WorldWideScience

Sample records for classification model based

  1. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases......, the classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...... datasets. Our model also outperforms A Decision Cluster Classification (ADCC) and the Decision Cluster Forest Classification (DCFC) models on the Reuters-21578 dataset....

  2. An Agent Based Classification Model

    CERN Document Server

    Gu, Feng; Greensmith, Julie

    2009-01-01

    The major function of this model is to access the UCI Wisconsin Breast Can- cer data-set[1] and classify the data items into two categories, which are normal and anomalous. This kind of classifi cation can be referred as anomaly detection, which discriminates anomalous behaviour from normal behaviour in computer systems. One popular solution for anomaly detection is Artifi cial Immune Sys- tems (AIS). AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models which are applied to prob- lem solving. The Dendritic Cell Algorithm (DCA)[2] is an AIS algorithm that is developed specifi cally for anomaly detection. It has been successfully applied to intrusion detection in computer security. It is believed that agent-based mod- elling is an ideal approach for implementing AIS, as intelligent agents could be the perfect representations of immune entities in AIS. This model evaluates the feasibility of re-implementing the DCA in an agent-based simulation environ- ...

  3. An Agent Based Classification Model

    OpenAIRE

    Gu, Feng; Aickelin, Uwe; Greensmith, Julie

    2009-01-01

    The major function of this model is to access the UCI Wisconsin Breast Can- cer data-set[1] and classify the data items into two categories, which are normal and anomalous. This kind of classifi cation can be referred as anomaly detection, which discriminates anomalous behaviour from normal behaviour in computer systems. One popular solution for anomaly detection is Artifi cial Immune Sys- tems (AIS). AIS are adaptive systems inspired by theoretical immunology and observed immune functions, p...

  4. An Efficient Semantic Model For Concept Based Clustering And Classification

    Directory of Open Access Journals (Sweden)

    SaiSindhu Bandaru

    2012-03-01

    Full Text Available Usually in text mining techniques the basic measures like term frequency of a term (word or phrase is computed to compute the importance of the term in the document. But with statistical analysis, the original semantics of the term may not carry the exact meaning of the term. To overcome this problem, a new framework has been introduced which relies on concept based model and synonym based approach. The proposed model can efficiently find significant matching and related concepts between documents according to concept based and synonym based approaches. Large sets of experiments using the proposed model on different set in clustering and classification are conducted. Experimental results demonstrate the substantialenhancement of the clustering quality using sentence based, document based, corpus based and combined approach concept analysis. A new similarity measure has been proposed to find the similarity between adocument and the existing clusters, which can be used in classification of the document with existing clusters.

  5. Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models

    Science.gov (United States)

    Giesen, Joachim; Mueller, Klaus; Taneva, Bilyana; Zolliker, Peter

    Conjoint analysis is a family of techniques that originated in psychology and later became popular in market research. The main objective of conjoint analysis is to measure an individual's or a population's preferences on a class of options that can be described by parameters and their levels. We consider preference data obtained in choice-based conjoint analysis studies, where one observes test persons' choices on small subsets of the options. There are many ways to analyze choice-based conjoint analysis data. Here we discuss the intuition behind a classification based approach, and compare this approach to one based on statistical assumptions (discrete choice models) and to a regression approach. Our comparison on real and synthetic data indicates that the classification approach outperforms the discrete choice models.

  6. A Fuzzy Similarity Based Concept Mining Model for Text Classification

    CERN Document Server

    Puri, Shalini

    2012-01-01

    Text Classification is a challenging and a red hot field in the current scenario and has great importance in text categorization applications. A lot of research work has been done in this field but there is a need to categorize a collection of text documents into mutually exclusive categories by extracting the concepts or features using supervised learning paradigm and different classification algorithms. In this paper, a new Fuzzy Similarity Based Concept Mining Model (FSCMM) is proposed to classify a set of text documents into pre - defined Category Groups (CG) by providing them training and preparing on the sentence, document and integrated corpora levels along with feature reduction, ambiguity removal on each level to achieve high system performance. Fuzzy Feature Category Similarity Analyzer (FFCSA) is used to analyze each extracted feature of Integrated Corpora Feature Vector (ICFV) with the corresponding categories or classes. This model uses Support Vector Machine Classifier (SVMC) to classify correct...

  7. TENSOR MODELING BASED FOR AIRBORNE LiDAR DATA CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    N. Li

    2016-06-01

    Full Text Available Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.

  8. Tensor Modeling Based for Airborne LiDAR Data Classification

    Science.gov (United States)

    Li, N.; Liu, C.; Pfeifer, N.; Yin, J. F.; Liao, Z. Y.; Zhou, Y.

    2016-06-01

    Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the "raw" data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.

  9. State-Based Models for Light Curve Classification

    Science.gov (United States)

    Becker, A.

    I discuss here the application of continuous time autoregressive models to the characterization of astrophysical variability. These types of models are general enough to represent many classes of variability, and descriptive enough to provide features for lightcurve classification. Importantly, the features of these models may be interpreted in terms of the power spectrum of the lightcurve, enabling constraints on characteristic timescales and periodicity. These models may be extended to include vector-valued inputs, raising the prospect of a fully general modeling and classification environment that uses multi-passband inputs to create a single phenomenological model. These types of spectral-temporal models are an important extension of extant techniques, and necessary in the upcoming eras of Gaia and LSST.

  10. Accelerometry-Based Classification of Human Activities Using Markov Modeling

    Directory of Open Access Journals (Sweden)

    Andrea Mannini

    2011-01-01

    Full Text Available Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding biomechanical parameters estimators. Automatic classification of human physical activities is highly attractive for pervasive computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas wearable sensor systems are proposed for long-term monitoring. This paper is concerned with the machine learning algorithms needed to perform the classification task. Hidden Markov Model (HMM classifiers are studied by contrasting them with Gaussian Mixture Model (GMM classifiers. HMMs incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes as GMMs do. An example of the benefits of the obtained statistical leverage is illustrated and discussed by analyzing two datasets of accelerometer time series.

  11. Semi-Supervised Classification based on Gaussian Mixture Model for remote imagery

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Semi-Supervised Classification (SSC),which makes use of both labeled and unlabeled data to determine classification borders in feature space,has great advantages in extracting classification information from mass data.In this paper,a novel SSC method based on Gaussian Mixture Model (GMM) is proposed,in which each class’s feature space is described by one GMM.Experiments show the proposed method can achieve high classification accuracy with small amount of labeled data.However,for the same accuracy,supervised classification methods such as Support Vector Machine,Object Oriented Classification,etc.should be provided with much more labeled data.

  12. TENSOR MODELING BASED FOR AIRBORNE LiDAR DATA CLASSIFICATION

    OpenAIRE

    Li, N.; Liu, C; Pfeifer, N; Yin, J. F.; Liao, Z.Y.; Zhou, Y.

    2016-01-01

    Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could kee...

  13. Pitch Based Sound Classification

    OpenAIRE

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U.

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classif...

  14. Assessing the Performance of a Classification-Based Vulnerability Analysis Model

    OpenAIRE

    Wang, Tai-Ran; Mousseau, Vincent; Pedroni, Nicola; Zio, Enrico

    2015-01-01

    In this article, a classification model based on the majority rule sorting (MR-Sort) method is employed to evaluate the vulnerability of safety-critical systems with respect to malevolent intentional acts. The model is built on the basis of a (limited-size) set of data representing (a priori known) vulnerability classification examples. The empirical construction of the clas-sification model introduces a source of uncertainty into the vulnerability analysis process: a quantitative assessment ...

  15. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  16. About Classification Methods Based on Tensor Modelling for Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Salah Bourennane

    2010-03-01

    Full Text Available Denoising and Dimensionality Reduction (DR are key issue to improve the classifiers efficiency for Hyper spectral images (HSI. The multi-way Wiener filtering recently developed is used, Principal and independent component analysis (PCA; ICA and projection pursuit(PP approaches to DR have been investigated. These matrix algebra methods are applied on vectorized images. Thereof, the spatial rearrangement is lost. To jointly take advantage of the spatial and spectral information, HSI has been recently represented as tensor. Offering multiple ways to decompose data orthogonally, we introduced filtering and DR methods based on multilinear algebra tools. The DR is performed on spectral way using PCA, or PP joint to an orthogonal projection onto a lower subspace dimension of the spatial ways. Weshow the classification improvement using the introduced methods in function to existing methods. This experiment is exemplified using real-world HYDICE data. Multi-way filtering, Dimensionality reduction, matrix and multilinear algebra tools, tensor processing.

  17. Topic Modelling for Object-Based Classification of Vhr Satellite Images Based on Multiscale Segmentations

    Science.gov (United States)

    Shen, Li; Wu, Linmei; Li, Zhipeng

    2016-06-01

    Multiscale segmentation is a key prerequisite step for object-based classification methods. However, it is often not possible to determine a sole optimal scale for the image to be classified because in many cases different geo-objects and even an identical geo-object may appear at different scales in one image. In this paper, an object-based classification method based on mutliscale segmentation results in the framework of topic modelling is proposed to classify VHR satellite images in an entirely unsupervised fashion. In the stage of topic modelling, grayscale histogram distributions for each geo-object class and each segment are learned in an unsupervised manner from multiscale segments. In the stage of classification, each segment is allocated a geo-object class label by the similarity comparison between the grayscale histogram distributions of each segment and each geo-object class. Experimental results show that the proposed method can perform better than the traditional methods based on topic modelling.

  18. An Efficient Semantic Model For Concept Based Clustering And Classification

    OpenAIRE

    SaiSindhu Bandaru; Dr. K B Madhuri

    2012-01-01

    Usually in text mining techniques the basic measures like term frequency of a term (word or phrase) is computed to compute the importance of the term in the document. But with statistical analysis, the original semantics of the term may not carry the exact meaning of the term. To overcome this problem, a new framework has been introduced which relies on concept based model and synonym based approach. The proposed model can efficiently find significant matching and related concepts between doc...

  19. Classification Based on Hierarchical Linear Models: The Need for Incorporation of Social Contexts in Classification Analysis

    Science.gov (United States)

    Vaughn, Brandon K.; Wang, Qui

    2009-01-01

    Many areas in educational and psychological research involve the use of classification statistical analysis. For example, school districts might be interested in attaining variables that provide optimal prediction of school dropouts. In psychology, a researcher might be interested in the classification of a subject into a particular psychological…

  20. Content-based similarity for 3D model retrieval and classification

    Institute of Scientific and Technical Information of China (English)

    Ke Lü; Ning He; Jian Xue

    2009-01-01

    With the rapid development of 3D digital shape information,content-based 3D model retrieval and classification has become an important research area.This paper presents a novel 3D model retrieval and classification algorithm.For feature representation,a method combining a distance histogram and moment invariants is proposed to improve the retrieval performance.The major advantage of using a distance histogram is its invariance to the transforms of scaling,translation and rotation.Based on the premise that two similar objects should have high mutual information,the querying of 3D data should convey a great deal of information on the shape of the two objects,and so we propose a mutual information distance measurement to perform the similarity comparison of 3D objects.The proposed algorithm is tested with a 3D model retrieval and classification prototype,and the experimental evaluation demonstrates satisfactory retrieval results and classification accuracy.

  1. Physics based modeling for time-frequency damage classification

    Science.gov (United States)

    Chakraborty, Debejyo; Soni, Sunilkumar; Wei, Jun; Kovvali, Narayan; Papandreou-Suppappola, Antonia; Cochran, Douglas; Chattopadhyay, Aditi

    2008-03-01

    We have recently proposed a method for classifying waveforms from healthy and damaged structures in a structural health monitoring framework. This method is based on the use of hidden Markov models with preselected feature vectors obtained from the time-frequency based matching pursuit decomposition. In order to investigate the performance of the classifier for different signal-to-noise ratios (SNR), we simulate the response of a lug joint sample with different crack lengths using finite element modeling (FEM). Unlike experimental noisy data, the modeled data is noise free. As a result, different levels of noise can be added to the modeled data in order to obtain the true performance of the classifier under additive white Gaussian noise. We use the finite element package ABAQUS to simulate a lug joint sample with different crack lengths and piezoelectric sensor signals. A mesoscale internal state variable damage model defines the progressive damage and is incorporated in the macroscale model. We furthermore use a hybrid method (boundary element-finite element method) to model wave reflection as well as mode conversion of the Lamb waves from the free edges and scattering of the waves from the internal defects. The hybrid method simplifies the modeling problem and provides better performance in the analysis of high stress gradient problems.

  2. CONTEXT MODELS FOR CRF-BASED CLASSIFICATION OF MULTITEMPORAL REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    T. Hoberg

    2012-07-01

    Full Text Available The increasing availability of multitemporal satellite remote sensing data offers new potential for land cover analysis. By combining data acquired at different epochs it is possible both to improve the classification accuracy and to analyse land cover changes at a high frequency. A simultaneous classification of images from different epochs that is also capable of detecting changes is achieved by a new classification technique based on Conditional Random Fields (CRF. CRF provide a probabilistic classification framework including local spatial and temporal context. Although context is known to improve image analysis results, so far only little research was carried out on how to model it. Taking into account context is the main benefit of CRF in comparison to many other classification methods. Context can be already considered by the choice of features and in the design of the interaction potentials that model the dependencies of interacting sites in the CRF. In this paper, these aspects are more thoroughly investigated. The impact of the applied features on the classification result as well as different models for the spatial interaction potentials are evaluated and compared to the purely label-based Markov Random Field model.

  3. Estimation and Model Selection for Model-Based Clustering with the Conditional Classification Likelihood

    CERN Document Server

    Baudry, Jean-Patrick

    2012-01-01

    The Integrated Completed Likelihood (ICL) criterion has been proposed by Biernacki et al. (2000) in the model-based clustering framework to select a relevant number of classes and has been used by statisticians in various application areas. A theoretical study of this criterion is proposed. A contrast related to the clustering objective is introduced: the conditional classification likelihood. This yields an estimator and a model selection criteria class. The properties of these new procedures are studied and ICL is proved to be an approximation of one of these criteria. We oppose these results to the current leading point of view about ICL, that it would not be consistent. Moreover these results give insights into the class notion underlying ICL and feed a reflection on the class notion in clustering. General results on penalized minimum contrast criteria and on mixture models are derived, which are interesting in their own right.

  4. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults

    Science.gov (United States)

    2016-01-01

    Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment. PMID:27054878

  5. A Feature-based Classification of Model Repair Approaches

    OpenAIRE

    Macedo, Nuno; Jorge, Tiago; Cunha, Alcino

    2015-01-01

    Consistency management, the ability to detect, diagnose and handle inconsistencies, is crucial during the development process in Model-driven Engineering (MDE). As the popularity and application scenarios of MDE expanded, a variety of different techniques were proposed to address these tasks in specific contexts. Of the various stages of consistency management, this work focuses on inconsistency fixing in MDE, where such task is embodied by model repair techniques. This paper proposes a featu...

  6. A Trust Model Based on Service Classification in Mobile Services

    CERN Document Server

    Liu, Yang; Xia, Feng; Lv, Xiaoning; Bu, Fanyu

    2010-01-01

    Internet of Things (IoT) and B3G/4G communication are promoting the pervasive mobile services with its advanced features. However, security problems are also baffled the development. This paper proposes a trust model to protect the user's security. The billing or trust operator works as an agent to provide a trust authentication for all the service providers. The services are classified by sensitive value calculation. With the value, the user's trustiness for corresponding service can be obtained. For decision, three trust regions are divided, which is referred to three ranks: high, medium and low. The trust region tells the customer, with his calculated trust value, which rank he has got and which authentication methods should be used for access. Authentication history and penalty are also involved with reasons.

  7. Latent classification models

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre

    2005-01-01

    parametric family ofdistributions.  In this paper we propose a new set of models forclassification in continuous domains, termed latent classificationmodels. The latent classification model can roughly be seen ascombining the \\NB model with a mixture of factor analyzers,thereby relaxing the assumptions...... classification model, and wedemonstrate empirically that the accuracy of the proposed model issignificantly higher than the accuracy of other probabilisticclassifiers....

  8. A model presented for classification ECG signals base on Case-Based Reasoning

    Directory of Open Access Journals (Sweden)

    Elaheh Sayari

    2013-07-01

    Full Text Available Early detection of heart diseases/abnormalities can prolong life and enhance the quality of living through appropriate treatment; thus classifying cardiac signals will be helped to immediate diagnosing of heart beat type in cardiac patients. The present paper utilizes the case base reasoning (CBR for classification of ECG signals. Four types of ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat and atrial fibrillation beat obtained from the PhysioBank database was classified by the proposed CBR model. The main purpose of this article is classifying heart signals and diagnosing the type of heart beat in cardiac patients that in proposed CBR (Case Base Reasoning system, Training and testing data for diagnosing and classifying types of heart beat have been used. The evaluation results from the model are shown that the proposed model has high accuracy in classifying heart signals and helps to clinical decisions for diagnosing the type of heart beat in cardiac patients which indeed has high impact on diagnosing the type of heart beat aided computer.

  9. Model-based Methods of Classification: Using the mclust Software in Chemometrics

    Directory of Open Access Journals (Sweden)

    Chris Fraley

    2007-01-01

    Full Text Available Due to recent advances in methods and software for model-based clustering, and to the interpretability of the results, clustering procedures based on probability models are increasingly preferred over heuristic methods. The clustering process estimates a model for the data that allows for overlapping clusters, producing a probabilistic clustering that quantifies the uncertainty of observations belonging to components of the mixture. The resulting clustering model can also be used for some other important problems in multivariate analysis, including density estimation and discriminant analysis. Examples of the use of model-based clustering and classification techniques in chemometric studies include multivariate image analysis, magnetic resonance imaging, microarray image segmentation, statistical process control, and food authenticity. We review model-based clustering and related methods for density estimation and discriminant analysis, and show how the R package mclust can be applied in each instance.

  10. Classification and estimation in the Stochastic Block Model based on the empirical degrees

    CERN Document Server

    Channarond, Antoine; Robin, Stéphane

    2011-01-01

    The Stochastic Block Model (Holland et al., 1983) is a mixture model for heterogeneous network data. Unlike the usual statistical framework, new nodes give additional information about the previous ones in this model. Thereby the distribution of the degrees concentrates in points conditionally on the node class. We show under a mild assumption that classification, estimation and model selection can actually be achieved with no more than the empirical degree data. We provide an algorithm able to process very large networks and consistent estimators based on it. In particular, we prove a bound of the probability of misclassification of at least one node, including when the number of classes grows.

  11. Sparse coding based dense feature representation model for hyperspectral image classification

    Science.gov (United States)

    Oguslu, Ender; Zhou, Guoqing; Zheng, Zezhong; Iftekharuddin, Khan; Li, Jiang

    2015-11-01

    We present a sparse coding based dense feature representation model (a preliminary version of the paper was presented at the SPIE Remote Sensing Conference, Dresden, Germany, 2013) for hyperspectral image (HSI) classification. The proposed method learns a new representation for each pixel in HSI through the following four steps: sub-band construction, dictionary learning, encoding, and feature selection. The new representation usually has a very high dimensionality requiring a large amount of computational resources. We applied the l1/lq regularized multiclass logistic regression technique to reduce the size of the new representation. We integrated the method with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) to discriminate different types of land cover. We evaluated the proposed algorithm on three well-known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit, and image fusion and recursive filtering. Experimental results show that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification.

  12. A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification

    Science.gov (United States)

    Liu, Tao; Im, Jungho; Quackenbush, Lindi J.

    2015-12-01

    This study provides a novel approach to individual tree crown delineation (ITCD) using airborne Light Detection and Ranging (LiDAR) data in dense natural forests using two main steps: crown boundary refinement based on a proposed Fishing Net Dragging (FiND) method, and segment merging based on boundary classification. FiND starts with approximate tree crown boundaries derived using a traditional watershed method with Gaussian filtering and refines these boundaries using an algorithm that mimics how a fisherman drags a fishing net. Random forest machine learning is then used to classify boundary segments into two classes: boundaries between trees and boundaries between branches that belong to a single tree. Three groups of LiDAR-derived features-two from the pseudo waveform generated along with crown boundaries and one from a canopy height model (CHM)-were used in the classification. The proposed ITCD approach was tested using LiDAR data collected over a mountainous region in the Adirondack Park, NY, USA. Overall accuracy of boundary classification was 82.4%. Features derived from the CHM were generally more important in the classification than the features extracted from the pseudo waveform. A comprehensive accuracy assessment scheme for ITCD was also introduced by considering both area of crown overlap and crown centroids. Accuracy assessment using this new scheme shows the proposed ITCD achieved 74% and 78% as overall accuracy, respectively, for deciduous and mixed forest.

  13. A technical study and analysis on fuzzy similarity based models for text classification

    CERN Document Server

    Puri, Shalini; 10.5121/ijdkp.2012.2201

    2012-01-01

    In this new and current era of technology, advancements and techniques, efficient and effective text document classification is becoming a challenging and highly required area to capably categorize text documents into mutually exclusive categories. Fuzzy similarity provides a way to find the similarity of features among various documents. In this paper, a technical review on various fuzzy similarity based models is given. These models are discussed and compared to frame out their use and necessity. A tour of different methodologies is provided which is based upon fuzzy similarity related concerns. It shows that how text and web documents are categorized efficiently into different categories. Various experimental results of these models are also discussed. The technical comparisons among each model's parameters are shown in the form of a 3-D chart. Such study and technical review provide a strong base of research work done on fuzzy similarity based text document categorization.

  14. Dynamic Latent Classification Model

    DEFF Research Database (Denmark)

    Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre;

    as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...

  15. Gene function classification using Bayesian models with hierarchy-based priors

    Directory of Open Access Journals (Sweden)

    Neal Radford M

    2006-10-01

    Full Text Available Abstract Background We investigate whether annotation of gene function can be improved using a classification scheme that is aware that functional classes are organized in a hierarchy. The classifiers look at phylogenic descriptors, sequence based attributes, and predicted secondary structure. We discuss three Bayesian models and compare their performance in terms of predictive accuracy. These models are the ordinary multinomial logit (MNL model, a hierarchical model based on a set of nested MNL models, and an MNL model with a prior that introduces correlations between the parameters for classes that are nearby in the hierarchy. We also provide a new scheme for combining different sources of information. We use these models to predict the functional class of Open Reading Frames (ORFs from the E. coli genome. Results The results from all three models show substantial improvement over previous methods, which were based on the C5 decision tree algorithm. The MNL model using a prior based on the hierarchy outperforms both the non-hierarchical MNL model and the nested MNL model. In contrast to previous attempts at combining the three sources of information in this dataset, our new approach to combining data sources produces a higher accuracy rate than applying our models to each data source alone. Conclusion Together, these results show that gene function can be predicted with higher accuracy than previously achieved, using Bayesian models that incorporate suitable prior information.

  16. Integrated knowledge-based modeling and its application for classification problems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Knowledge discovery from data directly can hardly avoid the fact that it is biased towards the collected experimental data, whereas, expert systems are always baffled with the manual knowledge acquisition bottleneck. So it is believable that integrating the knowledge embedded in data and those possessed by experts can lead to a superior modeling approach. Aiming at the classification problems, a novel integrated knowledge-based modeling methodology, oriented by experts and driven by data, is proposed. It starts from experts identifying modeling parameters, and then the input space is partitioned followed by fuzzification. Afterwards, single rules are generated and then aggregated to form a rule base. on which a fuzzy inference mechanism is proposed. The experts are allowed to make necessary changes on the rule base to improve the model accuracy. A real-world application, welding fault diagnosis, is presented to demonstrate the effectiveness of the methodology.

  17. Research on evaluating water resource resilience based on projection pursuit classification model

    Science.gov (United States)

    Liu, Dong; Zhao, Dan; Liang, Xu; Wu, Qiuchen

    2016-03-01

    Water is a fundamental natural resource while agriculture water guarantees the grain output, which shows that the utilization and management of water resource have a significant practical meaning. Regional agricultural water resource system features with unpredictable, self-organization, and non-linear which lays a certain difficulty on the evaluation of regional agriculture water resource resilience. The current research on water resource resilience remains to focus on qualitative analysis and the quantitative analysis is still in the primary stage, thus, according to the above issues, projection pursuit classification model is brought forward. With the help of artificial fish-swarm algorithm (AFSA), it optimizes the projection index function, seeks for the optimal projection direction, and improves AFSA with the application of self-adaptive artificial fish step and crowding factor. Taking Hongxinglong Administration of Heilongjiang as the research base and on the basis of improving AFSA, it established the evaluation of projection pursuit classification model to agriculture water resource system resilience besides the proceeding analysis of projection pursuit classification model on accelerating genetic algorithm. The research shows that the water resource resilience of Hongxinglong is the best than Raohe Farm, and the last 597 Farm. And the further analysis shows that the key driving factors influencing agricultural water resource resilience are precipitation and agriculture water consumption. The research result reveals the restoring situation of the local water resource system, providing foundation for agriculture water resource management.

  18. SAR Images Statistical Modeling and Classification Based on the Mixture of Alpha-Stable Distributions

    Directory of Open Access Journals (Sweden)

    Fangling Pu

    2013-05-01

    Full Text Available This paper proposes the mixture of Alpha-stable (MAS distributions for modeling statistical property of Synthetic Aperture Radar (SAR images in a supervised Markovian classification algorithm. Our work is motivated by the fact that natural scenes consist of various reflectors with different types that are typically concentrated within a small area, and SAR images generally exhibit sharp peaks, heavy tails, and even multimodal statistical property, especially at high resolution. Unimodal distributions do not fit such statistical property well, and thus a multimodal approach is necessary. Driven by the multimodality and impulsiveness of high resolution SAR images histogram, we utilize the mixture of Alpha-stable distributions to describe such characteristics. A pseudo-simulated annealing (PSA estimator based on Markov chain Monte Carlo (MCMC is present to efficiently estimate model parameters of the mixture of Alpha-stable distributions. To validate the proposed PSA estimator, we apply it to simulated data and compare its performance to that of a state-of-the-art estimator. Finally, we exploit the MAS distributions and a Markovian context for SAR images classification. The effectiveness of the proposed classifier is demonstrated by experiments on TerraSAR-X images, which verifies the validity of the MAS distributions for modeling and classification of SAR images.

  19. Chinese Short-Text Classification Based on Topic Model with High-Frequency Feature Expansion

    Directory of Open Access Journals (Sweden)

    Hu Y. Jun

    2013-08-01

    Full Text Available Short text differs from traditional documents in its shortness and sparseness. Feature extension can ease the problem of high sparseness in the vector space model, but it inevitably introduces noise. To resolve this problem, this paper proposes a high-frequency feature expansion method based on a latent Dirichlet allocation (LDA topic model. High-frequency features are extracted from each category as the feature space, using LDA to derive latent topics from the corpus, and topic words are extended to the short text. Extensive experiments are conducted on Chinese short messages and news titles. The proposed method for classifying Chinese short texts outperforms conventional classification methods.

  20. A FEASIBILITY STUDY ON USING PHYSICS-BASED MODELER OUTPUTS TO TRAIN PROBABILISTIC NEURAL NETWORKS FOR UXO CLASSIFICATION

    Science.gov (United States)

    A probabilistic neural network (PNN) has been applied to the detection and classification of unexploded ordnance (UXO) measured using magnetometry data collected using the Multi-sensor Towed Array Detection System (MTADS). Physical parameters obtained from a physics based modeler...

  1. A Quaternary-Stage User Interest Model Based on User Browsing Behavior and Web Page Classification

    Institute of Scientific and Technical Information of China (English)

    Zongli Jiang; Hang Su

    2012-01-01

    The key to personalized search engine lies in user model. Traditional personalized model results in that the search results of secondary search are partial to the long-term interests, besides, forgetting to the long-term interests disenables effective recollection of user interests. This paper presents a quaternary-stage user interest model based on user browsing behavior and web page classification, which consults the principles of cache and recycle bin in operating system, by setting up an illuminating text-stage and a recycle bin interest-stage in front and rear of the traditional interest model respectively to constitute the quaternary-stage user interest model. The model can better reflect the user interests, by using an adaptive natural weight and its calculation method, and by efficiently integrating user browsing behavior and web document content.

