet, M.

    2010-01-01

    Document available in extended abstract form only. A good knowledge of the mineralogy of any host formation studied for geological disposal of high-level radioactive waste, is a prerequisite for understanding the geochemical environment which will determine the migration and retention behaviour of radionuclides. In this respect, the Boom Clay mineralogical composition has been extensively studied last decades as reference host formation (e.g. ARCHIMEDEARGILE project, OECD-NEA clay catalogue report) with the aim to provide reliable data for a safety assessment. However, a comparison of the available literature data clearly showed a serious discrepancy among studies, not only in the quantitative, but also in the qualitative mineralogical composition of the Boom Clay (SAFIR II). The reason for such a huge disagreement could be related, among others, to variable grain size distributions of the studied samples (sample heterogeneity) and differences in the methodological approaches. In particular, the unambiguous characterisation of clay minerals and the quantification of mixed-layer phases appeared as an everlasting problem. This study is aimed at achieving a consensus on the qualitative and quantitative mineralogical data of the Boom Clay using the most advanced techniques currently available in the clay science. A new sampling campaign was performed in such a way that samples are (20 in total) more or less regularly distributed over Boom Clay Formation, ensuring that variations in the grain size distributions due to silty clay-clayey silt layers alternations are accounted for. The novel concept based on an analysis at two levels was applied: (1) bulk rock and (2) clay fraction analysis. (1) A bulk rock analysis consists of conventional XRD analysis with the identification of the principal mineral phases. As a next step, the bulk rock was mixed with a ZnO internal standard and experimental diffraction patterns of randomly oriented powders were analyzed using &apos

  17. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  18. Clay Portrait Boxes

    Science.gov (United States)

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  19. Dioxins in primary kaolin and secondary kaolinitic clays.

    Science.gov (United States)

    Schmitz, Martin; Scheeder, Georg; Bernau, Sarah; Dohrmann, Reiner; Germann, Klaus

    2011-01-15

    Since 1996 dioxins have been repeatedly detected worldwide in Tertiary ball clays used as anticaking agent in the production of animal feed and a variety of other applications. The dioxins of these natural clays are very unlikely of anthropogenic source, but no model of dioxin enrichment has been established. A hypothetical model is presented which explains the highly variable dioxin loadings of the Tertiary kaolinitic clays by natural addition during clay-sedimentation. To prove this hypothesis, Tertiary primary nonsedimentary kaolin and sedimentary kaolinitic clays were collected at three profiles in Europe and analyzed for mineralogy, chemistry, organic carbon, and polychlorinated dibenzo-p-dioxins/-furans (PCDD/F). Primary kaolin, kaolinitic, and lignitic clays contained almost no PCDFs. PCDD concentration differed markedly between primary kaolin (3-91 pg/g) and secondary kaolinitic clay (711-45935 pg/g), respectively, lignitic clays (13513-1191120 pg/g). The dioxin loading of secondary kaolinitic and lignitic clays is approximately 10 to a few thousand times higher than in the primary kaolin or recent environmental settings. The dioxin concentrations decrease from octachlorodibenzo-p-dioxin to the tetrachlorodibenzo-p-dioxins and exhibit the "natural formation pattern". No correlation between PCDD/F concentration and bulk composition of clays was found. These findings support the hypothesis of the enrichment of dioxin in clays during sedimentation.

  20. Permeability evolution of normal faults with clay smear: insights from structural observations in water saturated sandbox models and numerical simulations

    Science.gov (United States)

    Kettermann, Michael; Urai, Janos L.; Vrolijk, Peter J.

    2017-04-01

    Fault processes are complex phenomena that defy reliable prediction. Clay smear in particular is difficult to predict for sub-surface flow applications and would benefit from an improved understanding of controlling processes. In this study, we present a series of water-saturated sandbox experiments producing large clay smear surfaces up to 500 cm2. In these experiments, we couple across-fault flow measurements with structural analysis of post-mortem excavated clay smear surfaces. To develop a tool for evaluating the evolving fault structure during formation, we compare measured flow data to simplified numerical flow simulations. Results show diagnostic relationships between the observed fault structures and measured cross-fault flow. In experiments with one or two clay layers and a cumulative thickness of 10 mm and 100 mm displacement, we observe that normally consolidated clay, in a structural domain of graben faulting, initially yields in hybrid brittle/ductile failure. Characteristic for this type of failure is an early breaching of the clay layer by brittle fracturing causing increased cross-fault flow. However, the type of failure varies laterally and shear failure occurs as well. We observed that holes preferably form beneath extensional parts of the footwall cutoff. These can be identified in map-view as the fault curves towards the hanging wall. During the evolution of the fault, this is typically followed by fault back-stepping, formation of clay smears and reworking of clay fragments in the fault. These processes lead to slower increases of cross-fault flux. Holes that formed during the early breaching of the clay layer mostly remain open during the evolution of a fault, although there is some evidence for occasional resealing of holes. Fault zones are segmented by fault lenses, breached relays and clay smears in which sand and clay mix by deformation. Experiments with two clay layers show that holes rarely form at the same position on the fault planes

  1. Change effects in the land use about the mineral clay

    International Nuclear Information System (INIS)

    Cespedes Payret, C.; Gutierrez, O; Panario, D.; Pineiro, G

    2012-01-01

    The Pampas land changes during the Quaternary, left their mark on the mineralogy of soil clays. This work is oriented to compare the mineralogical composition of the clays and the value of potassium in an eucalyptus forestation. These results show that the mineralogical illite alteration is the cause of its destruction. This clay is the main reservoir of potassium for the agricultural soils

  2. Boom clay rheology laboratory and in situ tests

    International Nuclear Information System (INIS)

    Rousset, G.; Bazargan, B.

    1989-01-01

    The mechanical behaviour of Boom clay is characterized by the importance of time dependent effects. Laboratory tests intended to study this behaviour are performed. Viscoplastic solutions are used to model the clay behaviour, 11 parameters entered in the model. The first results of research conducted about the in situ creep behaviour of clays are described. Field tests and laboratory experiment are compared

  3. The Geology and Mineralogy of Clay Occurrences Around Kutigi ...

    African Journals Online (AJOL)

    This paper reports the geology and mineralogy of the clay occurrences around Kutigi. The methodology of research includes detailed mapping of the area, collection of clay samples and laboratory analysis using X- ray diffraction. Field results show that clays in Kutigi are deposited as alluvial deposit from braided and ...

  4. Geological Investigations on Boulder-Clay of E. Groningen

    NARCIS (Netherlands)

    Gijzel, van P.; Overweel, C.J.; Veenstra, H.J.

    1959-01-01

    In this article the results of a study on boulder-clay in the neighbourhood of Winschoten (N.E. Netherlands) are communicated (Chapter I). The underlying sediments of the boulder-clay in this area consist of fine preglacial sands and black clay. In the nuclei of the many drumlins a strongly

  5. Polypropylene–clay composite prepared from Indian bentonite

    Indian Academy of Sciences (India)

    WINTEC

    ratio, (ii) flocculated nanocomposites, for which intercalated and stacked silicate layers flocculated to some ... Malvern) and the results confirmed the distribution of the particle size in this clay. Particle size distribution of the ... Particle size distribution curve for clay, bentonite. Table 2. Chemical composition of bentonite clay.

  6. HPLC Analysis of Colorants Migrated from Children's Modeling Clays.

    Science.gov (United States)

    Kishi, Eri; Ozaki, Asako; Ooshima, Tomoko; Yamano, Tetsuo

    2016-01-01

    A method using high-performance liquid chromatograph (HPLC) was developed for the identification of colorants migrated from colored modeling clays, which are popular toys for children. Twelve permitted dyes and 25 non-permitted dyes were analyzed in 20 clays (10 wheat clays, 2 rice clays, 2 corn clays, 3 paper clays and 3 resin clays). As a result, 13 products which were labeled for children's use (under 6 years old) met the specifications of the Japanese Food Sanitation Law, while non-permitted colorants were eluted from 2 products. In additon, unknown colorants were eluted from 3 products for people over 6 years old, although these are not covered by the Japanese regulation. It was suggested that some type of clays contained pigments, which are generally used in printing ink and plastics.

  7. Processes of cation migration in clay-rocks: Final Scientific Report of the CatClay European Project

    International Nuclear Information System (INIS)

    Altmann, S.; Aertsens, M.; Appelo, T.; Bruggeman, C.; Gaboreau, S.; Glaus, M.; Jacquier, P.; Kupcik, T.; Maes, N.; Montoya, V.; Rabung, T.; Robinet, J.-C.; Savoye, S.; Schaefer, T.; Tournassat, C.; Van Laer, L.; Van Loon, L.

    2015-07-01

    In the framework of the feasibility studies on the radioactive waste disposal in deep argillaceous formations, it is now well established that the transport properties of solutes in clay rocks, i.e. parameter values for Fick's law, are mainly governed by the negatively charged clay mineral surface. While a good understanding of the diffusive behaviour of non-reactive anionic and neutral species is now achieved, much effort has to be placed on improving understanding of coupled sorption/diffusion phenomena for sorbing cations. Indeed, several cations known to form highly stable surface complexes with sites on mineral surfaces migrate more deeply into clay rock than expected. Therefore, the overall objective of the EC CatClay project is to address this issue, using a 'bottom-up' approach, in which simpler, analogous systems (here a compacted clay, 'pure' illite) are experimentally studied and modelled, and then the transferability of these results to more complex materials, i.e. the clay rocks under consideration in France, Switzerland and Belgium for hosting radioactive waste disposal facilities, is verified. The cations of interest were chosen for covering a representative range of cations families: from a moderately sorbing cation, the strontium, to three strongly sorbing cations, Co(II), Zn(II) and Eu(III). For the 4 years of this project, much effort was devoted to developing and applying specific experimental methods needed for acquiring the high precision, reliable data needed to test the alternative hypotheses represented by different conceptual-numerical models. The enhanced diffusion of the sorbing cations of interest was confirmed both in the simpler analogous illite system for Sr 2+ , Co(II) and Zn(II), but also in the natural clay rocks, except for Eu(III). First modelling approach including diffusion in the diffuse double layer (DDL) promisingly succeeded in reproducing the experimental data under the various conditions both in

  8. Raw material of the Corumbatai formation at the region of ceramic pole of Santa Gertrudes - Sao Paulo, Brazil, with natural characteristics for fabrication of expanded clay; Materia-prima da formacao Corumbatai na regiao do polo ceramico de Santa Gertrudes - Sao Paulo, com caracteristicas naturais para fabricacao de argila expandida

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M.M.T.; Zanardo, A.; Rocha, R.R.; Roveri, C.D., E-mail: mmoreno@rc.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Rio Claro, SP (Brazil). Dept. de Petrologia e Metalogenia

    2009-07-01

    This paper refers to the study of the bases material of the Corumbatai Formation (Parana Basin) from a clay mine, which presents limits for its use in ceramic tiles in dry grinding process due to its hardness and, especially, the high content of organic matter in relation to the clay overlaid. The characterization of the raw material and the product was accomplished by organic carbon analysis, X-ray diffraction, optical microscopy and test-firing. Firing conditions were determined to get expanded clay, using fast firing static kiln and a continuous roller kiln, both from laboratory equipment, getting samples with variable density up to the limit of expansion, with density that can reach values lower than 0,5g.cm{sup -3} because of the formation of closed pores and an external vitreous foil which provide a high mechanical resistance to the particles. (author)

  9. Feasibility of Plasma Treated Clay in Clay/Polymer Nanocomposites Powders for use Laser Sintering (LS)

    Science.gov (United States)

    Almansoori, Alaa; Seabright, Ryan; Majewski, C.; Rodenburg, C.

    2017-05-01

    The addition of small quantities of nano-clay to nylon is known to improve mechanical properties of the resulting nano-composite. However, achieving a uniform dispersion and distribution of the clay within the base polymer can prove difficult. A demonstration of the fabrication and characterization of plasma-treated organoclay/Nylon12 nanocomposite was carried out with the aim of achieving better dispersion of clay platelets on the Nylon12 particle surface. Air-plasma etching was used to enhance the compatibility between clays and polymers to ensure a uniform clay dispersion in composite powders. Downward heat sintering (DHS) in a hot press is used to process neat and composite powders into tensile and XRD specimens. Morphological studies using Low Voltage Scanning Electron Microscopy (LV-SEM) were undertaken to characterize the fracture surfaces and clay dispersion in powders and final composite specimens. Thermogravimetric analysis (TGA) testing performed that the etched clay (EC) is more stable than the nonetched clay (NEC), even at higher temperatures. The influence of the clay ratio and the clay plasma treatment process on the mechanical properties of the nanocomposites was studied by tensile testing. The composite fabricated from (3% EC/N12) powder showed ~19 % improvement in elastic modulus while the composite made from (3% NEC/N12) powder was improved by only 14%). Most notably however is that the variation between tests is strongly reduced when etch clay is used in the composite. We attribute this to a more uniform distribution and better dispersion of the plasma treated clay within polymer powders and ultimately the composite.

  10. Caracterização dos argilominerais usados em matéria-prima cerâmica, da formação Rio do Rasto, Bacia do Paraná, no município de Turvo, SC Characterization of clay minerals used in the ceramic industry, from Rio do Rasto formation, Paraná basin, exploitation in Turvo, SC, Brazil

    Directory of Open Access Journals (Sweden)

    J. A. Costa

    2010-12-01

    Full Text Available No sudeste de Santa Catarina existem inúmeras minas de exploração de argilas destinadas à indústria cerâmica da região. Para o conhecimento desta matéria prima foi realizada a caracterização em detalhe de uma frente de lavra em atividade. A exploração é realizada em terrenos sedimentares da Formação Rio do Rasto (Permiano Superior na Bacia do Paraná que afloram como morros testemunho. Foram coletadas quatorze amostras representativas dos níveis desta mina composta de argilitos com intercalação de siltitos de pequena espessura. As amostras foram analisadas por difratometria de raios X pelo método do pó na rocha total e na fração In the southeastern part of Santa Catarina state, Brazil, many mines of clays used as raw material for the ceramic industry are found. A detail study of this material was developed in a mine in activity. The exploitation of clays is held in sedimentary rocks of Rio do Rasto Formation (Upper Permian in the Paraná Basin. The outcrops are in hills testimonies. Fourteen samples were collected and represent the levels of this mine which consisted of argillites with intercalation of slim siltite layer. These samples were analyzed by X-ray diffraction using the powder method and in the fraction < 4 µm. The chemical composition was determined by X-ray fluorescence spectrometer. Petrographic observations in thin section were also performed. Scanning electron microscope images was obtained in samples fragments by secondary electron method. Electron microprobe microanalysis was performed in one thin section. The results showed large vertical variation in the mineralogy and it has been identified three different levels. Up to 2.00 m there is a predominance of smectite. Between 5.50 m 2.00 m the smectite is the main clay mineral, but with significant amounts of illite/mica and above 5.50 m occurs large increase in K-feldspar and detrital mica. Studies in detail by X-ray diffraction (determination of the b

  11. Organically modified clays as binders of fumonisins in feedstocks.

    Science.gov (United States)

    Baglieri, Andrea; Reyneri, Amedeo; Gennari, Mara; Nègre, Michèle

    2013-01-01

    This study reports an investigation on the ability of organically modified clays to bind mycotoxins, fumonisins B1 (FB1) and B2 (FB2). Organically modified clays are commercia materials prepared from natural clays, generally montmorillonite, by exchanging the inorganic cation with an ammonium organic cation. A screening experiment conducted on 13 organically modified clays and 3 nonmodified clays, used as controls, has confirmed that the presence of an organic cation in the clay interlayer promoted the adsorption of both fumonisins. On the basis of the results of the screening test, four modified clays and a Na-montmorillonite were selected for the determination of the adsorption kinetics and isotherms. On all the tested materials adsorption took place within one hour of contact with fumonisins solutions. Adsorption isotherms have pointed out that the modified clays exhibited a higher adsorptive capacity than the unmodified clay. It was also demonstrated that, notwithstanding the reduced structural difference between FB1 and FB2, they were differently adsorbed on the modified clays. Addition of 2% modified clays to contaminated maize allowed a reduction of more than 70% and 60% of the amount of FB1and FB2 released in solution. Although in vivo experiments are required to confirm the effectiveness of the organically modified clays, these preliminary results suggest that these materials are promising as fumonisins binders.

  12. Hydrothermal Alteration of Glass from Underground Nuclear Tests: Formation and Transport of Pu-clay Colloids at the Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhao, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Joseph, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Begg, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Boggs, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kersting, A. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-27

    The testing of nuclear weapons at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), has led to the deposition of substantial quantities of plutonium into the environment. Approximately 2.8 metric tons (3.1×104 TBq) of Pu were deposited in the NNSS subsurface as a result of underground nuclear testing. While 3H is the most abundant anthropogenic radionuclide deposited in the NNSS subsurface (4.7×106 TBq), plutonium is the most abundant from a molar standpoint. The only radioactive elements in greater molar abundance are the naturally occurring K, Th, and U isotopes. 239Pu and 240Pu represent the majority of alpha-emitting Pu isotopes. The extreme temperatures associated with underground nuclear tests and the refractory nature of Pu results in most of the Pu (98%) being sequestered in melted rock, referred to as nuclear melt glass (Iaea, 1998). As a result, Pu release to groundwater is controlled, in large part, by the leaching (or dissolution) of nuclear melt glass over time. The factors affecting glass dissolution rates have been studied extensively. The dissolution of Pu-containing borosilicate nuclear waste glasses at 90ºC has been shown to lead to the formation of dioctahedral smectite colloids. Colloid-facilitated transport of Pu at the NNSS has been observed. Recent groundwater samples collected from a number of contaminated wells have yielded a wide range of Pu concentrations from 0.00022 to 2.0 Bq/L. While Pu concentrations tend to fall below the Maximum Contaminant Level (MCL) established by the Environmental Protection Agency (EPA) for drinking water (0.56 Bq/L), we do not yet understand what factors limit the Pu concentration or its transport behavior. To quantify the upper limit of Pu concentrations produced as a result of melt glass dissolution and determine the nature of colloids and Pu associations, we performed a 3 year nuclear melt glass dissolution experiment

  13. Thermal hardening of saturated clays. Application to underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Picard, Jean-Marc

    1994-01-01

    Saturated clays submitted to constant mechanical loading and slow temperature increase frequently undergo irreversible contractions. This phenomena is described here by means of a change of plastic limits induced by temperature only, called thermal hardening. Constitutive laws adapted to this kind of plastic behaviour can be formulated within a general framework that satisfies thermodynamical principles. It shows that this coupling results from the presence of a latent heat during the isothermal hardening of plastic limits. A thermomechanical extension of Cam Clay model is then proposed and used in the analysis of laboratory thermomechanical tests performed on clay materials. Making use of tests already published, we show the adequacy of the concept of thermal hardening for clay behaviour. Some clay from deep geological formation considered for the disposal of radioactive waste exhibit thermal hardening in laboratory tests. The consequences for the underground storage facilities during the thermal loading created by the waste are investigated by means of in situ tests as well as numerical computation. The measurement around a heating probe buried in the clay mass demonstrate the significance of thermo-hydro-mechanical couplings. An accurate understanding of in situ measurements is achieved by means of numerical modeling in which the interaction between the various loading of the tests (excavation, pore pressure seepage, and heating) is carefully taken into account. Thermal hardening of the clay appears to be of little influence in these in situ tests. On the other hand, the magnitude of thermo-hydro-mechanical couplings observed in situ are higher than might have been expected from laboratory tests. A more accurate prediction is obtained if one takes into account the more stiffer behaviour of clays when they are subjected to small deformations. (authors)

  14. Speciation of uranium in surface-modified, hydrothermally treated, (UO2)2+-exchanged smectite clays

    International Nuclear Information System (INIS)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.; Wasserman, S.R.

    1997-01-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS data from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U VI to U IV

  15. Characterization of two clays - attapulgite and sepiolite - before and after acid activation; Caracterizacao de duas argilas - atapulgita e sepiolita - antes e apos ativacao acida com HCl

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.N.; Soares, G.A., E-mail: renataoliveira@poli.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia; Barreto, L.S. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil)

    2009-07-01

    Among the special clays, two of them are distinguished by their large surface area: attapulgite and sepiolite. Although, being natural clays, when they are removed from the formation sites, their structural channels may be filled of impurities. The process done to clean these channels is called acid activation. The present work aim to treated samples from both clays by using 3M and 5M HCl solution under ultrasonic waves for 1 hour. The characterization of the clays before and after activation was carried out by SEM/EDS, XRD and surface area measure by method BET. The acid treatments employed were too aggressive, in special that with 5M HCl solution, which results in partial lixiviation of these clays. (author)

  16. Results of a downhole formation microscanner study in a Juro-Triassic-aged sedimentary deposit (Passaic Formation)

    International Nuclear Information System (INIS)

    Fischer, J.A.; Fischer, J.J.; Bullwinkel, R.J.

    1994-01-01

    Studies to determine the structural and geohydrological properties of the Passaic Formation were performed at two sites. Both sites are located in northeastern New Jersey, within the Juro-Triassic-aged Newark Basin. The Passaic Formation rocks are described in the literature as a reddish brown, thin to massively bedded, sedimentary deposit with lithology ranging from claystone through conglomerate. A fractured open-quotes layer cakeclose quotes model has been proposed (and is generally accepted) to describe the prevailing geohydrological conditions. The Formation MicroScanner tool was used in four wells drilled for these projects (two at each site). In addition to this microresistivity tool, a suite of other oil field geophysical tools (Gamma, Induction, Dipmeter, Temperature, and Neutron probes) were also utilized. The data collected with the Formation MicroScanner were correlated with detailed logs and the continuous core retrieved from three of the wells. Pump test data was also obtained at both sites. The geophysical data obtained at both sites allowed the direct identification of fractures and their orientation in relation to bedding. Fracture and bedding aperture size and orientation were measured. The results, as presented in this paper, show a high degree of inhomogeneity at both sites rather than the conventional layer cake model. For appropriate site analyses it was necessary to significantly refine the previously assumed Passaic Formation geohydrological and structural model. 14 refs., 4 figs

  17. Modified clays, PILC’s, applied in catalysis

    Directory of Open Access Journals (Sweden)

    Delgado Blanco Carmen

    2011-01-01

    Full Text Available In this work, the capability of new materials PILC’s synthesized from montmorillonite as support for catalysts based on Rh or Sn promoted Rh has been studied. Rh based catalysts were synthesized by hydrogen reduction at atmospheric pressure for a cationic organo-metallic rhodium complex. The influence of the supports in the incorporation of the active phase has been studied. The catalysts have been tested in the hydrogenation of crotonaldehyde in the vapor phase at atmospheric pressure, analyzing the effect of some working parameters in the formation of the reaction products, namely the temperature of metal reduction, the reaction temperature, and the addition of Sn as a promoter. For comparative purposes, natural clay and commercial silica have also been used as supports. Both the natural clays and the PILC’s materials have resulted adequate supports for the Rh catalysts. The addition of Sn as a promoter modifies the selectivity leading to higher conversion towards crotyl alcohol.

  18. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    Science.gov (United States)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  19. Optimum potassium chloride concentration to reduce hydration capacity of clay formations; Concentracao otima de cloreto de potassio para reduzir a capacidade de hidratacao das formacoes argilosas

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Jose Carlos Vieira [PETROBRAS, Salvador, BA (Brazil). Centro de Recursos Humanos Norte-Nordeste. Setor de Programas de Perfuracao; Oliveira, Manoel Martins de [PETROBRAS, BA (Brazil). Distrito de Perfuracao. Div. de Tecnicas de Perfuracao

    1988-12-31

    An experimental method for ascertaining the optimal concentration of potassium chloride for reducing the hydration and dispersion capacity of clayey formations sensitive to water-based fluids is described. Under this method, filtering time for disperse systems prepared from clayey formation samples is measured. A discussion is offered on theoretical aspects of hydration, expansion, and dispersion of clayey rocks in response to the variations in stress equilibrium states produced by these phenomena when a hole (well) is opened in the rock. The state of the art of this technological branch is also described. (author) 10 refs., 5 figs., 4 tabs.

  20. Coatings and films derived from clay/wax nanocomposites

    Science.gov (United States)

    Chaiko, David J.; Leyva, Argentina A.

    2006-11-14

    The invention provides methods for making clay/wax nanocomposites and coatings and films of same with improved chemical resistance and gas barrier properties. The invention further provides methods for making and using emulsions of such clay/wax nanocomposites. Typically, an organophillic clay is combined with a wax or wax/polymer blend such that the cohesion energy of the clay matches that of the wax or wax/polymer blend. Suitable organophilic clays include mica and phyllosilicates that have been surface-treated with edge or edge and surface modifying agents. The resulting nanocomposites have applications as industrial coatings and in protective packaging.

  1. Modification of Clays by Sol-Gel Reaction and Their Use in the Ethylene In Situ Polymerization for Obtaining Nanocomposites

    Directory of Open Access Journals (Sweden)

    E. Moncada

    2012-01-01

    Full Text Available The nanocomposites formation by in situ polymerization used a metallocene catalyst (butyl-2-cyclopentadienyl zirconium 2-chlorines and a hectorite synthetic clay type which is discussed. This research was carried out in two phases. The first phase consisted of mixing the components of the metallocenic polymerization reaction (metallocene-methylaluminoxane-ethylene with clay in a reactor. In the second phase, the metallocenic catalytic system was supported by clay particles and then a polymerization reaction was made. In this second phase, the clay particles were modified using a sol-gel reaction with different pH values: pH = 3, pH = 8, and pH = 12. The results were compared in terms of the catalytic activity in the different systems (phase 1 and phase 2 and the nanoparticle morphology of nanocomposites generated in this study.

  2. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation

    Science.gov (United States)

    Shokuhi Rad, A.; Ebrahimi, D.

    2017-07-01

    The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.

  3. Clay Minerals: Adsorbophysical Properties

    International Nuclear Information System (INIS)

    Kotova, O

    2013-01-01

    The structure and features of surfaces of clay minerals (kaolin, montmorillonite, etc) have an important scientific and practical value. On the surface the interrelation of processes at electronic, atomic and molecular levels is realized. Availability of mineral surface to external influences opens wide scientific and technical opportunities of use of the surface phenomena, so the research of crystal-chemical and crystal-physical processes in near-surface area of clay minerals is important. After long term researches of gas-clay mineral system in physical fields the author has obtained experimental and theoretical material contributing to the creation of the surface theory of clays. A part of the researches is dedicated to studying the mechanism of crystal-chemical and crystal-physical processes in near surface area of clay mineral systems, selectivity of the surface centers to interact with gas phase molecules and adsorbophysical properties. The study of physical and chemical properties of fine clay minerals and their modification has a decisive importance for development of theory and practice of nanotechnologies: they are sorbents, membranes, ceramics and other materials with required electronic features

  4. Do scaly clays control seismicity on faulted shale rocks?

    Science.gov (United States)

    Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie

    2018-04-01

    One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.

  5. JOYFOR: A program for transformation of NJOY results in MATXS-format to the MITRA input format

    International Nuclear Information System (INIS)

    Krieg, B.; Broeders, I.

    1987-02-01

    The program JOYFOR is the connection between the output of the group constant calculation code NJOY in MATXS-format and the testing and formatting program MITRA. Resonance selfshielding factors as well as transfermatrices for elastic and inelastic scattering and for (n,2n)- and (n,3n)-processes, normalized corresponding to the conventions of MITRA, are calculated by JOYFOR from the NJOY results and are written in MIGROS-format on an external file and on the standard output unit. Also the group cross-sections for infinite dilution, the 1/v-values and the fission spectrum are written out in the same format as in MIGROS. KERMA-factors are handled by JOYFOR in the same way as group cross-sections. The output data of JOYFOR may be tested by MITRA and transformed into input for the GRUBA management program GRUMA. The present version of JOYFOR handles group constants for neutron reactions only. Extension of the program to photon reactions is being planned. (orig.) [de

  6. The influence of shale depositional fabric on the kinetics of hydrocarbon generation through control of mineral surface contact area on clay catalysis

    Science.gov (United States)

    Rahman, Habibur M.; Kennedy, Martin; Löhr, Stefan; Dewhurst, David N.; Sherwood, Neil; Yang, Shengyu; Horsfield, Brian

    2018-01-01

    Accurately assessing the temperature and hence the depth and timing of hydrocarbon generation is a critical step in the characterization of a petroleum system. Clay catalysis is a potentially significant modifier of hydrocarbon generation temperature, but experimental studies of clay catalysis show inconsistent or contradictory results. This study tests the hypothesis that source rock fabric itself is an influence on clay mineral catalysis as it controls the extent to which organic matter and clay minerals are physically associated. Two endmember clay-organic fabrics distinguish the source rocks studied: (1) a particulate fabric where organic matter is present as discrete, >5 μm particles and (2) a nanocomposite fabric in which amorphous organic matter is associated with clay mineral surfaces at sub-micron scale. High-resolution electron imaging and bulk geochemical characterisation confirm that samples of the Miocene Monterey Formation (California) are representative of the nanocomposite source rock endmember, whereas samples from the Permian Stuart Range Formation (South Australia) represent the particulate source rock endmember. Kinetic experiments are performed on paired whole rock and kerogen isolate samples from these two formations using open system, non-isothermal pyrolysis at three different heating rates (0.7, 2 and 5 K/min) to determine the effects of the different shale fabrics on hydrocarbon generation kinetics. Extrapolation to a modelled geological heating rate shows a 20 °C reduction in the onset temperature of hydrocarbon generation in Monterey Formation whole rock samples relative to paired kerogen isolates. This result is consistent with the Monterey Formations's nanocomposite fabric where clay catalysis can proceed because reactive clay minerals are intimately associated with organic matter. By contrast, there is no significant difference in the modelled hydrocarbon generation temperature of paired whole rock and kerogen isolates from the

  7. Clays at the natural nuclear reactor at Bangombe, Gabon: migration of actinides

    International Nuclear Information System (INIS)

    Eberly, P.O.; Ewing, R.C.; Janeczek, J.; Furlano, A.

    1996-01-01

    Clay minerals were examined from the natural nuclear reactor at Bangombe. The clay mineralogy of the reactor facies is: illite, kaolinite and minor chlorite (FB formation); illite with chlorite and kaolinite in hydrothermal veins (argile de pile); illite and chlorite (reactor core); and (i) chlorite and kaolinite ± illite ± smectite or (ii) illite in the underlying FA formation. Illite crystallinity values are in general highest in rocks that experienced the highest temperatures during reactor operation. Chlorite chemistry varies with respect to position around the reactor: both di-tri and trioctahedral chlorites are present in hydrothermal veins within the argile de pile, dioctahedral chlorites are present in the FA formation within cm of the reactor core, trioctahedral chlorites are present within a meter of the reactor. Chemical data for the argile de pile and the FB formation suggest that formation of the former unit occurred as a result of thermal metamorphism of the FB pelites, as opposed to large-scale dissolution of the sandstones of the FA formation. Autoradiography is used to study the sorptive characteristics of the clays for actinides. The results show that actinide sorption varies in the order: chlorite > illite ≅ kaolinite. (orig.)

  8. Simulation of the long term alteration of clay minerals in engineered bentonite barriers: nucleation and growth of secondary clay particles

    International Nuclear Information System (INIS)

    Fritz, B.; Clement, A.; Zwingmann, H.; Noguera, C.

    2010-01-01

    NANOKIN, in order to account for these ionic exchange processes. The approach is very similar to that used for the precipitation of solid solutions, except for time dependence of the cation fraction in the solid phase, which is assumed to be in equilibrium with the instantaneous state of the aqueous solution. With this extension, the code NANOKIN is able to simulate the formation of clay phases, by combining nucleation and growth in the over-saturation domain, together with cation exchange inside the newly formed particles. Illite-type clay is systematically predicted as a possible product of the partial transformation of montmorillonite-type minerals. The extension of this illitization remains however limited. We present new results of montmorillonite to illite transformations in storage like conditions using the code NANOKIN. The model provides a prediction of the nucleation and growth of illite among other secondary minerals and of the time dependent evolution of crystal size distribution of these clay minerals. (authors)

  9. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    Science.gov (United States)

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  10. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay

    International Nuclear Information System (INIS)

    Motshekga, Sarah C.; Ray, Suprakas S.; Onyango, Maurice S.; Momba, Maggie N.B.

