WorldWideScience

Sample records for clay bulkheads exposed

  1. The tunnel sealing experiment: The construction and performance of full scale clay and concrete bulkheads at elevated pressure and temperature

    International Nuclear Information System (INIS)

    Martino, J.B.; Dixon, D.A.; Vignal, B.; Fujita, T.

    2006-01-01

    Concepts for deep geologic disposal of radioactive waste, as proposed by many international organizations, include bulkheads or plugs in the shaft, or at the entrances to disposal rooms, or both. The seals are primarily to prevent groundwater transport of radioisotopes along underground openings but also provide a measure of security by restricting tunnel access. The safety of the respective disposal systems relies on the combined performance of the natural barriers (host rock) and engineered barriers (the waste form, the waste container, the buffer barrier, the room, tunnel and shaft backfill and sealing materials). To understand the functionality of these systems it is important to study them in whole or in part at full scale. One such study was the Tunnel Sealing Experiment (TSX), a full-scale tunnel seal component study. The TSX showed it is possible to construct tunnel seals that limit axial flow under high hydraulic gradient and elevated temperature. The clay and concrete bulkheads had seepage rates of 1 mL/min and 10 mL/min at ambient temperature. Elevated temperatures caused a further decrease in seepage past the concrete bulkhead to approximately 2-3 mL/min. (author)

  2. Harness: Development of a multifunctional protective ship bulkhead

    NARCIS (Netherlands)

    Wal, R. van der; Meuers, R.J.C.

    2016-01-01

    HARNESS is a joint project between governments, industry and TNO with the objective to develop a multifunctional protective bulkhead for application on naval vessels. The multifunctional bulkhead aims at increasing the resilience of naval vessels, reduce damage and repair time and provide a safer

  3. Bulkhead insert for an internal combustion engine

    Science.gov (United States)

    Maki, Clifford E.; Chottiner, Jeffrey Eliot; Williams, Rick L.; Thibault, Mark W.; Ervin, James Douglas; Boileau, James Maurice; McKeough, Bryan

    2017-08-01

    An engine includes a cylinder block defining at least one main bearing bulkhead adjacent to a cylinder, and a crankshaft rotatably housed within the block by a main bearing. A bulkhead insert has a cap portion, and an insert portion provided within the bulkhead. The insert portion has having first and second end regions connected by first and second straps. Each strap having a flanged beam cross section. The first and second ends of the insert portion are configured to connect a main bearing cap column to a cylinder head column. Each of the first and second end regions define at least one protrusion having a surface substantially normal to engine combustion and reactive loads. The cap portion is configured to mate with the first end region at the main bearing cap column and support the main bearing.

  4. Bulkhead Door – Critical Evacuation States

    Directory of Open Access Journals (Sweden)

    Flizikowski Józef

    2017-03-01

    Full Text Available The article is a preliminary to a modification concept of the sliding watertight bulkhead door used on ships and vessels. Hydraulic or electro-hydraulic drives used to move these doors require complicated and extended pressure installations with large amounts of hydraulic fluid. Well-known operational drawbacks of these installations include high level of noise and possibility of various leaks in the hydraulic system. Being the first in a series, the present article describes and analyses critical states which can take place during evacuation of people through openings in the watertight bulkhead doors on seagoing ships and vessels.

  5. 46 CFR 108.133 - Hull superstructure, structural bulkheads, decks, and deckhouses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull superstructure, structural bulkheads, decks, and deckhouses. 108.133 Section 108.133 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A... Protection § 108.133 Hull superstructure, structural bulkheads, decks, and deckhouses. Each hull...

  6. Design Study for the Asteroid Redirect Vehicle (ARV) Composite Primary Bulkhead

    Science.gov (United States)

    Cressman, Thomas O.; Paddock, David A.

    2017-01-01

    A design study was undertaken of a carbon fiber primary bulkhead for a large solar electric propulsion (SEP) spacecraft. The bulkhead design, supporting up to 16 t of xenon propellant, progressed from one consisting of many simple parts with many complex joints, to one consisting of a few complex parts with a few simple joints. The unique capabilities of composites led to a topology that transitioned loads from bending to in-plane tension and shear, with low part count. This significantly improved bulkhead manufacturability, cost, and mass. The stiffness-driven structure utilized high-modulus M55J fiber unidirectional prepregs. A full-scale engineering demonstration unit (EDU) of the concept was used to demonstrate manufacturability of the concept. Actual labor data was obtained, which could be extrapolated to a full bulkhead. The effort demonstrated the practicality of using high-modulus fiber (HMF) composites for unique shape topologies that minimize mass and cost. The lessons are applicable to primary and secondary aerospace structures that are stiffness driven.

  7. A large-scale laboratory investigation into the movement of gas and water through clay barriers exposed to the environment

    International Nuclear Information System (INIS)

    1993-01-01

    This report describes a large scale laboratory investigation into the movements of gas and water through clay barriers exposed to the environment. The test beds, each 3m square were constructed and filled with clay to a depth of 400 mm, after compaction. One test bed contained London Clay, the other Glacial Till. The clays were subjected to accelerated environmental cycling and tests carried out on samples of the clays at appropriate intervals. The tests included measurements of the mechanical, physical and chemical properties of the clays and their permeability to gas and water. Gas permeability emerged as the more appropriate for the clays being investigated. The report discusses the difficulties of measuring the permeability of partially saturated clays and the need to define the measuring techniques when specifying limiting acceptability values. 55 refs., 8 figs., 7 tabs., 27 plates

  8. Behavior of clay exposed to heating

    International Nuclear Information System (INIS)

    Heremans, R.; Buyens, M.; Manfroy, P.

    1978-01-01

    In the frame of his R and D programme on geological burial of solidified radioactive waste, the C.E.N./S.C.K. undertook experimental and theoretical work on the behavior of the Boom clay against heat. The work is performed under contract with the Commission of European Communities. In a first phase a series of chemical and physical properties were determined on clay samples taken at various depths during the core boring performed on the C.E.N./S.C.K. site in 1975. In a second phase, a simulated high level waste heat source was developed and tested in view of representative heat transfer experiments into the geological formation. In parallel to the experimental work, computarized theoretical studies were undertaken aiming an evaluation of heat effect of a vitrified high level waste repository on an underground structure in clay

  9. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    Science.gov (United States)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163 (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The Orion MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a single-piece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment were the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  10. Variation of crack intensity factor in three compacted clay liners exposed to annual cycle of atmospheric conditions with and without geotextile cover.

    Science.gov (United States)

    Safari, E; Jalili Ghazizade, M; Abduli, M A; Gatmiri, B

    2014-08-01

    Performance of compacted clay liners commonly used as landfill barrier systems can be subject to decline in terms of hydraulic conductivity if left exposed to atmospheric conditions for an extended period of time prior to placement of overlaying layers. The resulting desiccation cracking can lead to increased hydraulic conductivity. Desiccation crack intensity was studied for three clayey soils commonly used for construction of landfill barrier system in a relatively large scale test setup exposed to real time atmospheric conditions over a complete annual cycle. A white separator geotextile cover was presumed to be capable of reducing the intensity of desiccation cracking through absorbing and maintaining higher amounts of moisture and reducing the temperature of the soil surface in comparison to a directly exposed soil surface. Desiccation cracking was monitored using a digital imaging technique for three compacted clay liners in two sets, one open to air and the second covered with the white geotextile. Crack intensity factor approached a relatively stable phase after certain cycles corresponding to atmospheric dry wet cycles. The results indicated that the white separator geotextile was capable of reducing the crack intensity factor by 37.4-45.9% throughout the experiment including the cyclic phase of desiccation cracking. During the stable phase, the maximum reduction in crack intensity factor of 90.4% as a result of applying geotextile cover was observed for the soil with the lowest plastic index and clay content and therefore the lowest magnitude of crack intensity factor. The other two soils with similar clay content but different plastic index showed 23.6% and 52.2% reductions in crack intensity factor after cyclic phase when covered with geotextile. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Hybrid Wing-Body Pressurized Fuselage and Bulkhead, Design and Optimization

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2013-01-01

    The structural weight reduction of a pressurized Hybrid Wing-Body (HWB) fuselage is a serious challenge. Hence, research and development are presently being continued at NASA under the Environmentally Responsible Aviation (ERA) and Subsonic Fixed Wing (SFW) projects in collaboration with the Boeing Company, Huntington Beach and Air Force Research Laboratory (AFRL). In this paper, a structural analysis of the HWB fuselage and bulkhead panels is presented, with the objectives of design improvement and structural weight reduction. First, orthotropic plate theories for sizing, and equivalent plate analysis with appropriate simplification are considered. Then parametric finite-element analysis of a fuselage section and bulkhead are conducted using advanced stitched composite structural concepts, which are presently being developed at Boeing for pressurized HWB flight vehicles. With this advanced stiffened-shell design, structural weights are computed and compared to the thick sandwich, vaulted-ribbed-shell, and multi-bubble stiffened-shell structural concepts that had been studied previously. The analytical and numerical results are discussed to assess the overall weight/strength advantages.

  12. Spin Forming of an Aluminum 2219-T6 Aft Bulkhead for the Orion Multi-Purpose Crew Vehicle: Phase II Supplemental Report

    Science.gov (United States)

    Piascik, Robert S.; Squire, Michael D.; Domack, Marcia S.; Hoffman, Eric K.

    2015-01-01

    The principal focus of this project was to assist the Orion Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the aft bulkhead of the pressure vessel. The spin forming process will enable a single piece aluminum (Al) 2219 aft bulkhead which will eliminate the current multiple piece welded construction, simplify fabrication, and lead to an enhanced design that will reduce vehicle weight by eliminating welds. Phase I of this assessment explored spin forming the single-piece forward pressure vessel bulkhead from aluminum-lithium 2195.

  13. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  14. LAr calorimeter for SCC with a common vacuum bulkhead---a concept to improve hermeticity

    International Nuclear Information System (INIS)

    Pope, W.L.; Watt, R.D.

    1989-11-01

    A new concept for a Barrel/Endcap LAr Calorimeter (LAC) is described in which the Barrel and Endcaps are in separate vacuum enclosures but share a common vacuum bulkhead (CVB). We explore 2 possible bulkhead construction types; welded plate sandwich panels, and brazed sandwich panels in which the core is an isotropic cellular solid--foamed aluminum. Gas lines and electric cables from he innermost Drift Chamber pass through radial holes in the core of the sandwich bulkhead. The CVB concept offers the potential to obtain a more hermetic calorimeter with significantly reduced dead material and/or space in the interface region common to conventional design LAr detectors for the SSC with Endcap features. To utilize a common additional steps to remove the Drift Chamber, a large increase in Endcap standby heat leak, and perhaps, new cryogenic safety issues. We find that significant amount of dead mass can be removed from critical regions of the vacuum shells when compared to a promising SSC LAC reference design. It is also shown that the increased standby heat leak of this concept can be easily removed by existing cooling capacity in another large LAr calorimeter. It is further shown that shut-downs need not be appreciably longer. Finally, it is argued that cryogen spill hazards can be avoided if the Endcap's LAr is removed during Drift chamber maintenance shutdowns, and that cryogenic safety is not compromised

  15. On the effect of hot water vapor on MX-80 clay

    International Nuclear Information System (INIS)

    Pusch, Roland

    2000-10-01

    Earlier experiments with smectite clay exposed to hot water vapor have indicated that the expandability may be largely lost. If such conditions prevail in a HLW repository the buffer clay may deteriorate and lose its isolating potential. The present study aimed at checking this by hydrothermal treatment at 90 to 110 deg C of rather dense MX-80 clay with subsequent oedometer testing for determining the hydration rate, swelling pressure and hydraulic conductivity, which are all expected to be quite different from those of untreated clay if the expandability is actually reduced. The results show that the swelling pressure of MX-80 clay is not noticeably altered by exposing it to vapor with a temperature of up to 110 deg C for one month while the hydraulic conductivity is increased by about 10% due to some permanent microstructural alteration. The overall change in physical properties of MX-80 clay under the prevailing laboratory conditions is not very significant

  16. On the effect of hot water vapor on MX-80 clay

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2000-10-01

    Earlier experiments with smectite clay exposed to hot water vapor have indicated that the expandability may be largely lost. If such conditions prevail in a HLW repository the buffer clay may deteriorate and lose its isolating potential. The present study aimed at checking this by hydrothermal treatment at 90 to 110 deg C of rather dense MX-80 clay with subsequent oedometer testing for determining the hydration rate, swelling pressure and hydraulic conductivity, which are all expected to be quite different from those of untreated clay if the expandability is actually reduced. The results show that the swelling pressure of MX-80 clay is not noticeably altered by exposing it to vapor with a temperature of up to 110 deg C for one month while the hydraulic conductivity is increased by about 10% due to some permanent microstructural alteration. The overall change in physical properties of MX-80 clay under the prevailing laboratory conditions is not very significant.

  17. Water-mineral interaction in hygromechanics of clays exposed to environmental loads

    International Nuclear Information System (INIS)

    Hueckel, T.A.

    1992-01-01

    Water-mineral interaction in narrow interstices (<3 nm) in dense, saturated clays is discussed in view of recent experimental findings and molecular dynamics simulations. Consequences to the macroscopic behavior are considered. A mixture theory for two interacting constituents is developed. Effects of temperature and chemicals are discussed. A postulate of mass transfer of absorbed water from solid to fluid fraction caused by thermal or chemical load is then discussed. Theory of plasticity of clays affected by heat or chemicals is developed to deal with the effects of thermal and chemical consolidation

  18. Single clay sheets inside electrospun polymer nanofibers

    Science.gov (United States)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  19. Radiation-induced catalysis of fatty acids adsorbed onto clay minerals

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Ramos-Bernal, S.; Colin-Garcia, M.; Mosqueira, F.G.

    2015-01-01

    We studied the behavior of small fatty (acetic acid) and dicarboxylic acids (succinic and malonic acids) adsorbed onto Na + -montmorillonite (a clay mineral) and exposed to gamma radiation. A decarboxylation reaction was found to predominate when the clay was present. This preferential synthesis promoted the formation of a compound with one less carbon atom than its target compound. In the system without clay, dimerization was the predominate outcome following radiolysis. (author)

  20. Hydrothermal field test with french candidate clay embedding steel heater in the Stripa mine

    International Nuclear Information System (INIS)

    Pusch, R.; Karnland, O.; Lajudie, A.; Lechelle, J.; Bouchet, A.

    1992-12-01

    Field experiments with French kaolinite/smectite clay heated up to 170 degrees C in boreholes in granite were conducted for 8 months and 4 years. The clay heated for 8 months has a considerably higher water content and it had undergone much less changes in mineralogy and physical properties than the clay exposed to heating for 4 years. The drying of the latter clay was probably caused by hydrogen gas from corrosion of the heater. The clay next to the heater turned into clay-stone despite conversion of the kaolinite component to smectite. (42 refs)

  1. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Raman P. Singh

    2010-01-01

    Full Text Available This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  2. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    International Nuclear Information System (INIS)

    Singh, R.P.; Zunjarrao, S.C.; Pandey, G.; Khait, M.; Korach, C.S.

    2010-01-01

    This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  3. The Degradation of Mechanical Properties in Halloysite Nano clay-Polyester Nano composites Exposed in Seawater Environment

    International Nuclear Information System (INIS)

    Saharudin, M.S.; Saharudin, M. Sh.; Wei, J.; Shyha, I.; Inam, F.

    2016-01-01

    Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nano composites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nano clay-polyester nano composites. Results confirmed that the addition of halloysite nano clay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nano clay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease). Young s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease). The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease). The impact toughness dropped from 0.71 kJ/m"2 to 0.48 kJ/m"2 (32% decrease). Interestingly, the fracture toughnessκ_1C increased with the addition of halloysite nano clay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nano clay-matrix interface influenced by seawater absorption and agglomeration of halloysite nano clay.

  4. Toxicity of inhaled 144Ce fused clay particles in beagle dogs. VII

    International Nuclear Information System (INIS)

    Hahn, F.F.; Boecker, B.B.; Hobbs, C.H.; Jones, R.K.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1974-01-01

    The metabolism, dosimetry, and effects of inhaled 144 Ce in fused clay particles are being investigated in the Beagle dog to aid in assessing the biological consequences of release of 144 Ce in a relatively insoluble form such as might occur in certain types of nuclear accidents. The toxicity of inhaled 144 Ce fused clay is also of general interest since it is representative of intermediate-lived beta-emitting radionuclides. Two major studies with young adult dogs (12 to 14 months of age at exposure) are involved: (1) a metabolism and dosimetry study in which 24 dogs were serially sacrificed over an extended period of time, and (2) a longevity study with 2 series of dogs; Series I with 15 dogs exposed to aerosols of 144 Ce in fused clay particles to yield initial lung burdens of 11 to 210 μCi/kg body weight and 3 control dogs exposed to nonradioactive fused clay particles and Series II with 96 dogs exposed to aerosols of 144 Ce in fused clay particles to yield initial lung burdens of 0.0024 to 66 μCi/kg body weight and 12 control dogs exposed to nonradioactive fused clay particles. Twenty-eight dogs died or were euthanized at 143 to 2396 days after inhalation of 144 Ce. The prominent findings were radiation pneumonitis in 17 dogs that died or were euthanized at early time periods and neoplastic disease in 10 of the 11 dogs that died or were euthanized at 750 days or later; 5 with hemangiosarcoma of the lung, 1 with both a hemangiosarcoma and a fibrosarcoma of the lung, 1 with both a bronchiolo-alveolar carcinoma and a hemangiosarcoma of lung, 1 with a hemangiosarcoma of lung, bronchiolo-alveolar carcinoma, and a bronchiogenic adenocarcinoma, and 1 each with a hemangiosarcoma of the mediastinum and of the spleen. The cumulative radiation dose to the lung at time of death has ranged from 22,000 to 140,000 rads. Serial observations are continuing on the 83 survivors and 15 controls. (U.S.)

  5. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  6. Influence of Iltization on the Ion-sorbing Capacity of Smectitic Clay

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin

    2008-01-01

    A high-level waste(HLW) repository uses smectitic clay as a buffer material to inhibit the penetration of groundwater and to retard the release of radionuclides from the radioactive wastes to the surrounding environment. However, when the smectitic clay is exposed to an elevated temperature due to radioactive decay heat and geochemical conditions for a long time, its physicochemical and mineralogical properties may be degradated and thus lose its barrier functions. It has been known in literature that the degradation of these properties of the smectitic clay occurs by a illitization in which the smectite transforms into illite. Therefore, an understanding of the illitization is essential to evaluate the long-term barrier performance of smectitic clay for the buffer of a HLW repository. This paper will carry out hydrothermal reaction tests with domestic smectitic clay which will be favorably considered for the buffer material of a Korean HLW repository, and also investigate the influence of illization on the ion-sorbing capacity of the smectitic clay

  7. Corrosion behaviour of carbon steel in the Tournemire clay

    International Nuclear Information System (INIS)

    Foct, F.; Dridi, W.; Cabrera, J.; Savoye, S.

    2004-01-01

    Carbon steels are possible materials for the fabrication of nuclear waste containers for long term geological disposal in argillaceous environments. Experimental studies of the corrosion behaviour of such materials has been conducted in various conditions. Concerning the numerous laboratory experiments, these conditions (water and clay mixture or compacted clay) mainly concern the bentonite clay that would be used for the engineered barrier. On the opposite, only few in-situ experiments has been conducted directly in the local clay of the repository site (such as Boom clay, etc.). In order to better estimate the corrosion behaviour of carbon steels in natural clay site conditions, an experimental study has been conducted jointly by EDF and IRSN in the argillaceous French site of Tournemire. In this study, A42 carbon steel specimens have been exposed in 3 different zones of the Tournemire clay formation. The first type of environmental conditions concerns a zone where the clay has not been affected by the excavation (EDZ) of the main tunnel neither by the main fracture zone of the clay formation. The second and third ones are located in the EDZ of the tunnel. In the second zone, an additional aerated water flows from the tunnel, whereas it does not in the third place. Some carbon steel specimens have been extracted after several years of exposure to these conditions. The average corrosion rate has been measured by the weight loss technique and the pitting corrosion depth has been evaluated under an optical microscope. Corrosion products have also been characterised by scanning electron microscopy and X-ray diffraction technique. Results are then discussed regarding the surrounding environmental conditions. Calculations of the oxygen transport from the tunnel through the clay and of the clay re-saturation can explain, in a first approach, the corrosion behaviour of the carbon steel in the different tested zones. (authors)

  8. Toxicity of inhaled 90Sr fused clay particles in beagle dogs. V

    International Nuclear Information System (INIS)

    Snipes, M.B.; Boecker, B.B.; Hahn, F.F.; Hobbs, C.H.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1974-01-01

    Studies on the metabolism, dosimetry, and biological effects of 90 Sr in fused clay particles in Beagle dogs have continued with a view toward defining the biological consequences of inhaling this important radionuclide in a relatively insoluble form. Seventy-two dogs were exposed to a polydisperse aerosol (AMAD 1.4 to 2.8 μm and sigma/sub g/ 1.4 to 2.7) of fused montmorillonite clay particles labeled with 90 Sr to achieve graded initial lung burdens (ILB) of 3.7 to 94 μCi/kg body weight; 12 control dogs were exposed to an aerosol of stable strontium in fused clay particles. These 84 dogs were assigned to the 90 Sr fused clay longevity study. An additional 26 dogs were exposed similarly (AMAD 1.9 to 2.5 μm and sigma/sub g/ 1.6 to 2.0) and assigned for sacrifice (Series II) at intervals after exposure to define metabolism and dosimetry of this aerosol in Beagle dogs. Of the 72 longevity dogs, 32 dogs having ILBs of 29 to 94 μCi/kg and cumulative doses to lung to death of 40,000 to 96,000 rads have died from radiation pneumonitis and/or pulmonary fibrosis from 159 to 477 days post-exposure. Fourteen dogs with ILBs of 15 to 36 μCi/kg and cumulative doses to lung to death of 34,000 to 68,000 rads have died from primary pulmonary hemangiosarcomas between 644 and 1214 days post-exposure. In addition, one dog developed a bronchiolo-alveolar carcinoma, another epidermoid carcinoma of the lung and a third, a squamous cell carcinoma in the nasal cavity. The remaining 26 exposed dogs and 12 controls of the longevity study are surviving at 1070 to 1707 days post-exposure. Dogs in the sacrifice series have been sacrificed to 1536 days post-exposure. (U.S.)

  9. Release of nanoclay and surfactant from polymer-clay nanocomposites into a food simulant.

    Science.gov (United States)

    Xia, Yining; Rubino, Maria; Auras, Rafael

    2014-12-02

    Release assessment of organo-modified montmorillonite (O-MMT) nanoclay and the organo-modifiers (surfactants) was performed on two types of polymer–clay nanocomposites: polypropylene (PP) and polyamide 6 (PA6) with O-MMT. In accordance with ASTM D4754-11, nanocomposite films were exposed to ethanol as a fatty-food simulant at 70 °C. The release of O-MMT, with Si and Al used as the nanoclay markers, was evaluated by graphite furnace atomic absorption spectrometry. The nanoclay particles released in ethanol were visualized by transmission electron microscopy (TEM). More nanoclay particles were released from PP–clay films (0.15 mg L(–1)) than from PA6–clay films (0.10 mg L(–1)), possibly due to the lack of interaction between the nanoclay and PP as indicated by the structure and morphology in the TEM images. The surfactant release was quantified by a liquid chromatography tandem mass spectrometry (LC-MS/MS) method. A substantial amount of surfactant was released into ethanol (3.5 mg L(–1) from PP–clay films and 16.2 mg L(–1) from PA6–clay films), indicating changes in the nanoclay structure within the nanocomposite while it was exposed to ethanol. This research has provided information for the determination of exposure doses of nanoclay and surfactant in biosystems and the environment, which enabled the risk assessment.

  10. The five year report of the Tunnel Sealing Experiment: an international project of AECL, JNC, ANDRA and WIPP

    International Nuclear Information System (INIS)

    Chandler, N.A.; Cournut, A.; Dixon, D.

    2002-01-01

    The Tunnel Sealing Experiment (TSX) was conducted to address construction and performance issues of full-scale seals for potential application to deep geological repositories for radioactive waste. The TSX was performed by an international partnership representing Japan, France, the United States and Canada. The experiment was installed at the 420-m depth of Atomic Energy of Canada Limited's Underground Research Laboratory in the granite rock of the Precambrian Canadian Shield. The experiment involved the construction of two full-scale tunnel seals at either end of a single excavation. One seal was an assembly of pre-compacted sand-bentonite blocks and the second seal was a single cast of Low-Heat High-Performance concrete. The objective of the TSX was to assess the applicability of technologies for construction of practicable concrete and bentonite bulkheads; to evaluate the performance of each bulkhead; and to identify and document the parameters that affect that performance. This report documents the construction and operation of the experiment over its first five years. During this period, the experiment was designed, tunnels were excavated, and the seals were constructed. The sand-filled region between the two bulkhead seals was filled and pressurized with water to 800 and 2000 kPa. A tracer test was conducted at a tunnel pressure of 800 kPa to assess the solute transport characteristics of full-scale tunnel seals. The most important outcome from the TSX is that functional full-scale repository seals can be constructed using currently available technology. Factors identified as potentially affecting seal performance included: excavation method and minimizing the excavation damaged zone (EDZ); keying bulkheads into the rock to interrupt the EDZ; compacted sand-bentonite placement method; treatment of clay bulkhead-rock interface; rate of clay saturation compared with the rate of water pressurization; clay bulkhead volume expansion; the resealing properties of

  11. The five year report of the Tunnel Sealing Experiment: an international project of AECL, JNC, ANDRA and WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, N A; Cournut, A; Dixon, D [and others

    2002-07-01

    The Tunnel Sealing Experiment (TSX) was conducted to address construction and performance issues of full-scale seals for potential application to deep geological repositories for radioactive waste. The TSX was performed by an international partnership representing Japan, France, the United States and Canada. The experiment was installed at the 420-m depth of Atomic Energy of Canada Limited's Underground Research Laboratory in the granite rock of the Precambrian Canadian Shield. The experiment involved the construction of two full-scale tunnel seals at either end of a single excavation. One seal was an assembly of pre-compacted sand-bentonite blocks and the second seal was a single cast of Low-Heat High-Performance concrete. The objective of the TSX was to assess the applicability of technologies for construction of practicable concrete and bentonite bulkheads; to evaluate the performance of each bulkhead; and to identify and document the parameters that affect that performance. This report documents the construction and operation of the experiment over its first five years. During this period, the experiment was designed, tunnels were excavated, and the seals were constructed. The sand-filled region between the two bulkhead seals was filled and pressurized with water to 800 and 2000 kPa. A tracer test was conducted at a tunnel pressure of 800 kPa to assess the solute transport characteristics of full-scale tunnel seals. The most important outcome from the TSX is that functional full-scale repository seals can be constructed using currently available technology. Factors identified as potentially affecting seal performance included: excavation method and minimizing the excavation damaged zone (EDZ); keying bulkheads into the rock to interrupt the EDZ; compacted sand-bentonite placement method; treatment of clay bulkhead-rock interface; rate of clay saturation compared with the rate of water pressurization; clay bulkhead volume expansion; the resealing properties of

  12. Clay membrane made of natural high plasticity clay

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1998-01-01

    Leachate containment in Denmark has through years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R 466). It states natural clay deposits may be used for membrane material provided the membrane and drainage system may contain at least 95% of all leachate created throughout...... ion transport as well as diffusion.Clay prospection for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island Lolland. The natural clay contains 60 to 75% smectite, dominantly as a sodium-type. The clay material...... has been evaluated using standardised methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15 to 0.3m thick clay membrane have been tested...

  13. Clay membrane made of natural high plasticity clay:

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1999-01-01

    Leachate containment in Denmark has throughout the years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R4669. It states that natural clay deposits may be used as membrane material provided the membrane and drainage system contains at least 95% of all leachate created...... into account advective ion transport as well as diffusion. Clay prospecting for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island of Lolland. The natural clay contains 60-75% smectite, dominantly as a sodium......-type. The clay material has been evaluated using the standardized methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15-0.3 m thick clay membrane...

  14. Thermal volume changes in clays and clay-stones

    International Nuclear Information System (INIS)

    Delage, P.; Sulem, J.; Mohajerani, M.; Tang, A.M.; Monfared, M.

    2012-01-01

    Document available in extended abstract form only. The disposal of high activity exothermic radioactive waste at great depth in clay host rocks will induce a temperature elevation that has been investigated in various underground research laboratories in Belgium, France and Switzerland through in-situ tests. Thermal effects are better known in clays (in particular Boom clay) than in clay-stone (e.g. Opalinus clay and Callovo-Oxfordian clay-stone). In terms of volume changes, Figure 1 confirms the findings of Hueckel and Baldi (1990) that volume changes depend on the over-consolidation ratio (OCR) of the clay. In drained conditions, normally consolidated clays exhibit plastic contraction when heated, whereas over-consolidated clay exhibit elastic dilation. The nature of thermal volume changes in heated clays obviously has a significant effect on thermally induced pore pressures, when drainage is not instantaneous like what occurs in-situ. Compared to clays, the thermal volume change behaviour of clay-stones is less well known than that of clays. clay-stone are a priori suspected to behave like over-consolidated clays. In this paper, a comparison of recent results obtained in the laboratory on the drained thermal volume changes of clay-stones is presented and discussed. It is difficult to run drained mechanical tests in clay-stones like the Opalinus clay and the Callovo-Oxfordian clay-stone because of their quite low permeability (10 -12 - 10 -13 m/s). This also holds true for thermal tests. Due to the significant difference in thermal expansion coefficient between minerals and water, it is necessary to adopt very slow heating rate (0.5 - 1 C/h) to avoid any thermal pressurization. To do so, a new hollow cylinder apparatus (100 mm external diameter, 60 mm internal diameter) with lateral drainages reducing the drainage length to half the sample thickness (10 mm) has been developed (Monfared et al. 2011). The results of a drained cyclic thermal test carried out on

  15. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    Science.gov (United States)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  16. Development of Non-Optimum Factors for Launch Vehicle Propellant Tank Bulkhead Weight Estimation

    Science.gov (United States)

    Wu, K. Chauncey; Wallace, Matthew L.; Cerro, Jeffrey A.

    2012-01-01

    Non-optimum factors are used during aerospace conceptual and preliminary design to account for the increased weights of as-built structures due to future manufacturing and design details. Use of higher-fidelity non-optimum factors in these early stages of vehicle design can result in more accurate predictions of a concept s actual weights and performance. To help achieve this objective, non-optimum factors are calculated for the aluminum-alloy gores that compose the ogive and ellipsoidal bulkheads of the Space Shuttle Super-Lightweight Tank propellant tanks. Minimum values for actual gore skin thicknesses and weld land dimensions are extracted from selected production drawings, and are used to predict reference gore weights. These actual skin thicknesses are also compared to skin thicknesses predicted using classical structural mechanics and tank proof-test pressures. Both coarse and refined weights models are developed for the gores. The coarse model is based on the proof pressure-sized skin thicknesses, and the refined model uses the actual gore skin thicknesses and design detail dimensions. To determine the gore non-optimum factors, these reference weights are then compared to flight hardware weights reported in a mass properties database. When manufacturing tolerance weight estimates are taken into account, the gore non-optimum factors computed using the coarse weights model range from 1.28 to 2.76, with an average non-optimum factor of 1.90. Application of the refined weights model yields non-optimum factors between 1.00 and 1.50, with an average non-optimum factor of 1.14. To demonstrate their use, these calculated non-optimum factors are used to predict heavier, more realistic gore weights for a proposed heavy-lift launch vehicle s propellant tank bulkheads. These results indicate that relatively simple models can be developed to better estimate the actual weights of large structures for future launch vehicles.

  17. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  18. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  19. Influence of clay mineralogy on clay based ceramic products

    International Nuclear Information System (INIS)

    Radzali Othman; Tuan Besar Tuan Sarif; Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Abu Bakar Aramjat

    1996-01-01

    Clay-based ceramic products can either be produced directly from a suitable clay source without the need further addition or such products can be produced from a ceramic body formulated by additions of other raw materials such as feldspar and silica sand. In either case, the mineralogical make-up of the clay component plays a dominating role in the fabrication and properties of the ceramic product. This study was sparked off by a peculiar result observed in one of five local ball clay samples that were used to reformulate a ceramic body. Initial characterisation tests conducted on the clays indicated that these clays can be classified as kaolinitic. However, one of these clays produced a ceramic body that is distinctively different in terms of whiteness, smoothness and density as compared to the other four clays. Careful re-examination of other characterisation data, such as particle size distribution and chemical analysis, failed to offer any plausible explanation. Consequently, the mineralogical analysis by x-ray diffraction was repeated by paying meticulous attention to specimen preparation. Diffraction data for the clay with anomalous behaviour indicated the presence of a ∼ 10A peak that diminished when the same specimen was re-tested after heating in an oven at 12O degree C whilst the other four clays only exhibit the characteristic kaolinite (Al sub 2 O sub 3. 2SiO sub 2. 2H sub 2 0) and muscovite peaks at ∼ 7A and ∼ 10A before and after heat treatment. This suggests the presence of the mineral halloysite (A1 sub 2 0 sub 3. 2SiO sub 2.4H sub 2 0) in that particular clay. This difference in mineralogy can be attributed to account for the variations in physical properties of the final product. Consequently, this paper reviews in general the precautionary measures that must be adhered to during any mineralogical investigation of clay minerals or clay-based materials. The common pitfalls during specimen preparation, machine settings and interpretation of

  20. EFFECTS OF INORGANIC SALT SOLUTION ON SOME PROPERTIES OF COMPACTED CLAY LINERS

    Directory of Open Access Journals (Sweden)

    KHALID R. MAHMOOD AL-JANABI

    2017-12-01

    Full Text Available Processed and natural clays are widely used to create impermeable liners in solid waste disposal landfills. The engineering properties of clay liners can be significantly affected by the leachate from the waste mass. In this study, the effect of inorganic salt solutions will be investigated. These solutions used at different concentrations. Two type of inorganic salt MnSO4 and FeCl3 are used at different concentration 2%,5%, 10%. Clay used in this study was the CL- clay (kaolinite. The results show that the consistency limits and unconfined compressive strength increased as the concentration of salts increased. While the permeability tends to decrease as salt concentration increased. Also, the compression index decreases as the concentration increased from 2% to 5%. The swelling index tends to increase slightly as the concentration of MnSO4 increased, while its decrease as the concentration of FeCl3. In this paper, it is aimed to investigate the performance of compacted clay liner exposed to the certain chemicals generated by the leachate and their effects on the geotechnical properties of compacted clay liner such consistency limits, permeability coefficient, compressibility characteristics and unconfined compressive strength.

  1. The five year report of the Tunnel Sealing Experiment: an international project of AECL, JNC, ANDRA and WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, N.A.; Cournut, A.; Dixon, D. (and others)

    2002-07-01

    The Tunnel Sealing Experiment (TSX) was conducted to address construction and performance issues of full-scale seals for potential application to deep geological repositories for radioactive waste. The TSX was performed by an international partnership representing Japan, France, the United States and Canada. The experiment was installed at the 420-m depth of Atomic Energy of Canada Limited's Underground Research Laboratory in the granite rock of the Precambrian Canadian Shield. The experiment involved the construction of two full-scale tunnel seals at either end of a single excavation. One seal was an assembly of pre-compacted sand-bentonite blocks and the second seal was a single cast of Low-Heat High-Performance concrete. The objective of the TSX was to assess the applicability of technologies for construction of practicable concrete and bentonite bulkheads; to evaluate the performance of each bulkhead; and to identify and document the parameters that affect that performance. This report documents the construction and operation of the experiment over its first five years. During this period, the experiment was designed, tunnels were excavated, and the seals were constructed. The sand-filled region between the two bulkhead seals was filled and pressurized with water to 800 and 2000 kPa. A tracer test was conducted at a tunnel pressure of 800 kPa to assess the solute transport characteristics of full-scale tunnel seals. The most important outcome from the TSX is that functional full-scale repository seals can be constructed using currently available technology. Factors identified as potentially affecting seal performance included: excavation method and minimizing the excavation damaged zone (EDZ); keying bulkheads into the rock to interrupt the EDZ; compacted sand-bentonite placement method; treatment of clay bulkhead-rock interface; rate of clay saturation compared with the rate of water pressurization; clay bulkhead volume expansion; the resealing properties

  2. PHB/bentonite compounds: Effect of clay modification and thermal aging on properties

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Tatiara G.; Costa, Anna Raffaela M.; Canedo, Eduardo L.; Carvalho, Laura H. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Wellen, Renate M.R., E-mail: tatiaraalmeida@gmail.com [Universidade Federal da Paraíba (UFPB), João Pessoa, PB (Brazil)

    2017-11-15

    Poly(3-hydroxybutyrate) (PHB) was compounded with three different Bentonite clays: natural, purified by ultrasound/sonicated and organically modified with hexadecyltrimethylammonium bromide. PHB/Bentonite masterbatches with 30% clay were prepared in a laboratory internal mixer and letdown with pure matrix to 1% and 3% w/w clay. Test samples were injection molded and characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Increase in Bentonite hydrophobic character was evinced by FTIR for organoclays. XRD of composites showed increase in clay interlayer distance and peak broadening, suggesting formation of intercalated nanocomposites. DSC showed increase in crystallinity and crystallization rate for compounds, especially for PHB/organoclay formulations. Thermal aging was conducted by exposing specimens at 115 deg C for up to 120 hours, and mechanical properties were measured according to ASTM standards. Elastic modulus increased and impact strength decreased with time and clay content; clay purification had little effect on the tensile properties. Tensile strength of thermal aged samples showed little variation, except for the organoclay nanocomposites, for which it significantly decreased with exposure time. SEM images displayed a whitened honeycomb structure and detachment of PHB/Bentonite layers which may be connected to cold crystallization and degradation processes taking place during thermal aging. (author)

  3. PHB/bentonite compounds: Effect of clay modification and thermal aging on properties

    International Nuclear Information System (INIS)

    Almeida, Tatiara G.; Costa, Anna Raffaela M.; Canedo, Eduardo L.; Carvalho, Laura H.; Wellen, Renate M.R.

    2017-01-01

    Poly(3-hydroxybutyrate) (PHB) was compounded with three different Bentonite clays: natural, purified by ultrasound/sonicated and organically modified with hexadecyltrimethylammonium bromide. PHB/Bentonite masterbatches with 30% clay were prepared in a laboratory internal mixer and letdown with pure matrix to 1% and 3% w/w clay. Test samples were injection molded and characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Increase in Bentonite hydrophobic character was evinced by FTIR for organoclays. XRD of composites showed increase in clay interlayer distance and peak broadening, suggesting formation of intercalated nanocomposites. DSC showed increase in crystallinity and crystallization rate for compounds, especially for PHB/organoclay formulations. Thermal aging was conducted by exposing specimens at 115 deg C for up to 120 hours, and mechanical properties were measured according to ASTM standards. Elastic modulus increased and impact strength decreased with time and clay content; clay purification had little effect on the tensile properties. Tensile strength of thermal aged samples showed little variation, except for the organoclay nanocomposites, for which it significantly decreased with exposure time. SEM images displayed a whitened honeycomb structure and detachment of PHB/Bentonite layers which may be connected to cold crystallization and degradation processes taking place during thermal aging. (author)

  4. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  5. The systems containing clays and clay minerals from modified drug release: a review.

    Science.gov (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Changes in the Expandability, Layer charge, and CEC of Smectitic Clay due to a Illitization

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin

    2007-01-01

    In a high-level waste(HLW) repository, the major fucntions of the smectitic clay for use as a buffer material are to inhibit the penetration of groundwater and to retard the release of radionuclides from the radioactive wastes to the surrounding environment. However, when the smectite clay is exposed to an elevated temperature due to radioactive decay heat and geochemical conditions for a long time, its physicochemical and mineralogical properties may be degradated and thus lose its barrier functions. It has been known in literature that the degradation of these properties of the smectitic clay occurs by a illitization in which the smectite transforms into illite. Therefore, an understanding of the illitization is essential to evaluate the long-term barrier performance of smectitic clay for the buffer of a HLW repository. This paper will carry out hydrothermal reaction tests with domestic smectitic clay which will be favorably considered for the buffer material of a Korean HLW repository, and investigate changes in the expandibility, layer charge and cation exchange capacity(CEC) of the smectitic clay due to a illitization

  7. On-site verification trials using fly ash for reclamation behind bulkheads; Sekitanbai wo gogan uraumezai ni riyosuru genba jissho chosa

    Energy Technology Data Exchange (ETDEWEB)

    Kozawa, K [Center for Coal Utilization, Japan, Tokyo (Japan); Yoshida, T [Toyo Construction Co. Ltd., Tokyo (Japan); Miyagawa, H; Kobayashi, M

    1996-09-01

    As a method to utilize coal ash generated from coal burning power plants more effectively in bulk, its use has been studied as a reclamation material behind bulkhead structures in harbors and airports. Verification trials for the study results were performed at the Hekinan power plant of the Chubu Electric Power Company. The trials included the following: an experiment to verify horizontal soil pressure and active earth pressure when slurry made of fly ash added with cement and seawater was placed in frameworks installed behind bulkheads of a harbor, a slurry hardening test, environmental impact investigation, and constructibility investigation. As a result, a large number of findings were obtained, including the following matters: earth pressure of slurry which has been placed in a soil tank in about ten minutes would be measured as pressure of liquid, but it shifts to behavior as a soil in a relatively short time; the earth pressure after three hours agreed with static earth pressure calculated under provision of K{sub o} = 0.2; and a hardened body made with cement under a certain mixing ratio was obtained, which stands by itself at a height of 7.5 m at compression strength of 1.77 kgf/cm {sup 2}. 11 figs., 2 tabs.

  8. Use of bore logging for the determination of lithological characteristics of the Boom clay formation and interest for correlations in clay

    International Nuclear Information System (INIS)

    Neerdael, B.; Bonne, A.; Manfroy, P.; Vandenberghe, N.; Fierens, E.; Laga, P.

    1981-01-01

    It is first recalled that the purpose of the HADES project of the CEN/SCK at Mol (Belgium) is to study the possibility of geological disposal for radioactive wastes in the Boom clay formation at a depth between +-160 and 270 m. The different steps and aspects of the site investigation are exposed, and for each of them, the specific techniques used are reviewed. One of these steps is elaborated more in detail. It covers namely the lateral extrapolation of the lithological variations as established from a very detailed analysis of the initial cored boring. Among the usefull methods, the most practical and refined results were obtained from the resistivity logs in the reconnaissance holes. Finally, examples are shown of very detailed correlation on site scale, scale of the hydrogeological entity and regional scale (occurrence of Boom clay on the belgian territory)

  9. Hydro-mechanical properties of the red salt clay (T4) - Natural analogue of a clay barrier

    International Nuclear Information System (INIS)

    Minkley, W.; Popp, T.; Salzer, K.; Gruner, M.; Boettge, V.

    2010-01-01

    transition to the stable conditions is characterized by the change of mineral composition from Montmorillonite to Illite - Chlorite. This process is accompanied with a decrease of swelling pressure to a minimum and the change of mechanical behaviour, i.e. a decrease of plasticity corresponds with increasing rock stiffness. An extensive laboratory programme has been conducted using samples from different locations and focusing on the determination of geomechanical and hydraulic properties. The measured strength and creep data clearly demonstrate the influence of burial depth and temperature on the mechanical properties. The test results delivered a comprehensive basis for the subsequent performed rock mechanical modelling. Permeability was measured in the lab on core samples with gas- and water injection tests, which demonstrated low permeabilities in the order of 10 -19 to 10 -21 m 2 and lower. Because in repositories for radioactive or toxic waste a gas pressure may develop in the long term its potential impact on the integrity of a low permeable clay barrier has to be assessed. A long term field test (duration more than two years) has been performed in ∼ 500 m depth in a salt mine of NW-Germany where the Red Salt Clay is partly exposed. A funnel-shape oriented borehole array was installed consisting of the nearly horizontal central injection borehole (Diam. = 60 mm, sealed using a hydro-mechanical packer system) and four surrounding boreholes. Two of them were used for the detection of gas transport. In addition, in the other two boreholes a micro-seismic monitoring array was installed, each equipped with two seismic sensors. The performed multi-stage pulse tests showed very limited gas pressure decay, thus confirming the low permeability of the clay formation. In addition, although a gas-break occurred as the minimal stress criterion was transgressed, spontaneous self sealing was confirmed resulting in recovery of tightness after the gas pressure decreased. The large

  10. Geochemical of clay formations : study of Spanish clay REFERENCE

    International Nuclear Information System (INIS)

    Turrero, M. J.; Pena, J.

    2003-01-01

    Clay rocks are investigated in different international research programs in order to assess its feasibility for the disposal of high level radioactive wastes. This is because different sepcific aspects: they have low hydraulic conductivity (10''-11-10''-15 m/s), a high sorption capacity, self-sealing capacity of facults and discontinuities and mechanical resistance. Several research programs on clay formations are aimed to study the chemistry of the groundwater and the water-rock reactions that control it: e. g. Boom Clay (Mol, Belgium), Oxford Clay /Harwell, United Kingdom), Toarcian Clay (Tournemire, France), Palfris formation (Wellenberg, Switzerland), Opalinus Clay (Bure, France). Based on these studies, considerable progress in the development of techniques for hydrologic, geochemical and hydrogeochemical characterization of mudstones has been accomplished (e. g. Beaufais et al. 1994, De Windt el al. 1998. Thury and Bossart 1999, Sacchi and Michelot 2000) with important advances in the knowledge of geochemical process in these materials (e. g. Reeder et al. 1993, Baeyens and Brandbury 1994, Beaucaire et al. 2000, Pearson et al., 2003).Furtermore, geochemical modeling is commonly used to simulate the evolution of water chemistry and to understand quantitatively the processes controlling the groundwater chemistry (e. g. Pearson et al. 1998, Tempel and Harrison 2000, Arcos et al., 2001). The work presented here is part of a research program funded by Enresa in the context of its R and D program. It is focused on the characterization of a clay formation (reference Argillaceous Formation, RAF) located within the Duero Basin (north-centralSpain). The characterisation of th ephysical properties,, fluid composition, mineralogy, water-rock reaction processes, geochemical modelling and sorption properties of the clays from the mentioned wells is the main purpose of this work. (Author)

  11. Comprehensive review of geosynthetic clay liner and compacted clay liner

    Science.gov (United States)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  12. Clay dispersibility and soil friability – testing the soil clay-to-carbon saturation concept

    OpenAIRE

    Schjønning, P.; de Jonge, L.W.; Munkholm, L.J.; Moldrup, P.; Christensen, B.T.; Olesen, J.E.

    2011-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC as a predictor of clay dispersibility and soil friability. Soil was sampled three years in a field varying in clay content (~100 to ~220 g kg-1 soil) and grown with different crop rotations. Clay ...

  13. Physico-chemical properties of clay deposits of Bina and Jhingurdah mines of Singrauli coalfield, District Sidhi (MP)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V B; Joshi, V C

    1980-01-01

    Clay samples exposed over Baraker and Raniganj coal seams of Lower Gondwana System in Bina and Jhingurdah mines respectively are studied. The chemical and rational analyses of the samples indicate that range of variation of the different constituents. Infra-red, X-ray diffraction, differential thermal analysis and thermal gravimetric analysis were used to determine clay and other minerals. The deposits may be suitable for manufacture of triaxial wares, e.g. ordinary porcelain sanitary ware, stoneware, etc.

  14. Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle

    Science.gov (United States)

    Sheng, Nuo; Boyce, Mary C.; Parks, David M.; Manovitch, Oleg; Rutledge, Gregory C.; Lee, Hojun; McKinley, Gareth H.