  2. SAR Imagery Simulation of Ship Based on Electromagnetic Calculations and Sea Clutter Modelling for Classification Applications

    International Nuclear Information System (INIS)

    Ship detection and classification with space-borne SAR has many potential applications within the maritime surveillance, fishery activity management, monitoring ship traffic, and military security. While ship detection techniques with SAR imagery are well established, ship classification is still an open issue. One of the main reasons may be ascribed to the difficulties on acquiring the required quantities of real data of vessels under different observation and environmental conditions with precise ground truth. Therefore, simulation of SAR images with high scenario flexibility and reasonable computation costs is compulsory for ship classification algorithms development. However, the simulation of SAR imagery of ship over sea surface is challenging. Though great efforts have been devoted to tackle this difficult problem, it is far from being conquered. This paper proposes a novel scheme for SAR imagery simulation of ship over sea surface. The simulation is implemented based on high frequency electromagnetic calculations methods of PO, MEC, PTD and GO. SAR imagery of sea clutter is modelled by the representative K-distribution clutter model. Then, the simulated SAR imagery of ship can be produced by inserting the simulated SAR imagery chips of ship into the SAR imagery of sea clutter. The proposed scheme has been validated with canonical and complex ship targets over a typical sea scene

  3. A New MPEG-2 Rate Control Method Based on Model Classification

    Institute of Scientific and Technical Information of China (English)

    古继兴; 郑世宝; 王嘉; 孙军

    2004-01-01

    The paper proposed a new MPEG-2 rate control method that is based on model classification. The macro-blocks are classified according to their prediction errors, and different parameters are used in the rate-quantization and distortion-quantization model. The different model parameters are calculated from the previous frame of the same type in the process of coding. These models are used to estimate the relations among rate, distortion and quantization of the current frame. Further steps, such as R-D optimization based quantization adjustment and smoothing of quantization of adjacent macroblocks, are used to improve the quality. The results of the experiments prove that the technique is effective and can be realized easily. The method presented in the paper can be a good way for MPEG rate control.

  4. Stability classification model of mine-lane surrounding rock based on distance discriminant analysis method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; LI Xi-bing; GONG Feng-qiang

    2008-01-01

    Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.

  5. A physiologically-inspired model of numerical classification based on graded stimulus coding

    Directory of Open Access Journals (Sweden)

    John Pearson

    2010-01-01

    Full Text Available In most natural decision contexts, the process of selecting among competing actions takes place in the presence of informative, but potentially ambiguous, stimuli. Decisions about magnitudes—quantities like time, length, and brightness that are linearly ordered—constitute an important subclass of such decisions. It has long been known that perceptual judgments about such quantities obey Weber’s Law, wherein the just-noticeable difference in a magnitude is proportional to the magnitude itself. Current physiologically inspired models of numerical classification assume discriminations are made via a labeled line code of neurons selectively tuned for numerosity, a pattern observed in the firing rates of neurons in the ventral intraparietal area (VIP of the macaque. By contrast, neurons in the contiguous lateral intraparietal area (LIP signal numerosity in a graded fashion, suggesting the possibility that numerical classification could be achieved in the absence of neurons tuned for number. Here, we consider the performance of a decision model based on this analog coding scheme in a paradigmatic discrimination task—numerosity bisection. We demonstrate that a basic two-neuron classifier model, derived from experimentally measured monotonic responses of LIP neurons, is sufficient to reproduce the numerosity bisection behavior of monkeys, and that the threshold of the classifier can be set by reward maximization via a simple learning rule. In addition, our model predicts deviations from Weber Law scaling of choice behavior at high numerosity. Together, these results suggest both a generic neuronal framework for magnitude-based decisions and a role for reward contingency in the classification of such stimuli.

  6. GAUSSIAN MIXTURE MODEL BASED CLASSIFICATION OF MICROCALCIFICATION IN MAMMOGRAMS USING DYADIC WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    Suman Mishra

    2013-01-01

    Full Text Available Breast cancer is a serious health related issue for women in the world. Cancer detected at premature stages has a higher probability of being cured, whereas at advanced stages chances of survival are bleak. Screening programs aid in detecting potential breast cancer at early stages of the disease. Among the various screening programs, mammography is the proven standard for screening breast cancer, because even small tumors can be detected on mammograms. In this study, a novel feature extraction technique based on dyadic wavelet transform for classification of microcalcification in digital mammograms is proposed. In the feature extraction module, the high frequency sub-bands obtained from the decomposition of dyadic wavelet transform is used to form innovative sub-bands. From the newly constructed sub-bands, the features such as energy and entropy are computed. In the classification module, the extracted features are fed into a Gaussian Mixture Model (GMM classifier and the severity of given microcalcification; benign or malignant are given. A classification accuracy of 95.5% is obtained using the proposed approach on DDSM database.

  7. Classification of signaling proteins based on molecular star graph descriptors using Machine Learning models.

    Science.gov (United States)

    Fernandez-Lozano, Carlos; Cuiñas, Rubén F; Seoane, José A; Fernández-Blanco, Enrique; Dorado, Julian; Munteanu, Cristian R

    2015-11-01

    Signaling proteins are an important topic in drug development due to the increased importance of finding fast, accurate and cheap methods to evaluate new molecular targets involved in specific diseases. The complexity of the protein structure hinders the direct association of the signaling activity with the molecular structure. Therefore, the proposed solution involves the use of protein star graphs for the peptide sequence information encoding into specific topological indices calculated with S2SNet tool. The Quantitative Structure-Activity Relationship classification model obtained with Machine Learning techniques is able to predict new signaling peptides. The best classification model is the first signaling prediction model, which is based on eleven descriptors and it was obtained using the Support Vector Machines-Recursive Feature Elimination (SVM-RFE) technique with the Laplacian kernel (RFE-LAP) and an AUROC of 0.961. Testing a set of 3114 proteins of unknown function from the PDB database assessed the prediction performance of the model. Important signaling pathways are presented for three UniprotIDs (34 PDBs) with a signaling prediction greater than 98.0%. PMID:26297890

  8. Approach for Text Classification Based on the Similarity Measurement between Normal Cloud Models

    Directory of Open Access Journals (Sweden)

    Jin Dai

    2014-01-01

    Full Text Available The similarity between objects is the core research area of data mining. In order to reduce the interference of the uncertainty of nature language, a similarity measurement between normal cloud models is adopted to text classification research. On this basis, a novel text classifier based on cloud concept jumping up (CCJU-TC is proposed. It can efficiently accomplish conversion between qualitative concept and quantitative data. Through the conversion from text set to text information table based on VSM model, the text qualitative concept, which is extraction from the same category, is jumping up as a whole category concept. According to the cloud similarity between the test text and each category concept, the test text is assigned to the most similar category. By the comparison among different text classifiers in different feature selection set, it fully proves that not only does CCJU-TC have a strong ability to adapt to the different text features, but also the classification performance is also better than the traditional classifiers.

  9. Ligand and structure-based classification models for Prediction of P-glycoprotein inhibitors

    DEFF Research Database (Denmark)

    Klepsch, Freya; Poongavanam, Vasanthanathan; Ecker, Gerhard Franz

    2014-01-01

    The ABC transporter P-glycoprotein (P-gp) actively transports a wide range of drugs and toxins out of cells, and is therefore related to multidrug resistance and the ADME profile of therapeutics. Thus, development of predictive in silico models for the identification of P-gp inhibitors is of great...... interest in the field of drug discovery and development. So far in-silico P-gp inhibitor prediction was dominated by ligand-based approaches, due to the lack of high-quality structural information about P-gp. The present study aims at comparing the P-gp inhibitor/non-inhibitor classification performance...... obtained by docking into a homology model of P-gp, to supervised machine learning methods, such as Kappa nearest neighbor, support vector machine (SVM), random forest and binary QSAR, by using a large, structurally diverse data set. In addition, the applicability domain of the models was assessed using...

  10. Site effect classification based on microtremor data analysis using concentration-area fractal model

    Science.gov (United States)

    Adib, A.; Afzal, P.; Heydarzadeh, K.

    2014-07-01

    The aim of this study is to classify the site effect using concentration-area (C-A) fractal model in Meybod city, Central Iran, based on microtremor data analysis. Log-log plots of the frequency, amplification and vulnerability index (k-g) indicate a multifractal nature for the parameters in the area. The results obtained from the C-A fractal modeling reveal that proper soil types are located around the central city. The results derived via the fractal modeling were utilized to improve the Nogoshi's classification results in the Meybod city. The resulted categories are: (1) hard soil and weak rock with frequency of 6.2 to 8 Hz, (2) stiff soil with frequency of about 4.9 to 6.2 Hz, (3) moderately soft soil with the frequency of 2.4 to 4.9 Hz, and (4) soft soil with the frequency lower than 2.4 Hz.

  11. Site effect classification based on microtremor data analysis using a concentration-area fractal model

    Science.gov (United States)

    Adib, A.; Afzal, P.; Heydarzadeh, K.

    2015-01-01

    The aim of this study is to classify the site effect using concentration-area (C-A) fractal model in Meybod city, central Iran, based on microtremor data analysis. Log-log plots of the frequency, amplification and vulnerability index (k-g) indicate a multifractal nature for the parameters in the area. The results obtained from the C-A fractal modelling reveal that proper soil types are located around the central city. The results derived via the fractal modelling were utilized to improve the Nogoshi and Igarashi (1970, 1971) classification results in the Meybod city. The resulting categories are: (1) hard soil and weak rock with frequency of 6.2 to 8 Hz, (2) stiff soil with frequency of about 4.9 to 6.2 Hz, (3) moderately soft soil with the frequency of 2.4 to 4.9 Hz, and (4) soft soil with the frequency lower than 2.4 Hz.

  12. Site effect classification based on microtremor data analysis using concentration–area fractal model

    Directory of Open Access Journals (Sweden)

    A. Adib

    2014-07-01

    Full Text Available The aim of this study is to classify the site effect using concentration–area (C–A fractal model in Meybod city, Central Iran, based on microtremor data analysis. Log–log plots of the frequency, amplification and vulnerability index (k-g indicate a multifractal nature for the parameters in the area. The results obtained from the C–A fractal modeling reveal that proper soil types are located around the central city. The results derived via the fractal modeling were utilized to improve the Nogoshi's classification results in the Meybod city. The resulted categories are: (1 hard soil and weak rock with frequency of 6.2 to 8 Hz, (2 stiff soil with frequency of about 4.9 to 6.2 Hz, (3 moderately soft soil with the frequency of 2.4 to 4.9 Hz, and (4 soft soil with the frequency lower than 2.4 Hz.

  13. Research of the Classification Model Based on Dominance Rough Set Approach for China Emergency Communication

    Directory of Open Access Journals (Sweden)

    Fan Zifu

    2015-01-01

    Full Text Available Ensuring smooth communication and recovering damaged communication system quickly and efficiently are the key to the entire emergency response, command, control, and rescue during the whole accident. The classification of emergency communication level is the premise of emergency communication guarantee. So, we use dominance rough set approach (DRSA to construct the classification model for the judgment of emergency communication in this paper. In this model, we propose a classification index system of emergency communication using the method of expert interview firstly and then use DRSA to complete data sample, reduct attribute, and extract the preference decision rules of the emergency communication classification. Finally, the recognition accuracy of this model is verified; the testing result proves the model proposed in this paper is valid.

  14. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    Science.gov (United States)

    Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933

  15. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    OpenAIRE

    C. Fernandez-Lozano; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected.

  16. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    Directory of Open Access Journals (Sweden)

    C. Fernandez-Lozano

    2013-01-01

    Full Text Available Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM. Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA, the most representative variables for a specific classification problem can be selected.

  17. Model-based Clustering of Categorical Time Series with Multinomial Logit Classification

    Science.gov (United States)

    Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea

    2010-09-01

    A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.

  18. Classification of thermal waters based on their inorganic fingerprint and hydrogeothermal modelling

    Directory of Open Access Journals (Sweden)

    I. Delgado-Outeiriño

    2011-05-01

    Full Text Available Hydrothermal features in Galicia have been used since ancient times for therapeutic purposes. A characterization of these thermal waters was carried out in order to understand their behaviour based on inorganic pattern and water-rock interaction mechanisms. In this way 15 thermal water samples were collected in the same hydrographical system. The results of the hydrogeochemistry analysis showed one main water family of bicarbonate type sodium waters, typical in the post-orogenic basins of Galicia. Principal component analysis (PCA and partial lest squared (PLS clustered the selected thermal waters in two groups, regarding to their chemical composition. This classification agreed with the results obtained by the use of geothermometers and the hydrogeochemical modelling. The first included thermal samples that could be in contact with surface waters and therefore, their residence time in the reservoir and their water-rock interaction would be less important than for the thermal waters of the second group.

  19. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network

    Science.gov (United States)

    Li, Na; Yang, Yongjia

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly. PMID:27803711

  20. Climatic Classification over Asia during the Middle Holocene Climatic Optimum Based on PMIP Models

    Institute of Scientific and Technical Information of China (English)

    Hyuntaik Oh; Ho-Jeong Shin

    2016-01-01

    ABSTRACT:When considering potential global warming projections, it is useful to understand the im-pact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the multi-model ensemble with the paleoclimate modeling intercomparison project (PMIP) models. The reconstructed winter (summer) surface air temperature at 6 kyr before present was 0.85 ºC (0.21 ºC) lower (higher) than the present day over Asia, 60ºE–150ºE, 10ºN–60ºN. The seasonal variation and heating differences of land and ocean in summer at 6 kyr before present might be much larger than present day. The winter and summer precipitation of 6 kyr before present were 0.067 and 0.017 mm·day-1 larger than present day, respectively. The Group B climate, which means the dry climates based on Köppen climate classification, at 6 kyr before present decreased 17%compared to present day, but the Group D which means the continental and microthermal climates at 6 kyr before present increased over 7%. Comparison between the results from the model simulation and published paleo-proxy record agrees within the limited sparse paleo-proxy record data.

  1. An application to pulmonary emphysema classification based on model of texton learning by sparse representation

    Science.gov (United States)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryojiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2012-03-01

    We aim at using a new texton based texture classification method in the classification of pulmonary emphysema in computed tomography (CT) images of the lungs. Different from conventional computer-aided diagnosis (CAD) pulmonary emphysema classification methods, in this paper, firstly, the dictionary of texton is learned via applying sparse representation(SR) to image patches in the training dataset. Then the SR coefficients of the test images over the dictionary are used to construct the histograms for texture presentations. Finally, classification is performed by using a nearest neighbor classifier with a histogram dissimilarity measure as distance. The proposed approach is tested on 3840 annotated regions of interest consisting of normal tissue and mild, moderate and severe pulmonary emphysema of three subtypes. The performance of the proposed system, with an accuracy of about 88%, is comparably higher than state of the art method based on the basic rotation invariant local binary pattern histograms and the texture classification method based on texton learning by k-means, which performs almost the best among other approaches in the literature.

  2. Novel classification method for remote sensing images based on information entropy discretization algorithm and vector space model

    Science.gov (United States)

    Xie, Li; Li, Guangyao; Xiao, Mang; Peng, Lei

    2016-04-01

    Various kinds of remote sensing image classification algorithms have been developed to adapt to the rapid growth of remote sensing data. Conventional methods typically have restrictions in either classification accuracy or computational efficiency. Aiming to overcome the difficulties, a new solution for remote sensing image classification is presented in this study. A discretization algorithm based on information entropy is applied to extract features from the data set and a vector space model (VSM) method is employed as the feature representation algorithm. Because of the simple structure of the feature space, the training rate is accelerated. The performance of the proposed method is compared with two other algorithms: back propagation neural networks (BPNN) method and ant colony optimization (ACO) method. Experimental results confirm that the proposed method is superior to the other algorithms in terms of classification accuracy and computational efficiency.

  3. Discrimination-based Artificial Immune System: Modeling the Learning Mechanism of Self and Non-self Discrimination for Classification

    Directory of Open Access Journals (Sweden)

    Kazushi Igawa

    2007-01-01

    Full Text Available This study presents a new artificial immune system for classification. It was named discrimination-based artificial immune system (DAIS and was based on the principle of self and non-self discrimination by T cells in the human immune system. Ability of a natural immune system to distinguish between self and non-self molecules was applicable for classification in a way that one class was distinguished from others. We model this and the mechanism of the education in a thymus for classification. Especially, we introduce the method to decide the recognition distance threshold of the artificial lymphocyte, as the negative selection algorithm. We apply DAIS to real world datasets and show its performance to be comparable to that of other classifier systems. We conclude that this modeling was appropriate and DAIS was a useful classifier.

  4. In Vivo Mouse Intervertebral Disc Degeneration Model Based on a New Histological Classification

    Science.gov (United States)

    Ohnishi, Takashi; Sudo, Hideki; Iwasaki, Koji; Tsujimoto, Takeru; Ito, Yoichi M.; Iwasaki, Norimasa

    2016-01-01

    Although human intervertebral disc degeneration can lead to several spinal diseases, its pathogenesis remains unclear. This study aimed to create a new histological classification applicable to an in vivo mouse intervertebral disc degeneration model induced by needle puncture. One hundred six mice were operated and the L4/5 intervertebral disc was punctured with a 35- or 33-gauge needle. Micro-computed tomography scanning was performed, and the punctured region was confirmed. Evaluation was performed by using magnetic resonance imaging and histology by employing our classification scoring system. Our histological classification scores correlated well with the findings of magnetic resonance imaging and could detect degenerative progression, irrespective of the punctured region. However, the magnetic resonance imaging analysis revealed that there was no significant degenerative intervertebral disc change between the ventrally punctured and non-punctured control groups. To induce significant degeneration in the lumbar intervertebral discs, the central or dorsal region should be punctured instead of the ventral region. PMID:27482708

  5. Interpretable exemplar-based shape classification using constrained sparse linear models

    Science.gov (United States)

    Sigurdsson, Gunnar A.; Yang, Zhen; Tran, Trac D.; Prince, Jerry L.

    2015-03-01

    Many types of diseases manifest themselves as observable changes in the shape of the affected organs. Using shape classification, we can look for signs of disease and discover relationships between diseases. We formulate the problem of shape classification in a holistic framework that utilizes a lossless scalar field representation and a non-parametric classification based on sparse recovery. This framework generalizes over certain classes of unseen shapes while using the full information of the shape, bypassing feature extraction. The output of the method is the class whose combination of exemplars most closely approximates the shape, and furthermore, the algorithm returns the most similar exemplars along with their similarity to the shape, which makes the result simple to interpret. Our results show that the method offers accurate classification between three cerebellar diseases and controls in a database of cerebellar ataxia patients. For reproducible comparison, promising results are presented on publicly available 2D datasets, including the ETH-80 dataset where the method achieves 88.4% classification accuracy.

  6. BClass: A Bayesian Approach Based on Mixture Models for Clustering and Classification of Heterogeneous Biological Data

    Directory of Open Access Journals (Sweden)

    Arturo Medrano-Soto

    2004-12-01

    Full Text Available Based on mixture models, we present a Bayesian method (called BClass to classify biological entities (e.g. genes when variables of quite heterogeneous nature are analyzed. Various statistical distributions are used to model the continuous/categorical data commonly produced by genetic experiments and large-scale genomic projects. We calculate the posterior probability of each entry to belong to each element (group in the mixture. In this way, an original set of heterogeneous variables is transformed into a set of purely homogeneous characteristics represented by the probabilities of each entry to belong to the groups. The number of groups in the analysis is controlled dynamically by rendering the groups as 'alive' and 'dormant' depending upon the number of entities classified within them. Using standard Metropolis-Hastings and Gibbs sampling algorithms, we constructed a sampler to approximate posterior moments and grouping probabilities. Since this method does not require the definition of similarity measures, it is especially suitable for data mining and knowledge discovery in biological databases. We applied BClass to classify genes in RegulonDB, a database specialized in information about the transcriptional regulation of gene expression in the bacterium Escherichia coli. The classification obtained is consistent with current knowledge and allowed prediction of missing values for a number of genes. BClass is object-oriented and fully programmed in Lisp-Stat. The output grouping probabilities are analyzed and interpreted using graphical (dynamically linked plots and query-based approaches. We discuss the advantages of using Lisp-Stat as a programming language as well as the problems we faced when the data volume increased exponentially due to the ever-growing number of genomic projects.

  7. Modeling Wood Fibre Length in Black Spruce (Picea mariana (Mill.) BSP) Based on Ecological Land Classification

    OpenAIRE

    Elisha Townshend; Bharat Pokharel; Art Groot; Doug Pitt; DECH, JEFFERY P.

    2015-01-01

    Effective planning to optimize the forest value chain requires accurate and detailed information about the resource; however, estimates of the distribution of fibre properties on the landscape are largely unavailable prior to harvest. Our objective was to fit a model of the tree-level average fibre length related to ecosite classification and other forest inventory variables depicted at the landscape scale. A series of black spruce increment cores were collected at breast height from trees in...

  8. A data structure and function classification based method to evaluate clustering models for gene expression data

    Institute of Scientific and Technical Information of China (English)

    YI Dong; YANG Meng-su; HUANG Ming-hui; LI Hui-zhi; WANG Wen-chang

    2002-01-01

    Objective:To establish a systematic framework for selecting the best clustering algorithm and provide an evaluation method for clustering analyses of gene expression data. Methods: Based on data structure (internal information) and function classification (external information), the evaluation of gene expression data analyses were carried out by using 2 approaches. Firstly, to assess the predictive power of clusteringalgorithms, Entropy was introduced to measure the consistency between the clustering results from different algorithms and the known and validated functional classifications. Secondly, a modified method of figure of merit (adjust-FOM) was used as internal assessment method. In this method, one clustering algorithm was used to analyze all data but one experimental condition, the remaining condition was used to assess the predictive power of the resulting clusters. This method was applied on 3 gene expression data sets (2 from the Lyer's Serum Data Sets, and 1 from the Ferea's Saccharomyces Cerevisiae Data Set). Results: A method based on entropy and figure of merit (FOM) was proposed to explore the results of the 3 data sets obtained by 6 different algorithms, SOM and Fuzzy clustering methods were confirmed to possess the highest ability to cluster. Conclusion: A method based on entropy is firstly brought forward to evaluate clustering analyses.Different results are attained in evaluating same data set due to different function classification. According to the curves of adjust_FOM and Entropy_FOM, SOM and Fuzzy clustering methods show the highest ability to cluster on the 3 data sets.

  9. Pulmonary emphysema classification based on an improved texton learning model by sparse representation

    Science.gov (United States)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2013-03-01

    In this paper, we present a texture classification method based on texton learned via sparse representation (SR) with new feature histogram maps in the classification of emphysema. First, an overcomplete dictionary of textons is learned via KSVD learning on every class image patches in the training dataset. In this stage, high-pass filter is introduced to exclude patches in smooth area to speed up the dictionary learning process. Second, 3D joint-SR coefficients and intensity histograms of the test images are used for characterizing regions of interest (ROIs) instead of conventional feature histograms constructed from SR coefficients of the test images over the dictionary. Classification is then performed using a classifier with distance as a histogram dissimilarity measure. Four hundreds and seventy annotated ROIs extracted from 14 test subjects, including 6 paraseptal emphysema (PSE) subjects, 5 centrilobular emphysema (CLE) subjects and 3 panlobular emphysema (PLE) subjects, are used to evaluate the effectiveness and robustness of the proposed method. The proposed method is tested on 167 PSE, 240 CLE and 63 PLE ROIs consisting of mild, moderate and severe pulmonary emphysema. The accuracy of the proposed system is around 74%, 88% and 89% for PSE, CLE and PLE, respectively.

  10. Modeling Wood Fibre Length in Black Spruce (Picea mariana (Mill. BSP Based on Ecological Land Classification

    Directory of Open Access Journals (Sweden)

    Elisha Townshend

    2015-09-01

    Full Text Available Effective planning to optimize the forest value chain requires accurate and detailed information about the resource; however, estimates of the distribution of fibre properties on the landscape are largely unavailable prior to harvest. Our objective was to fit a model of the tree-level average fibre length related to ecosite classification and other forest inventory variables depicted at the landscape scale. A series of black spruce increment cores were collected at breast height from trees in nine different ecosite groups within the boreal forest of northeastern Ontario, and processed using standard techniques for maceration and fibre length measurement. Regression tree analysis and random forests were used to fit hierarchical classification models and find the most important predictor variables for the response variable area-weighted mean stem-level fibre length. Ecosite group was the best predictor in the regression tree. Longer mean fibre-length was associated with more productive ecosites that supported faster growth. The explanatory power of the model of fitted data was good; however, random forests simulations indicated poor generalizability. These results suggest the potential to develop localized models linking wood fibre length in black spruce to landscape-level attributes, and improve the sustainability of forest management by identifying ideal locations to harvest wood that has desirable fibre characteristics.

  11. A New Classification Approach Based on Multiple Classification Rules

    OpenAIRE

    Zhongmei Zhou

    2014-01-01

    A good classifier can correctly predict new data for which the class label is unknown, so it is important to construct a high accuracy classifier. Hence, classification techniques are much useful in ubiquitous computing. Associative classification achieves higher classification accuracy than some traditional rule-based classification approaches. However, the approach also has two major deficiencies. First, it generates a very large number of association classification rules, especially when t...

  12. hERG classification model based on a combination of support vector machine method and GRIND descriptors

    DEFF Research Database (Denmark)

    Li, Qiyuan; Jorgensen, Flemming Steen; Oprea, Tudor;

    2008-01-01

    invest substantial effort in the assessment of cardiac toxicity of drugs. The development of in silico tools to filter out potential hERG channel inhibitors in earlystages of the drug discovery process is of considerable interest. Here, we describe binary classification models based on a large...... of blockers compared to other methods, which can be useful in the filtering of potential hERG channel inhibitors....

  13. Application of the probability-based covering algorithm model in text classification

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Ying

    2009-01-01

    The probability-based covering algorithm(PBCA)is a new algorithm based on probability distribution.It decides,by voting,the class of the tested samples on the border of the coverage area,based on the probability of training samples.When using the original covering algorithm(CA),many tested samples that are located on the border of the coverage cannot be classified by the spherical neighborhood gained.The network structure of PBCA is a mixed structure composed of both a feed-forward network and a feedback network.By using this method of adding some heterogeneous samples and enlarging the coverage radius,it is possible to decrease the number of rejected samples and improve the rate of recognition accuracy.Relevant computer experiments indicate that the algorithm improves the study precision and achieves reasonably good results in text classification.

  14. Spectral-spatial classification combined with diffusion theory based inverse modeling of hyperspectral images

    Science.gov (United States)

    Paluchowski, Lukasz A.; Bjorgan, Asgeir; Nordgaard, Hâvard B.; Randeberg, Lise L.

    2016-02-01

    Hyperspectral imagery opens a new perspective for biomedical diagnostics and tissue characterization. High spectral resolution can give insight into optical properties of the skin tissue. However, at the same time the amount of collected data represents a challenge when it comes to decomposition into clusters and extraction of useful diagnostic information. In this study spectral-spatial classification and inverse diffusion modeling were employed to hyperspectral images obtained from a porcine burn model using a hyperspectral push-broom camera. The implemented method takes advantage of spatial and spectral information simultaneously, and provides information about the average optical properties within each cluster. The implemented algorithm allows mapping spectral and spatial heterogeneity of the burn injury as well as dynamic changes of spectral properties within the burn area. The combination of statistical and physics informed tools allowed for initial separation of different burn wounds and further detailed characterization of the injuries in short post-injury time.

  15. Biogeography based Satellite Image Classification

    CERN Document Server

    Panchal, V K; Kaur, Navdeep; Kundra, Harish

    2009-01-01

    Biogeography is the study of the geographical distribution of biological organisms. The mindset of the engineer is that we can learn from nature. Biogeography Based Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. Satellite image classification is an important task because it is the only way we can know about the land cover map of inaccessible areas. Though satellite images have been classified in past by using various techniques, the researchers are always finding alternative strategies for satellite image classification so that they may be prepared to select the most appropriate technique for the feature extraction task in hand. This paper is focused on classification of the satellite image of a particular land cover using the theory of Biogeography based Optimization. The original BBO algorithm does not have the inbuilt property of clustering which is required during image classification. Hence modifications have been proposed to the original algorithm and...