    2013-01-01

    Highlights: • A facile, fast and effective method was used for preparing metal–clay composites. • The metal/oxide loaded on clay exhibited narrow size range at nano scale. • The composites deactivate both Gram negative and Gram positive bacteria. • A combination of metal and metal oxide provides the best antibacterial property. -- Abstract: Composites of silver–zinc oxide nanoparticles supported on bentonite clay were synthesized by the microwave-assisted synthesis method for use as an antibacterial material. Silver nitrate was used as the precursor of silver nanoparticles while zinc oxide nanoparticles were commercially sourced. The composites were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared (FTIR) and BET surface area measurements. XRD spectra showed peaks of silver confirming the formation of the silver and not of the silver nitrate or any other impurity of the metal. Meanwhile TEM confirmed the formation of silver and zinc oxide nanoparticles on the clay layers, with particle sizes ranging from 9–30 nm and 15–70 nm, respectively. The antibacterial activities of the composites were evaluated against Gram negative Escherichia coli bacteria and Gram positive Enterococcus faecalis bacteria by the disc diffusion method. Whereas both composites of Ag-clay and ZnO-clay showed good antibacterial activity against bacteria, a better antibacterial activity was observed with Ag/ZnO-clay composite. The results therefore reveal that Ag/ZnO-clay composite is a promising bactericide that can be used for deactivating microbes in water

  11. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay

    Energy Technology Data Exchange (ETDEWEB)

    Motshekga, Sarah C. [DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 (South Africa); Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa); Ray, Suprakas S. [DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 (South Africa); Onyango, Maurice S., E-mail: OnyangoMS@tut.ac.za [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa); Momba, Maggie N.B. [Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Pretoria 0001 (South Africa)

    2013-11-15

    Highlights: • A facile, fast and effective method was used for preparing metal–clay composites. • The metal/oxide loaded on clay exhibited narrow size range at nano scale. • The composites deactivate both Gram negative and Gram positive bacteria. • A combination of metal and metal oxide provides the best antibacterial property. -- Abstract: Composites of silver–zinc oxide nanoparticles supported on bentonite clay were synthesized by the microwave-assisted synthesis method for use as an antibacterial material. Silver nitrate was used as the precursor of silver nanoparticles while zinc oxide nanoparticles were commercially sourced. The composites were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared (FTIR) and BET surface area measurements. XRD spectra showed peaks of silver confirming the formation of the silver and not of the silver nitrate or any other impurity of the metal. Meanwhile TEM confirmed the formation of silver and zinc oxide nanoparticles on the clay layers, with particle sizes ranging from 9–30 nm and 15–70 nm, respectively. The antibacterial activities of the composites were evaluated against Gram negative Escherichia coli bacteria and Gram positive Enterococcus faecalis bacteria by the disc diffusion method. Whereas both composites of Ag-clay and ZnO-clay showed good antibacterial activity against bacteria, a better antibacterial activity was observed with Ag/ZnO-clay composite. The results therefore reveal that Ag/ZnO-clay composite is a promising bactericide that can be used for deactivating microbes in water.

  12. Experimental study of MS2 and ΦX174 interactions with clays

    Science.gov (United States)

    Syngouna, V. I.; Chrysikopoulos, C.

    2009-12-01

    The transport and fate of viruses in subsurface formations are mainly governed by virus attachment onto the solid matrix and inactivation. Furthermore, virus attachment onto clay colloids is primarily controlled by electrostatic interactions between surfaces. Bacteriophage MS2 and ΦX174 were used as surrogates for human viruses in order to investigate the interaction between viruses and clay particles. The selected phyllosilicate clays were kaolinite and bentonite. Numerous reactor vessels were filled with 0.5 g of clay and 50 mL of sterile phosphate buffered at pH 7.0. A series of static and dynamic experiments for various bacteriophage concentrations were conducted at two different temperatures. Half of the reactor vessels were placed in a refrigerator at 4°C and the rest in a constant temperature room at 25°C. The dynamic batch experiments were performed with the reactor vessels attached to a small bench-top tube rotator. Appropriate adsorption isotherms were determined. Subsequently, the Derjaguin-Landau-Verwey-Overbeek theory was applied in order to determine the interaction energies between the bacteriophage and clay surfaces. The electric properties of the viral surfaces were also obtained at different pH values and ionic strength levels. The experimental results show that virus adsorption increases linearly with suspended virus concentration. The observed distribution coefficient (Kd) was higher for MS2 than ΦX174. Also, the observed Kd values were higher for the dynamic than static experiments, and increased with temperature. Moreover, the results indicate that the electrostatic interactions between viruses and the clays are significantly influenced by the solution’s ionic strength and pH. At pH 7, bacteriophage-clay energy barriers were higher for MS2 than ΦX174.

  13. Effect of confining pressure on diffusion coefficients in clay-rich, low-permeability sedimentary rocks.

    Science.gov (United States)

    Xiang, Y; Al, T; Mazurek, M

    2016-12-01

    The effect of confining pressure (CP) on the diffusion of tritiated-water (HTO) and iodide (I - ) tracers through Ordovician rocks from the Michigan Basin, southwestern Ontario, Canada, and Opalinus Clay from Schlattingen, Switzerland was investigated in laboratory experiments. Four samples representing different formations and lithologies in the Michigan Basin were studied: Queenston Formation shale, Georgian Bay Formation shale, Cobourg Formation limestone and Cobourg Formation argillaceous limestone. Estimated in situ vertical stresses at the depths from which the samples were retrieved range from 12.0 to 17.4MPa (Michigan Basin) and from 21 to 23MPa (Opalinus Clay). Effective diffusion coefficients (D e ) were determined in through-diffusion experiments. With HTO tracer, applying CP resulted in decreases in D e of 12.5% for the Queenston Formation shale (CP max =12MPa), 30% for the Georgian Bay Formation shale (15MPa), 34% for the Cobourg Formation limestone (17.4MPa), 31% for the Cobourg Formation argillaceous limestone (17.4MPa) and 43-46% for the Opalinus Clay (15MPa). Decreases in D e were larger for the I - tracer: 13.8% for the Queenston shale, 42% for the Georgian Bay shale, 50% for the Cobourg Formation limestone, 55% for the Cobourg Formation argillaceous limestone and 63-68% for the Opalinus Clay. The tracer-specific nature of the response is attributed to an increasing influence of anion exclusion as the pore size decreases at higher CP. Results from the shales (including Opalinus Clay) indicate that the pressure effect on D e can be represented by a linear relationship between D e and ln(CP), which provides valuable predictive capability. The nonlinearity results in a relatively small change in D e at high CP, suggesting that it is not necessary to apply the exact in situ pressure conditions in order to obtain a good estimate of the in situ diffusion coefficient. Most importantly, the CP effect on shale is reversible (±12%) suggesting that, for

  14. Thermally modified bentonite clay for copper removal

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    Bentonite clay coming from Pernambuco was thermally modified in order to increase its affinity and capacity in the copper removal in porous bed. The application of this procedure is justified by the low cost of clay, their abundance and affinity for various metal ions. Thermally treatment modifies the clay adsorption properties enables its use in porous bed system, with the increase in surface area and mechanical strength. The material was characterized by x-ray diffraction, thermogravimetric analysis and N 2 physisorption. Then tests were carried out for adsorption of copper in various experimental conditions and evaluated the mass transfer zone, useful and total adsorbed removal amounts and total copper removal percentage. The results showed that the clay treated at higher temperature showed higher copper removal. (author)

  15. Clay mineral variations near Pennsylvanian sandstone channels

    International Nuclear Information System (INIS)

    Shaffer, N.R.; Indiana Univ., Bloomington, IN; Murray, H.H.

    1993-01-01

    Large linear sandstone bodies in the Illinois Basin have been interpreted as representing fresh water river channels that flowed through generally marine to brackish Pennsylvanian deltaic environments; fresh water from such channels could have affected deposition of adjacent coal-bearing rocks. Low-sulfur coals are commonly associated with the sandstone bodies, which may also host petroleum, uranium, fresh water, or other resources. Thus techniques to locate such channels would be economically useful. Previous studies have shown that clay mineral distributions and bulk chemistries of clay-rich sediments are affected when fresh waters mix with sea water. Such changes associated laterally with freshwater channels might have caused distinctive clay mineral or chemical patterns to develop around the channels. Mineralogies and chemical compositions of more than 500 mudrock samples taken immediately above the springfield Coal Member of the Petersburg Formation from 52 sections located from channel margins to 63 miles distant were determined to discern patterns that could aid in finding channels

  16. In vitro toxicological assessment of clays for their use in food packaging applications.

    Science.gov (United States)

    Maisanaba, Sara; Puerto, María; Pichardo, Silvia; Jordá, María; Moreno, F Javier; Aucejo, Susana; Jos, Ángeles

    2013-07-01

    Montmorillonite based clays have a wide range of applications that are going to contribute to increase human exposure to these materials. One of the most promising uses of clays is the development of reinforced food contact materials that results in nanocomposites with improved barrier properties. Different organoclays have been developed introducing modifiers in the natural clay which is commercially available. However, the toxicological aspects of these materials have been scarcely studied so far. In the present study, the cytotoxic effects of a non-modified clay (Cloisite Na+) and an organoclay (Cloisite 30B) have been investigated in the hepatic cell line HepG2. Only Cloisite 30B showed cytotoxicity. In order to elucidate the toxic mechanisms underlying these effects, apoptosis, inflammation, oxidative stress and genotoxicity biomarkers were assayed. Moreover, a morphology study with light and electron microscopy was performed. Results showed genotoxic effects and glutathione decrease. The most relevant ultraestructural alterations observed were mitochondrial degeneration, dilated endomembrane systems, heterophagosomes formation, fat droplets appearance and presence of nuclear lipid inclusions. Cloisite 30B, therefore, induces toxic effects in HepG2 cells. Further research is needed to assess the risk of this clay on the human health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Study of new occurrences of plastic (ball) clays from northeastern Brazil for use in refractory ceramics; Estudo de novas ocorrencias de argilas plasticas (ball clays) do nordeste do Brasil para uso em ceramicas refratarias

    Energy Technology Data Exchange (ETDEWEB)

    Cartaxo, J.M.; Bastos, P. de M.; Santana, L.N.L.; Menezes, R.R.; Neves, G.A.; Ferreira, H.C., E-mail: julianamelo25@gmail.com, E-mail: paulos@cstr.ufcg.edu.br, E-mail: lisiane.navarro@ufcg.edu.br, E-mail: romualdo.menezes@ufcg.edu.br, E-mail: gelmires.neves@ufcg.edu.br, E-mail: heber.ferreira@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2016-10-15

    The northeast of Brazil has large deposits of ball clays generally situated in Barreiras Formation and are used in white ceramic and refractory materials. These clays are composed of secondary kaolinite and organic matter, being very plastic and when subjected to elevated temperatures burn with white colors and present phase transformations showing mainly crystals formation of mullite and cristobalite. This work aims to study new deposits of ball clays in order to use them to refractory materials production. The clays were characterized by laser diffraction, X-ray diffraction (XRD), X-ray fluorescence, refractoriness, thermal analysis, and scanning electron microscopy (SEM). The samples were pressed and sintered at 1000, 1150, 1250, 1280 and 1400 °C. The characterization after firing was carried out by XRD and SEM. Then, the physical and mechanical properties - absorption, porosity and flexural strength, were determined. The results showed that the clays presented formation of mullite crystals with physical, chemical and mineralogical properties suitable for use in refractory ceramics. (author)

  18. Faults in clays their detection and properties

    International Nuclear Information System (INIS)

    Baldi, G.; Carabelli, E.; Chiantore, V.; Colombo, P.F.; Gruszka, A.; Pensieri, R.; Superbo, S.; Gera, F.

    1991-01-01

    The 'Faults in clays project', a cooperative research effort between Ismes and Enea of Italy and BGS and Exeter University of the UK, has been aimed at assessing and improving the resolution capability of some high resolution geophysical techniques for the detection of discontinuities in clay formations. All Ismes activities have been carried out in Italy: they consisted in the search of one or more sites - faulted clay formations - suitable for the execution of geophysical and geotechnical investigations, in the execution of such tests and in additional geological surveys and laboratory (geotechnical and geochemical) testing. The selected sites were two quarries in plio-pleistocenic clay formations in central Italy where faults had been observed. The greatest part of the research work has been carried out in the Orte site where also two 90 m boreholes have been drilled and cored. Geophysical work at Orte consisted of vertical electrical soundings (VESs) and horizontal electrical lines (HELs), four high resolution seismic reflection lines, and in-hole and cross-hole logs. Laboratory activities were geotechnical characterization and permeability tests, and measurements of disequilibrium in the uranium decay series. At Narni, where Exeter University sampled soil gases for geochemical analyses, the geophysical work consisted in a geo-electrical survey (five VESs and two HELs), and in two high resolution reflection seismic lines. Additional investigations included a structural geology survey. The main conclusion of the research is that current geophysical techniques do not have a resolution capacity sufficient to detect the existence and determine the characteristics of faults in deep homogeneous clay formations

  19. The corrosion of copper in compacted clay

    Energy Technology Data Exchange (ETDEWEB)

    King, F.; Ryan, S.R.; Litke, C.D

    1997-12-01

    The uniform corrosion behaviour of copper has been investigated in the presence of compacted clay under simulated disposal vault conditions. The compacted clay is used to simulate the buffer material that would surround copper nuclear fuel waste containers in a Canadian disposal vault. The effect of the speciation of dissolved Cu has been investigated using three synthetic groundwaters of different salinity and various dissolved [O{sub 2}]. The formation of cuprous species is favoured by low [O{sub 2}] and high [C1{sup -}], with Cu(II) species formed at high [O{sub 2}] and low [C1{sup -}]. Because the Na-bentonite clay is a cation-exchange material, positively charged Cu(II) species are found to adsorb more strongly than negatively charged CuC1{sup -} complexes. The impact of the Cu speciation on four experimental parameters is reported: the corrosion rate, the interfacial [Cu] in the clay, the [Cu] profile through the clay layer, and the Cu(l):Cu(ll) ratio in the precipitated corrosion products. In agreement with previous studies, the overall rate-controlling process is believed to be the diffusion of dissolved Cu away from the corroding surface. Adsorption acts as a driving force for corrosion by immobilizing dissolved Cu. Under the conditions used in these experiments, the diffusion of dissolved O{sub 2} to the Cu surface was not rate controlling. (author)

  20. Effect of clay rock on the dissolution rate of a simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Neeway, J.; Abdelouas, A.; Grambow, B.; Schumacher, S.

    2010-01-01

    Document available in extended abstract form only. In the case of creating a high level nuclear waste repository in the callovo-Oxfordian clay rock formation, canistered nuclear waste glass will become exposed for very long time to the clay rock and its pore water will probably over thousands of years lead to container corrosion and once the container is breached, glass corrosion will leading to mobilization of soluble radionuclides with a rate governed by the glass dissolution rate. To simulate this scenario in the laboratory, the simulated nuclear waste glass SON68 was put in form of powder in between two clay cores. The clay cores were machined exactly to fit into a high-pressure stainless steel flow through reactor. After assembling, simulated clay pore water was pushed by a HPLC pump through the reactor by a pressure of 100 bars and the out-flowing water was collected and analysed by ICP-MS in regular time intervals. The reactor was saturated with the water at 25 deg. C and then the temperature was raised to 90 deg. C to accelerate glass corrosion. The water flow rate was 240 μL/d at 25 deg. C and 640 μm/d at 90 deg. C corresponding to a clay rock permeability rise for 4.10-13 m/s at 25 deg. C to 10-12 m/s at 90 deg. C. Glass corrosion rates were deduced from the evolution of the concentration of soluble glass constituents like Li and B in the out flowing solution. Parallel experiments without clay cores were performed as well, with flow rates of about 3 mL/d imposed by a peristaltic pump. The Li/B concentration ratio in the out flowing water closely matched the concentration ratio in the glass, indicating congruent glass dissolution, absence of significant Li or B retention by sorption on the clay. Solution concentrations of these glass dissolution indicators rose rapidly to a maximum values and they decreased thereafter with time for the whole duration of the experiments of one year. Initial dissolution rates were about 10-2 g.m -2 .d -1 and final

  1. Polymer/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrdad shokrieh

    2007-06-01

    Full Text Available Nanocomposite materials have recently attracted increasing interests in the field of modelling. Finite element modelling can be used for computation of bulk properties of polymer/clay nanocomposites. In this study, by   considering the structure of a nano-composite material, a quasi real model is proposed. The model has been used to predict the elastic constants by selection of suitable elements and boundary conditions. The effects of nano-structural parameters on the mechanical properties of a polymer/clay nano-composite are studied. The geometrical overlap of particles, horizontal distance between particles, length of particles and nano-clay volume fraction are defined as functions of the nano-structural parameters and their effects on mechanical properties of nano-composites are studied by a finite element modelling technique.

  2. The basic features of clay rock in Tamusu area

    International Nuclear Information System (INIS)

    Liu Xiaodong; Liu Pinghui

    2012-01-01

    This paper introduces the Tamusu area location, natural and social economic situation, the regional geological background, as well as the upper Gobi formation of clay rocks, and from the geological conditions, economic conditions, social conditions and other aspects of the Tamusu claystone conducted a preliminary evaluation. The results showed that this area can be used as one of the favorable preselected areas for high-level radioactive waste geological disposal repository, basically meets the siting criteria for geological conditions, environmental protection, land use, social influence and waste transport etc. (authors)

  3. Relationship between the Morphology and Physico-Mechanical Properties of Polyethylene/Clay Nanocomposites

    Science.gov (United States)

    Rezanavaz, R.; Aghjeh, M. K. R.

    2012-09-01

    Rheology, morphology and thermal behavior of HDPE/Clay nanocomposites were studied. The mechanical properties of these materials including tensile and creep behaviors were also taken into account. Different PE-g-MA samples with different MA contents and different rheological properties were laboratory synthesized and used as compatibilizer of PE and Clay. The results of X-ray diffraction in conjunction with the results of transmission electron microscopy (TEM) analysis indicated that, increasing in degree of grafted MA increases the penetration of PE chains onto the clay interlayer leading to intercalation and exfoliation. The intercalated and especially exfoliated nanocomposites exhibited higher viscosity and elasticity in particular at low frequency ranges, showing the formation of three dimensional networks with high interfacial interaction. The presence of such a network was evidenced by tand studies where the pseudo-solid like behavior was observed for exfoliated nanocomposites. From these results it was demonstrated that the linear viscoelastic properties of the nanocomposites have a reliable sensitivity to the extent of clay dispersion and they can be used as indirect method in the prediction of the morphology and therefore thermal and mechanical behavior of the nanocomposites. Incorporation of clay decreased the onset temperature of degradation due to the Hofmann elimination reaction, but increased remarkably the mid-point of the degradation temperature. Our laboratory synthesized intercalated nanocomposites displayed higher thermal stability than those of exfoliated samples. This was attributed to the barrier effect of clay layers to oxygen and volatile products, during the degradation of part of polymer chains which was intercalated in clay interlayer. Interestingly the results showed that the effect of Hofmann elimination reaction which decreases the onset temperature degradation of modified clay nanocomposites, can effectively be eliminated using a

  4. Xenon-129 NMR study of the microporous structure of clays and pillared clays

    International Nuclear Information System (INIS)

    Tsiao, C.; Carrado, K.A.

    1990-01-01

    129 Xe NMR studies have been carried out using xenon gas adsorbed in clays and pillared clays. Data from the measurements provide information on the pore structure of clays before and after pillaring. The results indicate that the effective pore diameter of montmorillonite increases, for example, from 5.4 Angstrom to 8.0 Angstrom after pillaring cheto-montmorillonite with aluminum polyoxohydroxy Keggin cations. The data are consistent with X-ray powder diffraction results, which show a corresponding increase in the interlamellar gallery height from 5.6 Angstrom to 8.4 Angstrom

  5. Poly(ethylene oxide)/clay nanaocomposites: Thermal and mechanical properties

    International Nuclear Information System (INIS)

    Ejder-Korucu, Mehtap; Gürses, Ahmet; Karaca, Semra

    2016-01-01

    Highlights: • PEO/clay nanocomposites were prepared via solution intercalation. Complete exfoliation occurs in samples of 0.5 and 2.0 CEC. • The impaired helical structure of PEO in nanocomposite structures had been verified based on the results of FTIR studies. • The crystallization temperature of PEO/OMMT nanocomposites is low compared to raw polymer. • The increase of melting temperatures indicates the increase of the stability of PEO in case of availability of clay. • The tensile strength, yield strength, % stretching of nanocomposite samples increase compared to raw polymer at all CEC rates. - Abstract: Poly(ethylene oxide) (PEO)/clay nanocomposites were prepared by a solution intercalation method using chloroform as a solvent. The nanocomposites were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and also investigation of some mechanical properties of the composites. Formation of nanocomposite was confirmed by XRD analysis. The increasing tendency of exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. An increase in PEO crystallinity in case of nanocomposite, was confirmed by an increase in the heat of melting as indicated by DSC. Improvement in tensile properties in all respect was observed for nanocomposites with clay content.

  6. Poly(ethylene oxide)/clay nanaocomposites: Thermal and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ejder-Korucu, Mehtap, E-mail: mehtapejderk@gmail.com [Department of Chemistry, Faculty of Science and Literature, Kafkas University, 36000 Kars (Turkey); Gürses, Ahmet [Department of Chemistry Education, K.K. Education Faculty, Ataturk University, 25240 Erzurum (Turkey); Karaca, Semra [Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum (Turkey)

    2016-08-15

    Highlights: • PEO/clay nanocomposites were prepared via solution intercalation. Complete exfoliation occurs in samples of 0.5 and 2.0 CEC. • The impaired helical structure of PEO in nanocomposite structures had been verified based on the results of FTIR studies. • The crystallization temperature of PEO/OMMT nanocomposites is low compared to raw polymer. • The increase of melting temperatures indicates the increase of the stability of PEO in case of availability of clay. • The tensile strength, yield strength, % stretching of nanocomposite samples increase compared to raw polymer at all CEC rates. - Abstract: Poly(ethylene oxide) (PEO)/clay nanocomposites were prepared by a solution intercalation method using chloroform as a solvent. The nanocomposites were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and also investigation of some mechanical properties of the composites. Formation of nanocomposite was confirmed by XRD analysis. The increasing tendency of exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. An increase in PEO crystallinity in case of nanocomposite, was confirmed by an increase in the heat of melting as indicated by DSC. Improvement in tensile properties in all respect was observed for nanocomposites with clay content.

  7. Evaluation of used fuel disposition in clay-bearing rock

    Energy Technology Data Exchange (ETDEWEB)

    Jove-Colon, Carlos F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kim, Kunhwi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Hao. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maner, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaich, Sarah [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheshire, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolery, Thomas J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Atkins-Duffin, Cindy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, Terry [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, William L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    The R&D program from the DOE Used Fuel Disposition Campaign (UFDC) has documented key advances in coupled Thermal-Hydrological-Mechanical-Chemical (THMC) modeling of clay to simulate its complex dynamic behavior in response to thermal and hydrochemical feedbacks. These efforts have been harnessed to assess the isolation performance of heat-generating nuclear waste in a deep geological repository in clay/shale/argillaceous rock formations. This report describes the ongoing disposal R&D efforts on the advancement and refinement of coupled THMC process models, hydrothermal experiments on barrier clay interactions, used fuel and canister material degradation, thermodynamic database development, and reactive transport modeling of the near-field under non-isothermal conditions. These play an important role to the evaluation of sacrificial zones as part of the EBS exposure to thermally-driven chemical and transport processes. Thermal inducement of chemical interactions at EBS domains enhances mineral dissolution/precipitation but also generates mineralogical changes that result in mineral H2O uptake/removal (hydration/dehydration reactions). These processes can result in volume changes that can affect the interface / bulk phase porosities and the mechanical (stress) state of the bentonite barrier. Characterization studies on bentonite barrier samples from the FEBEX-DP international activity have provided important insight on clay barrier microstructures (e.g., microcracks) and interactions at EBS interfaces. Enhancements to the used fuel degradation model outlines the need to include the effects of canister corrosion due the strong influence of H2 generation on the source term.

  8. Adsorption of dyes using different types of clay: a review

    Science.gov (United States)

    Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon

    2017-05-01

    Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.

  9. LATE POP III STAR FORMATION DURING THE EPOCH OF REIONIZATION: RESULTS FROM THE RENAISSANCE SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao; Norman, Michael L. [San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); O’Shea, Brian W. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Wise, John H., E-mail: hxu@ucsd.edu, E-mail: mlnorman@ucsd.edu, E-mail: oshea@msu.edu, E-mail: jwise@gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332 (United States)

    2016-06-01

    We present results on the formation of Population III (Pop III) stars at redshift 7.6 from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich radiation transport hydrodynamics cosmological adaptive-mesh refinement simulations of high-redshift galaxy formation performed on the Blue Waters supercomputer. In a survey volume of about 220 comoving Mpc{sup 3}, we found 14 Pop III galaxies with recent star formation. The surprisingly late formation of Pop III stars is possible due to two factors: (i) the metal enrichment process is local and slow, leaving plenty of pristine gas to exist in the vast volume; and (ii) strong Lyman–Werner radiation from vigorous metal-enriched star formation in early galaxies suppresses Pop III formation in (“not so”) small primordial halos with mass less than ∼3 × 10{sup 7} M {sub ⊙}. We quantify the properties of these Pop III galaxies and their Pop III star formation environments. We look for analogs to the recently discovered luminous Ly α emitter CR7, which has been interpreted as a Pop III star cluster within or near a metal-enriched star-forming galaxy. We find and discuss a system similar to this in some respects, however, the Pop III star cluster is far less massive and luminous than CR7 is inferred to be.

  10. Late Pop III Star Formation During the Epoch of Reionization: Results from the Renaissance Simulations

    Science.gov (United States)

    Xu, Hao; Norman, Michael L.; O'Shea, Brian W.; Wise, John H.

    2016-06-01

    We present results on the formation of Population III (Pop III) stars at redshift 7.6 from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich radiation transport hydrodynamics cosmological adaptive-mesh refinement simulations of high-redshift galaxy formation performed on the Blue Waters supercomputer. In a survey volume of about 220 comoving Mpc3, we found 14 Pop III galaxies with recent star formation. The surprisingly late formation of Pop III stars is possible due to two factors: (I) the metal enrichment process is local and slow, leaving plenty of pristine gas to exist in the vast volume; and (II) strong Lyman-Werner radiation from vigorous metal-enriched star formation in early galaxies suppresses Pop III formation in (“not so”) small primordial halos with mass less than ˜3 × 107 M ⊙. We quantify the properties of these Pop III galaxies and their Pop III star formation environments. We look for analogs to the recently discovered luminous Ly α emitter CR7, which has been interpreted as a Pop III star cluster within or near a metal-enriched star-forming galaxy. We find and discuss a system similar to this in some respects, however, the Pop III star cluster is far less massive and luminous than CR7 is inferred to be.

  11. The Clay that Cures

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Hydrotalcite - The Clay that Cures. N Bejoy. General Article Volume 6 Issue 2 February 2001 pp 57-61. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/02/0057-0061. Author Affiliations.

  12. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  13. Absorption characteristics of Kupravas deposit clays modified by phosphoric acid

    International Nuclear Information System (INIS)

    Ruplis, A.; Mezinskis, G.; Chaghuri, M.

    1998-01-01

    Literature data suggested that clays may be used as sorbents for waste water treatment. The surface and sorption properties of minerals changes due to the influence of acid rains. The process of recession of clay properties has been modeled in laboratory by treatment of clays with mineral acids at higher temperature that in natural conditions. The present paper is devoted to the study of influence of phosphoric acid on the sorption properties of Kupravas deposit clays. Natural clay samples and samples treated with phosphoric acid were characterized by means of x-ray diffraction an differential thermal analysis (DTA) methods These methods were used also to identify the sample of Lebanese clays. X-ray diffraction analysis data show that the samples of clays from the deposit of Kuprava contain illite and kaolinite while sample of Lebanese clay contains quartz, calcite, and montmorillonite. DTA results show characteristic features of Kuprava clays described in reference with DTA of Lebanese clay clearly demonstrate the presence of large quantity of calcite

  14. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    Science.gov (United States)

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  15. Effects of Different Types of Clays and Maleic Anhydride Modified Polystyrene on Polystyrene/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrabzadeh

    2013-01-01

    Full Text Available Polymer/clay nanocomposites are considered as a new subject of research in Iran and the world. Addition of a minimum amount of clay (2-5wt% can improve the mechanical properties, enhance barrier properties and reduce flammability dramatically. Polystyrene (PS exhibits high strength, high modulus and excellent dimensional stability, but it has poor ductility, elongation, and flexural modulus. By incorporating clay into polystyrene these properties can be improved. In this study preparation of polystyrene/clay nanocomposite, effects of different types of clays (Cloisite 10A andNanomer I.30TC and maleic anhydride modified polystyrene on mechanical properties of the prepared polystyrene/clay nanocomposites were evaluated. Samples were prepared by a twin screw extruder. Transmission electron microscopy (TEM and X-ray diffraction (XRD techniques were employed to evaluate the extent of intercalation and exfoliation of silicate layers in the nanocomposites. Mechanical tests show that by addition of clay and maleic anhydride modified polystyrene the flexural modulus (~30% and elongation-at-break (~40% of prepared nanocomposites have been improved. XRD and TEM results show that nanocomposite have an intercalated structure with ability to change to further exfoliation structure.

  16. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  17. Formation and properties of nylon 6 nanocomposites

    Directory of Open Access Journals (Sweden)

    Fornes T. D.

    2003-01-01

    Full Text Available Sodium montmorillonite clay consists of platelets, one nanometer thick with large lateral dimensions, which can be used to achieve efficient reinforcement of polymer matrices. Formation of these nanocomposites requires modifying the clay with an appropriate organic surface treatment and optimized processing. Some of these techniques and the resulting property improvements (modulus, thermal expansion, heat distortion temperature, etc. are reviewed here. It is shown that shear stress exerted on stacks of clay platelets play an important role in the mechanism of exfoliation. The modulus enhancement observed is of the order predicted by composite theories; however, the clay particles clearly affect the crystalline morphology of the polymer phase which may have an additional effect on some composite properties.

  18. Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials.

    Science.gov (United States)

    Naik, Sajo P; Scholin, Jonathon; Ching, San; Chi, Fang; Herpfer, Marc

    2018-01-10

    This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.

  19. Clay membrane made of natural high plasticity clay

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1998-01-01

    Leachate containment in Denmark has through years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R 466). It states natural clay deposits may be used for membrane material provided the membrane and drainage system may contain at least 95% of all leachate created throughout...... ion transport as well as diffusion.Clay prospection for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island Lolland. The natural clay contains 60 to 75% smectite, dominantly as a sodium-type. The clay material...... has been evaluated using standardised methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15 to 0.3m thick clay membrane have been tested...

  20. Clay membrane made of natural high plasticity clay:

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1999-01-01

    Leachate containment in Denmark has throughout the years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R4669. It states that natural clay deposits may be used as membrane material provided the membrane and drainage system contains at least 95% of all leachate created...... into account advective ion transport as well as diffusion. Clay prospecting for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island of Lolland. The natural clay contains 60-75% smectite, dominantly as a sodium......-type. The clay material has been evaluated using the standardized methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15-0.3 m thick clay membrane...

  1. Destruction of filtration incrustations of aluminate clay solutions

    Energy Technology Data Exchange (ETDEWEB)

    Galyan, D.A.; Tarnavskii, A.P.; Lizogub, G.D.

    1977-05-01

    Research results are presented for determining the optimal hydrochemical action time of a buffer fluid (10% NaOH solution) that is needed to destroy filtration incrustations of aluminate clay solutions with respect to the effect of a buffer fluid and an aluminate clay solution on the properties of plugging solutions. Fundamental recommendations are made with respect to using 10% NaOH solutions for removing aluminate clay solution filtration incrustations. 1 table.

  2. Um novo procedimento de síntese da zeólita A empregando argilas naturais A new procedure for a zeolite synthesis from natural clays

    Directory of Open Access Journals (Sweden)

    Reus T. Rigo

    2009-01-01

    Full Text Available This work proposes the synthesis of zeolite A by IZA standard proceedures starting from a natural clay. The clay was used in its natural form and after calcination at 900ºC. The resulting materials were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and porosity analysis by nitrogen adsorption. Results showed low surface area for Na-A zeolite in sodium form, but a higher one in CaA based on the nitrogen accessibility. The presence of cubic crystals for the A phase was observed in the SEM micrographies. The new procedure starting from natural clay favors the formation of sodalite while that using the calcinated clay gives A.