    2003-03-01

    Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions (Wp) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase ¡°particles¡+/-; in particular, the particle volume fraction (fp), the particle aspect ratio (L/t), and the ratio of particle mechanical properties to those of the matrix. However, these important aspects of as-processed nanoclay composites have yet to be consistently and accurately defined. A multiscale modeling strategy was developed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns, the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a) exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of nanometer level height. Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs are used to determine geometric features of the as-processed clay ¡°particles¡+/-, including L/t and the ratio of fp to Wp. These geometric features, together with estimates of silicate lamina stiffness obtained from molecular dynamics simulations, provide a basis for modeling effective mechanical properties of the clay particle. The structure-based predictions of the macroscopic elastic modulus of the nanocomposite as a function of clay weight fraction are in excellent agreement with experimental data. The adopted methodology offers promise for study of related properties in polymer/clay nanocomposites.

  15. Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites

    International Nuclear Information System (INIS)

    Chaudhary, D.S.; Prasad, R.; Gupta, R.K.; Bhattacharya, S.N.

    2005-01-01

    Various polymer clay nanocomposites (PCNs) were prepared from ethylene vinyl acetate copolymer (EVA) with 9, 18 and 28% vinyl acetate (VA) content filled with different wt.% (2.5, 5 and 7.5) of a Montmorillonite-based organo-modified clay (Cloisite[reg] C15A and C30B). The PCNs were prepared using melt blending techniques. Morphological information regarding intercalation and exfoliation were determined by using wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). WAXS and TEM confirmed that increasing the VA content was necessary to achieve greater clay-polymer interaction as seen from the comparatively higher intercalation of clay platelets with 28% VA. The effect of addition of clay on the development and the modification of crystalline morphology in EVA matrix was also studied using WAXS and temperature-modulated differential scanning calorimetry (MDSC). Results are presented showing that the addition of clay platelets does not increase the matrix crystallinity but the morphology was significantly modified such that there was an increase in the 'rigid' amorphous phase. Mechanical properties were also evaluated against the respective morphological information for each specimen and there are indications that the level of clay-polymer interaction plays a significant role in such morphological modification, and in such a way that affects the final PCN mechanical properties which has wide and significant applications in the packaging industries

  16. Clay Dispersibility and Soil Friability-Testing the Soil Clay-to-Carbon Saturation Concept

    DEFF Research Database (Denmark)

    Schjønning, Per; de Jonge, Lis Wollesen; Munkholm, Lars Juhl

    2012-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC...... as a predictor of clay dispersibility and soil friability. Soil was sampled 3 yr in a field varying in clay content (∼100 to ∼220 g kg−1 soil) and grown with different crop rotations. Clay dispersibility was measured after end-over-end shaking of field-moist soil and 1- to 2-mm sized aggregates either air......-dried or rewetted to −100 hPa matric potential. Tensile strength of 1- to 2-, 2- to 4-, 4- to 8-, and 8- to 16-mm air-dried aggregates was calculated from their compressive strength, and soil friability estimated from the strength–volume relation. Crop rotation characteristics gave only minor effects on clay...

  17. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation

    Science.gov (United States)

    Shokuhi Rad, A.; Ebrahimi, D.

    2017-07-01

    The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.

  18. SBR Brazilian organophilic/clay nanocomposites

    International Nuclear Information System (INIS)

    Guimaraes, Thiago R.; Valenzuela-Diaz, Francisco R.; Morales, Ana Rita; Paiva, Lucilene B.

    2009-01-01

    The aim of this work is the obtaining of SBR composites using a Brazilian raw bentonite and the same bentonite treated with an organic salt. The clays were characterized by XRD. The clay addition in the composites was 10 pcr. The composites were characterized by XRD and had measured theirs tension strength (TS). The composite with Brazilian treated clay showed TS 233% higher than a composite with no clay, 133% higher than a composite with Cloisite 30B organophilic clay and 17% lower than a composite with Cloisite 20 A organophilic clay. XRD and TS data evidence that the composite with Brazilian treated clay is an intercalated nanocomposite. (author)

  19. Atrazine biodegradation modulated by clays and clay/humic acid complexes

    International Nuclear Information System (INIS)

    Besse-Hoggan, Pascale; Alekseeva, Tatiana; Sancelme, Martine; Delort, Anne-Marie; Forano, Claude

    2009-01-01

    The fate of pesticides in the environment is strongly related to the soil sorption processes that control not only their transfer but also their bioavailability. Cationic (Ca-bentonite) and anionic (Layered Double Hydroxide) clays behave towards the ionisable pesticide atrazine (AT) sorption with opposite tendencies: a noticeable sorption capacity for the first whereas the highly hydrophilic LDH showed no interactions with AT. These clays were modified with different humic acid (HA) contents. HA sorbed on the clay surface and increased AT interactions. The sorption effect on AT biodegradation and on its metabolite formation was studied with Pseudomonas sp. ADP. The biodegradation rate was greatly modulated by the material's sorption capacity and was clearly limited by the desorption rate. More surprisingly, it increased dramatically with LDH. Adsorption of bacterial cells on clay particles facilitates the degradation of non-sorbed chemical, and should be considered for predicting pesticide fate in the environment. - The biodegradation rate of atrazine was greatly modulated by adsorption of the pesticide and also bacterial cells on clay particles.

  20. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    Science.gov (United States)

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  1. Glazed clay pottery and lead exposure in Mexico: Current experimental evidence.

    Science.gov (United States)

    Diaz-Ruiz, Araceli; Tristán-López, Luis Antonio; Medrano-Gómez, Karen Itzel; Torres-Domínguez, Juan Alejandro; Ríos, Camilo; Montes, Sergio

    2017-11-01

    Lead exposure remains a significant environmental problem; lead is neurotoxic, especially in developing humans. In Mexico, lead in human blood is still a concern. Historically, much of the lead exposure is attributed to the use of handcrafted clay pottery for cooking, storing and serving food. However, experimental cause-and-effect demonstration is lacking. The present study explores this issue with a prospective experimental approach. We used handcrafted clay containers to prepare and store lemonade, which was supplied as drinking water to pregnant rats throughout the gestational period. We found that clay pots, jars, and mugs leached on average 200 µg/l lead, and exposure to the lemonade resulted in 2.5 µg/dl of lead in the pregnant rats' blood. Neonates also showed increased lead content in the hippocampus and cerebellum. Caspase-3 activity was found to be statistically increased in the hippocampus in prenatally exposed neonates, suggesting increased apoptosis in that brain region. Glazed ceramics are still an important source of lead exposure in Mexico, and our results confirm that pregnancy is a vulnerable period for brain development.

  2. Phosphonium modified clay/polyimide nanocomposites

    International Nuclear Information System (INIS)

    Ceylan, Hatice; Çakmakçi, Emrah; Beyler-Çiǧil, Asli; Kahraman, Memet Vezir

    2014-01-01

    In this study, octyltriphenylphosphonium bromide [OTPP-Br] was prepared from the reaction of triphenylphosphine and 1 -bromooctane. The modification of clay was done by ion exchange reaction using OTPP-Br in water medium. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide(PI)/clay hybrids were prepared by blending of poly(amic acid) and organically modified clay as a type of layered clays. The morphology of the Polyimide/ phosphonium modified clay hybrids was characterized by scanning electron microscopy (SEM). Chemical structures of polyimide and Polyimide/ phosphonium modified clay hybrids were characterized by FTIR. SEM and FTIR results showed that the Polyimide/ phosphonium modified clay hybrids were successfully prepared. Thermal properties of the Polyimide/ phosphonium modified clay hybrids were characterized by thermogravimetric analysis (TGA)

  3. SUPPRESSION OF HUMORAL IMMUNE RESPONSES BY 2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN INTERCALATED IN SMECTITE CLAY

    Science.gov (United States)

    Boyd, Stephen A.; Johnston, Cliff T.; Pinnavaia, Thomas J.; Kaminski, Norbert E.; Teppen, Brian J.; Li, Hui; Khan, Bushra; Crawford, Robert B.; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L.F.

    2018-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. PMID:21994089

  4. Modification and characterization of montmorillonite clay for the extraction of zearalenone

    Science.gov (United States)

    Hue, Kerri-Ann Alicia

    caused by washing of the clays or exposure to electrolytic solutions. Statistical design of experiments was used to determine the factors most influential during ZEN extraction. Modification by TCMA resulted in an increase in intergallery spacing of ˜0.6nm. TGA and FTIR studies indicated intercalation of organic species within the clay layers. An increase in weight loss proportional to the amount of TCMA added was observed by TGA analysis. In addition to the peaks found in the natural clay, peaks at 2928 cm-1, 2852 cm -1, and 1466 cm-1, which belong to C-H asymmetric stretching, C-H symmetric stretching and -CH2 scissoring respectively characteristic of TCMA were present. The clays developed were able to extract >90% ZEN in vitro at pH 3 and pH7. The factors most important for extraction changed depending on the levels of parameters chosen. Mathematical models were developed that showed the relationship between the factors and the ZEN removal percentage. When exposed to electrolyte solutions ˜1.5pmm of surfactant desorbed from the modified clay.

  5. Toxicity of inhaled 90Y in fused clay particles in beagle dogs. VI

    International Nuclear Information System (INIS)

    Hobbs, C.H.; Chiffelle, T.L.; Hahn, F.F.; Jones, R.K.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1974-01-01

    Studies on the metabolism, dosimetry, and effects of inhaled 90 Y in fused clay in the Beagle dog are being continued to assess the consequences of inhalation of an energetic beta emitter that has a short effective half-life in the lung. A radiation dose pattern study in which 12 dogs were sacrificed in pairs at 0, 2, 4, 6, 8, and 12 days post-inhalation exposure has been completed. A longevity study in which 89 dogs have been exposed to 90 Y fused clay with initial lung burdens ranging from 80 to 5200 μCi/kg body weight and 12 control dogs were exposed to stable yttrium in fused clay is in progress. The 90 Y was retained in lung with a half-life similar to its physical half-life (64 hours) and with only small quantities translocated to tracheobronchial lymph nodes, skeleton, and liver. The infinite radiation doses to lung, tracheobronchial lymph nodes, skeleton, and liver for an initial lung burden of 100 μCi 90 Y/kg of body weight were estimated to be 1600, 170, 0.54, and 0.38 rads, respectively. Thirty-eight of 39 dogs with doses to lung from 9300 to 70,000 rads have died at 7.5 to 903 days post-exposure. The one surviving dog in this dose range has radiographic evidence of pulmonary fibrosis at 1316 days post-exposure. All the dogs that died had radiation pneumonitis. The dog that died at 903 days post-exposure with a dose to lung of 11,000 rads also had 2 small pulmonary adenomas. Fifty exposed dogs with doses to lung of 1300 to 7900 rads are surviving with no significant abnormalities at 1278 to 1834 days post-exposure and will be studied for the remainder of their lifespan. (U.S.)

  6. A preliminary study on titanium-clay interactions

    International Nuclear Information System (INIS)

    Wersin, P.; Grolimund, D.; Kumpulainen, S.; Brendle, J.; Snellman, M.

    2010-01-01

    bentonite, Opalinus Clay, Illite du Puy) were characterized by XAS. Preliminary results can be summarized as: (1) Natural clay materials contain significant but variable amounts of Ti. The standard purification procedure for bentonites to remove accessories does not or only barely removes Ti. (2) The Ti in the natural clays materials Rokle bentonite, Opalinus Clay, Illite du Puy occurs as microcrystalline TiO 2 (presumably as anatase). On the other hand, the Ti spectra in MX-80 suggest the presence of structural Ti in the smectite, but the evidence is not conclusive so far. (3) The exposure of purified MX-80 to titanium powder at room temperature within a period of five months did not lead to measurable additional Ti in the clay. This was even true for samples exposed to acidic or alkaline conditions where corrosion rates and solubility of Ti are known to be higher. Thereof, the following preliminary conclusions can be drawn: - The Ti content in natural bentonites is concentrated mainly in the so-called clay fraction. Ti occurs therein either as separate small TiO 2 particles (Rokle, Opalinus Clay, Illite du Puy) or as structural Ti. As indicated by the study of Karnland et al. (2006), the properties of natural bentonites are not affected by the presence of Ti. In that study, the bulk properties (swelling pressure, hydraulic conductivity) were very similar for the different bentonites containing variable Ti content, ranging from 0.1 to 4.8 weight % TiO 2 in the purified clay fractions. The transfer rates of Ti from the metallic source, even in reactive powder form, to the clay are very low and no enrichment above background concentrations after several months could be observed. In order to obtain measurable effects, both the corrosion process must be increased and the background concentration must be reduced. Tests with Ti-free clay material at increased temperature are still ongoing and will hopefully enable identification of reacted Ti species. (authors)

  7. Common clay and shale

    Science.gov (United States)

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  8. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    Science.gov (United States)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  9. Effects of modified Clay on the morphology and thermal stability of PMMA/clay nanocomposites

    International Nuclear Information System (INIS)

    Tsai, Tsung-Yen; Lin, Mei-Ju; Chuang, Yi-Chen; Chou, Po-Chiang

    2013-01-01

    The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O 2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites. - Highlights: ► We control the dispersion morphology by protonation of K2 into the clay. ► The CL120 and CL88, with the higher CEC, are more random intercalated by K2. ► We report these materials have good optical clarity, and UV resistance

  10. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    Science.gov (United States)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  11. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    Science.gov (United States)

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Influence of low temperatures on aggregate disruption of heavy clay soils

    Directory of Open Access Journals (Sweden)

    Jana Kozlovsky Dufková

    2010-01-01

    Full Text Available Heavy clay soils that are normally resistant to wind erosion, from study site Ostrožská Nová Ves si­tua­ted in the foothills of the Bílé Karpaty Mountains, Czech Republic, were a subject of laboratory analyses. The analyses should found out the influence of overwinter processes on disruption of soil aggregates and thus reason of vulnerability to soil loss by wind. Two overwinter processes were observed – freezing and thawing, and freeze-drying of the soil. Both processes have indicated the increasing of erodible fraction in dependence of water content of analysed soils. Exposed frozen clay soils that freeze-dries during the winter in the foothills of Bílé Karpaty, leaves soils highly erodible in late winter and early spring.

  13. Thixotropic Properties of Latvian Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Ruplis, Augusts

    2015-01-01

    This research studies Latvia originated Devon (Tūja, Skaņkalne), quaternary (Ceplīši), Jurassic, (Strēļi) and Triassic (Vadakste) deposit clays as well as Lithuania originated Triassic (Akmene) deposit clays. Thixotropic properties of clay were researched by measuring relative viscosity of clay in water suspensions. Relative viscosity is measured with a hopper method. It was detected that, when concentration of suspension is increased, clay suspension’s viscosity also increases. It happens un...

  14. Microbial incidence on copper and titanium embedded in compacted bentonite clay

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Joergen; Lydmark, Sara; Edlund, Johanna; Paeaejaervi, Anna; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2011-10-15

    The incidence of bacteria on metal surfaces was examined in an experimental setting simulating conditions of the proposed Swedish concept for disposal of spent nuclear fuel. Titanium and copper rods were embedded in compacted bentonite clay saturated with groundwater collected at a depth of 450 m. Bentonite blocks were exposed to an external flux of groundwater with or without added lactate or H{sub 2} for up to 203 days. Bacterial accumulation on metal rods and in the surrounding bentonite was analyzed using real-time quantitative PCR (qPCR), with genetic markers for overall bacterial presence (16S rDNA) as well as specific for sulfate-reducing bacteria (apsA). Clay species composition was analyzed by cloning and sequencing 16S rDNA extracted from the clay. Results suggest limited bacterial accumulation on metal surfaces, amounting to a maximum of approximately 106 apsA copies cm-2, corresponding to a 3.7% coverage of metal surfaces. Bacterial species composition appeared to be a mix of species originating from the bentonite clay and from the added groundwater, including an apparently high proportion of sulfate-reducing bacteria. While titanium surfaces exhibited higher bacterial presence than did copper surfaces, neither the degree of bentonite compaction nor the addition of lactate or H{sub 2} appeared to have any effect on the bacterial incidence on metal surfaces

  15. Microbial incidence on copper and titanium embedded in compacted bentonite clay

    International Nuclear Information System (INIS)

    Persson, Joergen; Lydmark, Sara; Edlund, Johanna; Paeaejaervi, Anna; Pedersen, Karsten

    2011-10-01

    The incidence of bacteria on metal surfaces was examined in an experimental setting simulating conditions of the proposed Swedish concept for disposal of spent nuclear fuel. Titanium and copper rods were embedded in compacted bentonite clay saturated with groundwater collected at a depth of 450 m. Bentonite blocks were exposed to an external flux of groundwater with or without added lactate or H 2 for up to 203 days. Bacterial accumulation on metal rods and in the surrounding bentonite was analyzed using real-time quantitative PCR (qPCR), with genetic markers for overall bacterial presence (16S rDNA) as well as specific for sulfate-reducing bacteria (apsA). Clay species composition was analyzed by cloning and sequencing 16S rDNA extracted from the clay. Results suggest limited bacterial accumulation on metal surfaces, amounting to a maximum of approximately 10 6 apsA copies cm -2 , corresponding to a 3.7% coverage of metal surfaces. Bacterial species composition appeared to be a mix of species originating from the bentonite clay and from the added groundwater, including an apparently high proportion of sulfate-reducing bacteria. While titanium surfaces exhibited higher bacterial presence than did copper surfaces, neither the degree of bentonite compaction nor the addition of lactate or H 2 appeared to have any effect on the bacterial incidence on metal surfaces

  16. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    Science.gov (United States)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite

  17. Fe(0)-clays interactions at 90°C under anoxic conditions: a comparative study between clay fraction of Callovo-Oxfordian and other purified clays

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Barres, O.; Galmiche, M.; Ghanbaja, J.; Kohler, A.; Michau, N.

    2010-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste it is of prime importance to understand the interactions between the saturated clay formation and steel containers. This can be achieved through an in-depth analysis of iron-clay interactions. Previous studies on the subject investigated the influence of solid/liquid ratio, iron/clay ratio, temperature and reaction time. The aim of the present study is to explain Callovo-Oxfordian-Fe(0) interactions by determining the role of each mineral phases present in the Callovo-Oxfordian (clay minerals, quartz, carbonates and pyrite) on the mechanisms of interaction between metal iron and clay particles. In that context, it is especially important to understand in detail the influence of clay nature and to obtain some insight about the relationships between interaction mechanisms at the molecular scale and crystallographic properties (particle size, TO or TOT layers, amount of edge faces...). The influence of the combination of different clays and the addition of other minerals must also be studied. In a first step, the Callovo-Oxfordian argillite from the Andra's underground research laboratory was purified to extract the clay fraction (illite, illite-smectite, kaolinite and chlorite). Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) for durations of one, three or nine months in the presence of metallic iron powder. Experiments without iron were used as control. The iron/clay ratio was fixed at 1/3 with a solid/liquid ratio of 1/20. The above mentioned experiments were also carried out in parallel on other purified clays: two smectites (Georgia bentonite and SWy2 from the Clay Minerals Society), one illite (illite du Puy) and one kaolinite (KGa2, from the Clay Minerals society). At the end of the experiments, solid and liquid phases were

  18. Status of assessment tools on the performance guarantee contents of backfill, bulkhead, tunnel and pit

    International Nuclear Information System (INIS)

    Kawakami, Susumu; Fujita, Tomoo; Yui, Mikazu

    2006-03-01

    In order to contribute to the safety standards and guidelines which a regulator will decide, a state-of-the-art assessment method is investigated and summarized in tables about performance guarantee contents of backfill, bulkhead, tunnel (access, main, connecting, disposal) and disposal pit. In addition, examples of assessment tools are described. In this report, summary of (1) basic properties of bentonite, including swelling, mechanical and hydraulic properties, (2) long-term behavior of bentonite, including extrusion/erosion into host rock, and alteration, (3) effect of high pH plume from cementitious material and (4) mechanical stability of the near-field is described. Check points, assessment methods for (based on the data obtained from the experimental results, the estimation value obtained from empirical equations and database, and the modeling calculations) and latest results of these R and D programs were also summarized. (author)

  19. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Elsen, A; Grobet, P; Keung, M; Leeman, H; Schoonheydt, R; Toufar, H [eds.

    1995-08-20

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY `95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately.

  20. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    International Nuclear Information System (INIS)

    Elsen, A.; Grobet, P.; Keung, M.; Leeman, H.; Schoonheydt, R.; Toufar, H.

    1995-01-01

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY '95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately

  1. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Science.gov (United States)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  2. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Directory of Open Access Journals (Sweden)

    Landrou Gnanli

    2017-01-01

    Full Text Available In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  3. Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin intercalated in smectite clay.

    Science.gov (United States)

    Boyd, Stephen A; Johnston, Cliff T; Pinnavaia, Thomas J; Kaminski, Norbert E; Teppen, Brian J; Li, Hui; Khan, Bushra; Crawford, Robert B; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L F

    2011-12-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. Copyright © 2011 SETAC.

  4. Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-10-01

    Full Text Available 57 58 59 60 For Peer Review 1 Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications N. M. Musyoka1*, J. Ren1, H. W. Langmi1, D. E. C. Rogers1, B. C. North1, M. Mathe1 and D. Bessarabov2... clear (filtered) extract of cloisite clay, SNC for zeolite from unfiltered cloisite clay extract and SBC for zeolite from unfiltered South African bentonite clay extract. Furfuryl alcohol (Sigma Aldrich, C5H6O2, 98%) and Ethylene gas were used...

  5. Failure of the pressure bulkhead of a passenger aircraft - a Case Study

    International Nuclear Information System (INIS)

    Salam, I.; Khan, A.N.; Farooque, M.

    2011-01-01

    The pressure bulkhead of a passenger aircraft ruptured when the aircraft was cruising at a height of 28,000 ft. Because of the sudden rupture, the rear toilets disintegrated and things like toilet rolls, tissue papers, towels, were sucked into the stabilizer compartment, where the entire tail control system was located. The debris damaged the green hydraulic system, ruptured fuel line and jammed the control cables. The damage resulted in the aircraft going into pitch-up mode (take-off position) and almost approached stalling position. The failed part was located near the toilets. Water from the toilets reached in this region due to leakage and penetrated inside the sheets and corrosion started in the presence of stagnant water. This was supplemented by the stresses present on the structure during flight. Stress corrosion started from inner sheet and led to initiation of fatigue. The combined effect of stress corrosion cracking and fatigue resulted in the failure of this sheet. No third stage (catastrophic) failure was observed in the fracture. The absence of catastrophic failure mode in the fractured sheet showed that it stood up to last stage. (author)

  6. Effect of clay nanoparticles addition in the properties of cement class G expose to CO_2-rich media

    International Nuclear Information System (INIS)

    Costa, E.M. da; Moraes, M.K. de

    2016-01-01

    This work investigate the influence of incorporation of clay nanoparticles in class G cement paste used in the completion and abandonment of oil wells, in environments containing CO_2 under high pressure and temperature. For that, hardened class G cement pastes with and without nanoparticles were submitted to degradation tests in wet supercritical CO_2 and water saturated with CO_2 at 90 ° C and 15MPa for 7, 21 and 56 days. The techniques of scanning electron microscopy for field emission, x-ray diffraction and compressive strength were used to evaluate the effect of degradation on the structure and mechanical properties of the cement paste. The chemically altered layer consists predominantly of calcium carbonate. In general, the inclusion of clay promoted an increase in chemically altered layer, but otherwise minimized the compressive strength loss over time. (author)

  7. Comparison of short-term and long-term performances for polymer-stabilized sand and clay

    Directory of Open Access Journals (Sweden)

    Sepehr Rezaeimalek

    2017-04-01

    Full Text Available A series of tests were carried out on sulfate rich, high-plasticity clay and poorly-graded natural sand to study the effectiveness of a methylene diphenyl diisocyanate based liquid polymer soil stabilizer in improving the unconfined compressive strength (UCS of freshly stabilized soils and aged sand specimens. The aged specimens were prepared by exposing the specimens to ultraviolet radiation, freeze-thaw, and wet-dry weathering. The polymer soil stabilizer also mitigated the swelling of the expansive clay. For clay, the observations indicated that the sequence of adding water and liquid polymer had great influence on the gained UCS of stabilized specimens. However, this was shown to be of little importance for sand. Furthermore, sand samples showed incremental gains in UCS when they were submerged in water. This increase was significant for up to 4 days of soaking in water after 4 days of ambient air curing. Conversely, the clay samples lost a large fraction of their UCS when soaked in water; however, their remaining strength was still considerable. The stabilized specimens showed acceptable endurance under weathering action, although sample yellowing due to ultraviolet radiation was evident on the surface of the specimens. Except for moisture susceptibility of the clay specimens, the results of this study suggested the liquid stabilizer could be successfully utilized to provide acceptable strength, durability and mitigated swelling.

  8. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  9. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    Science.gov (United States)

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-03

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  10. 40 KG Sample of Fish-Clay from Stevns Klint, Denmark

    Science.gov (United States)

    Gwozdz, R.; Hansen, H. J.; Rasmussen, K. L.

    1992-07-01

    In March 1986 a 50-m-long exposure of the cliff at Stevns Klint fell down and exposed about 40 square meters of Fish Clay. Due to this extraordinary event we were able to pick by hand about 50 kg black KT boundary layer material. After drying, the material was homogenized using a wooden pestle and an agate mortar. The powdered material was sieved through 200 mesh nylon gauze. The fraction larger than 200 mesh was collected and powdered again in an agate mortar. After four repetitions the amount of material with grain size less than 200 mesh was about 40 kg. The fraction larger than 200 mesh was reduced to about 7 kg. The 40-kg powder was mixed in a rotating polyethylene drum for three weeks. The material was analyzed by instrumental neutron activation analysis, atomic absorption and X-ray fluorescence analysis for about 40 elements. INAA was made on 20 aliquots with weight about 300 mg, 20 aliquots with weight about 80 mg, and 30 with weights between 10 and 20 mg. The preliminary results show that our KT boundary sample (1) is very homogeneous, (2) is very close in composition to other K-T boundary clays analyzed by us or described in the literature, and (3) has an Ir concentration of 32 +- 2 ng/g. We hope that our Fish Clay sample (termed by us "Mesozoic Midnight") after analysis in other laboratories and by other analytical methods may qualify as reference material in analytical work on boundary clay material.

  11. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    Energy Technology Data Exchange (ETDEWEB)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A., E-mail: ferelenakq@gmail.co [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones para la Industria Quimica; Pita, Victor J.R.R.; Dias, Marcos L. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2009-07-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  12. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    International Nuclear Information System (INIS)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A.; Pita, Victor J.R.R.; Dias, Marcos L.

    2009-01-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  13. Crystallite size distribution of clay minerals from selected Serbian clay deposits

    Directory of Open Access Journals (Sweden)

    Simić Vladimir

    2006-01-01

    Full Text Available The BWA (Bertaut-Warren-Averbach technique for the measurement of the mean crystallite thickness and thickness distributions of phyllosilicates was applied to a set of kaolin and bentonite minerals. Six samples of kaolinitic clays, one sample of halloysite, and five bentonite samples from selected Serbian deposits were analyzed. These clays are of sedimentary volcano-sedimentary (diagenetic, and hydrothermal origin. Two different types of shape of thickness distribution were found - lognormal, typical for bentonite and halloysite, and polymodal, typical for kaolinite. The mean crystallite thickness (T BWA seams to be influenced by the genetic type of the clay sample.

  14. Aspects of clay/concrete interactions

    International Nuclear Information System (INIS)

    Oscarson, D.W.; Dixon, D.A.; Onofrei, M.

    1997-01-01

    In the Canadian concept for nuclear fuel waste management, both clay-based materials and concrete are proposed for use as barriers, seals or supporting structures. The main concern when clays and concrete are in proximity is the generation of a high-pH environment by concrete since clay minerals are relatively unstable at high pH. Here we examine the OH - -generating capacity of two high-performance concretes when in contact with several solutions. We also investigate various aspects of claylconcrete interactions. They are: (1) the alkalimetric titration of clay suspensions, (2) the effect of Ca(OH) 2 (portlandite) on the swelling and hydraulic properties of compacted bentonite, and (3) the influence of cement grout on a backfill clay retrieved from the 900-d Buffer/Container Experiment at the Underground Research Laboratory of AECL. The results indicate that although high-performance concretes establish significantly lower poresolution pH (9 to 10) than does ordinary portland cement, the pH is still somewhat higher than that of clay/groundwater systems of about pH 8. Hence, even if high-performance concrete is used in a disposal vault, the potential still exists for clay minerals to alter over long periods of time if in contact with this concrete. The data show, however, that clays have a substantial buffering capacity, and clay-based barriers can thus neutralize much of the OH - potentially released from concrete in a vault. Moreover, even after reacting for 120 d at 85 o C with up to 5 wt.% Ca(OH) 2 , compacted bentonite (dry density = 1.2 Mg/m 3 ) retains much of its swelling capacity and has a permeability low enough (hydraulic conductivity ≤ 10 -11 m/s) to ensure that molecular diffusion will be the main transport mechanism through compacted clay-based barriers. Furthermore, according to X-ray diffractometry, the clay mineral component of backfill was not altered by contact with a cement grout for 900 d in the Buffer/Container Experiment

  15. Physical Properties of Latvian Clays

    OpenAIRE

    Jurgelāne, I; Stepanova, V; Ločs, J; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Physical and chemical properties of clays mostly depends on its mineral and chemical composition, particle size and pH value. The mutual influence of these parameters is complex. Illite is the most abundant clay mineral in Latvia and usually used in building materials and pottery. The viscosity and plasticity of Latvian clays from several deposits were investigated and correlated with mineral composition, particle size and pH value. Fractionated and crude clay samples were used. The p...

  16. In-situ nanoscale imaging of clay minerals with atomic force microscopy

    International Nuclear Information System (INIS)

    Bosbach, D.

    2010-01-01

    Document available in extended abstract form only. Clay minerals play a key role in many concepts for high-level nuclear waste repository systems in deep geological formations. Various aspects related to the long-term safety of nuclear disposal are linked to their fundamental physical-chemical properties, in particular with respect to their reactivity in aqueous environments. Atomic Force Microscopy (AFM) allows high resolution imaging of clay minerals in-situ while they are exposed to an aqueous solution. The presentation is intended to provide an overview of examples of AFM studies on clay minerals: 1. AFM is an ideal tool to visualize the shape of individual clay particles down to molecular scales including a quantitative description of for example their aspect ratio. Furthermore, the particle size can be easily extracted from AFM data for individual particles as well as particle size distribution. 2. Surface area of clay minerals is a key issue when discussing heterogeneous reactions such as dissolution, adsorption or (surface) precipitation - total surface area, BET surface area, reactive surface area need to be distinguished. In particular reactive surface area is linked to specific reactive surface sites. AFM is of course able to identify such sites and consequently AFM data allow to characterize and to quantify reactive surface area. 3. The reactivity of clay mineral surfaces in aqueous environments controls the behaviour of clay minerals under repository conditions and also affects the migration/retention of radionuclides. It could be shown that the dissolution of smectite particles under acidic conditions at room temperature primarily occurs at (hk0) particle edges, whereas the reactivity of the (001) basal surfaces is very limited. The heterogeneous (surface) precipitation of secondary iron (hydr)oxides phase could be unraveled by AFM observations. Surface precipitation occurs preferentially at (hk0) edges surfaces. Ignoring the surface site specific

  17. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Randall T. Cygan

    2007-06-01

    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site: www.sandia.gov/clay.

  18. Evaluation of the bleaching flux in clays containing hematite and different clay minerals

    International Nuclear Information System (INIS)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos; Morelli, M.R.

    2016-01-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  19. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  20. Toxicity of 144Ce fused clay particles inhaled by aged dogs. III

    International Nuclear Information System (INIS)

    Hahn, F.F.; Boecker, B.B.; Hobbs, C.H.; Jones, R.K.; McClellan, R.O.; Pickrell, J.A.

    1974-01-01

    The toxicity of 144 Ce fused clay particles inhaled by 8- to 10.5-year-old dogs is being investigated to provide information on age-related differences in the response of older members of the human population to accidental inhalation of radioactive aerosols. These data on aged dogs will be compared to the results of similar studies using dogs exposed at approximately 3 months or 12 to 14 months of age. To date, 7 blocks of 5 dogs each, divided into 4 exposure levels with mean initial lung burdens of 7.5, 14, 24, and 57 μCi/kg body weight and control dogs exposed to non-labeled fused clay particles have been entered into a longevity study. Twelve dogs with initial lung burdens ranging from 20 to 75 μCi 144 Ce/kg body weight and cumulative doses to lung of from 22,000 to 74,000 rads have died at 197 to 943 days post-inhalation with clinico-pathologic findings of radiation pneumonitis and pulmonary fibrosis. Two of these also had congestive heart failure. In addition, 4 dogs with ILBs of 8 to 14 μCi 144 Ce/kg body weight have died of mammary neoplasms or congestive heart failure but without radiation pneumonitis. One dog with an ILB of 9 μCi 144 Ce/kg body weight died with a chronic interstitial foreign body pneumonia. Two control dogs have died, one with a mammary carcinoma and one with pyometra. Pulmonary retention of the inhaled 144 Ce was similar to that observed previously in dogs exposed at 18 to 22 months of age in a radiation dose pattern study. Serial observations are continuing on the 11 surviving 144 Ce-exposed dogs and 5 controls. (U.S.)

  1. Effects of Different Types of Clays and Maleic Anhydride Modified Polystyrene on Polystyrene/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrabzadeh

    2013-01-01

    Full Text Available Polymer/clay nanocomposites are considered as a new subject of research in Iran and the world. Addition of a minimum amount of clay (2-5wt% can improve the mechanical properties, enhance barrier properties and reduce flammability dramatically. Polystyrene (PS exhibits high strength, high modulus and excellent dimensional stability, but it has poor ductility, elongation, and flexural modulus. By incorporating clay into polystyrene these properties can be improved. In this study preparation of polystyrene/clay nanocomposite, effects of different types of clays (Cloisite 10A andNanomer I.30TC and maleic anhydride modified polystyrene on mechanical properties of the prepared polystyrene/clay nanocomposites were evaluated. Samples were prepared by a twin screw extruder. Transmission electron microscopy (TEM and X-ray diffraction (XRD techniques were employed to evaluate the extent of intercalation and exfoliation of silicate layers in the nanocomposites. Mechanical tests show that by addition of clay and maleic anhydride modified polystyrene the flexural modulus (~30% and elongation-at-break (~40% of prepared nanocomposites have been improved. XRD and TEM results show that nanocomposite have an intercalated structure with ability to change to further exfoliation structure.

  2. Thixotropic Properties of Latvian Illite Containing Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Niedra, Santa; Dušenkova, Inga; Ruplis, Augusts

    2015-01-01

    Thixotropic properties of Latvian Devonian and Quaternary clays were studied. Dynamic viscosity of the water clay suspensions were measured with a rotating viscometer. Influence of concentration, pH and modifiers on the thixotropic clay properties was analyzed. It was found that Latvian clays have thixotropic properties. Stability of clay suspensions is described with the thixotropy hysteresis loop. Increasing the speed of the viscometer rotation, dynamic viscosity of the clay suspension decr...

  3. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Simona eLongo

    2013-11-01

    Full Text Available Supercritical carbon dioxide (scCO2 treatments of a montmorillonite (MMT intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS, have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals.

  4. What makes a natural clay antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (2+ solubility.

  5. Viscosity and Plasticity of Latvian Illite Clays

    OpenAIRE

    Jurgelāne, I; Vecstaudža, J; Stepanova, V; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  6. Evaluating Weathering of Food Packaging Polyethylene-Nano-clay Composites: Release of Nanoparticles and their Impacts.

    Science.gov (United States)

    Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E

    2018-01-01

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites

  7. Clay Portrait Boxes

    Science.gov (United States)

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  8. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  9. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  10. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  11. 21 CFR 186.1256 - Clay (kaolin).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Clay (kaolin). 186.1256 Section 186.1256 Food and... Substances Affirmed as GRAS § 186.1256 Clay (kaolin). (a) Clay (kaolin) Al2O3.2SiO2.nH2O, Cas Reg. No. 1332-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain...

  12. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...... sandstones....

  13. Mineral acquisition from clay by budongo forest chimpanzees

    NARCIS (Netherlands)

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay

  14. Evaluation of kaolinite clays of Moa for the production of cement based clinker-calcined clay-limestone (LC3

    Directory of Open Access Journals (Sweden)

    Roger S. Almenares-Reyes

    2016-12-01

    Full Text Available Clay materials from two outcrops of the Moa region were analyzed to determine their potential use as supplementary cementitious material in the production of ternary cements based on limestone-calcined clay. The clays were characterized by atomic absorption spectroscopy (EAA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (ATG. These methods revealed high aluminum in clays, moderate kaolinite content, a disordered structure and the presence of impurities. The solubility of aluminum and silicon in alkali and the compressive strength of LC3 systems is proportional to their content in clay, being higher for the one with higher kaolinite content and greater structural disorder (outcrop D1, although the clay of both outcrops may constitute supplementary cementitious materials in the production of ternary cements based clinker-calcined clay-limestone. The suitable thermal activation range for both clays is between 650 ° C and 850 ° C.

  15. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  16. Clay shale as host rock. A geomechanical contribution about Opalinus clay

    International Nuclear Information System (INIS)

    Lempp, Christof; Menezes, Flora; Sachwitz, Simon

    2016-01-01

    The Opalinuston is a prominent rock representing the type of organic clay shales or clay stones within the sequence of Triassic and Jurassic marine sediments in Southern Germany. The rock forms a homogenous unit some ten meters thick. The degree of consolidation of this type of pelitic rock depends mainly on the former load conditions, but is also dependent on the long-term weathering and even on the present exposition. The geomechanical parameters such as shear strength, tensional strength and permeability vary with the state of consolidation and become important when the use is discussed of such rocks for radioactive waste disposal. A tunneling project at the northern escarpment of the Swabian Alb (Southwest Germany) within the Opalinus clay offered the rare opportunity to obtain fresh unweathered rock samples in greater amounts compared to fresh drilling cores from which geomechanical investigations are usually undertaken. Consequently, the results of geomechanical laboratory testings are presented in order to compare here the results of multistep triaxial compression tests, of hydraulic fracturing laboratory tests and of some other tests for rock characterization with the corresponding results of Opalinus clay sites in Switzerland that were investigated by the Swiss Nagra Company for host rock characterization. After a discussion of the relevant state of fresh Opalinus clay, especially of suction pressure conditions and saturation state, the results of triaxial shear tests are presented. Increasing shear deformation at increasing pressure and unchanged water saturation do not result in a significant strength reduction of the Opalinus clay. The rock shows increasing cohesion and stiffness, if multiple loading has repeatedly reached the failure point. Thus there is no increased permeability with continued shearing. Only at the beginning of the shearing process is a temporarily increased permeability to be expected due to dilatation processes. An increased

  17. Plasma cholinesterase inhibition in the clay-colored robin (Turdus grayi) exposed to diazinon in maradol papaya crops in Yucatan, Mexico

    Science.gov (United States)

    Cobos, V.M.; Mora, M.A.; Escalona, G.

    2006-01-01

    The use of organophosphorous pesticides in agriculture can result in intoxication of birds foraging in sprayed crops. Effects on birds resulting from pesticide intoxication are varied and include behavioral and reproductive effects, including death. One widely used insecticide in Maradol papaya crops is diazinon which has been associated with various incidents of intoxication and death of wild birds. The objective of this study was to evaluate the impact of diazinon application to papaya crops on plasma cholinesterase activity of the clay-colored robin (Turdus grayi). We captured clay-colored robins foraging in a papaya crop the following day after the field had been sprayed with diazinon at a dose of 1.5 kg/ha during March and May, respectively. We took a blood sample from the brachialis vein of the birds captured and measured plasma enzymatic activity. The plasma samples from birds used as controls were taken during the same time period and were analyzed in a similar way. Enzymatic activity of males was greater than that of females (53,52%) and mean cholinesterase inhibition was 49.43%. Cholinesterase inhibition was greater during May than in March probably due to more continuous exposure and ingestion of the insecticide through food and possible absorption through the skin. This degree of enzymatic inhibition is possibly affecting the behavior of the clay-colored robin and could result in death in severe cases.

  18. Mineralogy and geotechnical characteristics of some pottery clay

    Directory of Open Access Journals (Sweden)

    Mujib Olamide ADEAGBO

    2016-12-01

    Full Text Available The physical properties of soils, which are tremendously influenced by the active clay minerals in soil, are of great importance in geotechnical engineering. This paper investigates the clay-sized particles of the Igbara-Odo pottery clay, and compares results obtained with available data on the bulk sample, to determine their correlation and underline the dependence of the geotechnical properties of the bulk clay material on the clay-sized particles. The bulk clay sample consists of 52% sand-size particles, 21% silt and 27% clay. Analysis of the clay-sized particles and the bulk materials shows: specific gravity of 2.07 and 2.66, liquid limit of 91.0% and 33.0%, plastic limit of 27.5% and 14.3%, plasticity index of 63.5% and 18.7% and a linear shrinkage of 7.9% and 5.4%, for both clay-sized particles and bulk clay respectively. The activity value of the clay material (0.64 suggests the presence of Kaolinite and Ilite; and these were confirmed with X-Ray diffraction on the bulk sample and clay-sized particles. X-Ray diffraction patterns shows distinctive peaks which highlight the dominance of Kaolinite (with 8 peaks in the pottery clay sample for both clay-sized particles and bulk material; while traces of other clay minerals like Illite and Halloysite and rock minerals like Mica, Feldspar and Chrysotile were also found. These results suggest that the clay possesses high viability in the manufacturing of ceramics, refractory bricks, paper, fertilizer and paint. The clay material can be used as a subgrade in road construction, since it possesses low swelling characteristics.

  19. Xenon-129 NMR study of the microporous structure of clays and pillared clays

    International Nuclear Information System (INIS)

    Tsiao, C.; Carrado, K.A.

    1990-01-01

    129 Xe NMR studies have been carried out using xenon gas adsorbed in clays and pillared clays. Data from the measurements provide information on the pore structure of clays before and after pillaring. The results indicate that the effective pore diameter of montmorillonite increases, for example, from 5.4 Angstrom to 8.0 Angstrom after pillaring cheto-montmorillonite with aluminum polyoxohydroxy Keggin cations. The data are consistent with X-ray powder diffraction results, which show a corresponding increase in the interlamellar gallery height from 5.6 Angstrom to 8.4 Angstrom

  20. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction is increa...

  1. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  2. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NARCIS (Netherlands)

    Zemskov, S.V.; Ahmad, B.; Copuroglu, O.; Vermolen, F.J.

    2013-01-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate,

  3. Clays and Clay Minerals and their environmental application in Food Technology

    Science.gov (United States)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  4. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Directory of Open Access Journals (Sweden)

    Vernon Reynolds

    Full Text Available Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  5. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Science.gov (United States)

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  6. Influence of carbonate micro-fabrics on the failure strength of Callovo-Oxfordian clay stones and Opalinus Clay

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Dohrmann, R.; Kaufhold, S.; Siegesmund, S.

    2010-01-01

    Document available in extended abstract form only. The potential use of clay stones as host rock for radioactive waste disposal is currently investigated. For this application, hydraulic conductivity, swelling properties, water uptake, rheological and mechanical properties are of great importance. The Opalinus Clay (Mont-Terri, Switzerland) and the Callovo- Oxfordian clay stone (France) are the most frequently studied clay stones. One goal is to develop a numerical model being able to predict the mechanical behaviour of clay stones under repository-like conditions. Experimental investigations reveal that Opalinus Clay and Callovo-Oxfordian clay stone behave different with respect to the dependence of mechanical strength on the carbonate content. The failure strength of Opalinus Clay decreases with increasing carbonate content, whereas it increases with increasing carbonate content when Callovo-Oxfordian clay stone is considered. To supply proper data and enable reliable model assumptions, the use of suitable experimental techniques for the description of the microstructure is indispensable. After mechanical testing, samples were taken perpendicular to the bedding and polished sections were prepared. The micro-fabrics were investigated using scanning electron microscopy (SEM) and image analysis. Backscattered electron (BSE) images were used for the image analysis because carbonates can be extracted by grey level analysis. The image analysis of the extracted particles provides the following parameters: area, longest and shortest axis of an ellipse (surrounding the particle), perimeter, the angle to horizontal (longest axis), and the aspect ratio (longest axis/shortest axis). Callovo-Oxfordian clay stone shows a homogenous distribution of fine-grained carbonates and dovetail connection of calcium carbonate with the clayey matrix. In contrast Opalinus Clay shows large elongated carbonate grains (high aspect ratios) of shell fragments. Cracks are mostly related to these

  7. Preparation of nanocomposites polyurethane water bone with clay montmorillonite sodica and organophilic clay

    International Nuclear Information System (INIS)

    Garcia, Claudia P.; Delpech, Marcia C.; Coutinho, Fernanda M.B.; Mello, Ivana L.

    2009-01-01

    Nanocomposites based on water bone polyurethane (NWPU's) were synthesized based on poli(propylene glycol), dimethylolpropionic acid (DMPA), isophorone diisocyanate (IPDI) and hydrazine (HYD), as chain extender. Two kinds of clays were employed: hydrophilic and organophilic. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and the mechanical properties were evaluated. The FTIR results showed the presence of specific groups of clay and the XRD suggested that occurred their intercalation/exfoliation through polyurethane matrix. The mechanical resistance of the systems showed significant increase when compared to water dispersions synthesized without clay. (author)

  8. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. From clay bricks to deep underground storage

    International Nuclear Information System (INIS)

    2012-05-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted

  10. Microstructure and Thermal Properties of Polypropylene/Clay Nanocomposites with TiCl4/MgCl2/Clay Compound Catalyst

    Directory of Open Access Journals (Sweden)

    Limei Wang

    2015-01-01

    Full Text Available Polypropylene (PP/clay nanocomposites were synthesized by in situ intercalative polymerization with TiCl4/MgCl2/clay compound catalyst. Microstructure and thermal properties of PP/clay nanocomposites were studied in detail. Fourier transform infrared (FTIR spectra indicated that PP/clay nanocomposites were successfully prepared. Both wide-angle X-ray diffraction (XRD and transmission electron microscopy (TEM examination proved that clay layers are homogeneously distributed in PP matrix. XRD patterns also showed that the α phase was the dominate crystal phase of PP in the nanocomposites. Thermogravimetric analysis (TGA examinations confirmed that thermal stability of PP/clay nanocomposites was markedly superior to pure PP. Differential scanning calorimetry (DSC scans showed that the melt temperature and the crystallinity of nanocomposites were slightly lower than those of pure PP due to crystals imperfections.

  11. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  12. Feasibility of using overburden clays for sealing purposes and laboratory testing of the clays

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J. (Vyzkumny Ustav pro Hnede Uhli, Most (Czechoslovakia))

    1992-03-01

    Studies properties of overburden clay from North Bohemian surface coal mines for use as sealants of industrial and household waste that will be dumped at Czechoslovak surface mine sites. Basic requirements of sealing layers are optimum compressibility and impermeability by suitable compacting. Laboratory soil mechanical tests of different clay samples were carried out using the Proctor standard tests (PCS) and the Norwegian Geonor A/S - m 45 instrument. Laboratory tests were used to select the best available clay types with optimum density and moisture content. Experimental results of laboratory tests are provided.

  13. Sorption of radionuclides by tertiary clays

    International Nuclear Information System (INIS)

    Wagner, J.F.; Czurda, K.A.