  16. Classification method based on KCCA

    Science.gov (United States)

    Wang, Zhanqing; Zhang, Guilin; Zhao, Guangzhou

    2007-11-01

    Nonlinear CCA extends the linear CCA in that it operates in the kernel space and thus implies the nonlinear combinations in the original space. This paper presents a classification method based on the kernel canonical correlation analysis (KCCA). We introduce the probabilistic label vectors (PLV) for a give pattern which extend the conventional concept of class label, and investigate the correlation between feature variables and PLV variables. A PLV predictor is presented based on KCCA, and then classification is performed on the predicted PLV. We formulate a frame for classification by integrating class information through PLV. Experimental results on Iris data set classification and facial expression recognition show the efficiencies of the proposed method.

  17. Fuzzy One-Class Classification Model Using Contamination Neighborhoods

    Directory of Open Access Journals (Sweden)

    Lev V. Utkin

    2012-01-01

    Full Text Available A fuzzy classification model is studied in the paper. It is based on the contaminated (robust model which produces fuzzy expected risk measures characterizing classification errors. Optimal classification parameters of the models are derived by minimizing the fuzzy expected risk. It is shown that an algorithm for computing the classification parameters is reduced to a set of standard support vector machine tasks with weighted data points. Experimental results with synthetic data illustrate the proposed fuzzy model.

  18. Classification-based reasoning

    Science.gov (United States)

    Gomez, Fernando; Segami, Carlos

    1991-01-01

    A representation formalism for N-ary relations, quantification, and definition of concepts is described. Three types of conditions are associated with the concepts: (1) necessary and sufficient properties, (2) contingent properties, and (3) necessary properties. Also explained is how complex chains of inferences can be accomplished by representing existentially quantified sentences, and concepts denoted by restrictive relative clauses as classification hierarchies. The representation structures that make possible the inferences are explained first, followed by the reasoning algorithms that draw the inferences from the knowledge structures. All the ideas explained have been implemented and are part of the information retrieval component of a program called Snowy. An appendix contains a brief session with the program.

  19. Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices.

    Science.gov (United States)

    Munteanu, Cristian Robert; González-Díaz, Humberto; Magalhães, Alexandre L

    2008-09-21

    The huge amount of new proteins that need a fast enzymatic activity characterization creates demands of protein QSAR theoretical models. The protein parameters that can be used for an enzyme/non-enzyme classification includes the simpler indices such as composition, sequence and connectivity, also called topological indices (TIs) and the computationally expensive 3D descriptors. A comparison of the 3D versus lower dimension indices has not been reported with respect to the power of discrimination of proteins according to enzyme action. A set of 966 proteins (enzymes and non-enzymes) whose structural characteristics are provided by PDB/DSSP files was analyzed with Python/Biopython scripts, STATISTICA and Weka. The list of indices includes, but it is not restricted to pure composition indices (residue fractions), DSSP secondary structure protein composition and 3D indices (surface and access). We also used mixed indices such as composition-sequence indices (Chou's pseudo-amino acid compositions or coupling numbers), 3D-composition (surface fractions) and DSSP secondary structure amino acid composition/propensities (obtained with our Prot-2S Web tool). In addition, we extend and test for the first time several classic TIs for the Randic's protein sequence Star graphs using our Sequence to Star Graph (S2SG) Python application. All the indices were processed with general discriminant analysis models (GDA), neural networks (NN) and machine learning (ML) methods and the results are presented versus complexity, average of Shannon's information entropy (Sh) and data/method type. This study compares for the first time all these classes of indices to assess the ratios between model accuracy and indices/model complexity in enzyme/non-enzyme discrimination. The use of different methods and complexity of data shows that one cannot establish a direct relation between the complexity and the accuracy of the model. PMID:18606172

  20. Development of an object-based classification model for mapping mountainous forest cover at high elevation using aerial photography

    Science.gov (United States)

    Lateb, Mustapha; Kalaitzidis, Chariton; Tompoulidou, Maria; Gitas, Ioannis

    2016-08-01

    Climate change and overall temperature increase results in changes in forest cover in high elevations. Due to the long life cycle of trees, these changes are very gradual and can be observed over long periods of time. In order to use remote sensing imagery for this purpose it needs to have very high spatial resolution and to have been acquired at least 50 years ago. At the moment, the only type of remote sensing imagery with these characteristics is historical black and white aerial photographs. This study used an aerial photograph from 1945 in order to map the forest cover at the Olympus National Park, at that date. An object-based classification (OBC) model was developed in order to classify forest and discriminate it from other types of vegetation. Due to the lack of near-infrared information, the model had to rely solely on the tone of the objects, as well as their geometric characteristics. The model functioned on three segmentation levels, using sub-/super-objects relationships and utilising vegetation density to discriminate forest and non-forest vegetation. The accuracy of the classification was assessed using 503 visually interpreted and randomly distributed points, resulting in a 92% overall accuracy. The model is using unbiased parameters that are important for differentiating between forest and non-forest vegetation and should be transferrable to other study areas of mountainous forests at high elevations.

  1. Classification of base sequences

    CERN Document Server

    Djokovic, Dragomir Z

    2010-01-01

    Base sequences BS(n+1,n) are quadruples of {1,-1}-sequences (A;B;C;D), with A and B of length n+1 and C and D of length n, such that the sum of their nonperiodic autocorrelation functions is a delta-function. The base sequence conjecture, asserting that BS(n+1,n) exist for all n, is stronger than the famous Hadamard matrix conjecture. We introduce a new definition of equivalence for base sequences BS(n+1,n) and construct a canonical form. By using this canonical form, we have enumerated the equivalence classes of BS(n+1,n) for n <= 30. Due to excessive size of the equivalence classes, the tables in the paper cover only the cases n <= 12.

  2. a Kernel Method Based on Topic Model for Very High Spatial Resolution (vhsr) Remote Sensing Image Classification

    Science.gov (United States)

    Wu, Linmei; Shen, Li; Li, Zhipeng

    2016-06-01

    A kernel-based method for very high spatial resolution remote sensing image classification is proposed in this article. The new kernel method is based on spectral-spatial information and structure information as well, which is acquired from topic model, Latent Dirichlet Allocation model. The final kernel function is defined as K = u1Kspec + u2Kspat + u3Kstru, in which Kspec, Kspat, Kstru are radial basis function (RBF) and u1 + u2 + u3 = 1. In the experiment, comparison with three other kernel methods, including the spectral-based, the spectral- and spatial-based and the spectral- and structure-based method, is provided for a panchromatic QuickBird image of a suburban area with a size of 900 × 900 pixels and spatial resolution of 0.6 m. The result shows that the overall accuracy of the spectral- and structure-based kernel method is 80 %, which is higher than the spectral-based kernel method, as well as the spectral- and spatial-based which accuracy respectively is 67 % and 74 %. What's more, the accuracy of the proposed composite kernel method that jointly uses the spectral, spatial, and structure information is highest among the four methods which is increased to 83 %. On the other hand, the result of the experiment also verifies the validity of the expression of structure information about the remote sensing image.

  3. Sentiment classification technology based on Markov logic networks

    Science.gov (United States)

    He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe

    2016-07-01

    With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.

  4. Modulation classification based on spectrogram

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The aim of modulation classification (MC) is to identify the modulation type of a communication signal. It plays an important role in many cooperative or noncooperative communication applications. Three spectrogram-based modulation classification methods are proposed. Their reccgnition scope and performance are investigated or evaluated by theoretical analysis and extensive simulation studies. The method taking moment-like features is robust to frequency offset while the other two, which make use of principal component analysis (PCA) with different transformation inputs,can achieve satisfactory accuracy even at low SNR (as low as 2 dB). Due to the properties of spectrogram, the statistical pattern recognition techniques, and the image preprocessing steps, all of our methods are insensitive to unknown phase and frequency offsets, timing errors, and the arriving sequence of symbols.

  5. Predicting student satisfaction with courses based on log data from a virtual learning environment – a neural network and classification tree model

    Directory of Open Access Journals (Sweden)

    Ivana Đurđević Babić

    2015-03-01

    Full Text Available Student satisfaction with courses in academic institutions is an important issue and is recognized as a form of support in ensuring effective and quality education, as well as enhancing student course experience. This paper investigates whether there is a connection between student satisfaction with courses and log data on student courses in a virtual learning environment. Furthermore, it explores whether a successful classification model for predicting student satisfaction with course can be developed based on course log data and compares the results obtained from implemented methods. The research was conducted at the Faculty of Education in Osijek and included analysis of log data and course satisfaction on a sample of third and fourth year students. Multilayer Perceptron (MLP with different activation functions and Radial Basis Function (RBF neural networks as well as classification tree models were developed, trained and tested in order to classify students into one of two categories of course satisfaction. Type I and type II errors, and input variable importance were used for model comparison and classification accuracy. The results indicate that a successful classification model using tested methods can be created. The MLP model provides the highest average classification accuracy and the lowest preference in misclassification of students with a low level of course satisfaction, although a t-test for the difference in proportions showed that the difference in performance between the compared models is not statistically significant. Student involvement in forum discussions is recognized as a valuable predictor of student satisfaction with courses in all observed models.

  6. The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases

    DEFF Research Database (Denmark)

    Udatha, D.B.R.K. Gupta; Kouskoumvekaki, Irene; Olsson, Lisbeth;

    2011-01-01

    classification studies on FAEs were restricted on sequence similarity and substrate specificity on just four model substrates and considered only a handful of FAEs belonging to the fungal kingdom. This study centers on the descriptor-based classification and structural analysis of experimentally verified...... on amino acid composition and physico-chemical composition descriptors derived from the respective amino acid sequence. A Support Vector Machine model was subsequently constructed for the classification of new FAEs into the pre-assigned clusters. The model successfully recognized 98.2% of the training...... sequences and all the sequences of the blind test. The underlying functionality of the 12 proposed FAE families was validated against a combination of prediction tools and published experimental data. Another important aspect of the present work involves the development of pharmacophore models for the new...

  7. Deep Reconstruction Models for Image Set Classification.

    Science.gov (United States)

    Hayat, Munawar; Bennamoun, Mohammed; An, Senjian

    2015-04-01

    Image set classification finds its applications in a number of real-life scenarios such as classification from surveillance videos, multi-view camera networks and personal albums. Compared with single image based classification, it offers more promises and has therefore attracted significant research attention in recent years. Unlike many existing methods which assume images of a set to lie on a certain geometric surface, this paper introduces a deep learning framework which makes no such prior assumptions and can automatically discover the underlying geometric structure. Specifically, a Template Deep Reconstruction Model (TDRM) is defined whose parameters are initialized by performing unsupervised pre-training in a layer-wise fashion using Gaussian Restricted Boltzmann Machines (GRBMs). The initialized TDRM is then separately trained for images of each class and class-specific DRMs are learnt. Based on the minimum reconstruction errors from the learnt class-specific models, three different voting strategies are devised for classification. Extensive experiments are performed to demonstrate the efficacy of the proposed framework for the tasks of face and object recognition from image sets. Experimental results show that the proposed method consistently outperforms the existing state of the art methods. PMID:26353289

  8. Models for concurrency: towards a classification

    DEFF Research Database (Denmark)

    Sassone, Vladimiro; Nielsen, Mogens; Winskel, Glynn

    1996-01-01

    Models for concurrency can be classified with respect to three relevant parameters: behaviour/ system, interleaving/noninterleaving, linear/branching time. When modelling a process, a choice concerning such parameters corresponds to choosing the level of abstraction of the resulting semantics. In...... this paper, we move a step towards a classification of models for concurrency based on the parameters above. Formally, we choose a representative of any of the eight classes of models obtained by varying the three parameters, and we study the formal relationships between them using the language of...

  9. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  10. 基于SAS的web文本分类模型研究%WEB TEXT CLASSIFICATION MODEL STUDY BASED ON SAS

    Institute of Scientific and Technical Information of China (English)

    向来生; 孙威; 刘希玉

    2016-01-01

    通过建立模型对电商企业的客户查询信息进行文本分类分析,帮助企业掌握用户的消费习惯,同时帮助用户及时找到需要的商品。本文首先获取客户查询数据并对该文本数据进行预处理,利用改进的TF-IDF方法获得文本特征向量,最后结合朴素贝叶斯文本分类及半监督的EM迭代算法建立分类模型,并应用各种标准对模型进行评估,验证模型的有效性。多类别文本集选取文本特征时,关键词权值容易产生波动,本研究改进关键词权值计算公式来改善分类结果。实验结果表明分类器具有良好的分类效果。%In this paper,we establish a model to analysis business enterprise customer query information for text classification to help e-commerce companies control the userˊs spending habits,and help users to find their needed goods. This study accesses to customer inquiry data and preprocesses these text data firstly. And then,the improved TF - IDF principle is applied to obtain the text feature vectors. Finally,this study establishes the classification model combining the Naive Bayes text classification and the semi-supervised EM iterative algorithm, and uses various criteria to evaluate the model. When facing multi - class text classification feature selection, keyword weights prone to great volatility. This study improves the keyword weight calculation formula to perfect the classification results. The experimental results show that classification has good classification effect.

  11. Classification of thermal waters based on their inorganic fingerprint and hydrogeothermal modelling

    OpenAIRE

    I. Delgado-Outeiriño; Araujo-Nespereira, P.; J. A. Cid-Fernández; J. C. Mejuto; E. Martínez-Carballo; Simal-Gándara, J.

    2011-01-01

    Hydrothermal features in Galicia have been used since ancient times for therapeutic purposes. A characterization of these thermal waters was carried out in order to understand their behaviour based on inorganic pattern and water-rock interaction mechanisms. In this way 15 thermal water samples were collected in the same hydrographical system. The results of the hydrogeochemistry analysis showed one main water family of bicarbonate type sodium waters, typical in the post-orogenic basins of Gal...

  12. Nonlinear Inertia Classification Model and Application

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2014-01-01

    Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.

  13. An Automatic Segmentation and Classification Framework Based on PCNN Model for Single Tooth in MicroCT Images.

    Science.gov (United States)

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2016-01-01

    Accurate segmentation and classification of different anatomical structures of teeth from medical images plays an essential role in many clinical applications. Usually, the anatomical structures of teeth are manually labelled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing three dimensional (3D) information, and classify the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN) model. In order to evaluate the proposed method, the experiments are conducted on the different datasets of mandibular molars and the experimental results show that our method can achieve better accuracy and robustness compared to other four state of the art clustering methods. PMID:27322421

  14. An Automatic Segmentation and Classification Framework Based on PCNN Model for Single Tooth in MicroCT Images.

    Directory of Open Access Journals (Sweden)

    Liansheng Wang

    Full Text Available Accurate segmentation and classification of different anatomical structures of teeth from medical images plays an essential role in many clinical applications. Usually, the anatomical structures of teeth are manually labelled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS method improved by fully utilizing three dimensional (3D information, and classify the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN model. In order to evaluate the proposed method, the experiments are conducted on the different datasets of mandibular molars and the experimental results show that our method can achieve better accuracy and robustness compared to other four state of the art clustering methods.

  15. An Automatic Segmentation and Classification Framework Based on PCNN Model for Single Tooth in MicroCT Images

    Science.gov (United States)

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2016-01-01

    Accurate segmentation and classification of different anatomical structures of teeth from medical images plays an essential role in many clinical applications. Usually, the anatomical structures of teeth are manually labelled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing three dimensional (3D) information, and classify the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN) model. In order to evaluate the proposed method, the experiments are conducted on the different datasets of mandibular molars and the experimental results show that our method can achieve better accuracy and robustness compared to other four state of the art clustering methods. PMID:27322421

  16. Cardiac arrhythmia classification using autoregressive modeling

    Directory of Open Access Journals (Sweden)

    Srinivasan Narayanan

    2002-11-01

    Full Text Available Abstract Background Computer-assisted arrhythmia recognition is critical for the management of cardiac disorders. Various techniques have been utilized to classify arrhythmias. Generally, these techniques classify two or three arrhythmias or have significantly large processing times. A simpler autoregressive modeling (AR technique is proposed to classify normal sinus rhythm (NSR and various cardiac arrhythmias including atrial premature contraction (APC, premature ventricular contraction (PVC, superventricular tachycardia (SVT, ventricular tachycardia (VT and ventricular fibrillation (VF. Methods AR Modeling was performed on ECG data from normal sinus rhythm as well as various arrhythmias. The AR coefficients were computed using Burg's algorithm. The AR coefficients were classified using a generalized linear model (GLM based algorithm in various stages. Results AR modeling results showed that an order of four was sufficient for modeling the ECG signals. The accuracy of detecting NSR, APC, PVC, SVT, VT and VF were 93.2% to 100% using the GLM based classification algorithm. Conclusion The results show that AR modeling is useful for the classification of cardiac arrhythmias, with reasonably high accuracies. Further validation of the proposed technique will yield acceptable results for clinical implementation.

  17. MEDICAL DIAGNOSIS CLASSIFICATION USING MIGRATION BASED DIFFERENTIAL EVOLUTION ALGORITHM

    Directory of Open Access Journals (Sweden)

    Htet Thazin Tike Thein

    2014-12-01

    Full Text Available Constructing a classification model is important in machine learning for a particular task. A classification process involves assigning objects into predefined groups or classes based on a number of observed attributes related to those objects. Artificial neural network is one of the classification algorithms which, can be used in many application areas. This paper investigates the potential of applying the feed forward neural network architecture for the classification of medical datasets. Migration based differential evolution algorithm (MBDE is chosen and applied to feed forward neural network to enhance the learning process and the network learning is validated in terms of convergence rate and classification accuracy. In this paper, MBDE algorithm with various migration policies is proposed for classification problems using medical diagnosis.

  18. Digital image-based classification of biodiesel.

    Science.gov (United States)

    Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Almeida, Valber Elias; Araújo, Thomas Souto Policarpo; Melo, Jessica Priscila; Diniz, Paulo Henrique Gonçalves Dias; Véras, Germano

    2015-07-01

    This work proposes a simple, rapid, inexpensive, and non-destructive methodology based on digital images and pattern recognition techniques for classification of biodiesel according to oil type (cottonseed, sunflower, corn, or soybean). For this, differing color histograms in RGB (extracted from digital images), HSI, Grayscale channels, and their combinations were used as analytical information, which was then statistically evaluated using Soft Independent Modeling by Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and variable selection using the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). Despite good performances by the SIMCA and PLS-DA classification models, SPA-LDA provided better results (up to 95% for all approaches) in terms of accuracy, sensitivity, and specificity for both the training and test sets. The variables selected Successive Projections Algorithm clearly contained the information necessary for biodiesel type classification. This is important since a product may exhibit different properties, depending on the feedstock used. Such variations directly influence the quality, and consequently the price. Moreover, intrinsic advantages such as quick analysis, requiring no reagents, and a noteworthy reduction (the avoidance of chemical characterization) of waste generation, all contribute towards the primary objective of green chemistry.

  19. A Model for Classification Secondary School Student Enrollment Approval Based on E-Learning Management System and E-Games

    Directory of Open Access Journals (Sweden)

    Hany Mohamed El-katary

    2016-02-01

    Full Text Available Student is the key of the educational process, where students’ creativity and interactions are strongly encouraged. There are many tools embedded in Learning Management Systems (LMS that considered as a goal evaluation of learners. A problem that currently appeared is that assessment process is not always fair or accurate in classifying students according to accumulated knowledge. Therefore, there is a need to apply a new model for better decision making for students’ enrollment and assessments. The proposed model may run along with an assessment tool within a LMS. The proposed model performs analysis and obtains knowledge regarding the classification capability of the assessment process. It offers knowledge for course managers regarding the course materials, quizzes, activities and e-games. The proposed model is an accurate assessment tool and thus better classification among learners. The proposed model was developed for learning management systems, which are commonly used in e-learning in Egyptian language schools. The proposed model demonstrated good accuracy compared to real sample data (250 students.

  20. Operational risk modeled analytically II: the consequences of classification invariance

    OpenAIRE

    Vivien Brunel

    2015-01-01

    Most of the banks' operational risk internal models are based on loss pooling in risk and business line categories. The parameters and outputs of operational risk models are sensitive to the pooling of the data and the choice of the risk classification. In a simple model, we establish the link between the number of risk cells and the model parameters by requiring invariance of the bank's loss distribution upon a change in classification. We provide details on the impact of this requirement on...

  1. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    Energy Technology Data Exchange (ETDEWEB)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  2. Arabic Text Mining Using Rule Based Classification

    OpenAIRE

    Fadi Thabtah; Omar Gharaibeh; Rashid Al-Zubaidy

    2012-01-01

    A well-known classification problem in the domain of text mining is text classification, which concerns about mapping textual documents into one or more predefined category based on its content. Text classification arena recently attracted many researchers because of the massive amounts of online documents and text archives which hold essential information for a decision-making process. In this field, most of such researches focus on classifying English documents while there are limited studi...

  3. The classification of LDA model essay based on information gain%基于信息增益的LDA模型的短文本分类

    Institute of Scientific and Technical Information of China (English)

    沈竞

    2011-01-01

    In this paper the classification of short essay was improved based on LDA.The information gain of the essay with LDA classification method was put forward.Using the information gain calculation to calculate the text classification vocabulary contribution,to improve "function word" weight,and to filter out "the function word",at last the passage of the filtered was in the LDA theme modeling,and the center vector method was used to establish the text category model.The experimental results prove that with the reducing of function word ratio,classification performance is distinctly improved in the method.%在基于LDA的短文本分类基础上进行改进,提出信息增益结合LDA的短文本分类方法.该方法采用信息增益计算词汇对于文本分类的贡献度,提高"作用词"的权重,过滤掉"非作用词",最后对过滤后的短文本进行LDA主题建模,并采用中心向量法建立文本类别模型.实验证明,该方法随着作用词比例的减少,分类性能有较大的提高.

  4. Knowledge-Based Classification in Automated Soil Mapping

    Institute of Scientific and Technical Information of China (English)

    ZHOU BIN; WANG RENCHAO

    2003-01-01

    A machine-learning approach was developed for automated building of knowledge bases for soil resourcesmapping by using a classification tree to generate knowledge from training data. With this method, buildinga knowledge base for automated soil mapping was easier than using the conventional knowledge acquisitionapproach. The knowledge base built by classification tree was used by the knowledge classifier to perform thesoil type classification of Longyou County, Zhejiang Province, China using Landsat TM bi-temporal imagesand GIS data. To evaluate the performance of the resultant knowledge bases, the classification results werecompared to existing soil map based on a field survey. The accuracy assessment and analysis of the resultantsoil maps suggested that the knowledge bases built by the machine-learning method was of good quality formapping distribution model of soil classes over the study area.

  5. Behavior Based Social Dimensions Extraction for Multi-Label Classification.

    Directory of Open Access Journals (Sweden)

    Le Li

    Full Text Available Classification based on social dimensions is commonly used to handle the multi-label classification task in heterogeneous networks. However, traditional methods, which mostly rely on the community detection algorithms to extract the latent social dimensions, produce unsatisfactory performance when community detection algorithms fail. In this paper, we propose a novel behavior based social dimensions extraction method to improve the classification performance in multi-label heterogeneous networks. In our method, nodes' behavior features, instead of community memberships, are used to extract social dimensions. By introducing Latent Dirichlet Allocation (LDA to model the network generation process, nodes' connection behaviors with different communities can be extracted accurately, which are applied as latent social dimensions for classification. Experiments on various public datasets reveal that the proposed method can obtain satisfactory classification results in comparison to other state-of-the-art methods on smaller social dimensions.

  6. Behavior Based Social Dimensions Extraction for Multi-Label Classification.

    Science.gov (United States)

    Li, Le; Xu, Junyi; Xiao, Weidong; Ge, Bin

    2016-01-01

    Classification based on social dimensions is commonly used to handle the multi-label classification task in heterogeneous networks. However, traditional methods, which mostly rely on the community detection algorithms to extract the latent social dimensions, produce unsatisfactory performance when community detection algorithms fail. In this paper, we propose a novel behavior based social dimensions extraction method to improve the classification performance in multi-label heterogeneous networks. In our method, nodes' behavior features, instead of community memberships, are used to extract social dimensions. By introducing Latent Dirichlet Allocation (LDA) to model the network generation process, nodes' connection behaviors with different communities can be extracted accurately, which are applied as latent social dimensions for classification. Experiments on various public datasets reveal that the proposed method can obtain satisfactory classification results in comparison to other state-of-the-art methods on smaller social dimensions. PMID:27049849

  7. Behavior Based Social Dimensions Extraction for Multi-Label Classification

    Science.gov (United States)

    Li, Le; Xu, Junyi; Xiao, Weidong; Ge, Bin

    2016-01-01

    Classification based on social dimensions is commonly used to handle the multi-label classification task in heterogeneous networks. However, traditional methods, which mostly rely on the community detection algorithms to extract the latent social dimensions, produce unsatisfactory performance when community detection algorithms fail. In this paper, we propose a novel behavior based social dimensions extraction method to improve the classification performance in multi-label heterogeneous networks. In our method, nodes’ behavior features, instead of community memberships, are used to extract social dimensions. By introducing Latent Dirichlet Allocation (LDA) to model the network generation process, nodes’ connection behaviors with different communities can be extracted accurately, which are applied as latent social dimensions for classification. Experiments on various public datasets reveal that the proposed method can obtain satisfactory classification results in comparison to other state-of-the-art methods on smaller social dimensions. PMID:27049849

  8. Fuzzy Rule Base System for Software Classification

    Directory of Open Access Journals (Sweden)

    Adnan Shaout

    2013-07-01

    Full Text Available Given the central role that software development plays in the delivery and application of informationtechnology, managers have been focusing on process improvement in the software development area. Thisimprovement has increased the demand for software measures, or metrics to manage the process. Thismetrics provide a quantitative basis for the development and validation of models during the softwaredevelopment process. In this paper a fuzzy rule-based system will be developed to classify java applicationsusing object oriented metrics. The system will contain the following features:Automated method to extract the OO metrics from the source code,Default/base set of rules that can be easily configured via XML file so companies, developers, teamleaders,etc, can modify the set of rules according to their needs,Implementation of a framework so new metrics, fuzzy sets and fuzzy rules can be added or removeddepending on the needs of the end user,General classification of the software application and fine-grained classification of the java classesbased on OO metrics, andTwo interfaces are provided for the system: GUI and command.

  9. DEVELOPMENT OF NEURAL NETWORK MODEL FOR CLASSIFICATION OF CAVITATION SIGNALS

    Directory of Open Access Journals (Sweden)

    KALYANASUNDARAM PERUMAL

    2011-10-01

    Full Text Available This paper deals with the early detection of cavitation by classification of cavitation signal into no, incipient and developed cavitation signal using artificial neural network model. This ANN model diagnoses the cavitation signal based on amplitude of rms vibration signal acquired from accelerometer, in order to find the different stages of cavitation. The classification results shows that feed forward network employing resilient back propagation algorithm was effective to distinct between the classes based on the good selection of input files for training the network. The proposed ANN model with resilient algorithm gives better performance and classification rate. The classification rate was 72.96% for the training sets and 75.57% for test data sets. It is concluded that the performance of the neural network is carried out irrespective of zones and it is optimum, and the errors are very less. The paper also discusses the future research directions.

  10. Latent Classification Models for Binary Data

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre

    2009-01-01

    between the attributes. In addition to providing good classification accuracy, the LCM model has several appealing properties, including a relatively small parameter space making it less susceptible to over-fitting. In this paper we take a first-step towards generalizing LCMs to hybrid domains...... the class of that instance. To relax this independence assumption, we have in previous work proposed a family of models, called latent classification models (LCMs). LCMs are defined for continuous domains and generalize the naive Bayes model by using latent variables to model class-conditional dependencies...