  3. Clays as mineral dust aerosol: An integrated approach to studying climate, atmospheric chemistry, and biogeochemical effects of atmospheric clay minerals in an undergraduate research laboratory

    Science.gov (United States)

    Hatch, C. D.; Crane, C. C.; Harris, K. J.; Thompson, C. E.; Miles, M. K.; Weingold, R. M.; Bucuti, T.

    2011-12-01

    Entrained mineral dust aerosol accounts for 45% of the global annual atmospheric aerosol load and can have a significant influence on important environmental issues, including climate, atmospheric chemistry, cloud formation, biogeochemical processes, visibility, and human health. 70% of all mineral aerosol mass originating from Africa consists of layered aluminosilicates, including illite, kaolinite, and montmorillonite clays. Clay minerals are a largely neglected component of mineral aerosol, yet they have unique physiochemical properties, including a high reactive surface area, large cation exchange capacities, small particle sizes, and a relatively large capacity to take up adsorbed water, resulting in expansion of clay layers (and a larger reactive surface area for heterogeneous interactions) in some cases. An integrated laboratory research approach has been implemented at Hendrix College, a Primarily Undergraduate Institution, in which undergraduate students are involved in independent and interdisciplinary research projects that relate the chemical aging processes (heterogeneous chemistry) of clay minerals as a major component of mineral aerosol to their effects on climate (water adsorption), atmospheric chemistry (trace gas uptake), and biogeochemistry (iron dissolution and phytoplankton biomarker studies). Preliminary results and future directions will be reported.

  4. Differential identification of aims and results of formation plans: an application to the Spanish aquaculture

    Directory of Open Access Journals (Sweden)

    María Monserrat Cruz González

    2011-06-01

    Full Text Available The main aims of the formation, related theoretically to the performance of human resources, self-training, information and effectiveness, have been identified as the amount in which the company goes further from knowledge to learning. In this paper three hypotheses applied to the Spanish aquaculture are proposed to model the differential aim follow-up and the achievements of the formation plans. The empirical analysis has been carried out with the data of 99 representative companies of the aquaculture sector. The SPSS 19 statistical program was used for the data analysis. A factor analysis was made by the method of principal components. Eighteen nonparametric tests of Kruskal-Wallis type were applied, as well as 36 chi-squared tests. As a result, three principal components were identified that explain 80% of the variance of the aims: the first one refers to policies of implication of human resources, the second one is relatedto objective circumstances and the third one is associated to dynamism. It was confirmed that the relevance of aims is proportional to the percentage of expense in formation and, specifically, it is greater in suppliers. Finally, significantdifferences in the results of the formation with respect to the reduction of errors were observed, this reduction being greater in fish distribution and production. Significant differences were also observed in the effect of the formation on the motivation of the employee, this being greater in fish suppliers and producers

  5. Comparative study of methods to estimate hydraulic parameters in the hydraulically undisturbed Opalinus Clay (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.; Matray, J.-M. [Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, (France); Yu, C.; Gonçalvès, J. [Aix Marseille Université UMR 6635 CEREGE Technopôle Environnement Arbois-Méditerranée Aix-en-Provence, Cedex 4 (France); and others

    2017-04-15

    The deep borehole (DB) experiment gave the opportunity to acquire hydraulic parameters in a hydraulically undisturbed zone of the Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Three methods were used to estimate hydraulic conductivity and specific storage values of the Opalinus Clay formation and its bounding formations through the 248 m deep borehole BDB-1: application of a Poiseuille-type law involving petrophysical measurements, spectral analysis of pressure time series and in situ hydraulic tests. The hydraulic conductivity range in the Opalinus Clay given by the first method is 2 × 10{sup -14}-6 × 10{sup -13} m s{sup -1} for a cementation factor ranging between 2 and 3. These results show low vertical variability whereas in situ hydraulic tests suggest higher values up to 7 × 10{sup -12} m s{sup -1}. Core analysis provides economical estimates of the homogeneous matrix hydraulic properties but do not account for heterogeneities at larger scale such as potential tectonic conductive features. Specific storage values obtained by spectral analysis are consistent and in the order of 10{sup -6} m{sup -1}, while formulations using phase shift and gain between pore pressure signals were found to be inappropriate to evaluate hydraulic conductivity in the Opalinus Clay. The values obtained are globally in good agreement with the ones obtained previously at the rock laboratory. (authors)

  6. Characterization of organophilic attapulgite clay from state of Piaui

    International Nuclear Information System (INIS)

    Silva, L.C. dos Santos; Alves, T.S.; Barbosa, R.

    2011-01-01

    The attapulgite is mineral clay typically fibrous. It owns a superficial area around 125 to 210 m²/g, cationics transfer capacity from 20 to 30 mill equivalents per 100g of clay, high capacity of sorption, considerable decolourizer capacity, chemical inertia and maintenance of thixotropics properties in the presence of electrolytes. The objective of this work was to perform the chemical modification of attapulgite original from state of Piaui - Brazil, for applications in polymeric nanocomposites. The chemical composition of clay without modification was determined by X-Ray Diffraction. The natural clay and organophilizated one were characterized by X-Ray Diffraction (XRD), by Fourier Transform Infra-Red spectroscopy (FTIR), and Foster's swelling. The obtained results indicated the presence of characteristics groups of the salt in the clay, alteration in its chemical composition, evidencing that the chemical modification in the clay was efficient, could the same be applied in preparation of polymeric nanocomposites. (author)

  7. Elastic deformation behaviour of Palaeogene clay from Fehmarn Belt area

    DEFF Research Database (Denmark)

    Awadalkarim, Ahmed; Foged, Niels Nielsen; Fabricius, Ida Lykke

    2014-01-01

    Palaeogene clay samples were obtained by high quality boring and sampling techniques (Geobore S-system), during the extensive site investigations for building a bridge in the Fehmarn Belt area to link between Rødbyhavn in Denmark and Puttgarden in Germany. The Palaeogene clay is rich in smectite...... and of high to very high plasticity. Comprehensive and advanced laboratory tests were done by Fugro-McClelland (in Netherlands) and by Danish Geotechnical Institute (in Denmark) on Palaeogene clays. Some of their data are included in this study. Ten Palaeogene clay samples were selected and used in this study....... Results of odometer tests done by Jessen et al. (2011) show that when Palaeogene clay is mounted in an odometer cell without access to water and loaded to its in-situ vertical effective stress and then saturated with its native salt water, the clay absorbs water and swells. This behaviour indicates...

  8. Influence of clay content on wave-induced liquefaction

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2014-01-01

    This paper presents the results of an experimental study of the influence of clay content (CC) on liquefaction of seabed beneath progressive waves. Experiments were, for the most part, conducted with silt and silt-clay mixtures; in supplementary tests, sand-clay mixtures were used. Two types...... H 57:6218:3 cm, wave period T 51:6 s, and water depth h555 cm. The experiments showed that the influence ofCCon wave-induced liquefaction is very significant. Susceptibility of silt to liquefaction was increased with increasing CC up to CC_30% (which is clay-specific), beyond which the mixture...... of silt and clay was not liquefied. Sand may become prone to liquefaction with the introduction of clay, contrary to the general perception that this type of sediment is normally liquefaction-resistant under waves. For instance, sand with d50 50:4 mmwas liquefied with CC510:8%, whereas sand with d50 50...

  9. Clay facial masks: physicochemical stability at different storage temperatures.

    Science.gov (United States)

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  10. Support to other nuclear waste disposal programmes considering clay as a potential host rock

    International Nuclear Information System (INIS)

    Volckaert, G.

    2009-01-01

    SCK-CEN started to study the Boom Clay as potential host rock for nuclear waste disposal in 1974. Since then, SCK-CEN has been involved in other international projects studying clay as potential host rock in order to get a broader support for disposal in clay and to acquire broader insight in clay behaviour. Besides Belgium, France and Switzerland are currently investigating clay formations as potential host rock for the disposal of radioactive waste. In the Netherlands, clay formations have always been considered as an alternative to disposal in salt. The general interest in clays is increasing: in Germany and The United Kingdom, it was decided a few years ago that besides respectively salt and crystalline rock also clays need to be evaluated. In Eastern and Central Europe, the Slovak republic and Lithuania consider both clay and granite as possible host rocks for spent fuel while in Russia recently a project was started to study the possible disposal of low and medium level waste in a clay formation in the Leningrad area. Within the EC research and development framework programs and the OECD/NEA Clay Club, collaborations were developed between countries studying clay and with a strong involvement of SCK-CEN. The collaboration with the Eastern and Central European countries is supported through the support programme of the Belgian Ministry of Economic affairs. The objectives of these co-operations are to deliver expert services to other nuclear waste disposal programs considering clay as host rock; to to acquire broader international recognition of our expertise and support for the development of nuclear waste disposal in clay; to get a broader insight in the properties and behaviour of clays

  11. Effects of clay mineral type and organic matter on the uptake of radiocesium by pasture plants

    International Nuclear Information System (INIS)

    D'Souza, T.J.

    1980-10-01

    Studies were undertaken to examine the influence of interaction of clay minerals and organic matter on the uptake of radiocesium by two pasture plants, namely, ryegrass (Lolium italicum L) and red clover (Trifolium pratense L). The clay minerals used were bentonite (2.1 layer type) and kaolinite (1/1 layer type). Mixtures of clay and sand were prepared with 0.5, 10, 20 and 40 per cent clay and treated with organic matter (forest turf) at 0,5 and 10 per cent of the clay-sand mixtures. Results indicated that 134 Cs uptake by plants grown on the kaolinite-clay medium was greater than that on the bentonite-clay medium at a given organic matter level. Increasing the clay content of mixtures resulted in reduction in 134 Cs uptake by both plant species. The plant uptake of 134 Cs increased with additions of organic matter at a given clay content. (author)

  12. Short-Range Guiding Can Result in the Formation of Circular Aggregates in Myxobacteria Populations

    NARCIS (Netherlands)

    Janulevicius, A.; Van Loosdrecht, M.C.M.; Picioreanu, C.

    2015-01-01

    Myxobacteria are social bacteria that upon starvation form multicellular fruiting bodies whose shape in different species can range from simple mounds to elaborate tree-like structures. The formation of fruiting bodies is a result of collective cell movement on a solid surface. In the course of

  13. Fe(0)-clays interactions at 90°C under anoxic conditions: a comparative study between clay fraction of Callovo-Oxfordian and other purified clays

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Barres, O.; Galmiche, M.; Ghanbaja, J.; Kohler, A.; Michau, N.

    2010-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste it is of prime importance to understand the interactions between the saturated clay formation and steel containers. This can be achieved through an in-depth analysis of iron-clay interactions. Previous studies on the subject investigated the influence of solid/liquid ratio, iron/clay ratio, temperature and reaction time. The aim of the present study is to explain Callovo-Oxfordian-Fe(0) interactions by determining the role of each mineral phases present in the Callovo-Oxfordian (clay minerals, quartz, carbonates and pyrite) on the mechanisms of interaction between metal iron and clay particles. In that context, it is especially important to understand in detail the influence of clay nature and to obtain some insight about the relationships between interaction mechanisms at the molecular scale and crystallographic properties (particle size, TO or TOT layers, amount of edge faces...). The influence of the combination of different clays and the addition of other minerals must also be studied. In a first step, the Callovo-Oxfordian argillite from the Andra's underground research laboratory was purified to extract the clay fraction (illite, illite-smectite, kaolinite and chlorite). Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) for durations of one, three or nine months in the presence of metallic iron powder. Experiments without iron were used as control. The iron/clay ratio was fixed at 1/3 with a solid/liquid ratio of 1/20. The above mentioned experiments were also carried out in parallel on other purified clays: two smectites (Georgia bentonite and SWy2 from the Clay Minerals Society), one illite (illite du Puy) and one kaolinite (KGa2, from the Clay Minerals society). At the end of the experiments, solid and liquid phases were

  14. Clay club catalogue of characteristics of argillaceous rocks

    International Nuclear Information System (INIS)

    2005-01-01

    The OECD/NEA Working Group on the Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations, namely the Clay Club, examines the various argillaceous rocks that are being considered for the deep geological disposal of radioactive waste, i.e. from plastic, soft, poorly indurated clays to brittle, hard mud-stones or shales. The Clay Club considered it necessary and timely to provide a catalogue to gather in a structured way the key geo-scientific characteristics of the various argillaceous formations that are - or were - studied in NEA member countries with regard to radioactive waste disposal. The present catalogue represents the outcomes of this Clay Club initiative. (author)

  15. Water diffusion in clays with added organic surfactants

    International Nuclear Information System (INIS)

    Pineda-Pinon, J; Mendoza-Lopez, M L; Manzano-RamIrez, A; Perez-Robles, J F; Vega-Duran, J T

    2007-01-01

    Tensoactive agents may decrease water absorption in clay products like adobes. They modify the characteristics of the surface of clay particles. Characterization of water diffusion through the pores of modified clays is important to apply appropriate surface modifiers and to improve their performance. We established a simple model for water diffusion in test samples of defined dimensions to estimate real physical parameters and their effect on water absorption. Adsorption mechanisms are examined based on experimental results. The fitting of the experimental data to the model provides a deep understanding of water adsorption in chemically modified clays. A better agreement between the model and the experimental data is achieved for complex molecules

  16. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-01-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear

  17. Laboratory hydro-mechanical characterisation of Boom Clay at Essen and Mol

    International Nuclear Information System (INIS)

    Deng, Y. F.; Tang, A. M.; Cui, Y. J.; Nguyen, X. P.; Li, X. L.; Wouters, L.

    2011-01-01

    Boom Clay has been selected as a potential host rock formation for the geological disposal of radioactive waste in Belgium. In the present work, the hydro-mechanical behaviour of Boom Clay samples from the borehole Essen-1 at a depth of 220-260 m and from HADES that is the underground rock laboratory at Mol in Belgium, at 223-m depth was investigated in the laboratory by performing low pressure odometer tests (vertical effective stress ranging from 0.05 to 3.2 MPa), high pressure odometer tests (vertical effective stress ranging from 0.125 to 32 MPa), isotropic consolidation tests (confining effective stress ranging from the in situ stress to 20 MPa) and triaxial shear tests. It has been observed that the mineralogy, geotechnical properties and hydro-mechanical behaviour of Boom Clay from Essen at 227-m, 240-m and 248-m depths are similar to that of Boom Clay from Mol. As in the case of Boom Clay at Mol, the failure envelope of Boom Clay at Essen in the p'- q plane is not linear. The slope of the portion beyond the pre-consolidation stress of Boom Clay from Essen is almost the same as that from Mol, suggesting a similar internal friction angle of about 13 deg. The compression curves (void index I v versus logarithm of vertical stress) beyond the pre-consolidation stress are the same for both samples from Mol and Essen, and situated between the intrinsic compression line (ICL) and the sedimentation compression line (SCL). The yield stress determined from odometer tests seems to be stress-path dependent and lower than the pre-consolidation stress. Thus determining the over-consolidation ratio (OCR) using the yield stress value would lead to an incorrect estimate. From a practical point view, the laboratory test results from Essen and their comparison with those from Mol provide important information regarding the transferability of knowledge on Boom Clay at different sites, taking into account the fact that most investigations have been carried out on Boom Clay at

  18. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    International Nuclear Information System (INIS)

    Savage, David

    2005-08-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the external electrolyte solution enter the clay volume

  19. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Quintessa Ltd., Nottingham (United Kingdom)

    2005-07-01

    Potential changes in groundwater chemistry during the operational or post-closure periods of the Swedish repository for spent fuel could affect the performance of both the bentonite buffer and repository backfill. For example, the up-coning of saline groundwater could lead to decreased swelling pressures in both the bentonite buffer and tunnel backfills, and could also induce 'piping'. SKB is considering these issues as part of its 'SR-Can' safety assessment. This report reviews evidence for the behaviour of swelling clays in groundwaters of varying salinity with special relevance to the SKB programme. Smectite clays can absorb water into clay inter-layers with the most important parameters being: the surface density of charge of the clay; the charge and solvation behaviour of the inter-layer ions; and the electrolyte concentration or activity of water. Two categories of swelling are generally observed: innercrystalline swelling caused by the hydration of the exchangeable cations in the dry clay; and osmotic swelling, resulting from concentration gradients in ion concentrations between clay surfaces and pore water. Several models exist to interpret and predict the swelling behaviour of clays. SKB currently prefer an interpretation of clay swelling pressure where clay particles are viewed as 'macro-ions' and the entire clay-water system can be considered as a 'polyelectrolyte'. SKB use the term 'Donnan exclusion' to estimate the amount of introduced ions into the clay and hence the amount of reduced swelling pressure due to contact with a saline solution. Donnan exclusion is the process whereby the migration of anions through the narrow aqueous film surrounding clay platelets is restricted due to the repulsion by the negative charge of the clay platelets. SKB's experimental work shows that: There is an exponential relation between swelling pressure and mean basal interlamellar spacing of the clay. Ions from the

  20. Proceedings of the NEA Clay Club Workshop on Clay characterisation from nanoscopic to microscopic resolution

    International Nuclear Information System (INIS)

    2013-01-01

    A wide spectrum of argillaceous media are being considered in Nuclear Energy Agency (NEA) member countries as potential host rocks for the final, safe disposal of radioactive waste, and/or as major constituent of repository systems in which wastes will be emplaced. In this context, the NEA established the Working Group on the 'Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations' in 1990, informally known as the 'Clay Club'. The Clay Club examines various argillaceous rocks that are being considered for the underground disposal of radioactive waste, ranging from soft clays to indurated shales. Very generally speaking, these clay rocks are composed of fine-grained minerals showing pore sizes from < 2 nm (micropores) up to > 50 nm (macro-pores). The water flow, solute transport and mechanical properties are largely determined by this microstructure, the spatial arrangement of the minerals and the chemical pore water composition. Examples include anion accessible ('geochemical') porosity and macroscopic membrane effects (chemical osmosis, hyper-filtration), geomechanical properties and the characteristics of two-phase flow properties (relevant for gas transport). At the current level of knowledge, there is a strong need to improve the nanoscale description of the phenomena observed at a more macroscopic scale. However, based on the scale of individual clay-minerals and pore sizes, for most of the imaging techniques this resolution is a clear challenge. The workshop, hosted by the Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT) in the Akademiehotel Karlsruhe (Germany) from 6 to 8 September 2011, was intended to give, inter alia, a discussion platform on: - The current state-of-the-art of different spectro-microscopic methods - New developments addressing the above mentioned knowledge gaps in clays. - The perception of the interplay between geometry

  1. Ventilation test at Mont Terri. Geoelectric monitoring of the opalinus clay desaturation. Phase 2

    International Nuclear Information System (INIS)

    Wieczorek, Klaus; Zhang, Chun-Liang; Rothfuchs, Tilmann

    2008-04-01

    Between December 2001 and May 2004, a ventilation experiment (VE) was performed in the Mont Terri Underground Research Laboratory (URL) and co-financed by the Commission of the European Communities. The objective was to investigate the desaturation of consolidated clay formations in consequence of the ventilation of underground openings of a repository in such a formation. The results of the geoelectric measurements performed in the second phase of the Mont Terri ventilation test can be summarized as follows: Geoelectric tomography has been found suitable for monitoring ventilation-induced saturation changes in the Opalinus clay. During ventilation with dry air a desaturation down to below 50% could be detected in both desaturation cycles. The desaturated zone extends less than 0.5 m into the rock around the microtunnel. During the second resaturation phase, ventilation with humid air led to quick resaturation at the tunnel surface, while resaturation of the rock mass took months. The still ongoing third resaturation phase seems to imply that resaturation of the rock mass may take years with no air circulation in the tunnel. The laboratory investigations on the Opalinus clay included the determination of water retention capacity, swelling pressure, free swelling/shrinking strains induced by moisture changes, and response of normal and large hollow clay samples to the ventilation of the central boreholes at different air humidity values. The Opalinus clay has a high water absorption capacity. The amount of water uptake in unconstraint conditions is much higher than the water content in the naturally confined state, indicating that the pore water in the natural clay rock is predominantly bound on clay minerals. The swelling pressure induced by wetting with vapour is very close to the major lithostatic stress at the sampling location. Water uptake from vapour causes a large free expansion of up to 12% over 8 months and even a breakdown along bedding planes. Release of

  2. Clays in natural and engineered barriers for radioactive waste confinement - 5. International meeting. Book of abstracts

    International Nuclear Information System (INIS)

    2012-10-01

    The purpose of this fifth international meeting is to bring again together specialists in the different disciplines related to clays and clay minerals, with scientists from organizations engaged in disposal of radioactive waste in order to evaluate the progress of the research conducted in that field. Multidisciplinary approaches including geology, mineralogy, geochemistry, rheology, physics and chemistry of clay minerals and assemblages are required in order to provide a detailed characterization of the geological host formations considered for the disposal of radioactive waste and to assess the behaviour of engineered and natural barriers when submitted to various types of perturbations induced by such facilities. The evaluation of the performances of the natural barrier as well as of the impact of repository-induced disturbances upon the confinement properties of clay-rich geological formations constitute major objectives for the experimental programs being and/or to be conducted in underground research laboratories, for interpreting the subsequent scientific results, for modelling the long-term behaviour of radioactive waste repositories and carrying out safety assessment exercises. The meeting covers all the aspects of clay characterization and behaviour considered at various times and space scales relevant to confinement of radionuclides in clay from basic phenomenological processes description, to the global understanding of the performance and safety at repository and geological scales. Special emphasis will be put on the modelling of processes occurring at the mineralogical level within the clay barriers. The topics covered by the program of the meeting are also supposed to be coherent with the general objectives proposed within the Strategic Research Agenda elaborated through the Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP). In this context, the meeting will also offer a particular opportunity to present the more

  3. Laboratory studies on the heterogeneous chemistry of clay minerals in the Earth's atmosphere

    Science.gov (United States)

    Mashburn, Courtney Dyan

    initial uptake was found to be independent of organic acid pressure, linear dependence of the initial uptake on clay mass was observed. However, the organic acid content was found to increase significantly with increasing acid pressure. A significant enhancement in the organic acid content, water content and the initial uptake coefficients was observed as the RH was raised. Additionally, the presence of organic acids was found to slightly enhance the water content of the clay above 45% RH. Results suggest that that heterogeneous uptake of organic acids on swelling clay minerals is an important heterogeneous removal mechanism for carboxylic acids in the atmosphere at all RH values studied, and probably more so at higher humidities. The heterogeneous uptake of nitric acid on Na-montmorillonite clay at low temperatures as a function of RH, nitric acid pressure and clay mass has also been studied. Below 16% RH, uptake of nitric acid on Na-montmorillonite was below the detection limit. However, similar to the organic acids, the nitric acid content, water content and initial uptake coefficient all increase with increasing RH. Additionally, these values were all found to be independent of temperature from 210 to 232 K and independent of pressure from 1x10 -5 to 3x10-4 Torr nitric acid. However, a linear dependence on mass was observed for small sample masses. The adsorbed water content of Na-montmorillonite clay was also significantly enhanced compared to experiments performed when only water was present. Results suggest that heterogeneous uptake of nitric acid on swelling clay minerals is an important heterogeneous removal mechanism in the troposphere under humid conditions when clay is expected to be swollen. Higher in the atmosphere, it is currently questionable as to whether mineral particles are effective nuclei for polar stratospheric clouds (PSCs), which play a crucial role in polar ozone loss. The heterogeneous formation of nitric acid trihydrate (NAT) on Na

  4. Radiation synthesis and characterization of thermo-sensitive PNIPA/clay hydrogels

    International Nuclear Information System (INIS)

    Song Hongyan; He Suqin; Liu Wentao; Zhu Chengshen; Yang Mingcheng

    2007-01-01

    In this work, the thermo-sensitive hydrogels of PNIPA/Clay were synthesized by 60 Co-γ rays irradiation. The effects of organically modified clay and Na + clay, clay content, and dispersing condition on swelling behavior of PNIPA/clay hydrogels were investigated. The results showed that the equilibrium swelling ratio (SR) of the PNIPA/clay hydrogels is better than PNIPA, and the SR of PNIPA/organically modified clay hydrogels is the highest. With clay content increases, the SR of hydrogels became better. The deswelling behavior of hydrogel was improved, the deswelling ratio of the hydrogel with organically modified clay is highest, and ratio of losing water is 83%, while PNIPA is about 50%. The compressive properties of hydrogel composites were also examined. The results showed that the compressive properties of the PNIPA/clay hydrogels were improved distinctly than that of the conventional hydrogels without clay. And with increasing of clay content, the compressive properties of hydrogel composites improve rapidly. When the content of clay is 15%, the maximum compression force of the PNIPA/clay hydrogel is 5.28N, which is 14 times of PNIPA hydrogel and compression strength is 2.5 times. (authors)

  5. Clays as dietary supplements for swine: A review.

    Science.gov (United States)

    Subramaniam, Mohana Devi; Kim, In Ho

    2015-01-01

    Clays are crystalline, hydrated aluminosilicate molecules composed of alkali and alkaline earth cations along with small amounts of various other elements. The best-known are montmorillonite, smectite, illite, kaolinite, biotite and clinoptilolite. The molecules in these clays are arranged in three-dimensional structures creating internal voids and channels capable of trapping a wide variety of molecules. As a result of this structure, clay minerals are regarded as a simple and effective tool for the prevention of the negative effects of many toxic compounds. Dietary supplementation with clays has been shown to improve weight gain and feed conversion in pigs. Where improvements in performance have been noted, one of the most likely explanations for the improvement is the fact clays increase nutrient digestibility. Clays reduce the speed of passage of feed along the digestive tract which allows more time for digestion. Feeding clays also causes morphological changes in the intestinal mucosa such as an increase in villus height and an increase in the villus height to crypt depth ratio. These changes increase the surface area of the gastrointestinal tract thus increasing nutrient digestibility. Several studies have indicated that feeding clay reduces the incidence, severity and duration of diarrhea in pigs. The mechanism for the reduction in diarrhea is likely due to increases in the numbers of Bifidobacteria and Lactobacillus and decreases in Clostridia and E. coli in the small intestine of pigs fed clays. In addition, the numbers of pigs born alive and weaned, birth weight and weaning weight have been shown to be higher for sows fed clays. Several studies have indicated that clays can help mitigate the effects of mycotoxins. The aim of the present review is to focus on the various clays which have been given attention in recent research and to discuss their potential to improve pig performance.

  6. Atrazine biodegradation modulated by clays and clay/humic acid complexes

    International Nuclear Information System (INIS)

    Besse-Hoggan, Pascale; Alekseeva, Tatiana; Sancelme, Martine; Delort, Anne-Marie; Forano, Claude

    2009-01-01

    The fate of pesticides in the environment is strongly related to the soil sorption processes that control not only their transfer but also their bioavailability. Cationic (Ca-bentonite) and anionic (Layered Double Hydroxide) clays behave towards the ionisable pesticide atrazine (AT) sorption with opposite tendencies: a noticeable sorption capacity for the first whereas the highly hydrophilic LDH showed no interactions with AT. These clays were modified with different humic acid (HA) contents. HA sorbed on the clay surface and increased AT interactions. The sorption effect on AT biodegradation and on its metabolite formation was studied with Pseudomonas sp. ADP. The biodegradation rate was greatly modulated by the material's sorption capacity and was clearly limited by the desorption rate. More surprisingly, it increased dramatically with LDH. Adsorption of bacterial cells on clay particles facilitates the degradation of non-sorbed chemical, and should be considered for predicting pesticide fate in the environment. - The biodegradation rate of atrazine was greatly modulated by adsorption of the pesticide and also bacterial cells on clay particles.

  7. Influence of clay organic modifier on morphology and performance of poly(ε-caprolactone/clay nanocomposites

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2015-01-01

    Full Text Available Two series of poly(e-caprolactone nanocomposites with different organo-modified clays (1 to 8 wt% were prepared by the solution casting method. Organoclays with polar (Cloisite®C30B and nonpolar (Cloisite®C15A organic modifier and with different miscibility with poly(e-caprolactone matrix, were chosen. Exfoliated and/or intercalated nanocomposite’s structures were obtained by using high dilution and an ultrasonic treatment for the composite preparation. The effect of the surface modification and clay content on the morphology, mechanical and thermal properties of the nanocomposites was studied. Scanning electron microscopy excluded the formation of microcomposite. The wide-angle X-ray diffraction analysis revealed that the tendency toward exfoliated structure is higher for the Cloisite®C30B, which had better miscibility with poly(e-caprolactone matrix. Differences in spherulites’ sizes and morphology between two series of the nanocomposites were observed by the optical microscopy performed on as-casted films. Enthalpies of fusion and degrees of crystallinity were higher for nanocomposites than for neat poly(e-caprolactone and increase with the clay loading in both series, as a consequence of the clay nucleating effect. Decreased thermal stability of nanocomposites was ascribed to thermal instability of organic modifiers of the clays. The Halpin-Tsai model was used to compare the theoretically predicted values of the Young’s modulus with experimentally obtained ones in tensile tests.[Projekat Ministarstva nauke Republike Srbije, br. 172062

  8. Organic or organometallic template mediated clay synthesis

    Science.gov (United States)

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1994-05-03

    A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.

  9. Pore-Water Quality in the Clay-Silt Confining Units of the Lower Miocene Kirkwood Formation and Hypothetical Effects on Water Quality in the Atlantic City 800-Foot Sand, Northeastern Cape May County, New Jersey, 2001

    Science.gov (United States)

    Szabo, Zoltan; Keller, Elizabeth A.; Defawe, Rose M.

    2006-01-01

    Pore water was extracted from clay-silt core samples collected from a borehole at Ocean View, west of Sea Isle City, in northeastern Cape May County, New Jersey. The borehole intersects the lower Miocene Kirkwood Formation, which includes a thick sand and gravel unit between two clay-silt units. The sand and gravel unit forms a major confined aquifer in the region, known as the Atlantic City 800-foot sand, the major source of potable water along the Atlantic Coast of southern New Jersey. The pore water from the core is of interest because the borehole intersects the aquifer in an area where the ground water is sodium-rich and sulfidic. Locally in the aquifer in central and southern Cape May County, sodium concentrations are near the New Jersey secondary drinking-water standard of 50 mg/L (milligrams per liter), and typically are greater than 30 mg/L, but chloride and sulfate do not approach their respective secondary drinking-water standards except in southernmost Cape May County. Pore waters from the confining units are suspected to be a source of sodium, sulfur, and chloride to the aquifer. Constituent concentrations in filtered pore-water samples were determined using the inductively coupled plasma-mass spectrometry analytical technique to facilitate the determination of low-level concentrations of many trace constituents. Calcium-sodium-sulfate-bicarbonate, calcium-chloride-sulfate, calcium-sulfate, and sodium-sulfate-chloride-bicarbonate type waters characterize samples from the deepest part of the confining unit directly overlying the aquifer (termed the 'lower' confining unit). A sodium-chloride-sulfate type water is dominant in the composite confining unit below the aquifer. Sodium, chloride, and sulfate became increasingly dominant with depth. Pore water from the deepest sample recovered (1,390 ft (feet) below land surface) was brackish, with concentrations of sodium, chloride, and sulfate of 5,930, 8,400, and 5,070 mg/L, respectively. Pore-water samples

  10. Organoclays from several Latvian clays

    International Nuclear Information System (INIS)

    Freimanis, J.; Actins, A.; Stinkule, A.; Svinka, R.; Svinka, V.

    2003-01-01

    Vermiculite of the Kalkupite deposit (North-Western part of Latvia) differs significantly from its classical analogs possessing a well-known capability to form volume organo clays. This Latvian vermiculite hitherto could be used only in non-swelling surface organo clays synthesis the practical use of which is obscure. Therefore, any further organo clay investigations of Latvian vermiculites seem undesirable. On the other hand, the present study reveals the usefulness of Latvian Triassic Vadakste smectite (Western part of Latvia) in preparing of lipophilic, swelling organo clays by means of common standard procedures. For this purpose the Latvian smectite regarding its real cation exchange capacity is only slightly inferior to its arbitrary standard - Lithuanian Shaltishkiai smectite - believed to be the smectite-richest clay mineral in Baltic region. The present study also enables a prognosis of further possible organo clay investigations in Latvia. First, the quaternary ammonium cations should be varied to get Vadaksteitype organo clays possessing different rheological properties. Then, the most suited ammonium surfactants should tested also with other Latvian Triassic smectite clays compromising their commercial availability with the corresponding organo clays maximally possible practical value. As an independent theoretical investigations of the other physicochemical properties, parallel with the detailed X-ray diffractometry of the prepared organo clays. (authors)

  11. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.