    1990-01-01

    The sorption capacity of different clay types for some metals (Co, Cs, Sr and Zn), occurring as common radionuclides in radioactive waste deposits, had been analysed by a static (batch technique) and a dynamic method (percolation tests, in which the driving force is a hydraulic gradient). Sorption capacity generally increased with an increasing pH of solution. A decrease of sorption capacity had been observed in the order Zn > Cs ≥ Co > Sr for the batch and Cs > Zn > Sr > Co for the percolation tests. Clay marls showed a distinctly higher sorption respectively retention capacity as pure clays. Sorption capacity depends on solution parameters like type and concentration of radionuclide, pH, salt concentration, etc., and on rock parameters like mineral content (e.g. swelling clay minerals and carbonates), organic material, rock pH, micro fabric, etc. A third parameter of great influence is the contact time between clay and solution. The adsorption isotherms reflect two different adsorption mechanisms: a very rapid adsorption (a few minutes) on the external surfaces of clay minerals and a slow adsorption process (weeks and longer), due to the diffusion of metal ions into the interlayer space of clay minerals. 12 refs., 9 figs., 1 tab

  14. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system

    Science.gov (United States)

    Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya

    2018-02-01

    We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.

  15. Organophilization and characterization of commercial bentonite clays

    International Nuclear Information System (INIS)

    Cunha, B.B. da; Lima, J.C.C.; Alves, A.M.; Araujo, E.M.; Melo, T.J.A. de

    2012-01-01

    Bentonite clay is a plastic changes resulting from volcanic ash, consisting mostly of montmorillonite. The state of Paraiba is a major source of bentonite clay from Brazil, where the main oil fields are located in Boa Vista and represents the largest national production of raw and beneficiated bentonite. Aimed at the commercial value of this type of clay and its high applicability in the polls, this article aims to make a comparison between two kinds of clay, a national (Brasgel) and other imported (Cloisite) from organophilization of two commercial bentonite, ionic surfactant with Praepagem WB, and characterize them by XRD, FTIR and TG / DTG. We observe that despite getting inferior properties, the clay presents national values very similar to those presented by imported clay. (author)

  16. Thermal Behaviour of clay formations

    International Nuclear Information System (INIS)

    Tassoni, E.

    1985-01-01

    The programme carried out by ENEA to model the thermal-hydraulic-mechanical behaviour of the clay formations and to measure, in situ and in laboratory, the thermal properties of these rocks, is presented. An in situ heating experiment has been carried out in an open clay quarry in the area of Monterotondo, near Rome. The main goal of the experiment was to know the temperature field and the thermal effects caused by the high level radioactive waste disposed of in a clayey geological formation. The conclusions are as follows: - the thermal conduction codes are sufficiently accurate to forecast the temperature increases caused in the clay by the dissipation of the heat generated by high level radioactive waste; - the thermal conductivity deduced by means of the ''curve fitting'' method ranges from 0.015 to 0.017 W.cm -1 . 0 C -1 - the temperature variation associated with the transport of clay interstitial water caused by temperature gradient is negligible. A laboratory automated method has been designed to measure the thermal conductivity and diffusivity in clay samples. A review of experimental data concerning thermomechanical effects in rocks as well as results of thermal experiments performed at ISMES on clays are presented. Negative thermal dilation has been found both in the elastic and plastic range under constant stress. Thermoplastic deformation appears ten times greater than the thermoelastic one. A mathematical model is proposed in order to simulate the above and other effects that encompass thermal-elastic-plastic-pore water pressure response of clays at high temperature and effective pressure with undrained and transient drainage conditions. Implementation of the two versions into a finite element computer code is described

  17. Silt-clay aggregates on Mars

    International Nuclear Information System (INIS)

    Greeley, R.

    1979-01-01

    Viking observations suggest abundant silt and clay particles on Mars. It is proposed that some of these particles agglomerate to form sand size aggregates that are redeposited as sandlike features such as drifts and dunes. Although the binding for the aggregates could include salt cementation or other mechanisms, electrostatic bonding is considered to be a primary force holding the aggregates together. Various laboratory experiments conducted since the 19th century, and as reported here for simulated Martian conditions, show that both the magnitude and sign of electrical charges on windblown particles are functions of particle velocity, shape and composition, atmospheric pressure, atmospheric composition, and other factors. Electrical charges have been measured for saltating particles in the wind tunnel and in the field, on the surfaces of sand dunes, and within dust clouds on earth. Similar, and perhaps even greater, charges are proposed to occur on Mars, which could form aggregates of silt and clay size particles. Electrification is proposed to occur within Martian dust clouds, generating silt-clay aggregates which would settle to the surface where they may be deposited in the form of sandlike structures. By analog, silt-clay dunes are known in many parts of the earth where silt-clay aggregated were transported by saltation and deposited as 'sand.' In these structures the binding forces were later destroyed, and the particles reassumed the physical properties of silt and clay, but the sandlike bedding structure within the 'dunes' was preserved. The bedding observed in drifts at the Viking landing site is suggested to result from a similar process involving silt-clay aggregates on Mars

  18. What Makes a Natural Clay Antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758

  19. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-01-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI (aq) ) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  20. Stools - pale or clay-colored

    Science.gov (United States)

    ... gov/ency/article/003129.htm Stools - pale or clay-colored To use the sharing features on this page, please enable JavaScript. Stools that are pale, clay, or putty-colored may be due to problems ...

  1. Mars, clays and the origins of life

    Science.gov (United States)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  2. Holocene debris flows on the Colorado Plateau: The influence of clay mineralogy and chemistry

    Science.gov (United States)

    Webb, R.H.; Griffiths, P.G.; Rudd, L.P.

    2008-01-01

    Holocene debris flows do not occur uniformly on the Colorado Plateau province of North America. Debris flows occur in specific areas of the plateau, resulting in general from the combination of steep topography, intense convective precipitation, abundant poorly sorted material not stabilized by vegetation, and the exposure of certain fine-grained bedrock units in cliffs or in colluvium beneath those cliffs. In Grand and Cataract Canyons, fine-grained bedrock that produces debris flows contains primarily single-layer clays - notably illite and kaolinite - and has low multilayer clay content. This clay-mineral suite also occurs in the colluvium that produces debris flows as well as in debris-flow deposits, although unconsolidated deposits have less illite than the source bedrock. We investigate the relation between the clay mineralogy and major-cation chemistry of fine-grained bedrock units and the occurrence of debris flows on the entire Colorado Plateau. We determined that 85 mapped fine-grained bedrock units potentially could produce debris flows, and we analyzed clay mineralogy and major-cation concentration of 52 of the most widely distributed units, particularly those exposed in steep topography. Fine-grained bedrock units that produce debris flows contained an average of 71% kaolinite and illite and 5% montmorillonite and have a higher concentration of potassium and magnesium than nonproducing units, which have an average of 51% montmorillonite and a higher concentration of sodium. We used multivariate statistics to discriminate fine-grained bedrock units with the potential to produce debris flows, and we used digital-elevation models and mapped distribution of debris-flow producing units to derive a map that predicts potential occurrence of Holocene debris flows on the Colorado Plateau. ?? 2008 Geological Society of America.

  3. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  4. Hydrogen isotope ratios of clay minerals constituting clay veins found in granitic rocks in Hiroshima Prefecture

    International Nuclear Information System (INIS)

    Kitagawa, Ryuji; Kakitani, Satoru; Kuroda, Yoshimatsu; Matsuo, Sadao; Suzuoki, Tetsuro.

    1980-01-01

    The deuterium content of the constitutional and interlayer water extracted from the clay minerals (illite, montmorillonite, interstratified illite-montmorillonite mineral, kaolinite, halloysite) constituting the clay veins found in the granitic rocks in Hiroshima Prefecture was measured. The clay minerals were heated at 270 deg C to extract the interlayer water, then heated to 1,400 or 1,500 deg C to extract the constitutional water. The deuterium content of the local surface water collected from sampling points was measured. In the clay veins formed along perpendicular joints, the constituent clay minerals change from lower to upper part: illite → montmorillonite → kaolinite → halloysite. The deuterium content values of the constitutional water for illite and montmorillonite were estimated to be -67 to -69% and -86 to -89%, respectively. The deuterium content values of the constitutional water for halloysite range from -68 to -80% and for kaolinite from -63 to -67%. (J.P.N.)

  5. The microstructure of MX-80 clay with respect to its bulk physical properties under different environmental conditions

    International Nuclear Information System (INIS)

    Pusch, R.

    2001-03-01

    possible stages in long term alteration of the KBS3 buffer clay. One of them has been exposed to repository-like conditions and has a smectite content of up to 25 % and is not much more permeable than MX-80 clay. The other is assumed to have been converted from smectite-rich bentonite to illite by being exposed to such conditions for millions of years and has a higher conductivity. The different hydraulic properties are explained by the different microstructural constitutions

  6. The microstructure of MX-80 clay with respect to its bulk physical properties under different environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden)

    2001-03-01

    microstructure represent two possible stages in long term alteration of the KBS3 buffer clay. One of them has been exposed to repository-like conditions and has a smectite content of up to 25 % and is not much more permeable than MX-80 clay. The other is assumed to have been converted from smectite-rich bentonite to illite by being exposed to such conditions for millions of years and has a higher conductivity. The different hydraulic properties are explained by the different microstructural constitutions.

  7. Geological modeling of a fault zone in clay rocks at the Mont-Terri laboratory (Switzerland)

    Science.gov (United States)

    Kakurina, M.; Guglielmi, Y.; Nussbaum, C.; Valley, B.

    2016-12-01

    Clay-rich formations are considered to be a natural barrier for radionuclides or fluids (water, hydrocarbons, CO2) migration. However, little is known about the architecture of faults affecting clay formations because of their quick alteration at the Earth's surface. The Mont Terri Underground Research Laboratory provides exceptional conditions to investigate an un-weathered, perfectly exposed clay fault zone architecture and to conduct fault activation experiments that allow explore the conditions for stability of such clay faults. Here we show first results from a detailed geological model of the Mont Terri Main Fault architecture, using GoCad software, a detailed structural analysis of 6 fully cored and logged 30-to-50m long and 3-to-15m spaced boreholes crossing the fault zone. These high-definition geological data were acquired within the Fault Slip (FS) experiment project that consisted in fluid injections in different intervals within the fault using the SIMFIP probe to explore the conditions for the fault mechanical and seismic stability. The Mont Terri Main Fault "core" consists of a thrust zone about 0.8 to 3m wide that is bounded by two major fault planes. Between these planes, there is an assembly of distinct slickensided surfaces and various facies including scaly clays, fault gouge and fractured zones. Scaly clay including S-C bands and microfolds occurs in larger zones at top and bottom of the Mail Fault. A cm-thin layer of gouge, that is known to accommodate high strain parts, runs along the upper fault zone boundary. The non-scaly part mainly consists of undeformed rock block, bounded by slickensides. Such a complexity as well as the continuity of the two major surfaces are hard to correlate between the different boreholes even with the high density of geological data within the relatively small volume of the experiment. This may show that a poor strain localization occurred during faulting giving some perspectives about the potential for

  8. Pedological ~cterization, Clay Mine:at~ and .~cation of,

    African Journals Online (AJOL)

    namely, very deep, well drained, dark reddish brown to dark brown, sandy clay loams and sandy clays on the steep convex slopes; very deep, well drained, dark brown to dark red, sandy clay loams and; sandy clays on the linear slopes; and very ...

  9. Preparation and characterization of bentonite organo clay

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Almeida Neto, A.F.; Silva, M.G.C.

    2009-01-01

    Bentonite clays organically modified have great potential use for environmental remediation, especially in the separation of organic compounds from the water. The aim of this work was the preparation of organophilic clays from 'Verde-Lodo' bentonite clay with the quaternary ammonium salts cetyl-pyridinium chloride and benzalkonium chloride. The materials obtained were characterized by XRD, thermogravimetric analyses, Helium picnometry, SEM and energy dispersive X-ray techniques. The results show consistently successful synthesis of the organoclay through the increase in the basal spacing, as well as salt elimination picks and presence of carbon and chlorine in the modified clays; they are inexistent elements in the natural clay. (author)

  10. Treatment for cracked and permeable Houston clay

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Leung, M.

    1991-01-01

    In this study, the treatability of a field clay (obtained from Houston, Texas) and a clay-sand mixture to reduce their hydraulic conductivity was evaluated. Remolded field clay and clay-sand mixture with and without methanol contamination were treated to reduce their hydraulic conductivity by permeating very dilute grout solutions. The concentration of sodium silicate in the grout solution was 8%, while the solid content in the cement grout was 0.3%. The hydraulic conductivity of permeable Houston clay (hydraulic conductivity >10 -5 cm/sec) could be reduced to less than 10 -7 cm/sec (U.S. EPA limit for soil barriers) by permeating with a selected combination of grout solutions

  11. Near-surface clay authigenesis in exhumed fault rock of the Alpine Fault Zone (New Zealand); O-H-Ar isotopic, XRD and chemical analysis of illite and chlorite

    Science.gov (United States)

    Boles, Austin; Mulch, Andreas; van der Pluijm, Ben

    2018-06-01

    Exhumed fault rock of the central Alpine Fault Zone (South Island, New Zealand) shows extensive clay mineralization, and it has been the focus of recent research that aims to describe the evolution and frictional behavior of the fault. Using Quantitative X-ray powder diffraction, 40Ar/39Ar geochronology, hydrogen isotope (δD) geochemistry, and electron microbeam analysis, we constrain the thermal and fluid conditions of deformation that produced two predominant clay phases ubiquitous to the exposed fault damage zone, illite and chlorite. Illite polytype analysis indicates that most end-member illite and chlorite material formed in equilibrium with meteoric fluid (δD = -55 to -75‰), but two locations preserve a metamorphic origin of chlorite (δD = -36 to -45‰). Chlorite chemical geothermometry constrains crystal growth to T = 210-296 °C. Isotopic analysis also constrains illite growth to T < 100 °C, consistent with the mineralogy, with Ar ages <0.5 Ma. High geothermal gradients in the study area promoted widespread, near-surface mineralization, and limited the window of clay authigenesis in the Alpine Fault Zone to <5 km for chlorite and <2 km for illite. This implies a significant contrast between fault rock exposed at the surface and that at depth, and informs discussions about fault strength, clays and frictional behavior.

  12. Characterization of clay used for red ceramic fabrication

    International Nuclear Information System (INIS)

    Pereira, P.S.; Morais, A.S.C.; Caldas, T.C.C.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    The objective of this work is to characterize a clay used in the red ceramics fabrication, from Campos dos Goytacazes north of the State of Rio de Janeiro. The clay was submitted for physical, chemical and mineralogical tests. The results showed that the clay has a high content of clay minerals with kaolinitic predominance, high loss on ignition and low flux oxides. It is recommended that this clay is mixed with non-plastic materials. (author)

  13. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  14. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Science.gov (United States)

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  15. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    Science.gov (United States)

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  16. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Directory of Open Access Journals (Sweden)

    Anthony R. Moran

    2011-06-01

    Full Text Available Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  17. Sorption of Pu onto some kinds of clay

    International Nuclear Information System (INIS)

    Jia Haihong; Si Gaohua; Liu Wei; Yu Jing

    2010-01-01

    There are rich clay mines holding in one area, so it's necessary to know about these clays' sorption capacity to Pu, for building radioactive waste repository in the area. Distribution coefficients of Pu onto different clays were acquired in static method, with the result about 104. The size of clay is different, but the result of Kds is near. In addition, it's estimated how far Pu moves in the most rapid speed in the clay based on these Kids', disregarding the influence of Pu-colloid. In a word, as a kind of backfilling material clays in the area can effectively prevent Pu from moving to environment, and when designing the backfilling layer, it's not necessary to catch clays through NO.200 sieve, if only considering the influence of Kd. (authors)

  18. Rheological characterization of nanocomposites Nylon 6/bentonite clay

    International Nuclear Information System (INIS)

    Silva, T.R.G.; Fernandes, P.C.; Oliveira, S.V.; Araujo, E.M.; Melo, T.J.A.

    2010-01-01

    Polymer nanocomposites are a class of materials that have been widely used in various applications. Among them, has been emphasizing the preparation of polymer films with barrier properties for applications in polymer membranes. In this work, nanocomposites of nylon 6/bentonite clay were obtained from a Homogenizer, in the ratios of 1, 3 and 5 wt% clay. The Brasgel PA bentonite clay was treated organically with Praepagen HY salt, to make it organophilic. By X-ray diffraction (XRD), it was showed that the efficiency of the incorporation of salt in the clay. The rheological curves showed that for the AST clay the torque did not change when compared with the pure nylon 6, while for the clay ACT, the torque increased gradually with the percentage of clay. (author)

  19. Polymer-clay nanocomposites obtained by solution polymerization ...

    Indian Academy of Sciences (India)

    Clay minerals can be found all over the world.1 Clay minerals have ... salts or covalent bonding with silanes at the OH edges of the clay. ..... Marras S I, Tsimpliaraki A, Zuburtikudis I and ... Mansoori Y, Roojaei K, Zamanloo M R and Imanzadeh.

  20. Utilization of Nkpuma-Akpatakpa clay in ceramics: characterization ...

    African Journals Online (AJOL)

    Nkpuma – Akpatakpa clay was analysed for its ceramics suitability. Chemical, mechanical and spectral characterization of the clay was carried out to obtain more information from this clay found in commercial quantity at Ebonyi State Nigeria. The XRD analysis showed that the principal minerals in the clay are quartz, ...

  1. Preparation and properties of recycled HDPE/clay hybrids

    Science.gov (United States)

    Yong Lei; Qinglin Wu; Craig M. Clemons

    2007-01-01

    Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...

  2. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. generalized constitutive model for stabilized quick clay

    African Journals Online (AJOL)

    QUICK CLAY. PANCRAS MUGISHAGWE BUJULU AND GUSTAV GRIMSTAD. ABSTRACT. An experimentally-based two yield surface constitutive model for cemented quick clay has been ... Clay Model, the Koiter Rule and two Mapping Rules. .... models, where a mobilization formulation is used, this is independent of q.

  4. Processes of cation migration in clay-rocks: Final Scientific Report of the CatClay European Project

    International Nuclear Information System (INIS)

    Altmann, S.; Aertsens, M.; Appelo, T.; Bruggeman, C.; Gaboreau, S.; Glaus, M.; Jacquier, P.; Kupcik, T.; Maes, N.; Montoya, V.; Rabung, T.; Robinet, J.-C.; Savoye, S.; Schaefer, T.; Tournassat, C.; Van Laer, L.; Van Loon, L.

    2015-07-01

    In the framework of the feasibility studies on the radioactive waste disposal in deep argillaceous formations, it is now well established that the transport properties of solutes in clay rocks, i.e. parameter values for Fick's law, are mainly governed by the negatively charged clay mineral surface. While a good understanding of the diffusive behaviour of non-reactive anionic and neutral species is now achieved, much effort has to be placed on improving understanding of coupled sorption/diffusion phenomena for sorbing cations. Indeed, several cations known to form highly stable surface complexes with sites on mineral surfaces migrate more deeply into clay rock than expected. Therefore, the overall objective of the EC CatClay project is to address this issue, using a 'bottom-up' approach, in which simpler, analogous systems (here a compacted clay, 'pure' illite) are experimentally studied and modelled, and then the transferability of these results to more complex materials, i.e. the clay rocks under consideration in France, Switzerland and Belgium for hosting radioactive waste disposal facilities, is verified. The cations of interest were chosen for covering a representative range of cations families: from a moderately sorbing cation, the strontium, to three strongly sorbing cations, Co(II), Zn(II) and Eu(III). For the 4 years of this project, much effort was devoted to developing and applying specific experimental methods needed for acquiring the high precision, reliable data needed to test the alternative hypotheses represented by different conceptual-numerical models. The enhanced diffusion of the sorbing cations of interest was confirmed both in the simpler analogous illite system for Sr 2+ , Co(II) and Zn(II), but also in the natural clay rocks, except for Eu(III). First modelling approach including diffusion in the diffuse double layer (DDL) promisingly succeeded in reproducing the experimental data under the various conditions both in

  5. Survival of microorganisms in smectite clays - Implications for Martian exobiology

    Science.gov (United States)

    Moll, Deborah M.; Vestal, J. R.

    1992-01-01

    The survival of Baccillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 has been examined in clays representing terrestrial (Wyoming type montmorillonite) and Martian (Fe3+ montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric composition and pressure. An important finding is that MS2 survived simulated Mars conditions better than the terrestrial environment, probably owing to stabilization of the virus caused by the cold and dry conditions of the simulated Mars environment. This finding, the first published indication that viruses may be able to survive in Mars-type soils, may have important implications for future missions to Mars.

  6. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  7. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic ( 57 Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N 2 adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe

  8. Strength Properties of Aalborg Clay

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    glacial time are characterised by the absence of this mussel. These deposits are named Aalborg Clay and Aalborg Sand. In the city of Aalborg, a fill layer superposes Aalborg Clay. This layer is at some places found to be 6m thick. This fill layer does not provide sufficient bearing capacity, which has...... resulted in many damaged buildings in Aalborg. To provide sufficient bearing capacity it is therefore necessary either to remove the fill or to construct the building on piles. Both methods imply that the strength of Aalborg Clay is important for the construction. This paper evaluates the strength...

  9. Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids

    NARCIS (Netherlands)

    Grindrod, P.; Peletier, M.A.; Takase, H.

    1999-01-01

    We consider the interaction between a saturated clay buffer layer and a fractured crystalline rock engineered disturbed zone. Once saturated, the clay extrudes into the available rock fractures, behaving as a compressible non-Newtonian fluid. We discuss the modelling implications of published

  10. 1st International Conference on Calcined Clays for Sustainable Concrete

    CERN Document Server

    Favier, Aurélie

    2015-01-01

    This volume focuses on research and practical issues linked to Calcined Clays for Sustainable Concrete. The main subjects are geology of clays, hydration and performance of blended systems with calcined clays, alkali activated binders, economic and environmental impacts of the use of calcined clays in cement based materials. Topics addressed in this book include the influence of processing on reactivity of calcined clays, influence of clay mineralogy on reactivity, geology of clay deposits, Portland-calcined clay systems, hydration, durability, performance, Portland-calcined clay-limestone systems, hydration, durability, performance, calcined clay-alkali systems, life cycle analysis, economics and environmental impact of use of calcined clays in cement and concrete, and field applications. This book compiles the different contributions of the 1st International Conference on Calcined Clays for Sustainable Concrete, which took place in Lausanne, Switzerland, June, 23-25, 2015.The papers present the latest  res...

  11. Interphase vs confinement in starch-clay bionanocomposites.

    Science.gov (United States)

    Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis

    2015-03-06

    Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Soil clay content underlies prion infection odds

    Science.gov (United States)

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  13. Radiation synthesis and characterization of thermo-sensitive PNIPA/clay hydrogels

    International Nuclear Information System (INIS)

    Song Hongyan; He Suqin; Liu Wentao; Zhu Chengshen; Yang Mingcheng

    2007-01-01

    In this work, the thermo-sensitive hydrogels of PNIPA/Clay were synthesized by 60 Co-γ rays irradiation. The effects of organically modified clay and Na + clay, clay content, and dispersing condition on swelling behavior of PNIPA/clay hydrogels were investigated. The results showed that the equilibrium swelling ratio (SR) of the PNIPA/clay hydrogels is better than PNIPA, and the SR of PNIPA/organically modified clay hydrogels is the highest. With clay content increases, the SR of hydrogels became better. The deswelling behavior of hydrogel was improved, the deswelling ratio of the hydrogel with organically modified clay is highest, and ratio of losing water is 83%, while PNIPA is about 50%. The compressive properties of hydrogel composites were also examined. The results showed that the compressive properties of the PNIPA/clay hydrogels were improved distinctly than that of the conventional hydrogels without clay. And with increasing of clay content, the compressive properties of hydrogel composites improve rapidly. When the content of clay is 15%, the maximum compression force of the PNIPA/clay hydrogel is 5.28N, which is 14 times of PNIPA hydrogel and compression strength is 2.5 times. (authors)

  14. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (Volume 1)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    The results of two years of research on thermomechanics of clays performed within CEC contract Fl1W/0150 are described herein. Previous studies (research contracts with CEC/WAS/380.83.7 l) performed by ISMES have evidenced the need for an improved modelling of the volumetric response of natural clays. In a coupled approach, this leads to an improved prediction of pore-pressure development and dissipation. This is crucial for assessing conditions of a possible local thermal failure as verified in laboratory tests done at ISMES. The first part of the study lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton. It consists in: (a) developing a framework for inclusion of water/soil particle thermally induced interaction into a thermodynamically consistent mixture theory approach (Section 2); (b) studying possible modelling approaches of considering the effective thermal expansion coefficient of pore water dependency on pore water status (Section 2); (c) testing artificial clays to assess pore water thermal expansion dependence on temperature in the presence of different amounts of active clay minerals and also Boom clay (Section 3); (d) performing a laboratory test campaign on Boom clay with special attention to the response in the overconsolidated domain (Section 4). 89 figs., 18 tabs., 102 refs

  15. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (volume 2)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    This study is composed of two parts: The first part (Volume 1) lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton during thermal dilatation. The second part (volume 2) is devoted to the development and the application of advance constitutive modelling of mechanical behaviour of clays taking into account the extensive tests of Boom clay reported in the first volume. The development concentrated on the improvement of prediction of the volumetric response of clay skeleton: (a) improving the dilatancy prediction at low to high overconsolidation ratios (Section 2). An elasto-plastic constitutive model has been developed to account for this effect (Section 3.2.); (b) modelling of swelling effects (Section 2.5). A preliminary interpretative model for swelling prediction has been developed (Section 2.5). The application part consisted in interpreting the experimental results obtained for Boom clay to calibrate a set of constants (Section 3) for performing numerical analyses (Section 4) for the thermomechanical model already calibrated for Boom clay (Appendix). Interpretation of the tests required an assessment of influence of the strong anisotropy effects revealed by Boom clay on the basis of an interpretative model characterized by a kinematic hardening plasticity and coupled elasticity (section 3)

  16. Investigations of salt mortar containing saliferous clay

    International Nuclear Information System (INIS)

    Walter, F.

    1992-01-01

    Saliferous clay mortar might be considered for combining individual salt bricks into a dense and tight long-term seal. A specific laboratory program was started to test mortars consisting of halite powder and grey saliferous clay of the Stassfurt from the Bleicherode salt mine. Clay fractions between 0 and 45% were used. The interest focused upon obtaining good workabilities of the mixtures as well as upon the permeability and compression strength of the dried mortar samples. Test results: 1) Without loss of quality the mortar can be mixed using fresh water. Apprx. 18 to 20 weight-% of the solids must be added as mixing water. 2) The porosity and the permeability of the mortar samples increases distinctly when equally coarse-grained salt power is used for mixing. 3) The mean grain size and the grain size distribution of the saliferous clay and the salt powder should be very similar to form a useful mortar. 4) The permeability of the mortar samples decreases with increasing clay fraction from 2 10 -12 m 2 to 2 10 -14 m 2 . The investigated samples, however, were large and dried at 100degC. 5) The uniaxial compressive strength of the clay mortar equals, at an average, only 4 MPa and decreases clearly with increasing clay fraction. Moist mortar samples did not show any measurable compressive strength. 6) Moistened saliferous clay mortar may show little temporary swelling. (orig./HP)

  17. Organic waste treatment with organically modified clays

    International Nuclear Information System (INIS)

    Evans, J.C.; Pancoski, S.E.; Alther, G.

    1989-01-01

    The use of organically modified clays in hazardous waste management applications offers a significant new and untapped potential. These clays may be used in the stabilization of organic wastes and organically contaminated soils, for waste water treatment, for oil spill control, for liner systems beneath fuel oil storage tanks, and as a component within liner systems of hazardous waste storage treatment and disposal facilities. Organically modified clays (organophilic clays) may be employed in each of these systems to adsorb organic waste constituents, enhancing the performance of the applications

  18. Compressibility characteristics of Sabak Bernam Marine Clay

    Science.gov (United States)

    Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.

    2018-04-01

    This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.

  19. Fracture behavior of polypropylene/clay nanocomposites.

    Science.gov (United States)

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  20. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin; Ansari, Seema; Estevez, Luis; Hayrapetyan, Suren; Giannelis, Emmanuel P.; Lai, Hsi-Mei

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn't significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  1. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn\\'t significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  2. Proceedings of the NEA Clay Club Workshop on Clay characterisation from nanoscopic to microscopic resolution

    International Nuclear Information System (INIS)

    2013-01-01

    A wide spectrum of argillaceous media are being considered in Nuclear Energy Agency (NEA) member countries as potential host rocks for the final, safe disposal of radioactive waste, and/or as major constituent of repository systems in which wastes will be emplaced. In this context, the NEA established the Working Group on the 'Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations' in 1990, informally known as the 'Clay Club'. The Clay Club examines various argillaceous rocks that are being considered for the underground disposal of radioactive waste, ranging from soft clays to indurated shales. Very generally speaking, these clay rocks are composed of fine-grained minerals showing pore sizes from < 2 nm (micropores) up to > 50 nm (macro-pores). The water flow, solute transport and mechanical properties are largely determined by this microstructure, the spatial arrangement of the minerals and the chemical pore water composition. Examples include anion accessible ('geochemical') porosity and macroscopic membrane effects (chemical osmosis, hyper-filtration), geomechanical properties and the characteristics of two-phase flow properties (relevant for gas transport). At the current level of knowledge, there is a strong need to improve the nanoscale description of the phenomena observed at a more macroscopic scale. However, based on the scale of individual clay-minerals and pore sizes, for most of the imaging techniques this resolution is a clear challenge. The workshop, hosted by the Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT) in the Akademiehotel Karlsruhe (Germany) from 6 to 8 September 2011, was intended to give, inter alia, a discussion platform on: - The current state-of-the-art of different spectro-microscopic methods - New developments addressing the above mentioned knowledge gaps in clays. - The perception of the interplay between geometry

  3. Comparing uranyl sorption complexes on soil and reference clays

    International Nuclear Information System (INIS)

    Chisholm-Brause, C.J.; Berg, J.M.; Conradson, S.D.; Morris, D.E.; McKinley, J.P.; Zachara, J.M.

    1993-01-01

    Clay minerals and other components in natural soils may play a key role in limiting the mobility of uranium in the environment through the formation of sorption complexes. Reference clays are frequently used as models to study sorption processes because they have well-known chemical and physical properties, but they may differ chemically and morphologically from clays derived from natural soils. Therefore, inferences based on reference clay data have been questioned. The authors have used luminescence and x-ray absorption spectroscopies to characterize the sorption complexes of aqueous uranyl (UO 2 2+ ) species on two soil smectites from the Kenoma and Ringold formations, and compared these results to those obtained on reference smectite clays. The pH dependence of uptake suggests that the ratio of sorption on amphoteric edge sites is greater for the soil smectites than for reference clays such as Wyoming montmorillonite (SWy-1). The luminescence spectra for uranyl sorbed to the soil clays are very similar to those for uranyl sorbed principally to the edge sites of SWy-1. This observation supports the solution data suggesting that adsorption to amphoteric sites is a more important mechanism for soil clays. However, the spectral data indicate that the sorption complexes on natural and reference clays are quite similar. Furthermore, as with the reference clays, the authors have found that the chemistry of the solution plays a greater role in defining the sorption complex than does the clay matrix. Thus, if differences in surface properties are adequately taken into account, the reference clays may serve as useful analogs for soil clays in investigations of metal-ion sorption

  4. Clay Cuffman: A Cool, Calm, Relaxed Guy

    Science.gov (United States)

    Booth, Gina

    2010-01-01

    This article describes Clay Cuffman, a simple clay-sculpture project that requires two or three sessions, and works for students from the upper-elementary level through high school. It takes about 1.5 pounds of clay per student--about the size of a small grapefruit. The Cuffman project is a great way for upper-elementary through high-school…

  5. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  6. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  7. Some Tests on Heather Field Moraine Clay

    DEFF Research Database (Denmark)

    Jørgensen, Mogens B.; Jacobsen, Moust

    This report deals with oedometer tests on three samples of moraine clay from the Heather Field in the English part of the North Sea. The tests have been carried out in the very unelastic apparatus used in Denmark and with special test procedures differing from the ones used elsewhere. In Denmark...... Moraine Clay covers a large part of the surface, and it has therefore been investigated extensively in the field and in the laboratories during the last 25 years. It is to day - from a geotechnical point of view - the best known clay in Denmark. It could therefore be of some interest to compare...... the English North Sea moraine clays with the corresponding Danish Moraine Clays. The Danish test procedures are explained in details and some comments are given in the hope that they may not be banalities all of them....

  8. Diffusion, sorption and stability of radionuclide-organic complexes in clays and clay-organic complexes

    International Nuclear Information System (INIS)

    Staunton, S.; Rees, L.V.C.

    1991-01-01

    The dependence on various parameters of the diffusion coefficient of neptunium (V) in clay systems has been studied. The effect of the clay mineralogy, the charge compensating cation in the clay, the ionic strength of a background perchlorate solution and the presence of three organic ligands have been investigated. The diffusion coefficients were compared to those predicted if diffusion occurred only in the liquid phase and adsorption was reversible; agreement was fairly good. An approximation to the diffusion coefficient can thus be obtained from readily measured experimental parameters. There is no evidence of surface phase diffusion. The most significant factor in determining the diffusion coefficient is the magnitude of the distribution ratio, itself highly dependent on the nature of the clay. Neither EDTA nor citrate modified the diffusion coefficient. Although the presence of 1 or 100 mg dm -3 of Aldrich humic acid had little effect on the distribution ratio of neptunium, it caused a lowering of the measured diffusion coefficient. This is interpreted in terms of the limiting liquid phase diffusion coefficient and the true liquid phase impedance factor of neptunium-humic acid complexes. 21 figs; 3 tabs; 20 refs

  9. Recent advances in clay mineral-containing nanocomposite hydrogels.

    Science.gov (United States)

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  10. Geotechnical properties of Karwar marine clay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Nayak, B.U.; Naik, R.L.

    Karwar marine clay possesses high plasticity characteristics with natural water content higher than the liquid limit. Liquidity index was as high as 1.7. Predominant clay mineral was kaolinite. Undrained shear strength showed an increasing trend...

  11. Enrichment and activation of smectite-poor clay

    Energy Technology Data Exchange (ETDEWEB)

    Sarcevica, Inese; Kostjukovs, Juris; Actint, Andris, E-mail: inese.sarcevicha@gmail.com [Department of Chemistry, University of Latvia, Kr. Valdemara street 48, Riga (Latvia)

    2011-06-23

    A new method of smectite clay enrichment has been developed. The method is based on dispersing clay in a phosphate solution and sequential coagulation. The product of enrichment is characterized with X-ray powder diffraction, wavelength dispersive X-ray fluorescence spectrometry, differential thermal analysis and thermogravimetry. Sorption of methylene blue and hexadecylpyridinium bromide on raw and purified clays was studied.

  12. Pure and impure clays and their firing products

    International Nuclear Information System (INIS)

    Murad, E.; Wagner, U.

    1989-01-01

    Moessbauer spectroscopy is highly suited for the study of clays whose industrial uses depend on the iron content. Reactions that take place during clay firing can be readily monitored by Moessbauer spectroscopy. Following dehydroxylation of clay minerals, the quadrupole splitting of octahedrally coordinated iron (III) increases abruptly, but reverts to lower values upon the formation of new, better ordered phases at higher temperatures. It is also shown that iron oxides may account for a considerably higher proportion of the total iron content of many clays than is commonly recognized, and their existence must be taken into consideration for a correct interpretation of the Moessbauer spectra of clays. (orig.)

  13. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    Science.gov (United States)

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  14. 1.7. Acid decomposition of kaolin clays of Ziddi Deposit. 1.7.1. The hydrochloric acid decomposition of kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of kaolin clays and siallites were determined.

  15. Absorption characteristics of Kupravas deposit clays modified by phosphoric acid

    International Nuclear Information System (INIS)

    Ruplis, A.; Mezinskis, G.; Chaghuri, M.

    1998-01-01

    Literature data suggested that clays may be used as sorbents for waste water treatment. The surface and sorption properties of minerals changes due to the influence of acid rains. The process of recession of clay properties has been modeled in laboratory by treatment of clays with mineral acids at higher temperature that in natural conditions. The present paper is devoted to the study of influence of phosphoric acid on the sorption properties of Kupravas deposit clays. Natural clay samples and samples treated with phosphoric acid were characterized by means of x-ray diffraction an differential thermal analysis (DTA) methods These methods were used also to identify the sample of Lebanese clays. X-ray diffraction analysis data show that the samples of clays from the deposit of Kuprava contain illite and kaolinite while sample of Lebanese clay contains quartz, calcite, and montmorillonite. DTA results show characteristic features of Kuprava clays described in reference with DTA of Lebanese clay clearly demonstrate the presence of large quantity of calcite

  16. Feasibility of classification of clay minerals by using PAS

    International Nuclear Information System (INIS)

    Honda, Y; Yoshida, Y; Akiyama, Y; Nishijima, S

    2015-01-01

    After the nuclear power plant disaster, the evaluation of radioactive Cs kept in soil, especially in clay minerals and the elucidation of its movement are urgent subjects to promote decontamination. It is known that the extractable level of Cs depends on the sort of clay minerals. We tried to find the characteristics of clay minerals belonging to phillosilicate group using positron annihilation spectroscopy (PAS) and the relationship between the results of PAS and the amounts of substantially extracted Cs from the clay minerals. The results showed that each clay mineral was found to be distinguishable from other clay minerals by PAS and the extraction rate of Cs was different among those clay minerals, however the direct correlation between the results of PAS and the extraction rates of Cs was not found. (paper)

  17. Clay-Alcohol-Water Dispersions: Anomalous Viscosity Changes Due to Network Formation of Clay Nanosheets Induced by Alcohol Clustering.

    Science.gov (United States)

    Kimura, Yuji; Haraguchi, Kazutoshi

    2017-05-16

    Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.

  18. Chemo-hydro-mechanical behaviour of unsaturated clays

    International Nuclear Information System (INIS)

    Mokni, N.; Olivella, S.; Alonso, E.E.; Romero, E.

    2010-01-01

    Document available in extended abstract form only. Understanding of the chemical effects on clays is essential for many problems ranging from pollution studies and waste-containment. Several studies examined the effect of changes in pore fluid composition on the mechanical and hydraulic properties. Volume changes (contraction/ expansion) have been measured on clay specimens upon exposure to salt solutions or permeation with organic liquids. Moreover, it was shown that permeation of clay with brine induces an increase of the shear strength. In addition, several models have been proposed to describe the chemo-mechanical behaviour of saturated clays under saturated conditions. A new chemo-hydro-mechanical model for unsaturated clays is under development. The chemo-mechanical effects are described within an elasto-plastic framework using the concept that chemical effects act on the plastic properties by increasing or decreasing the pre-consolidation stress. The model is based on the distinction within the material of a microstructural and a macro-structural levels. Chemical loading has a significant effect on the microstructure. The negative pressure associated with the capillary water plays its role in the interconnected macro pores. By adopting simple assumptions concerning the coupling between the two levels it is intended to reproduce the features of the behaviour of unsaturated clays when there is a change in pore fluid composition (increase or decrease of concentration). A yield surface which defines the set of yield pre-consolidation stress values, for each associated capillary suction and concentration of pore fluid should be defined. In addition, the behaviour of clays under unsaturated condition and the behaviour at full saturation under chemical loading represent two limiting cases of the framework. Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest on the

  19. Synthetic mullite fabrication from smectite clays

    International Nuclear Information System (INIS)

    Lima, L.N. de; Kiminami, R.H.G.A.

    1988-01-01

    The technological importance of mullite is mostly due to its refractory properties. Mullite in native form is very rare, and therefore it may be necessary to produced it by synthetic means. Brazil has a large reserve of smectite clays. In this work the process to produce synthetic mullite from these clays by treatment with aluminum sulphate was studied. X-ray analyses has shown the presence of mullite crystals in treated smectite clays of several colours, sinterized at 1100 0 C. By sintering at 1300 0 C, pure mullite was obtained in some colours. (author) [pt

  20. Multifaceted role of clay minerals in pharmaceuticals

    OpenAIRE

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelli...

  1. Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane

    Science.gov (United States)

    Darmawan, A.; Widiarsih

    2018-04-01

    The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.

  2. clay nanocomposite by solution intercalation technique

    Indian Academy of Sciences (India)

    Polymer–clay nanocomposites of commercial polystyrene (PS) and clay laponite were prepared via solution intercalation technique. Laponite was modified suitably with the well known cationic surfactant cetyltrimethyl ammonium bromide by ion-exchange reaction to render laponite miscible with hydrophobic PS.

  3. Impact-Induced Clay Mineral Formation and Distribution on Mars

    Science.gov (United States)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  4. Polyethersulfone/clay membranes and its water permeability

    International Nuclear Information System (INIS)

    Cavalho, Thamyres Cardoso de; Medeiros, Vanessa da Nobrega; Araujo, Edcleide Maria de; Lira, Helio Lucena; Leite, Amanda Melissa Damiao

    2017-01-01

    Membranes can be considered polymeric or inorganic films that function as a semipermeable barrier to filtration on a molecular scale, separating two phases and restricting, totally or partially, the transportation of one or more chemical species (solute) present in the solution. Therefore, the aim of this work is to produce polyethersulfone membranes (PES) and polyethersulfone/clay by phase inversion technique and evaluate the presence of clay in obtaining membranes for wastewater treatment. The used solvent was dimethylformamide (DMF) and clays were Brasgel PA (MMT) and Cloisite Na (CL Na) in the proportion of 3 to 5% (wt.). By Xray diffraction (XRD), the membranes with 3% of MMT and CL Na clays apparently had partially exfoliated structures. For the composition with 5% of CL Na a small peak was observed, which indicates that this is possibly an intercalated structure or microcomposite. By scanning electron microscopy (SEM), visualizes that the pure surface of the pure PES membrane a structure apparently without pores was observed in the used magnification and without roughness surface when compared to membranes with clay. The measurements of contact angle indicated that the inclusion of clay altered the wetting ability of the membranes. The flow with distilled water for all membranes started high and over time reached a stabilization level. Thus, it can be concluded that the presence and the content of clay altered the morphology of the membrane, contributing to an increase in water flow. (author)

  5. Influence of clay organic modifier on morphology and performance of poly(ε-caprolactone/clay nanocomposites

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2015-01-01

    Full Text Available Two series of poly(e-caprolactone nanocomposites with different organo-modified clays (1 to 8 wt% were prepared by the solution casting method. Organoclays with polar (Cloisite®C30B and nonpolar (Cloisite®C15A organic modifier and with different miscibility with poly(e-caprolactone matrix, were chosen. Exfoliated and/or intercalated nanocomposite’s structures were obtained by using high dilution and an ultrasonic treatment for the composite preparation. The effect of the surface modification and clay content on the morphology, mechanical and thermal properties of the nanocomposites was studied. Scanning electron microscopy excluded the formation of microcomposite. The wide-angle X-ray diffraction analysis revealed that the tendency toward exfoliated structure is higher for the Cloisite®C30B, which had better miscibility with poly(e-caprolactone matrix. Differences in spherulites’ sizes and morphology between two series of the nanocomposites were observed by the optical microscopy performed on as-casted films. Enthalpies of fusion and degrees of crystallinity were higher for nanocomposites than for neat poly(e-caprolactone and increase with the clay loading in both series, as a consequence of the clay nucleating effect. Decreased thermal stability of nanocomposites was ascribed to thermal instability of organic modifiers of the clays. The Halpin-Tsai model was used to compare the theoretically predicted values of the Young’s modulus with experimentally obtained ones in tensile tests.[Projekat Ministarstva nauke Republike Srbije, br. 172062

  6. Studies on Tagged Clay Migration Due to Water Movement

    International Nuclear Information System (INIS)

    Scharpenseel, H.W.; Kerpen, W.

    1967-01-01

    55 Fe-tagged clay minerals, produced by hydrothermal synthesis, serve to clarify the question whether clay migration or clay formation in situ is the predominating mechanism in the B t -development of Parabraunerde (sol brun lessive, grey brown podsolic, hapludalf, dernopodsol). They further indicate the possibilities of clay transportation caused by water percolation. Suitable experimental approaches, such as thin-layer chromatography and autoradiography, translocation tests in columns filled with monotypical textural fractions or with undisturbed soil profiles, and synchronous hydrothermal treatment of 55 Fe-con raining material from different horizons of Parabraunerde, to reveal the specific readiness of the different profile zones for 55 Fe-clay production, are described. The possibilities of clay percolation are discussed. (author)

  7. clay nanocomposites

    Indian Academy of Sciences (India)

    The present work deals with the synthesis of specialty elastomer [fluoroelastomer and poly (styrene--ethylene-co-butylene--styrene (SEBS)]–clay nanocomposites and their structure–property relationship as elucidated from morphology studies by atomic force microscopy, transmission electron microscopy and X-ray ...

  8. α-Pinene conversion by modified-kaolinitic clay

    International Nuclear Information System (INIS)

    Volzone, C.; Masini, O.; Comelli, N.A.; Grzona, L.M.; Ponzi, E.N.; Ponzi, M.I.

    2005-01-01

    The isomerization of α-pinene using natural kaolinitic clay before and after different treatments was studied in this work. The kaolinite is a clay material constituted by phyllosilicate 1:1 layer (one sheet of tetrahedral silicon and one sheet of octahedral alumina). The clay was treated at different times using 6.0 N solution of sulfuric acid previous heating to 500 or 700 K. The materials were characterized by X-ray diffraction, by chemical analyses and acidity measurements. The catalytic reactions were carried out at 373 K in a reactor batch with condenser and stirrer. Samples were taken at regular intervals, and reactants and products were quantitatively analyzed with a gas chromatograph after separation of the individual compounds. Conversions of alpha pinene between 67 and 94%, and selectivities in camphene and in limonene of 65 and 23%, respectively, were obtained with the clay treated at different conditions. The structural and textural changes of the clay by the treatments influenced on catalytic reactions

  9. {alpha}-Pinene conversion by modified-kaolinitic clay

    Energy Technology Data Exchange (ETDEWEB)

    Volzone, C. [CETMIC-Centro de Tecnologia de Recursos Minerales y Ceramica-(CONICET-CIC), C.C. 49, Cno. Centenario y 506 (1897) M.B. Gonnet, Prov., Buenos Aires (Argentina)]. E-mail: volzcris@netverk.com.ar; Masini, O. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Comelli, N.A. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Grzona, L.M. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Ponzi, E.N. [CINDECA (CONICET-UNLP) calle 47 No. 257 (1900) La Plata, Prov., Buenos Aires (Argentina); Ponzi, M.I. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina)

    2005-10-15

    The isomerization of {alpha}-pinene using natural kaolinitic clay before and after different treatments was studied in this work. The kaolinite is a clay material constituted by phyllosilicate 1:1 layer (one sheet of tetrahedral silicon and one sheet of octahedral alumina). The clay was treated at different times using 6.0 N solution of sulfuric acid previous heating to 500 or 700 K. The materials were characterized by X-ray diffraction, by chemical analyses and acidity measurements. The catalytic reactions were carried out at 373 K in a reactor batch with condenser and stirrer. Samples were taken at regular intervals, and reactants and products were quantitatively analyzed with a gas chromatograph after separation of the individual compounds. Conversions of alpha pinene between 67 and 94%, and selectivities in camphene and in limonene of 65 and 23%, respectively, were obtained with the clay treated at different conditions. The structural and textural changes of the clay by the treatments influenced on catalytic reactions.

  10. Active containment systems incorporating modified pillared clays

    International Nuclear Information System (INIS)

    Lundie, P.; McLeod, N.

    1997-01-01

    The application of treatment technologies in active containment systems provides a more advanced and effective method for the remediation of contaminated sites. These treatment technologies can be applied in permeable reactive walls and/or funnel and gate systems. The application of modified pillared clays in active containment systems provides a mechanism for producing permeable reactive walls with versatile properties. These pillared clays are suitably modified to incorporate reactive intercalatants capable of reacting with both a broad range of organic pollutants of varying molecular size, polarity and reactivity. Heavy metals can be removed from contaminated water by conventional ion-exchange and other reactive processes within the clay structure. Complex contamination problems can be addressed by the application of more than one modified clay on a site specific basis. This paper briefly describes the active containment system and the structure/chemistry of the modified pillared clay technology, illustrating potential applications of the in-situ treatment process for contaminated site remediation

  11. Controlling harmful algae blooms using aluminum-modified clay.

    Science.gov (United States)

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Tensile mechanical response of polyethylene – clay nanocomposites.