  11. Structural Equation Modeling of Classification Managers Based on the Communication Skills and Cultural Intelligence in Sport Organizations

    Directory of Open Access Journals (Sweden)

    Rasool NAZARI

    2015-03-01

    Full Text Available The purpose of this research is to develop structural equation model category managers on communication skills and cultural intelligence agencies had Isfahan Sports. Hence study was of structural equation modeling. The statistical population of this research formed the provincial sports administrators that according formal statistical was 550 people. Research sample size the sample of 207subjects was randomly selected. Cochran's sample size formula was used to determine. Measuring research and Communication Skills (0.81, Cultural Intelligence Scale (0.85 category manager's questionnaire (0.86, respectively. For analysis descriptive and inferential statistics SPSS and LISREL was used. Model results, communication skills, cultural intelligence and athletic directors classification of the fit was good (RMSEA=0.037, GFI= 0.902, AGFI= 0.910, NFT= 0.912. The prerequisite for proper planning to improve communication skills and cultural intelligence managers as influencing exercise essential while the authorial shave the right to choose directors analyst and intuitive strategies for management position shave because it looks better with the managers can be expected to exercise a clearer perspective.

  12. An Authentication Technique Based on Classification

    Institute of Scientific and Technical Information of China (English)

    李钢; 杨杰

    2004-01-01

    We present a novel watermarking approach based on classification for authentication, in which a watermark is embedded into the host image. When the marked image is modified, the extracted watermark is also different to the original watermark, and different kinds of modification lead to different extracted watermarks. In this paper, different kinds of modification are considered as classes, and we used classification algorithm to recognize the modifications with high probability. Simulation results show that the proposed method is potential and effective.

  13. Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

    Science.gov (United States)

    Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi

    2016-01-01

    The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers.

  14. Knowledge discovery from patients' behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services.

    Science.gov (United States)

    Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi

    2016-01-01

    The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers.

  15. Knowledge discovery from patients' behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services.

    Science.gov (United States)

    Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi

    2016-01-01

    The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers. PMID:27610177

  16. Support vector classification algorithm based on variable parameter linear programming

    Institute of Scientific and Technical Information of China (English)

    Xiao Jianhua; Lin Jian

    2007-01-01

    To solve the problems of SVM in dealing with large sample size and asymmetric distributed samples, a support vector classification algorithm based on variable parameter linear programming is proposed.In the proposed algorithm, linear programming is employed to solve the optimization problem of classification to decrease the computation time and to reduce its complexity when compared with the original model.The adjusted punishment parameter greatly reduced the classification error resulting from asymmetric distributed samples and the detailed procedure of the proposed algorithm is given.An experiment is conducted to verify whether the proposed algorithm is suitable for asymmetric distributed samples.

  17. Text Opinion Classification Method Based on Emotion Model%基于情感模型的文本意见分类方法

    Institute of Scientific and Technical Information of China (English)

    罗邦慧; 曾剑平; 段江娇; 吴承荣

    2015-01-01

    基于向量空间模型、潜在语义分析等传统文本意见分类模型将文本映射到词汇或语义空间中,侧重于词汇的辨别能力,无法对映像空间给出明确的语义说明,导致其扩展性、准确率等方面的性能受到限制。为此,在人类情感分类理论的基础上,假设文本中的意见表达与人们的情感存在较强的关联,结合词汇语义扩展、特征选择等方法构造3种情感表示模型,把表达人类情感倾向的文本转换到情感空间中,利用情感模型对国外股票论坛信息提取情感特征,构建情感模型,并设计文本意见分类方法。针对实际股票论坛的数据进行实验,结果表明,该分类方法能获得较高的分类准确率。%Traditional text classification models and latent semantic analysis model map text to vocabulary text or semantic space,focusing on the ability to distinguish words. But it can not give a clear image of semantic description of the space. As a result,the scalability and accuracy of a text classification algorithm is limited. In this paper,based on the classification of human emotions in psychology, it assumes that there is a strong association between emotions and opinions. It uses lexical semantic extension and feature selection methods to build three emotional representation model, and maps documents which can express human emotions tended to the emotional space. Using emotion features in stock message board obtained by the emotional representation model,it builds the emotion space model and designs opinion classification method. Experimental results on actual stock forum show that the classification accuracy of this method is high.

  18. Iris Image Classification Based on Hierarchical Visual Codebook.

    Science.gov (United States)

    Zhenan Sun; Hui Zhang; Tieniu Tan; Jianyu Wang

    2014-06-01

    Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection. PMID:26353275

  19. Texture Classification based on Gabor Wavelet

    Directory of Open Access Journals (Sweden)

    Amandeep Kaur

    2012-07-01

    Full Text Available This paper presents the comparison of Texture classification algorithms based on Gabor Wavelets. The focus of this paper is on feature extraction scheme for texture classification. The texture feature for an image can be classified using texture descriptors. In this paper we have used Homogeneous texture descriptor that uses Gabor Wavelets concept. For texture classification, we have used online texture database that is Brodatz’s database and three advanced well known classifiers: Support Vector Machine, K-nearest neighbor method and decision tree induction method. The results shows that classification using Support vector machines gives better results as compare to the other classifiers. It can accurately discriminate between a testing image data and training data.

  20. The Importance of Classification to Business Model Research

    OpenAIRE

    Susan Lambert

    2015-01-01

    Purpose: To bring to the fore the scientific significance of classification and its role in business model theory building. To propose a method by which existing classifications of business models can be analyzed and new ones developed. Design/Methodology/Approach: A review of the scholarly literature relevant to classifications of business models is presented along with a brief overview of classification theory applicable to business model research. Existing business model classification...

  1. Full-polarization radar remote sensing and data mining for tropical crops mapping: a successful SVM-based classification model

    Science.gov (United States)

    Denize, J.; Corgne, S.; Todoroff, P.; LE Mezo, L.

    2015-12-01

    In Reunion, a tropical island of 2,512 km², 700 km east of Madagascar in the Indian Ocean, constrained by a rugged relief, agricultural sectors are competing in highly fragmented agricultural land constituted by heterogeneous farming systems from corporate to small-scale farming. Policymakers, planners and institutions are in dire need of reliable and updated land use references. Actually conventional land use mapping methods are inefficient under the tropic with frequent cloud cover and loosely synchronous vegetative cycles of the crops due to a constant temperature. This study aims to provide an appropriate method for the identification and mapping of tropical crops by remote sensing. For this purpose, we assess the potential of polarimetric SAR imagery associated with associated with machine learning algorithms. The method has been developed and tested on a study area of 25*25 km thanks to 6 RADARSAT-2 images in 2014 in full-polarization. A set of radar indicators (backscatter coefficient, bands ratios, indices, polarimetric decompositions (Freeman-Durden, Van zyl, Yamaguchi, Cloude and Pottier, Krogager), texture, etc.) was calculated from the coherency matrix. A random forest procedure allowed the selection of the most important variables on each images to reduce the dimension of the dataset and the processing time. Support Vector Machines (SVM), allowed the classification of these indicators based on a learning database created from field observations in 2013. The method shows an overall accuracy of 88% with a Kappa index of 0.82 for the identification of four major crops.

  2. Visual words based approach for tissue classification in mammograms

    Science.gov (United States)

    Diamant, Idit; Goldberger, Jacob; Greenspan, Hayit

    2013-02-01

    The presence of Microcalcifications (MC) is an important indicator for developing breast cancer. Additional indicators for cancer risk exist, such as breast tissue density type. Different methods have been developed for breast tissue classification for use in Computer-aided diagnosis systems. Recently, the visual words (VW) model has been successfully applied for different classification tasks. The goal of our work is to explore VW based methodologies for various mammography classification tasks. We start with the challenge of classifying breast density and then focus on classification of normal tissue versus Microcalcifications. The presented methodology is based on patch-based visual words model which includes building a dictionary for a training set using local descriptors and representing the image using a visual word histogram. Classification is then performed using k-nearest-neighbour (KNN) and Support vector machine (SVM) classifiers. We tested our algorithm on the MIAS and DDSM publicly available datasets. The input is a representative region-of-interest per mammography image, manually selected and labelled by expert. In the tissue density task, classification accuracy reached 85% using KNN and 88% using SVM, which competes with the state-of-the-art results. For MC vs. normal tissue, accuracy reached 95.6% using SVM. Results demonstrate the feasibility to classify breast tissue using our model. Currently, we are improving the results further while also investigating VW capability to classify additional important mammogram classification problems. We expect that the methodology presented will enable high levels of classification, suggesting new means for automated tools for mammography diagnosis support.

  3. Improved classification of lung cancer tumors based on structural and physicochemical properties of proteins using data mining models.

    Directory of Open Access Journals (Sweden)

    R Geetha Ramani

    Full Text Available Detecting divergence between oncogenic tumors plays a pivotal role in cancer diagnosis and therapy. This research work was focused on designing a computational strategy to predict the class of lung cancer tumors from the structural and physicochemical properties (1497 attributes of protein sequences obtained from genes defined by microarray analysis. The proposed methodology involved the use of hybrid feature selection techniques (gain ratio and correlation based subset evaluators with Incremental Feature Selection followed by Bayesian Network prediction to discriminate lung cancer tumors as Small Cell Lung Cancer (SCLC, Non-Small Cell Lung Cancer (NSCLC and the COMMON classes. Moreover, this methodology eliminated the need for extensive data cleansing strategies on the protein properties and revealed the optimal and minimal set of features that contributed to lung cancer tumor classification with an improved accuracy compared to previous work. We also attempted to predict via supervised clustering the possible clusters in the lung tumor data. Our results revealed that supervised clustering algorithms exhibited poor performance in differentiating the lung tumor classes. Hybrid feature selection identified the distribution of solvent accessibility, polarizability and hydrophobicity as the highest ranked features with Incremental feature selection and Bayesian Network prediction generating the optimal Jack-knife cross validation accuracy of 87.6%. Precise categorization of oncogenic genes causing SCLC and NSCLC based on the structural and physicochemical properties of their protein sequences is expected to unravel the functionality of proteins that are essential in maintaining the genomic integrity of a cell and also act as an informative source for drug design, targeting essential protein properties and their composition that are found to exist in lung cancer tumors.

  4. Bayesian modeling and classification of neural signals

    OpenAIRE

    Lewicki, Michael S.

    1994-01-01

    Signal processing and classification algorithms often have limited applicability resulting from an inaccurate model of the signal's underlying structure. We present here an efficient, Bayesian algorithm for modeling a signal composed of the superposition of brief, Poisson-distributed functions. This methodology is applied to the specific problem of modeling and classifying extracellular neural waveforms which are composed of a superposition of an unknown number of action potentials CAPs). ...

  5. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  6. Texture Image Classification Based on Gabor Wavelet

    Institute of Scientific and Technical Information of China (English)

    DENG Wei-bing; LI Hai-fei; SHI Ya-li; YANG Xiao-hui

    2014-01-01

    For a texture image, by recognizining the class of every pixel of the image, it can be partitioned into disjoint regions of uniform texture. This paper proposed a texture image classification algorithm based on Gabor wavelet. In this algorithm, characteristic of every image is obtained through every pixel and its neighborhood of this image. And this algorithm can achieve the information transform between different sizes of neighborhood. Experiments on standard Brodatz texture image dataset show that our proposed algorithm can achieve good classification rates.

  7. Robust Model Selection for Classification of Microarrays

    Directory of Open Access Journals (Sweden)

    Ikumi Suzuki

    2009-01-01

    Full Text Available Recently, microarray-based cancer diagnosis systems have been increasingly investigated. However, cost reduction and reliability assurance of such diagnosis systems are still remaining problems in real clinical scenes. To reduce the cost, we need a supervised classifier involving the smallest number of genes, as long as the classifier is sufficiently reliable. To achieve a reliable classifier, we should assess candidate classifiers and select the best one. In the selection process of the best classifier, however, the assessment criterion must involve large variance because of limited number of samples and non-negligible observation noise. Therefore, even if a classifier with a very small number of genes exhibited the smallest leave-one-out cross-validation (LOO error rate, it would not necessarily be reliable because classifiers based on a small number of genes tend to show large variance. We propose a robust model selection criterion, the min-max criterion, based on a resampling bootstrap simulation to assess the variance of estimation of classification error rates. We applied our assessment framework to four published real gene expression datasets and one synthetic dataset. We found that a state- of-the-art procedure, weighted voting classifiers with LOO criterion, had a non-negligible risk of selecting extremely poor classifiers and, on the other hand, that the new min-max criterion could eliminate that risk. These finding suggests that our criterion presents a safer procedure to design a practical cancer diagnosis system.

  8. Music genre classification via likelihood fusion from multiple feature models

    Science.gov (United States)

    Shiu, Yu; Kuo, C.-C. J.

    2005-01-01

    Music genre provides an efficient way to index songs in a music database, and can be used as an effective means to retrieval music of a similar type, i.e. content-based music retrieval. A new two-stage scheme for music genre classification is proposed in this work. At the first stage, we examine a couple of different features, construct their corresponding parametric models (e.g. GMM and HMM) and compute their likelihood functions to yield soft classification results. In particular, the timbre, rhythm and temporal variation features are considered. Then, at the second stage, these soft classification results are integrated to result in a hard decision for final music genre classification. Experimental results are given to demonstrate the performance of the proposed scheme.

  9. Classification of Base Sequences (+1,

    Directory of Open Access Journals (Sweden)

    Dragomir Ž. Ðoković

    2010-01-01

    Full Text Available Base sequences BS(+1, are quadruples of {±1}-sequences (;;;, with A and B of length +1 and C and D of length n, such that the sum of their nonperiodic autocor-relation functions is a -function. The base sequence conjecture, asserting that BS(+1, exist for all n, is stronger than the famous Hadamard matrix conjecture. We introduce a new definition of equivalence for base sequences BS(+1, and construct a canonical form. By using this canonical form, we have enumerated the equivalence classes of BS(+1, for ≤30. As the number of equivalence classes grows rapidly (but not monotonically with n, the tables in the paper cover only the cases ≤13.

  10. Impact of Information based Classification on Network Epidemics

    Science.gov (United States)

    Mishra, Bimal Kumar; Haldar, Kaushik; Sinha, Durgesh Nandini

    2016-06-01

    Formulating mathematical models for accurate approximation of malicious propagation in a network is a difficult process because of our inherent lack of understanding of several underlying physical processes that intrinsically characterize the broader picture. The aim of this paper is to understand the impact of available information in the control of malicious network epidemics. A 1-n-n-1 type differential epidemic model is proposed, where the differentiality allows a symptom based classification. This is the first such attempt to add such a classification into the existing epidemic framework. The model is incorporated into a five class system called the DifEpGoss architecture. Analysis reveals an epidemic threshold, based on which the long-term behavior of the system is analyzed. In this work three real network datasets with 22002, 22469 and 22607 undirected edges respectively, are used. The datasets show that classification based prevention given in the model can have a good role in containing network epidemics. Further simulation based experiments are used with a three category classification of attack and defense strengths, which allows us to consider 27 different possibilities. These experiments further corroborate the utility of the proposed model. The paper concludes with several interesting results.

  11. Structure-Based Algorithms for Microvessel Classification

    KAUST Repository

    Smith, Amy F.

    2015-02-01

    © 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.

  12. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: the case study of Denmark.

    Science.gov (United States)

    Bou Kheir, Rania; Greve, Mogens H; Bøcher, Peder K; Greve, Mette B; Larsen, René; McCloy, Keith

    2010-05-01

    Soil organic carbon (SOC) is one of the most important carbon stocks globally and has large potential to affect global climate. Distribution patterns of SOC in Denmark constitute a nation-wide baseline for studies on soil carbon changes (with respect to Kyoto protocol). This paper predicts and maps the geographic distribution of SOC across Denmark using remote sensing (RS), geographic information systems (GISs) and decision-tree modeling (un-pruned and pruned classification trees). Seventeen parameters, i.e. parent material, soil type, landscape type, elevation, slope gradient, slope aspect, mean curvature, plan curvature, profile curvature, flow accumulation, specific catchment area, tangent slope, tangent curvature, steady-state wetness index, Normalized Difference Vegetation Index (NDVI), Normalized Difference Wetness Index (NDWI) and Soil Color Index (SCI) were generated to statistically explain SOC field measurements in the area of interest (Denmark). A large number of tree-based classification models (588) were developed using (i) all of the parameters, (ii) all Digital Elevation Model (DEM) parameters only, (iii) the primary DEM parameters only, (iv), the remote sensing (RS) indices only, (v) selected pairs of parameters, (vi) soil type, parent material and landscape type only, and (vii) the parameters having a high impact on SOC distribution in built pruned trees. The best constructed classification tree models (in the number of three) with the lowest misclassification error (ME) and the lowest number of nodes (N) as well are: (i) the tree (T1) combining all of the parameters (ME=29.5%; N=54); (ii) the tree (T2) based on the parent material, soil type and landscape type (ME=31.5%; N=14); and (iii) the tree (T3) constructed using parent material, soil type, landscape type, elevation, tangent slope and SCI (ME=30%; N=39). The produced SOC maps at 1:50,000 cartographic scale using these trees are highly matching with coincidence values equal to 90.5% (Map T1

  13. Image-based Vehicle Classification System

    CERN Document Server

    Ng, Jun Yee

    2012-01-01

    Electronic toll collection (ETC) system has been a common trend used for toll collection on toll road nowadays. The implementation of electronic toll collection allows vehicles to travel at low or full speed during the toll payment, which help to avoid the traffic delay at toll road. One of the major components of an electronic toll collection is the automatic vehicle detection and classification (AVDC) system which is important to classify the vehicle so that the toll is charged according to the vehicle classes. Vision-based vehicle classification system is one type of vehicle classification system which adopt camera as the input sensing device for the system. This type of system has advantage over the rest for it is cost efficient as low cost camera is used. The implementation of vision-based vehicle classification system requires lower initial investment cost and very suitable for the toll collection trend migration in Malaysia from single ETC system to full-scale multi-lane free flow (MLFF). This project ...

  14. Structural classification and a binary structure model for superconductors

    Institute of Scientific and Technical Information of China (English)

    Dong Cheng

    2006-01-01

    Based on structural and bonding features, a new classification scheme of superconductors is proposed to classify conductors can be partitioned into two parts, a superconducting active component and a supplementary component.Partially metallic covalent bonding is found to be a common feature in all superconducting active components, and the electron states of the atoms in the active components usually make a dominant contribution to the energy band near the Fermi surface. Possible directions to explore new superconductors are discussed based on the structural classification and the binary structure model.

  15. Classification of LiDAR Data with Point Based Classification Methods

    Science.gov (United States)

    Yastikli, N.; Cetin, Z.

    2016-06-01

    LiDAR is one of the most effective systems for 3 dimensional (3D) data collection in wide areas. Nowadays, airborne LiDAR data is used frequently in various applications such as object extraction, 3D modelling, change detection and revision of maps with increasing point density and accuracy. The classification of the LiDAR points is the first step of LiDAR data processing chain and should be handled in proper way since the 3D city modelling, building extraction, DEM generation, etc. applications directly use the classified point clouds. The different classification methods can be seen in recent researches and most of researches work with the gridded LiDAR point cloud. In grid based data processing of the LiDAR data, the characteristic point loss in the LiDAR point cloud especially vegetation and buildings or losing height accuracy during the interpolation stage are inevitable. In this case, the possible solution is the use of the raw point cloud data for classification to avoid data and accuracy loss in gridding process. In this study, the point based classification possibilities of the LiDAR point cloud is investigated to obtain more accurate classes. The automatic point based approaches, which are based on hierarchical rules, have been proposed to achieve ground, building and vegetation classes using the raw LiDAR point cloud data. In proposed approaches, every single LiDAR point is analyzed according to their features such as height, multi-return, etc. then automatically assigned to the class which they belong to. The use of un-gridded point cloud in proposed point based classification process helped the determination of more realistic rule sets. The detailed parameter analyses have been performed to obtain the most appropriate parameters in the rule sets to achieve accurate classes. The hierarchical rule sets were created for proposed Approach 1 (using selected spatial-based and echo-based features) and Approach 2 (using only selected spatial-based features

  16. A new circulation type classification based upon Lagrangian air trajectories

    Directory of Open Access Journals (Sweden)

    Alexandre M. Ramos

    2014-10-01

    Full Text Available A new classification method of the large-scale circulation characteristic for a specific target area (NW Iberian Peninsula is presented, based on the analysis of 90-h backward trajectories arriving in this area calculated with the 3-D Lagrangian particle dispersion model FLEXPART. A cluster analysis is applied to separate the backward trajectories in up to five representative air streams for each day. Specific measures are then used to characterise the distinct air streams (e.g., curvature of the trajectories, cyclonic or anticyclonic flow, moisture evolution, origin and length of the trajectories. The robustness of the presented method is demonstrated in comparison with the Eulerian Lamb weather type classification.A case study of the 2003 heatwave is discussed in terms of the new Lagrangian circulation and the Lamb weather type classifications. It is shown that the new classification method adds valuable information about the pertinent meteorological conditions, which are missing in an Eulerian approach. The new method is climatologically evaluated for the five-year time period from December 1999 to November 2004. The ability of the method to capture the inter-seasonal circulation variability in the target region is shown. Furthermore, the multi-dimensional character of the classification is shortly discussed, in particular with respect to inter-seasonal differences. Finally, the relationship between the new Lagrangian classification and the precipitation in the target area is studied.

  17. Online Network Traffic Classification Algorithm Based on RVM

    Directory of Open Access Journals (Sweden)

    Zhang Qunhui

    2013-06-01

    Full Text Available Since compared with the Support Vector Machine (SVM, the Relevance Vector Machine (RVM not only has the advantage of avoiding the over- learn which is the characteristic of the SVM, but also greatly reduces the amount of computation of the kernel function and avoids the defects of the SVM that the scarcity is not strong, the large amount of calculation as well as the kernel function must satisfy the Mercer's condition and that human empirically determined parameters, so we proposed a new online traffic classification algorithm base on the RVM for this purpose. Through the analysis of the basic principles of RVM and the steps of the modeling, we made use of the training traffic classification model of the RVM to identify the network traffic in the real time through this model and the “port number+ DPI”. When the RVM predicts that the probability is in the query interval, we jointly used the "port number" and "DPI". Finally, we made a detailed experimental validation which shows that: compared with the Support Vector Machine (SVM network traffic classification algorithm, this algorithm can achieve the online network traffic classification, and the classification predication probability is greatly improved.

  18. Mechanism-based drug exposure classification in pharmacoepidemiological studies

    NARCIS (Netherlands)

    Verdel, B.M.

    2010-01-01

    Mechanism-based classification of drug exposure in pharmacoepidemiological studies In pharmacoepidemiology and pharmacovigilance, the relation between drug exposure and clinical outcomes is crucial. Exposure classification in pharmacoepidemiological studies is traditionally based on pharmacotherapeu

  19. 高斯颜色模型在瓷片图像分类中的应用%Porcelain shard images classification based on Gaussian color model

    Institute of Scientific and Technical Information of China (English)

    郑霞; 胡浩基; 周明全; 樊亚春

    2012-01-01

    由于RGB颜色空间不能很好贴近人的视觉感知,同时也缺少对空间结构的描述,因此采用兼顾颜色信息和空间信息的高斯颜色模型以获取更全面的特征,提出了一种基于高斯颜色模型和多尺度滤波器组的彩色纹理图像分类法,用于瓷器碎片图像的分类.首先将原始图像的RGB颜色空间转换到高斯颜色模型;再用正规化多尺度LM滤波器组对高斯颜色模型的3个通道构造滤波图像,并借助主成分分析寻找主特征图,接着选取各通道的最大高斯拉普拉斯和最大高斯响应图像,与特征图联合构成特征图像组用以进行参数提取;最后以支持向量机作为分类器进行学习和分类.实验结果表明,与基于灰度的、基于RGB模型的和基于RGB_bior4.4小波的方法相比,本文方法具有更好的分类结果,其中在0utex纹理图像库上获得的分类准确率为96.7%,在瓷片图像集上获得的分类准确率为94.2%.此方法可推广应用到其他彩色纹理分类任务.%Since the RGB color space does not closely match the human visual perception and has no ability to describe the spatial structures, the Gaussian color model, which uses the spatial and color information in an integrated model, is used to obtain more complete image features. A color-texture approach based on the Gaussian color model and a multi-scale filter bank is introduced to classify the porcelain shard images. First, the RGB color space of the image is transformed into the Gaussian color model and then the normalized multi-scale LM filter bank is used to construct the filtered images on three channels. Afterwards, the primary feature images are found by using principal components analysis and the maximum responses of the Laplacian of Gaussian filters and Gaussian filters are separately selected. These images compose a feature image set, in which the feature parameters are extracted. Finally, a support vector machine is used to learning

  20. Extension of Companion Modeling Using Classification Learning

    Science.gov (United States)

    Torii, Daisuke; Bousquet, François; Ishida, Toru

    Companion Modeling is a methodology of refining initial models for understanding reality through a role-playing game (RPG) and a multiagent simulation. In this research, we propose a novel agent model construction methodology in which classification learning is applied to the RPG log data in Companion Modeling. This methodology enables a systematic model construction that handles multi-parameters, independent of the modelers ability. There are three problems in applying classification learning to the RPG log data: 1) It is difficult to gather enough data for the number of features because the cost of gathering data is high. 2) Noise data can affect the learning results because the amount of data may be insufficient. 3) The learning results should be explained as a human decision making model and should be recognized by the expert as being the result that reflects reality. We realized an agent model construction system using the following two approaches: 1) Using a feature selction method, the feature subset that has the best prediction accuracy is identified. In this process, the important features chosen by the expert are always included. 2) The expert eliminates irrelevant features from the learning results after evaluating the learning model through a visualization of the results. Finally, using the RPG log data from the Companion Modeling of agricultural economics in northeastern Thailand, we confirm the capability of this methodology.

  1. Identification of candidate categories of the International Classification of Functioning Disability and Health (ICF for a Generic ICF Core Set based on regression modelling

    Directory of Open Access Journals (Sweden)

    Üstün Bedirhan T

    2006-07-01

    Full Text Available Abstract Background The International Classification of Functioning, Disability and Health (ICF is the framework developed by WHO to describe functioning and disability at both the individual and population levels. While condition-specific ICF Core Sets are useful, a Generic ICF Core Set is needed to describe and compare problems in functioning across health conditions. Methods The aims of the multi-centre, cross-sectional study presented here were: a to propose a method to select ICF categories when a large amount of ICF-based data have to be handled, and b to identify candidate ICF categories for a Generic ICF Core Set by examining their explanatory power in relation to item one of the SF-36. The data were collected from 1039 patients using the ICF checklist, the SF-36 and a Comorbidity Questionnaire. ICF categories to be entered in an initial regression model were selected following systematic steps in accordance with the ICF structure. Based on an initial regression model, additional models were designed by systematically substituting the ICF categories included in it with ICF categories with which they were highly correlated. Results Fourteen different regression models were performed. The variance the performed models account for ranged from 22.27% to 24.0%. The ICF category that explained the highest amount of variance in all the models was sensation of pain. In total, thirteen candidate ICF categories for a Generic ICF Core Set were proposed. Conclusion The selection strategy based on the ICF structure and the examination of the best possible alternative models does not provide a final answer about which ICF categories must be considered, but leads to a selection of suitable candidates which needs further consideration and comparison with the results of other selection strategies in developing a Generic ICF Core Set.

  2. Uncovering Arabidopsis membrane protein interactome enriched in transporters using mating-based split ubiquitin assays and classification models

    Directory of Open Access Journals (Sweden)

    Jin eChen

    2012-06-01

    Full Text Available High-throughput data are a double-edged sword; for the benefit of large amount of data, there is an associated cost of noise. To increase reliability and scalability of high-throughput protein interaction data generation, we tested the efficacy of classification to enrich potential protein-protein interactions (pPPIs. We applied this method to identify interactions among Arabidopsis membrane proteins enriched in transporters. We validated our method with multiple retests. Classification improved the quality of the ensuing interaction network and was effective in reducing the search space and increasing true positive rate. The final network of 541 interactions among 239 proteins (of which 179 are transporters is the first protein interaction network enriched in membrane transporters reported for any organism. This network has similar topological attributes to other published protein interaction networks. It also extends and fills gaps in currently available biological networks in plants and allows building a number of hypotheses about processes and mechanisms involving signal-transduction and transport systems.