    Science.gov (United States)

    Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan

    2015-06-02

    To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.

  12. Experimental study of thermo-hydro-mechanical behaviour of Callovo-Oxfordian Clay-stone

    International Nuclear Information System (INIS)

    Mohajerani, M.

    2011-01-01

    During the different phases of the exothermic radioactive waste deep disposal (excavation, operation) and after permanent closure, the host rock is submitted to various coupled mechanical, hydraulic and thermal phenomena. Hence, a thorough investigation of the thermo-hydro-mechanical behaviour of the rock is necessary to complete existing data and to better understand and model the short and long term behaviour of the Callovo-Oxfordian (COx) clay formation in Bure (Meuse/Haute-Marne - M/HM), considered by ANDRA as a potential host rock in France.In this work, the compression - swelling behaviour of the COx Clay-stone was first investigated by carrying out a series of high-pressure oedometric tests. The results, interpreted in terms of coupling between damage and swelling, showed that the magnitude of swelling was linked to the density of the fissures created during compression. In a second step, the hydro-mechanical and thermo-hydro-mechanical behaviour of the saturated Clay-stone under a mean stress close to the in situ one were investigated by using two devices with short drainage path (10 mm), namely a isotropic cell and a newly designed hollow cylinder triaxial cell with local displacement measurements. These devices helped to solve two majors problems related to testing very low permeability materials: i) a satisfactory previous sample saturation (indicated by good Skempton values) and ii) satisfactory drainage conditions. Some typical constitutive parameters (Skempton and Biot's coefficients, drained and undrained compressibility coefficients) have been determined at ambient temperature through isotropic compression tests that also confirmed the transverse isotropy of the Clay-stone. The consistency of the obtained parameters has been checked in a saturated poro-elastic framework. Two aspects of the thermo-hydro-mechanical behaviour of the COx Clay-stone have then been investigated through different heating tests and through drained and undrained isotropic

  13. Methyl methacrylate oligomerically-modified clay and its poly(methyl methacrylate) nanocomposites

    International Nuclear Information System (INIS)

    Zheng Xiaoxia; Jiang, David D.; Wilkie, Charles A.

    2005-01-01

    A methyl methacrylate oligomerically-modified clay was used to prepare poly(methyl methacrylate) clay nanocomposites by melt blending and the effect of the clay loading level on the modified clay and corresponding nanocomposite was studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed intercalated/delaminated morphology with good nanodispersion. The compatibility between the methylacrylate-subsituted clay and poly(methyl methacrylate) (PMMA) are greatly improved compared to other oligomerically-modified clays

  14. First assessment of the pore water composition of Rupel Clay in the Netherlands and the characterisation of its reactive solids

    NARCIS (Netherlands)

    Behrends, T.; Veen, I. van der; Hoving, A.; Griffioen, J.

    2016-01-01

    The Rupel Clay member in the Netherlands largely corresponds to the Boom Formation in Belgium, and this marine, clay-rich deposit is a potential candidate to host radioactive waste disposal facilities. Prediction of the speciation of radionuclides in Rupel Clay pore water and their retardation by

  15. The use of expanded clay dust in paint manufacturing

    Science.gov (United States)

    Sverguzova, S. V.; Sapronova, Zh A.; Starostina, Yu L.; Belovodskiy, E. A.

    2018-01-01

    Production increase of useful products is accompanied by the formation and the accumulation of the vast amounts of industrial wastes, the bulk of which is not involved in the recycling processes. An example of such wastes is dust bag filters of ceramsite production. At the large enterprises, the volume of its formation can reach 7-8 tons of dust per day, which is 10-15% of feedstock mass. The studies on the use of ceramsite production dust as filler pigment in the composition of organic mixed primer of red-brown color are carried out in this work. For comparison, red iron oxide pigment (Pg FGM) was used. The results showed that, primer with the use of expanded clay dust is characterized by the short drying time and meets all regulatory requirements.

  16. Chemistry of the Marlboro Clay in Virginia and Implications for the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Zimmer, M.; Cai, Y.; Corley, A.; Liang, J. A.; Powars, D.; Goldstein, S. L.; Kent, D. V.; Broecker, W. S.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was a global hyperthermal ( 5ºC warming) event marked by a rapid carbon isotope excursion (CIE) of >1‰ in the marine carbonate record (e.g. Zeebe et al. Nature Geoscience 2009). Possible explanations for the CIE include intrusion of a sill complex into organic carbonate (Aarnes et al. J. Geol. Soc. 2015), dissolution of methane hydrates (Thomas et al. Geology 2002), and a comet impact event (Schaller et al. Science 2016). Here we present new data across the PETM from the VirginiaDEQ-USGS Surprise Hill (SH) core, Northumberland Co., VA. We analyzed the Marlboro Clay, a thick, kaolinite-rich clay unit that marks the initiation of the PETM in the mid-Atlantic Coastal Plain of North America, as well as units above and below it. Bulk sediment records a δ13C excursion of approximately -5‰ across the CIE, while benthic foraminifera (Cibicidoides spp.) record a synchronous excursion of approximately -4.5‰. These results are consistent with other records from the New Jersey Coastal Plain (Makarova et al. Paleoceanography 2017). The excursion coincides with an increase in magnetic susceptibility, a decrease in bulk CaCO3 content, and an 2.5‰ decrease of δ18O in both the bulk sediment and benthic foraminifera of the SH core. Pb isotope analyses of the <63 μm fraction sediments indicate a unique provenance make-up for the Marlboro Clay. The results of the study thus indicate that PETM Marlboro Clay was not generated simply by intensified weathering of the same source area as the underlying Aquia Formation and overlying Nanjemoy Formation. Any hypothesis that aims to explain the mechanism that triggered the PETM must also account for the observed distinct provenance make-up of the Marlboro Clay.

  17. Deterioration of the fuel injection parameters as a result of Common Rail injectors deposit formation

    Directory of Open Access Journals (Sweden)

    Stępień Zbigniew

    2017-01-01

    Full Text Available The article describes external and internal Common Rail injectors deposits formed in dynamometer engine simulation tests. It discussed not only the key reasons and factors influencing injector deposit formation but also the resulting way of fuel preparation and engine test approaches. The effects of external coking deposit as well as internal deposits two most common form types that is carboxylic soaps and organic amides on deterioration of the fuel injection parameters were assessed. The assessments covered both deposits impacts on quantitative and qualitative changes of the injectors diagnostic parameters and as a result on deterioration of the injector performance. Finally the comparisons between characteristic of dosage of one fuel injector before test and characteristics few injectors after engine tests of simulated deposit formation were made.

  18. Influence of the addition of bentonite clay in poli (butylene adipate co-terephthalic) / poly(lactic acid) membranes; Influencia da adicao de argila bentonita em membranas de poli(butileno adipato co-tereftalico)/poli(Acido latico)

    Energy Technology Data Exchange (ETDEWEB)

    Morais, D.D.S.; Medeiros, K.M.; Araujo, E.M.; Melo, T.J.A. [Universidade Federal de Campina Grande (UAEMa/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Barbosa, R., E-mail: dayannediniz@hotmail.com [Universidade Federal do Piaui (CT/UFPI), PI (Brazil). Centro de Tecnologia

    2014-07-01

    The processes of membrane separation have been used in many different sectors of industrial activity, ranging from the chemical industry, food, pharmaceutical, medical and biotech. In this paper, a bentonite clay was added by melt intercalation in a poly(butylene adipate-co-terephthalic acid)/poly(lactic acid) blend at levels 1 and 3 wt% of clay. After that, membranes were produced by solvent evaporation technique. From the XRD results, it was verified the possible formation of exfoliated/partially exfoliated structures in the membranes. By DSC, it was observed that the addition of clay did not promote alterations in glass transition temperature and crystalline melting of the PBAT/PLA matrix. The morphology of the membranes were observed by SEM and it was verified the clay formation of porous membranes. (author)

  19. Mineralogical composition and functionality of clays used for pottery ...

    African Journals Online (AJOL)

    The suitability is alluded to the fact that the clays have undergone basic beneficiation which include grinding, removal of unwanted materials through sieving, prior to their usage. The clays were mineralogically characterised using Munsell Soil Color Chart, X-ray powder diffractometry (XRPD) and optical microscopy. Results ...

  20. Water-clay interactions. Experimental study

    International Nuclear Information System (INIS)

    Gaucher, Eric

    1998-01-01

    Clay minerals contribute to the chemical composition of soil and sediment groundwaters via surface and dissolution/precipitation reactions. The understanding of those processes is still today fragmentary. In this context, our experimental purpose is to identify the contribution of each reaction in the chemical composition of water in a water/clay System. Kaolinite, illite, montmorillonite are the reference clays. After a fine mineralogical study, the exchange equilibria between K + and H + are characterised. Different exchange sites are identified and the exchange capacities and selectivity coefficients are quantified. Then, mixtures of the three clays are equilibrated with acidic and basic (I≤10 -2 M) solutions at 25 deg. C, 60 deg. C, 80 deg. C, during 320 days. The System evolution is observed by chemical analysis of the solutions and mineralogical analysis by TEM. We show that montmorillonite is unstable compared to the kaolinite/amorphous silica assemblage for solutions of pH<7. Aqueous silica is probably controlled by the kinetics of dissolution of the montmorillonite in moderate pH media. In more acidic solutions, amorphous silica precipitates. Al is under control of 'kaolinite' neo-formations. The use of the selectivity coefficients in a numerical simulation shows that K + concentration depends on exchange reactions. The pH has a more complicated evolution, which is not completely understood. This evolution depends on both exchange equilibria and organic acid occurrence. In this type of experiments, we have demonstrated that the equilibrium equations between smectite and kaolinite are inexact. The problem of the thermodynamic nature of clays remains and is not resolved by these solubility experiments. (author) [fr

  1. Effects of biochar on hydraulic conductivity of compacted kaolin clay.

    Science.gov (United States)

    Wong, James Tsz Fung; Chen, Zhongkui; Wong, Annie Yan Yan; Ng, Charles Wang Wai; Wong, Ming Hung

    2018-03-01

    Compacted clay is widely used as capillary barriers in landfill final cover system. Recently, biochar amended clay (BAC) has been proposed as a sustainable alternative cover material. However, the effects of biochar on saturated hydraulic conductivity (k sat ) of clay with high degree of compaction is not yet understood. The present study aims to investigate the effects of biochar on k sat of compacted kaolin clay. Soil specimens were prepared by amending kaolin clay with biochar derived from peanut-shell at 0, 5 and 20% (w/w). The k sat of soil specimens was measured using a flexible water permeameter. The effects of biochar on the microstructure of the compacted clay was also investigated using MIP. Adding 5% and 20% of biochar increased the k sat of compacted kaolin clay from 1.2 × 10 -9 to 2.1 × 10 -9 and 1.3 × 10 -8 ms -1 , respectively. The increase in k sat of clay was due to the shift in pore size distribution of compacted biochar-amended clay (BAC). MIP results revealed that adding 20% of biochar shifted the dominant pore diameter of clay from 0.01-0.1 μm (meso- and macropores) to 0.1-4 μm (macropores). Results reported in this communication revealed that biochar application increased the k sat of compacted clay, and the increment was positively correlated to the biochar percentage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Study of Adsorption and Flocculation Properties of Natural Clays to Remove Prorocentrum lima.

    Science.gov (United States)

    Louzao, Maria Carmen; Abal, Paula; Fernández, Diego A; Vieytes, Mercedes R; Legido, José Luis; Gómez, Carmen P; Pais, Jesus; Botana, Luis M

    2015-09-29

    High accumulations of phytoplankton species that produce toxins are referred to as harmful algal blooms (HABs). HABs represent one of the most important sources of contamination in marine environments, as well as a serious threat to public health, fisheries, aquaculture-based industries, and tourism. Therefore, methods effectively controlling HABs with minimal impact on marine ecology are required. Marine dinoflagellates of the genera Dinophysis and Prorocentrum are representative producers of okadaic acid (OA) and dinophysistoxins responsible for the diarrhetic shellfish poisoning (DSP) which is a human intoxication caused by the consumption of shellfish that bioaccumulate those toxins. In this work we explore the use of natural clay for removing Prorocentrum lima. We evaluate the adsorption properties of clays in seawater containing the dinoflagellates. The experimental results confirmed the cell removal through the flocculation of algal and mineral particles leading to the formation of aggregates, which rapidly settle and further entrain cells during their descent. Moreover, the microscopy images of the samples enable one to observe the clays in aggregates of two or more cells where the mineral particles were bound to the outer membranes of the dinoflagellates. Therefore, this preliminary data offers promising results to use these clays for the mitigation of HABs.

  3. Study of Adsorption and Flocculation Properties of Natural Clays to Remove Prorocentrum lima

    Directory of Open Access Journals (Sweden)

    Maria Carmen Louzao

    2015-09-01

    Full Text Available High accumulations of phytoplankton species that produce toxins are referred to as harmful algal blooms (HABs. HABs represent one of the most important sources of contamination in marine environments, as well as a serious threat to public health, fisheries, aquaculture-based industries, and tourism. Therefore, methods effectively controlling HABs with minimal impact on marine ecology are required. Marine dinoflagellates of the genera Dinophysis and Prorocentrum are representative producers of okadaic acid (OA and dinophysistoxins responsible for the diarrhetic shellfish poisoning (DSP which is a human intoxication caused by the consumption of shellfish that bioaccumulate those toxins. In this work we explore the use of natural clay for removing Prorocentrum lima. We evaluate the adsorption properties of clays in seawater containing the dinoflagellates. The experimental results confirmed the cell removal through the flocculation of algal and mineral particles leading to the formation of aggregates, which rapidly settle and further entrain cells during their descent. Moreover, the microscopy images of the samples enable one to observe the clays in aggregates of two or more cells where the mineral particles were bound to the outer membranes of the dinoflagellates. Therefore, this preliminary data offers promising results to use these clays for the mitigation of HABs.

  4. Multi-scale modeling of the behaviour of water and ions clays

    International Nuclear Information System (INIS)

    Rotenberg, B.

    2007-10-01

    Predicting the fate of radioactive waste stored in a clay formation requires a good understanding of the transport properties of water and ions in clays. Their diffusion in this charged porous medium is described by empirical parameters such as their partitioning coefficient Kd which accounts for the interactions with the mineral surfaces. The present work deals with the relevance of this concept and its definition based on microscopic grounds. We have first modeled the ionic contribution to the dielectric properties of clays and suggested an experimental determination of Kd from dielectric spectroscopy measurements. Using microscopic simulations (Monte-Carlo and Molecular Dynamics), we then have computed the Gibbs free energy and enthalpy for ionic exchange in the case of alkaline cations. They control the value of Kd and its evolution with the temperature. The results for cesium are in good agreement with both microcalorimetric measurements and the determination of Kd at different temperatures. We have participated in the development of a new lattice simulation method (Lattice Fokker-Planck), which we have then used to link explicitly the microscopic dynamics of ions to the diffusion-reaction model underlying the definition of Kd. Finally, we have used Molecular Dynamics to investigate the kinetics of exchange of water and ions between clay particles (interlayer) and the extra-particle porosity. The results confirm the generally admitted idea that water and ions can explore the whole porosity, whereas anions are excluded from the interlayers. (author)

  5. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  6. Sorption Characterization of Radionuclides on Clays in Yucca Mountain Alluvium

    International Nuclear Information System (INIS)

    M. Ding; P.W. Reimus; S. Chipera; C. Scism

    2006-01-01

    Sorption of 237 Np(V) and 233 U(VI) was measured on clays separated from Yucca Mountain alluvium as a function of solution pH and aqueous actinide concentrations. The results indicate that sorption of U and Np on the separated clay fraction depends strongly on solution pH. Np sorption on clays increases slowly with increasing pH from 3 to 7. Above pH 7, Np sorption on clays increases rapidly up to a pH of about 10. On the other hand, U sorption on clays reaches it maximum at a pH of about 6, with sorption decreasing as pH increases from 6 to 8 and then increasing again as pH increases further from 8 to about 10. The results suggest that a Freundlich isotherm can be used to describe U and Np sorption on clays at pH above 5.5. The results of this study indicate that clay minerals play a very important role in the sorption of U and Np on Yucca Mountain alluvium. Indeed, the clay content of the alluvium is probably considerably more important than water chemistry in predicting the ability of the alluvium to attenuate the transport of these radionuclides

  7. Microstructure and porosity of Opalinus Clay at the Mont Terri rock laboratory (Switzerland)

    Science.gov (United States)

    Houben, M. E.; Laurich, B.; Desbois, G.; Urai, J. L.

    2012-04-01

    The Mont Terri rock laboratory (Canton Jura, Switzerland) is an international scientific platform of research on radioactive waste disposal in Opalinus Clay and results provide input for assessing the feasibility and safety of deep geological disposal of radioactive waste in argillaceous formations [1]. A main safety issue is to accurately investigate mass transport rates. To date several methods analyzed bulk permeability and porosity of Opalinus Clay. However, detailed quantitative investigation of microstructure and pore morphology is necessary to understand sealing capacity, coupled flow, capillary processes and associated deformation. To produce high quality cross-sections without microstructural damage that enable investigation of microstructure and porosity down the nm scale a combination of Broad Ion Beam (BIB) milling and SEM imaging has been used [2]. This method allowed direct imaging of the clay fabric and porosity on ca. 1 mm2 areas. The lateral variability of Opalinus Clay is low on the regional scale [1], whereas vertically the Opalinus Clay can be subdivided into six different lithological subfacies [3] based on variable silt layers, sandstone layers and siderite concretions present, where the end-members are the Shaly and Sandy facies. In this contribution microstructures and pore space in Opalinus Clay from the undisturbed Shaly and Sandy facies are studied and compared to disturbed samples from the "Main fault" within the Mont Terri rock laboratory. The Shaly facies in the lower half of the sequence constitutes of dark grey silty calcerous shales and argillaceous marls, whereas the Sandy facies comprises silty to sandy marls with sandstone lenses cemented with carbonate [3]. The qualitative mineralogical composition of all Opalinus Clay facies is similar, whereas the "Main Fault" shows calcite, celestite and pyrite veins. Although the overall microfabric differs per layer and per facies we observe low variability of microstructure and porosity in

  8. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals

    Directory of Open Access Journals (Sweden)

    Hideo Hashizume

    2015-02-01

    Full Text Available Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the “RNA world”. The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components.

  9. Sub-MIC tylosin inhibits Streptococcus suis biofilm formation and results in differential protein expression

    Directory of Open Access Journals (Sweden)

    Shuai eWang

    2016-03-01

    Full Text Available Streptococcus suis (S. suis is a crucial zoonotic pathogen which causes severe diseases in humans and pigs. Biofilms of S. suis can induce persistent infections which are harder to treat. Sub-minimal inhibitory concentration (sub-MIC of tylosin can inhibit biofilm formation in bacteria. By using iTRAQ strategy, we compared the protein expression profiles of S. suis grown with sub-MIC tylosin treatment or no treatement. The result showed that 96 proteins expression were changed with 77 up-regulated and 19 down-regulated proteins. Several metabolism proteins (such as phosphoglycerate kinase, as well as cell surface proteins (such as ABC transporter proteins, were found to be involved in biofilm formation. Overall, our results indicated that S. suis metabolic regulation, cell surface proteins, and virulence proteins appear to be of importance in biofilm growth by sub-MIC tylosin treated. Thus, our data analyzed rough regulation of biofilm formation that lay the foundation for the future research of mechanism and targets.

  10. Formation of banded vegetation patterns resulted from interactions between sediment deposition and vegetation growth.

    Science.gov (United States)

    Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan

    2018-03-01

    This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.

  11. Assessing the role of clay authigenesis in the seawater potassium cycle: A paired K and Mg isotope study of deep-sea pore fluids

    Science.gov (United States)

    Santiago Ramos, D. P.; Higgins, J. A.

    2017-12-01

    In situ formation of clays (clay authigenesis) in marine sediments and altered oceanic crust is an important sink of a number of seawater cations. In particular, clay authigenesis is a major, and yet unconstrained, flux in the global seawater potassium cycle. Potassium is the fourth most abundant cation in the ocean, which constitutes an isotopically enriched K reservoir (δ41K 0‰) compared to the solid Earth (δ41K -0.5‰). Understanding what processes control this isotopic offset is the main goal of this study. Here we use a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) to measure the K and Mg isotope ratios (41K/39K and 26Mg/24Mg) of deep-sea pore fluids in order to assess the effects of clay formation in the K isotope composition of seawater. Mg isotopes are used as an independent proxy for clay formation, since marine authigenic clays are isotopically distinct from their detrital counterpart, an abundant component of marine sediments. Our study sites (ODP/IODP 1052, U1378, U1395, U1403) vary in location, lithology, age and sedimentation rates; however, pore-fluids from all sites show decreasing K concentrations with depth, suggesting potassium uptake into the sediments. We find that although K concentration trends are similar across all sites, measured δ41K values vary significantly. Results from 1-D diffusion-advection-reaction models suggest that these differences in isotopic profiles arise from a complex interplay between sedimentation rate and K isotopic fractionation during clay formation, aqueous K diffusion and ion exchange reactions. Further, model simulations yield fractionation factors between 0.9980 and 1.0000 for clay formation in deep-sea sediments. Despite the minor contribution of these deep-sea pore-fluids as sinks of seawater K, the processes responsible for K isotope fractionation in our study sites (clay formation and aqueous K diffusion) are also observed at shallow marine systems (major K sinks) and are thus

  12. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    Energy Technology Data Exchange (ETDEWEB)

    Jove-Colon, Carlos F.; Weck, Philippe F.; Sassani, David Carl; Zheng, Liange; Rutqvist, Jonny; Steefel, Carl I.; Kim, Kuhhwi; Nakagawa, Seiji; Houseworth, James; Birkholzer, Jens T.; Caporuscio, Florie Andre; Cheshire, Michael; Rearick, Michael; McCarney, Mary K.; Zavarin, Mavrik; Benedicto, Ana; Kersting, Annie B.; Sutton, Mark.; Jerden, James L.; Frey, Kurt E.; Copple, Jacqueline M.; Ebert, William L.

    2014-08-01

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decade or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale

  13. Modelling of radionuclide migration and heat transport from an High-Level-Radioactive-Waste-repository (HLW) in Boom clay

    International Nuclear Information System (INIS)

    Put, M.; Henrion, P.

    1992-01-01

    For the modelling of the migration of radionuclides in the Boom clay formation, the analytical code MICOF has been updated with a 3-dimensional analytical solution for discrete sources. the MICOF program is used for the calculation of the release of α and β emitters from the HIGH LEVEL RADIOACTIVE WASTES (HLW). A coherent conceptual model is developed which describes all the major physico-chemical phenomena influencing the migration of radionuclides in the Boom clay. The concept of the diffusion accessible porosity is introduced and included in the MICOF code. Different types of migration experiments are described with their advantages and disadvantages. The thermal impact of the HLW disposal in the stratified Boom clay formation has been evaluated by a finite element simulation of the coupled heat and mass transport equation. The results of the simulations show that under certain conditions thermal convection cells may form, but the convective heat transfer in the clay formation is negligible. 6 refs., 19 figs., 2 tabs., 5 appendices

  14. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    International Nuclear Information System (INIS)

    Elsen, A.; Grobet, P.; Keung, M.; Leeman, H.; Schoonheydt, R.; Toufar, H.

    1995-01-01

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY '95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately

  15. Experimental and modeling studies of clay/polydicyclopentadiene resin nanocomposites

    Science.gov (United States)

    Yoonessi, Mitra

    Hybrid organic-inorganic nanocomposites have received considerable attention during the last five years due to their unexpected properties. This work incorporated nanodispersed organically modified montmorillonite clay into polydicyclopentadiene resin matrices. Montmorillonite consists of 1 nm platelet sheets with a 2:1 structure, consisting of an alumina octahedral layer sandwiched between two silica tetrahedral layers. The relative weak forces between platelets allow small molecules like water, solvents and monomers as well as polymers, to enter into the interlayer spacings between the platelet sheets. In-situ polymerization of highly delaminated clay/dicyclopentadiene (DCPD) dispersions was used to prepare clay/polydicyclopentadiene (polyDCPD) nanocomposites. Highly delaminated composites were characterized using X-ray diffraction, X-ray scattering and high resolution TEM. Composites with 0.5--1 weight percent of clay had higher Tg values and flexural moduli. The flow properties of the organically-modified montmorillonite/DCPD liquid dispersions were examined using a co-rotating viscometer. The dispersions with clay concentrations higher than 0.5wt% clay in DCPD showed thixotropic flow behavior. Small angle neutron scattering (SANS) experiments were performed to obtain anisotropic scattering of highly delaminated clay in DCPD due to the orientation of clay platelets and tactoids in the shear field. No anisotropic scattering was observed. The reason for this unexpected result is not yet understood. Highly delaminated organically-modified clay composites were examined using small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS). The SANS data from 0.5, 1 and 2wt% clay/polyDCPD composites with 2 different types of clay were fitted to the stacked disk model. The average number of clay layers per tactoid was predicted by fitting the experimental data to the stacked disk model. Extensive high-resolution TEM analyses were performed on

  16. Modelling the adsorption of mercury onto natural and aluminium pillared clays.

    Science.gov (United States)

    Eloussaief, Mabrouk; Sdiri, Ali; Benzina, Mourad

    2013-01-01

    The removal of heavy metals by natural adsorbent has become one of the most attractive solutions for environmental remediation. Natural clay collected from the Late Cretaceous Aleg formation, Tunisia was used as a natural adsorbent for the removal of Hg(II) in aqueous system. Physicochemical characterization of the adsorbent was carried out with the aid of various techniques, including chemical analysis, X-ray diffraction, Fourier transform infrared and scanning electron micrograph. Batch sorption technique was selected as an appropriate technique in the current study. Method parameters, including pH, temperature, initial metal concentration and contact time, were varied in order to quantitatively evaluate their effects on Hg(II) adsorption onto the original and pillared clay samples. Adsorption kinetic was studied by fitting the experimental results to the pseudo-first-order and pseudo-second-order kinetic models. The adsorption data were also simulated with Langmuir, Freundlich and Temkin isotherms. Results showed that the natural clay samples are mainly composed of silica, alumina, iron, calcium and magnesium oxides. The sorbents are mainly mesoporous materials with specific surface area of adsorption of Hg(II) studies, experimental data demonstrated a high degree of fitness to the pseudo-second-order kinetics with an equilibration time of 240 min. The equilibrium data showed the best model fit to Langmuir model with the maximum adsorption capacities of 9.70 and 49.75 mg g(-1) for the original and aluminium pillared clays, respectively. The maximum adsorption of Hg(II) on the aluminium pillared clay was observed to occur at pH 3.2. The calculated thermodynamic parameters (∆G°, ∆H° and ∆S°) showed an exothermic adsorption process. The entropy values varied between 60.77 and 117.59 J mol(-1) K(-1), and those of enthalpy ranged from 16.31 to 30.77 kJ mol(-1). The equilibrium parameter (R (L)) indicated that the adsorption of Hg(II) on Tunisian smectitic

  17. The mechanism of formation of enterprises’ financial results: foreign experience and domestic features

    Directory of Open Access Journals (Sweden)

    V.O. Kusliy

    2015-12-01

    Full Text Available Theauthor suggests the mechanism of formation of financial results of enterprises. It is built for management purposes. The information used to determine the financial result from operating activities can also be used for the «cost–volume–issue» analysis and for determination of the optimal production level and appropriateness of individual orders, pricing and more. Overall, the rate of the financial result from operating activities can describe the activity that is the basis for the company and for the implementation of which the entity was created. Another advantage of this model is that the definition of financial result from financial investments and extraordinary activities are more efficient in terms of information content than the division for the costs and revenues from these activities. As for the financial result from extraordinary activities, this figure reveals random factors beyond the control of the entity and to measure their impact on the financial performance of the enterprise as a whole.

  18. Heap leaching of clay ish uranium ores

    International Nuclear Information System (INIS)

    Gonzalez, E.; Sedano, A.

    1973-01-01

    This paper describes an experimental facility, built near El Lobo mine. In it we study the beneficiation of low-grade uranium ore. The mineral has a great amount of clay and fines. The flow-sheet used has four steps: head leaching, ph-ajustement, ion-exchange and participation. We show, also, the most interesting results. (Author)

  19. Effects of formative assessments to develop self-regulation among sixth grade students: Results from a randomized controlled intervention

    NARCIS (Netherlands)

    Meusen-Beekman, Kelly; Joosten-ten Brinke, Desirée; Boshuizen, Els

    2018-01-01

    This article presents the results of a formative assessment intervention in writing assignments in sixth grade. We examined whether formative assessments would improve self-regulation, motivation and self-efficacy among sixth graders, and whether differential effects exist between formative

  20. Performance of full scale enhanced reductive dechlorination in clay till

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Jacobsen, Carsten S.

    2013-01-01

    At a low permeability clay till site contaminated with chlorinated ethenes (Gl. Kongevej, Denmark), enhanced reductive dechlorination (ERD) was applied by direct push injection of molasses and dechlorinating bacteria. The performance was investigated by long-term groundwater monitoring, and after 4...... years of remediation, the development of degradation in the clay till matrix was investigated by high-resolution subsampling of intact cores. The formation of degradation products, the presence of specific degraders Dehalococcoides spp. with the vinyl chloride (VC) reductase gene vcrA, and the isotope...... fractionation of trichloroethene, cis-dichloroethene (cis-DCE), and VC showed that degradation of chlorinated ethenes occurred in the clay till matrix as well as in sand lenses, sand stringers, and fractures. Bioactive sections of up to 1.8 m had developed in the clay till matrix, but sections, where...

  1. Integration of SH seismic reflection and Love-wave dispersion data for shear wave velocity determination over quick clays

    Science.gov (United States)

    Comina, Cesare; Krawczyk, Charlotte M.; Polom, Ulrich; Socco, Laura Valentina

    2017-09-01

    Quick clay is a water-saturated formation originally formed through flocculation and deposition in a marine to brackish environment. It is subsequently leached to low salinity by freshwater flow. If its strength decreases, then the flocculated structure collapses leading to landslides of varying destructiveness. Leaching can result in a reduction of the undisturbed shear strength of these clays and suggestions exist that a reduction in shear wave velocities is also possible. Integration of SH seismic reflection and Love-wave dispersion data was undertaken, in an area near the Göta River in southwest Sweden, to evaluate the potential of shear wave velocity imaging for detecting quick clays. Seismic reflection processing evidenced several geologically interesting interfaces related to the probable presence of quick clays (locally confirmed by boreholes) and sand-gravelly layers strongly contributing to water circulation within them. Dispersion data were extracted with a Gaussian windowing approach and inverted with a laterally constrained inversion using a priori information from the seismic reflection imaging. The inversion of dispersion curves has evidenced the presence of a low velocity layer (lvl, with a velocity reduction of ca. 30 per cent) probably associable to quick clays. This velocity reduction is enough to produce detectable phase-velocity differences in the field data and to achieve a better velocity resolution if compared to reflection seismic velocity analyses. The proposed approach has the potential of a comprehensive determination of the shear wave velocity distribution in the shallow subsurface. A sensitivity analysis of Love-wave dispersion data is also presented underlining that, despite limited dispersion of the data set and the velocity-reducing effect of quick-clay leaching, the proposed interpretation procedure arises as a valuable approach in quick clay and other lvl identification.

  2. Investigating the pore-water chemistry effects on the volume change behaviour of Boom clay

    Science.gov (United States)

    Deng, Y. F.; Cui, Y. J.; Tang, A. M.; Nguyen, X. P.; Li, X. L.; Van Geet, M.

    The Essen site has been chosen as an alternative site for nuclear waste disposal in Belgium. The soil formation involved at this site is the same as at Mol site: Boom clay. However, owing to its geographical situation closer to the sea, Boom clay at Essen presents a pore water salinity 4-5 times higher than Boom clay at Mol. This study aims at studying the effects of pore water salinity on the hydro-mechanical behaviour of Boom clay. Specific oedometer cells were used allowing “flushing” the pore water in soil specimen by synthetic pore water or distilled water. The synthetic pore water used was prepared with the chemistry as that for the site water: 5.037 g/L for core Ess83 and 5.578 g/L for core Ess96. Mechanical loading was then carried out on the soil specimen after flushing. The results show that water salinity effect on the liquid limit is negligible. The saturation or pore water replacement under the in situ effective stress of 2.4 MPa does not induce significant volume change. For Ess83, hydro-mechanical behaviour was found to be slightly influenced by the water salinity; on the contrary, no obvious effect was identified on the hydro-mechanical behaviour of Ess96. This can be attributed to the higher smectite content in Ess83 than in Ess96.