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available In this work we report on the microstructural and the mechanical characteristics of high density polyethylene (HDPE-clay nanocomposites, with particular attention to the creep behaviour. The samples were prepared through melt compounding, using two high-density polyethylenes with different melt flow rate (MFR, two different organo-modified clays, and changing the relative amount of a polyethylene grafted with maleic anhydride (PEgMA compatibilizer. The intercalation process is more effective as the matrix melt viscosity decreases (higher MFR, while the clay interlamellar spacing increases as the compatibilizer amount increases. The relative stiffness of the nanocomposites increases with the addition of clay, with a limited enhancement of the relative yield stress. The better intercalation obtained by the addition of the compatibilizer is not accompanied by a concurrent improvement of the tensile mechanical properties. The creep resistance is enhanced by the introduction of clay, with an appreciable dependence on both the polyethylene and the clay type.

  13. Study of radionuclide migration in clay formations

    International Nuclear Information System (INIS)

    Antonioli, F.; Bocola, W.

    1985-01-01

    This paper reports the studies on the migration of Cs, Sr and I in clay formations, which are presently considered for the geological disposal of radioactive wastes. The distribution and diffusion coefficients were evaluated by means of experimental techniques and computer procedures, which are presented in this report. The natural clays tested in the laboratory experiments were sampled from the most representative italian basins and from the zone of Mol (Belgium). In addition tests were performed on monomineral clays artificially remade in edometer. The experimental results are in accordance with data found in the literature and show the existence of a good correlation between the observed migration properties and the granulometric and mineralogic characteristics of the natural clays

  14. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.

    Science.gov (United States)

    Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan

    2015-06-02

    To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.

  15. Influence of chemical treatment of clay to obtain polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Rosa, Jeferson L.S.; Marques, Maria F.V.

    2009-01-01

    Commercial clay was chemically treated to prepare a Ziegler-Natta catalyst containing MgCl 2 and clay for the synthesis of polypropylene nanocomposites by in situ polymerization. The performance of this catalyst and materials obtained in propylene polymerization was compared with a reference catalyst (without clay) and with another, whose composition presents the same clay but without prior chemical treatment. Techniques like differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and melt flow index (MFI) measurements were performed. There was a marked reduction in catalytic activity of clay catalysts in comparison with the reference one, and a slight reduction in melting temperature of the polymers produced from first ones. The melt flow index of polymers obtained with treated clay were notably higher than those synthesized with the untreated clay, so the treated clay caused treated the production of PP's with lower molar mass. The clays showed an increase of spacing and irregular stacking of the lamellas, especially if chemically treated. (author)

  16. Electron paramagnetic resonance studies on silver atoms and clusters in regularly interstratified clay minerals

    International Nuclear Information System (INIS)

    Yamada, H.; Tamura, K.; Shimomura, S.; Sadlo, J.; Turek, J.; Michalik, J.

    2004-01-01

    The formation and stabilization of reduced silver species in the regularly interstratified clay minerals, trioctahedral smectite/chlorite (tri-Sm/Ch) and dioctahedral smectite/mica (di-Sm/M), have been studied by electron paramagnetic resonance (EPR) spectroscopy. Both minerals loaded with Ag + cations after degassing and dehydration were γ-irradiated at 77 K and monitored by EPR as the temperature increased. Some samples were exposed to water or methanol vapor after dehydration. In both hydrated and dehydrated samples only the doublets to Ag 0 atoms were observed with no evidence of the formation of Ag clusters. However, the EPR parameter of silver atoms in both matrices are different. In tri-Sm/Ch the narrow anisotropic EPR lines overlap with the broader isotropic lines, whereas in di-Sm/M only broad lines are recorded. The hyperfine splitting - A iso (Ag 0 ) is larger in tri-Sm/Ch than in di-Sm/M. Also the stability of Ag 0 in both clay minerals is distinctly different. Ag 0 doublet in di-Sm/M disappears completely above 230 K, Whereas in tri-Sm/Ch it is still recorded at 310 K. It is proposed, basing on the EPR results that Ag 0 atoms appear at different sites in both matrices: - in tri-Sm/Ch in the middle of smectite interlayer and in hexagonal cavities in the silicate sheets of tetrahedron layer and in di-Sm.M in hexagonal cavities only. When samples had been exposed to methanol before irradiation, the silver clusters become stabilized in the interlayer sites. In tri-Sm/M matrix the silver dimer Ag 2 + formed by gamma-irradiation at 77 K is transformed to tetrameric cluster, Ag 4 + at 150 K. In di-Sm/M the radiation-induced silver agglomeration proceeds in a similar way, but with a slower rate and Ag tetramer is formed only above 190 K. In both clay minerals, Ag 4 + clusters decay above 250 K. (author)

  17. Studies on Tagged Clay Migration Due to Water Movement

    Energy Technology Data Exchange (ETDEWEB)

    Scharpenseel, H. W. [Institut fuer Bodenkunde der Universitaet Bonn, Federal Republic of Germany (Germany); Kerpen, W. [Arbeitsgruppe, Institut fuer Landwirtschaft der KFA Juelich, Bonn, Federal Republic of Germany (Germany)

    1967-11-15

    {sup 55}Fe-tagged clay minerals, produced by hydrothermal synthesis, serve to clarify the question whether clay migration or clay formation in situ is the predominating mechanism in the B{sub t}-development of Parabraunerde (sol brun lessive, grey brown podsolic, hapludalf, dernopodsol). They further indicate the possibilities of clay transportation caused by water percolation. Suitable experimental approaches, such as thin-layer chromatography and autoradiography, translocation tests in columns filled with monotypical textural fractions or with undisturbed soil profiles, and synchronous hydrothermal treatment of {sup 55}Fe-con raining material from different horizons of Parabraunerde, to reveal the specific readiness of the different profile zones for {sup 55}Fe-clay production, are described. The possibilities of clay percolation are discussed. (author)

  18. A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data

    International Nuclear Information System (INIS)

    Kay, Paul; Blackwell, Paul A.; Boxall, Alistair B.A.

    2005-01-01

    Pharmaceuticals used in livestock production may be present in manure and slurry as the parent compound and/or metabolites. The environment may therefore be exposed to these substances due to the application of organic fertilisers to agricultural land or deposition by grazing livestock. For other groups of substances that are applied to land (e.g. pesticides), preferential flow in clay soils has been identified as an extremely important mechanism by which surface water pollution can occur. This lysimeter study was therefore performed to investigate the fate of three antibiotics from the sulphonamide, tetracycline and macrolide groups in a clay soil. Only sulphachloropyridazine was detected in leachate and soil analysis at the end of the experiment showed that almost no antibiotic residues remained. These data were analysed alongside field data for the same compounds to show that soil tillage which breaks the connectivity of macropores formed over the summer months, prior to slurry application, significantly reduces chemical mobility. - This paper describes one of the first studies to investigate the fate of veterinary medicines in cracking clay soils

  19. A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Paul [Cranfield Centre for EcoChemistry, Cranfield University, Shardlow Hall, Shardlow, Derby DE72 2GN (United Kingdom)]. E-mail: paul.kay@adas.co.uk; Blackwell, Paul A. [Cranfield Centre for EcoChemistry, Cranfield University, Shardlow Hall, Shardlow, Derby DE72 2GN (United Kingdom); Boxall, Alistair B.A. [Cranfield Centre for EcoChemistry, Cranfield University, Shardlow Hall, Shardlow, Derby DE72 2GN (United Kingdom)

    2005-03-01

    Pharmaceuticals used in livestock production may be present in manure and slurry as the parent compound and/or metabolites. The environment may therefore be exposed to these substances due to the application of organic fertilisers to agricultural land or deposition by grazing livestock. For other groups of substances that are applied to land (e.g. pesticides), preferential flow in clay soils has been identified as an extremely important mechanism by which surface water pollution can occur. This lysimeter study was therefore performed to investigate the fate of three antibiotics from the sulphonamide, tetracycline and macrolide groups in a clay soil. Only sulphachloropyridazine was detected in leachate and soil analysis at the end of the experiment showed that almost no antibiotic residues remained. These data were analysed alongside field data for the same compounds to show that soil tillage which breaks the connectivity of macropores formed over the summer months, prior to slurry application, significantly reduces chemical mobility. - This paper describes one of the first studies to investigate the fate of veterinary medicines in cracking clay soils.

  20. Geological Investigations on Boulder-Clay of E. Groningen

    NARCIS (Netherlands)

    Gijzel, van P.; Overweel, C.J.; Veenstra, H.J.

    1959-01-01

    In this article the results of a study on boulder-clay in the neighbourhood of Winschoten (N.E. Netherlands) are communicated (Chapter I). The underlying sediments of the boulder-clay in this area consist of fine preglacial sands and black clay. In the nuclei of the many drumlins a strongly

  1. Nanoporous polymer--clay hybrid membranes for gas separation.

    Science.gov (United States)

    Defontaine, Guillaume; Barichard, Anne; Letaief, Sadok; Feng, Chaoyang; Matsuura, Takeshi; Detellier, Christian

    2010-03-15

    Nanohybrid organo-inorgano clay mineral-polydimethylsiloxane (PDMS) membranes were prepared by the reaction of pure and/or modified natural clay minerals (Sepiolite and montmorillonite) with PDMS in hexane, followed by evaporation of the solvent at 70 degrees C. The membranes were characterized by means of XRD, SEM, ATD-TG and solid state (29)Si magic angle spinning (MAS) and cross-polarization (CP) CP/MAS NMR. The morphology of the membranes depends on the content loading of clay mineral. For low content, the membrane composition is homogeneous, with well dispersed nanoparticles of clay into the polymer matrix, whereas for higher clay content, the membranes are constituted also of a mixture of well dispersed nanoparticles into the polymer, but in the presence of agglomerations of small clay particles. Quantitative (29)Si MAS NMR demonstrated a strong correlation between the clay content of the membrane and the average length of the PDMS chain, indicating that the nanohybrid material is made of clay particles covalently linked to the PDMS structure. This is particularly the case for Sepiolite with has a high density of Q(2) silanol sites. The separation performances of the prepared membranes were tested for CO(2)/CH(4) and O(2)/N(2) mixtures. The observed separation factors showed an increase of the selectivity in the case of CO(2)/CH(4) in comparison with membranes made from PDMS alone under the same conditions. 2009 Elsevier Inc. All rights reserved.

  2. Polyurethane/organo clay nano composite materials via in-situ polymerization

    International Nuclear Information System (INIS)

    Rehab, A.; Agag, T; Akelah, A.; Shalaby, N.

    2005-01-01

    Polyurethane/organo clay nano composites have been synthesized via in situ polymerization. The organo clay firstly prepared by intercalation of lyamine or amino lauric acid into montmorillonite-clay (MMT) through ion exchange process. The syntheses of polyurethane/organo clay hybrid films containing different ratio of clay were carried out by swelling the organo clay, into diol and diamine or into different kinds of diols, followed by addition of diisocyanate. The nano composites with dispersed structure of MMT was obtained as evidence by scanning electron microscope and x-ray diffraction. X-ray analysis showed that the d-spacing increased to more than 44A since there is no peaks corresponding to do spacing in organo clay with all the ratios (1, 5, 10, 20%). Also, SEM results confirm the dispersion of nanometer silicate layers in the polyurethane matrix. This indicated that the clay was completely exfoliated and homogeneous dispersion in the polyurethane matrix. Also, it was found that the presence of organo clay leads to improvement the mechanical properties. Since, the tensile strength increased with increasing the organo clay contents to 20% by the ratio 194% in compared to the 1H: with 0% organo clay. Also, the elongation is a decreases with increasing the organo clay contents. The results shown the tensile strength of PU/SMA/ALA-MMT nano composites is high by 6-7 times than the corresponding to PU/Tvr-MMT

  3. Development of polymer nanocomposites with regional bentonite clay

    International Nuclear Information System (INIS)

    Araujo, Edcleide M.; Leite, Amanda M.D.; Paz, Rene A. da; Medeiros, Keila M. de; Melo, Tomas J.A.; Barbosa, Josiane D.V.; Barbosa, Renata

    2011-01-01

    nanocomposites with regional bentonite clay were prepared by melt intercalation technique. The clays were studied without modification and modified with four quaternary ammonium salts. It was evidenced by X-ray diffraction that salts were incorporated into the clay structure thus confirming its organophilization. The nanocomposites were evaluated by means of thermal mechanic and flammability tests where presented properties significantly improved their pure polymers. The process of biodegradation of obtained bio nanocomposites was accelerated by the presence of clay. The produced membranes from nanocomposites have potential in the oil-water separation. (author)

  4. Clays causing adhesion with tool surfaces during mechanical tunnel driving

    Science.gov (United States)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.

    2009-04-01

    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the

  5. Thermally modified bentonite clay for copper removal

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    Bentonite clay coming from Pernambuco was thermally modified in order to increase its affinity and capacity in the copper removal in porous bed. The application of this procedure is justified by the low cost of clay, their abundance and affinity for various metal ions. Thermally treatment modifies the clay adsorption properties enables its use in porous bed system, with the increase in surface area and mechanical strength. The material was characterized by x-ray diffraction, thermogravimetric analysis and N_2 physisorption. Then tests were carried out for adsorption of copper in various experimental conditions and evaluated the mass transfer zone, useful and total adsorbed removal amounts and total copper removal percentage. The results showed that the clay treated at higher temperature showed higher copper removal. (author)

  6. Performance of Kaolin Clay on the Concrete Pavement

    Science.gov (United States)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  7. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  8. Clay minerals in sandstone uranium deposits: radwaste applications

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1990-01-01

    Clay minerals play an important role in the genesis of uranium deposits in sandstones. They incorporate the rate earths (REE), U, Sb, Th, Cs, Rb, Sr, Y, Ba, and even small amounts of chalcophiles. These minerals possess analog elements for many of the radwaste fission products as well as actinides and some actinide daughters. In sandstone uranium deposits, clay minerals are also associated with sulfide minerals, usually pyrite, and organic carbonaceous matter. The primary clay minerals are usually smectites, illites, chlorites and mixed layer varieties. The integrity of these clay minerals is demonstrated by their retention of formational-mineralization ages determined by Rb-Sr geochronologic investigation of the Grants Mineral Belt of the United States. The importance of the clay minerals as analog for parts of the multi-barrier concept in radwaste disposal is their ability to impede water penetration into - and movement of key elements out of uranium rich zones. The clay minerals further sorb and in other ways incorporate into their structures many fission products and actinide analogs from man-made nuclear wastes. 22 refs., 1 fig., 3 tabs

  9. Induced polarization of clay-sand mixtures: experiments and modeling

    International Nuclear Information System (INIS)

    Okay, G.; Leroy, P.; Tournassat, C.; Ghorbani, A.; Jougnot, D.; Cosenza, P.; Camerlynck, C.; Cabrera, J.; Florsch, N.; Revil, A.

    2012-01-01

    Document available in extended abstract form only. Frequency-domain induced polarization (IP) measurements consist of imposing an alternative sinusoidal electrical current (AC) at a given frequency and measuring the resulting electrical potential difference between two other non-polarizing electrodes. The magnitude of the conductivity and the phase lag between the current and the difference of potential can be expressed into a complex conductivity with the in-phase representing electro-migration and a quadrature conductivity representing the reversible storage of electrical charges (capacitive effect) of the porous material. Induced polarization has become an increasingly popular geophysical method for hydrogeological and environmental applications. These applications include for instance the characterization of clay materials used as permeability barriers in landfills or to contain various types of contaminants including radioactive wastes. The goal of our study is to get a better understanding of the influence of the clay content, clay mineralogy, and pore water salinity upon complex conductivity measurements of saturated clay-sand mixtures in the frequency range ∼1 mHz-12 kHz. The complex conductivity of saturated unconsolidated sand-clay mixtures was experimentally investigated using two types of clay minerals, kaolinite and smectite in the frequency range 1.4 mHz - 12 kHz. Four different types of samples were used, two containing mainly kaolinite (80% of the mass, the remaining containing 15% of smectite and 5% of illite/muscovite; 95% of kaolinite and 5% of illite/muscovite), and the two others containing mainly Na-smectite or Na-Ca-smectite (95% of the mass; bentonite). The experiments were performed with various clay contents (1, 5, 20, and 100% in volume of the sand-clay mixture) and salinities (distilled water, 0.1 g/L, 1 g/L, and 10 g/L NaCl solution). In total, 44 saturated clay or clay-sand mixtures were prepared. Induced polarization measurements

  10. Organic or organometallic template mediated clay synthesis

    Science.gov (United States)

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  11. Modification of clay-based waste containment materials

    International Nuclear Information System (INIS)

    Adu-Wusu, K.; Whang, J.M.; McDevitt, M.F.

    1997-01-01

    Bentonite clays are used extensively for waste containment barriers to help impede the flow of water in the subsurface because of their low permeability characteristics. However, they do little to prevent diffusion of contaminants, which is the major transport mechanism at low water flows. A more effective way of minimizing contaminant migration in the subsurface is to modify the bentonite clay with highly sorptive materials. Batch sorption studies were conducted to evaluate the sorptive capabilities of organo-clays and humic- and iron-based materials. These materials proved to be effective sorbents for the organic contaminants 1,2,4-trichlorobenzene, nitrobenzene, and aniline in water, humic acid, and methanol solution media. The sorption capacities were several orders of magnitude greater than that of unmodified bentonite clay. Modeling results indicate that with small amounts of these materials used as additives in clay barriers, contaminant flux through walls could be kept very small for 100 years or more. The cost of such levels of additives can be small compared to overall construction costs

  12. Scour at Vertical Piles in Sand-Clay Mixtures under Waves

    DEFF Research Database (Denmark)

    Dey, Subhasish; Helkjær, Anders; Sumer, B. Mutlu

    2011-01-01

    Marine sediments often contain sand-clay mixtures in widely varying proportions. This study presents the results of equilibrium scour and time variation of scour depths at circular piles embedded vertically in clay alone and sand-clay mixed beds under waves. Experiments were conducted in a wave...... flume with different proportions of sand-clay mixtures as bed sediments. Test results for the cases of steady current and sand alone under waves are used as references. The equilibrium scour depth reduces with an increase in clay proportion n (by weight) in a sand-clay mixture. Interestingly, the scour...

  13. Characteristics of the streak clays of the hyacinth gold deposit by the techniques of DRX and AT

    International Nuclear Information System (INIS)

    Trueba Gaetano, R.; Cabrera Diaz, I.; Casanova Gomez, A.; Aguila Terry, A.; Martinez Montalvo, A.; Canel Carreras, L.; Rodriguez Garcia, J. C.; Alonso Perez, J. A.

    2016-01-01

    It is exposed the investigative work of the mineralogical characteristics of different types of clays present in the veins of the Oro Jacinto deposit through the use of XRD and TA analytical techniques, supported by a study of particle size in the range of 2 mm to 63 μm. Significant feature of these samples is that being crushed they generated high content of fine material below 0.074 mm. This size particles range is presented between 17.68% and 50.78% of samples volume, majority particles being smaller than 0.063 mm, this interstratificated fine material with different types of clay makes the fraction below 74 μm present characteristics of clayey material. The results of XRD analysis and comparative Thermo gravimetric that are achieved for samples of 'Jacinto' gold vein deposit indicate that the clays presented in the fine fractions are: chlorite-montmorillonite; illite; hidromoscovite and muscovite, which turned out to be higher in samples of the grain B eatriz . During the ores formation process of the veins S ur Elena , it is evident that the hydrothermal fluids that led to the formation of the rocks, experienced greater degree of alteration during its transformation into argillite, which is manifested in three mineralogical regularities: Low crystallinity of the chlorite-montmorillonite clay. Transformation of muscovite - hidromoscovite into illite. Presence of abundant calcite in some samples. Higher concentrations of iron oxides (goethite). (Author)

  14. Removal of waterborne microorganisms by filtration using clay-polymer complexes.

    Science.gov (United States)

    Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda

    2014-08-30

    Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Climatic control on clay mineral formation

    Indian Academy of Sciences (India)

    Many physico-chemical variables like rock-type,climate,topography and exposure age affect weathering environments.In the present study,an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering pro ...

  16. Water-clay interactions. Experimental study

    International Nuclear Information System (INIS)

    Gaucher, Eric

    1998-01-01

    Clay minerals contribute to the chemical composition of soil and sediment groundwaters via surface and dissolution/precipitation reactions. The understanding of those processes is still today fragmentary. In this context, our experimental purpose is to identify the contribution of each reaction in the chemical composition of water in a water/clay System. Kaolinite, illite, montmorillonite are the reference clays. After a fine mineralogical study, the exchange equilibria between K + and H + are characterised. Different exchange sites are identified and the exchange capacities and selectivity coefficients are quantified. Then, mixtures of the three clays are equilibrated with acidic and basic (I≤10 -2 M) solutions at 25 deg. C, 60 deg. C, 80 deg. C, during 320 days. The System evolution is observed by chemical analysis of the solutions and mineralogical analysis by TEM. We show that montmorillonite is unstable compared to the kaolinite/amorphous silica assemblage for solutions of pH<7. Aqueous silica is probably controlled by the kinetics of dissolution of the montmorillonite in moderate pH media. In more acidic solutions, amorphous silica precipitates. Al is under control of 'kaolinite' neo-formations. The use of the selectivity coefficients in a numerical simulation shows that K + concentration depends on exchange reactions. The pH has a more complicated evolution, which is not completely understood. This evolution depends on both exchange equilibria and organic acid occurrence. In this type of experiments, we have demonstrated that the equilibrium equations between smectite and kaolinite are inexact. The problem of the thermodynamic nature of clays remains and is not resolved by these solubility experiments. (author) [fr

  17. The use of clays as sorbents and catalysts

    International Nuclear Information System (INIS)

    McCabe, R.W.

    1998-01-01

    The paper attempts to show the structural, physical and chemical properties of clay minerals relate to their laboratory, industrial and environmental uses as sorbents and catalysts. A brief review of the formulae and structures of clays and their relationship to their chemical and physical properties follows. Clay minerals are also useful in environmental protection as they can adsorb crude oils from spills and they are used, sometimes mixed into concrete, as containment barriers for radionuclides caesium 137 and strontium 90. Clay soils can also act as natural barriers to the migration of radionuclides in the environment

  18. Rheology of Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels

    Science.gov (United States)

    Lombardi, Jack; Xu, Di; Bhatnagar, Divya; Gersappe, Dilip; Sokolov, Jonathan; Rafailovich, Miriam

    2015-03-01

    The stiffness of PNIPA Gels has been reported could be significant improved by gelation with clay fillers. Here we conducted systematic rheology study of synthesized PNIPA-Clay Composites at different clay concentration, in a range from fluid to strong gel, where G'' dominant changed to G' dominant. Molecular dynamics simulation was employed to analyze the structure of composites and corresponding mechanical changes with increased clays. Where we found viscoelastic behavior become significant only 1.5 times above percolation threshold. The yield stress extrapolated from our rheology results shows good fitting to modified Mooney's theory of suspension viscosity.

  19. Effects of biochar on hydraulic conductivity of compacted kaolin clay.

    Science.gov (United States)

    Wong, James Tsz Fung; Chen, Zhongkui; Wong, Annie Yan Yan; Ng, Charles Wang Wai; Wong, Ming Hung

    2018-03-01

    Compacted clay is widely used as capillary barriers in landfill final cover system. Recently, biochar amended clay (BAC) has been proposed as a sustainable alternative cover material. However, the effects of biochar on saturated hydraulic conductivity (k sat ) of clay with high degree of compaction is not yet understood. The present study aims to investigate the effects of biochar on k sat of compacted kaolin clay. Soil specimens were prepared by amending kaolin clay with biochar derived from peanut-shell at 0, 5 and 20% (w/w). The k sat of soil specimens was measured using a flexible water permeameter. The effects of biochar on the microstructure of the compacted clay was also investigated using MIP. Adding 5% and 20% of biochar increased the k sat of compacted kaolin clay from 1.2 × 10 -9 to 2.1 × 10 -9 and 1.3 × 10 -8 ms -1 , respectively. The increase in k sat of clay was due to the shift in pore size distribution of compacted biochar-amended clay (BAC). MIP results revealed that adding 20% of biochar shifted the dominant pore diameter of clay from 0.01-0.1 μm (meso- and macropores) to 0.1-4 μm (macropores). Results reported in this communication revealed that biochar application increased the k sat of compacted clay, and the increment was positively correlated to the biochar percentage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Inter-layered clay stacks in Jurassic shales

    Science.gov (United States)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  1. Decantation time of evaluation on bentonite clays fractionation

    International Nuclear Information System (INIS)

    Gomes, J.; Menezes, R.R.; Neves, G.A.; Lira, H.L; Santana, L.N.L.

    2009-01-01

    Bentonite clays present a great number of industrial uses, from petroleum to pharmaceutics and cosmetic industry. The bentonite clay present particles with very fine particles that is responsible by the vast application of these materials. However, commercial clays present wide particle size distribution and a significant content of impurities, particularly quartz, in the form of silt and fine silt. So, the aim of this work is to analyze the effect of the stirring and decantation time in the deagglomeration, purification and size separation of the bentonite clay particles from Paraiba. The clays were characterized by X-ray diffraction and particle size distribution. Based on the results it was observed the decantation time give the elimination of the agglomerates formed by submicrometric particles. The uses of decantation column give separation of the fraction below 200nm. (author)

  2. Removal of clay by stingless bees: load size and moisture selection.

    Science.gov (United States)

    Costa-Pereira, Raul

    2014-09-01

    Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis) collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.

  3. The Influence of Temperature on Kaolinite Fired Clay- Cement Materials Used as Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    El-Dakroury, A.

    2008-01-01

    The decay of encapsulated radioactive nuclides may cause elevation of the temperature in the waste form. Cement has been used for immobilization of low and intermediated level radioactive waste. The unstable component of concrete is the ordinary Portland cement (OPC). This study aimed to investigate experimentally the change occurring in the compressive strength and physico- chemical properties of ordinary Portland cement (OPC) matrices in comparable with other matrices which (OPC) were partially substituted by 0, 10, 20 and 30% of thermally-activated kaolinite clay by weight (the kaolinite clay activated by firing at 750 degree C for 5 hr then quenched by tap water). If all matrices mentioned before, are being exposed to the treatment temperature were varied from 100 degree C to 600 degree C by increment of 100 degree C for period of 3 hr without any load. The phase composition was performed by mean of differential thermal analysis and X-R-D. The results show that the replacements of (OPC) by 20 wt % thermal-activated Kaolinite clay improve the compressive properties by 30 %. The results of this investigation cleared that the recrystallization and carbonation of Ca(OH) 2 ; they also show a deformation of C-H-S and C 4 Ah 13 phases, besides the matrices have more stable resistance at 600 degree C. Meanwhile, this new immobilization matrix 20 % by wt thermally activated Kaolinite - clay showed the lowest leaching rate of simulated radioactive waste of Sr or Cs compared to the ordinary Portland cement (OPC) matrix

  4. Removal of Phenol in Aqueous Solution Using Kaolin Mineral Clay

    International Nuclear Information System (INIS)

    Sayed, M.S.

    2008-01-01

    Kaolin clay were tested for phenol removal as toxic liquid waste from aqueous waste water. Several experimental conditions such as weight and particle size of clay were investigated to study batch kinetic techniques, also the ph and concentration of the phenol solution were carried out. The stability of the Langmuir adsorption model of the equilibrium data were studied for phenol sorbent clay system. Infrared spectra, thermogravimetric and differential thermal analysis techniques were used to characterize the behavior of kaolin clay and kaolin clay saturated with phenol. The results obtained showed that kaolin clay could be used successfully as an efficient sorbent material to remove phenol from aqueous solution

  5. Gassmann Modeling of Acoustic Properties of Sand-clay Mixtures

    Science.gov (United States)

    Gurevich, B.; Carcione, J. M.

    The feasibility of modeling elastic properties of a fluid-saturated sand-clay mixture rock is analyzed by assuming that the rock is composed of macroscopic regions of sand and clay. The elastic properties of such a composite rock are computed using two alternative schemes.The first scheme, which we call the composite Gassmann (CG) scheme, uses Gassmann equations to compute elastic moduli of the saturated sand and clay from their respective dry moduli. The effective elastic moduli of the fluid-saturated composite rock are then computed by applying one of the mixing laws commonly used to estimate elastic properties of composite materials.In the second scheme which we call the Berryman-Milton scheme, the elastic moduli of the dry composite rock matrix are computed from the moduli of dry sand and clay matrices using the same composite mixing law used in the first scheme. Next, the saturated composite rock moduli are computed using the equations of Brown and Korringa, which, together with the expressions for the coefficients derived by Berryman and Milton, provide an extension of Gassmann equations to rocks with a heterogeneous solid matrix.For both schemes, the moduli of the dry homogeneous sand and clay matrices are assumed to obey the Krief's velocity-porosity relationship. As a mixing law we use the self-consistent coherent potential approximation proposed by Berryman.The calculated dependence of compressional and shear velocities on porosity and clay content for a given set of parameters using the two schemes depends on the distribution of total porosity between the sand and clay regions. If the distribution of total porosity between sand and clay is relatively uniform, the predictions of the two schemes in the porosity range up to 0.3 are very similar to each other. For higher porosities and medium-to-large clay content the elastic moduli predicted by CG scheme are significantly higher than those predicted by the BM scheme.This difference is explained by the fact

  6. Methods for obtention of PS/clay nanocomposites

    International Nuclear Information System (INIS)

    Lins, Pedro G.; Valera, Ticiane S.; Coelho, Caio P.D.; Demarquette, Nicole R.

    2009-01-01

    In this work, nanocomposites of Polystyrene (PS) and organoclay were obtained using a twin-screw extruder and a mixer Haake. A commercial clay named Cloisite 20A was used. The clay and the nanocomposites were characterized by X-Ray Diffraction. The rheological properties were investigated carrying out small amplitude oscillatory strain (SAOS). The results of X-ray diffraction showed that the polymer was incorporated by the organoclay. The results of SAOS indicated a better clay dispersion for the samples obtained using the mixer. (author)

  7. Traditional mining and mineralogy of geophagic clays from Limpopo ...

    African Journals Online (AJOL)

    Geophagic clays consumed were whitish, yellowish, khaki and black; mined from hills and mountains, river beds, valleys, excavation sites and termitaria. Geophagic individuals from Free State preferred whitish geophagic clays; and sometimes khaki. Yellowish clays were preferred mostly by geophagic individuals from ...

  8. Adsorption of zinc and lead on clay minerals

    Directory of Open Access Journals (Sweden)

    Katarína Jablonovská

    2006-12-01

    Full Text Available Clays (especially bentonite, zeolite and quartz sand are widely used as landfill barriers to prevent contamination of subsoil and groundwater by leachates containing heavy metals. The sorption of zinc and lead on these clays was studied as a function of time and it was found that the initial 1 h our was sufficient to exchange most of the metal ions. The retention efficiency of clay samples of Zn2+ and Pb2+ follows the order of bentonite > zeolite> quartz sand. Whatever the clay sample, lead is retained more than zinc. The concentration of elements in the solution was followed by atomic adsorption spectrofotometry. Bacillus cereus and Bacillus pumilus, previously isolated from the kaoline deposit Horna Prievrana was added into the clay samples to comparise the accumulation of Zn2+ and Pb2+ from the model solution. The study of heavy metal adsorption capacity of bacteria- enriched clay adsorbent showed a high retention efficiency for lead ions as comparised with zinc ions. Biosorption is considered a potential instrument for the removal of metals from waste solutions and for the precious metals recovery as an alternative to the conventional processes.

  9. Characterization and analysis of epoxy/clay nanotubes composites

    International Nuclear Information System (INIS)

    Sene, Tarcisio S.; Kock, Thyago; Coelho, Luiz A.F.; Becker, Daniela

    2011-01-01

    An DGEBA epoxy matrix was used aiming to achieve a nanocomposite material, through the dispersion of (CNT) via mechanical stirring followed by sonication. In this work the following characterization were performed: mechanical characterization, differential scanning calorimetry (DSC), wide angle X-ray diffraction (WXRD) and scanning electron microscopy (SEM). The addition of CNT and modified clays promoted the increase of modulus of the epoxy matrix, and a synergistic effect between CNT and both clays could be presumed. SEM images of the fracture surface show the difference between the fracture surface area and the presence of clusters among the samples, allowing a correlation with the modulus of elasticity. X-ray diffractograms from 2Θ = 5 deg showed no peaks for modified clay samples, however it is possible to affirm that modified clay platelets are forming a less organized structure compared to the structure of the clay as natural in epoxy. (author)

  10. Technetium migration in natural clays

    International Nuclear Information System (INIS)

    Luebke, Maria

    2015-01-01

    The present work was performed within the joint research project ''Retention of repository relevant radionuclides in argillaceous rocks and saline systems'' (contract no.: 02E10981), funded by the Federal Ministry for Economic Affairs and Energy (BMWi). The aim was to obtain first insights into the interaction of the long-lived fission product technetium and natural clay with regard to a repository for high-level nuclear waste. For this purpose Opalinus Clay from Mont Terri (northern Switzerland) was used as a reference material. The nuclide technetium-99 will contribute to the radiotoxicity of spent nuclear fuel for more than thousand years due to its long half-live. In case of a leakage of the storage vessels, the geochemistry of technetium is determined by its oxidation state, at which only the oxidation states +IV and +VII are relevant. Because of the high solubility and low affinity to sorption on surfaces of minerals, Tc(VII) is considered to be very mobile and thus the most hazardous species. The focuses of this study therefore are diffusion experiments with this mobile species and investigations of the effect of ferrous iron on the mobility and speciation of technetium.rnThe interaction of technetium and Opalinus Clay was studied in sorption and diffusion experiments varying several parameters (pH value, addition of reducing agents, effect of oxygen, diffusion pathways). In the course of this study spatially resolved investigations of the speciation have been performed on Opalinus Clay thin sections and bore cores for the first time. In addition to the speciation, further information regarding elemental distributions and crystalline phases near technetium enrichments were obtained. Supplementary investigations of powder samples allowed determining the molecular structure of technetium on the clay surface.rnBoth the combination of sorption experiments with spectroscopic investigations and the diffusion experiment exhibit a reduction of Tc

  11. Water diffusion in clays with added organic surfactants

    International Nuclear Information System (INIS)

    Pineda-Pinon, J; Mendoza-Lopez, M L; Manzano-RamIrez, A; Perez-Robles, J F; Vega-Duran, J T

    2007-01-01

    Tensoactive agents may decrease water absorption in clay products like adobes. They modify the characteristics of the surface of clay particles. Characterization of water diffusion through the pores of modified clays is important to apply appropriate surface modifiers and to improve their performance. We established a simple model for water diffusion in test samples of defined dimensions to estimate real physical parameters and their effect on water absorption. Adsorption mechanisms are examined based on experimental results. The fitting of the experimental data to the model provides a deep understanding of water adsorption in chemically modified clays. A better agreement between the model and the experimental data is achieved for complex molecules

  12. Clay club catalogue of characteristics of argillaceous rocks

    International Nuclear Information System (INIS)

    2005-01-01

    The OECD/NEA Working Group on the Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations, namely the Clay Club, examines the various argillaceous rocks that are being considered for the deep geological disposal of radioactive waste, i.e. from plastic, soft, poorly indurated clays to brittle, hard mud-stones or shales. The Clay Club considered it necessary and timely to provide a catalogue to gather in a structured way the key geo-scientific characteristics of the various argillaceous formations that are - or were - studied in NEA member countries with regard to radioactive waste disposal. The present catalogue represents the outcomes of this Clay Club initiative. (author)

  13. p-Nitrophenol, phenol and aniline sorption by organo-clays

    International Nuclear Information System (INIS)

    Ko, C.H.; Fan Chihhao; Chiang, P.N.; Wang, M.K.; Lin, K.C.

    2007-01-01

    The aims of this study were to make use of organo-clays (i.e., Cloisite-10A, Cloisite-15A, Cloisite-30B and Cloisite-93A), to remove p-nitrophenol, phenol and aniline of organic pollutants. The organo-clays were characterized by X-ray diffraction (XRD). Sorption isotherm, kinetic and pH effect of p-nitrophenol, phenol and aniline sorbed by four organo-clays were evaluated. The d-spacings (0 0 1) of the XRD peak of Cloisite-10A, Cloisite-15A, Cloisite-30B and Cloisite-93A are 1.98, 2.76, 1.93 and 2.64 nm, respectively. The d(0 0 1)-spacings of XRD indicated that these p-nitropheno, phenol and aniline could penetrate into the interlayer of clays and expand the d(0 0 1)-spacings. The linear sorption isotherm of constant partition was employed to describe the sorption isotherms of phenols sorbed by organo-clays through hydrophobic-hydrophobic chemical reactions. The parabolic diffusion and power-function of kinetic models were employed to describe properly the kinetic experiments. The rate limiting step of the p-nitrophenol sorption reactions on organo-clays were diffusion-controlled processes (i.e., 15A, 30B, 93A) and chemical-controlled process for 10A organo-clays. The pre-exponential factor of the p-nitrophenol sorbed by four organo-clays showed the trend as follows: 10A > 30B > 93A > 15A. The efficiency of these organo-clays in removing phenol compounds in water treatments merit further study

  14. Removal of clay by stingless bees: load size and moisture selection

    Directory of Open Access Journals (Sweden)

    RAUL COSTA-PEREIRA

    2014-09-01

    Full Text Available Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.

  15. Quality evaluation of processed clay soil samples.

    Science.gov (United States)

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. "Small" market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed.

  16. Nafion–clay hybrids with a network structure

    KAUST Repository

    Burgaz, Engin; Lian, Huiqin; Alonso, Rafael Herrera; Estevez, Luis; Kelarakis, Antonios; Giannelis, Emmanuel P.

    2009-01-01

    Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.

  17. Nafion–clay hybrids with a network structure

    KAUST Repository

    Burgaz, Engin

    2009-05-01

    Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.

  18. Fluoride retention by kaolin clay

    DEFF Research Database (Denmark)

    Kau, P. M. H.; Smith, D. W.; Binning, Philip John

    1997-01-01

    To evaluate the potential effectiveness of kaolin clay liners in storage of fluoride contaminated waste, an experimental study of the sorption and desorption behaviour of fluoride in kaolin clay was conducted. The degree of fluoride sorption by kaolin was found to depend on solution p......H and available fluoride concentration with equilibrium being achieved within 24 h. A site activation process involving the uptake of fluoride was also observed at the initial stages of sorption. This behaviour was attributed to a layer expansion process of the clay during sorption. The maximum fluoride sorption...... capacity was found to be 18.3 meq/100 g at pH 6 and 8.6 meq/100 g at pH 7. A competitive Langmuir sorption isotherm where sorption is dependant on both pH and fluoride concentration is employed to characterise the experimental sorption and desorption data. The sorption and desorption isotherms revealed...

  19. Methyl methacrylate oligomerically-modified clay and its poly(methyl methacrylate) nanocomposites

    International Nuclear Information System (INIS)

    Zheng Xiaoxia; Jiang, David D.; Wilkie, Charles A.

    2005-01-01

    A methyl methacrylate oligomerically-modified clay was used to prepare poly(methyl methacrylate) clay nanocomposites by melt blending and the effect of the clay loading level on the modified clay and corresponding nanocomposite was studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed intercalated/delaminated morphology with good nanodispersion. The compatibility between the methylacrylate-subsituted clay and poly(methyl methacrylate) (PMMA) are greatly improved compared to other oligomerically-modified clays

  20. The Composition and Physical Properties of Some Clays of Cross ...

    African Journals Online (AJOL)

    ... and quartz as the main subsidiary non-clay mineral. The high plasticity index of the clays corresponds to the more transported clays of the tertiary- to –recent environment. The percentage of linear shrinkage varied from 11-16% with the lowest shrinkage (11%), having the coarsest features. Silica (SiO2) content of the clays ...

  1. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.

    Science.gov (United States)

    Mainil, Michaël; Alexandre, Michaël; Monteverde, Fabien; Dubois, Philippe

    2006-02-01

    High density polyethylene (HDPE)/clay nanocomposites have been prepared using three different functionalized polyethylene compatibilizers: an ethylene/vinyl acetate copolymer, a polyethylene grafted with maleic anhydride functions and a (styrene-b-ethylene/butylene-b-styrene) block copolymer. The nanocomposites were prepared via two different routes: (1) the dispersion in HDPE of a masterbatch prepared from the compatibilizer and the clay or (2) the direct melt blending of the three components. For each compatibilizer, essentially intercalated nanocomposites were formed as determined by X-ray diffraction and transmission electron microscopy. With the ethylene/vinyl acetate copolymer, a significant delamination of the intercalated clay in thin stacks was observed. This dispersion of thin intercalated stacks within the polymer matrix allowed increasing significantly the stiffness and the flame resistance of the nanocomposite. A positive effect of shear rate and blending time has also been put into evidence, especially for the process based on the masterbatch preparation, improving both the formation of thin stacks of intercalated clay and the mechanical properties and the flame resistance of the formed nanocomposites.

  2. Effects of clay-seam behavior on WIPP repository design

    International Nuclear Information System (INIS)

    Stone, C.M.; Krieg, R.D.; Branstetter, L.J.

    1981-07-01

    The geology at the southeastern New Mexico WIPP site consists of bedded layers of rock salt, anhydrite, polyhalite, mixtures of those materials, and thin clay seams. In spite of their very small (0.005 m to 0.05 m) thickness, clay seams are important to structural characterization of the WIPP stratigraphy since slip might possibly take place across them. Results of a study to determine the effects of clay seam frictional slip on the closure of a well-defined drift configuration are described. A Mohr-Coulomb dry friction model was used to model the active clay seams. The main thrust of the study was to determine the effects of friction coefficient variability on drift closure. Results show that the drift closure varies by a factor of 3.0 over the range of friction coefficients studied. The maximum slip observed along any clay seam was 0.12 m. For values of μ > .7, virtually no slip occurs along any clay seam

  3. Fixing of heavy metals by some inflated Tunisian clays

    International Nuclear Information System (INIS)

    Gharsalli, Jamel

    2009-01-01

    At the time of discharge of the water polluted in a natural environment and thanks to the properties of retention, adsorption and exchange of ions, clays constitute a natural barrier which will be able to limit the toxicity and the propagation of the pollutants. To contribute to the development of clays layers of Tunisia in the field of water treatments, we undertook with a mineralogical and physicochemical characterization of some inflating clays. The characteristics of these clays will be exploited for the study of the retention by adsorption of some heavy metals. The isotherms of adsorption, of heavy metals in aqueous solution by these natural clays before and after acid activation, are studied. The influence of several parameters on the fixing of heavy metals on clay such as the factors relating to the medium of adsorption (agitation, pH, time of contact, temperature. etc) and those relating to the adsorbent (mass, granulometry, impurities. etc) was studied in order to optimize the operating conditions of adsorptions.

  4. Characterization of organophilic attapulgite clay from state of Piaui

    International Nuclear Information System (INIS)

    Silva, L.C. dos Santos; Alves, T.S.; Barbosa, R.

    2011-01-01

    The attapulgite is mineral clay typically fibrous. It owns a superficial area around 125 to 210 m²/g, cationics transfer capacity from 20 to 30 mill equivalents per 100g of clay, high capacity of sorption, considerable decolourizer capacity, chemical inertia and maintenance of thixotropics properties in the presence of electrolytes. The objective of this work was to perform the chemical modification of attapulgite original from state of Piaui - Brazil, for applications in polymeric nanocomposites. The chemical composition of clay without modification was determined by X-Ray Diffraction. The natural clay and organophilizated one were characterized by X-Ray Diffraction (XRD), by Fourier Transform Infra-Red spectroscopy (FTIR), and Foster's swelling. The obtained results indicated the presence of characteristics groups of the salt in the clay, alteration in its chemical composition, evidencing that the chemical modification in the clay was efficient, could the same be applied in preparation of polymeric nanocomposites. (author)

  5. Clay facial masks: physicochemical stability at different storage temperatures.

    Science.gov (United States)

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  6. Clays in natural and engineered barriers for radioactive waste confinement

    International Nuclear Information System (INIS)

    2007-01-01

    The meeting covers all topics concerning natural argillaceous geological barriers and the clay material based engineered barrier systems, investigated by means of: laboratory experiments on clay samples (new analytical developments), in situ experiments in underground research laboratories, mock-up demonstrations, natural analogues, as well as numerical modelling and global integration approaches (including up-scaling processes and treatment of uncertainties). The works presented deal with: examples of broad research programs (national or international) on the role of natural and artificial clay barriers for radionuclide confinement; clay-based repository concepts: repository designs, including technological and safety issues related to the use of clay for nuclear waste confinement; geology and clay characterisation: mineralogy, sedimentology, paleo-environment, diagenesis, dating techniques, discontinuities in rock clay, fracturing, self sealing processes, role of organic matter and microbiological processes; geochemistry: pore water geochemistry, clay thermodynamics, chemical retention, geochemical modelling, advanced isotopic geochemistry; mass transfer: water status and hydraulic properties in low permeability media, pore space geometry, water, solute and gas transfer processes, colloid mediated transport, large scale movements, long-term diffusion; alteration processes: oxidation effects, hydration-dehydration processes, response to thermal stress, iron-clay interactions, alkaline perturbation; geomechanics: thermo-hydro-mechanical behaviour of clay, rheological models, EDZ characterisation and evolution, coupled behaviour and models (HM, THM, THMC). A particular interest is given to potential contributions coming from fields of activities other than radioactive waste management, which take advantage of the confinement properties of the clay barrier (oil and gas industries, gas geological storage, CO 2 geological sequestration, chemical waste isolation

  7. Clays in natural and engineered barriers for radioactive waste confinement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The meeting covers all topics concerning natural argillaceous geological barriers and the clay material based engineered barrier systems, investigated by means of: laboratory experiments on clay samples (new analytical developments), in situ experiments in underground research laboratories, mock-up demonstrations, natural analogues, as well as numerical modelling and global integration approaches (including up-scaling processes and treatment of uncertainties). The works presented deal with: examples of broad research programs (national or international) on the role of natural and artificial clay barriers for radionuclide confinement; clay-based repository concepts: repository designs, including technological and safety issues related to the use of clay for nuclear waste confinement; geology and clay characterisation: mineralogy, sedimentology, paleo-environment, diagenesis, dating techniques, discontinuities in rock clay, fracturing, self sealing processes, role of organic matter and microbiological processes; geochemistry: pore water geochemistry, clay thermodynamics, chemical retention, geochemical modelling, advanced isotopic geochemistry; mass transfer: water status and hydraulic properties in low permeability media, pore space geometry, water, solute and gas transfer processes, colloid mediated transport, large scale movements, long-term diffusion; alteration processes: oxidation effects, hydration-dehydration processes, response to thermal stress, iron-clay interactions, alkaline perturbation; geomechanics: thermo-hydro-mechanical behaviour of clay, rheological models, EDZ characterisation and evolution, coupled behaviour and models (HM, THM, THMC). A particular interest is given to potential contributions coming from fields of activities other than radioactive waste management, which take advantage of the confinement properties of the clay barrier (oil and gas industries, gas geological storage, CO{sub 2} geological sequestration, chemical waste isolation

  8. Mineralogy of subducted clay and clay restite in the lower mantle

    Science.gov (United States)

    Armstrong, L.; Skora, S. E.; Walter, M. J.