  3. Hierarchical Real-time Network Traffic Classification Based on ECOC

    Directory of Open Access Journals (Sweden)

    Yaou Zhao

    2013-09-01

    Full Text Available Classification of network traffic is basic and essential for manynetwork researches and managements. With the rapid development ofpeer-to-peer (P2P application using dynamic port disguisingtechniques and encryption to avoid detection, port-based and simplepayload-based network traffic classification methods were diminished.An alternative method based on statistics and machine learning hadattracted researchers' attention in recent years. However, most ofthe proposed algorithms were off-line and usually used a single classifier.In this paper a new hierarchical real-time model was proposed which comprised of a three tuple (source ip, destination ip and destination portlook up table(TT-LUT part and layered milestone part. TT-LUT was used to quickly classify short flows whichneed not to pass the layered milestone part, and milestones in layered milestone partcould classify the other flows in real-time with the real-time feature selection and statistics.Every milestone was a ECOC(Error-Correcting Output Codes based model which was usedto improve classification performance. Experiments showed that the proposedmodel can improve the efficiency of real-time to 80%, and themulti-class classification accuracy encouragingly to 91.4% on the datasets which had been captured from the backbone router in our campus through a week.

  4. Collaborative Representation based Classification for Face Recognition

    CERN Document Server

    Zhang, Lei; Feng, Xiangchu; Ma, Yi; Zhang, David

    2012-01-01

    By coding a query sample as a sparse linear combination of all training samples and then classifying it by evaluating which class leads to the minimal coding residual, sparse representation based classification (SRC) leads to interesting results for robust face recognition. It is widely believed that the l1- norm sparsity constraint on coding coefficients plays a key role in the success of SRC, while its use of all training samples to collaboratively represent the query sample is rather ignored. In this paper we discuss how SRC works, and show that the collaborative representation mechanism used in SRC is much more crucial to its success of face classification. The SRC is a special case of collaborative representation based classification (CRC), which has various instantiations by applying different norms to the coding residual and coding coefficient. More specifically, the l1 or l2 norm characterization of coding residual is related to the robustness of CRC to outlier facial pixels, while the l1 or l2 norm c...

  5. Feature-Based Classification of Networks

    CERN Document Server

    Barnett, Ian; Kuijjer, Marieke L; Mucha, Peter J; Onnela, Jukka-Pekka

    2016-01-01

    Network representations of systems from various scientific and societal domains are neither completely random nor fully regular, but instead appear to contain recurring structural building blocks. These features tend to be shared by networks belonging to the same broad class, such as the class of social networks or the class of biological networks. At a finer scale of classification within each such class, networks describing more similar systems tend to have more similar features. This occurs presumably because networks representing similar purposes or constructions would be expected to be generated by a shared set of domain specific mechanisms, and it should therefore be possible to classify these networks into categories based on their features at various structural levels. Here we describe and demonstrate a new, hybrid approach that combines manual selection of features of potential interest with existing automated classification methods. In particular, selecting well-known and well-studied features that ...

  6. Texture classification based on EMD and FFT

    Institute of Scientific and Technical Information of China (English)

    XIONG Chang-zhen; XU Jun-yi; ZOU Jian-cheng; QI Dong-xu

    2006-01-01

    Empirical mode decomposition (EMD) is an adaptive and approximately orthogonal filtering process that reflects human's visual mechanism of differentiating textures. In this paper, we present a modified 2D EMD algorithm using the FastRBF and an appropriate number of iterations in the shifting process (SP), then apply it to texture classification. Rotation-invariant texture feature vectors are extracted using auto-registration and circular regions of magnitude spectra of 2D fast Fourier transform(FFT). In the experiments, we employ a Bayesion classifier to classify a set of 15 distinct natural textures selected from the Brodatz album. The experimental results, based on different testing datasets for images with different orientations, show the effectiveness of the proposed classification scheme.

  7. Nominated Texture Based Cervical Cancer Classification

    Directory of Open Access Journals (Sweden)

    Edwin Jayasingh Mariarputham

    2015-01-01

    Full Text Available Accurate classification of Pap smear images becomes the challenging task in medical image processing. This can be improved in two ways. One way is by selecting suitable well defined specific features and the other is by selecting the best classifier. This paper presents a nominated texture based cervical cancer (NTCC classification system which classifies the Pap smear images into any one of the seven classes. This can be achieved by extracting well defined texture features and selecting best classifier. Seven sets of texture features (24 features are extracted which include relative size of nucleus and cytoplasm, dynamic range and first four moments of intensities of nucleus and cytoplasm, relative displacement of nucleus within the cytoplasm, gray level cooccurrence matrix, local binary pattern histogram, tamura features, and edge orientation histogram. Few types of support vector machine (SVM and neural network (NN classifiers are used for the classification. The performance of the NTCC algorithm is tested and compared to other algorithms on public image database of Herlev University Hospital, Denmark, with 917 Pap smear images. The output of SVM is found to be best for the most of the classes and better results for the remaining classes.

  8. BROAD PHONEME CLASSIFICATION USING SIGNAL BASED FEATURES

    Directory of Open Access Journals (Sweden)

    Deekshitha G

    2014-12-01

    Full Text Available Speech is the most efficient and popular means of human communication Speech is produced as a sequence of phonemes. Phoneme recognition is the first step performed by automatic speech recognition system. The state-of-the-art recognizers use mel-frequency cepstral coefficients (MFCC features derived through short time analysis, for which the recognition accuracy is limited. Instead of this, here broad phoneme classification is achieved using features derived directly from the speech at the signal level itself. Broad phoneme classes include vowels, nasals, fricatives, stops, approximants and silence. The features identified useful for broad phoneme classification are voiced/unvoiced decision, zero crossing rate (ZCR, short time energy, most dominant frequency, energy in most dominant frequency, spectral flatness measure and first three formants. Features derived from short time frames of training speech are used to train a multilayer feedforward neural network based classifier with manually marked class label as output and classification accuracy is then tested. Later this broad phoneme classifier is used for broad syllable structure prediction which is useful for applications such as automatic speech recognition and automatic language identification.

  9. Optimizing Mining Association Rules for Artificial Immune System based Classification

    Directory of Open Access Journals (Sweden)

    SAMEER DIXIT

    2011-08-01

    Full Text Available The primary function of a biological immune system is to protect the body from foreign molecules known as antigens. It has great pattern recognition capability that may be used to distinguish between foreigncells entering the body (non-self or antigen and the body cells (self. Immune systems have many characteristics such as uniqueness, autonomous, recognition of foreigners, distributed detection, and noise tolerance . Inspired by biological immune systems, Artificial Immune Systems have emerged during the last decade. They are incited by many researchers to design and build immune-based models for a variety of application domains. Artificial immune systems can be defined as a computational paradigm that is inspired by theoretical immunology, observed immune functions, principles and mechanisms. Association rule mining is one of the most important and well researched techniques of data mining. The goal of association rules is to extract interesting correlations, frequent patterns, associations or casual structures among sets of items in thetransaction databases or other data repositories. Association rules are widely used in various areas such as inventory control, telecommunication networks, intelligent decision making, market analysis and risk management etc. Apriori is the most widely used algorithm for mining the association rules. Other popular association rule mining algorithms are frequent pattern (FP growth, Eclat, dynamic itemset counting (DIC etc. Associative classification uses association rule mining in the rule discovery process to predict the class labels of the data. This technique has shown great promise over many other classification techniques. Associative classification also integrates the process of rule discovery and classification to build the classifier for the purpose of prediction. The main problem with the associative classification approach is the discovery of highquality association rules in a very large space of

  10. 基于隶属度限幅特征VSM的文本分类模型%Modeling text classification based on membership degree limiting characteristic VSM

    Institute of Scientific and Technical Information of China (English)

    周菁; 戴冠中; 周婷婷

    2009-01-01

    Through the expression of text characteristic based on fuzzy qualifier and then definition of fuzzy feature using the fuzzy function, represented the text as the imposed membership degree limiting text feature vector. Constructuring membership degree limiting class feature matrix, and mapping each group of texts belong to the same class to its class expectation vector. All of class expectation vectors constructed the membership degree limiting characteristic VSM. Based on that, presented a new text-classification model and the experiment shows that the model is efficient.%通过文档基于模糊限定词的特征表达,定义特征的模糊函数,将文档表示为隶属度限幅的特征向量,构造文本集隶属度限幅的类特征矩阵,将每一类文本集映射为类期望向量,所有类期望向量便构成了隶属度限幅的特征VSM.在此基础上设计了一种新的文本分类模型.实验结果证明,该分类模型能有效实现文本分类.

  11. REMOTE SENSING IMAGE CLASSIFICATION BASED ON LOGISTIC MODEL%基于逻辑斯蒂模型的遥感图像分类

    Institute of Scientific and Technical Information of China (English)

    刘庆生; 刘高焕; 蔺启忠; 王志刚

    2001-01-01

    逻辑斯蒂法是一种非线性的回归分析方法,因采用逻辑斯蒂模型而得名[1],可用来进行未知单元类别属性的预测和判定。不同于一般的分类方法,它可分别给出某一单元属于各已知类别的概率,进而对研究的未知区中所有单元进行分类和预测。本文首先阐述了该方法的基本原理,而后利用它对内蒙古自治区两个研究区的两种图像数据进行了分类,最后探讨了影响该方法用于遥感图像分类的几个因素。%Logistic method is a nonlinear regression analysis method, which is based on the Logistic model. Usually, It is used to forecast and classify the unknown units into the known types. Other than the common classification methods, it can respectively calculate the probabilities which one unit belongs to the different known types, then, classify and forecast all the units of the unknown research field. In this paper, firstly we introduce the keystone of Logistic method, then, classify the two different remote sensing image data of the two different fields in The Inner Mongolia Autonomous Region by this method, finally discuss about a few factors which affect remote sensing image classification using logistic method.

  12. Cirrhosis Classification Based on Texture Classification of Random Features

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2014-01-01

    Full Text Available Accurate staging of hepatic cirrhosis is important in investigating the cause and slowing down the effects of cirrhosis. Computer-aided diagnosis (CAD can provide doctors with an alternative second opinion and assist them to make a specific treatment with accurate cirrhosis stage. MRI has many advantages, including high resolution for soft tissue, no radiation, and multiparameters imaging modalities. So in this paper, multisequences MRIs, including T1-weighted, T2-weighted, arterial, portal venous, and equilibrium phase, are applied. However, CAD does not meet the clinical needs of cirrhosis and few researchers are concerned with it at present. Cirrhosis is characterized by the presence of widespread fibrosis and regenerative nodules in the hepatic, leading to different texture patterns of different stages. So, extracting texture feature is the primary task. Compared with typical gray level cooccurrence matrix (GLCM features, texture classification from random features provides an effective way, and we adopt it and propose CCTCRF for triple classification (normal, early, and middle and advanced stage. CCTCRF does not need strong assumptions except the sparse character of image, contains sufficient texture information, includes concise and effective process, and makes case decision with high accuracy. Experimental results also illustrate the satisfying performance and they are also compared with typical NN with GLCM.

  13. National security vulnerability database classification based on an LDA topic model%基于LDA主题模型的安全漏洞分类

    Institute of Scientific and Technical Information of China (English)

    廖晓锋; 王永吉; 范修斌; 吴敬征

    2012-01-01

    The current vulnerabilities in China are analyzed using a dataset from the China National Vulnerability Database of Information Security(CNNVD),with a combined latent Dirichlet allocation(LDA) topic model and a support vector machine(SVM) to construct a classifier in the topic vector space.Tests show that the classifier based on topic vectors has about 8% better classification performance than that based on text vectors.%采用隐含Dirichlet分布主题模型(latent Dirichletallocation,LDA)和支持向量机(support vector machine,SVM)相结合的方法,在主题向量空间构建一个自动漏洞分类器。以中国国家信息安全漏洞库(CNNVD)中漏洞记录为实验数据。实验表明:基于主题向量构建的分类器的分类准确度比直接使用词汇向量构建的分类器有8%的提高。

  14. A unified Bayesian hierarchical model for MRI tissue classification.

    Science.gov (United States)

    Feng, Dai; Liang, Dong; Tierney, Luke

    2014-04-15

    Various works have used magnetic resonance imaging (MRI) tissue classification extensively to study a number of neurological and psychiatric disorders. Various noise characteristics and other artifacts make this classification a challenging task. Instead of splitting the procedure into different steps, we extend a previous work to develop a unified Bayesian hierarchical model, which addresses both the partial volume effect and intensity non-uniformity, the two major acquisition artifacts, simultaneously. We adopted a normal mixture model with the means and variances depending on the tissue types of voxels to model the observed intensity values. We modeled the relationship among the components of the index vector of tissue types by a hidden Markov model, which captures the spatial similarity of voxels. Furthermore, we addressed the partial volume effect by construction of a higher resolution image in which each voxel is divided into subvoxels. Finally, We achieved the bias field correction by using a Gaussian Markov random field model with a band precision matrix designed in light of image filtering. Sparse matrix methods and parallel computations based on conditional independence are exploited to improve the speed of the Markov chain Monte Carlo simulation. The unified model provides more accurate tissue classification results for both simulated and real data sets. PMID:24738112

  15. Hidden Markov Modeling for humpback whale (Megaptera novaeangliae) call classification

    OpenAIRE

    PACE, Federica; White, Paul; Adam, Olivier

    2012-01-01

    International audience This study proposes a new approach for the classification of the calls detected in the songs with the use of Hidden Markov Models (HMMs) based on the concept of subunits as building blocks. HMMs have been used once before for such task but in an unsupervised algorithm with promising results, and they are used extensively in speech recognition and in few bioacoustics studies. Their flexibility suggests that they may be suitable for the analysis of the varied repertoir...

  16. Classification of Regional Ionospheric Disturbances Based on Support Vector Machines

    Science.gov (United States)

    Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil

    2016-07-01

    Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification

  17. Network Traffic Anomalies Identification Based on Classification Methods

    Directory of Open Access Journals (Sweden)

    Donatas Račys

    2015-07-01

    Full Text Available A problem of network traffic anomalies detection in the computer networks is analyzed. Overview of anomalies detection methods is given then advantages and disadvantages of the different methods are analyzed. Model for the traffic anomalies detection was developed based on IBM SPSS Modeler and is used to analyze SNMP data of the router. Investigation of the traffic anomalies was done using three classification methods and different sets of the learning data. Based on the results of investigation it was determined that C5.1 decision tree method has the largest accuracy and performance and can be successfully used for identification of the network traffic anomalies.

  18. Classification model of arousal and valence mental states by EEG signals analysis and Brodmann correlations

    Directory of Open Access Journals (Sweden)

    Adrian Rodriguez Aguinaga

    2015-06-01

    Full Text Available This paper proposes a methodology to perform emotional states classification by the analysis of EEG signals, wavelet decomposition and an electrode discrimination process, that associates electrodes of a 10/20 model to Brodmann regions and reduce computational burden. The classification process were performed by a Support Vector Machines Classification process, achieving a 81.46 percent of classification rate for a multi-class problem and the emotions modeling are based in an adjusted space from the Russell Arousal Valence Space and the Geneva model.

  19. Automatic web services classification based on rough set theory

    Institute of Scientific and Technical Information of China (English)

    陈立; 张英; 宋自林; 苗壮

    2013-01-01

    With development of web services technology, the number of existing services in the internet is growing day by day. In order to achieve automatic and accurate services classification which can be beneficial for service related tasks, a rough set theory based method for services classification was proposed. First, the services descriptions were preprocessed and represented as vectors. Elicited by the discernibility matrices based attribute reduction in rough set theory and taking into account the characteristic of decision table of services classification, a method based on continuous discernibility matrices was proposed for dimensionality reduction. And finally, services classification was processed automatically. Through the experiment, the proposed method for services classification achieves approving classification result in all five testing categories. The experiment result shows that the proposed method is accurate and could be used in practical web services classification.

  20. Data Classification Based on Confidentiality in Virtual Cloud Environment

    Directory of Open Access Journals (Sweden)

    Munwar Ali Zardari

    2014-10-01

    Full Text Available The aim of this study is to provide suitable security to data based on the security needs of data. It is very difficult to decide (in cloud which data need what security and which data do not need security. However it will be easy to decide the security level for data after data classification according to their security level based on the characteristics of the data. In this study, we have proposed a data classification cloud model to solve data confidentiality issue in cloud computing environment. The data are classified into two major classes: sensitive and non-sensitive. The K-Nearest Neighbour (K-NN classifier is used for data classification and the Rivest, Shamir and Adelman (RSA algorithm is used to encrypt sensitive data. After implementing the proposed model, it is found that the confidentiality level of data is increased and this model is proved to be more cost and memory friendly for the users as well as for the cloud services providers. The data storage service is one of the cloud services where data servers are virtualized of all users. In a cloud server, the data are stored in two ways. First encrypt the received data and store on cloud servers. Second store data on the cloud servers without encryption. Both of these data storage methods can face data confidentiality issue, because the data have different values and characteristics that must be identified before sending to cloud severs.

  1. Vessel-guided airway segmentation based on voxel classification

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem;

    2008-01-01

    This paper presents a method for improving airway tree segmentation using vessel orientation information. We use the fact that an airway branch is always accompanied by an artery, with both structures having similar orientations. This work is based on a  voxel classification airway segmentation...... method proposed previously. The probability of a voxel belonging to the airway, from the voxel classification method, is augmented with an orientation similarity measure as a criterion for region growing. The orientation similarity measure of a voxel indicates how similar is the orientation...... of the surroundings of a voxel, estimated based on a tube model, is to that of a neighboring vessel. The proposed method is tested on 20 CT images from different subjects selected randomly from a lung cancer screening study. Length of the airway branches from the results of the proposed method are significantly...

  2. A power spectrum based backpropagation artificial neural network model for classification of sleep-wake stages in rats

    Directory of Open Access Journals (Sweden)

    Amit Kumar Ray

    2003-05-01

    Full Text Available Three layered feed-forward backpropagation artificial neural network architecture is designed to classify sleep-wake stages in rats. Continuous three channel polygraphic signals such as electroencephalogram, electrooculogram and electromyogram were recorded from conscious rats for eight hours during day time. Signals were also stored in computer hard disk with the help of analog to digital converter and its compatible data acquisition software. The power spectra (in dB scale of the digitized signals in three sleep-wake stages were calculated. Selected power spectrum data of all three simultaneously recorded polygraphic signals were used for training the network and to classify slow wave sleep, rapid eye movement sleep and awake stages. The ANN architecture used in present study shows a very good agreement with manual sleep stage scoring with an average of 94.83% for all the 1200 samples tested from SWS, REM and AWA stages. The high performance observed with the system based on ANN highlights the need of this computational tool into the field of sleep research.

  3. Credal Classification based on AODE and compression coefficients

    CERN Document Server

    Corani, Giorgio

    2012-01-01

    Bayesian model averaging (BMA) is an approach to average over alternative models; yet, it usually gets excessively concentrated around the single most probable model, therefore achieving only sub-optimal classification performance. The compression-based approach (Boulle, 2007) overcomes this problem, averaging over the different models by applying a logarithmic smoothing over the models' posterior probabilities. This approach has shown excellent performances when applied to ensembles of naive Bayes classifiers. AODE is another ensemble of models with high performance (Webb, 2005), based on a collection of non-naive classifiers (called SPODE) whose probabilistic predictions are aggregated by simple arithmetic mean. Aggregating the SPODEs via BMA rather than by arithmetic mean deteriorates the performance; instead, we aggregate the SPODEs via the compression coefficients and we show that the resulting classifier obtains a slight but consistent improvement over AODE. However, an important issue in any Bayesian e...

  4. Graph-based Methods for Orbit Classification

    Energy Technology Data Exchange (ETDEWEB)

    Bagherjeiran, A; Kamath, C

    2005-09-29

    An important step in the quest for low-cost fusion power is the ability to perform and analyze experiments in prototype fusion reactors. One of the tasks in the analysis of experimental data is the classification of orbits in Poincare plots. These plots are generated by the particles in a fusion reactor as they move within the toroidal device. In this paper, we describe the use of graph-based methods to extract features from orbits. These features are then used to classify the orbits into several categories. Our results show that existing machine learning algorithms are successful in classifying orbits with few points, a situation which can arise in data from experiments.

  5. Pathway-based classification of cancer subtypes

    Directory of Open Access Journals (Sweden)

    Kim Shinuk

    2012-07-01

    Full Text Available Abstract Background Molecular markers based on gene expression profiles have been used in experimental and clinical settings to distinguish cancerous tumors in stage, grade, survival time, metastasis, and drug sensitivity. However, most significant gene markers are unstable (not reproducible among data sets. We introduce a standardized method for representing cancer markers as 2-level hierarchical feature vectors, with a basic gene level as well as a second level of (more stable pathway markers, for the purpose of discriminating cancer subtypes. This extends standard gene expression arrays with new pathway-level activation features obtained directly from off-the-shelf gene set enrichment algorithms such as GSEA. Such so-called pathway-based expression arrays are significantly more reproducible across datasets. Such reproducibility will be important for clinical usefulness of genomic markers, and augment currently accepted cancer classification protocols. Results The present method produced more stable (reproducible pathway-based markers for discriminating breast cancer metastasis and ovarian cancer survival time. Between two datasets for breast cancer metastasis, the intersection of standard significant gene biomarkers totaled 7.47% of selected genes, compared to 17.65% using pathway-based markers; the corresponding percentages for ovarian cancer datasets were 20.65% and 33.33% respectively. Three pathways, consisting of Type_1_diabetes mellitus, Cytokine-cytokine_receptor_interaction and Hedgehog_signaling (all previously implicated in cancer, are enriched in both the ovarian long survival and breast non-metastasis groups. In addition, integrating pathway and gene information, we identified five (ID4, ANXA4, CXCL9, MYLK, FBXL7 and six (SQLE, E2F1, PTTG1, TSTA3, BUB1B, MAD2L1 known cancer genes significant for ovarian and breast cancer respectively. Conclusions Standardizing the analysis of genomic data in the process of cancer staging

  6. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge Emil Borch Laurs; Lo, Pechin Chien Pau; Dirksen, Asger;

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment betw...

  7. A MapReduce based Parallel SVM for Email Classification

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2014-06-01

    Full Text Available Support Vector Machine (SVM is a powerful classification and regression tool. Varying approaches including SVM based techniques are proposed for email classification. Automated email classification according to messages or user-specific folders and information extraction from chronologically ordered email streams have become interesting areas in text machine learning research. This paper presents a parallel SVM based on MapReduce (PSMR algorithm for email classification. We discuss the challenges that arise from differences between email foldering and traditional document classification. We show experimental results from an array of automated classification methods and evaluation methodologies, including Naive Bayes, SVM and PSMR method of foldering results on the Enron datasets based on the timeline. By distributing, processing and optimizing the subsets of the training data across multiple participating nodes, the parallel SVM based on MapReduce algorithm reduces the training time significantly

  8. 多源信息分级优化备件需求预测模型%Multi-source information classification optimization based spare parts demand prediction model

    Institute of Scientific and Technical Information of China (English)

    索海龙; 高建民; 高智勇; 刘元浩

    2015-01-01

    In order to solve the difficult demand prediction problem of main key spare parts in large power equipment manufactur-ing supply enterprises,the multi-source heterogeneous information from multisectoral departments was trimmed,classified and analyzed,and a spare parts demand prediction model based on multi-source information classification optimization was proposed. This model mainly included the establishment of the basic spare parts inventory,the model optimization of customer satisfaction rate,spare parts reserve strategy and the product service status.The spare parts results from hierarchical optimization prediction model,combined with time series forecasting method and enterprise actual forecasting methods respectively were analyzed by an actural example.Model actual satisfied rate is improved from 90.32% and 98.81% respectively to 98.87%.Meanwhile,practi-cal feasibility and economical efficiency were verified for large equipment main key spare parts demand prediction.%为了解决大型动力装备制造供应企业主关键备件需求预测难的问题,采用来自企业多部门的多源异构信息,对其进行整理、归类和分析,建立了一种基于多源信息分级优化备件需求预测模型。该模型主要包括备件基本库的建立、基于客户满足率的模型优化、基于备件储备策略的模型优化和基于产品服役状态的模型优化。分级优化备件需求预测方法分别与时序预测方法、企业实际预测方法得到的备件数量通过实例进行对比验证分析,该模型实际满足率分别由90.32%和98.81%提高到98.87%,对大型装备主关键备件的需求预测具有实际可行性和良好经济性。

  9. Gender Classification Based on Geometry Features of Palm Image

    OpenAIRE

    Ming Wu; Yubo Yuan

    2014-01-01

    This paper presents a novel gender classification method based on geometry features of palm image which is simple, fast, and easy to handle. This gender classification method based on geometry features comprises two main attributes. The first one is feature extraction by image processing. The other one is classification system with polynomial smooth support vector machine (PSSVM). A total of 180 palm images were collected from 30 persons to verify the validity of the proposed gender classi...

  10. Model sparsity and brain pattern interpretation of classification models in neuroimaging

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Churchill, Nathan W;

    2012-01-01

    Interest is increasing in applying discriminative multivariate analysis techniques to the analysis of functional neuroimaging data. Model interpretation is of great importance in the neuroimaging context, and is conventionally based on a ‘brain map’ derived from the classification model. In this ...

  11. Intrusion Awareness Based on Data Fusion and SVM Classification

    Directory of Open Access Journals (Sweden)

    Ramnaresh Sharma

    2012-06-01

    Full Text Available Network intrusion awareness is important factor for risk analysis of network security. In the current decade various method and framework are available for intrusion detection and security awareness. Some method based on knowledge discovery process and some framework based on neural network. These entire model take rule based decision for the generation of security alerts. In this paper we proposed a novel method for intrusion awareness using data fusion and SVM classification. Data fusion work on the biases of features gathering of event. Support vector machine is super classifier of data. Here we used SVM for the detection of closed item of ruled based technique. Our proposed method simulate on KDD1999 DARPA data set and get better empirical evaluation result in comparison of rule based technique and neural network model.

  12. Intrusion Awareness Based on Data Fusion and SVM Classification

    Directory of Open Access Journals (Sweden)

    Ramnaresh Sharma

    2012-06-01

    Full Text Available Network intrusion awareness is important factor forrisk analysis of network security. In the currentdecade various method and framework are availablefor intrusion detection and security awareness.Some method based on knowledge discovery processand some framework based on neural network.These entire model take rule based decision for thegeneration of security alerts. In this paper weproposed a novel method for intrusion awarenessusing data fusion and SVM classification. Datafusion work on the biases of features gathering ofevent. Support vector machine is super classifier ofdata. Here we used SVM for the detection of closeditem of ruled based technique. Our proposedmethod simulate on KDD1999 DARPA data set andget better empirical evaluation result in comparisonof rule based technique and neural network model.

  13. DNA sequence analysis using hierarchical ART-based classification networks

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, C.; Hruska, S.I. [Florida State Univ., Tallahassee, FL (United States); Katholi, C.R.; Unnasch, T.R. [Univ. of Alabama, Birmingham, AL (United States)

    1994-12-31

    Adaptive resonance theory (ART) describes a class of artificial neural network architectures that act as classification tools which self-organize, work in real-time, and require no retraining to classify novel sequences. We have adapted ART networks to provide support to scientists attempting to categorize tandem repeat DNA fragments from Onchocerca volvulus. In this approach, sequences of DNA fragments are presented to multiple ART-based networks which are linked together into two (or more) tiers; the first provides coarse sequence classification while the sub- sequent tiers refine the classifications as needed. The overall rating of the resulting classification of fragments is measured using statistical techniques based on those introduced to validate results from traditional phylogenetic analysis. Tests of the Hierarchical ART-based Classification Network, or HABclass network, indicate its value as a fast, easy-to-use classification tool which adapts to new data without retraining on previously classified data.