  3. Evaluation of the permeability of microporous membranes polyamide 6 / clay bentonite for water-oil separation

    International Nuclear Information System (INIS)

    Medeiros, P.S.S.; Medeiros, K.M.; Araujo, E.M.; Lira, H.L.

    2014-01-01

    The petroleum refining industries have faced major problems in relation to the treatment of their effluents before disposal into the environment. Among the conventional technologies treatment of these effluents, the process of oil-water separation by means of membranes has been extensively used, for having enormous potentiality. Therefore, in this study, hybrid membranes of polyamide 6/ bentonite clay were produced by the technique of phase inversion and by precipitation of the solution from the nanocomposites obtained by melt intercalation. The clay was organically modified with the quaternary ammonium salt (Cetremide®). The nanocomposites were obtained from (PA6) with untreated (AST) and treated clay (ACT), which were subsequently characterized by X-ray diffraction (XRD). Already membranes were characterized by XRD, scanning electron microscopy (SEM) and flow measurements. From the XRD results, it was observed an exfoliated and/or partially exfoliated structure for the nanocomposites and for the membranes. From SEM images it was observed that the presence of AST and ACT clays in the polymeric matrix caused changes in membrane morphology and pore formation. The flow with distilled water in the membranes showed a decrease initially and then followed by stability. All membranes tested in the process of separating emulsions of oil in water, particularly those of nanocomposites obtained a significant reduction of oil concentration in the permeate, thus showing that these membranes have a great potential to be applied to the water-oil separation. (author)

  4. The Engineering Properties of Clays in Trabzon Taşönü Quarry

    Directory of Open Access Journals (Sweden)

    Nurcihan CERYAN

    2009-03-01

    Full Text Available Taşönü limestone quarry located south of Araklı in Trabzon is the largest cement raw materials field in the Eastern Black Sea region. The quarry is run in the Kireçhane Formation composed of limestone with various facies. However, it has been encountered three separate planar failures occurred between 2005 and 2006. Due to the failures, the amount of raw material production from the quarry has been gradually decreased. These failures occurred on clayey layers varying between 15 and 110 centimeter thicknesses. Therefore, the relevant clayey layers were examined in terms of geochmechanical and geophysical properties. The samples collected from the clayey layers are classified as high plasticity clay (CH in accordance with the Unified Soil Classification System. Clay samples consist of 85 to 90 % montmorillonite and 10 to 15 % illite. The measurement of volumetric magnetic susceptibility used in the diversity of clay varies in the range 129-163x10-6 cgs. These values have been analyzed with respect to the heavy metal pollution ratio of the clay and especially iron oxide depending on 3.6 to 6.8 % rates was the result. In this study, index and shearing strength values obtained from clayey level and filling material may be use for the investigation of the stability of quarry slopes during excavation.

  5. Investigating the pore-water chemistry effects on the volume change behaviour of Boom clay

    International Nuclear Information System (INIS)

    Deng, Y. F.; Cui, Y. J.; Tang, A. M.; Nguyen, X. P.; Li, X. L.; Van Geet, M.

    2011-01-01

    The Essen site has been chosen as an alternative site for nuclear waste disposal in Belgium. The soil formation involved at this site is the same as at Mol site: Boom clay. However, owing to its geographical situation closer to the sea, Boom clay at Essen presents a pore water salinity 4-5 times higher than Boom clay at Mol. This study aims at studying the effects of pore water salinity on the hydro-mechanical behaviour of Boom clay. Specific odometer cells were used allowing 'flushing' the pore water in soil specimen by synthetic pore water or distilled water. The synthetic pore water used was prepared with the chemistry as that for the site water: 5.037 g/L for core Ess83 and 5.578 g/L for core Ess96. Mechanical loading was then carried out on the soil specimen after flushing. The results show that water salinity effect on the liquid limit is negligible. The saturation or pore water replacement under the in situ effective stress of 2.4 MPa does not induce significant volume change. For Ess83, hydro-mechanical behaviour was found to be slightly influenced by the water salinity; on the contrary, no obvious effect was identified on the hydro-mechanical behaviour of Ess96. This can be attributed to the higher smectite content in Ess83 than in Ess96. (authors)

  6. Characterization of clay used for red ceramic fabrication; Caracterizacao de argila utilizada para fabricacao de ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, P.S.; Morais, A.S.C.; Caldas, T.C.C.; Monteiro, S.N.; Vieira, C.M.F. [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LAMAV/UENF), Campos dos Goytacazes, RJ (Brazil). Laboratorio de Materiais Avancados; Ribeiro, M.M., E-mail: patriciasp_@hotmail.com [Instituto Federal Fluminense (IFF), Campos dos Goytacazes, RJ (Brazil)

    2011-07-01

    The objective of this work is to characterize a clay used in the red ceramics fabrication, from Campos dos Goytacazes north of the State of Rio de Janeiro. The clay was submitted for physical, chemical and mineralogical tests. The results showed that the clay has a high content of clay minerals with kaolinitic predominance, high loss on ignition and low flux oxides. It is recommended that this clay is mixed with non-plastic materials. (author)

  7. Fault architecture and growth in clay-limestone alternations: insights from field observations in the SE Basin, France

    International Nuclear Information System (INIS)

    Rocher, M.; Roche, V.; Homberg, C.

    2012-01-01

    Document available in extended abstract form only. The Callovo-Oxfordian (COX) clayey formation is currently studied by Andra in 'Meuse/Haute- Marne' (MHM), eastern Paris basin (France), for hosting a disposal of high level and intermediate, long-lived radioactive waste. As an independent organisation performing safety reviews for the Nuclear Safety Authority, IRSN conducts studies in support of the review of this disposal project. This nearly 130 m-thick clayey formation is surrounded by two 250 m-thick limestone formations. In such limestone/clay alternations, tectonic fracturing is often observed within limestones and propagates in some cases to clay layers. Such a propagation through the COX within or close to the disposal area could diminish its containment ability by creating preferential pathways of radioactive solute towards limestones. Nevertheless, minor to moderate fracturing is difficult to investigate in hectometre scale multilayer systems such as COX: seismic reflexion surveys only provide data on major faults, drilling data are too localised and clays have a 'bad-land' aspect at surface. The aim of this study is to provide a model of fracturing across clay-limestone alternations so as to strengthen the assessment of their possible development. We thus investigated fracturing within decametre-sized clay-limestone alternations, located in the South-Eastern Basin (France), to determine the evolution of fault architecture during its growth. After analysis of the possible scale effects using data from other analogous fields, an application to the COX in MHM is presented. We studied minor normal faults that reflect various stages of development, from simple fault planes restricted to limestones to complex fault zones propagated across several clay-limestone layers. The analysis of the fault characteristics, the construction of displacement profiles and the results obtained using numerical models enlighten fault growth processes, i.e. nucleation

  8. CO2 sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements.

    Science.gov (United States)

    Rother, Gernot; Ilton, Eugene S; Wallacher, Dirk; Hauβ, Thomas; Schaef, Herbert T; Qafoku, Odeta; Rosso, Kevin M; Felmy, Andrew R; Krukowski, Elizabeth G; Stack, Andrew G; Grimm, Nico; Bodnar, Robert J

    2013-01-02

    Geologic storage of CO(2) requires that the caprock sealing the storage rock is highly impermeable to CO(2). Swelling clays, which are important components of caprocks, may interact with CO(2) leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO(2) with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO(2) densities of ≈ 0.15 g/cm(3), followed by an approximately linear decrease of excess sorption to zero and negative values with increasing CO(2) bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO(2) are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 Å. The density of CO(2) in the clay pores is relatively stable over a wide range of CO(2) pressures at a given temperature, indicating the formation of a clay-CO(2) phase. At the excess sorption maximum, increasing CO(2) sorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak temperature dependence.

  9. Restructuring of silica-pillared clay (SPC) through posthydrothermal treatment and application as phosphotungstic acid supports for cyclohexene oxidation.

    Science.gov (United States)

    Mao, Huihui; Zhu, Kongnan; Lu, Xinhao; Zhang, Guangcheng; Yao, Chao; Kong, Yong; Liu, Jia

    2015-05-15

    A facile posthydrothermal treated process has been successfully established for restructuring of silica-pillared clay. This approach involves the hydrothermal treated process utilizing octadecylamine as structural agency followed by calcination at high temperatures. The formation of expanded interlayered mesopores is a result of treatment with octadecylamine hydrothermal conditions. The following calcination at higher temperatures gives silica-pillared clay larger pore volume and conserved high surface area. The kind of pore expansion process has been confirmed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption isotherms and transmission electron microscopy (TEM). The pore expansion mechanism of silica-pillared clay is proposed. The pore expanded silica-pillared clay has been used as the catalytic supports for H3PW12O40 loading as high as 26.9%, 35.8% and 48.2% for oxidation reaction of cyclohexene using H2O2 as oxidant. The stable charge force between H3PW12O40 and negative charged clay layers, together with big and open porous structure, large pore volume, and high loading of H3PW12O40 contributes to the efficiency conversion, high selectivity toward cyclohexene epoxide and brilliant reusability. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The surface modification of clay particles by RF plasma technique

    Science.gov (United States)

    Lee, Sang-Keol

    In this study, the surface coatings of ball clay, organoclay and exfoliated clay prepared by sol-gel process were done by RF plasma polymerization to improve the surface activity of the clay filler. Characterization of the above plasma-treated clays has been carried out by various techniques. The effects of plasma-treated clays as substitute of carbon black in styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) on the curing and mechanical properties were investigated. After plasma treatment, the tensile properties of organo and exfoliated clay were not unsatisfactory to that of carbon black filler system. Moreover, only 10 phr filler loading of plasma-treated organoclay in EPDM vulcanizates showed better results than 40 phr filler loading of carbon black in EPDM vulcanizates. The main objective of this study was to verify the applicability of the plasma technique for modifying clay surfaces for their use in the tire manufacturing industry. Another purpose was to reveal the advantage of the plasma technique used to obtain modified-clay and improved properties that those materials can display.

  11. Photochemical Deposition of Silver Nanoparticles on Clays and Exploring Their Antibacterial Activity.

    Science.gov (United States)

    Lombardo, Patrícia C; Poli, Alessandra L; Castro, Lucas F; Perussi, Janice R; Schmitt, Carla C

    2016-08-24

    Photochemical method was used to synthesize silver nanoparticles (AgNPs) in the presence of citrate or clay (SWy-1, SYn-1, and Laponite B) as stabilizers and Lucirin TPO as photoinitiator. During the photochemical synthesis, an appearance of the plasmon absorption band was seen around 400 nm, indicating the formation of AgNPs. X-ray diffraction results suggested that AgNPs prepared in SWy-1 were adsorbed into interlamellar space, and moreover, showed some clay exfoliation. In the case of SYn-1, AgNPs was not intercalated. For the AgNP/Lap B sample, the formation of an exfoliated structure occurred. Transmission electron microscopy revealed the spherical shape of AgNPs for all samples. The particle sizes obtained for AgNP/SWy-1, AgNP/SYn-1, and AgNP/Lap B were 2.6, 5.1, and 3.8 nm, respectively. AgNPs adsorbed on SYn-1 reveal nonuniform size and aggregation of some particles. However, AgNP/SWy-1 and AgNP/Lap B samples are more uniform and have diameters smaller than those prepared with SYn-1. This behavior is due to the ability to exfoliate these clays. The antibacterial activities of pure clays, AgNP/citrate, and AgNP/clays were investigated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). AgNPs in the presence of clays (AgNPs/SYn-1 and AgNPs/SWy-1) showed a lower survival index percentage compared to those obtained for pure clays and AgNPs. The AgNP/SWy-1 sample showed good antibacterial activity against both tested species and the lowest survival index of 3.9 and 4.3 against E. coli and S. aureus, respectively. AgNPs are located in the interlayer region of the SWy-1, which has acid sites. These acidic sites may contribute to the release of Ag(+) ions from the surface of AgNPs. On the other hand, Laponite B and AgNP/Lap B samples did not demonstrate any bactericidal activity.

  12. Fluoride retention by kaolin clay

    DEFF Research Database (Denmark)

    Kau, P. M. H.; Smith, D. W.; Binning, Philip John

    1997-01-01

    To evaluate the potential effectiveness of kaolin clay liners in storage of fluoride contaminated waste, an experimental study of the sorption and desorption behaviour of fluoride in kaolin clay was conducted. The degree of fluoride sorption by kaolin was found to depend on solution p...

  13. Organic Synthesis using Clay Catalysts

    Indian Academy of Sciences (India)

    His work includes organic synthesis and reaction mechanisms mainly in the area of organosilicon chemistry. Presently he is also working on organic synthesis under solvent- free conditions and using clay-catalyses. Keywords. Montmorillonite, ion-exchange, clay-nanomaterials, dehydration pyrolysis, rearrangement, steric.

  14. Organic Synthesis using Clay Catalysts

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Organic Synthesis using Clay Catalysts - Clays for 'Green Chemistry'. Gopalpur Nagendrappa. General Article Volume 7 Issue 1 January 2002 pp 64-77. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin

    Energy Technology Data Exchange (ETDEWEB)

    Ma Haiyun [Institute of Polymer Composites, Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027 (China); Tong Lifang [Institute of Polymer Composites, Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027 (China); Xu Zhongbin [Institute of Polymer Composites, Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027 (China); Fang Zhengping [Institute of Polymer Composites, Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027 (China)

    2007-09-19

    Synergistic effect between multi-walled carbon nanotubes (MWNTs) and clay on improving the flame retardancy of acrylonitrile-butadiene-styrene (ABS) resin was studied. Flammability properties measured by a cone calorimeter revealed that incorporation of clay and MWNTs into ABS resin significantly reduced the peak heat release rate (PHRR) and slowed down the whole combustion process compared to the individually filled system based on clay or MWNTs. The flame retardancy of the ABS/clay/MWNTs nanocomposites was strongly affected by the formation of a network structure. Linear viscoelastic properties of the ABS nanocomposites showed that the coexistence of clay and MWNTs can enhance the network structure which can hinder the movement of polymer chains and improve flame retardancy. From transmission electron microscope analysis, MWNTs were shortened after combustion and there was no significant change in their diameters. For chars of ABS/clay/MWNTs nanocomposites, some MWNTs ran across between clay layers, indicating a strong interaction existed between clay and MWNTs. The existence of clay enhanced the graphitization degree of MWNTs during combustion. Clay can assist the elimination of dislocations and defects and the rearrangement of crystallites. Al{sub 2}O{sub 3}, one of the components of clay, acts as the catalyst of graphitization.

  16. Sequential Salinomycin Treatment Results in Resistance Formation through Clonal Selection of Epithelial-Like Tumor Cells

    Directory of Open Access Journals (Sweden)

    Florian Kopp

    2014-12-01

    Full Text Available Acquiring therapy resistance is one of the major obstacles in the treatment of patients with cancer. The discovery of the cancer stem cell (CSC–specific drug salinomycin raised hope for improved treatment options by targeting therapy-refractory CSCs and mesenchymal cancer cells. However, the occurrence of an acquired salinomycin resistance in tumor cells remains elusive. To study the formation of salinomycin resistance, mesenchymal breast cancer cells were sequentially treated with salinomycin in an in vitro cell culture assay, and the resulting differences in gene expression and salinomycin susceptibility were analyzed. We demonstrated that long-term salinomycin treatment of mesenchymal cancer cells resulted in salinomycin-resistant cells with elevated levels of epithelial markers, such as E-cadherin and miR-200c, a decreased migratory capability, and a higher susceptibility to the classic chemotherapeutic drug doxorubicin. The formation of salinomycin resistance through the acquisition of epithelial traits was further validated by inducing mesenchymal-epithelial transition through an overexpression of miR-200c. The transition from a mesenchymal to a more epithelial-like phenotype of salinomycin-treated tumor cells was moreover confirmed in vivo, using syngeneic and, for the first time, transgenic mouse tumor models. These results suggest that the acquisition of salinomycin resistance through the clonal selection of epithelial-like cancer cells could become exploited for improved cancer therapies by antagonizing the tumor-progressive effects of epithelial-mesenchymal transition.

  17. Enhanced reductive dechlorination in clay till contaminated with chlorinated solvents

    DEFF Research Database (Denmark)

    Damgaard, Ida

    in high permeability aquifers and has also been applied at a number of low permeability clay till sites. This thesis presents the results of an investigation of chlorinated ethenes (and ethanes) degradation in clay till with the objective of obtaining knowledge of degradation processes in clay till...... and to evaluate ERD as remediation technology. The development of degradation in clay till was investigated at two sites: one where natural attenuation processes (transport, sorption, diffusion and degradation) had been on-going for four decades (Vadsbyvej) and another which had been undergoing ERD for four years...... (direct push delivery, Gl. Kongevej). Degradation of chlorinated ethenes (and ethanes) in the clay till matrix and in embedded high permeability features was investigated by high resolution sampling of intact cores combined with groundwater sampling. An integrated approach using chemical analysis...

  18. Structural characterization of clays commercially used in red ceramics

    International Nuclear Information System (INIS)

    Brito, E.M.; Moura, J.K.L.; Souza, R.B.; Brandim, A.S.

    2014-01-01

    The use of clays hills being an alternative to clay floodplain, due to environmental protection laws. The research project aims at the morphological and chemical characterization of hills clays used industrially for the production of ceramic tiles and blocks. Therefore, two types of methods were known commercially in the region of Teresina-PI through diffraction of X-rays (X-DR), scanning electron microscopy (SEM) and energy dispersive spectrometry X-ray (EDS). It can be observed that the samples have a high percentage of quartz, hematite still having in its constitution aluminum oxide, zirconium oxide and titanium oxide. The results show that the clays are clays and montmorillonites may be used for the production of ceramic tiles and blocks, but as the proportion of using the same will be focusing the next job. (author)

  19. Brazilian clay organophilization aiming its use in oil / water removal

    International Nuclear Information System (INIS)

    Mota, M.F.; Lima, W.S.; Oliveira, G.C.; Silva, M.M.; Rodrigues, M.G.F.

    2012-01-01

    Clays when subjected to modification with the addition of organic surfactant are called organoclays acquire hydrophobic character, they have an affinity for organic compounds. The organoclays can be used as adsorbents are considered promising agents in environmental control. The objective is to prepare organoclays clays from commercial use in order to remove organic contaminants. The clay used was gray, as polycationic, supplied by Süd-Chemie company and the quaternary ammonium salt was cetyltrimethylammonium bromide (Cetremide). The fresh samples and organoclay were characterized by the technique of X-ray diffraction (XRD), Cation Exchange Capacity, testing expansion and affinity with organic compounds: Swelling of Foster and adsorption capacity. The results showed appropriate conditions organophilic process. Through XRD confirmed the increase in basal spacing for the modified clay in relation to the clay in nature. (author)

  20. Radiation-induced catalysis of fatty acids adsorbed onto clay minerals

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Ramos-Bernal, S.; Colin-Garcia, M.; Mosqueira, F.G.

    2015-01-01

    We studied the behavior of small fatty (acetic acid) and dicarboxylic acids (succinic and malonic acids) adsorbed onto Na + -montmorillonite (a clay mineral) and exposed to gamma radiation. A decarboxylation reaction was found to predominate when the clay was present. This preferential synthesis promoted the formation of a compound with one less carbon atom than its target compound. In the system without clay, dimerization was the predominate outcome following radiolysis. (author)

  1. Scour at Vertical Piles in Sand-Clay Mixtures under Waves

    DEFF Research Database (Denmark)

    Dey, Subhasish; Helkjær, Anders; Sumer, B. Mutlu

    2011-01-01

    Marine sediments often contain sand-clay mixtures in widely varying proportions. This study presents the results of equilibrium scour and time variation of scour depths at circular piles embedded vertically in clay alone and sand-clay mixed beds under waves. Experiments were conducted in a wave f...

  2. Comparison between the sandy and the shaly facies of the Opalinus Clay (Mont Terri, Switzerland): mechanical properties obtained from triaxial deformation, mineralogical composition and micro fabric

    International Nuclear Information System (INIS)

    Kaufhold, Annette; Siegesmund, Siegfried; Graesle, Werner; Plischke, Ingo; Dohrmann, Reiner

    2012-01-01

    Document available in extended abstract form only. In Switzerland, the international research project Mont Terri investigates the Opalinus Clay (Jurassic formation) in the underground rock laboratory (URL) Mont Terri. The Opalinus Clay is subdivided into different facies (sandy, shaly, and carbonate rich facies). In the Mont Terri URL the sandy facies is less abundant and only a relatively thin layer of the carbonate rich facies is present. The currently favored HLRW repository site in Switzerland, however, is supposed to be in the sandy facies of the Opalinus Clay. Yet, most of the investigations focused on the shaly facies. Generally the understanding of the relation of properties and performances of clays and clay-stones is poor which is relevant for mineralogical micro fabric but also mechanical processes. For the safety assessment of the repository models describing both chemical and mechanical processes are required. Such models have to be based on a solid understanding of the mechanisms behind the processes considered. With respect to the understanding of the deformation behavior of different Opalinus Clay samples, Klinkenberg et al. (2009) found the carbonates to play a major role. For different samples of the shaly facies they found carbonate to represent a kind of predetermined breaking planes. Therefore, carbonate rich materials showed lower mechanical strengths. Interestingly, they also observed the opposite when considering samples of the Callovo-Oxfordian clay, which is investigated in France. Considering the micro fabric of all samples suggests that the carbonate - mechanical strength relation depends on the type and amount of carbonates. Therefore, Kaufhold et al. investigated the micro fabric - mechanical strength relation of the sandy facies. They concluded that the sandy facies is comparable with the investigated samples of the Callovo-Oxfordian clay. The mechanical behavior of the shaly facies was already investigated. A detailed comparison of

  3. Short-range guiding can result in the formation of circular aggregates in myxobacteria populations.

    Science.gov (United States)

    Janulevicius, Albertas; van Loosdrecht, Mark; Picioreanu, Cristian

    2015-04-01

    Myxobacteria are social bacteria that upon starvation form multicellular fruiting bodies whose shape in different species can range from simple mounds to elaborate tree-like structures. The formation of fruiting bodies is a result of collective cell movement on a solid surface. In the course of development, groups of flexible rod-shaped cells form streams and move in circular or spiral patterns to form aggregation centers that can become sites of fruiting body formation. The mechanisms of such cell movement patterns are not well understood. It has been suggested that myxobacterial development depends on short-range contact-mediated interactions between individual cells, i.e. cell aggregation does not require long-range signaling in the population. In this study, by means of a computational mass-spring model, we investigate what types of short-range interactions between cells can result in the formation of streams and circular aggregates during myxobacterial development. We consider short-range head-to-tail guiding between individual cells, whereby movement direction of the head of one cell is affected by the nearby presence of the tail of another cell. We demonstrate that stable streams and circular aggregates can arise only when the trailing cell, in addition to being steered by the tail of the leading cell, is able to speed up to catch up with it. It is suggested that necessary head-to-tail interactions between cells can arise from physical adhesion, response to a diffusible substance or slime extruded by cells, or pulling by motility engine pili. Finally, we consider a case of long-range guiding between cells and show that circular aggregates are able to form without cells increasing speed. These findings present a possibility to discriminate between short-range and long-range guiding mechanisms in myxobacteria by experimentally measuring distribution of cell speeds in circular aggregates.

  4. Stabilization of an expansive overconsolidated clay using hydraulic binders

    Directory of Open Access Journals (Sweden)

    Abdelkrim Mahamedi

    2015-04-01

    Full Text Available Urban areas of the wilaya of M’sila in Algeria nowadays experience a considerable development because of an unceasingly increasing demography, from where its extension toward virgin zones is often less favorable than those already urbanized. This wilaya is located in a zone classified as semi-arid, whose geology comprises clayey formations characterized by a high variation of volume when the conditions of their equilibrium are modified (natural climatic phenomena due to a prolonged dryness, human activity by modification of the ground water level because of excessive pumping, configuration of constructions in their environment. This paper presents and analyzes the results of a series of laboratory tests (identification, compaction, penetration and direct shear tests performed on an expansive overconsolidated clay obtained from an urban site situated in Sidi-Hadjrès city (wilaya of M’sila, Algeria, where significant damages frequently appear in the road infrastructures and in the light structures. Test results obtained show that the geotechnical parameteric values deduced from these tests are concordant and confirm the bearing capacity improvement of this natural clay treated with hydraulic binders (composed Portland cement and extinct lime and compacted under the optimum Proctor conditions, which is translated by a significant increase in soil strength and its durability.

  5. Effect of boundary conditions on thermohydraulic behavior of clay buffer used in nuclear waste repository

    International Nuclear Information System (INIS)

    Arul Peter, A.; Murugesan, K.; Mamidi, Ganesh; Sharma, Umesh Kumar; Sharma, D. Akanshu; Arora, Puneet

    2010-01-01

    The use of nuclear energy is increasing dramatically in the world due to the fast depletion of fossil fuels, and hence the nuclear waste disposal and its short and long-term effects are of considerable importance. One of the options considered for nuclear waste disposal is underground nuclear waste repository facility. In this underground nuclear waste disposal system the waste filled canisters are placed in the rock surrounded by an engineered clay barrier and the whole system is buried in the geological formation, which serves as the natural or geological barrier. The important characteristic of the clay barrier is that it should not open up for radiation though it is continuously subjected to heat loading from the canisters. The heat and moisture transport mechanisms through the clay barrier plays an important role in deciding its mechanical strength. Clay behaves as an unsaturated porous material when it is used as a buffer material in nuclear waste facility. The governing equations for heat and moisture transfer through unsaturated porous media are coupled and nonlinear and hence they have to be solved using numerical solution technique. This paper reports the results of a numerical study on heat and moisture transport through a buffer layer made of clay as used in nuclear waste repository. Galerkin's weighted residual finite element method has been employed for the solution of the non-linear coupled governing equations used to represent the heat and moisture transport through unsaturated clay material. A detailed computational procedure has been established for the solution of the non-linear governing equations using Newton-Raphson technique. Initially the code has been validated with available experimental results. Then numerical simulation results were obtained for heat and moisture variations within the buffer material for Dirichlet temperature boundary conditions in the range, 50 deg C 2 2 , with an aim to simulate the boundary conditions which the clay

  6. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Science.gov (United States)

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  7. Serpine2 deficiency results in lung lymphocyte accumulation and bronchus-associated lymphoid tissue formation.

    Science.gov (United States)

    Solleti, Siva Kumar; Srisuma, Sorachai; Bhattacharya, Soumyaroop; Rangel-Moreno, Javier; Bijli, Kaiser M; Randall, Troy D; Rahman, Arshad; Mariani, Thomas J

    2016-07-01

    Serine proteinase inhibitor, clade E, member 2 (SERPINE2), is a cell- and extracellular matrix-associated inhibitor of thrombin. Although SERPINE2 is a candidate susceptibility gene for chronic obstructive pulmonary disease, the physiologic role of this protease inhibitor in lung development and homeostasis is unknown. We observed spontaneous monocytic-cell infiltration in the lungs of Serpine2-deficient (SE2(-/-)) mice, beginning at or before the time of lung maturity, which resulted in lesions that resembled bronchus-associated lymphoid tissue (BALT). The initiation of lymphocyte accumulation in the lungs of SE2(-/-) mice involved the excessive expression of chemokines, cytokines, and adhesion molecules that are essential for BALT induction, organization, and maintenance. BALT-like lesion formation in the lungs of SE2(-/-) mice was also associated with a significant increase in the activation of thrombin, a recognized target of SE2, and excess stimulation of NF-κB, a major regulator of chemokine expression and inflammation. Finally, systemic delivery of thrombin rapidly stimulated lung chemokine expression in vivo These data uncover a novel mechanism whereby loss of serine protease inhibition leads to lung lymphocyte accumulation.-Solleti, S. K., Srisuma, S., Bhattacharya, S., Rangel-Moreno, J., Bijli, K. M., Randall, T. D., Rahman, A., Mariani, T. J. Serpine2 deficiency results in lung lymphocyte accumulation and bronchus-associated lymphoid tissue formation. © FASEB.

  8. Investigationof Clay Mineralogy, Micromorphology and Evolution of Soils in Bajestan Playa

    Directory of Open Access Journals (Sweden)

    Mohammad Ghasemzadeh Ganjehie

    2017-03-01

    , pediment and clay flat. Considering the diversity of geomorphic units, 11 soil profiles were described and diffrenet soil layers and horizons were sampled. Undisturbed soil samples were taken micromorphological studies. Some horizons were selected for clay mineralogy analysis. The mineralogy of clay fraction was determined using X-ray diffraction method. Results and discution: All studied soils except the profiles in the pediment were classified in the Aridisols order. There were two geomorphic surfaces in alluvial fans. In the first geomorphic surface a soil with the Bk horizon buried a soil with red Btk horizon. In the second geomorphic surface, it seems that the erosion has been removed the overlying soil. The Bk horizon showed the maximum soil development in the clay flat and intermediate alluvial fan-clay flat landforms. Clay coating on sand in thin section was the evidence of clay illuviation in Btk horizon. Carbonate nodules associated with clay coating are the compound pedofeature in Btk horizon. These evidences reflect polygenetic nature of the soils and different period of climate change and soil formation. Smectite, mica, chlorite and palygorskite are the clay minerals in the studied soils. Similar to soils in arid regions of Iran, palygorskite was found in Bk, Bt and Bz horizons. The existence of Bk horizon in overlying soils, buried Btk horizon, removal of surface horizon in alluvial fan are the evidences of regressive and progressive of pedogenic processes in the study area. Btk horizon represents a warm and wetter and Bk horizon indicates a relatively wetter period in comparison to present time. Conclusion: Btk was the most developed horizon in the study area that occurred as buried paleosol in alluvial fan. Bk, Bw, By and Bz were the common horizon in other landforms. Clay coating and red color of Btk horizon might seem as indicators of hot and humid conditions in the past, during the argillic horizon formation. Covered carbonate nodules with clay coating

  9. Twist1- and Twist2-haploinsufficiency results in reduced bone formation.

    Directory of Open Access Journals (Sweden)

    Yanyu Huang

    Full Text Available Twist1 and Twist2 are highly homologous bHLH transcription factors that exhibit extensive highly overlapping expression profiles during development. While both proteins have been shown to inhibit osteogenesis, only Twist1 haploinsufficiency is associated with the premature synostosis of cranial sutures in mice and humans. On the other hand, biallelic Twist2 deficiency causes only a focal facial dermal dysplasia syndrome or additional cachexia and perinatal lethality in certain mouse strains. It is unclear how these proteins cooperate to synergistically regulate bone formation.Twist1 floxed mice (Twist1(f/f were bred with Twist2-Cre knock-in mice (Twist2(Cre/+ to generate Twist1 and Twist2 haploinsufficient mice (Twist1(f/+; Twist2(Cre/+. X-radiography, micro-CT scans, alcian blue/alizarin red staining, trap staining, BrdU labeling, immunohistochemistry, in situ hybridizations, real-time PCR and dual luciferase assay were employed to investigate the overall skeletal defects and the bone-associated molecular and cellular changes of Twist1(f/+;Twist2(Cre/+ mice.Twist1 and Twist2 haploinsufficient mice did not present with premature ossification and craniosynostosis; instead they displayed reduced bone formation, impaired proliferation and differentiation of osteoprogenitors. These mice exhibited decreased expressions of Fgf2 and Fgfr1-4 in bone, resulting in a down-regulation of FGF signaling. Furthermore, in vitro studies indicated that both Twist1 and Twist2 stimulated 4.9 kb Fgfr2 promoter activity in the presence of E12, a Twist binding partner.These data demonstrated that Twist1- and Twist2-haploinsufficiency caused reduced bone formation due to compromised FGF signaling.