    2012-12-01

    Seismic tomography indicates that subducting oceanic lithosphere often penetrates the transition zone and eventually the lower mantle [e.g. 1, 2]. While mineralogical changes in the mafic and ultramafic portions of slabs have been well documented experimentally, the phase relations of overlying sediments at pressures above 25 GPa remain poorly studied. This is in part because sediments are expected to partially melt at sub-arc depth (P~2.5-4.5 GPa), and contribute to the genesis of arc magmas. Sediment restites left behind after the extraction of low pressure melts undergo major chemical changes, according to the melting reaction: Coe+Phen+Cpx+H2O = Grt+Ky+Melt [3]. However, sediments may not always melt depending on the thermal regime and volatile availability and composition [3]. Hence, chemically unmodified sediments as well as restites may be entrained to greater depths and contribute to compositional heterogeneity in the deep mantle. Indeed, mineral inclusions with compositions indicative of subducted sedimentary protoliths (CAS-phase; K-hollandite; stishovite) have been reported in 'ultradeep' diamonds and suggest that deep subduction and survival of sediments occurs to at least transition zone depths [4]. With this in mind, we have performed laser heated diamond anvil cell experiments at pressures of 8-80 GPa on two anhydrous glass starting materials: a marine clay and the restite that is left after 50% melt extraction of this clay at 3 GPa and 800 °C [3]. We chose to work with an anhydrous version of the marine clay given that the investigated pressure range exceeds that of phengite stability [5], and phengite is the only hydrous phase in subducted sediments at UHP conditions. The clay was heated along a P-T path representative of a cold subduction geotherm, whereas the clay restite was heated along a hotter subduction geotherm consistent with low pressure melting. Phases were identified by synchrotron X-ray micro-diffraction at beamline I15 of the Diamond

  9. Homogeneity vs. Heterogeneity of Porosity in Boom Clay

    International Nuclear Information System (INIS)

    Hemes, Susanne; Desbois, Guillaume; Urai, Janos L.; De Craen, Mieke; Honty, Miroslav

    2013-01-01

    Microstructural investigations on Boom Clay at nano- to micrometer scale, using BIB-SEM methods, result in porosity characterization for different mineral phases from direct observations on high resolution SE2-images of representative elementary areas (REAs). High quality, polished surfaces of cross-sections of ∼ 1 mm 2 size were produced on three different samples from the Mol-Dessel research site (Belgium). More than 33,000 pores were detected, manually segmented and analyzed with regard to their size, shape and orientation. Two main pore classes were defined: Small pores (< 500 nm (ED)) within the clay matrices of samples and =big' pores (> 500 nm (ED)) at the interfaces between clay and non-clay mineral (NCM) grains. Samples investigated show similar porosities regarding the first pore-class, but differences occur at the interfaces between clay matrix and NCM grains. These differences were interpreted to be due to differences in quantitative mineralogy (amount of non-clay mineral grains) and grain-size distributions between samples investigated. Visible porosities were measured as 15 to 17 % for samples investigated. Pore-size distributions of pores in clay are similar for all samples, showing log-normal distributions with peaks around 60 nm (ED) and more than 95 % of the pores being smaller than 500 nm (ED). Fitting pore-size distributions using power-laws with exponents between 1.56 and 1.7, assuming self-similarity of the pore space, thus pores smaller than the pore detection resolution following the same power-laws and using these power-laws for extrapolation of pore-size distributions below the limit of pore detection resolution, results in total estimated porosities between 20 and 30 %. These results are in good agreement with data known from Mercury Porosimetry investigations (35-40 % porosity) and water content porosity measurements (∼ 36 %) performed on Boom Clay. (authors)

  10. Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys.

    Science.gov (United States)

    Abdullayev, Elshad; Abbasov, Vagif; Tursunbayeva, Asel; Portnov, Vasiliy; Ibrahimov, Hikmat; Mukhtarova, Gulbaniz; Lvov, Yuri

    2013-05-22

    Halloysite clay nanotubes loaded with corrosion inhibitors benzotriazole (BTA), 2-mercaptobenzimidazole (MBI), and 2-mercaptobenzothiazole (MBT) were used as additives in self-healing composite paint coating of copper. These inhibitors form protective films on the metal surface and mitigate corrosion. Mechanisms involved in the film formation have been studied with optical and electron microscopy, UV-vis spectrometry, and adhesivity tests. Efficiency of the halloysite lumen loading ascended in the order of BTA halloysite formulations have shown the best protection. Inhibitors were kept in the tubes buried in polymeric paint layer for a long time and release was enhanced in the coating defects exposed to humid media with 20-50 h, sufficient for formation of protective layer. Anticorrosive performance of the halloysite-based composite acrylic and polyurethane coatings have been demonstrated for 110-copper alloy strips exposed to 0.5 M aqueous NaCl for 6 months.

  11. Clay mineral type effect on bacterial enteropathogen survival in soil.

    Science.gov (United States)

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  12. Characterization of groundwater dynamics in landslides in varved clays

    NARCIS (Netherlands)

    Van der Spek, J.E.; Bogaard, T.A.; Bakker, M.

    2013-01-01

    Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trieves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and

  13. Do scaly clays control seismicity on faulted shale rocks?

    Science.gov (United States)

    Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie

    2018-04-01

    One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.

  14. Hydroxyapatite clay for gap filling and adequate bone ingrowth.

    Science.gov (United States)

    Maruyama, M; Terayama, K; Ito, M; Takei, T; Kitagawa, E

    1995-03-01

    In uncemented total hip arthroplasty, a complete filling of the gap between femoral prosthesis and the host bone is difficult and defects would remain, because the anatomy of the reamed intramedullary canal cannot fit the prosthesis. Therefore, it seems practical to fill the gap with a clay containing hydroxyapatite (HA), which has an osteoconductive character. The clay (HA clay) is made by mixing HA granules (size 0.1 mm or more) having a homogeneous pore distribution and a porosity of 35-48 vol%, and a viscous substance such as a saline solution of sodium alginate (SSSA). In the first experiment, the ratio of HA granules and sodium alginate in SSSA is set for the same handling properties of HA clay and polymethylmethacrylate bone cement (standard viscosity) before hardening. As a result, the ratio is set for 55 wt% of HA in the clay and 12.5 wt% of sodium alginate in SSSA (i.e., HA:sodium alginate:saline solution = 9.8:1:7). In the second study, the gap between the femoral stem and bone model is completely filled with HA clay. However, the gap is not filled only with HA granules or HA granules mixed with saline solution. In the third animal experiment, using an unloaded model, histology shows that HA clay has an osteoconductive property bridging the gap between the implant and the cortical bone without any adverse reaction. HA clay is considered a useful biomaterial to fill the gap with adequate bone ingrowth.

  15. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    Science.gov (United States)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  16. Durability of fired clay bricks containing granite powder

    Directory of Open Access Journals (Sweden)

    Xavier, G. C.

    2012-06-01

    Full Text Available Over the past few decades, hundreds of papers have been published on the benefits of including rock powder as a raw material in fired clay brick manufacture. Very little has been written, however, about the durability and long-term behaviour of the final product. As a rule, the ceramic bricks used in construction in developing countries are fired at low temperatures, which detracts from their mechanical performance. This is particularly visible in harsh environmental conditions, where weathering causes severe deterioration. The present paper describes the impact of weathering on clay bricks containing from 0 to 10% granite powder, an industrial by-product. The specimens were fired at 500, 700 or 900 ºC and subsequently exposed to natural environmental conditions or accelerated laboratory weathering. Their physical and mechanical properties were evaluated to determine the effect of the composition of raw materials on fired clay product durability.

    En las últimas décadas se han publicado cientos de artículos sobre las ventajas de incluir polvo de roca como materia prima en la fabricación de los ladrillos cerámicos. Sin embargo, la durabilidad y el comportamiento a largo plazo del producto final han sido objeto de pocas investigaciones. Por lo general, los ladrillos cerámicos empleados en la construcción en los países en vías de desarrollo se cuecen a temperaturas bajas, lo que impide el desarrollo de sus propiedades mecánicas. Esto queda especialmente patente cuando las condiciones ambientales son severas, en cuyo caso la meteorización puede provocar un deterioro importante. En este artículo se describe el efecto de la meteorización en ladrillos cerámicos que incorporaban entre un 0 y un 10% de polvo de granito, que es un derivado industrial. Las probetas se cocieron a 500, 700 o 900 °C y luego se sometieron a condiciones ambientales naturales o a un proceso de laboratorio de meteorización acelerada. Se evaluaron sus

  17. Incorporation of nano-clay saponite layers in the organo-clay hybrid films using anionic amphiphile stearic acid by Langmuir–Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Syed Arshad, E-mail: sa_h153@hotmail.com [Department of Physics, Tripura University, Suryamaninagar-799022 (India); Chakraborty, S.; Bhattacharjee, D. [Department of Physics, Tripura University, Suryamaninagar-799022 (India); Schoonheydt, R.A. [Centres for Surface Chemistry and Catalysis, K.U. Leuven, Kasteelpark Arenberg 23, 3001 Leuven (Belgium)

    2013-06-01

    In general cationic amphiphiles are used to prepare organo-clay hybrid film in Langmuir–Blodgett (LB) technique. In this present communication we demonstrated a unique technique to prepare the organo–clay hybrid films using an anionic amphiphile. The T–O–T type clay saponite was incorporated onto a floating stearic acid monolayer via a divalent cation Mg{sup 2+}. Salt MgCl{sub 2} was mixed along with the clay dispersion in the LB trough and amphiphile solution was spread onto the subphase in order to make the organo-clay hybrid films. It was observed that salt (MgCl{sub 2}) concentration on the subphase affects the organization of nano-dimensional clay platelet (saponite) in organo-clay hybrid films at air–water interface as well as in LB films. Noticeable changes in area per molecule and shape of the isotherms were observed and measured at subphases with different salt concentrations. Infrared reflection absorption spectroscopy studies reveal that only an in-plane (996 cm{sup −1}) vibration of ν (Si-O) band occurred when the salt concentration was 10 mM. However, both in-plane (996 cm{sup −1}) and out-of-plane (1063 cm{sup −1}) vibrations of the ν (Si-O) band of saponite occurred when the subphase salt concentration was 100 mM. Also the out-of-plane vibration of ν (OH) of saponite was prominent at higher salt concentration. This is because at lower salt concentration clay sheets remain flat on the surface whereas; at higher MgCl{sub 2} concentration they aggregated and form stacks of saponite layers. Also they may be slightly tilted with a very small tilt angle at higher salt concentration making a favorable condition for both in-plane and out-of-plane vibrations of ν (Si-O) in the hybrid films. Observed decrease in starting area per molecule in the pressure area isotherm measured at higher salt concentration also supports the tilting of clay layers at air–clay dispersion interface. Attentuated total reflectance Fourier transform infrared

  18. [Mechanism of tritium persistence in porous media like clay minerals].

    Science.gov (United States)

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  19. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange ...

  20. Clay as Thermoluminescence Dosemeter in diagnostic Radiology ...

    African Journals Online (AJOL)

    This paper reports the investigation of the basic thermoluminescence properties of clay at x-rays in the diagnostic radiology range, including dose monitoring in abdominal radiography. Clay sourced from Calabar, Nigeria, was tested for thermoluminescence response after irradiation at diagnostic radiology doses, including ...

  1. Characterization of groundwater dynamics in landslides in varved clays

    NARCIS (Netherlands)

    Van der Spek, J.E.; Bogaard, T.A.; Bakker, M.

    2013-01-01

    Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trièves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and

  2. Performance Study of the Natural Rubber Composite with Clay Minerals

    International Nuclear Information System (INIS)

    Nyo Nyo Myint; Tin Tin Aye; Kyaw Myo Naing; Nyunt Wynn

    2008-03-01

    The preparation, characterization and some applications of natural rubber clay composite have been studied. This study investigated the possibility of natural rubber latex to replace some part of natural clays. In formulation of rubber clay composite from natural rubber latex and various clay minerals, three main steps were involved (i) preparation of latex cream (ii) prevulcanization of latex cream (iii) mixing vulcanized latex compound, with other ingredients. In each step, several parameters have been carefully investigated to optimize the performance of natural rubber clay composite production. The composite products were of better quality and can be considered to be more cost effective.

  3. Organo-clay/anthracite filtration for oil removal

    International Nuclear Information System (INIS)

    Moazed, H.; Viragahavan, T.

    1999-01-01

    An advantage of organo-clay compared to other sorbents is that it can selectively remove organic pollutants from contaminated waters. An investigation was conducted to determine the potential of an organo-clay/anthracite mixture as a filter media for the removal of oil from synthetic and real oily waters. Also included in the study were column filtration studies using synthetic and real waste waters to determine the sorptive capacity of the material. In general, oil removal efficiencies in a 300 mm organo-clay/anthracite bed decreased with an increase in flow rates. Results of eight hour studies indicated that the depth of an organo-clay/anthracite bed has a direct effect on oil removal efficiency. The Thomas equation provides a reasonable fit of the data based on breakthrough studies. The model can be used to determine the parameters needed to design full-scale filtration columns. The uptake of oil by an organo-clay/anthracite mixture is well described by an equation including time such as the Weber or Moris model. The maximum solid-phase concentration of the solute values obtained from the Thomas equation were comparable to the values found by a mass balance approach. 12 refs., 8 figs., 4 tabs

  4. Radionuclide sorption studies on abyssal red clays

    International Nuclear Information System (INIS)

    Erickson, K.L.

    1979-01-01

    The radionuclide sorption properties of a widely distributed abyssal red clay are being experimentally investigated using batch equilibration techniques. This paper summarizes sorption equilibrium data obtained when 0.68 N NaCl solutions containing either Tc, U, Pu, Am or Cm were contacted with samples of the red clay and also summarizes some initial results from experiments designed to determine the relative selectivity of the clay for various nuclides. Under mildly oxidizing conditions, the sorption equilibrium distribution coefficients for technetium were essentially zero. At solution-phase nuclide concentrations on the order of 10 -6 M and less and at solution pH values of about 6.9, the distribution coefficients for plutonium were about 3 x 10 3 m1/gm and for uranium, americium, and curium were about 10 5 ml/gm or greater. However, at solution pH values of about 2.7, the distribution coefficients for each of the nuclides were greatly diminished. Initial experiments conducted in order to determine the relative selectivity of the clay for cesium, barium, and cerium, indicated that the silicate phases in the clay were selective for cesium over barium and cerium. These experiments also indicated that the hydrous oxide phases were selective for cerium over barium and for barium over cesium

  5. Permeability response of oil-contaminated compacted clays

    International Nuclear Information System (INIS)

    Silvestri, V.; Mikhail, N.; Soulie, M.

    1997-01-01

    This paper presents the results of a laboratory investigation on the behavior of motor oil-contaminated, partially saturated compacted clays. For the study, both a natural clay and an artificially purified kaolinite, contaminated with 0 to 8% of motor oil, were firstly compacted following the ASTM standard procedure. Secondly, permeability tests were carried out in a triaxial cell on 10 cm-diameter compacted clay specimens. The results of the investigation indicate that increasing percentages of motor oil decrease both the optimum water content and the optimum dry density of the two clays. However, whereas the optimum water content on the average decreases by about 6% when the percentage contamination increases from 0 to 8%, the corresponding decrease in the optimum dry density is less than 3%. Even though the optimum dry density decreases as the percentage of oil increases from 0 to 8%, there is, however, a range in oil content varying between 2 and 4% for which the optimum dry density is slightly greater than that of the untreated soils. As far as the permeability tests are concerned, the results indicate that as the percentage of oil increases, the coefficient of permeability decreases substantially, especially for clay specimens which were initially compacted on the dry side of optimum

  6. Verification of substitution of bentonites by montmorillonitic clays summary report on Czech montmorillonitic clays

    International Nuclear Information System (INIS)

    Carlson, L.; Keto, P.

    2006-10-01

    Czech bentonites and smectite-rich clays were characterised in order to study if they could be used as buffer and backfill materials instead of non-Czech commercial bentonites. The characterisation work was orgnized by RAWRA (the Czech Radioactive Waste Repository Authority) and the main part of the work was performed in the Czech Republic at Charles University and at Czech Technical University. Parallel and complementary characterisation was conducted in Finland in Sweden. This report was compiled with the aim to summarise the results, and to compare the methods and results gained in different testing laboratories. The characterisation included mineralogical, chemical and geotechnical investigations and experiments on thermal stability and sorption. There were some variations between the results gained in different laboratories. This was mainly due to differences between the testing methods used but also due to heterogeneity of the samples. The Czech bentonite-clays from Rokle and Strance clay deposits contained relatively high amount of swelling minerals and thus can be considered as potential buffer and backfill materials. (orig.)

  7. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    Science.gov (United States)

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  8. Effect of red clay on diesel bioremediation and soil bacterial community.

    Science.gov (United States)

    Jung, Jaejoon; Choi, Sungjong; Hong, Hyerim; Sung, Jung-Suk; Park, Woojun

    2014-08-01

    Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.

  9. STUDY OF THERMAL AND ACID STABILITY OF BENTONITE CLAY

    Directory of Open Access Journals (Sweden)

    Karna Wijaya

    2010-06-01

    Full Text Available The thermal and acid stability of the bentonite clays (Na- and Ca-bentonite have been tested. The thermal stability testing has been carried out by heating 5 gram of the clays  for five hours at 200, 300 and 500 °C respectively, meanwhile acid stability testing was performed by immersing 5 gram clays into 100 mL sulphuric acid 1M, 2M and 3M for 24 hours. The tested clays, then were characterized by means of X-Ray difractometry and IR-spectroscopy methods. The characterization results showed that upon heating, both Ca- and Na-bentonites indicated same thermal stability. However, upon acid treatment, Na-bentonite was found relatively stabiler and more resistance then Ca-bentonite.   Keywords: bentonite, clay, thermal stability, acid stability.

  10. Structural characterization of clays commercially used in red ceramics

    International Nuclear Information System (INIS)

    Brito, E.M.; Moura, J.K.L.; Souza, R.B.; Brandim, A.S.

    2014-01-01

    The use of clays hills being an alternative to clay floodplain, due to environmental protection laws. The research project aims at the morphological and chemical characterization of hills clays used industrially for the production of ceramic tiles and blocks. Therefore, two types of methods were known commercially in the region of Teresina-PI through diffraction of X-rays (X-DR), scanning electron microscopy (SEM) and energy dispersive spectrometry X-ray (EDS). It can be observed that the samples have a high percentage of quartz, hematite still having in its constitution aluminum oxide, zirconium oxide and titanium oxide. The results show that the clays are clays and montmorillonites may be used for the production of ceramic tiles and blocks, but as the proportion of using the same will be focusing the next job. (author)

  11. The molecular aggregation of pyronin Y in natural bentonite clay suspension

    International Nuclear Information System (INIS)

    Meral, Kadem; Yilmaz, Nuray; Kaya, Mehmet; Tabak, Ahmet; Onganer, Yavuz

    2011-01-01

    The molecular aggregation and spectroscopic properties of Pyronin Y (PyY) in the suspension containing natural bentonite clay were studied using molecular absorption, steady-state and time-resolved fluorescence spectroscopy techniques. Interaction between the clay particles and the cationic dye compounds in aqueous solution resulted in significant changes in spectral properties of PyY compared to its molecular behavior in deionized water at the same concentration. These changes were due to the formation of dimer and aggregate of PyY in the clay suspension as well as the presence of the dye monomer. The H-type aggregates of PyY in the clay suspension were identified by the observation of a blue-shifted absorption band of the dye compared to that of its monomer. In spite of diluted dye concentrations, the H-aggregate of PyY in the clay suspension was formed. The intensive aggregation in the clay suspension attributed to the localized high dye concentration on the negatively charged clay surfaces. Adsorption sites of PyY on the clay particles were discussed by deconvulated absorption and excitation spectra. Fluorescence spectroscopy studies revealed that the fluorescence intensity of PyY in the clay suspension is decreased by H-aggregates drastically. Moreover, the presence of H-aggregates in the clay suspension resulted in the decrease of fluorescence lifetime and quantum yield of PyY compared to those in deionized water. - Highlights: → Molecular behavior of PyY adsorbed on clay surface was followed spectroscopically. → H-aggregates of PyY in the clay suspension were formed at very low dye concentrations. → The intensive H-aggregate structure drastically reduced the fluorescence intensity of PyY. → The fluorescence lifetime and quantum yield of PyY in the clay suspension was discussed.

  12. Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres.

    Science.gov (United States)

    Frindy, Sana; Primo, Ana; Qaiss, Abou El Kacem; Bouhfid, Rachid; Lahcini, Mohamed; Garcia, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim

    2016-08-01

    Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CSclay microstructure, an improvement in the mechanical properties of the chitosan-clay films has been substantiated with CS-SP reaching the highest value at 5% clay loading. While clay addition provides a way to resist the shrinkage occurring for native chitosan, the enhanced hydrophilicity associated to the water content affects the efficacy of the CO2 super-critical drying as the most hydrophilic CS-SP microspheres face the highest shrinkage, resulting in a lowest specific surface area compared to CS-HNT and CS-MMT. Chitosan-clay exhibits enhanced thermal properties with the degradation delayed in the order CSclay compared to native chitosan, evidencing the beneficial protective effect of the clay particulates for the biopolymer. However, under hydrothermal treatment, the presence of clay was found to be detrimental to the material stability as a significant shrinkage occurs in hybrid CS-clay microspheres, which is attributed again to their increased hydrophilicity compared to the native polymeric microspheres. In this framework, a peculiar behavior was observed for CS-MMT, with the microspheres standing both against contraction during CO2 gel drying and under hydrothermal conditions. The knowledge gained from this rational design will constitute a guideline toward the preparation of ultra-stable, practically-optimized food-packaging films and commercially scalable porous bio-based adsorbents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Thermo Gravimetric and Differential Thermal Analysis of Clay of Western Rajasthan (india)

    Science.gov (United States)

    Shekhawat, M. S.

    The paper presents the study of thermo gravimetric and differential thermal analysis of blended clay. Western part of Rajasthan (India) is rich resource of Ball clays and it is mainly used by porcelain, sanitary ware, and tile industry. The quality and grade of clay available in the region vary from one deposit to other. To upgrade the fired colour and strength properties, different variety of clays may be blended together. The paper compares the results of thermal analysis one of blended clay B2 with reference clay of Ukraine which is imported by industries owners. The result revealed that the blended clay is having mineral kaolinite while the Ukrainian clay is Halloysite.

  14. Production of smectite organophylic clays from three commercial sodium bentonite

    International Nuclear Information System (INIS)

    Valenzuela Diaz, Francisco R.; Souza Santos, Persio de

    1995-01-01

    Laboratory cationic exchange procedures using Brazilian's commercial quaternary ammonium salt and three samples of commercial sodium bentonites (two Brazilian's and one from Wyoming (US) are described. Swelling values in some liquid organic media are shown for the organophilic clays and for a Brazilian's commercial organophilic clay. Organophilic clays with larger swelling values than the commercial organophilic clay in kerosene, Varsol, toluene and soya bean oil were obtained. (author)

  15. Laboratory study of the Flandres clay swelling

    International Nuclear Information System (INIS)

    Khaddaj, Said

    1992-01-01

    The first chapter contains a survey about the swelling of soils, and about the experimental methods used to characterize this phenomenon. A classification of soils in function of their swelling potential is proposed. The second chapter deals with the properties of Flandres clay. Chemical and mineralogical compositions, mechanical properties and free swell index are given. The third chapter contains a presentation of the study of the swelling potential of Flandres clay using the oedometer. Four methods are described and used (free-swell, different pressures, pre-swell and direct-swell). A numerical simulation of free-swell tests is also given. The fourth chapter includes a presentation of the study of the swelling behaviour of Flandres clay using a triaxial cell. Three methods are used: free-swell, pre-swell and different-pressures. The last chapter contains a parametric study of the swelling behaviour of Flandres clay. The influence of some parameters such as sample thickness, initial water content, vertical load and load history is presented. (author) [fr

  16. Geochemical effects of electro-osmosis in clays

    KAUST Repository

    Loch, J. P. Gustav

    2010-02-13

    Geochemical effects of electro-osmosis in bentonite clay are studied in the laboratory, where a 6 mm thick bentonite layer is subjected to direct current. Acidification and alkalization near anode and cathode are expected, possibly causing mineral deterioration, ion mobilization and precipitation of new solids. Afterwards the clay is analysed by XRF and anolyte and catholyte are analysed by ICP-MS. In addition, as a preliminary experiment treated bentonite is analysed by high resolution μ-XRF. Electro-osmotic flow is observed. Due to its carbonate content the bentonite is pH-buffering. Alkalization in the catholyte is substantial. Ca, Na and Sr are significantly removed from the clay and accumulate in the catholyte. Recovery in the catholyte accounts for a small fraction of the element-loss from the clay. The rest will have precipitated in undetected solid phases. μ-XRF indicates the loss of Ca-content throughout the bentonite layer. © The Author(s) 2010.

  17. Clay-cement suspensions - rheological and functional properties

    Science.gov (United States)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  18. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Jiang-Jen Lin

    2010-04-01

    Full Text Available Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropyleneamine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE, enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  19. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Science.gov (United States)

    Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen

    2010-01-01

    Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  20. Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.

    Science.gov (United States)

    Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-07-23

    Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills.

  1. Toxic element composition of multani mitti clay for nutritional safety

    International Nuclear Information System (INIS)

    Waheed, S.; Faiz, Y.; Rahman, S.; Siddique, N.

    2013-01-01

    Geophagy of multani mitti (MM) clay is very common in central Pakistan especially amongst women. It was therefore mandatory to establish baseline levels of toxic elements in this clay for its safe dietary consumption by consumers of different genders, age groups and physical states. Instrumental neutron activation analysis and atomic absorption spectrometry techniques were used to determine the nutritional safety of MM clay for oral intake. All quantified toxic elements were detected at trace levels with composition in the descending order; Pb > Br > As > Sb > Hg > Cd. Comparison of these elements in MM clay with other clays shows that As, Cd, and Pb, are lowest in MM clay while its Br and Hg contents are high. Highest weekly dietary intakes of As, Br, Cd, Hg, and Sb were found to be 18, 0.05, 1.6, 9.2 and 1.1 % of the respective recommended provisional tolerable weekly intakes. The findings of this study show that As, Br, Cd, Hg and Sb in MM clay are well below the tolerance levels. However its Pb concentration is very high and may pose health concerns. The data presented in this study can be used as national base level guideline for geophagy of MM clay by men, women (normal, pregnant and lactating) and children. (author)

  2. Sugar-influenced water diffusion, interaction, and retention in clay interlayer nanopores probed by theoretical simulations and experimental spectroscopies

    Science.gov (United States)

    Aristilde, Ludmilla; Galdi, Stephen M.; Kelch, Sabrina E.; Aoki, Thalia G.

    2017-08-01

    Understanding the hydrodynamics in clay nanopores is important for gaining insights into the trapping of water, nutrients, and contaminants in natural and engineered soils. Previous investigations have focused on the interlayer organization and molecular diffusion coefficients (D) of cations and water molecules in cation-saturated interlayer nanopores of smectite clays. Little is known, however, about how these interlayer dynamic properties are influenced by the ubiquitous presence of small organic compounds such as sugars in the soil environment. Here we probed the effects of glucose molecules on montmorillonite interlayer properties. Molecular dynamics simulations revealed re-structuring of the interlayer organization of the adsorptive species. Water-water interactions were disrupted by glucose-water H-bonding interactions. ;Dehydration; of the glucose-populated nanopore led to depletion in the Na solvation shell, which resulted in the accumulation of both Na ions (as inner-sphere complexes) and remaining hydrated water molecules at the mineral surface. This accumulation led to a decrease in both DNa and Dwater. In addition, the reduction in Dglucose as a function of increasing glucose content can be explained by the aggregation of glucose molecules into organic clusters H-bonded to the mineral surface on both walls of the nanopore. Experimental nuclear magnetic resonance and X-ray diffraction data were consistent with the theoretical predictions. Compared to clay interlayers devoid of glucose, increased intensities and new peaks in the 23Na nuclear magnetic resonance spectra confirmed increasing immobilization of Na as a function of increasing glucose content. And, the X-ray diffraction data indicated a reduced collapse of glucose-populated interlayers exposed to decreasing moisture conditions, which led to the maintenance of hydrated clay nanopores. The coupling of theoretical and experimental findings sheds light on the molecular to nanoscale mechanisms that

  3. Stochastic Dynamics of Clay Translocation and Formation of Argillic Horizons

    Science.gov (United States)

    Calabrese, S.; Richter, D. D., Jr.; Porporato, A. M.

    2017-12-01

    The formation of argillic horizons in vertical soil profiles is mainly attributed to lessivage, namely the transport of clay from an upper E horizon to a deeper illuviated horizon. Because of the long timescales involved in this phenomenon, quantitative modeling is useful to explore the role of clay lessivage on soil formation and sub-surface clay accumulation. The limitations of detailed models of colloidal transport to short timescales make it necessary to resort to simple models. Here, we present a parsimonious model of clay transport in which lessivage is interpreted stochastically. Clay particles approach the soil surface at a speed equal to the erosion rate and are intermittently transported to deeper soil layers when percolation events occur or removed by erosion. Along with the evolution of clay particles trajectories, the model predicts the vertical clay profile, the depth of the B horizon, and the mean time to erosion. Dimensional analysis reveals the two dimensionless parameters governing the dynamics, leading to a new classification of soil types based on erosion rates and intensity of lessivage.

  4. Quick clay and landslides of clayey soils

    NARCIS (Netherlands)

    Khaldoun, A.; Moller, P.; Fall, A.; Wegdam, G.; de Leeuw, B.; Méheust, Y.; Fossum, J.O.; Bonn, D.

    2009-01-01

    We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay

  5. Studies on thermal reactions and sintering behaviour of red clays by irreversible dilatometry

    Science.gov (United States)

    Anil, Asha; Misra, S. N.; Misra, N. M.

    2018-05-01

    Thermal behavior of clays strongly influences that of ceramic bodies made thereof and hence, its study is must for assessing its utility in ceramic products as well as to set the body composition. Irreversible dilatometry is an effective thermal analysis tool for evaluating thermal reactions as well as sintering behavior of clays or clay based ceramic bodies. In this study, irreversible dilatometry of four red clay samples (S, M, R and G) of Gujarat region, which vary in their chemical and mineralogical compositions was carried out using a Dilatometer and compared. Chemical analysis and XRD of red clays were carried out. XRD showed that major clay minerals in S, M and R clays are kaolinite. However, clay marked R and G showed presence of both kaolinite and illite and /muscovite. Presence of non-clay minerals such as hematite, quartz, anatase were also observed in all clays. XRD results were in agreement with chemical analyses results. Rational analyses showed variation in amount of clay and non-clay minerals in red clay samples. Evaluation of dilatometric curves showed that clay marked as S, M and R exhibit patterns typical for kaolinitic clays. Variation in linear expansion (up to 550°C) and shrinkage (above 550°C) between these three clays was found to be related to difference in amount of quartz and kaolinite respectively. However, dilatometric curve of G exhibit a pattern similar to that for an illitic clay. This study confirmed that sintering of investigated kaolinitic and illitic and / muscovitic red clays initiates at above 1060°C and 860°C respectively and this behaviour strongly depends upon type and amount of minerals and their chemical compositions.

  6. Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.

    Science.gov (United States)

    Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin

    2003-10-15

    Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.

  7. Long-term performance of geosynthetic clay liners in cappings

    International Nuclear Information System (INIS)

    Maubeuge, K.P. von; Fricke, A.

    1998-01-01

    Geosynthetic clay liners (GCLs) are relatively thin composite materials combining bentonite clay and geosynthesis (usually geotextiles). GCLs have been employed by the waste industry for well over a decade now, and their level of usage is rapidly increasing world-wide. In landfill facilities, GCLs are generally used to replace or augment compacted clay liners. Until recently, the decision to do so has primarily been based on the availability of clay material on site (i.e., economic considerations). However, the advantages in using a GCL over other sealing elements such as compacted clay are not only economic but technically based, and the economic benefits extend beyond the construction phase, as a thin GCL can increase the revenue earning potential of a facility. This paper will highlight the shear behaviour of GCLs and demonstrate the long-term stability. (orig.)

  8. Mud peeling and horizontal crack formation in drying clays

    KAUST Repository

    Style, Robert W.

    2011-03-01

    Mud peeling is a common phenomenon whereby horizontal cracks propagate parallel to the surface of a drying clay. Differential stresses then cause the layer of clay above the crack to curl up to form a mud peel. By treating the clay as a poroelastic solid, we analyze the peeling phenomenon and show that it is caused by the gradient in tensile stress at the surface of the clay, analogously to the spalling of thermoelastic materials. For a constant water evaporation rate at the clay surface we derive equations for the depth of peeling and the time of peeling as functions of the evaporation rate. Our model predicts a simple relationship between the radius of curvature of a mud peel and the depth of peeling. The model predictions are in agreement with the available experimental data. Copyright 2011 by the American Geophysical Union.

  9. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace

    Science.gov (United States)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.

  10. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    Science.gov (United States)

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.

  11. Simulation of the long term alteration of clay minerals in engineered bentonite barriers: nucleation and growth of secondary clay particles

    International Nuclear Information System (INIS)

    Fritz, B.; Clement, A.; Zwingmann, H.; Noguera, C.

    2010-01-01

    Document available in extended abstract form only. The long term stability of clay rich rocks used as barriers to the migration of radionuclides in the environment of nuclear wastes has been intensively studied, looking at the geochemical interactions between clay minerals and aqueous solutions. These studies combine experimental approaches for the short term and numerical modellings for the long term extrapolations, in the frame of the research supported by ANDRA in the French design for High Level Waste (HLW) repository. The main objective of the geochemical numerical tools devoted to clay-solutions interaction processes was to predict the feed-back effects of mineralogical and chemical transformations of clay mineral, in repository conditions as defined by Andra, on their physical and transport properties (porosity, molecular diffusion, permeability). The 1D transport-reaction coupled simulation was done using the code KIRMAT, at 100 deg. C for 100000 years. The fluid considered is that of the Callovo-Oxfordian geological formation (COX) and assumed to diffuse into the clay barrier from one side. On the other side, ferrous iron, is provided by the steel overpack corrosion. Under these conditions, montmorillonite of the clay barrier is only partially transformed into illite, chlorite, and saponite. The simulation shows that only outer parts of the clay barrier is significantly modified, mainly at the interface with the geological environment. These modifications correspond to a closure of the porosity, followed by a decrease of mass transport by molecular diffusion. Near the COX, the swelling pressure of the clays from the barrier is predicted to decrease, but in its major part, the engineered barrier seems to keep its initial physical properties (porosity, molecular diffusion, permeability, swelling pressure). In this modelling approach, the very important role of secondary clay minerals has to be taken into account with relevant kinetic rate laws; particularly

  12. Fired products of Cr-smectite clays in nitrogen

    OpenAIRE

    C. Volzone; A. M. Cesio

    2004-01-01

    The products of Cr-smectite clays heated to 1350 ° C in nitrogen were evaluated by X-ray diffraction and chemical analysis. Cr-smectite clays were prepared at room temperature by contact between smectite clays and Cr species contained in OH-Cr solutions. The Cr species were prepared using chromium nitrate solution by addition of NaOH solution with OH/Cr = 2. Products of firing in nitrogen at the high temperature were different (magnesia chromite, donathite, iron chromium oxide and picrochromi...

  13. Deformation and Fabric in Compacted Clay Soils

    Science.gov (United States)

    Wensrich, C. M.; Pineda, J.; Luzin, V.; Suwal, L.; Kisi, E. H.; Allameh-Haery, H.

    2018-05-01

    Hydromechanical anisotropy of clay soils in response to deformation or deposition history is related to the micromechanics of platelike clay particles and their orientations. In this article, we examine the relationship between microstructure, deformation, and moisture content in kaolin clay using a technique based on neutron scattering. This technique allows for the direct characterization of microstructure within representative samples using traditional measures such as orientation density and soil fabric tensor. From this information, evidence for a simple relationship between components of the deviatoric strain tensor and the deviatoric fabric tensor emerge. This relationship may provide a physical basis for future anisotropic constitutive models based on the micromechanics of these materials.

  14. Discrete analysis of clay layer tensile strength

    International Nuclear Information System (INIS)

    Le, T.N.H.; Ple, O.; Villard, P.; Gourc, J.P.

    2010-01-01

    The Discrete Element Method is used to investigate the tensile behaviour and cracks mechanisms of a clay material submitted to bending loading. It is the case of compacted clay liners in landfill cap cover application. Such as the soil tested in this study is plastic clay, the distinct elements model was calibrated with previous data results by taking into account cohesive properties. Various contact and cohesion laws are tested to show that the numerical model is able to reproduce the failure mechanism. Numerical results are extending to simulate a landfill cap cover and comparing to experimental large scale field bending tests achieved in a real site of storage. (authors)

  15. Clay characterization of Monte Alegre-RN, Brazil

    International Nuclear Information System (INIS)

    Alencar, M.I.; Ferreira, O.F.; Ren, D.G.; Cunha, J.M.R.; Harima, E.

    2011-01-01

    This study aimed to characterize the clay from the municipality of Monte Alegre in Rio Grande do Norte. Clay (popularly known as tabatinga) is used in brick kilns for producing bricks and tiles. This study also verified the possibility of using this for industrial ceramics and ceramic tiles. The following techniques were used for characterization: chemical and mineralogical analysis which found the composition of this material the presence of quartz and kaolinite, plasticity index where the result was that the clay has plasticity null; solid residue content was 60, 19%, the determination of loss on ignition was 8.70% on checking the color of the burning got creamy clear. (author)

  16. Sectioning Clay Models Makes Anatomy & Development Tangible

    Science.gov (United States)

    Howell, Carina Endres; Howell, James Endres

    2010-01-01

    Clay models have proved to be useful teaching aids for many topics in biology that depend on three-dimensional reasoning. Students studying embryonic development struggle to mentally reconstruct the three-dimensional structure of embryos and larvae by observing prepared slides of cross-sectional slices. Students who build clay models of embryos…

  17. Influence of clay and surfactant content in non-aqueous fluid rheology

    International Nuclear Information System (INIS)

    Guedes, I.C.; Gomes, N.L.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as viscosity agent in the production of non-aqueous fluids cannot be used without organic treatment for their surfaces to become hydrophobic. These clays are called organophilic clays, and are generally obtained by adding, in an aqueous way, ionic or a nonionic surfactant. Recent studies of the variables involved in the dispersion of bentonite clays and in the process of organophilization, showed their lack of influence. This work aims to study the influence of clay content and surfactants on the rheology of nonaqueous fluids. To this end, the clays were treats and characterized, evidencing the incorporation of the surfactant, and then formulated non-aqueous fluids, following PETROBRAS standards, being possible to verify the influence of clay content and surfactant both from the point of view as the characterizing and rheological behavior. (author)

  18. Diazonium cation-exchanged clay: an efficient, unfrequented route for making clay/polymer nanocomposites.

    Science.gov (United States)

    Salmi, Zakaria; Benzarti, Karim; Chehimi, Mohamed M

    2013-11-05

    We describe a simple, off-the-beaten-path strategy for making clay/polymer nanocomposites through tandem diazonium salt interface chemistry and radical photopolymerization. Prior to photopolymerization, sodium montmorillonite (MMT) was ion exchanged with N,N'-dimethylbenzenediazonium cation (DMA) from the tetrafluoroborate salt precursor. DMA acts as a hydrogen donor for benzophenone in solution; this pair of co-initiators permits us to photopolymerize glycidyl methacrylate (GMA) between the lamellae of the diazonium-modified clay, therefore providing intercalated MMT-PGMA nanocomposites with an onset of exfoliation. This work conclusively provides a new approach for bridging reactive and functional polymers to layered nanomaterials via aryl diazonium salts in a simple, fast, efficient cation-exchange approach.

  19. Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres

    OpenAIRE

    Frindy, Sana; Primo Arnau, Ana Maria; Qaiss, Abou el Kacem; Bouhfid, Rachid; Lahcini, Mohamed; García Gómez, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim

    2016-01-01

    [EN] Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicit...

  20. Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture

    Science.gov (United States)

    Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor

    2016-11-01

    Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by

  1. Accurate control testing for clay liner permeability

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R J

    1991-08-01

    Two series of centrifuge tests were carried out to evaluate the use of centrifuge modelling as a method of accurate control testing of clay liner permeability. The first series used a large 3 m radius geotechnical centrifuge and the second series a small 0.5 m radius machine built specifically for research on clay liners. Two permeability cells were fabricated in order to provide direct data comparisons between the two methods of permeability testing. In both cases, the centrifuge method proved to be effective and efficient, and was found to be free of both the technical difficulties and leakage risks normally associated with laboratory permeability testing of fine grained soils. Two materials were tested, a consolidated kaolin clay having an average permeability coefficient of 1.2{times}10{sup -9} m/s and a compacted illite clay having a permeability coefficient of 2.0{times}10{sup -11} m/s. Four additional tests were carried out to demonstrate that the 0.5 m radius centrifuge could be used for linear performance modelling to evaluate factors such as volumetric water content, compaction method and density, leachate compatibility and other construction effects on liner leakage. The main advantages of centrifuge testing of clay liners are rapid and accurate evaluation of hydraulic properties and realistic stress modelling for performance evaluations. 8 refs., 12 figs., 7 tabs.

  2. Se of polymers to control clay swelling

    Energy Technology Data Exchange (ETDEWEB)

    Slobod, R L; Beiswanger, J P.G.

    1968-01-01

    The injection of water to displace oil is one of the main methods used to increase oil recovery. High injection rates are generally desired, and in some cases the flood will not be economic unless high rates are maintained. The presence of clays which swell in the presence of water offers a complication to the problem of maintaining adequate injectivity. In the course of this study it was observed that certain polymers, when present in dilute concentrations in the water, had the ability to reduce the response of these clays to fresh water. Two polymers, one an anionic and the other nonionic, were found to be very effective in controlling the clays present in Berea cores. Successful control of clay swelling was obtained by use of solutions containing as little as 1.0 ppM of polymer, but at this low concentration appreciable volumes of treating solution were required. These results suggest that some minimum amount of polymer must be adsorbed to prevent clay swelling. In Berea sandstone this minimum amount appeared to be of the order of 0.03 mg per cc of pore space. A series of tests made using 10.0 ppM polymer showed that the polymer could be made through the porous system in which 0.066 per mg of polymer was adsorbed per cc of pore space.

  3. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed

    2006-01-01

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T g ) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T g 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films

  4. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Meneghetti, Paulo [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States); Qutubuddin, Syed [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States)]. E-mail: sxq@case.edu

    2006-03-15

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T {sub g}) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T {sub g} 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films.

  5. Nanocomposites of PP and bentonite clay modified with different surfactants

    International Nuclear Information System (INIS)

    Rodrigues, Andre W.B.; Agrawal, Pankaj; Araujo, Edcleide M.; Melo, Tomas J.A.; Ueki, Marcelo M.

    2009-01-01

    The aim of this work was the development of nano composites of polypropylene (PP) and national bentonite clay modified with different surfactants. The results of X-Ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) showed that the organophilization process was effective. The surfactants led to a significant increase in the basal spacing of Brasgel PA clay. XRD results of the mixture PP/Brasgel PA clay modified with Praepagem WB surfactant indicated that a nanocomposite with intercalated structure was formed. When the Brasgel PA clay was modified with Praepagem HY surfactant, DRX results indicated that a micro composite was formed. Screw speed, clay content and PP viscosity had no influence on the XRD pattern of the obtained materials. (author)

  6. Rheological properties of purified illite clays in glycerol/water suspensions

    Science.gov (United States)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  7. Probabilistic Description of a Clay Site using CPTU tests

    DEFF Research Database (Denmark)

    Andersen, Sarah; Lauridsen, Kristoffer; Nielsen, Benjaminn Nordahl

    2012-01-01

    A clay site at the harbour of Aarhus, where numerous cone penetration tests have been conducted, is assessed. The upper part of the soil deposit is disregarded, and only the clay sections are investigated. The thickness of the clay deposit varies from 5 to 6 meters, and is sliced into sections of...... a geotechnical assessment of a site, using both the method for classifying soil behaviour types and applying statistics, yield a new level of information, and certainty about the estimates of the strength parameters which are the important outcome of such a site description.......A clay site at the harbour of Aarhus, where numerous cone penetration tests have been conducted, is assessed. The upper part of the soil deposit is disregarded, and only the clay sections are investigated. The thickness of the clay deposit varies from 5 to 6 meters, and is sliced into sections of 1...... meter in thickness. For each slice, a map of the variation of the undrained shear strength is created through Kriging and the probability of finding weak zones in the deposit is calculated. This results in a description of the spatial variation of the undrained shear strength at the site. Making...

  8. Initial settlements of rock fills on soft clay

    OpenAIRE

    Pedersen, Truls Martens

    2012-01-01

    Rock fills that hit the seabed will remold the underlying material. If this material is a clay with sufficiently low shear strength, it will adopt rheological properties, causing flow through the rock fill, and contributing to the initial settlements of the rock fill in addition to conventional consolidation theory. The settlements of the rocks depend upon the height of the rock fill and how the rocks have been laid out. This is due to the viscosity of the clay, and the fact that clay is thix...

  9. Structure and mechanical properties of polyamide 6/Brazilian clay nanocomposites

    Directory of Open Access Journals (Sweden)

    Amanda Melissa Damião Leite

    2009-06-01

    Full Text Available Recent interest in polymer/organoclays nanocomposites systems is motivated by the possibility of achieving enhanced properties and added functionality at lower clay loading as compared to conventional micron size fillers. By adding montmorillonite clay to polyamide 6 increases the Young modulus, yield strength and also improves barrier properties. In this work, nanocomposites of polyamide 6 with montmorillonite clay were obtained. The clay was chemically modified with three different quaternary ammonium salts such as: Dodigen, Genamin and Cetremide. In this case, a dispersion of Na-MMT was stirred and a salt equivalent to 1:1 of cation exchange capacity (CEC of Na-MMT was added to the dispersion. The montmorillonite clay (untreated and treated by ammonium salts and nanocomposites were characterized by X ray diffractions. Also the nanocomposites were characterized by transmission electron microscopy and mechanical properties. The results indicated that all the quaternary ammonium salts were intercalated between the layers of clay, leading to an expansion of the interlayer spacing. The obtained nanocomposites showed better mechanical properties when compared to polyamide 6. The clay acted as reinforcing filler, increasing the rigidity of nanocomposites and decreasing its ductility.

  10. Performance of polymeric films based thermoplastic starch and organophilic clay

    International Nuclear Information System (INIS)

    Cipriano, P.B.; Costa, A.N.M.; Araujo, S.S.; Araujo, A.R.A.; Canedo, E.L.; Carvalho, L.H.