  14. Constructing Customer Consumption Classification Models Based on Rough Sets and Neural Network%基于粗糙神经网络的客户消费分类模型研究

    Institute of Scientific and Technical Information of China (English)

    万映红; 胡万平; 曹小鹏

    2011-01-01

    针对客户消费属性的多维、相关及不确定的特点,提出了基于粗糙神经网络(RS-NN)的客户消费分类模型.在揭示了客户消费分类问题的粗糙集特性基础上,设计出由预处理分类知识空间、建立消费分类模型、分类模型应用构成的研究框架,系统阐述了基于粗糙集的约简消费属性、提取分类规则、构建粗糙集神经网络初始拓扑结构、训练和检验网络模型等一系列关键技术,最后以某地区电信客户管理为建模示例.结果表明:RS-NN模型在模型结构、模型效率、分类预测精度方面均优于BP-NN算法,是一种有效和实用的客户分类新方法.%The customer consumption classification topic is receiving increasing attention from researchers in the field of customer relationship management.The current research on customer consumption classification can be funber improved in many areas. For instance, customer consumption classification models should take into consideration multidimensional and other related consumption attributes into classificaticu analysis,avoidance of attribute redundancy, and selection of core classification attributes. Customer consumption models should identify input neurons,hidden layers and hidden neurons in order to reduce the complexity of classification structure and improve model's explanatory power. Existing classification methods are not effective at representing the inconsistency of consumption attributes and classes.JPThis paper proposed a customer consumption classification model by integrating rough set and neural networks based on the rough setneural network (RS-NN) model. Rongh set is the core theory underpinning this study. This paper reduced attribute values and adopted core consumption attributes in order to solve attribute redundancy and inconsistency problems. This paper also used customer classification roles and solved attribute inconsistency problems. In addition, by integrating classification

  15. Classification/Categorization Model of Instruction for Learning Disabled Students.

    Science.gov (United States)

    Freund, Lisa A.

    1987-01-01

    Learning-disabled students deficient in classification and categorization require specific instruction in these skills. Use of a classification/categorization instructional model improved the questioning strategies of 60 learning-disabled students, aged 10 to 12. The use of similar models is discussed as a basis for instruction in science, social…

  16. Classification of CMEs Based on Their Dynamics

    Science.gov (United States)

    Nicewicz, J.; Michalek, G.

    2016-05-01

    A large set of coronal mass ejections CMEs (6621) has been selected to study their dynamics seen with the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) field of view (LFOV). These events were selected based on having at least six height-time measurements so that their dynamic properties, in the LFOV, can be evaluated with reasonable accuracy. Height-time measurements (in the SOHO/LASCO catalog) were used to determine the velocities and accelerations of individual CMEs at successive distances from the Sun. Linear and quadratic functions were fitted to these data points. On the basis of the best fits to the velocity data points, we were able to classify CMEs into four groups. The types of CMEs do not only have different dynamic behaviors but also different masses, widths, velocities, and accelerations. We also show that these groups of events are initiated by different onset mechanisms. The results of our study allow us to present a consistent classification of CMEs based on their dynamics.

  17. A new classification algorithm based on RGH-tree search

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we put forward a new classification algorithm based on RGH-Tree search and perform the classification analysis and comparison study. This algorithm can save computing resource and increase the classification efficiency. The experiment shows that this algorithm can get better effect in dealing with three dimensional multi-kind data. We find that the algorithm has better generalization ability for small training set and big testing result.

  18. Joint Probability-Based Neuronal Spike Train Classification

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2009-01-01

    Full Text Available Neuronal spike trains are used by the nervous system to encode and transmit information. Euclidean distance-based methods (EDBMs have been applied to quantify the similarity between temporally-discretized spike trains and model responses. In this study, using the same discretization procedure, we developed and applied a joint probability-based method (JPBM to classify individual spike trains of slowly adapting pulmonary stretch receptors (SARs. The activity of individual SARs was recorded in anaesthetized, paralysed adult male rabbits, which were artificially-ventilated at constant rate and one of three different volumes. Two-thirds of the responses to the 600 stimuli presented at each volume were used to construct three response models (one for each stimulus volume consisting of a series of time bins, each with spike probabilities. The remaining one-third of the responses where used as test responses to be classified into one of the three model responses. This was done by computing the joint probability of observing the same series of events (spikes or no spikes, dictated by the test response in a given model and determining which probability of the three was highest. The JPBM generally produced better classification accuracy than the EDBM, and both performed well above chance. Both methods were similarly affected by variations in discretization parameters, response epoch duration, and two different response alignment strategies. Increasing bin widths increased classification accuracy, which also improved with increased observation time, but primarily during periods of increasing lung inflation. Thus, the JPBM is a simple and effective method performing spike train classification.

  19. A deep learning approach to the classification of 3D CAD models

    Institute of Scientific and Technical Information of China (English)

    Fei-wei QIN; Lu-ye LI; Shu-ming GAO; Xiao-ling YANG; Xiang CHEN

    2014-01-01

    Model classification is essential to the management and reuse of 3D CAD models. Manual model classification is laborious and error prone. At the same time, the automatic classification methods are scarce due to the intrinsic complexity of 3D CAD models. In this paper, we propose an automatic 3D CAD model classification approach based on deep neural networks. According to prior knowledge of the CAD domain, features are selected and extracted from 3D CAD models first, and then pre-processed as high dimensional input vectors for category recognition. By analogy with the thinking process of engineers, a deep neural network classifier for 3D CAD models is constructed with the aid of deep learning techniques. To obtain an optimal solution, multiple strategies are appropriately chosen and applied in the training phase, which makes our classifier achieve better per-formance. We demonstrate the efficiency and effectiveness of our approach through experiments on 3D CAD model datasets.

  20. Quality-Oriented Classification of Aircraft Material Based on SVM

    Directory of Open Access Journals (Sweden)

    Hongxia Cai

    2014-01-01

    Full Text Available The existing material classification is proposed to improve the inventory management. However, different materials have the different quality-related attributes, especially in the aircraft industry. In order to reduce the cost without sacrificing the quality, we propose a quality-oriented material classification system considering the material quality character, Quality cost, and Quality influence. Analytic Hierarchy Process helps to make feature selection and classification decision. We use the improved Kraljic Portfolio Matrix to establish the three-dimensional classification model. The aircraft materials can be divided into eight types, including general type, key type, risk type, and leveraged type. Aiming to improve the classification accuracy of various materials, the algorithm of Support Vector Machine is introduced. Finally, we compare the SVM and BP neural network in the application. The results prove that the SVM algorithm is more efficient and accurate and the quality-oriented material classification is valuable.

  1. Object-Based Classification of Abandoned Logging Roads under Heavy Canopy Using LiDAR

    OpenAIRE

    Jason Sherba; Leonhard Blesius; Jerry Davis

    2014-01-01

    LiDAR-derived slope models may be used to detect abandoned logging roads in steep forested terrain. An object-based classification approach of abandoned logging road detection was employed in this study. First, a slope model of the study site in Marin County, California was created from a LiDAR derived DEM. Multiresolution segmentation was applied to the slope model and road seed objects were iteratively grown into candidate objects. A road classification accuracy of 86% was achieved using th...

  2. Music Genre Classification using the multivariate AR feature integration model

    DEFF Research Database (Denmark)

    Ahrendt, Peter; Meng, Anders

    2005-01-01

    Music genre classification systems are normally build as a feature extraction module followed by a classifier. The features are often short-time features with time frames of 10-30ms, although several characteristics of music require larger time scales. Thus, larger time frames are needed to take...... informative decisions about musical genre. For the MIREX music genre contest several authors derive long time features based either on statistical moments and/or temporal structure in the short time features. In our contribution we model a segment (1.2 s) of short time features (texture) using a multivariate...

  3. Preliminary Research on Grassland Fine-classification Based on MODIS

    International Nuclear Information System (INIS)

    Grassland ecosystem is important for climatic regulation, maintaining the soil and water. Research on the grassland monitoring method could provide effective reference for grassland resource investigation. In this study, we used the vegetation index method for grassland classification. There are several types of climate in China. Therefore, we need to use China's Main Climate Zone Maps and divide the study region into four climate zones. Based on grassland classification system of the first nation-wide grass resource survey in China, we established a new grassland classification system which is only suitable for this research. We used MODIS images as the basic data resources, and use the expert classifier method to perform grassland classification. Based on the 1:1,000,000 Grassland Resource Map of China, we obtained the basic distribution of all the grassland types and selected 20 samples evenly distributed in each type, then used NDVI/EVI product to summarize different spectral features of different grassland types. Finally, we introduced other classification auxiliary data, such as elevation, accumulate temperature (AT), humidity index (HI) and rainfall. China's nation-wide grassland classification map is resulted by merging the grassland in different climate zone. The overall classification accuracy is 60.4%. The result indicated that expert classifier is proper for national wide grassland classification, but the classification accuracy need to be improved

  4. Drug related webpages classification using images and text information based on multi-kernel learning

    Science.gov (United States)

    Hu, Ruiguang; Xiao, Liping; Zheng, Wenjuan

    2015-12-01

    In this paper, multi-kernel learning(MKL) is used for drug-related webpages classification. First, body text and image-label text are extracted through HTML parsing, and valid images are chosen by the FOCARSS algorithm. Second, text based BOW model is used to generate text representation, and image-based BOW model is used to generate images representation. Last, text and images representation are fused with a few methods. Experimental results demonstrate that the classification accuracy of MKL is higher than those of all other fusion methods in decision level and feature level, and much higher than the accuracy of single-modal classification.

  5. Development Of An Econometric Model Case Study: Romanian Classification System

    Directory of Open Access Journals (Sweden)

    Savescu Roxana

    2015-08-01

    Full Text Available The purpose of the paper is to illustrate an econometric model used to predict the lean meat content in pig carcasses, based on the muscle thickness and back fat thickness measured by the means of an optical probe (OptiGrade PRO.The analysis goes through all steps involved in the development of the model: statement of theory, specification of the mathematical model, sampling and collection of data, estimation of the parameters of the chosen econometric model, tests of the hypothesis derived from the model and prediction equations. The data have been in a controlled experiment conducted by the Romanian Carcass Classification Commission in 2007. The purpose of the experiment was to develop the prediction formulae to be used in the implementation of SEUROP classification system, imposed by European Union legislation. The research methodology used by the author in this study consisted in reviewing the existing literature and normative acts, analyzing the primary data provided by and organization conducting the experiment and interviewing the representatives of the working team that participated in the trial.

  6. A Novel Imbalanced Data Classification Approach Based on Logistic Regression and Fisher Discriminant

    Directory of Open Access Journals (Sweden)

    Baofeng Shi

    2015-01-01

    Full Text Available We introduce an imbalanced data classification approach based on logistic regression significant discriminant and Fisher discriminant. First of all, a key indicators extraction model based on logistic regression significant discriminant and correlation analysis is derived to extract features for customer classification. Secondly, on the basis of the linear weighted utilizing Fisher discriminant, a customer scoring model is established. And then, a customer rating model where the customer number of all ratings follows normal distribution is constructed. The performance of the proposed model and the classical SVM classification method are evaluated in terms of their ability to correctly classify consumers as default customer or nondefault customer. Empirical results using the data of 2157 customers in financial engineering suggest that the proposed approach better performance than the SVM model in dealing with imbalanced data classification. Moreover, our approach contributes to locating the qualified customers for the banks and the bond investors.

  7. AN OBJECT-BASED METHOD FOR CHINESE LANDFORM TYPES CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. Ding

    2016-06-01

    Full Text Available Landform classification is a necessary task for various fields of landscape and regional planning, for example for landscape evaluation, erosion studies, hazard prediction, et al. This study proposes an improved object-based classification for Chinese landform types using the factor importance analysis of random forest and the gray-level co-occurrence matrix (GLCM. In this research, based on 1km DEM of China, the combination of the terrain factors extracted from DEM are selected by correlation analysis and Sheffield's entropy method. Random forest classification tree is applied to evaluate the importance of the terrain factors, which are used as multi-scale segmentation thresholds. Then the GLCM is conducted for the knowledge base of classification. The classification result was checked by using the 1:4,000,000 Chinese Geomorphological Map as reference. And the overall classification accuracy of the proposed method is 5.7% higher than ISODATA unsupervised classification, and 15.7% higher than the traditional object-based classification method.

  8. A Curriculum-Based Classification System for Community Colleges.

    Science.gov (United States)

    Schuyler, Gwyer

    2003-01-01

    Proposes and tests a community college classification system based on curricular characteristics and their association with institutional characteristics. Seeks readily available data correlates to represent percentage of a college's course offerings that are in the liberal arts. A simple two-category classification system using total enrollment…

  9. An Object-Based Method for Chinese Landform Types Classification

    Science.gov (United States)

    Ding, Hu; Tao, Fei; Zhao, Wufan; Na, Jiaming; Tang, Guo'an

    2016-06-01

    Landform classification is a necessary task for various fields of landscape and regional planning, for example for landscape evaluation, erosion studies, hazard prediction, et al. This study proposes an improved object-based classification for Chinese landform types using the factor importance analysis of random forest and the gray-level co-occurrence matrix (GLCM). In this research, based on 1km DEM of China, the combination of the terrain factors extracted from DEM are selected by correlation analysis and Sheffield's entropy method. Random forest classification tree is applied to evaluate the importance of the terrain factors, which are used as multi-scale segmentation thresholds. Then the GLCM is conducted for the knowledge base of classification. The classification result was checked by using the 1:4,000,000 Chinese Geomorphological Map as reference. And the overall classification accuracy of the proposed method is 5.7% higher than ISODATA unsupervised classification, and 15.7% higher than the traditional object-based classification method.

  10. Calibration of a Plastic Classification System with the Ccw Model

    International Nuclear Information System (INIS)

    This document describes the calibration of a plastic Classification system with the Ccw model (Classification by Quantum's built with Wavelet Coefficients). The method is applied to spectra of plastics usually present in domestic wastes. Obtained results are showed. (Author) 16 refs

  11. Model classification rate control algorithm for video coding

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A model classification rate control method for video coding is proposed. The macro-blocks are classified according to their prediction errors, and different parameters are used in the rate-quantization and distortion-quantization model.The different model parameters are calculated from the previous frame of the same type in the process of coding. These models are used to estimate the relations among rate, distortion and quantization of the current frame. Further steps,such as R-D optimization based quantization adjustment and smoothing of quantization of adjacent macroblocks, are used to improve the quality. The results of the experiments prove that the technique is effective and can be realized easily. The method presented in the paper can be a good way for MPEG and H. 264 rate control.

  12. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran.

    Science.gov (United States)

    Naghibi, Seyed Amir; Pourghasemi, Hamid Reza; Dixon, Barnali

    2016-01-01

    Groundwater is considered one of the most valuable fresh water resources. The main objective of this study was to produce groundwater spring potential maps in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran, using three machine learning models: boosted regression tree (BRT), classification and regression tree (CART), and random forest (RF). Thirteen hydrological-geological-physiographical (HGP) factors that influence locations of springs were considered in this research. These factors include slope degree, slope aspect, altitude, topographic wetness index (TWI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Subsequently, groundwater spring potential was modeled and mapped using CART, RF, and BRT algorithms. The predicted results from the three models were validated using the receiver operating characteristics curve (ROC). From 864 springs identified, 605 (≈70 %) locations were used for the spring potential mapping, while the remaining 259 (≈30 %) springs were used for the model validation. The area under the curve (AUC) for the BRT model was calculated as 0.8103 and for CART and RF the AUC were 0.7870 and 0.7119, respectively. Therefore, it was concluded that the BRT model produced the best prediction results while predicting locations of springs followed by CART and RF models, respectively. Geospatially integrated BRT, CART, and RF methods proved to be useful in generating the spring potential map (SPM) with reasonable accuracy.

  13. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran.

    Science.gov (United States)

    Naghibi, Seyed Amir; Pourghasemi, Hamid Reza; Dixon, Barnali

    2016-01-01

    Groundwater is considered one of the most valuable fresh water resources. The main objective of this study was to produce groundwater spring potential maps in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran, using three machine learning models: boosted regression tree (BRT), classification and regression tree (CART), and random forest (RF). Thirteen hydrological-geological-physiographical (HGP) factors that influence locations of springs were considered in this research. These factors include slope degree, slope aspect, altitude, topographic wetness index (TWI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Subsequently, groundwater spring potential was modeled and mapped using CART, RF, and BRT algorithms. The predicted results from the three models were validated using the receiver operating characteristics curve (ROC). From 864 springs identified, 605 (≈70 %) locations were used for the spring potential mapping, while the remaining 259 (≈30 %) springs were used for the model validation. The area under the curve (AUC) for the BRT model was calculated as 0.8103 and for CART and RF the AUC were 0.7870 and 0.7119, respectively. Therefore, it was concluded that the BRT model produced the best prediction results while predicting locations of springs followed by CART and RF models, respectively. Geospatially integrated BRT, CART, and RF methods proved to be useful in generating the spring potential map (SPM) with reasonable accuracy. PMID:26687087

  14. Fast Wavelet-Based Visual Classification

    CERN Document Server

    Yu, Guoshen

    2008-01-01

    We investigate a biologically motivated approach to fast visual classification, directly inspired by the recent work of Serre et al. Specifically, trading-off biological accuracy for computational efficiency, we explore using wavelet and grouplet-like transforms to parallel the tuning of visual cortex V1 and V2 cells, alternated with max operations to achieve scale and translation invariance. A feature selection procedure is applied during learning to accelerate recognition. We introduce a simple attention-like feedback mechanism, significantly improving recognition and robustness in multiple-object scenes. In experiments, the proposed algorithm achieves or exceeds state-of-the-art success rate on object recognition, texture and satellite image classification, language identification and sound classification.

  15. Shape classification based on singular value decomposition transform

    Institute of Scientific and Technical Information of China (English)

    SHAABAN Zyad; ARIF Thawar; BABA Sami; KREKOR Lala

    2009-01-01

    In this paper, a new shape classification system based on singular value decomposition (SVD) transform using nearest neighbour classifier was proposed. The gray scale image of the shape object was converted into a black and white image. The squared Euclidean distance transform on binary image was applied to extract the boundary image of the shape. SVD transform features were extracted from the the boundary of the object shapes. In this paper, the proposed classification system based on SVD transform feature extraction method was compared with classifier based on moment invariants using nearest neighbour classifier. The experimental results showed the advantage of our proposed classification system.

  16. Multiclass Classification Based on the Analytical Center of Version Space

    Institute of Scientific and Technical Information of China (English)

    ZENGFanzi; QIUZhengding; YUEJianhai; LIXiangqian

    2005-01-01

    Analytical center machine, based on the analytical center of version space, outperforms support vector machine, especially when the version space is elongated or asymmetric. While analytical center machine for binary classification is well understood, little is known about corresponding multiclass classification.Moreover, considering that the current multiclass classification method: “one versus all” needs repeatedly constructing classifiers to separate a single class from all the others, which leads to daunting computation and low efficiency of classification, and that though multiclass support vector machine corresponds to a simple quadratic optimization, it is not very effective when the version spaceis asymmetric or elongated, Thus, the multiclass classification approach based on the analytical center of version space is proposed to address the above problems. Experiments on wine recognition and glass identification dataset demonstrate validity of the approach proposed.

  17. A NEW WASTE CLASSIFYING MODEL: HOW WASTE CLASSIFICATION CAN BECOME MORE OBJECTIVE?

    Directory of Open Access Journals (Sweden)

    Burcea Stefan Gabriel

    2015-07-01

    Full Text Available The waste management specialist must be able to identify and analyze waste generation sources and to propose proper solutions to prevent the waste generation and encurage the waste minimisation. In certain situations like implementing an integrated waste management sustem and configure the waste collection methods and capacities, practitioners can face the challenge to classify the generated waste. This will tend to be the more demanding as the literature does not provide a coherent system of criteria required for an objective waste classification process. The waste incineration will determine no doubt a different waste classification than waste composting or mechanical and biological treatment. In this case the main question is what are the proper classification criteria witch can be used to realise an objective waste classification? The article provide a short critical literature review of the existing waste classification criteria and suggests the conclusion that the literature can not provide unitary waste classification system which is unanimously accepted and assumed by ideologists and practitioners. There are various classification criteria and more interesting perspectives in the literature regarding the waste classification, but the most common criteria based on which specialists classify waste into several classes, categories and types are the generation source, physical and chemical features, aggregation state, origin or derivation, hazardous degree etc. The traditional classification criteria divided waste into various categories, subcategories and types; such an approach is a conjectural one because is inevitable that according to the context in which the waste classification is required the used criteria to differ significantly; hence the need to uniformizating the waste classification systems. For the first part of the article it has been used indirect observation research method by analyzing the literature and the various

  18. Pixel classification based color image segmentation using quaternion exponent moments.

    Science.gov (United States)

    Wang, Xiang-Yang; Wu, Zhi-Fang; Chen, Liang; Zheng, Hong-Liang; Yang, Hong-Ying

    2016-02-01

    Image segmentation remains an important, but hard-to-solve, problem since it appears to be application dependent with usually no a priori information available regarding the image structure. In recent years, many image segmentation algorithms have been developed, but they are often very complex and some undesired results occur frequently. In this paper, we propose a pixel classification based color image segmentation using quaternion exponent moments. Firstly, the pixel-level image feature is extracted based on quaternion exponent moments (QEMs), which can capture effectively the image pixel content by considering the correlation between different color channels. Then, the pixel-level image feature is used as input of twin support vector machines (TSVM) classifier, and the TSVM model is trained by selecting the training samples with Arimoto entropy thresholding. Finally, the color image is segmented with the trained TSVM model. The proposed scheme has the following advantages: (1) the effective QEMs is introduced to describe color image pixel content, which considers the correlation between different color channels, (2) the excellent TSVM classifier is utilized, which has lower computation time and higher classification accuracy. Experimental results show that our proposed method has very promising segmentation performance compared with the state-of-the-art segmentation approaches recently proposed in the literature. PMID:26618250

  19. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-08-01

    Full Text Available Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods.

  20. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation.

    Science.gov (United States)

    Sun, Rui; Zhang, Guanghai; Yan, Xiaoxing; Gao, Jun

    2016-01-01

    Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods. PMID:27537888

  1. A Chemistry-Based Classification for Peridotite Xenoliths

    Science.gov (United States)

    Block, K. A.; Ducea, M.; Raye, U.; Stern, R. J.; Anthony, E. Y.; Lehnert, K. A.

    2007-12-01

    The development of a petrological and geochemical database for mantle xenoliths is important for interpreting EarthScope geophysical results. Interpretation of compositional characteristics of xenoliths requires a sound basis for comparing geochemical results, even when no petrographic modes are available. Peridotite xenoliths are generally classified on the basis of mineralogy (Streckeisen, 1973) derived from point-counting methods. Modal estimates, particularly on heterogeneous samples, are conducted using various methodologies and are therefore subject to large statistical error. Also, many studies simply do not report the modes. Other classifications for peridotite xenoliths based on host matrix or tectonic setting (cratonic vs. non-cratonic) are poorly defined and provide little information on where samples from transitional settings fit within a classification scheme (e.g., xenoliths from circum-cratonic locations). We present here a classification for peridotite xenoliths based on bulk rock major element chemistry, which is one of the most common types of data reported in the literature. A chemical dataset of over 1150 peridotite xenoliths is compiled from two online geochemistry databases, the EarthChem Deep Lithosphere Dataset and from GEOROC (http://www.earthchem.org), and is downloaded with the rock names reported in the original publications. Ternary plots of combinations of the SiO2- CaO-Al2O3-MgO (SCAM) components display sharp boundaries that define the dunite, harzburgite, lherzolite, or wehrlite-pyroxenite fields and provide a graphical basis for classification. In addition, for the CaO-Al2O3-MgO (CAM) diagram, a boundary between harzburgite and lherzolite at approximately 19% CaO is defined by a plot of over 160 abyssal peridotite compositions calculated from observed modes using the methods of Asimow (1999) and Baker and Beckett (1999). We anticipate that our SCAM classification is a first step in the development of a uniform basis for

  2. Compensatory neurofuzzy model for discrete data classification in biomedical

    Science.gov (United States)

    Ceylan, Rahime

    2015-03-01

    Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.

  3. Dihedral-based segment identification and classification of biopolymers II: polynucleotides.

    Science.gov (United States)

    Nagy, Gabor; Oostenbrink, Chris

    2014-01-27

    In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers I: Proteins. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400541d), we introduce a new algorithm for structure classification of biopolymeric structures based on main-chain dihedral angles. The DISICL algorithm (short for DIhedral-based Segment Identification and CLassification) classifies segments of structures containing two central residues. Here, we introduce the DISICL library for polynucleotides, which is based on the dihedral angles ε, ζ, and χ for the two central residues of a three-nucleotide segment of a single strand. Seventeen distinct structural classes are defined for nucleotide structures, some of which--to our knowledge--were not described previously in other structure classification algorithms. In particular, DISICL also classifies noncanonical single-stranded structural elements. DISICL is applied to databases of DNA and RNA structures containing 80,000 and 180,000 segments, respectively. The classifications according to DISICL are compared to those of another popular classification scheme in terms of the amount of classified nucleotides, average occurrence and length of structural elements, and pairwise matches of the classifications. While the detailed classification of DISICL adds sensitivity to a structure analysis, it can be readily reduced to eight simplified classes providing a more general overview of the secondary structure in polynucleotides.

  4. Dihedral-Based Segment Identification and Classification of Biopolymers II: Polynucleotides

    Science.gov (United States)

    2013-01-01

    In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers I: Proteins. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400541d), we introduce a new algorithm for structure classification of biopolymeric structures based on main-chain dihedral angles. The DISICL algorithm (short for DIhedral-based Segment Identification and CLassification) classifies segments of structures containing two central residues. Here, we introduce the DISICL library for polynucleotides, which is based on the dihedral angles ε, ζ, and χ for the two central residues of a three-nucleotide segment of a single strand. Seventeen distinct structural classes are defined for nucleotide structures, some of which—to our knowledge—were not described previously in other structure classification algorithms. In particular, DISICL also classifies noncanonical single-stranded structural elements. DISICL is applied to databases of DNA and RNA structures containing 80,000 and 180,000 segments, respectively. The classifications according to DISICL are compared to those of another popular classification scheme in terms of the amount of classified nucleotides, average occurrence and length of structural elements, and pairwise matches of the classifications. While the detailed classification of DISICL adds sensitivity to a structure analysis, it can be readily reduced to eight simplified classes providing a more general overview of the secondary structure in polynucleotides. PMID:24364355

  5. A Fuzzy Logic Based Sentiment Classification

    Directory of Open Access Journals (Sweden)

    J.I.Sheeba

    2014-07-01

    Full Text Available Sentiment classification aims to detect information such as opinions, explicit , implicit feelings expressed in text. The most existing approaches are able to detect either explicit expressions or implicit expressions of sentiments in the text separately. In this proposed framework it will detect both Implicit and Explicit expressions available in the meeting transcripts. It will classify the Positive, Negative, Neutral words and also identify the topic of the particular meeting transcripts by using fuzzy logic. This paper aims to add some additional features for improving the classification method. The quality of the sentiment classification is improved using proposed fuzzy logic framework .In this fuzzy logic it includes the features like Fuzzy rules and Fuzzy C-means algorithm.The quality of the output is evaluated using the parameters such as precision, recall, f-measure. Here Fuzzy C-means Clustering technique measured in terms of Purity and Entropy. The data set was validated using 10-fold cross validation method and observed 95% confidence interval between the accuracy values .Finally, the proposed fuzzy logic method produced more than 85 % accurate results and error rate is very less compared to existing sentiment classification techniques.