  10. Clay minerals suitable for overpack in waste repositories: evidence from uranium deposits

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1980-01-01

    Various clay minerals have been proposed for overpack around radioactive waste canisters. The laboratory studies of the migration of elements from the nuclear waste through proposed overpack have resulted in some disagreement. As an alternative approach to the laboratory studies, a review of data for the uranium deposits of the Grants, New Mexico, mineral belt has been undertaken. This paper reviews the evidence from the clay mineralogy, the Rb-Sr systematics and the trace element analyses of the clay size (<2μ) fraction of rocks from the uranium ore zones and the barren host rocks. The <2μ fraction is dominated by clay minerals, but small amounts of other minerals and organic matter are present as well. The information from uranium deposits suggests that chlorite will form during the mineralization process from pre-existing montmorillonite or illite or mixed-layered illite-montmorillonite accompanied by fixation of V, Mo, Se, As, REE, Th. Based on this fact coupled with the observation that the barren rocks are magnetite-rich under low Eh conditions, then an argument for the use of the very abundant sand-poor shales of the Morrison Formation as material suitable for overpack can be made. In the event of canister failure, any escaping actinides, actinide daughters or fission products should react efficiently with the intermediate cation exchange capacity (CEA) montmorillonite-illite-rich material and promote low CEC chlorite formation and sorption of actinides and lanthanides. Formation of such low CEC chlorite would not only scavenge the earliest radioactive elements released but would also retard fluid flow through the surrounding overpack by fissure filling which in turn would further impede radionuclide escape. The distribution of trace elements around uranium deposits of the Grants mineral belt is entirely compatible with such a scenario

  11. Deformation mechanisms in experimentally deformed Boom Clay

    Science.gov (United States)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  12. Polyurethane/organo clay nano composite materials via in-situ polymerization

    International Nuclear Information System (INIS)

    Rehab, A.; Agag, T; Akelah, A.; Shalaby, N.

    2005-01-01

    Polyurethane/organo clay nano composites have been synthesized via in situ polymerization. The organo clay firstly prepared by intercalation of lyamine or amino lauric acid into montmorillonite-clay (MMT) through ion exchange process. The syntheses of polyurethane/organo clay hybrid films containing different ratio of clay were carried out by swelling the organo clay, into diol and diamine or into different kinds of diols, followed by addition of diisocyanate. The nano composites with dispersed structure of MMT was obtained as evidence by scanning electron microscope and x-ray diffraction. X-ray analysis showed that the d-spacing increased to more than 44A since there is no peaks corresponding to do spacing in organo clay with all the ratios (1, 5, 10, 20%). Also, SEM results confirm the dispersion of nanometer silicate layers in the polyurethane matrix. This indicated that the clay was completely exfoliated and homogeneous dispersion in the polyurethane matrix. Also, it was found that the presence of organo clay leads to improvement the mechanical properties. Since, the tensile strength increased with increasing the organo clay contents to 20% by the ratio 194% in compared to the 1H: with 0% organo clay. Also, the elongation is a decreases with increasing the organo clay contents. The results shown the tensile strength of PU/SMA/ALA-MMT nano composites is high by 6-7 times than the corresponding to PU/Tvr-MMT

  13. The reactivity of clay materials in a context of metallic corrosion: application to disposal of radioactive wastes in deep argillaceous formations; Reactivite des materiaux argileux dans un contexte de corrosion metallique: application au stockage des dechets radioactifs en site argileux

    Energy Technology Data Exchange (ETDEWEB)

    Perronnet, M

    2004-10-15

    In order to confine radioactive wastes in deep settings, it is envisaged to use some natural clay materials and bentonites. Their stability when in contact with metallic iron, main component of the canisters, is studied. These studies show that the reactivity of such materials is mainly controlled by those of their di-octahedral smectites and kaolinites. On the contrary, the presence of sulfides stops the Fe(0)-clays reaction. The kind of reaction products depends on the quantity of available metallic iron. When pH is over 7, the Fe(0) is oxidized consecutive to a physical contact with the oxidant agents of the smectite (H{sup +}, OH{sup -} et Fe{sup 3+}). This reaction is favored by the heterogeneities of the lateral surfaces of the smectite, which then describes a micro-environments in which some serpentines grow up if the iron supply is sufficient. Such new-crystallization imply a decrease of the confinement properties of the clay barrier. (author)

  14. Flame retardancy of highly filled polyamide 6/clay nanocomposites

    International Nuclear Information System (INIS)

    Dasari, Aravind; Yu Zhongzhen; Mai Yiuwing; Liu Songlin

    2007-01-01

    To obtain an in-depth physical knowledge of the protective barrier stability and uniformity under fire conditions, we prepared highly filled polyamide 6/organoclay nanocomposites and characterized their thermal and flammability properties. The objectives were to identify a critical composition that is needed to form a stable char with no apertures or cracks and to gain a thorough understanding of the mechanisms of flame retardancy. It was shown that there is no need for higher percentages of clay and even smaller amounts of clay (<10 wt%) should be enough to achieve good fire performance. Factors such as incoherency, poor stability and non-uniformity of the char or the presence of large cracks and formation of island-like structures were insignificant in slowing down the heat release and mass loss rates. Nevertheless, there was no stage during the flammability test where the fire completely extinguished even when the protective layer was stable and free from major cracks/apertures. Based on these results, new insights and approaches to process better flame retardant polymer nanocomposites are discussed

  15. Synthesis of Highly Reactive Subnano-sized Zero-valent Iron using Smectite Clay Templates

    Science.gov (United States)

    Gu, Cheng; Jia, Hanzhang; Li, Hui; Teppen, Brian J.; Boyd, Stephen A.

    2010-01-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH4, resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of discrete regions of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of ~ 5 Å. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the XRD results since the diameter of elemental Fe is 2.5 Å. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene:non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnano-scale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, e.g. as components of constructed reactive domains such as reactive caps for contaminated sediments. PMID:20446730

  16. Evaluation of the bleaching flux in clays containing hematite and different clay minerals

    International Nuclear Information System (INIS)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos; Morelli, M.R.

    2016-01-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  17. CHARACTERIZATION OF REACTIVE FORMATIONS: A VISION FOR THE CAPACITY EXPANSION

    Directory of Open Access Journals (Sweden)

    Danielly Vieira de Lucena

    2013-12-01

    Full Text Available All classes of clay minerals absorb water, but the smectite absorb much larger volumes than the other classes because of its expanded network. During the drilling of oil wells it is common for the detection of layers consisting of clay minerals high grade of hydration arranged in laminar packages. When in contact with water, the packets are separated clay as the water enters the basal spacing. This phenomenon is known as expansion or swelling. Given this, this paper aims to characterize shales in two regions of the country to explain the susceptibility of hydration of each of these formations. The characterization was done by making use of Exchange cation capacity (ECC, X-ray fluorescence (XRF, diferential thermal analysis (DTA, Thermogravimetry (TGA and X-ray diffraction (XRD. The results obtained showed that among the shales studied, those with the greatest degree of clay fractions (smectite in its composition showed higher swelling index according to the methodology of Foster.

  18. The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results

    Energy Technology Data Exchange (ETDEWEB)

    De Buizer, James M.; Shuping, Ralph [SOFIA-USRA, NASA Ames Research Center, MS 232-12, Moffett Field, CA 94035 (United States); Liu, Mengyao; Tan, Jonathan C.; Staff, Jan E.; Tanaka, Kei E. I. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Zhang, Yichen [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Beltrán, Maria T. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Whitney, Barbara [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St, Madison, WI 53706 (United States)

    2017-07-01

    We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from ∼10 to 40 μ m. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based mid-infrared (MIR) observations and archival Spitzer and Herschel data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses m {sub *} ∼ 10–50 M {sub ⊙} accreting at ∼10{sup −4}–10{sup −3} M {sub ⊙} yr{sup −1} inside cores of initial masses M {sub c} ∼ 30–500 M {sub ⊙} embedded in clumps with mass surface densities Σ{sub cl} ∼ 0.1–3 g cm{sup −2}. Fitting the Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates ∼100× smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.

  19. The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results

    Science.gov (United States)

    De Buizer, James M.; Liu, Mengyao; Tan, Jonathan C.; Zhang, Yichen; Beltrán, Maria T.; Shuping, Ralph; Staff, Jan E.; Tanaka, Kei E. I.; Whitney, Barbara

    2017-07-01

    We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from ∼10 to 40 μm. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based mid-infrared (MIR) observations and archival Spitzer and Herschel data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses m* ∼ 10–50 M⊙ accreting at ∼10‑4–10‑3 M⊙ yr‑1 inside cores of initial masses Mc ∼ 30–500 M⊙ embedded in clumps with mass surface densities Σcl ∼ 0.1–3 g cm‑2. Fitting the Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates ∼100× smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.

  20. SAXS Study of Reversibly Crosslinked Isotactic Polypropylene/clay Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bouhelal, S.; Cagiao, M; Benachour, D; Djellouli, B; Rong, L; Hsiao, B; Baltá-Calleja, F

    2010-01-01

    A new route based on reversibly crosslinking reactive extrusion is applied for the development of iPP/clay nanocomposites. Analysis of small-angle X-ray scattering (SAXS) reflections of isotactic polypropylene (iPP)/clay nanocomposites, prepared by two different mixing and chemical crosslinking methods (i.e., conventional and in situ), is presented and results are compared with preceding wide-angle X-ray diffraction (WAXD) results. It is shown that the presence of clay significantly affects the value of long spacing in iPP, as well as the coherence length of lamellar stacks. Results show that the size of the coherently diffracting nanodomains decreases in two stages, first rapidly and then slowly as a function of increasing clay content. This can be attributed to the influence of confined iPP lamellae under the effect of rising number of clay particles. The appearance of the {gamma}-crystalline form in the crosslinked iPP/clay nanocomposites is related with the difficulty in chain folding of iPP chains introduced by the chemical crosslinking process, as well as by the presence of clay particles.

  1. Synthesis of Various Polyaniline / Clay Nanocomposites Derived from Aniline and Substituted Aniline Derivatives by Mechanochemical Intercalation Method

    Directory of Open Access Journals (Sweden)

    N. Kalaivasan

    2010-01-01

    Full Text Available Polyaniline clay nanocomposite can be prepared by mechano-chemical method in which intercalation of anilinium ion into the clay lattices accomplished by mechanical grinding of sodium montmorillonite (Na+MMT in presence of anilinium hydrochloride at room temperature using mortar & pestle for about 30 min and subsequent grinding with oxidizing agent, ammonium peroxysulfate. The appearance of green colour indicates the formation of polyaniline/clay nanocomposite (PANI/Clay. Similarly aniline derivatives like o-toludine and o-anisidine in the form of HCl salt can form intercalation into the clay lattices. The intercalated aniline derivatives were ground mechanically in presence of oxidizing agent ammonium peroxysulfate lead to formation of substituted polyaniline/ clay nanocomposites. The characteristics of various polyaniline-clay nanocomposites were investigated using UV-Visible, FT-IR, cyclic voltammetry studies.

  2. Methods for obtention of PS/clay nanocomposites

    International Nuclear Information System (INIS)

    Lins, Pedro G.; Valera, Ticiane S.; Coelho, Caio P.D.; Demarquette, Nicole R.

    2009-01-01

    In this work, nanocomposites of Polystyrene (PS) and organoclay were obtained using a twin-screw extruder and a mixer Haake. A commercial clay named Cloisite 20A was used. The clay and the nanocomposites were characterized by X-Ray Diffraction. The rheological properties were investigated carrying out small amplitude oscillatory strain (SAOS). The results of X-ray diffraction showed that the polymer was incorporated by the organoclay. The results of SAOS indicated a better clay dispersion for the samples obtained using the mixer. (author)

  3. Processing and characterization of Polystyrene/cornstarch/organophilic clay hybrids

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan R. de; Amorim, Ywrrenan C.; Andrade, Cristina T. de

    2011-01-01

    Polystyrene/cornstarch composite blends with organophilic Cloisite 15A were prepared in an internal mixer in the presence of maleic anhydride (MA). The contents of clay were 1, 3 and 5%, based on the weight of the blend. The results obtained by X-ray diffraction revealed significant intercalation and exfoliation of clay particles within the polymeric moiety, which indicate increased interaction between the components of the nanocomposites. Thermogravimetric analysis results revealed the increase in thermal stability for the compatibilized blends in relation to the noncompatibilized PS/starch blends. The composites showed better thermal stability with increasing clay content. (author)

  4. Interphase vs confinement in starch-clay bionanocomposites.

    Science.gov (United States)

    Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis

    2015-03-06

    Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Facts and features of radionuclide migration in Boom Clay

    International Nuclear Information System (INIS)

    De Regge, P.; Henrion, P.; Monsecour, M.; Put, M.

    1988-01-01

    The evolution which took place during ten years of research on the behaviour of radionuclides in Boom Clay is described. Initially, the Boom Clay was regarded as a chemically inert exchanger and the radiochemical research aimed at determining the distribution of cations between the clay and some liquid phases. The observation that Boom Clay deteriorates in contact with air and loses important intrinsic properties formed a major breakthrough in the research and led to a careful examination of the real in-situ conditions. Efforts devoted to the understanding of the chemical factors pertaining to the pH, the redox potential, the extent of the buffering capacity of FeS 2 and CaCO 3 in equilibrium with the interstitial aqueous phase are reviewed. Also emerging from the overall picture was the role of the organic material present in the Boom Clay. In contrast to the water percolating fractured formations which may not be in equilibrium with the rock, the interstitial aqueous phase is completely in equilibrium with Boom Clay mainly because of its low permeability and the large excesses of buffering components. As the retention mechanisms are better understood, a more coherent picture is obtained from distribution and diffusion experiments and the effects of consolidation are being investigated in detail. 23 refs.; 4 figs.; 3 tabs

  6. Clay minerals in sandstone uranium deposits: radwaste applications

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1990-01-01

    Clay minerals play an important role in the genesis of uranium deposits in sandstones. They incorporate the rate earths (REE), U, Sb, Th, Cs, Rb, Sr, Y, Ba, and even small amounts of chalcophiles. These minerals possess analog elements for many of the radwaste fission products as well as actinides and some actinide daughters. In sandstone uranium deposits, clay minerals are also associated with sulfide minerals, usually pyrite, and organic carbonaceous matter. The primary clay minerals are usually smectites, illites, chlorites and mixed layer varieties. The integrity of these clay minerals is demonstrated by their retention of formational-mineralization ages determined by Rb-Sr geochronologic investigation of the Grants Mineral Belt of the United States. The importance of the clay minerals as analog for parts of the multi-barrier concept in radwaste disposal is their ability to impede water penetration into - and movement of key elements out of uranium rich zones. The clay minerals further sorb and in other ways incorporate into their structures many fission products and actinide analogs from man-made nuclear wastes. 22 refs., 1 fig., 3 tabs

  7. Fluoride retention by kaolin clay

    DEFF Research Database (Denmark)

    Kau, P. M. H.; Smith, D. W.; Binning, Philip John

    1997-01-01

    To evaluate the potential effectiveness of kaolin clay liners in storage of fluoride contaminated waste, an experimental study of the sorption and desorption behaviour of fluoride in kaolin clay was conducted. The degree of fluoride sorption by kaolin was found to depend on solution p......H and available fluoride concentration with equilibrium being achieved within 24 h. A site activation process involving the uptake of fluoride was also observed at the initial stages of sorption. This behaviour was attributed to a layer expansion process of the clay during sorption. The maximum fluoride sorption...

  8. Disposal of radioactive waste into clay layers the most natural option

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Bonne, A.

    1990-01-01

    Among the geological formations suitable for the disposal of radioactive waste, the clay formations provide outstanding opportunities : impermeable for water, self-healing, strongly absorbing for ions, widespread in nature. The self-healing properties of large clay deposits have been demonstrated by their auto-sealing and plastic response to tectonic stress and magmatic intrusion. The discovery of fossil trees preserved after geologic periods of burial in clay is one of the most dramatic illustrations of their entombment ability. The physicochemical and hydrologic characteristics of the Boom clay are very favorable for the confinement of migrating radionuclides within the layer. Except for the extremely long half-lives ( 237 Np, 129 I,...) no radionuclide can escape from the clay body. The effects of heat, metal corrosion, material interaction and biochemical degradation on the natural properties of the clay layer are discussed in some detail and related to the natural properties of the clay formation which have to stay unaltered for geologic periods. The first Safety Assessment Report, established by NIRAS-ONDRAF in close collaboration with SCK-CEN, has been submitted to a multi-disciplinary task force which is to advise the Belgian Government on the suitability of the Boom clay layer below the Nuclear Research site of Mol as a potential host formation for nuclear waste coming from the electronuclear program. 13 refs., 2 figs., 1 tab

  9. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection.

    Science.gov (United States)

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-10-10

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

  10. The Formation of the Model of Diagnosing the Results Implementation of of Consulting Projects for Enterprises

    Directory of Open Access Journals (Sweden)

    Kuzmin Oleh Ye.

    2017-11-01

    Full Text Available In the article the graphic-analytical model of diagnostics of results of implementation of consulting projects is formed, which allows to: take into consideration interests of participants to the project on choice of methods and methodologies of diagnosing; allocate alternative sets of business indicators for each object of impact in terms of consulting project; establish economic and non-economic criteria for evaluating the effectiveness of consulting, as well as monitoring of indicators and automated processing of diagnostic results to control deviations from the optimal values of the diagnosed project results. A structural-logical model of formation of alternative sets of indicators and choice of indicators for diagnostics of results of consulting projects has been developed. The elements of the enterprise management system have been codified to harmonize the corresponding indicators with their subsequent combination within the proposed sets. The control system objects and their elements have been allocated. The groups of indicators according to the technology of Balanced Score Card (BSC have been presented. The prospect of further research is the economic assessment of implementation of the diagnosed consulting projects, which will reveal the links between the parameters of production-economic activity and the assessment of projects, and allows choose the most significant ones.

  11. In situ analysis of microbial reduction of a nitrate plume in Opalinus clay

    International Nuclear Information System (INIS)

    Bleyen, N.; Smets, S.; Valcke, E.; Albrecht, A.; De Canniere, P.; Schwyn, B.; Wittebroodt, C.

    2012-01-01

    Document available in extended abstract form only. In several countries, such as Belgium, France and Switzerland, clay formations are foreseen as the host rock for geological disposal of bituminized low-level and intermediate-level long-lived radioactive waste. Suitable clay formations exhibit favorable hydro-mechanical and geochemical characteristics, which are expected to retard the migration of leached radionuclides. Along with radionuclides, certain classes of bituminized radioactive waste may also contain high concentrations of NaNO 3 , dispersed into the hydrophobic bitumen matrix used to stabilize the waste. During and after saturation of the disposal gallery, this bituminized waste will start to take up water due to osmosis, resulting in the leaching of significant amounts of NaNO 3 and soluble organic bitumen degradation products (BDP) into the clay pore water. This nitrate plume could cause several geochemical and biochemical processes in the clay surrounding the waste disposal gallery, potentially affecting the barrier function of the host rock. To study these processes, an in situ experiment in the Opalinus Clay, named the Bitumen-Nitrate-Clay interaction (BN) experiment, is being performed at the Mont Terri Rock Laboratory (CH). The experiment consists of a vertical borehole rigged with a downhole equipment containing three packed-off intervals, each lined with a cylindrical sintered stainless steel filter screen to allow contact with the surrounding clay. Prior to the start of the tests, the intervals were injected with an artificial Opalinus Clay pore water, containing all major ions at pore water concentrations at Mont Terri, but no organic matter, and were equilibrated with the surrounding clay for ∼8 months. To ensure a continuous water flow during the tests, each interval is connected to a stainless steel water circulation unit, equipped with water sampling containers, circulation pumps and flow meters. In addition, to continuously monitor the

  12. Comprehensive review of geosynthetic clay liner and compacted clay liner

    Science.gov (United States)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine–grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  13. Physical and chemical parameters acquisition in situ, in deep clay. Development of sampling and testing methods

    International Nuclear Information System (INIS)

    Lajudie, A.; Coulon, H.; Geneste, P.

    1991-01-01

    Knowledge of deep formation for radioactive waste disposal requires field-tests or bench-scale experiments on samples of the site material. In the case of clay massifs the taking of cores and the sampling of these are particularly difficult. The most suitable materials and techniques were selected from a study of clay colling and conservation methods. These were used for a series of core samples taken at Mol in Belgium. Subsequently permeability measurements were carried out in laboratory on samples from vertical drilling and compared with in situ measurements. The latter were made by horizontal drillings from the shaft excavation of the underground facility HADES at Mol. There is a good overall agreement between the results of the two types of measurements. 25 figs.; 4 tabs.; 12 refs.; 16 photos

  14. Spatially resolved XRF, XAFS, XRD, STXM and IR investigation of a natural U-rich clay

    Science.gov (United States)

    Denecke, M. A.; Michel, P.; Schäfer, T.; Huber, F.; Rickers, K.; Rothe, J.; Dardenne, K.; Brendebach, B.; Vitova, T.; Elie, M.

    2009-11-01

    Combined spatially resolved hard X-ray μ-XRF and μ-XAFS studies using an X-ray beam with micrometer dimensions at the INE-Beamline for actinide research at ANKA and Beamline L at HASYLAB with those from scanning transmission soft X-ray microscopy (STXM) and synchrotron-based Fourier transform infrared microspectroscopy (μ-FTIR) recorded with beam spots in the nanometer range are used to study a U-rich clay originating from Autunian shales in the Permian Lodève Basin (France). This argillaceous formation is a natural U deposit associated with organic matter (bitumen). Results allow us to differentiate between possible mechanisms leading to U enrichment: likely U immobilization via reaction with organic material associated with clay mineral. Such investigations support development of reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  15. Modelling of clay diagenesis using a combined approach of crystalchemistry and thermochemistry: a case study in the smectite illitization.

    Science.gov (United States)

    Geloni, Claudio; Previde Massara, Elisabetta; Di Paola, Eleonora; Ortenzi, Andrea; Gherardi, Fabrizio; Blanc, Philippe

    2017-04-01

    Diagenetic transformations occurring in clayey and arenaceous sediments is investigated in a number of hydrocarbon reservoirs with an integrated approach that combines mineralogical analysis, crystalchemistry, estimation of thermochemical parameters of clay minerals, and geochemical modelling. Because of the extremely variable crystalchemistry of clays, especially in the smectite - illite compositional range, the estimation of thermochemical parameters of site-specific clay-rich rocks is crucial to investigate water-rock equilibria and to predict mineralogical evolutionary patterns at the clay-sandstone interface. The task of estimating the thermochemical properties of clay minerals and predicting diagenetic reactions in natural reservoirs is accomplished through the implementation of an informatized, procedure (IP) that consists of: (i) laboratory analysis of smectite, illite and mixed layers (I/S) for the determination of their textural characteristics and chemical composition; (ii) estimation of the thermodynamic and structural parameters (enthalpy, entropy, and free energy of formation, thermal capacity, molar volume, molar weight) with a MS Excel tool (XLS) specifically developed at the French Bureau of Geological and Mining Researches (BRGM); (iii) usage of the SUPCRT (Johnson et al., 1992) software package (thereinafter, SSP) to derive log K values to be incorporated in thermodynamic databases of the standard geochemical codes; (iv) check of the consistency of the stability domains calculated with these log K values with relevant predominance diagrams; (v) final application of geochemical and reactive transport models to investigate the reactive mechanisms under different thermal conditions (40-150°C). All the simulations consider pore waters having roughly the same chemical composition of reservoir pore waters, and are performed with The Geochemist Workbench (Bethke and Yeakel, 2015), PHREEQC (Parkhurst, 1999) and TOUGHREACT (Xu, 2006). The overall

  16. Effect of crude oil contamination on the engineering behavior of clay soils

    International Nuclear Information System (INIS)

    Rehman, H.; Abdoljaowad, S.N.

    2005-01-01

    Humans are, unintentionally or intentionally contaminating soil from different sources. The contaminated soil are not only a challenge for the environmentalists but also for geotechnical engineers. When contaminated by crude oil, the soil is subjected to a change in its engineering properties. The soil, which is mostly affected by its environment, is clay, being active electro-chemically. So, a comprehensive laboratory-testing program was performed to compare the engineering properties of an uncontaminated and a contaminated clay. Laboratory tests included all basic and advanced geotechnical tests along with Scanning Electron Microscope (SEM). Crude oil was chosen as the contaminant. The clay was taken from the Al-Qatif area of the Eastern province of Saudi Arabia. The selected soil is considered to be highly expansive in nature. The comparison between uncontaminated and crude oil contaminated clay showed that there would be a significant change in the engineering behavior of the clay if it were contaminated by crude oil. The contaminated clay behaves more like sand, owing to the formation of agglomerates. The coarse-grained soil-like behavior was observed in the strength of the oil-contaminated clay. The contamination has affected the plasticity and the cation exchange capacity of the investigated clay. The swelling pressure of the contaminated clay is 1/3 of that of the uncontaminated clay while the swelling is almost the same. (author)

  17. Non-isothermal crystallization kinetics of polyethylene–clay ...

    Indian Academy of Sciences (India)

    MDPE) and MDPE–clay nanocomposites have been investigated by differential scanning calorimeter. The modified Avrami, Ozawa, Liu and Ziabicki equations have been applied to describe non-isothermal crystallization process. The results of ...

  18. Modelling the interaction of the alkaline plume with Boom Clay at different scales

    International Nuclear Information System (INIS)

    Jacques, Diederik; Wang, Lian

    2012-01-01

    In Belgium, Boom Clay is studied as a potential host formation for geological disposal of high-level radioactive waste. The current reference design of the engineered barrier system ('supercontainer design') plans to use a considerable amount of cementitious materials as construction material, buffer and backfill. Diffusion of the alkaline pore fluids from the concrete engineered barriers to the Boom Clay may change the retention properties of the Boom Clay in the vicinity of the engineered barriers - Boom Clay interface. The objectives of this work are to (i) model the breakthrough curves obtained from leaching small undisturbed Boom Clay cores with young concrete water (high Na and K content, pH 13.5), and (ii) simulate the possible extent of Boom Clay alterations owing to interactions with alkaline fluids for a period of 100,000 years. For both objectives, the reactive transport code PHREEQC is used

  19. From clay bricks to deep underground storage; vom lehmziegel bis zum tiefenlager -- anwendung von ton

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted.

  20. Enhancement of corrosion protection effect in mechanochemically synthesized Polyaniline/MMT clay nanocomposites

    Directory of Open Access Journals (Sweden)

    N. Kalaivasan

    2017-02-01

    Full Text Available Nanocomposite material that consists of DBSA (dodecylbenzensulfonic acid doped polyaniline (PANI was prepared by solvent free mechanochemical intercalation method. Organic aniline monomer was first intercalated into the interlayer regions of Na-MMT (sodium montmorillonite clay hosts and followed by one-step oxidative polymerization. The as synthesized polyaniline clay nanocomposites were treated with DBSA to get PANI-DBSA clay nanocomposites. PANI-DBSA clay nanocomposites in the form of coatings at different concentrations of DBSA on C45 steel were found much superior in corrosion protection over those of conventional polyaniline, based on the series of electrochemical measurement of corrosion potential, polarization resistance and corrosion current in 3.5% aqueous NaCl electrolyte. UV–visible spectroscopy, FT-IR and SEM studies confirm the formation of intercalated polyaniline clay nanocomposites inside the clay nanolayers.

  1. Retention and loss of water extractable carbon in soils: effect of clay properties.

    Science.gov (United States)

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  2. Clay characterization of Monte Alegre-RN, Brazil

    International Nuclear Information System (INIS)

    Alencar, M.I.; Ferreira, O.F.; Ren, D.G.; Cunha, J.M.R.; Harima, E.

    2011-01-01

    This study aimed to characterize the clay from the municipality of Monte Alegre in Rio Grande do Norte. Clay (popularly known as tabatinga) is used in brick kilns for producing bricks and tiles. This study also verified the possibility of using this for industrial ceramics and ceramic tiles. The following techniques were used for characterization: chemical and mineralogical analysis which found the composition of this material the presence of quartz and kaolinite, plasticity index where the result was that the clay has plasticity null; solid residue content was 60, 19%, the determination of loss on ignition was 8.70% on checking the color of the burning got creamy clear. (author)

  3. Characterization of clay minerals; Caracterizacion de minerales arcillosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A. [Gerencia de Ciencias Basicas, Direccion de Investigacion Cientifica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  4. Acid activation of natural clays aiming their application in adsorption

    International Nuclear Information System (INIS)

    Silva, M.M. da; Sousa, A.K.F. de; Lima, W.S.; Vasconcelos, P.N.M. de; Rodrigues, M. G.F.

    2012-01-01

    Clays of smectite type have wide application in industrial, mainly due to their adsorption properties. However, it is necessary to subject them to chemical treatments to optimize their potential. This study aimed to analyze the effects of acid activation on the clay Brasgel fresh. In the acid activation was used concentrated hydrochloric acid at different concentrations (3M, 4.5 M and 6 M) at a temperature of 70 ° C for 30 minutes. The samples fresh and activated technique were characterized by X-ray Diffraction (XRD). The results show that the properties of clay after activation are improved, it could be used as adsorbents in the treatment of wastewater. (author)

  5. What makes a natural clay antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (2+ solubility.

  6. Preparation and characterization of bentonite organo clay; Preparacao de caracterizacao de argilas bentonitas organofilicas

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolli, C.; Almeida Neto, A.F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Quimica. Lab. de Engenharia Ambiental; Silva, M.G.C., E-mail: meuris@feq.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Quimica

    2009-07-01

    Bentonite clays organically modified have great potential use for environmental remediation, especially in the separation of organic compounds from the water. The aim of this work was the preparation of organophilic clays from 'Verde-Lodo' bentonite clay with the quaternary ammonium salts cetyl-pyridinium chloride and benzalkonium chloride. The materials obtained were characterized by XRD, thermogravimetric analyses, Helium picnometry, SEM and energy dispersive X-ray techniques. The results show consistently successful synthesis of the organoclay through the increase in the basal spacing, as well as salt elimination picks and presence of carbon and chlorine in the modified clays; they are inexistent elements in the natural clay. (author)

  7. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn\\'t significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  8. Structure and mechanical properties of polyamide 6/Brazilian clay nanocomposites

    Directory of Open Access Journals (Sweden)

    Amanda Melissa Damião Leite

    2009-06-01

    Full Text Available Recent interest in polymer/organoclays nanocomposites systems is motivated by the possibility of achieving enhanced properties and added functionality at lower clay loading as compared to conventional micron size fillers. By adding montmorillonite clay to polyamide 6 increases the Young modulus, yield strength and also improves barrier properties. In this work, nanocomposites of polyamide 6 with montmorillonite clay were obtained. The clay was chemically modified with three different quaternary ammonium salts such as: Dodigen, Genamin and Cetremide. In this case, a dispersion of Na-MMT was stirred and a salt equivalent to 1:1 of cation exchange capacity (CEC of Na-MMT was added to the dispersion. The montmorillonite clay (untreated and treated by ammonium salts and nanocomposites were characterized by X ray diffractions. Also the nanocomposites were characterized by transmission electron microscopy and mechanical properties. The results indicated that all the quaternary ammonium salts were intercalated between the layers of clay, leading to an expansion of the interlayer spacing. The obtained nanocomposites showed better mechanical properties when compared to polyamide 6. The clay acted as reinforcing filler, increasing the rigidity of nanocomposites and decreasing its ductility.

  9. Performance of polymeric films based thermoplastic starch and organophilic clay

    International Nuclear Information System (INIS)

    Cipriano, P.B.; Costa, A.N.M.; Araujo, S.S.; Araujo, A.R.A.; Canedo, E.L.; Carvalho, L.H.

    2010-01-01

    The aim of this work was the development and investigation of the properties of flat films of LDPE/corn thermoplastic starch (TPS). A bentonite clay (Argel) was organophilized and characterized by XRD. This clay (1%) in both pristine and organophilic forms was added to the matrix (LDPE) and to LDPE/TPS systems with TPS contents varying from 5-20% w/w. The films manufactured (LDPE, LDPE/Clay, LDPE/TPS, LDPE/TPS/Clay) were characterized. Results indicate that water vapor permeability is dependent and increases with TPS content which was attributed to the higher affinity of water by TPS. TPS and Clay addition to LDPE led to significant changes in film properties with respect to the neat LDPE. In general,tensile and perforation forces increased with clay and TPS contents; the strength of thermo sealed films lowered with natural clay addition and increased with TPS and organoclay incorporation and, in general, dynamic friction coefficient decrease with organoclay and TPS addition. Best overall properties were obtained for the systems containing the organoclay and optimal properties were achieved for the 5%TPS10 LDPE1% ANO system. (author)

  10. Estudo do comportamento reológico de barbotinas preparadas com argilas da Formação Corumbataí utilizadas no pólo cerâmico de Santa Gertrudes (SP Study of rheological behavior of slips prepared with clays from Corumbataí Formation used in ceramic pole of Santa Gertrudes (SP

    Directory of Open Access Journals (Sweden)

    R. R. Rocha

    2008-09-01

    pseudoplastic behavior and the tixotropy. The dependence of the rheological behavior on the clay mineralogy has also been analyzed and it was obtained by X-ray diffraction. The results of the rheological curves appeared to be very coherent with the determined mineralogy, indicating a worsening of the rheological behavior from the bottom to the top of the Corumbataí Formation due to the supergenic alteration and the presence of smectites.