    2010-01-01

    The aim of this work was the development and investigation of the properties of flat films of LDPE/corn thermoplastic starch (TPS). A bentonite clay (Argel) was organophilized and characterized by XRD. This clay (1%) in both pristine and organophilic forms was added to the matrix (LDPE) and to LDPE/TPS systems with TPS contents varying from 5-20% w/w. The films manufactured (LDPE, LDPE/Clay, LDPE/TPS, LDPE/TPS/Clay) were characterized. Results indicate that water vapor permeability is dependent and increases with TPS content which was attributed to the higher affinity of water by TPS. TPS and Clay addition to LDPE led to significant changes in film properties with respect to the neat LDPE. In general,tensile and perforation forces increased with clay and TPS contents; the strength of thermo sealed films lowered with natural clay addition and increased with TPS and organoclay incorporation and, in general, dynamic friction coefficient decrease with organoclay and TPS addition. Best overall properties were obtained for the systems containing the organoclay and optimal properties were achieved for the 5%TPS10 LDPE1% ANO system. (author)

  11. Role of Surface Interactions in the Synergizing Polymer/Clay Flame Retardant Properties

    Energy Technology Data Exchange (ETDEWEB)

    Pack, S.; Kashiwagi, T; Cao, C; Korach, C; Lewin, M; Rafailovich, M

    2010-01-01

    The absorption of resorcinol di(phenyl phosphate) (RDP) oligomers on clay surfaces has been studied in detail and is being proposed as an alternative method for producing functionalized clays for nanocomposite polymers. The ability of these clays to be exfoliated or intercalated in different homopolymers was investigated using both transmission electron microscopy and small-angle X-ray scattering results, compared with contact angle measurements on Langmuir-Blodgett clay monolayers, where the interfacial energies were used as predictors of the polymer/clay interactions. We found that the contact angle between PS/RDP clay monolayer substrates was {approx}2.5{sup o}, whereas the angle for polystyrene (PS)/Cloisite 20A clays substrates was {approx}32{sup o}, consistent with the large degree of exfoliation observed in PS for the RDP-coated clays. The interfacial activity of these clays was also measured, and we found that the RDP-coated clays segregated to the interfaces of PC/poly(styrene-co-acrylonitrile) blends, while they segregated into the poly(methyl methacrylate) (PMMA) domain of PS/PMMA blends. This morphology was explained in terms of the relative energy advantage in placing the RDP versus the Cloisite clays at the interfaces. Finally, we demonstrated the effects of the relative surface energies of the clays in segregating to the blend air interface when heated to high temperatures. The segregation was shown to affect the composition and mechanical properties of the resulting chars, which in turn could determine their flame retardant response.

  12. Obtaining and Organophilisation of Smectite Clays with Reduced Iron Oxide Content

    Directory of Open Access Journals (Sweden)

    Karasa Jūlija

    2016-05-01

    Full Text Available Raw clays from the Baltic region are characterized as smectite containing clays with significant amount of naturally occurring impurities that limiting the potential applications of crude Baltic clay resources. Purification of clay samples from Šaltiškių deposit (Venta basin was carried out by varied concentration hydrochloric acid solutions and resulted in fine removal of carbonates and iron oxide. The main idea of this work is to widen the possible applications of local clay resources providing a new type of raw material for further organoclay production.

  13. Use of clay from kangerlussuaq in the Greenlandic construction industry

    DEFF Research Database (Denmark)

    Belmonte, Louise Josefine; Villumsen, Arne; Ottosen, Lisbeth M.

    2010-01-01

    Clay material from Kangerlussuaq in West Greenland was characterised and its possible use for the production of bricks, expanded clay products and inert filler material was investigated. It was generally found that it was possible to use the clay in all of the above mentioned materials, although,...

  14. Clay fraction mineralogy of a Cambisol in Brazil

    International Nuclear Information System (INIS)

    Anastacio, A. S.; Fabris, J. D.; Stucki, J. W.; Coelho, F. S.; Pinto, I. V.; Viana, J. H. M.

    2005-01-01

    Clay minerals having a 2:1 (tetrahedral:octahedral sheet) structure may be found in strongly weathering soils only if the local pedo-climatic environment prevents them from further weathering to other minerals such as iron oxides. The clay minerals impart important chemical properties to soils, in part by virtue of changes in the redox state of iron in their crystal structures. Knowing the chemical nature of soil clays is a first step in evaluating their potential reactivity with other soil constituents and processes, such as the chemical decomposition of organic substrates to be potentially used in environmental remediation. The purpose of this work was to characterize the iron oxides and iron-bearing clay minerals from a B horizon of a Cambisol developed on tuffite in the State of Minas Gerais, Brazil, using chemical analysis, powder X-ray diffraction, Moessbauer spectroscopy, and thermal analysis. The iron oxides of this NaOH-treated clay-fraction were found to contain mainly maghemite (γFe 2 O 3 ) and superparamagnetic goethite (αFeOOH). Kaolinite (Al 2 Si 2 O 5 (OH) 4 ), smectite, and minor portions of anatase (TiO 2 ) were identified in the CBD-treated sample.

  15. Synthesis and characterization of polymer/clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Cynthia M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia de Materiais; Leal, Elvia [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Processos; Cambium, Karina B.; Sobrinho, Ariosvaldo A.B.; Baracho, Marcos A.R. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Pontes, Luiz R.A. [Universidade Federal da Paraiba, (UFPB), Joao Pessoa, PB (Brazil)

    2004-07-01

    Sea atmosphere present salt rates in order of 3.5%, being sodium chloride (NaCl) found in bigger amounts. The high electrolytic character of NaCl contributes to form corrosion products more energetic. The presence of chloride ions (Cl-) promotes the appearance of ferrous chloride molecules (FeCl{sub 2}), which hydrolysis occurs quickly, leading to the metal deterioration. So, the protection of these surfaces by the use of organic coatings, applied in one or multiple layers, has been a technique strongly spread out to promote the metal mechanical properties conservation. The aim of this work is to study the use of organophilic clay as component in anti corrosive polymeric coatings used in metallic structures of petroliferous industry. It had been formulated acrylic coatings, with and without organophilic clay addition. The samples had been submitted a salt spray fog tests, according to ASTM B-117. The results had showed that the samples addicted with organophilic clay presented anti corrosive properties six times more efficient than the other ones without clay addiction. (author)

  16. Concrete-Opalinus clay interaction

    International Nuclear Information System (INIS)

    Jenni, A.; Maeder, U.; Lerouge, C.; Gaboreau, S.; Schwyn, B.

    2012-01-01

    Document available in extended abstract form only. Designs for deep geologic disposal of radioactive waste foresee cementitious materials as structural elements, backfill or waste matrix. Therefore, studies of interactions between cement and all other materials involved are important. Interactions are mostly driven by chemical gradients in pore water and might lead to mineralogical alterations in the barrier system, which in turn influence properties like swelling pressure, permeability, or specific retention in case of clay materials. Existing laboratory and in-situ studies using clay-stone revealed significant alteration in both cement and clay-stone. Phase dissolution, precipitation, and carbonation, were found to cause an overall porosity increase in the cement with a possible decrease close to the interface, and clogging in the clay-stone [2]. Most of the work was done on cement pastes rather than concretes to avoid analytical complications caused by aggregates, and the scale of investigation was chosen in the range of centimetres rather than micrometers. The Cement-Clay Interaction (CI) experiment at the Mont Terri Underground Laboratory (St. Ursanne, Switzerland) aims at replicating some of the processes at interfaces to be expected.For this purpose, two vertical cylindrical boreholes (384 mm diameter, up to 10 m length) in Opalinus Clay (OPA) were filled with layers of three different concretes and bentonite. The concrete formulations are based on common aggregate content and grain size distributions, combined with three different cements: Portland cement (OPC), ESDRED cement especially designed for repository applications (40% of cement substituted with silica fume), and low alkali cement (LAC, containing slag and nano-silica).In this study, we present a characterisation of the three concrete-OPA interfaces after two years of alteration and deduce possible mechanisms. Backscattered electron (BE) imaging and energy dispersive spectrum (EDX) element mapping

  17. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  18. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Method and apparatus for determining characteristics of clay-bearing formations

    International Nuclear Information System (INIS)

    Fertl, W.H.; Ruhovets, N.

    1986-01-01

    This invention relates to methods and apparatus for determining characteristics of clay-bearing geological formations by radioactivity well logging. In its broadest aspect, the invention comprises the steps of determining the volume of clay contained in the earth formations; determining a first property of the formations functionally related to the volume of clay; and determining a second property functionally related to the first property, the second property indicating potential clay swelling. In particular, the volume of clay is determined using electrical signals generated in response to the energy and frequency of detected radiations. The method is carried out with a well logging instrument that includes a high-resolution gamma ray spectrometer that traverses a borehole, whereby natural radiation strikes a scintillation crystal contained therein

  20. The adsorption coefficient (KOC) of chlorpyrifos in clay soil

    International Nuclear Information System (INIS)

    Halimah Muhamad; Nashriyah Mat; Tan Yew Ai; Ismail Sahid

    2005-01-01

    The purpose of this study was to determine the adsorption coefficient (KOC) of chlorpyrifos in clay soil by measuring the Freundlich adsorption coefficient (Kads(f)) and desorption coefficient (1/n value) of chlorpyrifos. It was found that the Freundlich adsorption coefficient (Kads(f)) and the linear regression (r2) of the Freundlich adsorption isotherm for chlorpyrifos in the clay soil were 52.6 L/kg and 0.5244, respectively. Adsorption equilibrium time was achieved within 24 hours for clay soil. This adsorption equilibrium time was used to determine the effect of concentration on adsorption. The adsorption coefficient (KOC) of clay soil was found to be 2783 L/kg with an initial concentration solution of 1 μg/g, soil-solution ratio (1:5) at 300 C when the equilibrium between the soil matrix and solution was 24 hours. The Kdes decreased over four repetitions of the desorption process. The chlorpyrifos residues may be strongly adsorbed onto the surface of clay. (Author)

  1. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Savazzini-Reis, A.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2016-01-01

    The Brazilian red ceramic industry monthly consumes about 10.3 million tons of clay, its main raw material. In most potteries, characterization of the clay is made empirically, which can result in tiles and blocks not according to standards. This sense, this paper aims to characterize clays used in the manufacturing of red ceramic products in factory located in Colatina-ES, which appears as a ceramic pole with about twenty small and midsize industries. The clays were characterized by: Xray fluorescence, X-ray diffraction, thermal analysis (TG/DSC), granulometry and Atterberg limits. Specimens of clay and mixture containing four clays were shaped. Specimens were shaped, dried at 110°C, and burned in a kiln for 24 h. The ceramics and mechanical characteristics were evaluated: flexural strength, water absorption, apparent porosity, apparent specific mass and shrinkage by drying and firing. The characterization showed that kaolinitic clay presents high plasticity, but high porosity. The mixture formed by the four clays does not meet the requirements of the Brazilian standard clays for red ceramic. (author)

  2. Technetium migration in Boom Clay - Assessing the role of colloid-facilitated transport in a deep clay formation

    International Nuclear Information System (INIS)

    Bruggeman, C.; Martens, E.; Maes, N.; Jacops, E.; Van Gompel, M.; Van Ravestyn, L.

    2010-01-01

    Document available in extended abstract form only. The role of colloids - mainly dissolved natural organic matter (NOM, 50-150 mg/l) - in the transport of radionuclides in the Boom Clay formation (Mol, Belgium), has long since been a matter of (heavy) debate. For more than 20 years, batch experiments with Boom Clay suspensions showed a pronounced influence of the dissolved organic carbon concentration on the aqueous concentrations of different radionuclides like Tc, Np, Am and U. Moreover, small fractions of these radionuclides were also observed to elute almost un-retarded out of confined clay cores in percolation experiments. In the past years, a new conceptual model for the speciation of the long-lived fission product Technetium- 99 ( 99 Tc) under Boom Clay conditions has been drafted. In brief, the stable oxidation state of 99 Tc in these conditions is +IV, and, therefore, Tc solution concentrations are limited by the solubility of TcO 2 .nH 2 O(s). However, during reduction of TcVII (in the TcO 4 - form) to TcIV, precursor TcO 2 .nH 2 O colloids are formed, which are stabilised by the dissolved organic matter present in Boom Clay interstitial pore water, and in supernatants of Boom Clay batch suspensions. Moreover, this stabilisation process occurs in such a systematic way, that (conditional) interaction constants could be established, and the behaviour was described as a 'hydrophobic sorption', or, more accurately, a 'colloid-colloid' interaction. This conceptual model was implemented into PHREEQC geochemical and Hydrus transport code to come to a reactive transport model that was used to simulate both the outflow and the tracer profile in several long-term running percolation experiments (both in lab and under in situ conditions). To account for slow dissociation kinetics of Tc from the NOM colloid, a first-order kinetic rate equation was also added to the model. In order to describe the migration of colloidal particles (NOM), an

  3. Characterization of karak clay from pakistan for pharmaceutical and cosmetic applications

    International Nuclear Information System (INIS)

    Shah, L.A.; Silva-Valenzuela, M.G.; Valenzuela-Diaz, F.R.; Sayeg, I.J.; Carvalho, F.M.S.

    2012-01-01

    Full text: Clay, the most important, plentiful, and low cost naturally occurring mineral, is widely used in variety of industrial application including Pharmaceutical and cosmetic. Clay is the fine grained aluminosilicate mineral which shows the property of plasticity at appropriate water content, and becomes hard upon drying. In Pakistan there are different types of clay but till now neither of them properly identified nor characterize for specific industrial application. The objective of this work is to characterize Karak clay for pharmaceutical and cosmetic applications collected from deposit located at Shagai region, District Karak, Pakistan. The clay was characterized through Xray diffractometry (XRD), X-ray Fluorescence (XRF), trace elemental Analysis, Microbiological analysis, Cation exchange capacity (CEC), pH and swelling assays according to European, United States of America and Brazilian Pharmacopeias. Bulk Chemical analysis shows that the Aluminum oxide and silica oxide are present in large quantity which was confirmed by XRD that this sample has montmorillonite as a major while illite and kaolinite as minor clay minerals. Quartz of small quantity was also found as a non-clay mineral. After analyzing the results for sample it was concluded that the clay is a strong candidate for cosmetic purposes. (author)

  4. Factors that influence the design of modified clays - or how knowing your clay can save your day

    International Nuclear Information System (INIS)

    Gates, W.P.; Slade, P.G.

    1998-01-01

    Full text: Smectites vary greatly in their permanent layer charge characteristics, including total charge, distribution of charge between tetrahedral and octahedral sheets and heterogeneity of charge from flake to flake. Smectites and vermiculites are different from the micaceous layer silicates in their ability to swell by the uptake of cations and polar and non polar solvents. Vermiculites differ from the smectites predominantly in the large contribution of tetrahedrally located charge relative to their total layer charge density. Understanding of the complex relations between layer charge and interlayer space of clay mineral surfaces can be applied toward the design of optimal organically modified clays suitable for environmental and industrial uses. In general, it is known that smectite charge density dictates the total amount of modifying organic cation that can be added to a particular clay, the orientation that the organic cation adopts within the interlayer spaces with respect to the siloxane surfaces of the clay and ultimately, the capacity of specific, organically modified clay to imbibe contaminants or other compounds. These same properties are dependent on the size and configuration of the modifying organic cation(s) as well as the percentage of the exchange capacity utilised, and thus, the amount of specific surface of the clay that is covered by the modifying organic cation. All these factors must be kept in mind in the design of inexpensive and useful modified clays. This paper reports on the application of polarised FT-IR and X-ray diffraction methods to the observation that layer charge density governs the orientation of trimethylphenylammonium (TMPA) cations in the interlayer space of smectites and vermiculites. The TMPA exchanged forms of several smectites and vermiculites were studied, whose layer charges ranged between X=0.37 and X=0.95 e - per formula unit and in which the location of charge varied with respect to the octahedral and

  5. Column treatment of brewery wastewater using clay fortified with stone-pebbles

    International Nuclear Information System (INIS)

    Oladoja, N.A.; Ademoroti, C.M.A.; Idiaghe, J.A.; Oketola, A.A.

    2006-01-01

    The study aimed at providing a low-cost treatment for brewery wastewater, which was achieved by mixing clay with stone-pebbles to improve the low permeability of water through clay beds. The combination (clay/stone-pebbles) was used in columns for the treatment of brewery wastewater. The crystal chemistry of the clay samples was studied using X-ray diffractometer. Three principal clay minerals (kaolin, illite and smectite) were detected in the samples. Atomic absorption spectrophotometer was used to study the geochemistry of the clay samples. The results of the geochemical studies showed that all the samples were hydrated aluminosilicates. Performance efficiency studies were conducted to determine the best combination ratio of clay to stone-pebbles, which showed that combination ratio 3:1 (clay/stone pebbles, w/w) performed better. The flow-rate studies showed that brewery wastewater had longer residence time in non fortified clay than in fortified clay. The flow-rate of the wastewater in the percolating media varied from one medium to another. Two modes of treatment (batch and continuous) were used. The effluent passed through the continuous treatment mode had better quality characteristics as compared with the effluent passed through the batch treatment mode. The effect of repeated use of the fortified column on the performance efficiency was also studied. The pH, total solids, and the chemical oxygen demand (COD) of the effluent was monitored over time. The results of the COD monitored over time were analysed using breakthrough curves. The different columns were found to have different bed volumes at both the break through and exhaustion points. (author)

  6. Strength and Deformation Properties of Tertiary Clay at Moesgaard Museum

    DEFF Research Database (Denmark)

    Kaufmann, Kristine Lee; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    The tertiary clay at Moesgaard Museum near Aarhus in the eastern part of Jutland in Denmark is a highly plastic, glacially disturbed nappe of Viborg Clay. The clay is characterised as a swelling soil, which could lead to damaging of the building due to additional heave of the soil. To take...

  7. Comparative study of illite clay and illite-based geopolymer products

    International Nuclear Information System (INIS)

    Sperberga, I; Sedmale, G; Zeila, K; Ulme, D; Stinkulis, G

    2011-01-01

    Quaternary (Q-clay) clayey deposits are one of the dominating parts of mineral raw materials of the sedimentary cover at present area of Latvia. These clays can be characterised by illite content up to 75-80 %. Two ways for use of illite clays were studied: conventional and geopolymers method. Purpose of the second mentioned method was showing the influence of alkali (KOH) on the transformation of Q-clay/illite structure. Obtained products were investigated by IR-spectroscopy, DTA and XRD, pore size distribution was determined as well. Some ceramic properties and compressive strength were determined and compared. IR-spectrum showed the effect of alkali on the transformation of Q-clay/illite structure in three main absorption bands: 3620-3415 cm -1 which is related to the vibrational modes of adsorbed water between SiO 4 and AlO 6 layers; new stronger absorption bands at 1635 cm -1 and 1435 cm -1 indicate on the appearance of vibrations in Q-KOH and are related to the K-O-Si bonds; the most essential changes are vibrations at 850 cm -1 showing the changes in the coordination number of Al from 6 to 4 for Q-KOH. Investigations of the bulk density in dependence on temperature showed the small increase of bulk density for Q-clay while - the relatively remarkable decrease for Q-clay/KOH. Mentioned values correlate with the compressive strength of Q-clay and Q-KOH products.

  8. Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay

    International Nuclear Information System (INIS)

    Mao, Xuhui; Wang, James; Ciblak, Ali; Cox, Evan E.; Riis, Charlotte; Terkelsen, Mads; Gent, David B.; Alshawabkeh, Akram N.

    2012-01-01

    Highlights: ► Simultaneous delivery of electron donors and bacteria into low permeability clays. ► Bacteria injection, growth and consequent transformation of contaminants are viable. ► EK injection is more effective than advection-based injection for clay soil. ► Electroosmosis appears to be the driving mechanism for bacteria injection. ► Both EK transport and biodegradation contribute the removal of VOCs in clay. - Abstract: Successful bioremediation of contaminated soils is controlled by the ability to deliver bioremediation additives, such as bacteria and/or nutrients, to the contaminated zone. Because hydraulic advection is not practical for delivery in clays, electrokinetic (EK) injection is an alternative for efficient and uniform delivery of bioremediation additive into low-permeability soil and heterogeneous deposits. EK-enhanced bioaugmentation for remediation of clays contaminated with chlorinated solvents is evaluated. Dehalococcoides (Dhc) bacterial strain and lactate ions are uniformly injected in contaminated clay and complete dechlorination of chlorinated ethene is observed in laboratory experiments. The injected bacteria can survive, grow, and promote effective dechlorination under EK conditions and after EK application. The distribution of Dhc within the clay suggests that electrokinetic transport of Dhc is primarily driven by electroosmosis. In addition to biodegradation due to bioaugmentation of Dhc, an EK-driven transport of chlorinated ethenes is observed in the clay, which accelerates cleanup of chlorinated ethenes from the anode side. Compared with conventional advection-based delivery, EK injection is significantly more effective for establishing microbial reductive dechlorination capacity in low-permeability soils.

  9. Free volume sizes in intercalated polyamide 6/clay nanocomposites

    DEFF Research Database (Denmark)

    Wiinberg, P.; Eldrup, Morten Mostgaard; Pedersen, N.J.

    2005-01-01

    The effect of incorporating modified clay into a polyamide 6 (PA6) matrix, on the free volume cavity sizes and the thermal and viscoelastic properties of the resulting nanocomposite, was studied with positron annihilation lifetime spectroscopy, differential scanning calorimetry and dynamic...... response of PA6/clay nanocomposites, as compared to unfilled PA6, pointed towards a changed mobility in the non-crystalline regions. At high concentrations of clay (> 19 wt%) an increase of the free volume cavity diameter was observed, indicating a lower chain packing efficiency in the PA6/clay...... nanocomposites. The increased free volume sizes were present both above and below the glass transition temperature of PA6. (c) 2005 Elsevier Ltd. All rights reserved....

  10. Thermal Analysis: A Complementary Method to Study the Shurijeh Clay Minerals

    Directory of Open Access Journals (Sweden)

    Golnaz Jozanikohan

    2015-06-01

    Full Text Available Clay minerals are considered the most important components of clastic reservoir rock evaluation studies. The Shurijeh gas reservoir Formation, represented by shaly sandstones of the Late Jurassic-Early Cretaceous age, is the main reservoir rock in the Eastern Kopet-Dagh sedimentary Basin, NE Iran. In this study, X-ray diffraction (XRD, X-ray fluorescence (XRF, scanning electron microscopic (SEM studies, and thermal analysis including differential thermal analysis (DTA, and thermogravimetric analysis (TGA techniques were utilized in the characterization of the Shurijeh clay minerals in ten representative samples. The XRF studies showed that silica and aluminum oxides are present quantities. The XRD test was then used to determine the mineralogical composition of bulk components, as well as the clay fraction. The XRD patterns indicated the presence of dominant amount of quartz and plagioclase, with moderate to minor amounts of alkali feldspar, anhydrite, carbonates (calcite and dolomite, hematite and clay minerals. The most common clays in the Shurijeh Formation were illite, chlorite, and kaolinite. However, in very few samples, glauconite, smectite, and mixed layer clay minerals of both illite-smectite and chlorite-smectite types were also recognized. The XRD results were quantified, using the elemental information from the XRF test, showing that each Shurijeh exhibited low to moderate amounts of clay minerals, typically up to 21%. The amount of illite, the most dominant clay mineral, reached maximum of 13.5%, while the other clay types were significantly smaller. Based on the use of SEM and thermal data, the results of the identification of clay minerals, corresponded with the powder X-ray diffraction analysis, which can be taken into account as an evidence of the effectiveness of the thermal analysis technique in clay typing, as a complementary method besides the XRD.

  11. Modification of a Brazilian smectite clay with different quaternary ammonium salts

    Directory of Open Access Journals (Sweden)

    Maria Flávia Delbem

    2010-01-01

    Full Text Available In this work, a smectite clay from the State of Paraiba, Brazil, was treated with six different types of ammonium salts, which is an usual method to enhance the affinity between the clay and polymer for the preparation of nanocomposites. The clays, before and after modification, were characterized by X ray diffraction. The conformation of the salts within the platelets of the clay depended on the number of long alkyl chains of the salt. The thermal stability of the clays was also studied. The ammonium salts thermal decomposition was explained in light of their position within the organoclays.

  12. Determining the clay/organic carbon ratio by visible near infrared spectroscopy

    DEFF Research Database (Denmark)

    Knadel, Maria; Peng, Yi; Hermansen, Cecilie

    /OC ratio directly would be valuable. Visible near infrared spectroscopy (vis-NIRS) is a cost-effective method for soil analysis and was tested here for the prediction of clay/OC ratio. Soil samples from two agricultural fields in Denmark (N=115) were analyzed. Partial Least Squares regression (full cross......The recently presented Dexter et al. (2008) threshold (ratio of clay to organic carbon (OC) of 10 kg/kg-1) is a good indicator for soil functional properties. However, the conventional analysis of OC and clay are costly and time consuming, thus an alternative method to quantify OC, clay or clay...

  13. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  14. The Compressibility and Swell of Mixtures for Sand-Clay Liners

    Directory of Open Access Journals (Sweden)

    Muawia A. Dafalla

    2017-01-01

    Full Text Available Sand-clay liners utilize expansive clay to act as a filler to occupy the voids in the sand and thus reduce the hydraulic conductivity of the mixture. The hydraulic conductivity and transfer of water and other substances through sand-clay mixtures are of prime concern in the design of liners and hydraulic barriers. Many successful research studies have been undertaken to achieve appropriate mixtures that satisfy hydraulic conductivity requirements. This study investigates compressibility and swelling properties of mixtures to ensure that they were acceptable for light structures, roads, and slabs on grade. A range of sand-expansive clay mixtures were investigated for swell and compression properties. The swelling and compressibility indices were found to increase with increasing clay content. The use of highly expansive material can result in large volume changes due to swell and shrinkage. The inclusion of less expansive soil material as partial replacement of bentonite by one-third to two-thirds is found to reduce the compressibility by 60% to 70% for 10% and 15% clay content, respectively. The swelling pressure and swell percent were also found significantly reduced. Adding less expansive natural clay to bentonite can produce liners that are still sufficiently impervious and at the same time less problematic.

  15. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  16. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  17. Analysis of cement-treated clay behavior by micromechanical approach

    OpenAIRE

    Zhang , Dong-Mei; Yin , Zhenyu; Hicher , Pierre Yves; Huang , Hong-Wei

    2013-01-01

    International audience; Experimental results show the significant influence of cement content on the mechanical properties of cement-treated clays. Cementation is produced by mixing a certain amount of cement with the saturated clay. The purpose of this paper is to model the cementation effect on the mechanical behavior of cement-treated clay. A micromechanical stress-strain model is developed considering explicitly the cementation at inter-cluster contacts. The inter-cluster bonding and debo...

  18. Brazilian clay organophilization aiming its use in oil / water removal

    International Nuclear Information System (INIS)

    Mota, M.F.; Lima, W.S.; Oliveira, G.C.; Silva, M.M.; Rodrigues, M.G.F.

    2012-01-01

    Clays when subjected to modification with the addition of organic surfactant are called organoclays acquire hydrophobic character, they have an affinity for organic compounds. The organoclays can be used as adsorbents are considered promising agents in environmental control. The objective is to prepare organoclays clays from commercial use in order to remove organic contaminants. The clay used was gray, as polycationic, supplied by Süd-Chemie company and the quaternary ammonium salt was cetyltrimethylammonium bromide (Cetremide). The fresh samples and organoclay were characterized by the technique of X-ray diffraction (XRD), Cation Exchange Capacity, testing expansion and affinity with organic compounds: Swelling of Foster and adsorption capacity. The results showed appropriate conditions organophilic process. Through XRD confirmed the increase in basal spacing for the modified clay in relation to the clay in nature. (author)

  19. Effect of Compaction on Compressive Strength of Unfired Clay Blocks

    International Nuclear Information System (INIS)

    Lakho, N.A.; Zardari, M.A.; Pathan, A.A.

    2016-01-01

    This study investigates the possible use of unfired compacted clay blocks as a substitute of CSEB (Compressed Stabilized Earth Blocks) for the construction of economical houses. Cubes of 150 mm size were cut from the clay blocks which were compacted at various intensities of pressure during the casting. The results show that the compressive strength of the clay cubes increased with the compacting pressure to which the blocks were subjected during casting. The average crushing strength of the cubes, sawed from clay blocks that were subjected to compacting pressure of 7.2 MPa, was found to be 4.4 MPa. This value of compressive strength is about 50 percent more than that of normal CSEB. This study shows that the compacted clay blocks could be used as economical walling material as replacement of CSEB. (author)

  20. Geomechanics of clays for radioactive waste disposal

    International Nuclear Information System (INIS)

    Come, B.

    1989-01-01

    Clay formations have been studied for many years in the European Community as potential disposal media for radioactive waste. This document brings together results of on-going research about the geomechanical behaviour of natural clay bodies, at normal and elevated temperatures. The work is carried out within the third Community R and D programme on Management and storage of radioactive waste

  1. Poro-elasto-plastic behaviour of dry compacted Fo-Ca clay: experiment and modelling. Application to the re-saturation of an engineered clay barrier

    International Nuclear Information System (INIS)

    Lassabatere, Th.; Imbert, Ch.; Etile, M.A.

    1999-01-01

    Many projects of underground repositories for high level radioactive waste involve an engineered clay barrier, placed between the waste canister and the surrounding rock. When hydrated, this barrier seals the gap and provides a good watertightness. The natural clay powder, dried and compacted, exhibits hydro-mechanical couplings during the hydration. Such a coupled behaviour, interesting for the industrial application, has been clearly demonstrated by many studies and laboratory experiments. But the modelling of this behaviour, in order to predict the hydration of the clay barrier, is difficult. A coupled modelling, based, at a macroscopic scale, on the thermodynamics of unsaturated porous media, is proposed. This thermodynamical model founds a general framework for non linear poro-elastic and poro-elasto-plastic coupled behaviours. The symmetries of this coupling, induced by this thermodynamical framework, let us take into account the often neglected influence of the mechanical state on the hydraulic problem of the re-saturation of the clay. The complete resolution of the flow problem, coupled with the mechanical behaviour, leads us to study the influence of the rheological behaviour chosen for the clay (elastic - linear or no linear -, or elastoplastic) on the evaluation of the duration of the re-saturation of the clay barrier). (authors)

  2. Clay characterization of Boa Saude-RN, Brazil

    International Nuclear Information System (INIS)

    Ren, D.G.; Alencar, M.I.; Ferreira, O.F.; Cunha, J.M.R.; Harima, E.

    2011-01-01

    This study characterized a sample of clay from the City of Boa Saude of Rio Grande do Norte. Clay is burning clear and used in Monte Alegre in the brick kilns for producing bricks and tiles. This study also verified the possibility of using these in the field of industrial ceramics. The following techniques were used for characterization: chemical and mineralogical analysis, which determined the presence of the following minerals, muscovite, quartz and kaolinite, the plasticity index can be said that the clay has an average plasticity index, also was made organic matter content, residue content, determination of loss on ignition was found that a loss of 9.38%, checking the color of burning gave a gradient of cream to orange with increasing temperature. (author)

  3. Law of nonlinear flow in saturated clays and radial consolidation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.

  4. Possible influence of clay contamination on B isotope geochemistry of carbonaceous samples

    International Nuclear Information System (INIS)

    Deyhle, Annette; Kopf, Achim

    2004-01-01

    The authors report results from an experimental study on mixtures of pure endmembers of natural clay and carbonate. The scientific rationale is an evaluation as to what extent B contents and B isotopes of carbonate samples may be obscured as a result of contamination with clay, particularly since both authigenic carbonates and biogenic carbonates (e.g. microfossil tests) often contain some clay. Three aliquots of a series of samples (each containing 0, 20, 40, 60, 80, 100% clay) were analyzed. Set 1 was washed with distilled, de-ionized water; for set 2 the HCl soluble parts were dissolved in 2 M HCl after washing; set 3 was completely digested with 30M HF prior to a series of ion exchanges. Isotope data of the endmembers are 6.6 per mille (100% marble) and -4.6%o (100% clay), with the clay being the dominant B source (ca. 50 ppm compared with 11 B adsorbed =12.9-14.1%o±0.5%o), while no B was mobilized from the carbonate. The HCl-dissolvable B in washed samples of set 2 show slightly increasing B contents with higher clay contents, suggesting that dissolution of the marble as well as B mobilization from the clay account for this trend. δ 11 B isotopes tend towards more negative values when clay content increases, indicating that some structurally-bound B is lost from the sheets of linked (Si, Al)O 4 tetrahedra of the clay mineral. This result shows that not only B adsorption, but possibly diffusion or weathering of broken edges of clay minerals releases some structurally bound B of clay minerals. Set 3, where bulk samples were completely HF-digested, shows as expected a linear increase in B concentrations and decreasing δ 11 B ratios with increasing clay content. The overall results suggest that relatively small amounts of clay (e.g. as contamination in a microfossil test) have no significant impact on the B content and δ 11 B measured for the carbonate, but that care has to be taken if clay exceeds 10wt.% (e.g. carbonate concretions, chimneys, etc.)

  5. Determination of essential and toxic elements in clay soil commonly consumed by pregnant women in Tanzania

    International Nuclear Information System (INIS)

    Mwalongo, D.; Mohammed, N.K.

    2013-01-01

    A habit of eating clay soil especially among pregnant women is a common practice in Tanzania. This practice known as geophagy might introduce toxic elements in the consumer's body to endanger the health of the mother and her child. Therefore it is very important to have information on the elemental composition of the eaten soil so as to assess the safety nature of the habit. In this study 100 samples of clay soil, which were reported to be originating from five regions in Tanzania and are consumed by pregnant women were analyzed to determine their levels of essential and toxic elements. The analysis was carried out using energy dispersive X-ray fluorescent technique (EDXRF) of Tanzania Atomic Energy Commission, Arusha. Essential elements Fe, Zn, Cu, Se and Mn and toxic elements As, Pb, Co, Ni, U and Th were detected in concentrations above WHO permissible limits in some of the samples. The results from this study show that the habit of eating soil is exposing the pregnant mothers and their children to metal toxicity which is detrimental to their health. Hence, further actions should be taken to discourage the habit of eating soil at all levels. - Highlights: • We assessed exposure of heavy metals to pregnant mothers who consume geophagic soil. • We analyzed 100 samples of soil originated in Tanzania. • The technique used was energy dispersive X-ray fluorescent. • Essential and toxic elements were detected in concentrations above WHO limits. • Hence, geophagy is exposing pregnant mothers and their children to metal toxicity

  6. Calcination of kaolinite clay particles for cement production

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2014-01-01

    Kaolinite rich clay particles calcined under certain conditions can attain favorable pozzolanic properties and can be used to substitute part of the CO2 intensive clinker in cement production. To better guide calcination of a clay material, a transient one-dimensional single particle model...

  7. Comparative evaluation of clays from Abakaliki Formation with ...

    African Journals Online (AJOL)

    The characteristics of clays from Abakaliki Formation, Southeastern Nigeria was evaluated to establish its suitability as drilling mud when compared with commercial bentonite such as Wyoming bentonite. The chemical, mineralogical and geotechnical properties were employed in assessing the suitability of Abakaliki clay as ...

  8. Termites utilise clay to build structural supports and so increase foraging resources.

    Science.gov (United States)

    Oberst, Sebastian; Lai, Joseph C S; Evans, Theodore A

    2016-02-08

    Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites.

  9. Characterization of clay minerals; Caracterizacion de minerales arcillosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A. [Gerencia de Ciencias Basicas, Direccion de Investigacion Cientifica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  10. Fired products of Cr-smectite clays in nitrogen

    Directory of Open Access Journals (Sweden)

    C. Volzone

    2004-12-01

    Full Text Available The products of Cr-smectite clays heated to 1350 ° C in nitrogen were evaluated by X-ray diffraction and chemical analysis. Cr-smectite clays were prepared at room temperature by contact between smectite clays and Cr species contained in OH-Cr solutions. The Cr species were prepared using chromium nitrate solution by addition of NaOH solution with OH/Cr = 2. Products of firing in nitrogen at the high temperature were different (magnesia chromite, donathite, iron chromium oxide and picrochromite depending on the type of isomorphous substitution of the smectite structure and the amount of retained chromium.

  11. Interaction and transport of actinides in natural clay rock with consideration of humic substances and clay organic compounds

    International Nuclear Information System (INIS)

    Marquardt, C.M.

    2012-01-01

    The present report summarizes the progress and the results obtained within the BMWi financed Joint Research Project Interaction and Transport of Actinides in Natural Clay Rock with Consideration of Humic Substances and Clay Organic Compounds. The basic approach of the work was to obtain a fundamental process understanding on the molecular level of complexation and sorption reactions as well as diffusion processes. The experimental findings are supported by quantum mechanical modeling.

  12. Hyperspectral analysis of clay minerals

    Science.gov (United States)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  13. Clay fraction mineralogy of a Cambisol in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Anastacio, A. S.; Fabris, J. D., E-mail: jdfabris@ufmg.br [Federal University of Minas Gerais, Campus - Pampulha, Department of Chemistry (Brazil); Stucki, J. W. [Department of Natural Resources and Environmental Sciences (United States); Coelho, F. S.; Pinto, I. V. [Federal University of Minas Gerais, Campus - Pampulha, Department of Chemistry (Brazil); Viana, J. H. M. [Embrapa Milho e Sorgo (Brazil)

    2005-11-15

    Clay minerals having a 2:1 (tetrahedral:octahedral sheet) structure may be found in strongly weathering soils only if the local pedo-climatic environment prevents them from further weathering to other minerals such as iron oxides. The clay minerals impart important chemical properties to soils, in part by virtue of changes in the redox state of iron in their crystal structures. Knowing the chemical nature of soil clays is a first step in evaluating their potential reactivity with other soil constituents and processes, such as the chemical decomposition of organic substrates to be potentially used in environmental remediation. The purpose of this work was to characterize the iron oxides and iron-bearing clay minerals from a B horizon of a Cambisol developed on tuffite in the State of Minas Gerais, Brazil, using chemical analysis, powder X-ray diffraction, Moessbauer spectroscopy, and thermal analysis. The iron oxides of this NaOH-treated clay-fraction were found to contain mainly maghemite ({gamma}Fe{sub 2}O{sub 3}) and superparamagnetic goethite ({alpha}FeOOH). Kaolinite (Al{sub 2}Si{sub 2}O{sub 5}(OH){sub 4}), smectite, and minor portions of anatase (TiO{sub 2}) were identified in the CBD-treated sample.

  14. Retention and loss of water extractable carbon in soils: effect of clay properties.

    Science.gov (United States)

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  15. Pengaruh Proses Pelapukan Clay Shale terhadap Perubahan Parameter Rasio Disintegritas (DR

    Directory of Open Access Journals (Sweden)

    Idrus M Alatas

    2017-04-01

    Full Text Available The background of this research because of the frequent occurrence of the failure in the geotechnical design of clay shale caused by weathering. Disintegration ratio is a comparison of physical changes due to weathering at certain times of the initial conditions. Changes in physical properties due to clay shale weathering determined by the disintegration ratio (DR.Clay shale weathering will occur more quickly as a result of wetting and drying cycles when compared with the drying process. While due to the increased number of cycles of wetting at the same time, causing weathering on clay shale will be faster again. Until the 80th day of drying time, the magnitude DRof Semarang-Bawenclay shaleand Hambalang are the same, namely DR = 0.916 (completelly durable. However, due to wetting and drying cycles on day 32, samples of Semarang-Bawenclay shale is DR = 0.000 or non durable completelly, while on Hambalang clay shale in same day DR between 0.2117 to 0.3344. Generally Semarang-Bawen clay shale will be faster weathered than Hambalang clay shale. It is caused by the mineralogy content of Semarang-Bawen clay shale has dominated by Smectite, and Hambalangclay shalehas dominated mineral Kaolinite and Illlite.

  16. Characterisation of the wall-slip during extrusion of heavy-clay products

    Science.gov (United States)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (dviscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  17. Control of clay minerals effect in flotation. A review

    Directory of Open Access Journals (Sweden)

    Taner Hasan Ali

    2016-01-01

    Full Text Available The increased exposure to low grade ores highlights the importance of understanding phyllosilicate gangue mineralogy which consists of common gangue minerals. To improve the flotation performance and ore quality the negative effect of the clay minerals on flotation should be identified. The presence of clay minerals leads to problems, such as changing the froth stability, which are related to swelling behaviour, increase in pulp viscosity, overconsumption of reagents, slime coating and mechanical entrainment. The clay content in the ore is changing from time to time and it is necessary to provide quick solutions to the issues caused by the new ore composition. The objective of this paper is to give an overview how to control the colloidal properties of clay minerals on flotation.

  18. Kisameet Glacial Clay: an Unexpected Source of Bacterial Diversity.

    Science.gov (United States)

    Svensson, Sarah L; Behroozian, Shekooh; Xu, Wanjing; Surette, Michael G; Li, Loretta; Davies, Julian

    2017-05-23

    Widespread antibiotic resistance among bacterial pathogens is providing the impetus to explore novel sources of antimicrobial agents. Recently, the potent antibacterial activity of certain clay minerals has stimulated scientific interest in these materials. One such example is Kisameet glacial clay (KC), an antibacterial clay from a deposit on the central coast of British Columbia, Canada. However, our understanding of the active principles of these complex natural substances is incomplete. Like soils, clays may possess complex mixtures of bacterial taxa, including the Actinobacteria , a clade known to be rich in antibiotic-producing organisms. Here, we present the first characterization of both the microbial and geochemical characteristics of a glacial clay deposit. KC harbors surprising bacterial species richness, with at least three distinct community types. We show that the deposit has clines of inorganic elements that can be leached by pH, which may be drivers of community structure. We also note the prevalence of Gallionellaceae in samples recovered near the surface, as well as taxa that include medically or economically important bacteria such as Actinomycetes and Paenibacillus These results provide insight into the microbial taxa that may be the source of KC antibacterial activity and suggest that natural clays may be rich sources of microbial and molecular diversity. IMPORTANCE Identifying and characterizing the resident microbial populations (bacteria, viruses, protozoa, and fungi) is key to understanding the ecology, chemistry, and homeostasis of virtually all sites on Earth. The Kisameet Bay deposit in British Columbia, Canada, holds a novel glacial clay with a history of medicinal use by local indigenous people. We previously showed that it has potent activity against a variety of antibiotic-resistant bacteria, suggesting it could complement our dwindling arsenal of antibiotics. Here, we have characterized the microbiome of this deposit to gain insight

  19. Backfilling with mixtures of bentonite/ballast materials or natural smectitic clay?

    International Nuclear Information System (INIS)

    Pusch, R.

    1998-10-01

    Comparison of the performance of backfills of mixed MX-80 and crushed rock ballast, and a natural smectitic clay, represented by the German Friedland clay, shows that the latter performs better than mixtures with up to 30 % MX-80. Considering cost, Friedland clay prepared to yield air-dry powder grains is cheaper than mixtures of 30 % MX-80 and crushed ballast. Both technically and economically it appears that the Friedland clay is a competitive alternative to mixtures of 30 % MX-80 and crushed ballast. However, it remains to be demonstrated on a full scale that Friedland clay ground to a suitable grain size distribution can be acceptably compacted on site

  20. Experimental design applied optimization of a state in epoxy clay dispersion

    International Nuclear Information System (INIS)

    Paz, Juliana D'Avila; Bertholdi, Jonas; Folgueras, Marilena Valadares; Pezin, Sergio Henrique; Coelho, Luiz Antonio Ferreira

    2010-01-01

    This paper presents some analysis showed that the exfoliation / intercalation of a montmorillonite clay in epoxy resin such as viscosity, X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetry (TG). Increasing the viscosity of epoxy resin diglycidyl ether bisphenol A with the addition of clay associated with the sonification system at the time of dispersion is a good indication of exfoliation. The X-ray diffraction already cured composite shows a decrease of crystallinity of clay and EDS microanalysis of SEM, non-uniform dispersion of clay in epoxy resin. Thermal analysis TG composite clay / epoxy shows an increase in thermal stability relative to pure epoxy. (author)

  1. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    International Nuclear Information System (INIS)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-01-01

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  2. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Chen, R., E-mail: chenrui1005@hotmail.com [Shenzhen Key Laboratory of Urban and Civil Engineering for Disaster Prevention and Mitigation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China); Zhou, C. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  3. Effect of crude oil contamination on the engineering behavior of clay soils

    International Nuclear Information System (INIS)

    Rehman, H.; Abdoljaowad, S.N.

    2005-01-01

    Humans are, unintentionally or intentionally contaminating soil from different sources. The contaminated soil are not only a challenge for the environmentalists but also for geotechnical engineers. When contaminated by crude oil, the soil is subjected to a change in its engineering properties. The soil, which is mostly affected by its environment, is clay, being active electro-chemically. So, a comprehensive laboratory-testing program was performed to compare the engineering properties of an uncontaminated and a contaminated clay. Laboratory tests included all basic and advanced geotechnical tests along with Scanning Electron Microscope (SEM). Crude oil was chosen as the contaminant. The clay was taken from the Al-Qatif area of the Eastern province of Saudi Arabia. The selected soil is considered to be highly expansive in nature. The comparison between uncontaminated and crude oil contaminated clay showed that there would be a significant change in the engineering behavior of the clay if it were contaminated by crude oil. The contaminated clay behaves more like sand, owing to the formation of agglomerates. The coarse-grained soil-like behavior was observed in the strength of the oil-contaminated clay. The contamination has affected the plasticity and the cation exchange capacity of the investigated clay. The swelling pressure of the contaminated clay is 1/3 of that of the uncontaminated clay while the swelling is almost the same. (author)

  4. Clay shale as host rock. A geomechanical contribution about Opalinus clay; Tonstein als Wirtsgestein. Ein geomechanischer Beitrag ueber Opalinuston

    Energy Technology Data Exchange (ETDEWEB)

    Lempp, Christof; Menezes, Flora; Sachwitz, Simon [Halle-Wittenberg Univ., Halle (Saale) (Germany). Inst. fuer Geowissenschaften und Geographie

    2016-12-15

    The Opalinuston is a prominent rock representing the type of organic clay shales or clay stones within the sequence of Triassic and Jurassic marine sediments in Southern Germany. The rock forms a homogenous unit some ten meters thick. The degree of consolidation of this type of pelitic rock depends mainly on the former load conditions, but is also dependent on the long-term weathering and even on the present exposition. The geomechanical parameters such as shear strength, tensional strength and permeability vary with the state of consolidation and become important when the use is discussed of such rocks for radioactive waste disposal. A tunneling project at the northern escarpment of the Swabian Alb (Southwest Germany) within the Opalinus clay offered the rare opportunity to obtain fresh unweathered rock samples in greater amounts compared to fresh drilling cores from which geomechanical investigations are usually undertaken. Consequently, the results of geomechanical laboratory testings are presented in order to compare here the results of multistep triaxial compression tests, of hydraulic fracturing laboratory tests and of some other tests for rock characterization with the corresponding results of Opalinus clay sites in Switzerland that were investigated by the Swiss Nagra Company for host rock characterization. After a discussion of the relevant state of fresh Opalinus clay, especially of suction pressure conditions and saturation state, the results of triaxial shear tests are presented. Increasing shear deformation at increasing pressure and unchanged water saturation do not result in a significant strength reduction of the Opalinus clay. The rock shows increasing cohesion and stiffness, if multiple loading has repeatedly reached the failure point. Thus there is no increased permeability with continued shearing. Only at the beginning of the shearing process is a temporarily increased permeability to be expected due to dilatation processes. An increased

  5. On the thermal behaviour of Boom clay

    International Nuclear Information System (INIS)

    Delage, P.; Cui Yu Jun; Sultan, N.

    2004-01-01

    When temperature is increased, the various phenomena that occur in a saturated natural potential host clay for nuclear waste disposal (Boom clay from SCK-CEN in Mol, Belgium) were experimentally investigated in a temperature controlled high stress triaxial cell. Firstly, the pore pressure build-up due to the difference in thermal dilation of both water and minerals was investigated through thermal consolidation tests. Interesting information was obtained about the dissipation of thermally induced pore pressure in Boom clay, based on the standard Terzaghi consolidation theory. Secondly, the volume change behaviour in drained conditions (i.e. under a very slow temperature increase) confirmed that the clay overconsolidation ratio (OCR) controlled the nature of the volume changes. Whereas overconsolidated soils use to dilate as any material when temperature is elevated, normally consolidated soils present a decrease in volume, which is less common. The principles of a coupled thermo-elasto-plastic model that was specifically developed to model this particular behaviour are finally presented. Obviously, it appears necessary to account in detail for these thermal phenomena in order to properly understand the response of the geological barrier in the near field once nuclear waste has been stored. (orig.)

  6. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals

    Directory of Open Access Journals (Sweden)

    Hideo Hashizume

    2015-02-01

    Full Text Available Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the “RNA world”. The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components.