  6. Classification

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2013-01-01

    In this article, Renee Clary and James Wandersee describe the beginnings of "Classification," which lies at the very heart of science and depends upon pattern recognition. Clary and Wandersee approach patterns by first telling the story of the "Linnaean classification system," introduced by Carl Linnacus (1707-1778), who is…

  7. Maximum-margin based representation learning from multiple atlases for Alzheimer's disease classification.

    Science.gov (United States)

    Min, Rui; Cheng, Jian; Price, True; Wu, Guorong; Shen, Dinggang

    2014-01-01

    In order to establish the correspondences between different brains for comparison, spatial normalization based morphometric measurements have been widely used in the analysis of Alzheimer's disease (AD). In the literature, different subjects are often compared in one atlas space, which may be insufficient in revealing complex brain changes. In this paper, instead of deploying one atlas for feature extraction and classification, we propose a maximum-margin based representation learning (MMRL) method to learn the optimal representation from multiple atlases. Unlike traditional methods that perform the representation learning separately from the classification, we propose to learn the new representation jointly with the classification model, which is more powerful in discriminating AD patients from normal controls (NC). We evaluated the proposed method on the ADNI database, and achieved 90.69% for AD/NC classification and 73.69% for p-MCI/s-MCI classification.

  8. Egocentric visual event classification with location-based priors

    OpenAIRE

    Sundaram, Sudeep; Mayol-Cuevas, Walterio

    2010-01-01

    We present a method for visual classification of actions and events captured from an egocentric point of view. The method tackles the challenge of a moving camera by creating deformable graph models for classification of actions. Action models are learned from low resolution, roughly stabilized difference images acquired using a single monocular camera. In parallel, raw images from the camera are used to estimate the user's location using a visual Simultaneous Localization and Mapping (SLAM) ...

  9. Models for warehouse management: classification and examples

    NARCIS (Netherlands)

    Berg, van den J.P.; Zijm, W.H.M.

    1999-01-01

    In this paper we discuss warehousing systems and present a classification of warehouse management problems. We start with a typology and a brief description of several types of warehousing systems. Next, we present a hierarchy of decision problems encountered in setting up warehousing systems, inclu

  10. Computer vision-based limestone rock-type classification using probabilistic neural network

    Institute of Scientific and Technical Information of China (English)

    Ashok Kumar Patel; Snehamoy Chatterjee

    2016-01-01

    Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper, a computer vision-based rock-type classification algorithm is proposed for fast and reliable identification without human intervention. A laboratory scale vision-based model was developed using probabilistic neural network (PNN) where color histogram features are used as input. The color image histogram-based features that include weighted mean, skewness and kurtosis features are extracted for all three color space red, green, and blue. A total nine features are used as input for the PNN classification model. The smoothing parameter for PNN model is selected judicially to develop an optimal or close to the optimum classification model. The developed PPN is validated using the test data set and results reveal that the proposed vision-based model can perform satisfactorily for classifying limestone rock-types. Overall the error of mis-classification is below 6%. When compared with other three classifica-tion algorithms, it is observed that the proposed method performs substantially better than all three classification algorithms.

  11. Power Disturbances Classification Using S-Transform Based GA-PNN

    Science.gov (United States)

    Manimala, K.; Selvi, K.

    2015-09-01

    The significance of detection and classification of power quality events that disturb the voltage and/or current waveforms in the electrical power distribution networks is well known. Consequently, in spite of a large number of research reports in this area, a research on the selection of proper parameter for specific classifiers was so far not explored. The parameter selection is very important for successful modelling of input-output relationship in a function approximation model. In this study, probabilistic neural network (PNN) has been used as a function approximation tool for power disturbance classification and genetic algorithm (GA) is utilised for optimisation of the smoothing parameter of the PNN. The important features extracted from raw power disturbance signal using S-Transform are given to the PNN for effective classification. The choice of smoothing parameter for PNN classifier will significantly impact the classification accuracy. Hence, GA based parameter optimization is done to ensure good classification accuracy by selecting suitable parameter of the PNN classifier. Testing results show that the proposed S-Transform based GA-PNN model has better classification ability than classifiers based on conventional grid search method for parameter selection. The noisy and practical signals are considered for the classification process to show the effectiveness of the proposed method in comparison with existing methods.

  12. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function.

    Directory of Open Access Journals (Sweden)

    Derek G Groenendyk

    Full Text Available Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth's surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization

  13. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function.

    Science.gov (United States)

    Groenendyk, Derek G; Ferré, Ty P A; Thorp, Kelly R; Rice, Amy K

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth's surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape

  14. Models of parallel computation :a survey and classification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yunquan; CHEN Guoliang; SUN Guangzhong; MIAO Qiankun

    2007-01-01

    In this paper,the state-of-the-art parallel computational model research is reviewed.We will introduce various models that were developed during the past decades.According to their targeting architecture features,especially memory organization,we classify these parallel computational models into three generations.These models and their characteristics are discussed based on three generations classification.We believe that with the ever increasing speed gap between the CPU and memory systems,incorporating non-uniform memory hierarchy into computational models will become unavoidable.With the emergence of multi-core CPUs,the parallelism hierarchy of current computing platforms becomes more and more complicated.Describing this complicated parallelism hierarchy in future computational models becomes more and more important.A semi-automatic toolkit that can extract model parameters and their values on real computers can reduce the model analysis complexity,thus allowing more complicated models with more parameters to be adopted.Hierarchical memory and hierarchical parallelism will be two very important features that should be considered in future model design and research.

  15. Rule Based Classification to Detect Malnutrition in Children

    Directory of Open Access Journals (Sweden)

    Xu Dezhi

    2011-01-01

    Full Text Available Data mining is an area which used in vast field of areas. Rule based classification is one of the sub areas in data mining. From this paper it will describe how rule based classification is used alone with Agent Technology to detect malnutrition in children. This proposed system is implemented as an egovernment system. Further it will try to research whether there is connection between number of rules which is used with the optimality of the final decision.

  16. A Classification-based Review Recommender

    Science.gov (United States)

    O'Mahony, Michael P.; Smyth, Barry

    Many online stores encourage their users to submit product/service reviews in order to guide future purchasing decisions. These reviews are often listed alongside product recommendations but, to date, limited attention has been paid as to how best to present these reviews to the end-user. In this paper, we describe a supervised classification approach that is designed to identify and recommend the most helpful product reviews. Using the TripAdvisor service as a case study, we compare the performance of several classification techniques using a range of features derived from hotel reviews. We then describe how these classifiers can be used as the basis for a practical recommender that automatically suggests the mosthelpful contrasting reviews to end-users. We present an empirical evaluation which shows that our approach achieves a statistically significant improvement over alternative review ranking schemes.

  17. A classification-based review recommender

    OpenAIRE

    O'Mahony, Michael P.; Smyth, Barry

    2010-01-01

    Many online stores encourage their users to submit product or service reviews in order to guide future purchasing decisions. These reviews are often listed alongside product recommendations but, to date, limited attention has been paid as to how best to present these reviews to the end-user. In this paper, we describe a supervised classification approach that is designed to identify and recommend the most helpful product reviews. Using the TripAdvisor service as a case study, we compare...

  18. Neighborhood Hypergraph Based Classification Algorithm for Incomplete Information System

    Directory of Open Access Journals (Sweden)

    Feng Hu

    2015-01-01

    Full Text Available The problem of classification in incomplete information system is a hot issue in intelligent information processing. Hypergraph is a new intelligent method for machine learning. However, it is hard to process the incomplete information system by the traditional hypergraph, which is due to two reasons: (1 the hyperedges are generated randomly in traditional hypergraph model; (2 the existing methods are unsuitable to deal with incomplete information system, for the sake of missing values in incomplete information system. In this paper, we propose a novel classification algorithm for incomplete information system based on hypergraph model and rough set theory. Firstly, we initialize the hypergraph. Second, we classify the training set by neighborhood hypergraph. Third, under the guidance of rough set, we replace the poor hyperedges. After that, we can obtain a good classifier. The proposed approach is tested on 15 data sets from UCI machine learning repository. Furthermore, it is compared with some existing methods, such as C4.5, SVM, NavieBayes, and KNN. The experimental results show that the proposed algorithm has better performance via Precision, Recall, AUC, and F-measure.

  19. Radar Image Texture Classification based on Gabor Filter Bank

    Directory of Open Access Journals (Sweden)

    Mbainaibeye Jérôme

    2014-01-01

    Full Text Available The aim of this paper is to design and develop a filter bank for the detection and classification of radar image texture with 4.6m resolution obtained by airborne synthetic Aperture Radar. The textures of this kind of images are more correlated and contain forms with random disposition. The design and the developing of the filter bank is based on Gabor filter. We have elaborated a set of filters applied to each set of feature texture allowing its identification and enhancement in comparison with other textures. The filter bank which we have elaborated is represented by a combination of different texture filters. After processing, the selected filter bank is the filter bank which allows the identification of all the textures of an image with a significant identification rate. This developed filter is applied to radar image and the obtained results are compared with those obtained by using filter banks issue from the generalized Gaussian models (GGM. We have shown that Gabor filter developed in this work gives the classification rate greater than the results obtained by Generalized Gaussian model. The main contribution of this work is the generation of the filter banks able to give an optimal filter bank for a given texture and in particular for radar image textures

  20. PIXEL VS OBJECT-BASED IMAGE CLASSIFICATION TECHNIQUES FOR LIDAR INTENSITY DATA

    Directory of Open Access Journals (Sweden)

    N. El-Ashmawy

    2012-09-01

    Full Text Available Light Detection and Ranging (LiDAR systems are remote sensing techniques used mainly for terrain surface modelling. LiDAR sensors record the distance between the sensor and the targets (range data with a capability to record the strength of the backscatter energy reflected from the targets (intensity data. The LiDAR sensors use the near-infrared spectrum range which provides high separability in the reflected energy by the target. This phenomenon is investigated to use the LiDAR intensity data for land-cover classification. The goal of this paper is to investigate and evaluates the use of different image classification techniques applied on LiDAR intensity data for land cover classification. The two techniques proposed are: a Maximum likelihood classifier used as pixel- based classification technique; and b Image segmentation used as object-based classification technique. A study area covers an urban district in Burnaby, British Colombia, Canada, is selected to test the different classification techniques for extracting four feature classes: buildings, roads and parking areas, trees, and low vegetation (grass areas, from the LiDAR intensity data. Generally, the results show that LiDAR intensity data can be used for land cover classification. An overall accuracy of 63.5% can be achieved using the pixel-based classification technique. The overall accuracy of the results is improved to 68% using the object- based classification technique. Further research is underway to investigate different criteria for segmentation process and to refine the design of the object-based classification algorithm.

  1. Assessment of optimized Markov models in protein fold classification.

    Science.gov (United States)

    Lampros, Christos; Simos, Thomas; Exarchos, Themis P; Exarchos, Konstantinos P; Papaloukas, Costas; Fotiadis, Dimitrios I

    2014-08-01

    Protein fold classification is a challenging task strongly associated with the determination of proteins' structure. In this work, we tested an optimization strategy on a Markov chain and a recently introduced Hidden Markov Model (HMM) with reduced state-space topology. The proteins with unknown structure were scored against both these models. Then the derived scores were optimized following a local optimization method. The Protein Data Bank (PDB) and the annotation of the Structural Classification of Proteins (SCOP) database were used for the evaluation of the proposed methodology. The results demonstrated that the fold classification accuracy of the optimized HMM was substantially higher compared to that of the Markov chain or the reduced state-space HMM approaches. The proposed methodology achieved an accuracy of 41.4% on fold classification, while Sequence Alignment and Modeling (SAM), which was used for comparison, reached an accuracy of 38%. PMID:25152041

  2. Intelligent Hybrid Cluster Based Classification Algorithm for Social Network Analysis

    Directory of Open Access Journals (Sweden)

    S. Muthurajkumar

    2014-05-01

    Full Text Available In this paper, we propose an hybrid clustering based classification algorithm based on mean approach to effectively classify to mine the ordered sequences (paths from weblog data in order to perform social network analysis. In the system proposed in this work for social pattern analysis, the sequences of human activities are typically analyzed by switching behaviors, which are likely to produce overlapping clusters. In this proposed system, a robust Modified Boosting algorithm is proposed to hybrid clustering based classification for clustering the data. This work is useful to provide connection between the aggregated features from the network data and traditional indices used in social network analysis. Experimental results show that the proposed algorithm improves the decision results from data clustering when combined with the proposed classification algorithm and hence it is proved that of provides better classification accuracy when tested with Weblog dataset. In addition, this algorithm improves the predictive performance especially for multiclass datasets which can increases the accuracy.

  3. Image Classification of Color Street Based on Contextual MRF Model%基于上下文MRF模型的彩色街景图像分类

    Institute of Scientific and Technical Information of China (English)

    庹谦; 何姣姣; 陈剑鸣

    2015-01-01

    Using the contextual Markov Random Field model can transform the image classification problem into the minimization problem of the energy function. This method constructs the prior observation field model between MRF and the color image of the street and use the iterative conditional mode algorithm to get the minimum energy of the posterior label field. The comparison of this algorithm with FCM shows that it is more effective and efficient than the FCM algorithm.%利用上下文马尔可夫随机场(Markov Random Field ,MRF)模型,将图像分类问题转化为能量函数最小化(最优化)问题。该方法构建了MRF关于彩色街景图像的先验观测场模型,并利用迭代条件模式(Iterated Conditional Model ,ICM)算法获得后验标记场能量最小。通过和模糊C均值(Fuzzy C-means,FCM)算法实验对比表明,该方法不仅能有效分类,而且分类精度要远高于FCM。

  4. Highly comparative, feature-based time-series classification

    CERN Document Server

    Fulcher, Ben D

    2014-01-01

    A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series. These features are derived from across the scientific time-series analysis literature, and include summaries of time series in terms of their correlation structure, distribution, entropy, stationarity, scaling properties, and fits to a range of time-series models. After computing thousands of features for each time series in a training set, those that are most informative of the class structure are selected using greedy forward feature selection with a linear classifier. The resulting feature-based classifiers automatically learn the differences between classes using a reduced number of time-series properties, and circumvent the need to calculate distances between time series. Representing time series in this way results in orders of magnitude of dimensionality reduction, allowing the method to perform well on ve...

  5. Vertebrae classification models - Validating classification models that use morphometrics to identify ancient salmonid (Oncorhynchus spp.) vertebrae to species

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Using morphometric characteristics of modern salmonid (Oncorhynchus spp.) vertebrae, we have developed classification models to identify salmonid vertebrae to the...

  6. Hybrid Support Vector Machines-Based Multi-fault Classification

    Institute of Scientific and Technical Information of China (English)

    GAO Guo-hua; ZHANG Yong-zhong; ZHU Yu; DUAN Guang-huang

    2007-01-01

    Support Vector Machines (SVM) is a new general machine-learning tool based on structural risk minimization principle. This characteristic is very signific ant for the fault diagnostics when the number of fault samples is limited. Considering that SVM theory is originally designed for a two-class classification, a hybrid SVM scheme is proposed for multi-fault classification of rotating machinery in our paper. Two SVM strategies, 1-v-1 (one versus one) and 1-v-r (one versus rest), are respectively adopted at different classification levels. At the parallel classification level, using 1-v-1 strategy, the fault features extracted by various signal analysis methods are transferred into the multiple parallel SVM and the local classification results are obtained. At the serial classification level, these local results values are fused by one serial SVM based on 1-v-r strategy. The hybrid SVM scheme introduced in our paper not only generalizes the performance of signal binary SVMs but improves the precision and reliability of the fault classification results. The actually testing results show the availability suitability of this new method.

  7. A Soft Intelligent Risk Evaluation Model for Credit Scoring Classification

    Directory of Open Access Journals (Sweden)

    Mehdi Khashei

    2015-09-01

    Full Text Available Risk management is one of the most important branches of business and finance. Classification models are the most popular and widely used analytical group of data mining approaches that can greatly help financial decision makers and managers to tackle credit risk problems. However, the literature clearly indicates that, despite proposing numerous classification models, credit scoring is often a difficult task. On the other hand, there is no universal credit-scoring model in the literature that can be accurately and explanatorily used in all circumstances. Therefore, the research for improving the efficiency of credit-scoring models has never stopped. In this paper, a hybrid soft intelligent classification model is proposed for credit-scoring problems. In the proposed model, the unique advantages of the soft computing techniques are used in order to modify the performance of the traditional artificial neural networks in credit scoring. Empirical results of Australian credit card data classifications indicate that the proposed hybrid model outperforms its components, and also other classification models presented for credit scoring. Therefore, the proposed model can be considered as an appropriate alternative tool for binary decision making in business and finance, especially in high uncertainty conditions.

  8. Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique

    Science.gov (United States)

    Djemal, Ridha; Bazyed, Ayad G.; Belwafi, Kais; Gannouni, Sofien; Kaaniche, Walid

    2016-01-01

    Over the last few decades, brain signals have been significantly exploited for brain-computer interface (BCI) applications. In this paper, we study the extraction of features using event-related desynchronization/synchronization techniques to improve the classification accuracy for three-class motor imagery (MI) BCI. The classification approach is based on combining the features of the phase and amplitude of the brain signals using fast Fourier transform (FFT) and autoregressive (AR) modeling of the reconstructed phase space as well as the modification of the BCI parameters (trial length, trial frequency band, classification method). We report interesting results compared with those present in the literature by utilizing sequential forward floating selection (SFFS) and a multi-class linear discriminant analysis (LDA), our findings showed superior classification results, a classification accuracy of 86.06% and 93% for two BCI competition datasets, with respect to results from previous studies. PMID:27563927

  9. Words semantic orientation classification based on HowNet

    Institute of Scientific and Technical Information of China (English)

    LI Dun; MA Yong-tao; GUO Jian-li

    2009-01-01

    Based on the text orientation classification, a new measurement approach to semantic orientation of words was proposed. According to the integrated and detailed definition of words in HowNet, seed sets including the words with intense orientations were built up. The orientation similarity between the seed words and the given word was then calculated using the sentiment weight priority to recognize the semantic orientation of common words. Finally, the words' semantic orientation and the context were combined to recognize the given words' orientation. The experiments show that the measurement approach achieves better results for common words' orientation classification and contributes particularly to the text orientation classification of large granularities.

  10. Radar Target Classification using Recursive Knowledge-Based Methods

    DEFF Research Database (Denmark)

    Jochumsen, Lars Wurtz

    The topic of this thesis is target classification of radar tracks from a 2D mechanically scanning coastal surveillance radar. The measurements provided by the radar are position data and therefore the classification is mainly based on kinematic data, which is deduced from the position. The target...... been terminated. Therefore, an update of the classification results must be made for each measurement of the target. The data for this work are collected throughout the PhD and are both collected from radars and other sensors such as GPS....

  11. Cancer classification based on gene expression using neural networks.

    Science.gov (United States)

    Hu, H P; Niu, Z J; Bai, Y P; Tan, X H

    2015-12-21

    Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.

  12. Analysis of Kernel Approach in Fuzzy-Based Image Classifications

    Directory of Open Access Journals (Sweden)

    Mragank Singhal

    2013-03-01

    Full Text Available This paper presents a framework of kernel approach in the field of fuzzy based image classification in remote sensing. The goal of image classification is to separate images according to their visual content into two or more disjoint classes. Fuzzy logic is relatively young theory. Major advantage of this theory is that it allows the natural description, in linguistic terms, of problems that should be solved rather than in terms of relationships between precise numerical values. This paper describes how remote sensing data with uncertainty are handled with fuzzy based classification using Kernel approach for land use/land cover maps generation. The introduction to fuzzification using Kernel approach provides the basis for the development of more robust approaches to the remote sensing classification problem. The kernel explicitly defines a similarity measure between two samples and implicitly represents the mapping of the input space to the feature space.

  13. A Syntactic Classification based Web Page Ranking Algorithm

    CERN Document Server

    Mukhopadhyay, Debajyoti; Kim, Young-Chon

    2011-01-01

    The existing search engines sometimes give unsatisfactory search result for lack of any categorization of search result. If there is some means to know the preference of user about the search result and rank pages according to that preference, the result will be more useful and accurate to the user. In the present paper a web page ranking algorithm is being proposed based on syntactic classification of web pages. Syntactic Classification does not bother about the meaning of the content of a web page. The proposed approach mainly consists of three steps: select some properties of web pages based on user's demand, measure them, and give different weightage to each property during ranking for different types of pages. The existence of syntactic classification is supported by running fuzzy c-means algorithm and neural network classification on a set of web pages. The change in ranking for difference in type of pages but for same query string is also being demonstrated.

  14. Feature Extraction based Face Recognition, Gender and Age Classification

    Directory of Open Access Journals (Sweden)

    Venugopal K R

    2010-01-01

    Full Text Available The face recognition system with large sets of training sets for personal identification normally attains good accuracy. In this paper, we proposed Feature Extraction based Face Recognition, Gender and Age Classification (FEBFRGAC algorithm with only small training sets and it yields good results even with one image per person. This process involves three stages: Pre-processing, Feature Extraction and Classification. The geometric features of facial images like eyes, nose, mouth etc. are located by using Canny edge operator and face recognition is performed. Based on the texture and shape information gender and age classification is done using Posteriori Class Probability and Artificial Neural Network respectively. It is observed that the face recognition is 100%, the gender and age classification is around 98% and 94% respectively.

  15. A NOVEL RULE-BASED FINGERPRINT CLASSIFICATION APPROACH

    Directory of Open Access Journals (Sweden)

    Faezeh Mirzaei

    2014-03-01

    Full Text Available Fingerprint classification is an important phase in increasing the speed of a fingerprint verification system and narrow down the search of fingerprint database. Fingerprint verification is still a challenging problem due to the difficulty of poor quality images and the need for faster response. The classification gets even harder when just one core has been detected in the input image. This paper has proposed a new classification approach which includes the images with one core. The algorithm extracts singular points (core and deltas from the input image and performs classification based on the number, locations and surrounded area of the detected singular points. The classifier is rule-based, where the rules are generated independent of a given data set. Moreover, shortcomings of a related paper has been reported in detail. The experimental results and comparisons on FVC2002 database have shown the effectiveness and efficiency of the proposed method.

  16. Feature Extraction based Face Recognition, Gender and Age Classification

    OpenAIRE

    Venugopal K R2; L M Patnaik; Ramesha K; K B Raja

    2010-01-01

    The face recognition system with large sets of training sets for personal identification normally attains good accuracy. In this paper, we proposed Feature Extraction based Face Recognition, Gender and Age Classification (FEBFRGAC) algorithm with only small training sets and it yields good results even with one image per person. This process involves three stages: Pre-processing, Feature Extraction and Classification. The geometric features of facial images like eyes, nose, mouth etc. are loc...

  17. A wavelet transform based feature extraction and classification of cardiac disorder.

    Science.gov (United States)

    Sumathi, S; Beaulah, H Lilly; Vanithamani, R

    2014-09-01

    This paper approaches an intellectual diagnosis system using hybrid approach of Adaptive Neuro-Fuzzy Inference System (ANFIS) model for classification of Electrocardiogram (ECG) signals. This method is based on using Symlet Wavelet Transform for analyzing the ECG signals and extracting the parameters related to dangerous cardiac arrhythmias. In these particular parameters were used as input of ANFIS classifier, five most important types of ECG signals they are Normal Sinus Rhythm (NSR), Atrial Fibrillation (AF), Pre-Ventricular Contraction (PVC), Ventricular Fibrillation (VF), and Ventricular Flutter (VFLU) Myocardial Ischemia. The inclusion of ANFIS in the complex investigating algorithms yields very interesting recognition and classification capabilities across a broad spectrum of biomedical engineering. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies. The results give importance to that the proposed ANFIS model illustrates potential advantage in classifying the ECG signals. The classification accuracy of 98.24 % is achieved. PMID:25023652

  18. A Comparative Assessment of the Influences of Human Impacts on Soil Cd Concentrations Based on Stepwise Linear Regression, Classification and Regression Tree, and Random Forest Models.

    Science.gov (United States)

    Qiu, Lefeng; Wang, Kai; Long, Wenli; Wang, Ke; Hu, Wei; Amable, Gabriel S

    2016-01-01

    Soil cadmium (Cd) contamination has attracted a great deal of attention because of its detrimental effects on animals and humans. This study aimed to develop and compare the performances of stepwise linear regression (SLR), classification and regression tree (CART) and random forest (RF) models in the prediction and mapping of the spatial distribution of soil Cd and to identify likely sources of Cd accumulation in Fuyang County, eastern China. Soil Cd data from 276 topsoil (0-20 cm) samples were collected and randomly divided into calibration (222 samples) and validation datasets (54 samples). Auxiliary data, including detailed land use information, soil organic matter, soil pH, and topographic data, were incorporated into the models to simulate the soil Cd concentrations and further identify the main factors influencing soil Cd variation. The predictive models for soil Cd concentration exhibited acceptable overall accuracies (72.22% for SLR, 70.37% for CART, and 75.93% for RF). The SLR model exhibited the largest predicted deviation, with a mean error (ME) of 0.074 mg/kg, a mean absolute error (MAE) of 0.160 mg/kg, and a root mean squared error (RMSE) of 0.274 mg/kg, and the RF model produced the results closest to the observed values, with an ME of 0.002 mg/kg, an MAE of 0.132 mg/kg, and an RMSE of 0.198 mg/kg. The RF model also exhibited the greatest R2 value (0.772). The CART model predictions closely followed, with ME, MAE, RMSE, and R2 values of 0.013 mg/kg, 0.154 mg/kg, 0.230 mg/kg and 0.644, respectively. The three prediction maps generally exhibited similar and realistic spatial patterns of soil Cd contamination. The heavily Cd-affected areas were primarily located in the alluvial valley plain of the Fuchun River and its tributaries because of the dramatic industrialization and urbanization processes that have occurred there. The most important variable for explaining high levels of soil Cd accumulation was the presence of metal smelting industries. The

  19. Co-occurrence Models in Music Genre Classification

    DEFF Research Database (Denmark)

    Ahrendt, Peter; Goutte, Cyril; Larsen, Jan

    2005-01-01

    genre data set with a variety of modern music. The basis was a so-called AR feature representation of the music. Besides the benefit of having proper probabilistic models of the whole song, the lowest classification test errors were found using one of the proposed models.......Music genre classification has been investigated using many different methods, but most of them build on probabilistic models of feature vectors x\\_r which only represent the short time segment with index r of the song. Here, three different co-occurrence models are proposed which instead consider...

  20. Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system

    OpenAIRE

    Sanz Delgado, José Antonio; Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; Brugos Larumbe, Antonio; Pagola Barrio, Miguel; Bustince Sola, Humberto

    2013-01-01

    Objective: To develop a classifier that tackles the problem of determining the risk of a patient of suffering from a cardiovascular disease within the next ten years. The system has to provide both a diagnosis and an interpretable model explaining the decision. In this way, doctors are able to analyse the usefulness of the information given by the system. Methods: Linguistic fuzzy rule-based classification systems are used, since they provide a good classification rate and a highly interpreta...

  1. A Multi-Lead ECG Classification Based on Random Projection Features

    OpenAIRE

    Bogdanova Vandergheynst, Iva; Vallejos, Rincon; Javier, Francisco; Atienza Alonso, David

    2012-01-01

    This paper presents a novel method for classification of multilead electrocardiogram (ECG) signals. The feature extraction is based on the random projection (RP) concept for dimensionality reduction. Furthermore, the classification is performed by a neuro-fuzzy classifier. Such a model can be easily implemented on portable systems for practical applications in both health monitoring and diagnostic purposes. Moreover, the RP implementation on portable systems is very challenging featuring both...

  2. A Multi-Lead Ecg Classification Based On Random Projection Features

    OpenAIRE

    Bogdanova, Iva; Rincon, Francisco; Atienza, David

    2012-01-01

    This paper presents a novel method for classification of multi-lead electrocardiogram (ECG) signals. The feature extraction is based on the random projection (RP) concept for dimensionality reduction. Furthermore, the classification is performed by a neuro-fuzzy classifier. Such a model can be easily implemented on portable systems for practical applications in both health monitoring and diagnostic purposes. Moreover, the RP implementation on portable systems is very challenging featuring bot...

  3. Land Cover Classification from Full-Waveform LIDAR Data Based on Support Vector Machines

    Science.gov (United States)

    Zhou, M.; Li, C. R.; Ma, L.; Guan, H. C.