  11. Geophysical Prospecting Of Clay Deposits in Abudu Area of Edo ...

    African Journals Online (AJOL)

    Its resistivities varied from about 1.0 ohm - m to 500 ohm-m. Area of probable clay formation and their thicknesses have been identified especially for future mining of industries foundation, operations and drilling. Journal of the Nigerian Association of Mathematical Physics, Volume 19 (November, 2011), pp 335 – 342 ...

  12. Paleoenvironmental significance of clay mineral assemblages in the ...

    Indian Academy of Sciences (India)

    A gravity core SK-221 recovered from the southeastern Arabian Sea near Laccadive–Chagos Ridge was examined to identify the sources ... runoff, which in turn influences soil formation and. Keywords. Arabian Sea; clay mineral; Holocene; monsoon; western India. J. Earth Syst. Sci. 122, No. 1, February 2013, pp. 173–185.

  13. Paleoenvironmental significance of clay mineral assemblages in the ...

    Indian Academy of Sciences (India)

    All the cycles observed in the monsoonal climate appear to be part of ... terrigenous input (Biscaye 1965). The climate change controls continental weathering rates and runoff, which in turn influences soil formation and. Keywords. Arabian Sea; clay ...... 219 99–108. Birkeland P W 1984 Soils and geomorphology (New York:.

  14. SBR Brazilian organophilic/clay nanocomposites

    International Nuclear Information System (INIS)

    Guimaraes, Thiago R.; Valenzuela-Diaz, Francisco R.; Morales, Ana Rita; Paiva, Lucilene B.

    2009-01-01

    The aim of this work is the obtaining of SBR composites using a Brazilian raw bentonite and the same bentonite treated with an organic salt. The clays were characterized by XRD. The clay addition in the composites was 10 pcr. The composites were characterized by XRD and had measured theirs tension strength (TS). The composite with Brazilian treated clay showed TS 233% higher than a composite with no clay, 133% higher than a composite with Cloisite 30B organophilic clay and 17% lower than a composite with Cloisite 20 A organophilic clay. XRD and TS data evidence that the composite with Brazilian treated clay is an intercalated nanocomposite. (author)

  15. Cytotoxicity and mutagenicity assessment of organomodified clays potentially used in food packaging.

    Science.gov (United States)

    Maisanaba, Sara; Prieto, Ana I; Pichardo, Silvia; Jordá-Beneyto, María; Aucejo, Susana; Jos, Ángeles

    2015-09-01

    Modern food packaging has made great advances as result of global trends and consumer preferences, which are oriented to obtain improved food quality and safety. In this regard, clay minerals, and mainly Montmorillonite (Mt) are attracting considerable interest in food packaging because of the improvements developed in mechanical and barrier properties. Hence, the present work aim to assess the toxicity of four Montmorillonite-based clay minerals, an unmodified clay, Cloisite®Na+ (CNa+), and three modified Mt clays: Cloisite®30B (C30B), a commercial clay, and Clay1 and Clay2, two novel modified organoclays developed by the Packaging, Transport, & Logistics Research Institute (ITENE). First, the cytotoxic effects were studied in the Human Umbilical Vein Endothelial Cells (HUVEC). In addition, the potential mutagenicity of the clays was evaluated by the Ames test. Clay1 did not induce any cytotoxic effects in HUVEC, although it exhibited potential mutagenicity in TA98 Salmonella typhimurium strain. In contrast, Clay2 produced cytotoxicity in endothelial cells but no mutagenicity was recorded. However, CNa+ was not cytotoxic neither mutagenic. And finally, C30B showed positive results in both assays. Therefore, results showed that clay minerals have a different toxicity profile and a case by case toxicity evaluation is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Analysis of Experimentation Results on University Graduates' Readiness Formation to Act in Extraordinary Situations

    Science.gov (United States)

    Moloshavenko, Vera L.; Prozorova, Galina V.; Sienkiewicz, Lyudmila B.

    2016-01-01

    The article presents the experimentation on graduates' readiness formation to act in extraordinary situations conducted in the Tyumen Industrial University in training bachelors in "Oil and Gas Business". The criteria of graduates' readiness formation to act in extraordinary situations are the following: practicability, validity,…

  17. FORMATION OF TOILET HABITS IN CHILDREN IN MOSCOW. RETROSPECTIVE STUDY RESULTS. PART II

    Directory of Open Access Journals (Sweden)

    G. A. Karkashadze

    2013-01-01

    Full Text Available The results of the first Russian study of toilet habits formation in children have been obtained. The article was planned to be published in 2 subsequent parts due to the extensiveness of the material. This article is the 2nd part*. It presents and comments on the remaining part of results in the form of the connection between main parameters and characteristics of toilet habits training processes and physiological, psychological and social factors; it also presents the discussion and conclusions. Comparative data (with foreign studies is given. A multitude of both physiological and social factors affect the process of children’s toilet habits training. The following physiological factors have been revealed: stool frequency, physiological involuntary night urination, peculiarities of falling asleep and pernicious habits – processes, which reflect the intestinal motility regulation and defecation states, urination control and neuropsychic activity. The selected training strategy and tactics, style of communication with a child also affect the training process. The most influential family-social factors in terms of toilet habits training processes are: two- or one-parent family, mother’s education and twins in the family. 

  18. Interaction and transport of actinides in natural clay rock with consideration of humic substances and clay organics. Characterization and quantification of the influence of clay organics on the interaction and diffusion of uranium and americium in the clay. Joint project

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, Gert [Helmholtz-Zentrum Dresden-Rossendorf e.V. (Germany). Inst. of Radiochemistry; Schmeide, Katja; Joseph, Claudia; Sachs, Susanne; Steudtner, Robin; Raditzky, Bianca; Guenther, Alix

    2011-07-01

    The objective of this project was the study of basic interaction processes in the systems actinide - clay organics - aquifer and actinide - natural clay - clay organics - aquifer. Thus, complexation, redox, sorption and diffusion studies were performed. To evaluate the influence of nitrogen, phosphorus and sulfur containing functional groups of humic acid (HA) on the complexation of actinides in comparison to carboxylic groups, the Am(III) and U(VI) complexation by model ligands was studied by UV-Vis spectroscopy and TRLFS. The results show that Am(III) is mainly coordinated via carboxylic groups, however, probably stabilized by nitrogen groups. The U(VI) complexation is dominated by carboxylic groups, whereas nitrogen and sulfur containing groups play a minor role. Phosphorus containing groups may contribute to the U(VI) complexation by HA, however, due to their low concentration in HA they play only a subordinate role compared to carboxylic groups. Applying synthetic HA with varying sulfur contents (0 to 6.9 wt.%), the role of sulfur functionalities of HA for the U(VI) complexation and Np(V) reduction was studied. The results have shown that sulfur functionalities can be involved in U(VI) humate complexation and act as redox-active sites in HA for the Np(V) reduction. However, due to the low content of sulfur in natural HA, its influence is less pronounced. In the presence of carbonate, the U(VI) complexation by HA was studied in the alkaline pH range by means of cryo-TRLFS (-120 C) and ATR FT-IR spectroscopy. The formation of the ternary UO{sub 2}(CO{sub 3}){sub 2}HA(II){sup 4-} complex was detected. The complex formation constant was determined with log {beta}{sub 0.1} M = 24.57 {+-} 0.17. For aqueous U(VI) citrate and oxalate species, luminescence emission properties were determined by cryo-TRLFS and used to determine stability constants. The existing data base could be validated. The U(VI) complexation by lactate, studied in the temperature range 7 to 65 C

  19. Interaction and transport of actinides in natural clay rock with consideration of humic substances and clay organics. Characterization and quantification of the influence of clay organics on the interaction and diffusion of uranium and americium in the clay. Joint project

    International Nuclear Information System (INIS)

    Bernhard, Gert; Schmeide, Katja; Joseph, Claudia; Sachs, Susanne; Steudtner, Robin; Raditzky, Bianca; Guenther, Alix

    2011-01-01

    The objective of this project was the study of basic interaction processes in the systems actinide - clay organics - aquifer and actinide - natural clay - clay organics - aquifer. Thus, complexation, redox, sorption and diffusion studies were performed. To evaluate the influence of nitrogen, phosphorus and sulfur containing functional groups of humic acid (HA) on the complexation of actinides in comparison to carboxylic groups, the Am(III) and U(VI) complexation by model ligands was studied by UV-Vis spectroscopy and TRLFS. The results show that Am(III) is mainly coordinated via carboxylic groups, however, probably stabilized by nitrogen groups. The U(VI) complexation is dominated by carboxylic groups, whereas nitrogen and sulfur containing groups play a minor role. Phosphorus containing groups may contribute to the U(VI) complexation by HA, however, due to their low concentration in HA they play only a subordinate role compared to carboxylic groups. Applying synthetic HA with varying sulfur contents (0 to 6.9 wt.%), the role of sulfur functionalities of HA for the U(VI) complexation and Np(V) reduction was studied. The results have shown that sulfur functionalities can be involved in U(VI) humate complexation and act as redox-active sites in HA for the Np(V) reduction. However, due to the low content of sulfur in natural HA, its influence is less pronounced. In the presence of carbonate, the U(VI) complexation by HA was studied in the alkaline pH range by means of cryo-TRLFS (-120 C) and ATR FT-IR spectroscopy. The formation of the ternary UO 2 (CO 3 ) 2 HA(II) 4- complex was detected. The complex formation constant was determined with log β 0.1 M = 24.57 ± 0.17. For aqueous U(VI) citrate and oxalate species, luminescence emission properties were determined by cryo-TRLFS and used to determine stability constants. The existing data base could be validated. The U(VI) complexation by lactate, studied in the temperature range 7 to 65 C, was found to be endothermic

  20. Rheological properties of sodium smectite clay

    International Nuclear Information System (INIS)

    Boergesson, L.; Hoekmark, H.; Karnland, O.

    1988-12-01

    The rheological properties of Na-smectite Mx-80 have been investigated by various laboratory tests. The investigations include determination of the hydraulic conductivity, the undrained stress-strain-strength properties, the creep properties, the compression and swelling properties in drained and undrained conditions and the undrained thermomechanical properties. Measurements have been made at different densities, clay/sand mixtures and pore water compositions. The influence of temperature, rate of strain and testing technique has also been considered. The investigation has led to a supply of basic data for the material models which will be used at performance calculations. The results have also increased the general understanding of the function of smectitic clay as buffer material. The microstructural behaviour has been considered at the validation of the different test results and the validity of the effective stress theory has been discussed. Comparisons with the properties of Ca-smectite have also been made. (orig.)

  1. The experimental testing of the long-term behaviour of cemented radioactive waste from nuclear research reactors in the geological disposal conditions of the boom clay

    Energy Technology Data Exchange (ETDEWEB)

    Sneyers, A.; Marivoet, J.; Iseghem, P. van [SCK-CEN, B-2400 Mol (Belgium)

    1998-07-01

    Liquid wastes, resulting from the reprocessing of spent nuclear fuel from the BR-2 Materials Testing Reactor, will be conditioned in a cement matrix at the dedicated cementation facility of UKAEA at Dounreay. In Belgium, the Boom clay formation is studied as a potential host rock for the final geological disposal of cemented research reactor waste. In view of evaluating the safety of disposal, laboratory leach experiments and in situ tests have been performed. Leach experiments in synthetic clay water indicate that the leach rates of calcium and silicium are relatively low compared to those of sodium and potassium. In situ experiments on inactive samples are performed in order to obtain information on the microchemical and mineralogical changes of the cemented waste in contact with the Boom clay. Finally, results from a preliminary performance assessment calculation suggest a non-negligible maximum dose rate of 5 10{sup -9} Sv/a for {sup 129}I. (author)

  2. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Neoformation of clay in lateral root catchments of mallee eucalypts: a chemical perspective

    Science.gov (United States)

    Verboom, William H.; Pate, John S.; Aspandiar, Mehrooz

    2010-01-01

    Background and Aims A previous paper (Annals of Botany 103: 673–685) described formation of clayey pavements in lateral root catchments of eucalypts colonizing a recently formed sand dune in south-west Western Australia. Here chemical and morphological aspects of their formation at the site are studied. Methods Chemical and physical examinations of soil cores through pavements and sand under adjacent heath assessed build-up of salts, clay and pH changes in or below pavements. Relationships of root morphology to clay deposition were examined and deposits subjected to scanning electron microscopy and energy-dispersive X-ray analysis. Xylem transport of mineral elements in eucalypt and non-eucalypt species was studied by analysis of xylem (tracheal) sap from lateral roots. Key Results The columns of which pavements are composed develop exclusively on lower-tier lateral roots. Such sites show intimate associations of fine roots, fungal filaments, microbiota and clay deposits rich in Si, Al and Fe. Time scales for construction of pavements by eucalypts were assessed. Cores through columns of pavemented profiles showed gross elevations of bulk density, Al, Fe and Si in columns and related increases in pH, Mg and Ca status in lower profiles. A cutting through the dune exhibited pronounced alkalinity (pH 7–10) under mallee woodland versus acidity (pH 5–6·5) under proteaceous heath. Xylem sap analyses showed unusually high concentrations of Al, Fe, Mg and Si in dry-season samples from column-bearing roots. Conclusions Deposition of Al–Fe–Si-rich clay is pivotal to pavement construction by eucalypts and leads to profound chemical and physical changes in relevant soil profiles. Microbial associates of roots are likely to be involved in clay genesis, with parent eucalypts supplying the required key mineral elements and carbon sources. Acquisition of the Al and Fe incorporated into clay derives principally from hydraulic uplift from ground water via deeply

  4. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  5. The formation of co-orbital planets and their resulting transit signatures

    Science.gov (United States)

    Granados Contreras, Agueda Paula; Boley, Aaron

    2018-04-01

    Systems with Tightly-packed Inner Planets (STIPs) are metastable, exhibiting sudden transitions to an unstable state that can potentially lead to planet consolidation. When these systems are embedded in a gaseous disc, planet-disc interactions can significantly reduce the frequency of instabilities, and if they do occur, disc torques alter the dynamical outcomes. We ran a suite of N-body simulations of synthetic 6-planet STIPs using an independent implementation of IAS15 that includes a prescription for gaseous tidal damping. The algorithm is based on the results of disc simulations that self-consistently evolve gas and planets. Even for very compact configurations, the STIPS are resistant to instability when gas is present. However, instability can still occur, and in some cases, the combination of system instability and gaseous damping leads to the formation of co-orbiting planets that are stable even when gas damping is removed. While rare, such systems should be detectable in transit surveys, although the dynamics of the system can make the transit signature difficult to identify.

  6. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    Science.gov (United States)

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  7. Boiling peanut Ara h 1 results in the formation of aggregates with reduced allergenicity.

    Science.gov (United States)

    Blanc, Fany; Vissers, Yvonne M; Adel-Patient, Karine; Rigby, Neil M; Mackie, Alan R; Gunning, A Patrick; Wellner, Nikolaus K; Skov, Per S; Przybylski-Nicaise, Laetitia; Ballmer-Weber, Barbara; Zuidmeer-Jongejan, Laurian; Szépfalusi, Zsolt; Ruinemans-Koerts, Janneke; Jansen, Ad P H; Bernard, Hervé; Wal, Jean-Michel; Savelkoul, Huub F J; Wichers, Harry J; Mills, E N Clare

    2011-12-01

    Roasting rather than boiling and Maillard modifications may modulate peanut allergenicity. We investigated how these factors affect the allergenic properties of a major peanut allergen, Ara h 1. Ara h 1 was purified from either raw (N-Ara h 1) or roasted (R-Ara h 1) peanuts. Boiling (100°C 15 min; H-Ara h 1) resulted in a partial loss of Ara h 1 secondary structure and formation of rod-like branched aggregates with reduced IgE-binding capacity and impaired ability to induce mediator release. Glycated Ara h 1 (G-Ara h 1) formed by boiling in the presence of glucose behaved similarly. However, H- and G-Ara h1 retained the T-cell reactivity of N-Ara h 1. R-Ara h 1 was denatured, comprised compact, globular aggregates, and showed no evidence of glycation but retained the IgE-binding capacity of the native protein. Ara h 1 aggregates formed by boiling were morphologically distinct from those formed by roasting and had lower allergenic activity. Glycation had no additional effect on Ara h 1 allergenicity compared with heating alone. Taken together with published data on the loss of Ara h 2/6 from boiled peanuts, this supports the hypothesis that boiling reduces the allergenicity of peanuts. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. How mobile are sorbed cations in clays and clay rocks?

    Science.gov (United States)

    Gimmi, T; Kosakowski, G

    2011-02-15

    Diffusion of cations and other contaminants through clays is of central interest, because clays and clay rocks are widely considered as barrier materials for waste disposal sites. An intriguing experimental observation has been made in this context: Often, the diffusive flux of cations at trace concentrations is much larger and the retardation smaller than expected based on their sorption coefficients. So-called surface diffusion of sorbed cations has been invoked to explain the observations but remains a controversial issue. Moreover, the corresponding surface diffusion coefficients are largely unknown. Here we show that, by an appropriate scaling, published diffusion data covering a broad range of cations, clays, and chemical conditions can all be modeled satisfactorily by a surface diffusion model. The average mobility of sorbed cations seems to be primarily an intrinsic property of each cation that follows inversely its sorption affinity. With these surface mobilities, cation diffusion coefficients can now be estimated from those of water tracers. In pure clays at low salinities, surface diffusion can reduce the cation retardation by a factor of more than 1000.

  9. Impact of star formation inhomogeneities on merger rates and interpretation of LIGO results

    International Nuclear Information System (INIS)

    O'Shaughnessy, R; Kopparapu, R K; Belczynski, K

    2012-01-01

    Within the next decade, ground based gravitational-wave detectors are in principle capable of determining the compact object merger rate per unit volume of the local universe to better than 20% with more than 30 detections. These measurements will constrain our models of stellar, binary and star cluster evolution in the nearby present-day and ancient universe. We argue that the stellar models are sensitive to heterogeneities (in age and metallicity at least) in such a way that the predicted merger rates are subject to an additional 30-50% systematic errors unless these heterogeneities are taken into account. Without adding new electromagnetic constraints on massive binary evolution or relying on more information from each merger (e.g., binary masses and spins), as few as the 5 merger detections could exhaust the information available in a naive comparison to merger rate predictions. As a concrete example immediately relevant to analysis of initial and enhanced LIGO results, we use a nearby-universe catalog to demonstrate that no one tracer of stellar content can be consistently used to constrain merger rates without introducing a systematic error of order O(30%) at 90% confidence (depending on the type of binary involved). For example, though binary black holes typically take many Gyr to merge, binary neutron stars often merge rapidly; different tracers of stellar content are required for these two types. More generally, we argue that theoretical binary evolution can depend sufficiently sensitively on star-forming conditions-even assuming no uncertainty in binary evolution model-that the distribution of star-forming conditions must be incorporated to reduce the systematic error in merger rate predictions below roughly 40%. We emphasize that the degree of sensitivity to star-forming conditions depends on the binary evolution model and on the amount of relevant variation in star-forming conditions. For example, if after further comparison with electromagnetic and

  10. Natural Radioactivity in Clay and Building Materials Used in Latvia

    Directory of Open Access Journals (Sweden)

    Riekstina D.

    2015-06-01

    Full Text Available This paper presents the results of natural radionuclide concentration and activity index study in materials used for construction in Latvia. Special attention is given to clay and clay ceramics. Concentrations of K-40 and Th- 232, U-238 radioactivity were determined using gamma-spectrometry method. In some building ware, maximal concentration of K-40 was 1440 Bq/kg, and of U-238 - 175 Bq/kg. In granite, the determined maximum concentration of Th-232 was 210 Bq/kg. It was found that radionuclide content in different period clay deposits can differ by more than two times, and up to five times in different clay ceramics. The results obtained are compared with analogous data from the other Baltic and North European countries.

  11. LABORATORY TESTING OF BENTONITE CLAYS FOR LANDFILL DESIGN AND CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Biljana Kovačević Zelić

    2007-12-01

    Full Text Available Top and bottom liners are one of the key construction elements in every landfill. They are usually made as compacted clay liners (CCLs composed of several layers of compacted clay with strictly defined properties or by the use of alternative materials such as: GCL – geosynthetic clay liner, BES – bentonite enhanced soils or bentonite/polymer mixtures. Following the state of the art experiences in the world, GCLs are used in Croatian landfills for several years, as well. Depending upon the location and the obeying function, GCLs have to fulfill certain conditions. A legislated compatibility criterion has to be proven by various laboratory tests. In the paper are presented the results of direct shear and chemical compatibility tests of GCLs as well as the results of permeability measurement of kaolin clay (the paper is published in Croatian .

  12. Assessment of geomechanical properties of intact Opalinus Clay - Expert report

    International Nuclear Information System (INIS)

    Amann, F.; Vogelhuber, M.

    2015-11-01

    This comprehensive report published by the Swiss Federal Nuclear Safety Inspectorate ENSI presents an expert report published on the assessment of the geomechanical properties of intact Opalinus Clay. This review report addresses the conceptual constitutive framework for repositories in Opalinus Clay. The author addresses the geomechanical fundamentals that are necessary in order to adequately judge experiments on intact Opalinus Clay and the interpretation of the results. The report assesses in detail the various test series on intact Opalinus Clay carried out along with the interpretations made by experts and NAGRA. Further assessments are quoted including those on sample geometries tested, effective strength properties, undrained shear strength properties and elastic properties. The results of work done by other experts are also presented and discussed. The report is completed with a list of relevant literature

  13. Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation.

    Science.gov (United States)

    Ribeiro, Simone P S; Estevão, Luciana R M; Nascimento, Regina S V

    2008-04-01

    Organophilic clay particles were added to a standard intumescent formulation and, since the role of clay expansion or intercalation is still a matter of much controversy, several clays with varying degrees of interlayer distances were evaluated. The composites were obtained by blending the nanostructured clay and the intumescent system with a polyethylenic copolymer. The flame-retardant properties of the materials were evaluated by the limiting oxygen index (LOI), the UL-94 rating and thermogravimetric analysis (TGA). The results showed that the addition of highly expanded clays to the ammonium polyphosphate and pentaerythritol formulation does not significantly increase the flame retardancy of the mixture, when measured by the LOI and UL-94. However, when clays with smaller basal distances were added to the intumescent formulation, a synergistic effect was observed. In contrast, the simple addition of clays to the copolymer, without the intumescent formulation, did not increase the fire retardance of the materials.

  14. Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation

    Directory of Open Access Journals (Sweden)

    Simone P S Ribeiro et al

    2008-01-01

    Full Text Available Organophilic clay particles were added to a standard intumescent formulation and, since the role of clay expansion or intercalation is still a matter of much controversy, several clays with varying degrees of interlayer distances were evaluated. The composites were obtained by blending the nanostructured clay and the intumescent system with a polyethylenic copolymer. The flame-retardant properties of the materials were evaluated by the limiting oxygen index (LOI, the UL-94 rating and thermogravimetric analysis (TGA. The results showed that the addition of highly expanded clays to the ammonium polyphosphate and pentaerythritol formulation does not significantly increase the flame retardancy of the mixture, when measured by the LOI and UL-94. However, when clays with smaller basal distances were added to the intumescent formulation, a synergistic effect was observed. In contrast, the simple addition of clays to the copolymer, without the intumescent formulation, did not increase the fire retardance of the materials.

  15. The effect of freeze-thaw cycles on the hydraulic conductivity of compacted clay

    International Nuclear Information System (INIS)

    Waite, D.; Anderson, L.; Caliendo, J.; McFarland, M.

    1994-01-01

    A study was conducted to investigate the detrimental effects of freeze-thaw on the hydraulic conductivity of compacted clay. The purpose of this study was to determine the effect that molding water content has on the hydraulic conductivity of a compacted clay soil that is subjected to freeze-thaw cycles, and to determine the relationship between the number of freeze-thaw cycles and the hydraulic conductivity of the compacted clay soil. Clay soils compacted and frozen wet of optimum experienced an increase in hydraulic conductivity of approximately 140 fold. The hydraulic conductivity of clay compacted dry of optimum increased ten fold. These results are consistent with recent research which suggests that clay compacted wet of optimum experiences large increases in hydraulic conductivity while the hydraulic conductivity of clay compacted dry of optimum increases to a lesser extent. 12 refs., 9 figs

  16. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    Science.gov (United States)

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Aerial Photography and Imagery, Ortho-Corrected - 2007 Digital Orthophotos - FDEM - Clay County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This dataset is a collection of GeoTIFF and MrSID format natural color orthophotos covering Clay-Putnam County, Florida. An orthophoto is remotely sensed image data...

  18. A novel mutation of adenomatous polyposis coli (APC) gene results in the formation of supernumerary teeth.

    Science.gov (United States)

    Yu, Fang; Cai, Wenping; Jiang, Beizhan; Xu, Laijun; Liu, Shangfeng; Zhao, Shouliang

    2018-01-01

    Supernumerary teeth are teeth that are present in addition to normal teeth. Although several hypotheses and some molecular signalling pathways explain the formation of supernumerary teeth, but their exact disease pathogenesis is unknown. To study the molecular mechanisms of supernumerary tooth-related syndrome (Gardner syndrome), a deeper understanding of the aetiology of supernumerary teeth and the associated syndrome is needed, with the goal of inhibiting disease inheritance via prenatal diagnosis. We recruited a Chinese family with Gardner syndrome. Haematoxylin and eosin staining of supernumerary teeth and colonic polyp lesion biopsies revealed that these patients exhibited significant pathological characteristics. APC gene mutations were detected by PCR and direct sequencing. We revealed the pathological pathway involved in human supernumerary tooth development and the mouse tooth germ development expression profile by RNA sequencing (RNA-seq). Sequencing analysis revealed that an APC gene mutation in exon 15, namely 4292-4293-Del GA, caused Gardner syndrome in this family. This mutation not only initiated the various manifestations typical of Gardner syndrome but also resulted in odontoma and supernumerary teeth in this case. Furthermore, RNA-seq analysis of human supernumerary teeth suggests that the APC gene is the key gene involved in the development of supernumerary teeth in humans. The mouse tooth germ development expression profile shows that the APC gene plays an important role in tooth germ development. We identified a new mutation in the APC gene that results in supernumerary teeth in association with Gardner syndrome. This information may shed light on the molecular pathogenesis of supernumerary teeth. Gene-based diagnosis and gene therapy for supernumerary teeth may become available in the future, and our study provides a high-resolution reference for treating other syndromes associated with supernumerary teeth. © 2017 The Authors. Journal of

  19. Nanocomposites of poly(methyl methacrylate (PMMA and montmorillonite (MMT Brazilian clay: A tribological study

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available Nanocomposites of PMMA+MMT Brazilian clays were developed by mechanical mixing in co-rotational twinscrew extrusion and injection molding with varying weight fraction of MMT Brazilian clays. The clays were purchased in crude form and then washed and purified to extract the organic materials and contaminants. Dynamic friction and wear rate of these composites were studied as a function of concentration of the Brazilian clay. With an increase in the amount of MMT Brazilian clay, the dynamic friction of the nanocomposites increases, a clear but not large effect. It can be explained by sticky nature of clay; clay in the composite is also on the surface and sticks to the partner surface. The wear rate as a function of the clay concentration passes through a minimum at 1 wt% MMT; at this concentration the clay provides a reinforcement against abrasion. At higher clay concentrations we see a dramatic increase in wear – a consequence of clay agglomeration and increased brittleness. The conclusions are confirmed by microscopy results.

  20. Study of desiccation cracking and fracture properties of clay soils

    OpenAIRE

    Costa, Warnakulasuriya D. Susanga M.

    2017-01-01

    The thesis focuses on the development of shrinkage cracking in clay soils upon drying and the determination of fracture properties of clay soils as applicable to analysis of desiccation cracking phenomenon. The results and conclusions were drawn from comprehensive experimental work analysed drawing from Classical Soil Mechanics, Fracture Mechanics, Unsaturated Soil Mechanics and Mechanics of Materials with the aid of powerful image analysis techniques. Attempts were made to fill the gaps in t...

  1. Resin injection in clays with high plasticity

    Science.gov (United States)

    Nowamooz, Hossein

    2016-11-01

    Regarding the injection process of polyurethane resins in clays with high plasticity, this paper presents the experimental results of the pressuremeter and cone penetration tests before and after injection. A very important increase in pressure limit or in soil resistance can be observed for all the studied depths close to the injection points. An analytical analysis for cylindrical pore cavity expansion in cohesive frictional soils obeying the Mohr-Coulomb criterion was then used to reproduce the pressuremeter tests before and after injection. The model parameters were calibrated by maintaining constant the elasticity parameters as well as the friction angel before and after injection. A significant increase in cohesion was observed because of soil densification after resin expansion. The estimated undrained cohesions, derived from the parameters of the Mohr-Coulomb criterion, were also compared with the cone penetration tests. Globally, the model predictions show the efficiency of resin injection in clay soils with high plasticity.

  2. Organoclays obtaining starting up of clays sodium

    International Nuclear Information System (INIS)

    Silva, M.M. da; Mota, M.F.; Oliveira, G.C. de; Rodrigues, M.G.F.

    2012-01-01

    Clays have several applications in many areas of fields of technology, however, modification of these materials using organic compounds can be performed to obtain further hydrophobic materials, for applications in the adsorption of organic pollutants. This study aimed to analyze the effects of modifying two clays using sodium quaternary ammonium surfactants through ion exchange reaction process, in obtaining organoclays. The samples with sodium and organoclays were characterized by the techniques of X-ray diffraction (XRD), Infrared Spectroscopy in the region (IV), Gravimetric and Differential Thermal Analysis (DTA / TG) and organic adsorption tests. The results show that the process of obtaining organoclay is efficient, and materials have the potential for future applications in removing organic contaminants. (author)

  3. Clay shale as host rock. A geomechanical contribution about Opalinus clay

    International Nuclear Information System (INIS)

    Lempp, Christof; Menezes, Flora; Sachwitz, Simon

    2016-01-01

    The Opalinuston is a prominent rock representing the type of organic clay shales or clay stones within the sequence of Triassic and Jurassic marine sediments in Southern Germany. The rock forms a homogenous unit some ten meters thick. The degree of consolidation of this type of pelitic rock depends mainly on the former load conditions, but is also dependent on the long-term weathering and even on the present exposition. The geomechanical parameters such as shear strength, tensional strength and permeability vary with the state of consolidation and become important when the use is discussed of such rocks for radioactive waste disposal. A tunneling project at the northern escarpment of the Swabian Alb (Southwest Germany) within the Opalinus clay offered the rare opportunity to obtain fresh unweathered rock samples in greater amounts compared to fresh drilling cores from which geomechanical investigations are usually undertaken. Consequently, the results of geomechanical laboratory testings are presented in order to compare here the results of multistep triaxial compression tests, of hydraulic fracturing laboratory tests and of some other tests for rock characterization with the corresponding results of Opalinus clay sites in Switzerland that were investigated by the Swiss Nagra Company for host rock characterization. After a discussion of the relevant state of fresh Opalinus clay, especially of suction pressure conditions and saturation state, the results of triaxial shear tests are presented. Increasing shear deformation at increasing pressure and unchanged water saturation do not result in a significant strength reduction of the Opalinus clay. The rock shows increasing cohesion and stiffness, if multiple loading has repeatedly reached the failure point. Thus there is no increased permeability with continued shearing. Only at the beginning of the shearing process is a temporarily increased permeability to be expected due to dilatation processes. An increased

  4. Homogeneity vs. Heterogeneity of Porosity in Boom Clay

    International Nuclear Information System (INIS)

    Hemes, Susanne; Desbois, Guillaume; Urai, Janos L.; De Craen, Mieke; Honty, Miroslav

    2013-01-01

    Microstructural investigations on Boom Clay at nano- to micrometer scale, using BIB-SEM methods, result in porosity characterization for different mineral phases from direct observations on high resolution SE2-images of representative elementary areas (REAs). High quality, polished surfaces of cross-sections of ∼ 1 mm 2 size were produced on three different samples from the Mol-Dessel research site (Belgium). More than 33,000 pores were detected, manually segmented and analyzed with regard to their size, shape and orientation. Two main pore classes were defined: Small pores (< 500 nm (ED)) within the clay matrices of samples and =big' pores (> 500 nm (ED)) at the interfaces between clay and non-clay mineral (NCM) grains. Samples investigated show similar porosities regarding the first pore-class, but differences occur at the interfaces between clay matrix and NCM grains. These differences were interpreted to be due to differences in quantitative mineralogy (amount of non-clay mineral grains) and grain-size distributions between samples investigated. Visible porosities were measured as 15 to 17 % for samples investigated. Pore-size distributions of pores in clay are similar for all samples, showing log-normal distributions with peaks around 60 nm (ED) and more than 95 % of the pores being smaller than 500 nm (ED). Fitting pore-size distributions using power-laws with exponents between 1.56 and 1.7, assuming self-similarity of the pore space, thus pores smaller than the pore detection resolution following the same power-laws and using these power-laws for extrapolation of pore-size distributions below the limit of pore detection resolution, results in total estimated porosities between 20 and 30 %. These results are in good agreement with data known from Mercury Porosimetry investigations (35-40 % porosity) and water content porosity measurements (∼ 36 %) performed on Boom Clay. (authors)

  5. Utilization of crushed clay brick in cellular concrete production

    Directory of Open Access Journals (Sweden)

    Ali A. Aliabdo

    2014-03-01

    Full Text Available The main objective of this research program is to study the effect of using crushed clay brick as an alternative aggregate in aerated concrete. Two series of mixtures were designed to investigate the physico-mechanical properties and micro-structural analysis of autoclave aerated concrete and foamed concrete, respectively. In each series, natural sand was replaced with crushed clay brick aggregate. In both series results showed a significant reduction in unit weight, thermal conductivity and sound attenuation coefficient while porosity has increased. Improvement on compressive strength of autoclave aerated concrete was observed at a percentage of 25% and 50% replacement, while in foamed concrete compressive strength gradually decreased by increasing crushed clay brick aggregate content. A comparatively uniform distribution of pore in case of foamed concrete with natural sand was observed by scanning electron microscope, while the pores were connected mostly and irregularly for mixes containing a percentage higher than 25% clay brick aggregate.