  7. An oxidized asphalt mastic - ''Jastab'' a clay shale stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Reported on is the devepment in Poland of a new compound - Jastab, which is introduced into clay solutions on a water base for ensuring stability of the walls of drilled wells, complexed with clay shales. Jastab is oxidized asphalt, which is a brown powder with a specific weight of 1.55-1.6 g/cm/sup 3/. The solution which consists of 100 parts by weight of Jastab and 160 parts by weight of diesel fuel, has a viscosity of 15 centapoise, a specific weight of 0.92 g/cm/sup 3/ and a water output at a temperature of 20/sup 0/C of 2.15 cm/sup 3//30 min. It i established that the introduction of Jastab into the clay muds makes it possible to control the osmosis process and to strongly limit the process of hydration of the clay shales, and to improve the rheological properties of the clay muds. The wide introduction of the Jastab compound is recommended in the passage of wells in the region of the Carpathians and in slanted wells.

  8. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    Science.gov (United States)

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.

  9. Faults in clays their detection and properties

    International Nuclear Information System (INIS)

    Baldi, G.; Carabelli, E.; Chiantore, V.; Colombo, P.F.; Gruszka, A.; Pensieri, R.; Superbo, S.; Gera, F.

    1991-01-01

    The 'Faults in clays project', a cooperative research effort between Ismes and Enea of Italy and BGS and Exeter University of the UK, has been aimed at assessing and improving the resolution capability of some high resolution geophysical techniques for the detection of discontinuities in clay formations. All Ismes activities have been carried out in Italy: they consisted in the search of one or more sites - faulted clay formations - suitable for the execution of geophysical and geotechnical investigations, in the execution of such tests and in additional geological surveys and laboratory (geotechnical and geochemical) testing. The selected sites were two quarries in plio-pleistocenic clay formations in central Italy where faults had been observed. The greatest part of the research work has been carried out in the Orte site where also two 90 m boreholes have been drilled and cored. Geophysical work at Orte consisted of vertical electrical soundings (VESs) and horizontal electrical lines (HELs), four high resolution seismic reflection lines, and in-hole and cross-hole logs. Laboratory activities were geotechnical characterization and permeability tests, and measurements of disequilibrium in the uranium decay series. At Narni, where Exeter University sampled soil gases for geochemical analyses, the geophysical work consisted in a geo-electrical survey (five VESs and two HELs), and in two high resolution reflection seismic lines. Additional investigations included a structural geology survey. The main conclusion of the research is that current geophysical techniques do not have a resolution capacity sufficient to detect the existence and determine the characteristics of faults in deep homogeneous clay formations

  10. Large scale laboratory diffusion experiments in clay rocks

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Missana, T.; Mingarro, M.; Martin, P.L.; Cormenzana, J.L.

    2005-01-01

    Full text of publication follows: Clay formations are potential host rocks for high-level radioactive waste repositories. In clay materials the radionuclide diffusion is the main transport mechanism. Thus, the understanding of the diffusion processes and the determination of diffusion parameters in conditions as similar as possible to the real ones, are critical for the performance assessment of deep geological repository. Diffusion coefficients are mainly measured in the laboratory using small samples, after a preparation to fit into the diffusion cell. In addition, a few field tests are usually performed for confirming laboratory results, and analyse scale effects. In field or 'in situ' tests the experimental set-up usually includes the injection of a tracer diluted in reconstituted formation water into a packed off section of a borehole. Both experimental systems may produce artefacts in the determination of diffusion coefficients. In laboratory the preparation of the sample can generate structural change mainly if the consolidated clay have a layered fabric, and in field test the introduction of water could modify the properties of the saturated clay in the first few centimeters, just where radionuclide diffusion is expected to take place. In this work, a large scale laboratory diffusion experiment is proposed, using a large cylindrical sample of consolidated clay that can overcome the above mentioned problems. The tracers used were mixed with clay obtained by drilling a central hole, re-compacted into the hole at approximately the same density as the consolidated block and finally sealed. Neither additional treatment of the sample nor external monitoring are needed. After the experimental time needed for diffusion to take place (estimated by scoping calculations) the block was sampled to obtain a 3D distribution of the tracer concentration and the results were modelled. An additional advantage of the proposed configuration is that it could be used in 'in situ

  11. Development of clay characterization methods for use in repository design with application to a natural Ca bentonite clay containing a redox front

    International Nuclear Information System (INIS)

    Karnland, O.; Pusch, R.

    1990-12-01

    Natural smectite clays in the form of 'true' bentonites formed from volcanic ash, or resulting from in-situ weathering of rock, are suitable for a number of sealing options in repositories, both as tightening component of sand/clay backfills and as highly efficient buffer for embedment of canisters, as well as for fracture sealing. The price and quality, in terms of smectite content and type of smectite, vary considerably and an optimum choice of clay for use in repositories has to be based on quantitative quality data. This requires characterization of the clay material for which a test scheme has been worked out. It comprises determination of the granulometrical, chemical, and mineralogical compositions, as well as of certain physical properties. Recent research shows the importance of the type of smectite for the longevity of buffers in repository environment, beidellite being less favourable and saponite superior to montmorillonite, which is the most common smectite species. The test scheme hence includes means of distinguishing between various smectite minerals. The influence of accessory minerals on the chemical integrity of both the smectite and the canister material requires identification also of such minerals, for which the scheme is useful as well. The report summarizes the various test procedures and gives data from application of the scheme to samples from a natural Ca bentonite containing a redox front. This study suggests that a significant part of the iron in the clay fraction is in the form of Fe 2+ in octahedral positions of the montmorillonite of unoxidized natural clay and that it is converted to Fe 3+ on oxidation. Part of the iron is probably in the form of the Fe 2+ Fe 3+ hydroxy compounds that give the unoxidized clay its bluish colour, while they can be assumed to be transformed to yellowish FeOOH forms on oxidation. (author)

  12. Facts and features of radionuclide migration in Boom Clay

    International Nuclear Information System (INIS)

    De Regge, P.; Henrion, P.; Monsecour, M.; Put, M.

    1988-01-01

    The evolution which took place during ten years of research on the behaviour of radionuclides in Boom Clay is described. Initially, the Boom Clay was regarded as a chemically inert exchanger and the radiochemical research aimed at determining the distribution of cations between the clay and some liquid phases. The observation that Boom Clay deteriorates in contact with air and loses important intrinsic properties formed a major breakthrough in the research and led to a careful examination of the real in-situ conditions. Efforts devoted to the understanding of the chemical factors pertaining to the pH, the redox potential, the extent of the buffering capacity of FeS 2 and CaCO 3 in equilibrium with the interstitial aqueous phase are reviewed. Also emerging from the overall picture was the role of the organic material present in the Boom Clay. In contrast to the water percolating fractured formations which may not be in equilibrium with the rock, the interstitial aqueous phase is completely in equilibrium with Boom Clay mainly because of its low permeability and the large excesses of buffering components. As the retention mechanisms are better understood, a more coherent picture is obtained from distribution and diffusion experiments and the effects of consolidation are being investigated in detail. 23 refs.; 4 figs.; 3 tabs

  13. Summary and conclusions of the faults-in-clay project

    International Nuclear Information System (INIS)

    Hallam, J.R.; Brightman, M.A.; Jackson, P.D.; Sen, M.A.

    1992-01-01

    This report summarises a research project carried out by the British Geological Survey, in cooperation with ISMES of Italy, into the geophysical detection of faults in clay formations and the determination of the hydrogeological effects of such faults on the groundwater flow regime. Following evaluation of potential research sites, an extensive programme of investigations was conducted at Down Ampney, Gloucester, where the Oxford Clay formation is underlain by the aquifers of the Great Oolite Limestone group. A previously unknown fault of 50 m throw was identified and delineated by electrical resistivity profiling; the subsequent development of a technique utilising measurements of total resistance improved the resolution of the fault 'location' to an accuracy of better than one metre. Marked anisotropy of the clay resistivities complicates conventional geophysical interpretation, but gives rise to a characteristic anomaly across the steeply inclined strata in the fault zone. After exploratory core drilling, an array of 13 boreholes was designed and completed for cross-hole seismic tomography and hydrogeological measurement and testing. The groundwater heads in the clays were found to be in disequilibrium with those in the aquifers, as a result of water supply abstraction. The indication is that the hydraulic conductivity of the fault zone is higher than that of the surrounding clay by between one and two orders of magnitude. Methodologies for the general investigation of faults in clay are discussed. (Author)

  14. Transient electromagnetic mapping of clay units in the San Luis Valley, Colorado

    Science.gov (United States)

    Fitterman, David V.; Grauch, V.J.S.

    2010-01-01

    Transient electromagnetic soundings were used to obtain information needed to refine hydrologic models of the San Luis Valley, Colorado. The soundings were able to map an aquitard called the blue clay that separates an unconfined surface aquifer from a deeper confined aquifer. The blue clay forms a conductor with an average resistivity of 6.9 ohm‐m. Above the conductor are found a mixture of gray clay and sand. The gray clay has an average resistivity of 21 ohm‐m, while the sand has a resistivity of greater than 100 ohm‐m. The large difference in resistivity of these units makes mapping them with a surface geophysical method relatively easy. The blue clay was deposited at the bottom of Lake Alamosa which filled most of the San Luis Valley during the Pleistocene. The geometry of the blue clay is influenced by a graben on the eastern side of the valley. The depth to the blue clay is greater over the graben. Along the eastern edge of valley the blue clay appears to be truncated by faults.

  15. Thermal Stability of Clay's Galleries in Polypropylene - Clay (montmorillonite Nanocomposites using Polypropylene-gMaleic Anhydride as Compatibilizer

    Directory of Open Access Journals (Sweden)

    Sotya Astutiningsih

    2010-10-01

    Full Text Available Superior properties of food packaging can be achieved using nanocomposite technology. However, fabrication of this materials are complex and expensive. Long term objectives of this research is the synthesis of low cost polypropylene clay nanocomposites (PPCN via a short-cut method known as ‘cascade engineering’. Cascade engineering principle in PPCN fabrication is performed by using compatibilizer (to enable the mixing of PP and clay masterbatch, and PPCN in one pot process using melt mixer. This paper present the experimental results using small-angle x-ray diffraction (XRD on the thermal stability of the PPCN. Results from the XRD analysis showed that the clay was intercalated, however no significant changes were observed as a result of variation in mixing time. XRD patterns of the annealed PPCN showed reduction of MMT’s gallery (deintercalation These phenomenon was probably caused by insufficient bonding and lack of compatibility between PP-g-MA and MMT.

  16. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    Science.gov (United States)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  17. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)/clay composites

    International Nuclear Information System (INIS)

    Marinovic, S.; Vukovic, Z.; Nastasovic, A.; Milutinovic-Nikolic, A.; Jovanovic, D.

    2011-01-01

    Highlights: → We synthesized macroporous composites of poly(GMA-co-EGDMA) and either raw or acid modified clay. → Morphological, textural and thermal properties of the composite with acid modified clay were significantly changed with retained macroporosity. → Composite with raw clay has enhanced thermal stability. - Abstract: In this study, macroporous composites of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) i.e. poly(GMA-co-EGDMA) and clay were prepared by radical suspension copolymerization. The composites with either raw (S 0 ) or acid-modified clay (S A ) were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric (TG) and textural analysis. The morphological, textural and thermal properties of the composite with raw clay (CP-S 0 ) differed slightly from those of the copolymer (CP), with exception of the thermal stability expressed in the shifting of the initial degradation temperature from 125 deg. C for CP to 210 deg. C for CP-S 0 . On the other hand, composite with modified clay (CP-S A ) was a material with significantly changed morphology, porous structure parameters and a qualitatively different thermal behavior in comparison to CP and CP-S 0 . CP-S A had mass residue, after heating at 600 deg. C, three times higher than the amount of S A introduced into the reaction system. This indicates a different manner of incorporation of S A , compared to S 0 , into the composite. Both the obtained composites retained their macroporosity and might be used in all applications that involve macroporous copolymers and, due to the altered thermal properties, their application may be extended.

  18. Preparation of intercalated polyaniline/clay nanocomposite and its

    Indian Academy of Sciences (India)

    Intercalated composite of polyaniline and clay has been reported. The composite was prepared by in situ polymerization of aniline within the layers of `illite' clay. The composite was characterized for its structural, spectral, and microscopic properties. At higher level of loading the layered structure of composite breaks ...

  19. Possibilities for the storage of radioactive waste in deep clay formations

    International Nuclear Information System (INIS)

    Le Pochat, G.; Lienhardt, M.J.; Peaudecerf, P.; Platel, J.P.; Simon, J.M.; Berest, P.; Charpentier, J.P.; Andre-Jehan, R.

    1984-02-01

    The possible storage sites in deep clay formations have been studied in parts of large French sedimentary basins which prima facie seem to have suitable characteristics. The most suitable areas were chosen on the basis of earlier oil prospecting data consisting of information on seismic movements, diagraphic well-logging data and old samples that happened to have been preserved. At the same time, the lithology of the clay formations can be determined from mineralogical studies on samples taken from boreholes or from outcrops. Before carrying out in situ experiments concerned with the geotechnical characterization of the deep clays, measurements were made in the laboratory on samples obtained in two ways: from tertiary clay outcrops and from cores taken at 950 m in the clay layers during oil well logging. The results of studies carried out on tertiary clays in Les Landes illustrate this procedure

  20. Montmorillonite clay/polypropylene (HMSPP) nanocomposites: evaluation of thermal and mechanical properties

    International Nuclear Information System (INIS)

    Komatsu, L.G.H.; Oliani, W.L.; Lugao, A.B.; Parra, D.F.

    2014-01-01

    The evaluation of HMSPP (high melt strength polypropylene) properties in nanocomposites was done in composites of 0.1; 1; 3; 5; 10 wt% of Cloisite 20A clay. The PP-g-MA (polypropylene graft maleic anhydride) was the compatibilizer agent in the process of extrusion in twin-screw. Mechanical tests performed in the nanocomposites with higher clay content showed higher values of rupture in 5 and 10 wt% of Cloisite. The thermal properties were evaluate utilizing Calorimetry Differential Exploratory (DSC) and in the sample of 10 wt% of Cloisite were observed increase of the melting temperature and increase of crystallinity. The morphology was investigated by the Scanning Electron Microscopy (SEM) and Fourier Transformed Infrared (FTIR), in which the sample with lower clay amount, 1 wt% of Cloisite showed better dispersion of the clay. X-Ray Diffraction reported the clay intercalation in the sample with 5 wt% of clay. (author)

  1. Change effects in the land use about the mineral clay

    International Nuclear Information System (INIS)

    Cespedes Payret, C.; Gutierrez, O; Panario, D.; Pineiro, G

    2012-01-01

    The Pampas land changes during the Quaternary, left their mark on the mineralogy of soil clays. This work is oriented to compare the mineralogical composition of the clays and the value of potassium in an eucalyptus forestation. These results show that the mineralogical illite alteration is the cause of its destruction. This clay is the main reservoir of potassium for the agricultural soils

  2. Evaluation of the bleaching flux in clays containing hematite and different clay minerals; Avaliacao do fundente descolorante em argilas contendo hematita e diferentes argilominerais

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos [Universidade Tecnologica Federal do Parana (DAMEC/UFTPR), Pato Branco, PR (Brazil); Morelli, M.R., E-mail: geocrisr@utfpr.edu.com, E-mail: morelli@power.ufscar.br [Universidade Federal de Sao Carlos (DEMa/PPGCEM/UFSCar), SP (Brazil)

    2016-07-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  3. Backfilling with mixtures of bentonite/ballast materials or natural smectitic clay?

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, (Sweden)

    1998-10-01

    Comparison of the performance of backfills of mixed MX-80 and crushed rock ballast, and a natural smectitic clay, represented by the German Friedland clay, shows that the latter performs better than mixtures with up to 30 % MX-80. Considering cost, Friedland clay prepared to yield air-dry powder grains is cheaper than mixtures of 30 % MX-80 and crushed ballast. Both technically and economically it appears that the Friedland clay is a competitive alternative to mixtures of 30 % MX-80 and crushed ballast. However, it remains to be demonstrated on a full scale that Friedland clay ground to a suitable grain size distribution can be acceptably compacted on site 14 refs, 32 figs, 6 tabs

  4. Clay squirt: Local flow dispersion in shale-bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2017-01-01

    Dispersion of elastic-wave velocity is common in sandstone and larger in shaly sandstone than in clean sandstone. Dispersion in fluid-saturated shaly sandstone often exceeds the level expected from the stress-dependent elastic moduli of dry sandstone. The large dispersion has been coined clay...... squirt and is proposed to originate from a pressure gradient between the clay microporosity and the effective porosity. We have formulated a simple model that quantifies the clay-squirt effect on bulk moduli of sandstone with homogeneously distributed shale laminae or dispersed shale. The model...... predictions were compared with the literature data. For sandstones with dispersed shale, agreement was found, whereas other sandstones have larger fluid-saturated bulk modulus, possibly due to partially load-bearing shales or heterogeneous shale distribution. The data that agree with the clay-squirt model...

  5. Study of Adsorption of Phenanthrene on Different Types of Clay Minerals

    International Nuclear Information System (INIS)

    Contreras, M. L.; Escolano, O.; Rodriguez, V.; Diaz, F. J.; Perez, R.; Garcia, S.; Garcia Frutos, F. J.

    2003-01-01

    The fate and behaviour of non-ionic hydrophobic organic compounds in deep soil is mainly controlled by the mineral fraction present in the soil due to the very low organic carbon content of the deep soil. The mineral fraction that may greatly influence the fate and transport of these compounds due to its presence and properties are the clay minerals. Clay minerals also become increasingly important in low organic matter content soils. There tree, studies of non-ionic hydrophobic organic compounds adsorption on clay minerals without organic matter are necessary lo better understand the fate and transport of these compounds. In this work we used phenanthrene as model compound of non-ionic hydrophobic organic compound and four pure clay minerals: kaolinite, illite, montmorillonite, and vermiculite including muscovite mica. These clays minerals are selected due to its abundance in represents ve Spanish soils and different properties as its structural layers and expanding capacity. Batch experiments were performed using phenanthrene aqueous solutions and the clays selected. Phenanthrene sorption isotherms for all clays, except muscovite mica, were best described by the Freundlich model. Physical sorption on the external surfaces is the most probable adsorption mechanisms. In this sense, the presence of non-polar nano-sites on clay surfaces could determine the adsorption of phenanthrene by hydrophobic interaction on these sites. (Author) 22 refs

  6. Disposal of radioactive waste into clay layers the most natural option

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Bonne, A.

    1990-01-01

    Among the geological formations suitable for the disposal of radioactive waste, the clay formations provide outstanding opportunities : impermeable for water, self-healing, strongly absorbing for ions, widespread in nature. The self-healing properties of large clay deposits have been demonstrated by their auto-sealing and plastic response to tectonic stress and magmatic intrusion. The discovery of fossil trees preserved after geologic periods of burial in clay is one of the most dramatic illustrations of their entombment ability. The physicochemical and hydrologic characteristics of the Boom clay are very favorable for the confinement of migrating radionuclides within the layer. Except for the extremely long half-lives ( 237 Np, 129 I,...) no radionuclide can escape from the clay body. The effects of heat, metal corrosion, material interaction and biochemical degradation on the natural properties of the clay layer are discussed in some detail and related to the natural properties of the clay formation which have to stay unaltered for geologic periods. The first Safety Assessment Report, established by NIRAS-ONDRAF in close collaboration with SCK-CEN, has been submitted to a multi-disciplinary task force which is to advise the Belgian Government on the suitability of the Boom clay layer below the Nuclear Research site of Mol as a potential host formation for nuclear waste coming from the electronuclear program. 13 refs., 2 figs., 1 tab

  7. Six-phase soil heating accelerates VOC extraction from clay soil

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Roberts, J.S.; Bergsman, T.M.; Caley, S.M.; Heath, W.O.; Miller, M.C.; Moss, R.W.; Schalla, R.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1994-08-01

    Six-Phase Soil Heating (SPSH) was demonstrated as a viable technology for heating low permeability soils containing volatile organic contaminants. Testing was performed as part of the Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration (VOC Non-Arid ID) at the Savannah River Site. The soil at the integrated demonstration site is contaminated with perchloroethylene (PCE) and trichloroethylene (TCE); the highest soil contamination occurs in clay-rich zones that are ineffectively treated by conventional soil vapor extraction due to the very low permeability of the clay. The SPSH demonstration sought to heat the clay zone and enhance the performance of conventional soil vapor extraction. Thermocouples at thirty locations quantified the areal and vertical heating within the treated zone. Soil samples were collected before and after heating to quantify the efficacy of heat-enhanced vapor extraction of PCE and TCE from the clay soil. Samples were taken (essentially every foot) from six wells prior to heating and adjacent to these wells after heating. Results show that contaminant removal from the clay zone was 99.7% (median) within the electrode array. Outside the array where the soil was heated, but to only 50 degrees C, the removal efficiency was 93%, showing that heating accelerated the removal of VOCs from the clay soil. The accelerated remediation resulted from effective heating of the contaminated clay zone by SPSH. The temperature of the clay zone increased to 100 degrees C after 8 days of heating and was maintained near 100 degrees C for 17 days. Electrical heating removed 19,000 gal of water from the soil as steam, with peak removal rate of 1,500 gpd of condensed steam

  8. Centrifuge modelling of rigid piles in soft clay

    DEFF Research Database (Denmark)

    Klinkvort, R.T.; Poder, M.; Truong, P.

    2016-01-01

    of this study is to employ centrifuge modelling in order to derive experimental p-y curves for rigid piles embedded in over-consolidated soft clay. A kaolin clay sample was prepared and pre-consolidated by applying a constant pressure at the soil surface, while different over-consolidation ratios were achieved...

  9. "Clay grounds” in Denmark: from soil to canvas

    DEFF Research Database (Denmark)

    Buti, David; Vila, Anna; Haack Christensen, Anne

    decorative scheme showed that at least two grounds from those paintings consist mainly of clay mixed with iron and magnesium-containing compounds. Furthermore, both SEM-EDX and µRaman measurements clearly highlighted the presence of a large amount of quartz particles. It is well known that clay is a sheet...

  10. Industrial testing of modified clay powders by the ''Permneft''' organization

    Energy Technology Data Exchange (ETDEWEB)

    Matytsyn, V I; Kosivchenko, A M; Ryabchenko, V I; Shishov, V A

    1980-01-01

    VNIIKRneft' has developed a modified clay powder based on Cherkask bentonite with one ton of solution resulting in 20-28 cubic meters of powder per TU 39-08-123-77 formula. The modification stems from the type of bentonite treatment used. Bentonite is used in the amount of 3-5% of the total mass and the treatment involves the use of 0.3% calcium soda, copolymer methacrylic acid with M-14VV methacrylate. These reagents induce processes of change within the clay. The carbonate-nitrate activity serves to penthiatize the clay particles and the reagent solution which accompany the process of coagulation in the polymer structure, and in turn, increases the incidence of viscosity in the newly emerging systems. Tests indicate that the use of modified clay powder enhances drill bit pass-through. The large quantity of drilling solution resulting from one ton of modified clay powder further enhances the practical aspects of this system and reduces overall expenditures for solution treatment and clay powder while permitting the reduction of expenditures for other chemical reagents. Such economic benefits have been confirmed by industrial testing.

  11. Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials.

    Science.gov (United States)

    Naik, Sajo P; Scholin, Jonathon; Ching, San; Chi, Fang; Herpfer, Marc

    2018-01-10

    This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.

  12. Contrast in clay mineralogy and their effect on reservoir properties in ...

    African Journals Online (AJOL)

    Adigrat sandstone formation in the Blue Nile Basin is dominated by quartz arenite and subarkosic arenite, and cemented by carbonate, clay minerals and quartz overgrowths. Clay minerals in the Adigrat sandstone formation are dominated by kaolinite, illite and chlorite. Illite is the common grain-coating clay mineral.

  13. Moessbauer firing study of Peruvian clays

    International Nuclear Information System (INIS)

    Salazar, R.; Wagner, U.; Wagner, F.E.

    1983-01-01

    In connection with work on ancient ceramics Moessbauer studies of the firing behaviour of six Peruvian clays have been performed in oxidizing and reducing atmospheres. For two clays, one of them is poor, the other one is rich in oxides, the change of the Moessbauer parameters on firing between 100 and 1350 0 C was measured in detail, both with and without preceding reduction. The minerals present at characteristic temperatures are determined by X-ray diffraction and an attempt is made to discuss the physical and chemical processes occurring in the different temperature ranges. (author)

  14. Studying the Effect of Crystal Size on Adsorption Properties of Clay

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2012-01-01

    Sorption of radionuclides on mineral surfaces strongly affects their fate and mobility in the geosphere. Therefore using of clay minerals as a barrier In LLW repositories can delay the dispersion of radionuclides into environment. That is of fundamental importance for maintaining environmental quality and for the safety and long-term performance of waste repositories. In this study XRD analysis was applied to investigate three different types of clay minerals for quantitative analysis of each type and the Mud Master program for the measurement of the crystallite thickness distribution (CTD) according to of the BWA (Bertaut-Warren Averbach) technique. Six sample s of the three types of clay (Kaolin, Aswan clay and Ball clay) were studied. XRD and Mud Master were used to investigate the relation between CTD and Cs -137 uptake mechanism onto the clay. It was found that the best adsorption capacity related to the kaolinite content and the lowest CTD

  15. Synthesis and characterization of organophilic clay from Cuban Chiqui Gomez bentonite

    International Nuclear Information System (INIS)

    Cortes, Guillermo R. Martin; Hennies, Wildor T.; Valera, Ticiane S.; Esper, Fabio J.; Diaz, Francisco R. Valenzuela

    2009-01-01

    Smectite are clay minerals with a layered structure and nanometric thickness, high specific area and a huge variety of uses. Consisting on stacked layers of about 1nm thickness, including two silica tetrahedral and one octahedral sheet. Properties of natural Smectite can be enhanced by organic modification, due to the substitution of the exchangeable cations in the interlayer area. In fact, the properties of the modified smectite (organophilic clay) are related to its modified chemical composition and structural parameters. The interaction of smectite clays with surfactants has an important interest in the fields of drilling fluids, paints, cosmetic, ceramic industries and others. Recent applications are: remediation of contaminated areas and polymer/clay nanocomposites. The aim of this paper is to obtain organophilic clays using a bentonite from the Chiqui Gomez deposit in Central Cuba. The raw and organophilic clays were analyzed by DRX, SEM, swelling capacity in organic solvents and others. (author)

  16. Studies on the acid activation of Brazilian smectitic clays

    Directory of Open Access Journals (Sweden)

    Valenzuela Díaz Francisco R.

    2001-01-01

    Full Text Available Fuller's earth and acid activated smectitic clays are largely used as bleaching earth for the industrial processing of vegetable, animal and mineral oils and waxes. The paper comments about the nomenclature used for these materials, the nature of the acid activation of smectitic clays (bentonites, activation laboratory procedures and presents a review of the acid activation of bentonites from 20 deposits from several regions of Brazil. The activated clays were tested and show good decolorizing power for soybean, castor, cottonseed, corn and sunflower oils.

  17. Imaging techniques in clay sciences: a key tool to go a step further

    International Nuclear Information System (INIS)

    Robinet, J.C.; Michau, N.; Schaefer, T.

    2012-01-01

    Document available in extended abstract form only. Clay-rocks and clay based materials are greatly considered in nuclear waste geological repository due to their multiple favourable properties (low permeability, low diffusion coefficients, high retention capacity for radionuclides, swelling...). In this context, the study of clays and clay rocks covers a large variety of scientific disciplines such as geology, mineralogy, geomechanics, geochemistry or hydrodynamics. These disciplines are linked together by a common issue which is the understanding and the predicting of clay and clay-rock behaviors and properties under various thermal-hydrological-mechanical- chemical (THMC) conditions. Linking the fundamental forces to macroscopic (from millimeter to several meters) behaviors and properties is nevertheless not straightforward for porous media such as clay-rocks and clay based materials. Currently, it remains a key challenge for the scientific community. Imaging techniques offer solutions to face up this challenge by characterizing the internal microstructure of material and rocks at different levels of resolution. Due to the reactivity of clay minerals with water (swelling, mechanical deformation) or with repository components (mineral transformations at iron, copper or concrete interfaces) and the multi-scale distribution of pore and mineral sizes, classically ranged from nano-meter to millimeter, imaging clay based materials and clay-rocks itself is unanimously recognized as a challenging task. In the 80's, despite several constraints and limits, the microstructure of clays had been intensively imaged using conventional 2D imaging techniques such as optical microscopy, X-ray radiography, scanning electron microscopy or transmission electron microscopy [1]. The images acquired using these techniques have given us a pictorial frame of reference of the internal structures of clay rocks and clay based materials at various resolution levels. They have also highlighted

  18. Clay-based geothermal drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  19. Thermomechanical behaviour of boom clay

    International Nuclear Information System (INIS)

    Sultan, N.; Delage, P.; Cui, Y.J.

    2000-01-01

    Special attention has been recently paid on temperature effects on the behaviour of deep saturated clays, in relation with nuclear deep waste storage. However, few experimental data are presently available, and existing constitutive models need to be completed. This note is aimed at completing, both experimentally and theoretically, the understanding of the effects of the over-consolidation ration on the thermal volume changes of Boom clay (Belgium). The experimental data obtained here are in a good agreement with existing data. As a complement to existing data, they are used to develop a new elastoplastic model. The adoption of a second coupled plastic mechanism provides good simulations on a complex thermo-mechanical path. (authors)

  20. Learning of Cross-Sectional Anatomy Using Clay Models

    Science.gov (United States)

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  1. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    Energy Technology Data Exchange (ETDEWEB)

    Jove-Colon, Carlos F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weck, Philippe F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kim, Kunhwi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheshire, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaich, Sarah [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolery, Thomas J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, Terry [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, William L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-04

    Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barrier system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive

  2. Migration of leachate solution through clay soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Warith, M M

    1987-01-01

    The problem of domestic solid wastes buried in landfill sites is viewed from the aspect of leachate contamination and migration in the substrate, and the efficiency of natural clay barriers as an expedient economic lining material is assessed. Various chemical constituents of the landfill leachate of an actual waste containment site at Lachenaie (35 km east of Montreal) were determined from samples collected from specially designed basins. Data for companion tests on laboratory columns are also presented. Chemical analysis on samples from the basins and leachates from the columns measured changes in the concentration of: (a) cations (Na, K, Ca, and Mg), (b) anions (Cl, HCO/sub 3/, and CO/sub 3/) (c) total organic carbon (TOC), and (d) heavy metals (Fe, Zn, Pb, and Cu). The physical parameters measured included: (a) pH, and (b) specific conductivity. Predictions, using a dispersion-convection model for concentration profile development for either adsorbed or retained contaminants, were compared with the experimentally determined profiles (both in leaching columns and landfill laboratory model). Another set of experiments was also conducted to evaluate the effect of some organic fluids on the geotechnical properties of different clay soils (natural clay and two reference clay soils: illite and kaolinite). The results from this study have demonstrated that the natural clay soil can be used to adequately contain the different contaminant species usually present in the leachate solutions. Furthermore, the data suggested that under favorable soil conditions, landfill leachates containing low levels of trace metals will not pose a substantial contamination threat to the subsurface environment, provided that a proper thickness of barrier is used.

  3. Repository tunnel construction in deep clay formations

    International Nuclear Information System (INIS)

    Clarke, B.G.; Mair, R.J.; Taylor, R.N.

    1992-01-01

    One of the objects of the Hades project at Mol, Belgium has been to evaluate the feasibility of construction of a deep repository in the Boom clay formation at depth of approximately 225 metres. The main objective of the present project was to analyse and interpret the detailed geotechnical measurements made around the Hades trial shaft and tunnel excavations and evaluate the safety of radioactive waste disposal in a repository facility in deep clay formations. Plasticity calculations and finite element analyses were used which gave results consistent with the in-situ measurements. It was shown that effective stress analysis could successfully predict the observed field behaviour. Correct modelling of the small-strain stiffness of the Boom clay was essential if reasonable predictions of the pore pressure response due to construction are to be made. The calculations undertaken indicated that, even in the long term, the pressures on the test drift tunnel lining are likely to be significantly lower than the overburden pressure. Larger long-term tunnel lining pressures are predicted for impermeable linings. A series of laboratory stress path tests was undertaken to determine the strength and stiffness characteristics of the Boom clay. The tests were conducted at appropriate effective stress levels on high-quality samples retrieved during construction of the test drift. The apparatus developed for the testing is described and the results discussed. The development of a self boring retracting pressure-meter is described. This novel in-situ testing device was specifically designed to determine from direct measurements the convergence/confinement curve relevant to tunnelling in clay formations. 44 refs., 60 figs., 3 tabs

  4. Support to other nuclear waste disposal programmes considering clay as a potential host rock

    International Nuclear Information System (INIS)

    Volckaert, G.

    2009-01-01

    SCK-CEN started to study the Boom Clay as potential host rock for nuclear waste disposal in 1974. Since then, SCK-CEN has been involved in other international projects studying clay as potential host rock in order to get a broader support for disposal in clay and to acquire broader insight in clay behaviour. Besides Belgium, France and Switzerland are currently investigating clay formations as potential host rock for the disposal of radioactive waste. In the Netherlands, clay formations have always been considered as an alternative to disposal in salt. The general interest in clays is increasing: in Germany and The United Kingdom, it was decided a few years ago that besides respectively salt and crystalline rock also clays need to be evaluated. In Eastern and Central Europe, the Slovak republic and Lithuania consider both clay and granite as possible host rocks for spent fuel while in Russia recently a project was started to study the possible disposal of low and medium level waste in a clay formation in the Leningrad area. Within the EC research and development framework programs and the OECD/NEA Clay Club, collaborations were developed between countries studying clay and with a strong involvement of SCK-CEN. The collaboration with the Eastern and Central European countries is supported through the support programme of the Belgian Ministry of Economic affairs. The objectives of these co-operations are to deliver expert services to other nuclear waste disposal programs considering clay as host rock; to to acquire broader international recognition of our expertise and support for the development of nuclear waste disposal in clay; to get a broader insight in the properties and behaviour of clays

  5. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    Science.gov (United States)

    Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin

    2012-01-01

    The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515

  6. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    Science.gov (United States)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  7. An assessment of dioxin levels in processed ball clay from the United States

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, J.; Byrne, C. [USEPA, Stennis Space Ctr. Mississippi (United States); Schaum, J. [USEPA, Washington, DC (United States)

    2004-09-15

    Introduction The presence of dioxin-like compounds in ball clay was discovered in 1996 as a result of an investigation to determine the sources of elevated levels of dioxin found in two chicken fat samples from a national survey of poultry. The investigation indicated that soybean meal added to chicken feed was the source of dioxin contamination. Further investigation showed that the dioxin contamination came from the mixing of a natural clay known as ''ball clay'' with the soybean meal as an anti-caking agent. The FDA subsequently discontinued the use of contaminated ball clay as an anti-caking agent in animal feeds. The source of the dioxins found in ball clay has yet to be established. A comparison of the characteristic dioxin profile found in ball clay to those of known anthropogenic sources from the U.S.EPA Source Inventory has been undertaken, and none of those examined match the features found in the clays. These characteristic features together with the fact that the geologic formations in which the clays are found are ancient suggest a natural origin for the dioxins. The plasticity of ball clays makes them an important commercial resource for a variety of commercial uses. The percentage of commercial uses of ball clay in 2000 included: 29% for floor and wall tile, 24% for sanitary ware, 10% pottery, and 37% for other industrial and commercial uses. The total mining of ball clay in the U.S. for 2003 was 1.12 million metric tons. EPA is examining the potential for the environmental release of dioxins from the processing/use of ball clays and evaluating potential exposure pathways. Part of this overall effort and the subject of this study includes the analysis of dioxin levels found in commercially available ball clays commonly used in ceramic art studios.

  8. The effect of clay on the dissolution of nuclear waste glass

    Science.gov (United States)

    Lemmens, K.

    2001-09-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher

  9. The effect of clay on the dissolution of nuclear waste glass

    International Nuclear Information System (INIS)

    Lemmens, K.

    2001-01-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher

  10. Clays in natural and engineered barriers for radioactive waste confinement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Andra organised an International Symposium on the use of Natural and Engineered Clay-based Barriers for the Containment of Radioactive Waste hold at the Congress Centre of Tours, France, in March 2005. The symposium provided an opportunity to take stock of the potential properties of the clay-based materials present in engineered or natural barriers in order to meet the containment specifications of a deep geological repository for radioactive waste. It was intended for specialists working in the various disciplines involved with clays and clay based minerals, as well as scientists from agencies and organisations dealing with investigations on the disposal of high-level and long-lived radioactive waste. The themes of the Symposium included geology, geochemistry, transfers of materials, alteration processes, geomechanics, as well as the recent developments regarding the characterisation of clays, as well as experiments in surface and underground laboratories. The symposium consisted of plenary sessions, parallel specialized sessions and poster sessions. (author)

  11. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  12. A review of WIPP [Waste Isolation Pilot Plant] repository clays and their relationship to clays of adjacent strata

    International Nuclear Information System (INIS)

    Krumhansl, J.L.; Kimball, K.M.; Stein, C.L.

    1990-12-01

    The Salado Formation is a thick evaporite sequence located in the Permian Delaware Basin of southeastern New Mexico. This study focuses on the intense diagenetic alteration that has affected the small amounts of clay, feldspar, and quartz washed into the basin during salt deposition. These changes are of more than academic interest since this formation also houses the WIPP (Waste Isolation Pilot Plant). Site characterization concerns warrant compiling a detailed data base describing the clays in and around the facility horizon. An extensive sampling effort was undertaken to address these programmatic issues as well as to provide additional insight regarding diagenetic mechanisms in the Salado. Seventy-five samples were collected from argillaceous partings in halite at the stratigraphic level of the Waste Isolation Pilot Plant (WIPP). These were compared with twenty-eight samples from cores of the Vaca Triste member of the Salado, a thin clastic unit at the top of the McNutt potash zone, and with a clay-rich sample from the lower contact of the Culebra Dolomite (in the overlying Rustler Formation). These settings were compared to assess the influence of differences in brine chemistry (i.e., halite and potash facies, normal to hypersaline marine conditions) and sediment composition (clays, sandy silt, dolomitized limestone) on diagenetic processes. 44 refs., 11 figs., 5 tabs

  13. Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts

    OpenAIRE

    Tourchi, Saeed; Hamidi, Amir

    2015-01-01

    A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rul...

  14. Shear Strength of Remoulding Clay Samples Using Different Methods of Moulding

    Science.gov (United States)

    Norhaliza, W.; Ismail, B.; Azhar, A. T. S.; Nurul, N. J.

    2016-07-01

    Shear strength for clay soil was required to determine the soil stability. Clay was known as a soil with complex natural formations and very difficult to obtain undisturbed samples at the site. The aim of this paper was to determine the unconfined shear strength of remoulded clay on different methods in moulding samples which were proctor compaction, hand operated soil compacter and miniature mould methods. All the samples were remoulded with the same optimum moisture content (OMC) and density that were 18% and 1880 kg/m3 respectively. The unconfined shear strength results of remoulding clay soils for proctor compaction method was 289.56kPa with the strain 4.8%, hand operated method was 261.66kPa with the strain 4.4% and miniature mould method was 247.52kPa with the strain 3.9%. Based on the proctor compaction method, the reduction percentage of unconfined shear strength of remoulded clay soil of hand operated method was 9.66%, and for miniature mould method was 14.52%. Thus, because there was no significant difference of reduction percentage of unconfined shear strength between three different methods, so it can be concluded that remoulding clay by hand operated method and miniature mould method were accepted and suggested to perform remoulding clay samples by other future researcher. However for comparison, the hand operated method was more suitable to form remoulded clay sample in term of easiness, saving time and less energy for unconfined shear strength determination purposes.

  15. Effects of leachate concentration on the integrity of solidified clay liners.

    Science.gov (United States)

    Xue, Qiang; Zhang, Qian

    2014-03-01

    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  16. Søvind Marl - Behaviour of a plastic fissured Eocene clay

    DEFF Research Database (Denmark)

    Grønbech, Gitte Lyng

    The thesis regards the characterisation and determination of properties of Søvind Marl, a Danish highly fissured and plastic clay. Highly fissured, plastic clays are present at great depths several places in Denmark, where extensive development activity is currently ongoing. Nonetheless...... will determine the correlation factors from field tests to undrained shear strength. Finally, the thesis is concluded with recommendations for further work within the field of plastic clays....

  17. Effect of illite clay and divalent cations on bitumen recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X. [SNC-Lavalin Inc., Calgary, AB (Canada); Repka, C. [Baker Petrolite Corp., Fort McMurray, AB (Canada); Xu, Z.; Masliyah, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-12-15

    Nearly 35 per cent of Canada's petroleum needs can be met from the Athabasca oil sands, particularly as conventional sources of petroleum decline. The interactions between bitumen and clay minerals play a key role in the recovery process of bitumen because they affect bitumen aeration. The 2 clays minerals found in various oil sands extraction process streams are kaolinite and illite. In this study, doping flotation tests using deionized water and electrokinetic studies were performed to examine the effect of illite clays on bitumen recovery. The effect of magnesium ions was also examined and compared with calcium ions. This paper also discussed the effects of temperature and tailings water chemistry. The negative effect of illite clay on bitumen recovery was found to be associated with its acidity. Denver flotation cell measurements indicated that the addition of calcium or magnesium ions to the flotation deionized water had only a slight effect on bitumen recovery, but the co-addition of illite clay and divalent cations resulted in a dramatic reduction in bitumen recovery. The effect was more significant at lower process temperature and low pH values. Zeta potential distributions of illite suspensions and bitumen emulsions were measured individually and as a mixture to determine the effect of divalent cations on the interaction between bitumen and illite clay. The presence of 1 mM calcium or magnesium ions in deionized water had a pronounced effect on the interactions between bitumen and illite clay. Slime coating of illite onto bitumen was not observed in zeta potential distribution measurements performed in alkaline tailings water. When tests were conducted using plant recycle water, the combination of illite clay and divalent cations did not have an adverse effect on bitumen recovery. 25 refs., 3 tabs., 15 figs.

  18. Adsorption of copper ions of natural montmorillonite clay

    Directory of Open Access Journals (Sweden)

    Pimneva Ludmila

    2017-01-01

    Full Text Available The prospects of montmorillonite clay using for the extraction of copper ions from natural and waste waters were determined. Specified chemical and phase composition of natural forms of the montmorillonite clay are shown in the article. Quantitative characteristics of adsorption process of copper ions, the statistical exchange capacity is 1,21 (298 К, 1,25 (313 К, 1,43 (333 К. The authors have studied the balance of copper ions by the method of constructing the isotherms. The description of the adsorption process was carried out by the Langmuir, Freundlich and Temkin models. The calculations showed that the best data for the sorption described by Langmuir model. The nature of the interaction of copper ions with montmorillonite clay in natural form is presented. The calculated thermodynamic parameters of the adsorption process, the obtained values of the Gibbs energy have a negative sign -11,5 (298 К, -15,6 (313 К, -16,2 (333 К кJ/mol, that corresponds to a sustainable consolidation of copper ions on the surface of the montmorillonite clay.

  19. Iron-clay interactions under a thermal gradient

    International Nuclear Information System (INIS)

    Jodin-Caumon, Marie-Camille; Mosser-Ruck, Regine; Randi, Aurelien; Cathelineau, Michel; Michau, Nicolas

    2010-01-01

    Document available in extended abstract form only. Repository in deep geological formations is considered as a possible solution for long-term high-level nuclear waste (HLW) management. The concept generally consists in a multiple barriers system including steel canister in a clay host rock. Heat and radiation emissions by HLW, corrosion of the canister and desaturation/re-saturation of the clay may affect the properties of the geological formation. In this context, the possible mineralogical evolutions of clays in contact with metal iron were studied in various conditions simulating those of HLW repository. Most of these studies were carried out at a constant temperature whereas the system will undergo a thermal gradient in time (progressive decrease of the temperature of the HLW with the decrease of its activity) and space (from the waste to the host rock). A thermal gradient may imply mass transport phenomena by convection and diffusion processes as a function of temperature, gradient intensity and the nature of the chemical elements. Here we show the effect of a thermal gradient in space on the interaction between the argillite from the ANDRA underground laboratory at Bure (Meuse/Haute-Marne) and metal iron. Tube-in-tube experiments were carried out. Argillite was put in two previously drilled platinum capsules (Diam. holes: 200 μm). Metal iron (powder and plate) was added in one of the Pt capsule. The Pt capsules were then loaded at the two ends of a gold tube. A fluid (H 2 O or a saline solution) was added and the gold tube was sealed and regularly pinched to form 5 precipitation niches. The iron/argillite mass ratio ranged between 0.3 and 0.5 and the fluid/argillite mass ratio was around 10. A thermal gradient 80 deg. C-150 deg. C or 150 deg. C-300 deg. C was applied to the tube during 3 and 6 months. The end of the gold tube with the Pt capsule containing iron was placed at the hot point (max. temperature 150 deg. C or 300 deg. C) or at the cold point (min

  20. Basic Deformation Parameters of Solid Clay Bricks and Small Masonry Walls

    Directory of Open Access Journals (Sweden)

    P. Bouška

    2000-01-01

    Full Text Available The basic mechanical properties of clay brick masonry and its components were experimentally investigated in the laboratories of the Klokner Institute. The test specimens of masonry materials and the relevant mechanical properties have been identified in solid clay bricks and cement-lime mortar. The aim of the research activity was to study both the deformability of the prevailing type of clay masonry in the existing buildings, i.e. the masonry made from the solid clay units and the lime-cement mortar, and the most important mechanical properties of masonry components.

  1. Studies on structural properties of clay magnesium ferrite nano composite

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Singh, Mandeep [Department of Chemistry, Punjab Agricultural University, Ludhiana-141004 (India); Jeet, Kiran, E-mail: kiranjeet@pau.edu; Kaur, Rajdeep [Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana-141004 (India)

    2015-08-28

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m{sup 2}/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  2. Primordial clays on Mars formed beneath a steam or supercritical atmosphere.

    Science.gov (United States)

    Cannon, Kevin M; Parman, Stephen W; Mustard, John F

    2017-12-06

    On Mars, clay minerals are widespread in terrains that date back to the Noachian period (4.1 billion to 3.7 billion years ago). It is thought that the Martian basaltic crust reacted with liquid water during this time to form hydrated clay minerals. Here we propose, however, that a substantial proportion of these clays was formed when Mars' primary crust reacted with a dense steam or supercritical atmosphere of water and carbon dioxide that was outgassed during magma ocean cooling. We present experimental evidence that shows rapid clay formation under conditions that would have been present at the base of such an atmosphere and also deeper in the porous crust. Furthermore, we explore the fate of a primordial clay-rich layer with the help of a parameterized crustal evolution model; we find that the primordial clay is locally disrupted by impacts and buried by impact-ejected material and by erupted volcanic material, but that it survives as a mostly coherent layer at depth, with limited surface exposures. These exposures are similar to those observed in remotely sensed orbital data from Mars. Our results can explain the present distribution of many clays on Mars, and the anomalously low density of the Martian crust in comparison with expectations.

  3. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  4. Assessment of clay stiffness and strength parameters using index properties

    Directory of Open Access Journals (Sweden)

    Sayed M. Ahmed

    2018-06-01

    Full Text Available A new approach is developed to determine the shear wave velocity in saturated soft to firm clays using measurements of the liquid limit, plastic limit, and natural water content with depth. The shear wave velocity is assessed using the site-specific variation of the natural water content with the effective mean stress. Subsequently, an iterative process is envisaged to obtain the clay stiffness and strength parameters. The at-rest earth pressure coefficient, as well as bearing capacity factor and rigidity index related to the cone penetration test, is also acquired from the analyses. Comparisons are presented between the measured clay parameters and the results of corresponding analyses in five different case studies. It is demonstrated that the presented approach can provide acceptable estimates of saturated clay stiffness and strength parameters. One of the main privileges of the presented methodology is the site-specific procedure developed based on the relationships between clay strength and stiffness parameters, rather than adopting direct correlations. Despite of the utilized iterative processes, the presented approach can be easily implemented using a simple spreadsheet, benefiting both geotechnical researchers and practitioners. Keywords: Soft to firm clays, Atterberg limits, Shear wave velocity, Small-strain shear modulus, Constrained modulus, Undrained shear strength, Effective friction angle, Cone penetration test

  5. Large Strain Analysis of Electro-Osmosis Consolidation for Clays

    NARCIS (Netherlands)

    Yuan, J.