  6. Free volume sizes in intercalated polyamide 6/clay nanocomposites

    DEFF Research Database (Denmark)

    Wiinberg, P.; Eldrup, Morten Mostgaard; Pedersen, N.J.

    2005-01-01

    The effect of incorporating modified clay into a polyamide 6 (PA6) matrix, on the free volume cavity sizes and the thermal and viscoelastic properties of the resulting nanocomposite, was studied with positron annihilation lifetime spectroscopy, differential scanning calorimetry and dynamic...... response of PA6/clay nanocomposites, as compared to unfilled PA6, pointed towards a changed mobility in the non-crystalline regions. At high concentrations of clay (> 19 wt%) an increase of the free volume cavity diameter was observed, indicating a lower chain packing efficiency in the PA6/clay...... nanocomposites. The increased free volume sizes were present both above and below the glass transition temperature of PA6. (c) 2005 Elsevier Ltd. All rights reserved....

  7. Industrial calcination of kaolinitic clays to make reactive pozzolans

    Directory of Open Access Journals (Sweden)

    Roger S. Almenares

    2017-06-01

    Full Text Available This paper presents the results of an industrial trial for the production of calcined clay to be used as pozzolan in cement manufacture. For the trial, a wet-process clinker rotary kiln was modified to process on dry basis the low grade kaolinitic clay used as raw material. The kaolinitic clay deposit was chosen through a screening based on geologic, chemical and mineralogical criteria, and a confirmation of reactivity with an experimental protocol at lab scale. During the calcination trial technological parameters such as rotation speed, fuel pressure and outer temperature of calcined clay were measured and coupled with the reactivity of the samples tested, thus, preliminary estimations of operational parameters can be made. The trial proved that it is possible to produce a reactive pozzolan at industrial scale by implementing small conversions on existing equipment of a typical clinker plant.

  8. The regeneration viability evaluation of zinc on bofe clay columns

    International Nuclear Information System (INIS)

    Araujo, A.L.P. de; Silva, M.G.C da; Gimenes, M.L.; Barros, M.A.S.D.

    2011-01-01

    In this study, the Bofe bentonite clay, calcined at 500 °C was used for removal of zinc in porous bed with multiple cycles of adsorption-desorption. The natural and calcined clay was characterized by N 2 physisorption (BET method), X-ray diffraction (XRD) and thermal analysis). The experiments for the removal of zinc were carried out at room temperature (25 °C) with particle diameter of 0.855 mm and a flow rate of 3 mL/min. The results indicated that over the four cycles of adsorption/desorption of which was submitted, the clay has not lost the capacity for adsorption of metal and that this process may be feasible to replace or complement conventional treatments to remove metals, since that clay was able to reduce the concentration of zinc to the amount recommended by Resolution Nº 357/2005 of CONAMA (5 mg.L -1 ). (author)

  9. Fluoride content of clay minerals and argillaceous earth materials

    Science.gov (United States)

    Thomas, Josephus; Glass, H.D.; White, W.A.; Trandel, R.M.

    1977-01-01

    A reliable method, utilizing a fluoride ion-selective electrode, is described for the determination of fluoride in clays and shales. Interference by aluminum and iron is minimal. The reproducibility of the method is about ±5% at different levels of fluoride concentration.Data are presented for various clay minerals and for the geode kaolinite (125 ppm). The clay stratum immediately overlying a fluorite mineralized zone in southern Illinois was found to have a higher fluoride content than the same stratum in a nonmineralized zone approximately 1 mile away. Nonmarine shales in contact with Australian coals were found to be lower in fluoride content than were marine shales in contact with Illinois coals.It is believed that, in certain instances, peak shifts on DTA curves of similar clay minerals are the result of significant differences in their fluoride content.

  10. Formation and densification of mullite through solid-oxide reaction ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... temperatures by the formation of a solid solution with mullite but deteriorated the hot properties at higher temperature by about 25%. The addition of Y2O3 as sintering aid in clay and reactive alumina-based mullite was reported [15] to enhance density by liquid phase sintering and resulted in equiaxed. 1 ...

  11. Diffusion through statically compacted clay

    International Nuclear Information System (INIS)

    Ho, C.L.; Shebl, M.A.A.

    1994-01-01

    This paper presents experimental work on the effect of compaction on contaminant flow through clay liners. The experimental program included evaluation of soil properties, compaction, permeability and solute diffusion. A permeameter was built of non reactive materials to test samples compacted at different water contents and compactive efforts. The flow of a permeating solute, LiCl, was monitored. Effluent samples were collected for solute concentration measurements. The concentrations were measured by performing atomic adsorption tests. The analyzed results showed different diffusion characteristics when compaction conditions changed. At each compactive effort, permeability decreased as molding water content increased. Consequently, transit time (measured at relative concentration 50%) increased and diffusivity decreased. As compactive effort increased for soils compacted dry of optimum, permeability and diffusion decreased. On the other hand, as compactive effort increased for soils compacted wet of optimum, permeability and diffusivity increased. Tortuosity factor was indirectly measured from the diffusion and retardation rate. Tortuosity factor also decreased as placement water content was increased from dry of optimum to wet of optimum. Then decreases were more pronounced for low compactive effort tests. 27 refs., 7 figs., 5 tabs

  12. Radionuclides sorption in clay soils

    International Nuclear Information System (INIS)

    Siraky, G.; Lewis, C.; Hamlat, S.; Nollmann, C.E.

    1987-01-01

    The sorption behaviour of clay soils is examined through a parametric study of the distribution coefficient (Kd) for the radionuclides of interest, Cs and Sr. This work is a preliminary stage of the migration studies of these nuclides in a porous medium (ground of Ezeiza, Argentina) and the evaluation of radiologic impact of the removal of low and intermediate activity wastes in shallow trenches. The determination of Kd is performed by a static technique or batch. The phases are separated by centrifugation at 20000 g during 1 hour. The activity of supernatant solution of Cs-137 and Sr-85 is measured in a detecting system of I Na(Tl) well-type. Two types of parameters were changed: a) those related to the determination method: phase separation (centrifugation vs. centrifugation plus filtration); equilibrium period, ratio solid/liquid; b) those related to the geochemical system: pH of contact solution, carrier concentration, competitive ions, ionic strength, desorption. It was observed that the modification of parameters in the Kd-measurement does not change the order of magnitude of results. (Author)

  13. Special clays: what they are, characterization and properties

    OpenAIRE

    Coelho, Antonio C. Vieira; Santos, Pérsio de Souza; Santos, Helena de Souza

    2007-01-01

    Special clays are a group of clays different from the large volume of clay mineral products named "Industrial Clays": kaolins, ball clays, refractory clays, bentonites, fuller's earths, common clays. Two groups of special clays exist: rare, as in the case of hectorite and sepiolite and restricted areas, as in the case of white bentonite, halloysite and palygorskite (attapulgite). A review is given of the most important producers of the special clays and their properties in the Western World, ...

  14. Characterization and Growth Mechanism of Nickel Nanowires Resulting from Reduction of Nickel Formate in Polyol Medium

    Directory of Open Access Journals (Sweden)

    Olga A. Logutenko

    2016-01-01

    Full Text Available Nickel linear nanostructures were synthesized by reduction of nickel formate with hydrazine hydrate in ethylene glycol medium in the absence of any surfactants or capping agents for direction of the particles growth. The effect of the synthesis conditions such as temperature, reduction time, type of polyol, and nickel formate concentration on the reduction products was studied. The size and morphology of the nickel nanowires were characterized by X-ray diffraction, scanning, and transmission electron microscopy. It was shown that the nickel nanocrystallites were wire-shaped with a face-center-cubic phase. Ethylene glycol was found to play a crucial role in the formation of the nickel nanowires. The possible growth processes of the wire-shaped particles taking place at 110 and 130°C are discussed. It was shown that, under certain synthesis conditions, nickel nanowires grow on the surface of the crystals of the solid intermediate of nickel with hydrazine hydrate.

  15. Coupling diffusion and high-pH precipitation/dissolution in the near field of a HLW repository in clay by means of reactive solute transport models

    Science.gov (United States)

    Samper, J.; Font, I.; Yang, C.; Montenegro, L.

    2004-12-01

    The reference concept for a HLW repository in clay in Spain includes a 75 cm thick bentonite buffer which surrounds canisters. A concrete sustainment 20 cm thick is foreseen between the bentonite buffer and the clay formation. The long term geochemical evolution of the near field is affected by a high-pH hyperalkaline plume induced by concrete. Numerical models of multicomponent reactive transport have been developped in order to quantify the evolution of the system over 1 Ma. Water flow is negligible once the bentonite buffer is saturated after about 20 years. Therefore, solute transport occurs mainly by diffusion. Models account for aqueous complexation, acid-base and redox reactions, cation exchange, and mineral dissolution precipitation in the bentonite, the concrete and the clay formation. Numerical results obtained witth CORE2D indicate that the high-pH plume causes significant changes in porewater chemistry both in the bentonite buffer and the clay formation. Porosity changes caused by mineral dissolution/precipitation are extremely important. Therefore, coupled modes of diffusion and reactive transport accounting for changes in porosity caused by mineral precipitation are required in order to obtain realistic predictions.

  16. A review of WIPP [Waste Isolation Pilot Plant] repository clays and their relationship to clays of adjacent strata

    International Nuclear Information System (INIS)

    Krumhansl, J.L.; Kimball, K.M.; Stein, C.L.

    1990-12-01

    The Salado Formation is a thick evaporite sequence located in the Permian Delaware Basin of southeastern New Mexico. This study focuses on the intense diagenetic alteration that has affected the small amounts of clay, feldspar, and quartz washed into the basin during salt deposition. These changes are of more than academic interest since this formation also houses the WIPP (Waste Isolation Pilot Plant). Site characterization concerns warrant compiling a detailed data base describing the clays in and around the facility horizon. An extensive sampling effort was undertaken to address these programmatic issues as well as to provide additional insight regarding diagenetic mechanisms in the Salado. Seventy-five samples were collected from argillaceous partings in halite at the stratigraphic level of the Waste Isolation Pilot Plant (WIPP). These were compared with twenty-eight samples from cores of the Vaca Triste member of the Salado, a thin clastic unit at the top of the McNutt potash zone, and with a clay-rich sample from the lower contact of the Culebra Dolomite (in the overlying Rustler Formation). These settings were compared to assess the influence of differences in brine chemistry (i.e., halite and potash facies, normal to hypersaline marine conditions) and sediment composition (clays, sandy silt, dolomitized limestone) on diagenetic processes. 44 refs., 11 figs., 5 tabs

  17. Corrosion of container materials under clay repository conditions

    International Nuclear Information System (INIS)

    Debruyn, W.

    1990-01-01

    The work done in Belgium on steels and a number of corrosion-resistant materials is discussed. Laboratory screening tests have been performed to find candidate container materials. Materials of interest have been further tested in surface clays and are being tested in deep clay formations at the Mol site. These tests have concentrated on characterizations of the clay environment under equilibrium and disturbed conditions. The performance of some materials will be monitored for up to 50000 hours in the form of conventional corrosion specimens. Eventually corrosion and performance tests will be performed on full-size or scaled-down containers. The effects of parameters identified as being important based on characterization of the clay environment will be studied further in the laboratory. Electrochemical measurements and experiments on the effects of gamma radiation have been started. The materials that have been tested in clay environments include corrosion allowance materials - carbon steel, unalloyed cast iron, and cast iron alloyed with silicon and nickel - as well as corrosion resistant materials: AISI 304, 316 and 430 stainless steels; aluminum alloys; nickel 200; Inconel 600 and 625; Incoloy 800; Hastelloy C4 and B; and titanium grades 2 and 7

  18. Clays as tracers of diagenetic and hydrothermal paleo-conditions. Search for mineralogical and geochemical evidences of hydrothermal circulations in clayey, sandstone-like and carbonated diagenetic Triassic formations of the Paris Basin

    International Nuclear Information System (INIS)

    Ploquin, Florian

    2011-01-01

    Within the framework of the multi-organization TAPSS 2000 program - GNR-FORPRO, led on the Bure site (Meuse-France), the ANDRA Company realized a deep drilling (named EST 433) to investigate the local Trias because the grounds Triassic levels constituting the bed rock of Clayey level for the storage of the nuclear waste. The drilling cut the Trias rocks on a total thickness of 700 m, successively from the bottom up: (1) the Buntsandstein (120 m) is characterized by sandy-conglomerate facies; (2) the Muschelkalk (150 m) is essentially consisted of clayey-sandy-siltstone series headed by a dolomitic deposit system; (3) the Keuper part (450 m) is an alternation of sandy clay-stone or silty clay-stone deposits with insertions of saliferous levels; (4) finally the Rethian part of the drilling associated with Hettangian (80 m), are characterized by clayey-shale facies. This litho-stratigraphy can redraw the evolution of the sedimentary paleo-environments since fluviatile circles (Buntsandstein) then lagoon (upper Muschelkalk), to large floods plains systems occasionally invaded by sea (Keuper) and, finally, in an epi-continental sea context (Rhetian-Hettangian) announcing the generalized transgressive phase of which the progressive evolution coming from the border towards the center of the basin. The nearness of the continental areas is recorded in the detrital fraction of the Triassic sediments. The geochemistry of these materials signs their continental crust character and their associated isotopic Nd-Sm values gives a Hercynian meta-sediments and granites origin with from time to time a contribution of young forming rock. The mineralogy of the clayey fraction (< 0,2μm) shows that only the conglomerate on the base of the drilling consists of an assembly of dickite and illites strictly associated with regular illite / smectite mixed-layer of R=1 type illite-rich. These last ones are the main part of the clayey mineralogy of the draining facies of Buntsandstein and are

  19. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study.

    Science.gov (United States)

    Crasto de Lima, F D; Miwa, R H; Miranda, Caetano R

    2017-11-07

    Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ∼20 and ∼130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

  20. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study

    Science.gov (United States)

    Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.

    2017-11-01

    Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

  1. Laboratory evaluation of cement treated aggregate containing crushed clay brick

    Directory of Open Access Journals (Sweden)

    Liqun Hu

    2014-10-01

    Full Text Available The waste clay bricks from debris of buildings were evaluated through lab tests as environmental friendly materials for pavement sub-base in the research. Five sets of coarse aggregates which contained 0, 25%, 50%, 75% and 100% crushed bricks, respectively, were blended with sand and treated by 5% cement. The test results indicated that cement treated aggregate which contains crushed clay brick aggregate had a lower maximum dry density (MDD and a higher optimum moisture content (OMC. Moreover, the unconfined compressive strength (UCS, resilience modulus, splitting strength, and frost resistance performance of the specimens decreased with increase of the amount of crushed clay brick aggregate. On the other hand, it can be observed that the use of crushed clay brick in the mixture decreased the dry shrinkage strain of the specimens. Compared with the asphalt pavement design specifications of China, the results imply that the substitution rate of natural aggregate with crushed clay brick aggregate in the cement treated aggregate sub-base material should be less than 50% (5% cement content in the mixture. Furthermore, it needs to be noted that the cement treated aggregate which contains crushed clay bricks should be cautiously used in the cold region due to its insufficient frost resistance performance.

  2. Investigations on self-sealing of indurated clay - Part of the NF-PRO project. Final report

    International Nuclear Information System (INIS)

    Zhang, Chun-Liang; Rothfuchs, T.; Dittrich, J.; Mueller, J.

    2008-03-01

    closure of fractures when water was injected into the sample. This was confirmed by a pronounced decrease of the gas permeability from 10 -16 to 10 -21 m 2 after water resaturation was reached. 5. The re-sealed samples exhibited low permeability to gas and water of less than 10 -2- m 2 as it is usually observed on undisturbed clay rocks. All these experimental results provide evidence for the high self-sealing capacity of the studied clay rocks under the combined impact of reconsolidation and resaturation. For the design of the envisaged damage-sealing tests on large hollow cylindrical samples, scoping calculations were performed using CODE-BRIGHT including a damage-elastoplastic model for indurated clay, which has been proposed by Vaunat et al /VAU 03/04/. This model assumes the clay to be a composite material of a clay matrix interlocked by bonds. The clay matrix behaves like a typical elastoplastic soil, while bonds behave like a typical quasi-brittle material represented by a damage-elastic law. The modelling results from UPC for the analysis of the EDZ development in clay rocks /VAU 03/04/, /GEN 07/, suggest the suitability of the model. However, some special aspects such as permeability changes due to damage, reconsolidation or resaturation as well as thermal impact on the long-term evolution and self-sealing of the EDZ are to be involved in the models for safety assessment of repositories in clay formations. Some of these issues will be investigated in the framework of the other running projects TIMODAZ/TIM 06/ and THM-TON /GRS 07/. (orig.)

  3. Spectromicroscopy of Fe distributions in clay microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Grundl, T. [Univ. of Wisconsin, Milwaukee, WI (United States); Cerasari, S.; Garcia, A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Clays are ubiquitous crystalline particles found in nature that are responsible for contributing to a wide range of chemical reactions in soils. The structure of these mineral particles changes when the particle is hydrated ({open_quotes}wet{close_quotes}), from that when it is dry. This makes a study of the microscopic distribution of chemical content of these nanocrystals difficult using standard techniques that require vacuum. In addition to large structural changes, it is likely that chemical changes accompany the drying process. As a result, spectroscopic measurements on dried clay particles may not accurately reflect the actual composition of the material as found in the environment. In this work, the authors extend the use of the ALS Spectromicroscopy Facility STXM to high spectral and spatial resolution studies of transition metal L-edges in environmental materials. The authors are studying mineral particles of montmorillonite, which is an Fe bearing clay which can be prepared with a wide distribution of Fe concentrations, and with Fe occupying different substitutional sites.

  4. Clay 2001 dossier: progress report on feasibility studies and research into deep geological disposal of high-level, long-lived waste

    International Nuclear Information System (INIS)

    2001-12-01

    A French Act of Parliament passed on 30 December 1991 set out the main areas of research required to prepare solutions for the long-term management of high-level, long-lived radioactive waste. The three avenues of research listed in the Act included a feasibility study of the deep geological disposal of these waste, with responsibility for steering the study given to ANDRA, France National Agency for Radioactive Waste Management. Following government decisions taken in 1998, the study focused on two types of geological medium, clay and granite. The clay formations study is essentially based on results from an underground laboratory sited at the border between the Meuse and Haute-Marne departments, where the Callovo-Oxfordian argillite beds are being investigated. No site has yet been chosen for an underground laboratory for the granite study, so for the time being this will draw on generic work and on research carried out in laboratories outside France. ANDRA has decided to present an initial report on the results of its research programme, publishing a dossier on the work on clay formations in 2001 with a second dossier covering the work on granite due for release in 2002. This dossier is thus a review of the work carried out by ANDRA on the feasibility study into a radioactive waste repository in a clay formation. It represents one step in a process of studies and research work leading up to the submission of a report due in 2005 containing ANDRA conclusions on the feasibility of a repository in the clay formation. (author)

  5. Results of research and commercial production of shale oil in Bazhenov formation on Ai-Pimskoe field

    Science.gov (United States)

    Sarancha, A. V.; Shuldikova, N. S.; Mayer, A. V.; Sumin, A. N.

    2017-10-01

    A large number of articles devoted to Bazhenov Formation appeared in Russian scientific and technical journals, aimed at specialists in of oil and gas fields development over the last 5 – 10 years. This is due to the fact that traditional hydrocarbon resources are gradually reducing, making oil companies pay attention to shale oil; the largest deposits in the Russian Federation are in Bazhenov Formation. The main purpose of this article is to highlight results obtained during the development of Bazhenov Formation on Ai-Pimskoe field in Western Siberia.

  6. Clay mineral quaternary sediments mineralogy

    International Nuclear Information System (INIS)

    Karlsson, A.; Ayala, R.; Daziano, O.; Loyola, C.

    2007-01-01

    The subsidence is one of the geotechnical problems more important associated with Cordoba loess soils. The change of the mineral internal structure in the loess soils cause volume modification, that generate the potential danger of subsidence. The mineralogical evolution and the geotechnical behaviour in these soils are governed by the prevalent environmental hand lings in the region. A sequence of quaternary loess soils associated to a landscape with high carcavamiento has been studied. In this paper are examined the clay minerals and the calcium carbonates associated with the loess soils located in the superior basin of the Arroyo Tegua, Dto. Rio Cuarto, Prov. de Cordoba. The two-micron fraction was concentrated without previous destruction of cements and the determination of the mineral species has been carried out by means of X-Ray Diffraction methods. The clay minerals more abundant are the 2:1 non-expanded and rather crystallized ones. The 1:1non expanded mineral have disorderly structure and the 2:1 expanded are concentrated in the calcic horizons. The presence of palygoskite clay group was possible also to determine. The clay mineral composition in the studied sedimentary sequence is not homogeneous and the physical behavior of the different silts depends on the abundance and distribution of the clay minerals that carry. We can indicate that the clay minerals most unstable under humidity desiccation conditions are fireclay one and those of the palygorskite group. Recapitulating we can express that: vaterite is associated to more young silts and to a low alkaline environmental paleosoils genesis, but with a local CaCO3 supersaturation and alkalinity increase, vaterite transforms to calcite and also aragonite. (author)

  7. The effects of a digital formative assessment tool on spelling achievement : Results of a randomized experiment

    NARCIS (Netherlands)

    Faber, Janke M.; Visscher, Adrie J.

    2018-01-01

    In this study, a randomized experimental design was used to examine the effects of a digital formative assessment tool on spelling achievement of third grade students (eight-to nine-years-olds). The sample consisted of 30 experimental schools (n = 619) and 39 control schools (n = 986). Experimental

  8. Implications of cation exchange on clay release and colloid-facilitated transport in porous media.

    Science.gov (United States)

    Bradford, Scott A; Kim, Hyunjung

    2010-01-01

    Column experiments were conducted to study chemical factors that influence the release of clay (kaolinite and quartz minerals) from saturated Ottawa sand of different sizes (710,360, and 240 microm). A relatively minor enhancement of clay release occurred when the pH was increased (5.8 to 10) or the ionic strength (IS) was decreased to deionized (DI) water. In contrast, clay release was dramatically enhanced when monovalent Na+ was exchanged for multivalent cations (e.g., Ca2+ and Mg2+) on the clay and sand and then the solution IS was reduced to DI water. This solution chemistry sequence decreased the adhesive force acting on the clay as a result of an increase in the magnitude of the clay and sand zeta potential with cation exchange, and expansion of the double layer thickness with a decrease in IS to DI water. The amount of clay release was directly dependent on the Na+ concentration of the exchanging solution and on the initial clay content of the sand (0.026-0.054% of the total mass). These results clearly demonstrated the importance of the order and magnitude of the solution chemistry sequence on clay release. Column results and scanning electron microscope (SEM) images also indicated that the clay was reversibly retained on the sand, despite predictions of irreversible interaction in the primary minimum. One plausible explanation is that adsorbed cations increased the separation distance between the clay-solid interfaces as a result of repulsive hydration forces. A cleaning procedure was subsequently developed to remove clay via cation exchange and IS reduction; SEM images demonstrated the effectiveness of this approach. The transport of Cu2+ was then shown to be dramatically enhanced by an order of magnitude in peak concentration by adsorption on clays that were released following cation exchange and IS reduction.

  9. Experimental study of Human Adenoviruses interactions with clays

    Science.gov (United States)

    Bellou, Maria; Syngouna, Vasiliki; Paparrodopoulos, Spyros; Vantarakis, Apostolos; Chrysikopoulos, Constantinos

    2014-05-01

    Clays are used to establish low permeability liners in landfills, sewage lagoons, water retention ponds, golf course ponds, and hazardous waste sites. Human adenoviruses (HAdVs) are waterborne viruses which have been used as viral indicators of fecal pollution. The objective of this study was to investigate the survival of HAdV in static and dynamic clay systems. The clays used as a model were crystalline aluminosilicates: kaolinite and bentonite. The adsorption and survival of HAdVs onto these clays were characterized at two different controlled temperatures (4 and 25o C) under static and dynamic batch conditions. Control tubes, in the absence of clay, were used to monitor virus inactivation due to factors other than adsorption to clays (e.g. inactivation or sorption onto the tubes walls). For both static and dynamic batch experiments, samples were collected for a maximum period of seven days. This seven day time - period was determined to be sufficient for the virus-clay systems to reach equilibrium. To infer the presence of infectious HAdV particles, all samples were treated with Dnase and the extraction of viral nucleid acid was performed using a commercial viral RNA kit. All samples were analyzed by Real - Time PCR which was used to quantify viral particles in clays. Samples were also tested for virus infectivity by A549 cell cultures. Exposure time intervals in the range of seven days (0.50-144 hours) resulted in a load reduction of 0.74 to 2.96 logs for kaolinite and a reduction of 0.89 to 2.92 for bentonite. Furthermore, virus survival was higher onto bentonite than kaolinite (p

  10. To the Problem of the Clay Particles Energy Potential Assessment

    Directory of Open Access Journals (Sweden)

    V. V. Seredin

    2017-12-01

    Full Text Available Clay is a natural material, which surface of the particles is energetically active. This clay property is widely used in the industry as sorbents. However, clay sorption activity is different for various pollutants, and work aimed to increase their sorption activity is still under way. This work objective was to study the pressure influences on the activity of the clay particles surface. The experiments showed that increase of pressure results in the decrease in the content of clay minerals, while other minerals change in different manner. It has been statistically proved that pressures P = 125 MPa and P = 750 MPa are bounding values that allows identifying the three classes. The first class is related to the pressures under 125 MPa, the second comprises the range from 125 MPa to 750 MPa, and the third class is for the pressures above 750 MPa. In each class, the intensity and direction of the proceeding of processes of mineral clay composition alteration have specific features. Based on theoretical and experimental studies it was established that the less the value of indicator Mk, the higher the energy potential of the particle surface. It achieves the maximum values (Mk = 14.7 in montmorillonite clay under pressure of 125 MPa, and, conversely, with an increase in pressure up to 2200 MPa the Mk value decreases (Mk = 17.7. A different behavior was observed in kaolinite clay. The energy potential on the particle surface increases with an increase in pressure from Mk = 26.3 to Mk = 18.8 (P = 2000 MPa. Mathematical models, which make it possible to predict energy potential on the surface of montmorillonite and kaolinite particles depending on the pressure, have been developed based on the found statistical relations

  11. Clay Mineralogy Studies of Soils Located on Different Geomorphic Surfaces in Jabalbarez-Jiroft Area

    Directory of Open Access Journals (Sweden)

    naser boroumand

    2017-02-01

    clay mineralogy. Results and Discussion: Argillic horizon found in mantled pediment and piedmont alluvial plain surfaces and stable hill, respectively. In thin horizons coating of clay were observed. Pedofeatures formed in this geomorphic surface, seemed to have been buried in the soil, due to the favorable conditions in terms of the time factor and the presence of moisture in the past. Fig. 2 showed clay coatings in the Bt horizon of pedons 4,5 and 6. The presence of argillic horizons in the arid climate of the research area is attributed to a more humid paleoclimate, which was also reported by Farpoor et al. (2002, Khademi and Mermut (2003, and Sanjari et al. (2011 in Rafsanjan, Isfahan and Jiroft, central Iran, respectively. Clay minerals illite, smectite, chlorite and kaolinite were identified by using X-ray diffractometer. Similar results were also obtained by Sanjari et al. (2011 in the Jiroft area. Kaolinite and illite in soils of arid and semi-arid environments of Iran have been reported with an inherited origin (Khormali and Abtahi, 2003; Sanjari et al., 2011. As the environmental conditions are not favorable for the pedogenic formation of such minerals in soils of this study area , it is proposed that they might be inherited from their parent material. Just as previously stated by other researchers that the origin of the kaolinite minerals in the dry climate regionsis due to itsinheritance from parent materials (Farpoor et al., 2002; Khormali and Abtahi, 2003. The dominant of smectite minerals in soils on stable geomorphic surfaces ofhills and mantled pediment can be cause of stable level and more moisture content in the past and the present, which may be resulted to smectite formation from illite and chlorite transformation. Also, chlorite minerals on stable surface of mantled pediment were not observed. High amount of leaching, low pH level (

  12. Synthesis and Characterization of the Hybrid Clay- Based Material Montmorillonite-Melanoidin: A Potential Soil Model

    Energy Technology Data Exchange (ETDEWEB)

    V Vilas; B Matthiasch; J Huth; J Kratz; S Rubert de la Rosa; P Michel; T Schäfer

    2011-12-31

    The study of the interactions among metals, minerals, and humic substances is essential in understanding the migration of inorganic pollutants in the geosphere. A considerable amount of organic matter in the environment is associated with clay minerals. To understand the role of organic matter in the environment and its association with clay minerals, a hybrid clay-based material (HCM), montmorillonite (STx-1)-melanoidin, was prepared from L-tyrosine and L-glutamic acid by the Maillard reaction. The HCM was characterized by elemental analysis, nuclear magnetic resonance, x-ray photoelectron spectroscopy (XPS), scanning transmission x-ray microscopy (STXM), and thermal analysis. The presence of organic materials on the surface was confirmed by XPS and STXM. The STXM results showed the presence of organic spots on the surface of the STx-1 and the characterization of the functional groups present in those spots. Thermal analysis confirmed the existence of organic materials in the montmorillonite interlayer, indicating the formation of a composite of melanoidin and montmorillonite. The melanoidin appeared to be located partially between the layers of montmorillonite and partially at the surface, forming a structure that resembles the way a cork sits on the top of a champagne bottle.

  13. 2005 dossier: clay

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in argilite formations. Content: 1 - Evaluation of the feasibility of a geologic disposal facility for high-level and long-lived radioactive wastes: framework of ANDRA's researches; 2 - design approach for a safe and reversible facility; 3 - containers; 4 - geologic characteristics of the Meuse/Haute-Marne site; 5 - disposal facilities; 6 - reversible exploitation of the disposal facility; 7 - compromise between long-term disposal safety and environment protection; 8 - conclusion. (J.S.)

  14. Biodegradation of crude oil saturated fraction supported on clays.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Jones, Martin D; Head, Ian M; Manning, David A C; Fialips, Claire I

    2014-02-01

    The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays' ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the 'vicinity' of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation.

  15. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  16. Controlling harmful algae blooms using aluminum-modified clay.