    2015-01-01

    Consolidation of soft clay creates a lot of problems in foundation engineering, because of the very low clay permeability and high compressibility. Primary consolidation takes a long time to complete if the material is left consolidating under atmospheric evaporation, and traditional dewatering

  6. Mineralogical composition and functionality of clays used for pottery ...

    African Journals Online (AJOL)

    Mineralogical composition and functionality of clays used for pottery education by physically challenged learners at the Ikwezi-Lokusa Educational Centre, Eastern Cape, South Africa. ... The clays were mineralogically characterised using Munsell Soil Color Chart, X-ray powder diffractometry (XRPD) and optical microscopy.

  7. Morphology and melt rheology of nylon 11/clay nanocomposites

    NARCIS (Netherlands)

    He, Xiaofeng; Yang, Jun; Zhu, Lianchao; Wang, Biao; Sun, Guangping; Lv, Pengfei; Phang, In Yee; Liu, Tianxi

    2006-01-01

    Nylon 11 (PA11)/clay nanocomposites have been prepared by melt-blending, followed by melt-extrusion through a capillary. Transmission electron microscopy shows that the exfoliated clay morphology is dominant for low nanofiller content, while the intercalated one is prevailing for high filler

  8. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Woo, E-mail: park85@gmail.com [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Bo Hyun [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Kune-Woo, E-mail: nkwlee@kaeri.re.kr [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-04-05

    Highlights: • A cationic polyelectrolyte has excellent ability to desorb Cs bound strongly to clay. • The polycation desorbed significantly more Cs from the clay than did single cations. • Additional NH{sub 4}{sup +} treatment following the polycation treatment enhanced desorption of Cs. • The reaction yielded efficient desorption (95%) of an extremely low concentration of Cs-137 in the clay. - Abstract: We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH{sub 4}{sup +} treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH{sub 4}{sup +} yielded efficient desorption (95%) of an extremely low concentration of radioactive {sup 137}Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations.

  9. Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies

    Science.gov (United States)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  10. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  11. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    International Nuclear Information System (INIS)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-01-01

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  12. Determination of essential and toxic elements in clay soil commonly consumed by pregnant women in Tanzania

    Science.gov (United States)

    Mwalongo, D.; Mohammed, N. K.

    2013-10-01

    A habit of eating clay soil especially among pregnant women is a common practice in Tanzania. This practice known as geophagy might introduce toxic elements in the consumer's body to endanger the health of the mother and her child. Therefore it is very important to have information on the elemental composition of the eaten soil so as to assess the safety nature of the habit. In this study 100 samples of clay soil, which were reported to be originating from five regions in Tanzania and are consumed by pregnant women were analyzed to determine their levels of essential and toxic elements. The analysis was carried out using energy dispersive X-ray fluorescent technique (EDXRF) of Tanzania Atomic Energy Commission, Arusha. Essential elements Fe, Zn, Cu, Se and Mn and toxic elements As, Pb, Co, Ni, U and Th were detected in concentrations above WHO permissible limits in some of the samples. The results from this study show that the habit of eating soil is exposing the pregnant mothers and their children to metal toxicity which is detrimental to their health. Hence, further actions should be taken to discourage the habit of eating soil at all levels.

  13. The effect of freeze-thaw cycles on the hydraulic conductivity of compacted clay

    International Nuclear Information System (INIS)

    Waite, D.; Anderson, L.; Caliendo, J.; McFarland, M.

    1994-01-01

    A study was conducted to investigate the detrimental effects of freeze-thaw on the hydraulic conductivity of compacted clay. The purpose of this study was to determine the effect that molding water content has on the hydraulic conductivity of a compacted clay soil that is subjected to freeze-thaw cycles, and to determine the relationship between the number of freeze-thaw cycles and the hydraulic conductivity of the compacted clay soil. Clay soils compacted and frozen wet of optimum experienced an increase in hydraulic conductivity of approximately 140 fold. The hydraulic conductivity of clay compacted dry of optimum increased ten fold. These results are consistent with recent research which suggests that clay compacted wet of optimum experiences large increases in hydraulic conductivity while the hydraulic conductivity of clay compacted dry of optimum increases to a lesser extent. 12 refs., 9 figs

  14. Interaction of polymer with discotic clay particles

    International Nuclear Information System (INIS)

    Auvray, L.; Lal, J.

    1999-01-01

    Normally synthetic well defined monodisperse discotic laponite clays are known to form a gel phase at mass concentrations as low as a few percent in distilled water. Hydrosoluble polymer polyethylene oxide was added to this intriguing clay system, it was observed that it either prevents gelation or slows it down extremely depending on the polymer weight, concentration or the laponite concentration. Small Angle Neutron scattering (SANS) was used to study these systems because only by isotopic labeling can the structure of the adsorbed polymer layers be determined. The contrast variation technique is specifically used to determine separately the different partial structure factors of the clay and polymer. In this way the signal of the adsorbed chains is separated from the signal of the free chains in the dilute regime. Attempts have also been made to characterize the structure in the concentrated regime of laponite with polymer

  15. Compressive Strength of Compacted Clay-Sand Mixes

    Directory of Open Access Journals (Sweden)

    Faseel Suleman Khan

    2014-01-01

    Full Text Available The use of sand to improve the strength of natural clays provides a viable alternative for civil infrastructure construction involving earthwork. The main objective of this note was to investigate the compressive strength of compacted clay-sand mixes. A natural clay of high plasticity was mixed with 20% and 40% sand (SP and their compaction and strength properties were determined. Results indicated that the investigated materials exhibited a brittle behaviour on the dry side of optimum and a ductile behaviour on the wet side of optimum. For each material, the compressive strength increased with an increase in density following a power law function. Conversely, the compressive strength increased with decreasing water content of the material following a similar function. Finally, the compressive strength decreased with an increase in sand content because of increased material heterogeneity and loss of sand grains from the sides during shearing.

  16. Clay content evaluation in soils through GPR signal processing

    Science.gov (United States)

    Tosti, Fabio; Patriarca, Claudio; Slob, Evert; Benedetto, Andrea; Lambot, Sébastien

    2013-10-01

    The mechanical behavior of soils is partly affected by their clay content, which arises some important issues in many fields of employment, such as civil and environmental engineering, geology, and agriculture. This work focuses on pavement engineering, although the method applies to other fields of interest. Clay content in bearing courses of road pavement frequently causes damages and defects (e.g., cracks, deformations, and ruts). Therefore, the road safety and operability decreases, directly affecting the increase of expected accidents. In this study, different ground-penetrating radar (GPR) methods and techniques were used to non-destructively investigate the clay content in sub-asphalt compacted soils. Experimental layout provided the use of typical road materials, employed for road bearing courses construction. Three types of soils classified by the American Association of State Highway and Transportation Officials (AASHTO) as A1, A2, and A3 were used and adequately compacted in electrically and hydraulically isolated test boxes. Percentages of bentonite clay were gradually added, ranging from 2% to 25% by weight. Analyses were carried out for each clay content using two different GPR instruments. A pulse radar with ground-coupled antennae at 500 MHz centre frequency and a vector network analyzer spanning the 1-3 GHz frequency range were used. Signals were processed in both time and frequency domains, and the consistency of results was validated by the Rayleigh scattering method, the full-waveform inversion, and the signal picking techniques. Promising results were obtained for the detection of clay content affecting the bearing capacity of sub-asphalt layers.

  17. CATSIUS CLAY PROJECT: Calculation and testing of behaviour of unsaturated clay as barrier in radioactive waste repositories: stage 3: validation exercises at a large in situ scale

    International Nuclear Information System (INIS)

    Alonso, E. E.; Alcoverro, J.

    1999-01-01

    Stage 3 of CATSIUS CLAY Project: Validation Exercises at a Large in situ Scale includes two Benchmarks: Benchmark 3.1: In situ Hydration of Boom Clay Pellets (BACCHUS 2) and Benchmark 3.2: FEBEX Mock-up Test. The BACCHUS 2 in situ test was performed in the HADES underground laboratory (Mol, Belgium) to demonstrate and optimize an installation procedure for a clay based material and to study its hydration process. After drilling a vertical shaft (540 mm in diameter, 3.0 m in length) in the host Boom clay, a central filter (90 mm in diameter) was placed, the remaining space was filled with a mixture of clay pellets and clay powder and the assembly was sealed at the upper end by a resin plug (0.20 m in thickness) over which concrete was poured. The test was instrumented so that it could be used as a validation experiment. Total stress, pore water pressure and water content measurements were performed both in the backfill material and in the surrounding clay massif. Once the installation was complete, the natural hydration of the backfill material began (day 0). To accelerate the hydration process, on day 516 water was injected through the central filter. On day 624, after the saturation of the backfill was reached, the hydraulic circuit was closed and the undrained response of the system backfill-host clay was monitored until an overall steady state was reached. Partners were asked to provide predictions for the evolution of the pore water pressure and total pressure of various points where appropriate sensors are installed. This benchmark addresses the Hydro-Mechanical response of an unsaturated low density clay barrier under natural and artificial hydration. (Author)

  18. CATSIUS CLAY PROJECT: Calculation and testing of behaviour of unsaturated clay as barrier in radioactive waste repositories: stage 3: validation exercises at a large in situ scale

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, E E; Alcoverro, J

    1999-07-01

    Stage 3 of CATSIUS CLAY Project: Validation Exercises at a Large in situ Scale includes two Benchmarks: Benchmark 3.1: In situ Hydration of Boom Clay Pellets (BACCHUS 2) and Benchmark 3.2: FEBEX Mock-up Test. The BACCHUS 2 in situ test was performed in the HADES underground laboratory (Mol, Belgium) to demonstrate and optimize an installation procedure for a clay based material and to study its hydration process. After drilling a vertical shaft (540 mm in diameter, 3.0 m in length) in the host Boom clay, a central filter (90 mm in diameter) was placed, the remaining space was filled with a mixture of clay pellets and clay powder and the assembly was sealed at the upper end by a resin plug (0.20 m in thickness) over which concrete was poured. The test was instrumented so that it could be used as a validation experiment. Total stress, pore water pressure and water content measurements were performed both in the backfill material and in the surrounding clay massif. Once the installation was complete, the natural hydration of the backfill material began (day 0). To accelerate the hydration process, on day 516 water was injected through the central filter. On day 624, after the saturation of the backfill was reached, the hydraulic circuit was closed and the undrained response of the system backfill-host clay was monitored until an overall steady state was reached. Partners were asked to provide predictions for the evolution of the pore water pressure and total pressure of various points where appropriate sensors are installed. This benchmark addresses the Hydro-Mechanical response of an unsaturated low density clay barrier under natural and artificial hydration. (Author)

  19. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  20. Reconstruction of a digital core containing clay minerals based on a clustering algorithm

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K -means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  1. Effects of simulated clay gouges on the sliding behavior of Tennessee sandston

    Science.gov (United States)

    Shimamoto, Toshihiko; Logan, John M.

    1981-06-01

    The effects of simulated fault gouge on the sliding behavior of Tennessee sandstone are studied experimentally with special reference to the stabilizing effect of clay minerals mixed into the gouge. About 30 specimens with gouge composed of pure clays, of homogeneously mixed clay and anhydrite, or of layered clay and anhydrite, along a 35° precut are deformed dry in a triaxial apparatus at a confining pressure of 100 MPa, with a shortening rate of about 5 · 10 -4/sec, and at room temperature. Pure clay gouges exhibit only stable sliding, and the ultimate frictional strength is very low for bentonite (mont-morillonite), intermediate for chlorite and illite, and considerably higher for kaolinite. Anhydrite gouge shows violent stick-slip at 100 MPa confining pressure. When this mineral is mixed homogeneously with clays, the frictional coefficient of the mixed gouge, determined at its ultimate frictional strength, decreases monotonically with an increase in the clay content. The sliding mode changes from stick-slip to stable sliding when the frictional coefficient of the mixed clay-anhydrite gouge is lowered down below 90-95% of the coefficient of anhydrite gouge. The stabilizing effect of clay in mixed gouge is closely related to the ultimate frictional strength of pure clays; that is, the effect is conspicuous only for a mineral with low frictional strength. Only 15-20% of bentonite suppresses the violent stick-slip of anhydrite gouge. In contrast, violent stick-slip occurs even if the gouge contains as much as 75% of kaolinite. The behavior of illite and chlorite is intermediate between that of kaolinite and bentonite. Bentonite—anhydrite two-layer gouge exhibits stable sliding even when the bentonite content is only 5%. Thus, the presence of a thin, clay-rich layer in a fault zone stabilizes the behavior much more effectively than do the clay minerals mixed homogeneously with the gouge. This result brings out the mechanical significance of internal structures

  2. Processing and characterization of Polystyrene/cornstarch/organophilic clay hybrids

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan R. de; Amorim, Ywrrenan C.; Andrade, Cristina T. de

    2011-01-01

    Polystyrene/cornstarch composite blends with organophilic Cloisite 15A were prepared in an internal mixer in the presence of maleic anhydride (MA). The contents of clay were 1, 3 and 5%, based on the weight of the blend. The results obtained by X-ray diffraction revealed significant intercalation and exfoliation of clay particles within the polymeric moiety, which indicate increased interaction between the components of the nanocomposites. Thermogravimetric analysis results revealed the increase in thermal stability for the compatibilized blends in relation to the noncompatibilized PS/starch blends. The composites showed better thermal stability with increasing clay content. (author)

  3. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    Science.gov (United States)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    While most magnetic resonance imaging (MRI) applications concern medical research, there is a rapidly increasing number of MRI studies in the field of environmental science and technology. In this presentation, MRI will be introduced from the latter perspective. While many processes in these areas are similar to those addressed in medical applications of MRI, parameters and experimental implementations are often quite different and, in many respects, far more demanding. This hinders direct transfer of existing methods developed for biomedical research, especially when facing the challenging task of obtaining spatially resolved quantitative information. In MRI investigation of soils, clays, and rocks, mainly water signal is detected, similarly to MRI of biological and medical samples. However, a strong variation of water mobility and a wide spread of water spin relaxation properties in these materials make it difficult to use standard MRI approaches. Other significant limitations can be identified as following: T2 relaxation and probe dead time effects; molecular diffusion artifacts; varying dielectric losses and induced currents in conductive samples; limited dynamic range; blurring artifacts accompanying drive for increasing sensitivity and/or imaging speed. Despite these limitations, by combining MRI techniques developed for solid and liquid states and using independent information on relaxation properties of water, interacting with the material of interest, true images of distributions of both water, material and molecular properties in a wide range of concentrations can be obtained. Examples of MRI application will be given in the areas of soil and mineral research where understanding water transport and erosion processes is one of the key challenges. Efforts in developing and adapting MRI approaches to study these kinds of systems will be outlined as well. Extensive studies of clay/water interaction have been carried out in order to provide a quantitative

  4. Effects of clay on fat necrosis and carcass characteristics in Japanese Black steers.

    Science.gov (United States)

    Oka, Akio; Iwamoto, Eiji; Tatsuda, Ken

    2015-10-01

    Twenty 10-month-old Japanese Black steers were used to evaluate the effects of clay on fat necrosis and carcass characteristics. Ten steers (Clay group) were fed the clay (50 g/day) during 10-30 months of age. The other 10 steers (Control group) were not fed it. There was no significant difference in body weight or average daily gain between the two groups (P > 0.05). The occurrence of fat necrotic mass in the Clay group (30%) was lower (P Clay group was smaller (P clay prevented the occurrence of fat necrosis and did not affect the carcass characteristics in Japanese Black steers. © 2015 Japanese Society of Animal Science.

  5. Significance of clay art therapy for psychiatric patients admitted in a day hospital

    Directory of Open Access Journals (Sweden)

    Aquiléia Helena de Morais

    2014-04-01

    Full Text Available Objective. To understand the significance of clay art therapy for psychiatric patients admitted in a day hospital. Methodology. Qualitative, descriptive and exploratory research, undertaken with 16 patients in a day hospital in Londrina, in the state of Parana, Brazil, who participated in seven clay therapy sessions. Data collection took place from January to July 2012 through interviews guided by a semi structured questionnaire and the data were submitted to content analysis. Results. Three themes emerged: Becoming familiar with clay art therapy; Feeling clay therapy; and Realizing the effect of clay therapy. Conclusion. The use of clay as a therapeutic method by psychiatric patients promoted creativity, self-consciousness, and benefited those who sought anxiety relief.

  6. Naphtha interaction with bitumen and clays : a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Afara, M.; Munoz, V.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    This PowerPoint presentation described a preliminary study conducted to characterize naphtha interactions with bitumen and clays. Coarse tailings, fluid-fine tailings, and froth treatment tailings are produced as a result of surface mine oil sands operations. Solvents are used to produce the bitumens, but the actual fraction of the solvent that evaporates and contributes to VOCs from tailing ponds is poorly understood. This study examined the interactions between the solvent, bitumen and mineral components in froth treatment tails. The study was conducted with aim of quantifying the VOC or solvent escaping from the froth treatment tailings. Samples containing bitumen, clay, a bitumen-clay mixture, or MFT were spiked with 3000 ppm of solvent. The amount of naphtha released was monitored by gas chromatography, mass spectrometry, and flame ionization detection of the evolved gases. The results were expressed as a percentage of the total hydrocarbon peak area of the sample versus a control. Results of the study showed that the naphtha interacted more strongly with the bitumen than with kaolinite and the clay minerals from the oil sands. Although initial solvent evaporation was reduced in the presence of bitumens and clays, long-term solvent releases will need to be quantified. tabs., figs.

  7. Production of polyol carbonates and their intercalation into Smectite clays

    OpenAIRE

    Shaheen, Uzma

    2017-01-01

    In hyper-saline conditions, clays in geosynthetic clay liners contract and fail to form a hydraulic barrier due to removal of water from the interlayer spaces of smectite, which is the swelling mineral component of bentonites used in geosynthetic clay liners. Five-membered cyclic carbonates such as propylene carbonate have been reported to form stable intercalated complexes with hydrated Na-smectite, which maintain swollen states at 1M). Glycerol carbonate was selected as an alternative c...

  8. Experimental investigation of clay fly ash bricks for gamma-ray shielding

    Energy Technology Data Exchange (ETDEWEB)

    Mann Harjinder Singh; Mudahar, Gumel Singh [Dept. of Physics, Punjabi University, Patiala (India); Brar, Gurdarshan Singh [Dept. of Higher Education, Additional Project Director, Chandigarh (India); Mann, Kulwinder Singh [Dept. of Applied Sciences, I.K. Gujral Punjab Technical University, Jalandhar (India)

    2016-10-15

    This study aims to determine the effect of fly ash with a high replacing ratio of clay on the radiation shielding properties of bricks. Some interaction parameters (mass attenuation coefficients, half value layer, effective atomic number, effective electron density, and absorption efficiency) of clay fly ash bricks were measured with a NaI(Tl) detector at 661.6 keV, 1,173.2 keV, and 1,332.5 keV. For the investigation of their shielding behavior, fly ash bricks were molded using an admixture to clay. A narrow beam transmission geometry condition was used for the measurements. The measured values of these parameters were found in good agreement with the theoretical calculations. The elemental compositions of the clay fly ash bricks were analyzed by using an energy dispersive X-ray fluorescence spectrometer. At selected energies the values of the effective atomic numbers and effective electron densities showed a very modest variation with the composition of the fly ash. This seems to be due to the similarity of their elemental compositions. The obtained results were also compared with concrete, in order to study the effect of fly ash content on the radiation shielding properties of clay fly ash bricks. The clay fly ash bricks showed good shielding properties for moderate energy gamma rays. Therefore, these bricks are feasible and eco-friendly compared with traditional clay bricks used for construction.

  9. California Bearing Ratio (CBR) test on stabilization of clay with lime addition

    Science.gov (United States)

    Hastuty, I. P.; Roesyanto; Limbong, M. N.; Oberlyn, S. J.

    2018-02-01

    Clay is a type of soil with particles of certain minerals giving plastic properties when mixed with water. Soil has an important role in a construction, besides as a building material in a wide variety of civil engineering works, soil is also used as supporting foundation of the building. Basic properties of clay are rock-solid in dry and plastic with medium water content. In high water content, clay becomes sticky like (cohesive) and soften. Therefore, clay stabilization is necessary to repair soil’s mechanical properties. In this research, lime is use as a stabilizer that contains the Ca+ element to bond bigger particles. Lime used is slaked lime Ca(OH)2. Clay used has liquid limitation (LL) value of 47.33%, plasticity index of 29.88% and CBR value 6.29. The results explain about 10% lime mixture variation gives the optimum stabilized clay with CBR value of 8.75%.

  10. Alteration of isolating properties of dense smectite clay in repository environment as exemplified by seven pre-quaternary clays

    International Nuclear Information System (INIS)

    Pusch, R.; Boergesson, L.; Erlstroem, M.

    1987-12-01

    Seven pre-quaternary clays with a smectite content ranging between zero and about 25% were taken as possible reaction products resulting from chemical alteration of dense sodium bentonite. They were characterized with respect to the mineral composition and microstructural constitution and tested with reference to their hydraulic conductivity, swelling ability and creep properties. It was found that since they were all less permeable than a typical large granitic rock mass they would serve as flow barriers in a repository. Thus, even rather extreme chemical attack is not expected to eliminate the most important barrier function of Na bentonite in repository environment. However, slight mechanical disturbance of a heterogeneously altered smectite clay buffer or seal, may be critical. Thus, the investigated, less smectitic clays experienced a rather dramatic increase in hydraulic conductivity on expansion and remolding. This is explained by the inability of a microstructurally discontinuous smectite component - particularly in the Ca-form - to swell and fill voids. The minimum content of Na smectite to preserve the self-healing capacity is estimated at 15-25%. Slight or moderate cementation was indicated by two of the clays by the creep tests. At a smectite content of 15-25% it is probable that self-healing will take place after a mechanically induced breakage of the cementing bonds. The tests gave a good basis for future development of rational, routine tests as well as for a relevant characterization of buffer material candidates. (orig.)

  11. Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric.

    Science.gov (United States)

    Li, Yu-Chin; Schulz, Jessica; Mannen, Sarah; Delhom, Chris; Condon, Brian; Chang, Sechin; Zammarano, Mauro; Grunlan, Jaime C

    2010-06-22

    Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 degrees C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant.

  12. Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.

    Science.gov (United States)

    Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang

    2010-09-01

    The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.

  13. Towards an assessment of colloid transport in undisturbed clay stone

    International Nuclear Information System (INIS)

    Durce, D.; Landesman, C.; Grambow, B.; Giffaut, E.

    2010-01-01

    Document available in abstract form only. Full text of publication follows: Colloids are known as a potentially important transport vector for sparingly soluble radionuclides in natural water environments. For assessing the mass transfer resistance of the Callovo-Oxfordian clay rock formation for colloid transport, a series of percolation experiments have been performed, using high pressure stainless steel advection cells of different diameters containing clay cores machined to about 50 μm of accuracy to the inner diameter of the cells. Synthetic clay pore water was pushed by a high pressure syringe pump across the clay core. In order to assess the cut-off size for colloid transport, molecules of different molecular weight were injected. C 14 labeled polymaleic acid (PMA) of sizes of 2 and 50 kDa were used. The effect of clay permeability, of water flow rate (injection pressure) and of ionic strength was studied. Low ionic strength experiments (I = 0.001) were realized by replacing the pore water by advective displacement with the required composition. Clay rock permeabilities were between 10 -12 and 10 -14 m/s. Hydrodynamic parameters were determined by HTO and 36 Cl injection. The results show already at 2 kDa and a permeability of 10 -12 m/s strong retention by partial filtration. The experimental results were modeled using simple chromatographic theory. (authors)

  14. Role of interlayer hydration in lincomycin sorption by smectite clays.

    Science.gov (United States)

    Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui

    2009-08-15

    Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.

  15. Utilization of crushed clay brick in cellular concrete production

    Directory of Open Access Journals (Sweden)

    Ali A. Aliabdo

    2014-03-01

    Full Text Available The main objective of this research program is to study the effect of using crushed clay brick as an alternative aggregate in aerated concrete. Two series of mixtures were designed to investigate the physico-mechanical properties and micro-structural analysis of autoclave aerated concrete and foamed concrete, respectively. In each series, natural sand was replaced with crushed clay brick aggregate. In both series results showed a significant reduction in unit weight, thermal conductivity and sound attenuation coefficient while porosity has increased. Improvement on compressive strength of autoclave aerated concrete was observed at a percentage of 25% and 50% replacement, while in foamed concrete compressive strength gradually decreased by increasing crushed clay brick aggregate content. A comparatively uniform distribution of pore in case of foamed concrete with natural sand was observed by scanning electron microscope, while the pores were connected mostly and irregularly for mixes containing a percentage higher than 25% clay brick aggregate.

  16. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  17. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table

  18. Influence of processing conditions in PEA/organophilic clay nanocomposites

    International Nuclear Information System (INIS)

    Araujo, E.M.; Kojuch, L.R.; Barbosa, R.; Nobrega, K.C.; Melo, T.J.A. de

    2008-01-01

    Polymer/clay nanocomposites have attracted great interest from the industry as well as from the researches due to the need to obtain materials with desired properties. Nanocomposites with silicates layer represent an alternative for the conventional composites because they use a small amount of nanofiller. In this work, polyethylene/polyethylene grafted anhydride maleic (PE-g-MA)/montmorillonite clay (MMT) nanocomposites were prepared by melt intercalation in a Torque Rheometer. It was used an untreated clay (MMT) and a treated clay with the quaternary ammonium salt (OMMT). The influence of the processing conditions was evaluated, that is: 60 and 120rpm, 7 and 14 min, 190 and 220°C. The obtained systems were characterized by X-ray diffraction (XRD) and rheological behavior. The results from XRD and rheological behavior indicated that the system composed of polyethylene/PE-g-MA/OMMT presented intercalated nanocomposite structure, with larger basal distance and high viscosity, in the conditions of 120rpm and 7min, independent of temperature. (author)

  19. Evaluation of the healing activity of therapeutic clay in rat skin wounds.

    Science.gov (United States)

    Dário, Giordana Maciel; da Silva, Geovana Gomes; Gonçalves, Davi Ludvig; Silveira, Paulo; Junior, Adilson Teixeira; Angioletto, Elidio; Bernardin, Adriano Michael

    2014-10-01

    The use of clays for therapeutic practice is widespread in almost all regions of the world. In this study the physicochemical and microbiological healing characteristics of a clay from Ocara, Brazil, popularly used for therapeutic uses, were analyzed. The presence of Ca, Mg, Al, Fe, and Si was observed, which initially indicated that the clay had potential for therapeutic use. The average particle size of the clay (26.3 μm) can induce the microcirculation of the skin and the XRD analysis shows that the clay is formed by kaolinite and illite, a swelling clay. During the microbiological evaluation there was the need to sterilize the clay for later incorporation into the pharmaceutical formula. The accelerated stability test at 50°C for 3 months has showed that the pharmaceutical formula remained stable with a shelf life of two years. After the stability test the wound-healing capacity of the formulation in rats was evaluated. It was observed that the treatment made with the formulation containing the Ocara clay showed the best results since the formula allowed greater formation of collagen fibers and consequent regeneration of the deep dermis after seven days of treatment and reepithelialization and continuous formation of granulation tissue at the 14th day. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Wave-induced ripple development in mixed clay-sand substrates

    Science.gov (United States)

    Wu, Xuxu; Parsons, Daniel; Baas, Jaco H.; Mouazé, Dominique; McLelland, Stuart; Amoudry, Laurent; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben

    2016-04-01

    This paper reports on a series of experiments that aim to provide a fuller understanding of ripple development within clay-sand mixture substrates under oscillatory flow conditions. The work was conducted in the Total Environment Simulator at the University of Hull and constituted 6 separate runs, in which 5 runs were conducted under identical sets of regular waves (an additional run was conducted under irregular waves, but is not discussed in present paper). The bed content was systematically varied in its composition ranging from a pure sand bed through to a bed comprising 7.4% clay. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action, during and after, each run. The experimental results demonstrate the significant influence of the amount of cohesive clay materials in the substrate on ripple evolution under waves. Most importantly, addition of clay in the bed dramatically slowed down the rate of ripple development and evolution. The equilibrium time of each run increased exponentially from 30 minutes under the control conditions of a pure sand bed, rising to ~350 minutes for the bed with the highest fraction of clay. The paper discusses the slower ripple growth rates with higher cohesive fractions, via an influence on critical shear, but highlights that the end equilibrium size of ripples is found to be independent of increasing substrate clay fraction. The suspended particles mass (SPM) concentration indicates that clay particles were suspended and winnowed by wave action. Additionally, laser granulometry of the final substrates verified that ripple crests were composed of pure sand layers that were absent at ripple troughs, reflecting a relatively higher winnowing efficiency at wave ripples crest. The winnowing process and its efficiency is inexorably linked to wave ripple development and evolution. The implications of the results

  1. Possibility of inferring some general characters of deep clay deposits by means of superficial observations

    International Nuclear Information System (INIS)

    Anselmi, B.; Antonioli, F.; Brondi, A.; Ferretti, O.; Gerini, V.

    1984-02-01

    The aim of this work has been to infer mineralogical and sedimentological characteristics of deep clay deposits by means of low cost observations on surficial clay outcroppings. Main research objectives considered in the programme have been: a) assessing regional distribution pattern of different, if existing, clay mineralogical associations; b) assessing possible relationships between parent rock of clay formations and mineralogy of sediments derived from; c) assessing important variations of clay bodies according to the evolution of the basins. The researches have been developed on the most representative Italian clay basins, following this programme: a) systematic sampling and mineralogic analysis of the pliocenic clay formations; b) assessment and development of investigations on clay mineralogic provinces, possibly identified in the preceding general phase by means of investigations on the variations of structural and mineralogical characteristics of significative clay deposits. The final results have been: a) clay mineralogic associations show a regional distribution pattern, i.d. the existence of many mineralogic provinces at the Italian scale is demonstrated; b) besides depositional mechanisms the mineralogic differential distribution pattern is due also to the lithologic nature of parent rock of the clay. These results account for the possibility of forecasting general mineralogic composition of deep clay bodies starting from low cost observations on surficial clay outcroppings. A practical implication is the possibility of orienting detailed expensive researches only toward those situations probabilistically displaying more appropriate characters

  2. Clay and concrete brick

    CSIR Research Space (South Africa)

    Dlamini, MN

    2014-03-01

    Full Text Available Brick is one of the most used and versatile building materials in use today. Bricks can be defined as modular units connected by mortar in the formation of a building system or product. Commonly the word brick is used to refer to clay bricks, which...

  3. Development of SBR-Nano clay Composites with Epoxidized Natural Rubber as Compatibilizer

    International Nuclear Information System (INIS)

    Rajasekar, R.; Das, Ch.K.; Gert Heinrich, G.; Das, A.

    2009-01-01

    The significant factor that determines the improvement of properties in rubber by the incorporation of nano clay is its distribution in the rubber matrix. The simple mixing of nonpolar rubber and organically modified nano clay will not contribute for the good dispersion of nano filler in the rubbery matrix. Hence a polar rubber like epoxidized natural rubber (ENR) can be used as a compatibilizer in order to obtain a better dispersion of the nano clay in the matrix polymer. Epoxidized natural rubber and organically modified nano clay composites (EC) were prepared by solution mixing. The nano clay employed in this study is Cloisite 20A. The obtained nano composites were incorporated in styrene butadiene-rubber (SBR) compounds with sulphur as a curing agent. The morphology observed through X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) shows that the nano clay is highly intercalated in ENR, and further incorporation of EC in SBR matrix leads to partial exfoliation of the nano clay. Dynamic mechanical thermal analysis showed an increase in storage modulus and lesser damping characteristics for the compounds containing EC loading in SBR matrix. In addition, these compounds showed improvement in the mechanical properties.

  4. Texture-contrast profile development across the prairie-forest ecotone in northern Minnesota, USA, and its relation to soil aggregation and clay dispersion.

    Science.gov (United States)

    Kasmerchak, C. S.; Mason, J. A.

    2016-12-01

    Along the prairie-forest ecotone, Alfisols with distinct clay-enriched B horizons are found under forest, established only within the past 4 ka, including outlying patches of prairie groves surrounded by prairie. Grassland soils only 5-10 km away from the vegetation boundary show much weaker texture-contrast. In order for clay to be dispersed it must first be released from aggregates upper horizons, which occurs when exposed top soil undergoes wetting and mechanical stress. The relationship between physiochemical soil characteristics and soil aggregation/clay dispersion is of particular interest in explaining texture-contrast development under forest. Soil samples were collected along a transect in northern Minnesota on gentle slopes in similar glacial sediment. Aggregate stability experiments show Mollisol A and B horizons have the most stable aggregates, while Alfisol E horizons have the weakest aggregates and disintegrate rapidly. This demonstrates the strong influence of OM and exchange chemistry on aggregation. Analysis of other physiochemical soil characteristics such as base saturation and pH follow a gradual decreasing eastward trend across the study sites, and do not abruptly change at the prairie-forest boundary like soil morphology does. Linear models show the strongest relationship between rapid aggregate disintegration and ECEC, although they only explain 47-50% of the variance. Higher surface charge enhances aggregation by allowing for greater potential of cation bridging between OM and clay particles. ECEC also represents multiple soil characteristics such as OC, clay, mineralogy, and carbonate presence, suggesting the relationship between aggregation stability and soil characteristics is not simple. Given the parent material consists of calcareous glacial sediment, abundant Ca2+ and Mg2+ from carbonates weathering also contributes to enhanced aggregation in upper horizons. Differences in the rates of bioturbation, most likely also contribute

  5. Spectromicroscopy of Fe distributions in clay microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Grundl, T. [Univ. of Wisconsin, Milwaukee, WI (United States); Cerasari, S.; Garcia, A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Clays are ubiquitous crystalline particles found in nature that are responsible for contributing to a wide range of chemical reactions in soils. The structure of these mineral particles changes when the particle is hydrated ({open_quotes}wet{close_quotes}), from that when it is dry. This makes a study of the microscopic distribution of chemical content of these nanocrystals difficult using standard techniques that require vacuum. In addition to large structural changes, it is likely that chemical changes accompany the drying process. As a result, spectroscopic measurements on dried clay particles may not accurately reflect the actual composition of the material as found in the environment. In this work, the authors extend the use of the ALS Spectromicroscopy Facility STXM to high spectral and spatial resolution studies of transition metal L-edges in environmental materials. The authors are studying mineral particles of montmorillonite, which is an Fe bearing clay which can be prepared with a wide distribution of Fe concentrations, and with Fe occupying different substitutional sites.

  6. Nafion–clay nanocomposite membranes: Morphology and properties

    KAUST Repository

    Herrera Alonso, Rafael; Estevez, Luis; Lian, Huiqin; Kelarakis, Antonios; Giannelis, Emmanuel P.

    2009-01-01

    A series of Nafion-clay nanocomposite membranes were synthesized and characterized. To minimize any adverse effects on ionic conductivity the clay nanoparticles were H+ exchanged prior to mixing with Nafion. Well-dispersed, mechanically robust, free-standing nanocomposite membranes were prepared by casting from a water suspension at 180 °C under pressure. SAXS profiles reveal a preferential orientation of Nafion aggregates parallel to the membrane surface, or normal plane. This preferred orientation is induced by the platy nature of the clay nanoparticles, which tend to align parallel to the surface of the membrane. The nanocomposite membranes show dramatically reduced methanol permeability, while maintaining high levels of proton conductivity. The hybrid films are much stiffer and can withstand much higher temperatures compared to pure Nafion. The superior thermomechanical, electrochemical and barrier properties of the nanocomposite membranes are of significant interest for direct methanol fuel cell applications. © 2009 Elsevier Ltd. All rights reserved.

  7. Nafion–clay nanocomposite membranes: Morphology and properties

    KAUST Repository

    Herrera Alonso, Rafael

    2009-05-01

    A series of Nafion-clay nanocomposite membranes were synthesized and characterized. To minimize any adverse effects on ionic conductivity the clay nanoparticles were H+ exchanged prior to mixing with Nafion. Well-dispersed, mechanically robust, free-standing nanocomposite membranes were prepared by casting from a water suspension at 180 °C under pressure. SAXS profiles reveal a preferential orientation of Nafion aggregates parallel to the membrane surface, or normal plane. This preferred orientation is induced by the platy nature of the clay nanoparticles, which tend to align parallel to the surface of the membrane. The nanocomposite membranes show dramatically reduced methanol permeability, while maintaining high levels of proton conductivity. The hybrid films are much stiffer and can withstand much higher temperatures compared to pure Nafion. The superior thermomechanical, electrochemical and barrier properties of the nanocomposite membranes are of significant interest for direct methanol fuel cell applications. © 2009 Elsevier Ltd. All rights reserved.

  8. Effect of nano-clay on mechanical and thermal properties of geopolymer

    Directory of Open Access Journals (Sweden)

    H. Assaedi

    2016-03-01

    Full Text Available The effect of nano-clay platelets (Cloisite 30B on the mechanical and thermal properties of fly ash geopolymer has been investigated in this paper. The nano-clay platelets are added to reinforce the geopolymer at loadings of 1.0%, 2.0%, and 3.0% by weight. The phase composition and microstructure of geopolymer nano-composites are also investigated using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and scanning electron microscope (SEM techniques. Results show that the mechanical properties of geopolymer nano-composites are improved due to addition of nano-clay. It is found that the addition of 2.0 wt% nano-clay decreases the porosity and increases the nano-composite's resistance to water absorption significantly. The optimum 2.0 wt% nano-clay addition exhibited the highest flexural and compressive strengths, flexural modulus and hardness. The microstructural analysis results indicate that the nano-clay behaves not only as a filler to improve the microstructure, but also as an activator to facilitate the geopolymeric reaction. The geopolymer nano-composite also exhibited better thermal stability than its counterpart pure geopolymer.

  9. Determination of membrane behaviour during transport of pollutants n clay barriers

    International Nuclear Information System (INIS)

    Musso, M.; Pejon, O.

    2010-01-01

    The study of the transport of contaminants in clay barriers had a extensive development in environmental geotechnics. The most studied transport processes are solutes by advection - dispersion and diffusion generated by hydraulic and chemical gradients respectively. Greater attention should be given to the chemical - osmotic flow and behavior membrane clay barriers, since in one case the water molecules move through the existence of a chemical gradient and on the other the means totally or partially inhibits the passage of solutes. The team developed to measure these processes was constructed based on items international literature and performance was verified using two types of materials KCl solution . One material is a bentonite geocomposite (Geosynthetic Clay Liner GCL ) similar to that used by other researchers. The other material is a soil barrier compacted clay (Compacted Clay Liner CCL) Fm. Corumbataí (Permian), belonging to the Paraná basin in the state of Sao Paulo, Brazil . The results show the proper performance of the equipment built . Osmotic pressure generation and membrane performance was verified for both samples. Further corroborated influence of the type of clay mineral in the osmotic pressure generated value and membrane behavior

  10. Towards a numerical run-out model for quick-clay slides

    Science.gov (United States)

    Issler, Dieter; L'Heureux, Jean-Sébastien; Cepeda, José M.; Luna, Byron Quan; Gebreslassie, Tesfahunegn A.

    2015-04-01

    Highly sensitive glacio-marine clays occur in many relatively low-lying areas near the coasts of eastern Canada, Scandinavia and northern Russia. If the load exceeds the yield stress of these clays, they quickly liquefy, with a reduction of the yield strength and the viscosity by several orders of magnitude. Leaching, fluvial erosion, earthquakes and man-made overloads, by themselves or combined, are the most frequent triggers of quick-clay slides, which are hard to predict and can attain catastrophic dimensions. The present contribution reports on two preparatory studies that were conducted with a view to creating a run-out model tailored to the characteristics of quick-clay slides. One study analyzed the connections between the morphological and geotechnical properties of more than 30 well-documented Norwegian quick-clay slides and their run-out behavior. The laboratory experiments by Locat and Demers (1988) suggest that the behavior of quick clays can be reasonably described by universal relations involving the liquidity index, plastic index, remolding energy, salinity and sensitivity. However, these tests should be repeated with Norwegian clays and analyzed in terms of a (shear-thinning) Herschel-Bulkley fluid rather than a Bingham fluid because the shear stress appears to grow in a sub-linear fashion with the shear rate. Further study is required to understand the discrepancy between the material parameters obtained in laboratory tests of material from observed slides and in back-calculations of the same slides with the simple model by Edgers & Karlsrud (1982). The second study assessed the capability of existing numerical flow models to capture the most important aspects of quick-clay slides by back-calculating three different, well documented events in Norway: Rissa (1978), Finneidfjord (1996) and Byneset (2012). The numerical codes were (i) BING, a quasi-two-dimensional visco-plastic model, (ii) DAN3D (2009 version), and (iii) MassMov2D. The latter two are

  11. Painting with Clay: A Study of the Masters

    Science.gov (United States)

    Skophammer, Karen

    2010-01-01

    Plasticine clay is a bendable material that is easily manipulated by students of all ages. It is a great material to work with because it does not dry out from day to day, so high-school students can work on an extended project. They do not have to worry about the clay drying and cracking, and the entire work of art does not have to be completed…

  12. The influence of clay particles on the hydraulic conductivity of sandy soils

    NARCIS (Netherlands)

    Fahmy, M.I.

    1961-01-01

    The relation between hydraulic conductivity and size of the sand particles and clay content was investigated in artificial mixtures of sand and clay and in natural soils, in four different ways in the laboratory and field.

    In the artificial mixtures coarse aggregates of illitic clay hardly

  13. Assessment of geomechanical properties of intact Opalinus Clay - Expert report

    International Nuclear Information System (INIS)

    Amann, F.; Vogelhuber, M.

    2015-11-01

    This comprehensive report published by the Swiss Federal Nuclear Safety Inspectorate ENSI presents an expert report published on the assessment of the geomechanical properties of intact Opalinus Clay. This review report addresses the conceptual constitutive framework for repositories in Opalinus Clay. The author addresses the geomechanical fundamentals that are necessary in order to adequately judge experiments on intact Opalinus Clay and the interpretation of the results. The report assesses in detail the various test series on intact Opalinus Clay carried out along with the interpretations made by experts and NAGRA. Further assessments are quoted including those on sample geometries tested, effective strength properties, undrained shear strength properties and elastic properties. The results of work done by other experts are also presented and discussed. The report is completed with a list of relevant literature

  14. Assessment of geomechanical properties of intact Opalinus Clay - Expert report

    Energy Technology Data Exchange (ETDEWEB)

    Amann, F. [Eidgenössische Technische Hochschule ETHZ, Zürich (Switzerland); Vogelhuber, M. [Dr. von Moos AG, Geotechnisches Büro, Zürich (Switzerland)

    2015-11-15

    This comprehensive report published by the Swiss Federal Nuclear Safety Inspectorate ENSI presents an expert report published on the assessment of the geomechanical properties of intact Opalinus Clay. This review report addresses the conceptual constitutive framework for repositories in Opalinus Clay. The author addresses the geomechanical fundamentals that are necessary in order to adequately judge experiments on intact Opalinus Clay and the interpretation of the results. The report assesses in detail the various test series on intact Opalinus Clay carried out along with the interpretations made by experts and NAGRA. Further assessments are quoted including those on sample geometries tested, effective strength properties, undrained shear strength properties and elastic properties. The results of work done by other experts are also presented and discussed. The report is completed with a list of relevant literature.

  15. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera

    2014-01-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  16. Validation of water sorption-based clay prediction models for calcareous soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Razzaghi, Fatemeh; Moosavi, Ali

    2017-01-01

    on prediction accuracy. The soils had clay content ranging from 9 to 61% and CaCO3 from 24 to 97%. The three water sorption models considered showed a reasonably fair prediction of the clay content from water sorption at 28% relative humidity (RMSE and ME values ranging from 10.6 to 12.1 and −8.1 to −4......Soil particle size distribution (PSD), particularly the active clay fraction, mediates soil engineering, agronomic and environmental functions. The tedious and costly nature of traditional methods of determining PSD prompted the development of water sorption-based models for determining the clay...... fraction. The applicability of such models to semi-arid soils with significant amounts of calcium carbonate and/or gypsum is unknown. The objective of this study was to validate three water sorption-based clay prediction models for 30 calcareous soils from Iran and identify the effect of CaCO3...

  17. Complex resistivity signatures of ethanol in sand-clay mixtures

    Science.gov (United States)

    Personna, Yves Robert; Slater, Lee; Ntarlagiannis, Dimitrios; Werkema, Dale D.; Szabo, Zoltan

    2013-01-01

    We performed complex resistivity (CR) measurements on laboratory columns to investigate changes in electrical properties as a result of varying ethanol (EtOH) concentration (0% to 30% v/v) in a sand–clay (bentonite) matrix. We applied Debye decomposition, a phenomenological model commonly used to fit CR data, to determine model parameters (time constant: τ, chargeability: m, and normalized chargeability: mn). The CR data showed a significant (P ≤ 0.001) time-dependent variation in the clay driven polarization response (~ 12 mrad) for 0% EtOH concentration. This temporal variation probably results from the clay–water reaction kinetics trending towards equilibrium in the sand–clay–water system. The clay polarization is significantly suppressed (P ≤ 0.001) for both measured phase (ϕ) and imaginary conductivity (σ″) with increasing EtOH concentration. Normalized chargeability consistently decreases (by up to a factor of ~ 2) as EtOH concentration increases from 0% to 10% and 10 to 20%, respectively. We propose that such suppression effects are associated with alterations in the electrical double layer (EDL) at the clay–fluid interface due to (a) strong EtOH adsorption on clay, and (b) complex intermolecular EtOH–water interactions and subsequent changes in ionic mobility on the surface in the EDL. Changes in the CR data following a change of the saturating fluid from EtOH 20% to plain water indicate strong hysteresis effects in the electrical response, which we attribute to persistent EtOH adsorption on clay. Our results demonstrate high sensitivity of CR measurements to clay–EtOH interactions in porous media, indicating the potential application of this technique for characterization and monitoring of ethanol contamination in sediments containing clays.

  18. Influence of the clay content and drying of successive no solvents change in the morphology of polyamide 6 / clay membranes

    International Nuclear Information System (INIS)

    Pereira, C.H.; Ferreira, R.S.B.; Bezerra, E.B.; Leite, A.M.D.; Araujo, E.D.; Lira, H.L.

    2014-01-01

    Membranes of polyamide 6/clay nanocomposites with different contents (1 and 3%) of Brazilian bentonite clay using the technique of phase inversion was obtained. The nanocomposites were obtained in a co-rotating twin screw extruder, by the melt intercalation method and were characterized by x-ray diffraction (XRD), which showed possibly an exfoliated and / or partially exfoliated structure was obtained. The membranes were dried at room temperature and also by successive exchange of non-solvents, to prevent collapse the pores using ethanol and n-hexane as a non-solvent. From the photomicrographs of top surface by scanning electron microscopy (SEM) showed to morphology change in the membranes from the presence of different clay contents as well as drying the same by successive exchange of non-solvents, obtaining membranes with larger amount of pores uniformly distributed. (author)

  19. Mechanical thermal evaluation of polyamide 6 with bentonite organo clay nanocomposites

    International Nuclear Information System (INIS)

    Paz, Rene Ani