    2016-06-01

    In this study, a land cover classification method based on multi-class Support Vector Machines (SVM) is presented to predict the types of land cover in Miyun area. The obtained backscattered full-waveforms were processed following a workflow of waveform pre-processing, waveform decomposition and feature extraction. The extracted features, which consist of distance, intensity, Full Width at Half Maximum (FWHM) and back scattering cross-section, were corrected and used as attributes for training data to generate the SVM prediction model. The SVM prediction model was applied to predict the types of land cover in Miyun area as ground, trees, buildings and farmland. The classification results of these four types of land covers were obtained based on the ground truth information according to the CCD image data of Miyun area. It showed that the proposed classification algorithm achieved an overall classification accuracy of 90.63%. In order to better explain the SVM classification results, the classification results of SVM method were compared with that of Artificial Neural Networks (ANNs) method and it showed that SVM method could achieve better classification results.

  4. LAND COVER CLASSIFICATION FROM FULL-WAVEFORM LIDAR DATA BASED ON SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    M. Zhou

    2016-06-01

    Full Text Available In this study, a land cover classification method based on multi-class Support Vector Machines (SVM is presented to predict the types of land cover in Miyun area. The obtained backscattered full-waveforms were processed following a workflow of waveform pre-processing, waveform decomposition and feature extraction. The extracted features, which consist of distance, intensity, Full Width at Half Maximum (FWHM and back scattering cross-section, were corrected and used as attributes for training data to generate the SVM prediction model. The SVM prediction model was applied to predict the types of land cover in Miyun area as ground, trees, buildings and farmland. The classification results of these four types of land covers were obtained based on the ground truth information according to the CCD image data of Miyun area. It showed that the proposed classification algorithm achieved an overall classification accuracy of 90.63%. In order to better explain the SVM classification results, the classification results of SVM method were compared with that of Artificial Neural Networks (ANNs method and it showed that SVM method could achieve better classification results.

  5. Analysis of data mining based customer classification model for electric power industry%基于数据挖掘的电力行业客户细分模型分析

    Institute of Scientific and Technical Information of China (English)

    宋才华; 王永才; 蓝源娟; 郑锦卿

    2014-01-01

    社会经济的不断发展推动了电力行业的快速发展。随着客户细分理论与方法的发展,其已广泛应用于我国电力、电信、银行及零售业等行业的营销实践中。由于客户行为能有效、直接地反映出消费者的需求,在经济市场中的应用更为广泛,是市场细分中的最佳起点。主要以客户细分的概述为出发点,对电力客户细分现状、基于数据挖掘的客户细分及模型构建进行探讨。%The continuous development of social economy promote the rapid development of electric power industry. The theory and method of customer classification has been widely used in Chinese markets of electric power,telecommunications, bank and retail industries. Proceeding from the overview of customer classification,the status quo and model construction of cus-tomer classification based on data mining are discussed.

  6. A Spectral Signature Shape-Based Algorithm for Landsat Image Classification

    Directory of Open Access Journals (Sweden)

    Yuanyuan Chen

    2016-08-01

    Full Text Available Land-cover datasets are crucial for earth system modeling and human-nature interaction research at local, regional and global scales. They can be obtained from remotely sensed data using image classification methods. However, in processes of image classification, spectral values have received considerable attention for most classification methods, while the spectral curve shape has seldom been used because it is difficult to be quantified. This study presents a classification method based on the observation that the spectral curve is composed of segments and certain extreme values. The presented classification method quantifies the spectral curve shape and takes full use of the spectral shape differences among land covers to classify remotely sensed images. Using this method, classification maps from TM (Thematic mapper data were obtained with an overall accuracy of 0.834 and 0.854 for two respective test areas. The approach presented in this paper, which differs from previous image classification methods that were mostly concerned with spectral “value” similarity characteristics, emphasizes the "shape" similarity characteristics of the spectral curve. Moreover, this study will be helpful for classification research on hyperspectral and multi-temporal images.

  7. Dihedral-based segment identification and classification of biopolymers I: proteins.

    Science.gov (United States)

    Nagy, Gabor; Oostenbrink, Chris

    2014-01-27

    A new structure classification scheme for biopolymers is introduced, which is solely based on main-chain dihedral angles. It is shown that by dividing a biopolymer into segments containing two central residues, a local classification can be performed. The method is referred to as DISICL, short for Dihedral-based Segment Identification and Classification. Compared to other popular secondary structure classification programs, DISICL is more detailed as it offers 18 distinct structural classes, which may be simplified into a classification in terms of seven more general classes. It was designed with an eye to analyzing subtle structural changes as observed in molecular dynamics simulations of biomolecular systems. Here, the DISICL algorithm is used to classify two databases of protein structures, jointly containing more than 10 million segments. The data is compared to two alternative approaches in terms of the amount of classified residues, average occurrence and length of structural elements, and pair wise matches of the classifications by the different programs. In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers II: Polynucleotides. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400542n), the analysis of polynucleotides is described and applied. Overall, DISICL represents a potentially useful tool to analyze biopolymer structures at a high level of detail.

  8. Dihedral-Based Segment Identification and Classification of Biopolymers I: Proteins

    Science.gov (United States)

    2013-01-01

    A new structure classification scheme for biopolymers is introduced, which is solely based on main-chain dihedral angles. It is shown that by dividing a biopolymer into segments containing two central residues, a local classification can be performed. The method is referred to as DISICL, short for Dihedral-based Segment Identification and Classification. Compared to other popular secondary structure classification programs, DISICL is more detailed as it offers 18 distinct structural classes, which may be simplified into a classification in terms of seven more general classes. It was designed with an eye to analyzing subtle structural changes as observed in molecular dynamics simulations of biomolecular systems. Here, the DISICL algorithm is used to classify two databases of protein structures, jointly containing more than 10 million segments. The data is compared to two alternative approaches in terms of the amount of classified residues, average occurrence and length of structural elements, and pair wise matches of the classifications by the different programs. In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers II: Polynucleotides. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400542n), the analysis of polynucleotides is described and applied. Overall, DISICL represents a potentially useful tool to analyze biopolymer structures at a high level of detail. PMID:24364820

  9. Ensemble polarimetric SAR image classification based on contextual sparse representation

    Science.gov (United States)

    Zhang, Lamei; Wang, Xiao; Zou, Bin; Qiao, Zhijun

    2016-05-01

    Polarimetric SAR image interpretation has become one of the most interesting topics, in which the construction of the reasonable and effective technique of image classification is of key importance. Sparse representation represents the data using the most succinct sparse atoms of the over-complete dictionary and the advantages of sparse representation also have been confirmed in the field of PolSAR classification. However, it is not perfect, like the ordinary classifier, at different aspects. So ensemble learning is introduced to improve the issue, which makes a plurality of different learners training and obtained the integrated results by combining the individual learner to get more accurate and ideal learning results. Therefore, this paper presents a polarimetric SAR image classification method based on the ensemble learning of sparse representation to achieve the optimal classification.

  10. Classification approach based on association rules mining for unbalanced data

    CERN Document Server

    Ndour, Cheikh

    2012-01-01

    This paper deals with the supervised classification when the response variable is binary and its class distribution is unbalanced. In such situation, it is not possible to build a powerful classifier by using standard methods such as logistic regression, classification tree, discriminant analysis, etc. To overcome this short-coming of these methods that provide classifiers with low sensibility, we tackled the classification problem here through an approach based on the association rules learning because this approach has the advantage of allowing the identification of the patterns that are well correlated with the target class. Association rules learning is a well known method in the area of data-mining. It is used when dealing with large database for unsupervised discovery of local patterns that expresses hidden relationships between variables. In considering association rules from a supervised learning point of view, a relevant set of weak classifiers is obtained from which one derives a classification rule...

  11. Pathological Bases for a Robust Application of Cancer Molecular Classification

    Directory of Open Access Journals (Sweden)

    Salvador J. Diaz-Cano

    2015-04-01

    Full Text Available Any robust classification system depends on its purpose and must refer to accepted standards, its strength relying on predictive values and a careful consideration of known factors that can affect its reliability. In this context, a molecular classification of human cancer must refer to the current gold standard (histological classification and try to improve it with key prognosticators for metastatic potential, staging and grading. Although organ-specific examples have been published based on proteomics, transcriptomics and genomics evaluations, the most popular approach uses gene expression analysis as a direct correlate of cellular differentiation, which represents the key feature of the histological classification. RNA is a labile molecule that varies significantly according with the preservation protocol, its transcription reflect the adaptation of the tumor cells to the microenvironment, it can be passed through mechanisms of intercellular transference of genetic information (exosomes, and it is exposed to epigenetic modifications. More robust classifications should be based on stable molecules, at the genetic level represented by DNA to improve reliability, and its analysis must deal with the concept of intratumoral heterogeneity, which is at the origin of tumor progression and is the byproduct of the selection process during the clonal expansion and progression of neoplasms. The simultaneous analysis of multiple DNA targets and next generation sequencing offer the best practical approach for an analytical genomic classification of tumors.

  12. Construction and analysis of tree models for chromosomal classification of diffuse large B-cell lymphomas

    Institute of Scientific and Technical Information of China (English)

    Hui-Yong Jiang; Zhong-Xi Huang; Xue-Feng Zhang; Richard Desper; Tong Zhao

    2007-01-01

    AIM: To construct tree models for classification of diffuse large B-cell lymphomas (DLBCL) by chromosome copy numbers, to compare them with cDNA microarray classification, and to explore models of multi-gene, multi-step and multi-pathway processes of DLBCL tumorigenesis.METHODS: Maximum-weight branching and distance based models were constructed based on the comparative genomic hybridization (CGH) data of 123 DLBCL samples using the established methods and software of Desper et al. A maximum likelihood tree model was also used to analyze the data. By comparing with the results reported in literature, values of tree models in the classification of DLBCL were elucidated.RESULTS: Both the branching and the distance-based trees classified DLBCL into three groups. We combined the classification methods of the two models and classified DLBCL into three categories according to their characteristics. The first group was marked by +Xq, +Xp, -17p and +13q; the second group by +3q, +18q and +18p; and the third group was marked by -6q and +6p. This chromosomal classification was consistent with cDNA classification. It indicated that -6q and +3q were two main events in the tumorigenesis of lymphoma.CONCLUSION: Tree models of lymphoma established from CGH data can be used in the classification of DLBCL. These models can suggest multi-gene, multi-step and multi-pathway processes of tumorigenesis.Two pathways, -6q preceding +6q and +3q preceding +18q, may be important in understanding tumorigenesis of DLBCL. The pathway, -6q preceding +6q, may have a close relationship with the tumorigenesis of non-GCB DLBCL.

  13. Classification of types of stuttering symptoms based on brain activity.

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    Full Text Available Among the non-fluencies seen in speech, some are more typical (MT of stuttering speakers, whereas others are less typical (LT and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT whole-word repetitions (WWR should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type.

  14. Twitter classification model: the ABC of two million fitness tweets.

    Science.gov (United States)

    Vickey, Theodore A; Ginis, Kathleen Martin; Dabrowski, Maciej

    2013-09-01

    The purpose of this project was to design and test data collection and management tools that can be used to study the use of mobile fitness applications and social networking within the context of physical activity. This project was conducted over a 6-month period and involved collecting publically shared Twitter data from five mobile fitness apps (Nike+, RunKeeper, MyFitnessPal, Endomondo, and dailymile). During that time, over 2.8 million tweets were collected, processed, and categorized using an online tweet collection application and a customized JavaScript. Using the grounded theory, a classification model was developed to categorize and understand the types of information being shared by application users. Our data show that by tracking mobile fitness app hashtags, a wealth of information can be gathered to include but not limited to daily use patterns, exercise frequency, location-based workouts, and overall workout sentiment. PMID:24073182

  15. ELABORATION OF A VECTOR BASED SEMANTIC CLASSIFICATION OVER THE WORDS AND NOTIONS OF THE NATURAL LANGUAGE

    OpenAIRE

    Safonov, K.; Lichargin, D.

    2009-01-01

    The problem of vector-based semantic classification over the words and notions of the natural language is discussed. A set of generative grammar rules is offered for generating the semantic classification vector. Examples of the classification application and a theorem of optional formal classification incompleteness are presented. The principles of assigning the meaningful phrases functions over the classification word groups are analyzed.

  16. SEMIPARAMETRIC VERSUS PARAMETRIC CLASSIFICATION MODELS - AN APPLICATION TO DIRECT MARKETING

    NARCIS (Netherlands)

    BULT, [No Value

    1993-01-01

    In this paper we are concerned with estimation of a classification model using semiparametric and parametric methods. Benefits and limitations of semiparametric models in general, and of Manski's maximum score method in particular, are discussed. The maximum score method yields consistent estimates

  17. Super pixel density based clustering automatic image classification method

    Science.gov (United States)

    Xu, Mingxing; Zhang, Chuan; Zhang, Tianxu

    2015-12-01

    The image classification is an important means of image segmentation and data mining, how to achieve rapid automated image classification has been the focus of research. In this paper, based on the super pixel density of cluster centers algorithm for automatic image classification and identify outlier. The use of the image pixel location coordinates and gray value computing density and distance, to achieve automatic image classification and outlier extraction. Due to the increased pixel dramatically increase the computational complexity, consider the method of ultra-pixel image preprocessing, divided into a small number of super-pixel sub-blocks after the density and distance calculations, while the design of a normalized density and distance discrimination law, to achieve automatic classification and clustering center selection, whereby the image automatically classify and identify outlier. After a lot of experiments, our method does not require human intervention, can automatically categorize images computing speed than the density clustering algorithm, the image can be effectively automated classification and outlier extraction.

  18. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    Science.gov (United States)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  19. Underwater Signal Modeling for Subsurface Classification Using Computational Intelligence.

    Science.gov (United States)

    Setayeshi, Saeed

    In the thesis a method for underwater layered media (UWLM) modeling is proposed, and a simple nonlinear structure for implementation of this model based on the behaviour of its characteristics and the propagation of the acoustic signal in the media accounting for attenuation effects is designed. The model that responds to the acoustic input is employed to test the artificial intelligence classifiers ability. Neural network models, the basic principles of the back-propagation algorithm, and the Hopfield model of associative memories are reviewed, and they are employed to use min-max amplitude ranges of a reflected signal of UWLM based on attenuation effects, to define the classes of the synthetic data, detect its peak features and estimate parameters of the media. It has been found that there is a correlation between the number of layers in the media and the optimum number of nodes in the hidden layer of the neural networks. The integration of the result of the neural networks that classify and detect underwater layered media acoustic signals based on attenuation effects to prove the correspondence between the peak points and decay values has introduced a powerful tool for UWLM identification. The methods appear to have applications in replacing original system, for parameter estimation and output prediction in system identification by the proposed networks. The results of computerized simulation of the UWLM modeling in conjunction with the proposed neural networks training process are given. Fuzzy sets is an idea that allows representing and manipulating inexact concepts, fuzzy min-max pattern classification method, and the learning and recalling algorithms for fuzzy neural networks implementation is explained in this thesis. A fuzzy neural network that uses peak amplitude ranges to define classes is proposed and evaluated for UWLM pattern recognition. It is demonstrated to be able to classify the layered media data sets, and can distinguish between the peak points

  20. A Brief Summary of Dictionary Learning Based Approach for Classification

    CERN Document Server

    Shu, Kong

    2012-01-01

    This note presents some representative methods which are based on dictionary learning (DL) for classification. We do not review the sophisticated methods or frameworks that involve DL for classification, such as online DL and spatial pyramid matching (SPM), but rather, we concentrate on the direct DL-based classification methods. Here, the "so-called direct DL-based method" is the approach directly deals with DL framework by adding some meaningful penalty terms. By listing some representative methods, we can roughly divide them into two categories, i.e. (1) directly making the dictionary discriminative and (2) forcing the sparse coefficients discriminative to push the discrimination power of the dictionary. From this taxonomy, we can expect some extensions of them as future researches.

  1. Superiority of Classification Tree versus Cluster, Fuzzy and Discriminant Models in a Heartbeat Classification System

    Science.gov (United States)

    Krasteva, Vessela; Jekova, Irena; Leber, Remo; Schmid, Ramun; Abächerli, Roger

    2015-01-01

    This study presents a 2-stage heartbeat classifier of supraventricular (SVB) and ventricular (VB) beats. Stage 1 makes computationally-efficient classification of SVB-beats, using simple correlation threshold criterion for finding close match with a predominant normal (reference) beat template. The non-matched beats are next subjected to measurement of 20 basic features, tracking the beat and reference template morphology and RR-variability for subsequent refined classification in SVB or VB-class by Stage 2. Four linear classifiers are compared: cluster, fuzzy, linear discriminant analysis (LDA) and classification tree (CT), all subjected to iterative training for selection of the optimal feature space among extended 210-sized set, embodying interactive second-order effects between 20 independent features. The optimization process minimizes at equal weight the false positives in SVB-class and false negatives in VB-class. The training with European ST-T, AHA, MIT-BIH Supraventricular Arrhythmia databases found the best performance settings of all classification models: Cluster (30 features), Fuzzy (72 features), LDA (142 coefficients), CT (221 decision nodes) with top-3 best scored features: normalized current RR-interval, higher/lower frequency content ratio, beat-to-template correlation. Unbiased test-validation with MIT-BIH Arrhythmia database rates the classifiers in descending order of their specificity for SVB-class: CT (99.9%), LDA (99.6%), Cluster (99.5%), Fuzzy (99.4%); sensitivity for ventricular ectopic beats as part from VB-class (commonly reported in published beat-classification studies): CT (96.7%), Fuzzy (94.4%), LDA (94.2%), Cluster (92.4%); positive predictivity: CT (99.2%), Cluster (93.6%), LDA (93.0%), Fuzzy (92.4%). CT has superior accuracy by 0.3–6.8% points, with the advantage for easy model complexity configuration by pruning the tree consisted of easy interpretable ‘if-then’ rules. PMID:26461492

  2. Network traffic classification based on ensemble learning and co-training

    Institute of Scientific and Technical Information of China (English)

    HE HaiTao; LUO XiaoNan; MA FeiTeng; CHE ChunHui; WANG JianMin

    2009-01-01

    Classification of network traffic Is the essential step for many network researches. However, with the rapid evolution of Internet applications the effectiveness of the port-based or payload-based identifi-cation approaches has been greatly diminished In recent years. And many researchers begin to turn their attentions to an alternative machine learning based method. This paper presents a novel machine learning-based classification model, which combines ensemble learning paradigm with co-training tech-niques. Compared to previous approaches, most of which only employed single classifier, multiple clas-sifiers and semi-supervised learning are applied in our method and it mainly helps to overcome three shortcomings: limited flow accuracy rate, weak adaptability and huge demand of labeled training set. In this paper, statistical characteristics of IP flows are extracted from the packet level traces to establish the feature set, then the classification model is created and tested and the empirical results prove its feasibility and effectiveness.

  3. Conceptualising Business Models: Definitions, Frameworks and Classifications

    Directory of Open Access Journals (Sweden)

    Erwin Fielt

    2013-12-01

    Full Text Available The business model concept is gaining traction in different disciplines but is still criticized for being fuzzy and vague and lacking consensus on its definition and compositional elements. In this paper we set out to advance our understanding of the business model concept by addressing three areas of foundational research: business model definitions, business model elements, and business model archetypes. We define a business model as a representation of the value logic of an organization in terms of how it creates and captures customer value. This abstract and generic definition is made more specific and operational by the compositional elements that need to address the customer, value proposition, organizational architecture (firm and network level and economics dimensions. Business model archetypes complement the definition and elements by providing a more concrete and empirical understanding of the business model concept. The main contributions of this paper are (1 explicitly including the customer value concept in the business model definition and focussing on value creation, (2 presenting four core dimensions that business model elements need to cover, (3 arguing for flexibility by adapting and extending business model elements to cater for different purposes and contexts (e.g. technology, innovation, strategy (4 stressing a more systematic approach to business model archetypes by using business model elements for their description, and (5 suggesting to use business model archetype research for the empirical exploration and testing of business model elements and their relationships.

  4. 基于情感词属性和云模型的文本情感分类方法%Classification Method of Texts Sentiment Based on Sentiment Word Attributes and Cloud Model

    Institute of Scientific and Technical Information of China (English)

    孙劲光; 马志芳; 孟祥福

    2013-01-01

    受语言固有的模糊性、随机性以及传统文本特征词权重值计算方法不适用于情感词等因素的影响,文本情感分类的正确率很难达到传统文本主题分类的水平。为此,提出一种基于情感词属性和云模型的情感分类方法。结合情感词属性和简单句法结构以确定情感词的权重值,并利用云模型对情感词进行定性定量表示的转换。实验结果表明,该方法对情感词权重值计算是有效的,召回率最高达到78.8%,且与基于词典的方法相比,其文本情感分类结果更精确,正确率最高达到68.4%,增加了约9%的精度。%In the era of big data, how to obtain valid information from the Web becomes a keen topic for business, government, and research workers. User’s opinion mining becomes a research topic for the area of Natural Language Processing(NLP) and text mining. However, due to the inherent fuzziness and randomness of language, as well as the traditional term weight value calculation method is not suitable for the sentiment word and other factors, the text sentiment classification accuracy is difficult to achieve the performance of traditional text subject classification. To solve these problems, this paper proposes a sentiment classification method based on sentiment word attributes and cloud model. It calculates weight of sentiment words by combining attributes and syntactic structure of sentiment words, and converts qualitative and quantitative of sentiment words based on cloud model. Experimental results show that this method to calculate weights of sentiment words is valid, and the recall rate is up to 78.8%. Text sentiment classification results are more accurate than that based on dictionary, the correction rate is up to 68.4%, and the accuracy is increased by about 9%.

  5. Inductive Model Generation for Text Classification Using a Bipartite Heterogeneous Network

    Institute of Scientific and Technical Information of China (English)

    Rafael Geraldeli Rossi; Alneu de Andrade Lopes; Thiago de Paulo Faleiros; Solange Oliveira Rezende

    2014-01-01

    Algorithms for numeric data classification have been applied for text classification. Usually the vector space model is used to represent text collections. The characteristics of this representation such as sparsity and high dimensionality sometimes impair the quality of general-purpose classifiers. Networks can be used to represent text collections, avoiding the high sparsity and allowing to model relationships among different objects that compose a text collection. Such network-based representations can improve the quality of the classification results. One of the simplest ways to represent textual collections by a network is through a bipartite heterogeneous network, which is composed of objects that represent the documents connected to objects that represent the terms. Heterogeneous bipartite networks do not require computation of similarities or relations among the objects and can be used to model any type of text collection. Due to the advantages of representing text collections through bipartite heterogeneous networks, in this article we present a text classifier which builds a classification model using the structure of a bipartite heterogeneous network. Such an algorithm, referred to as IMBHN (Inductive Model Based on Bipartite Heterogeneous Network), induces a classification model assigning weights to ob jects that represent the terms for each class of the text collection. An empirical evaluation using a large amount of text collections from different domains shows that the proposed IMBHN algorithm produces significantly better results than k-NN, C4.5, SVM, and Naive Bayes algorithms.

  6. Credit Risk Evaluation Using a C-Variable Least Squares Support Vector Classification Model

    Science.gov (United States)

    Yu, Lean; Wang, Shouyang; Lai, K. K.

    Credit risk evaluation is one of the most important issues in financial risk management. In this paper, a C-variable least squares support vector classification (C-VLSSVC) model is proposed for credit risk analysis. The main idea of this model is based on the prior knowledge that different classes may have different importance for modeling and more weights should be given to those classes with more importance. The C-VLSSVC model can be constructed by a simple modification of the regularization parameter in LSSVC, whereby more weights are given to the lease squares classification errors with important classes than the lease squares classification errors with unimportant classes while keeping the regularized terms in its original form. For illustration purpose, a real-world credit dataset is used to test the effectiveness of the C-VLSSVC model.

  7. Mathematical model for classification of EEG signals

    Science.gov (United States)

    Ortiz, Victor H.; Tapia, Juan J.

    2015-09-01

    A mathematical model to filter and classify brain signals from a brain machine interface is developed. The mathematical model classifies the signals from the different lobes of the brain to differentiate the signals: alpha, beta, gamma and theta, besides the signals from vision, speech, and orientation. The model to develop further eliminates noise signals that occur in the process of signal acquisition. This mathematical model can be used on different platforms interfaces for rehabilitation of physically handicapped persons.

  8. Data Stream Classification Based on the Gamma Classifier

    Directory of Open Access Journals (Sweden)

    Abril Valeria Uriarte-Arcia

    2015-01-01

    Full Text Available The ever increasing data generation confronts us with the problem of handling online massive amounts of information. One of the biggest challenges is how to extract valuable information from these massive continuous data streams during single scanning. In a data stream context, data arrive continuously at high speed; therefore the algorithms developed to address this context must be efficient regarding memory and time management and capable of detecting changes over time in the underlying distribution that generated the data. This work describes a novel method for the task of pattern classification over a continuous data stream based on an associative model. The proposed method is based on the Gamma classifier, which is inspired by the Alpha-Beta associative memories, which are both supervised pattern recognition models. The proposed method is capable of handling the space and time constrain inherent to data stream scenarios. The Data Streaming Gamma classifier (DS-Gamma classifier implements a sliding window approach to provide concept drift detection and a forgetting mechanism. In order to test the classifier, several experiments were performed using different data stream scenarios with real and synthetic data streams. The experimental results show that the method exhibits competitive performance when compared to other state-of-the-art algorithms.

  9. A method for cloud detection and opacity classification based on ground based sky imagery

    Directory of Open Access Journals (Sweden)

    M. S. Ghonima

    2012-11-01

    Full Text Available Digital images of the sky obtained using a total sky imager (TSI are classified pixel by pixel into clear sky, optically thin and optically thick clouds. A new classification algorithm was developed that compares the pixel red-blue ratio (RBR to the RBR of a clear sky library (CSL generated from images captured on clear days. The difference, rather than the ratio, between pixel RBR and CSL RBR resulted in more accurate cloud classification. High correlation between TSI image RBR and aerosol optical depth (AOD measured by an AERONET photometer was observed and motivated the addition of a haze correction factor (HCF to the classification model to account for variations in AOD. Thresholds for clear and thick clouds were chosen based on a training image set and validated with set of manually annotated images. Misclassifications of clear and thick clouds into the opposite category were less than 1%. Thin clouds were classified with an accuracy of 60%. Accurate cloud detection and opacity classification techniques will improve the accuracy of short-term solar power forecasting.

  10. A method for cloud detection and opacity classification based on ground based sky imagery

    Directory of Open Access Journals (Sweden)

    M. S. Ghonima

    2012-07-01

    Full Text Available Digital images of the sky obtained using a total sky imager (TSI are classified pixel by pixel into clear sky, optically thin and optically thick clouds. A new classification algorithm was developed that compares the pixel red-blue ratio (RBR to the RBR of a clear sky library (CSL generated from images captured on clear days. The difference, rather than the ratio, between pixel RBR and CSL RBR resulted in more accurate cloud classification. High correlation between TSI image RBR and aerosol optical depth (AOD measured by an AERONET photometer was observed and motivated the addition of a haze correction factor (HCF to the classification model to account for variations in AOD. Thresholds for clear and thick clouds were chosen based on a training image set and validated with set of manually annotated images. Misclassifications of clear and thick clouds into the opposite category were less than 1%. Thin clouds were classified with an accuracy of 60%. Accurate cloud detection and opacity classification techniques will improve the accuracy of short-term solar power forecasting.

  11. Classification of ECG Using Chaotic Models

    Directory of Open Access Journals (Sweden)

    Khandakar Mohammad Ishtiak

    2012-09-01

    Full Text Available Chaotic analysis has been shown to be useful in a variety of medical applications, particularly in cardiology. Chaotic parameters have shown potential in the identification of diseases, especially in the analysis of biomedical signals like electrocardiogram (ECG. In this work, underlying chaos in ECG signals has been analyzed using various non-linear techniques. First, the ECG signal is processed through a series of steps to extract the QRS complex. From this extracted feature, bit-to-bit interval (BBI and instantaneous heart rate (IHR have been calculated. Then some nonlinear parameters like standard deviation, and coefficient of variation and nonlinear techniques like central tendency measure (CTM, and phase space portrait have been determined from both the BBI and IHR. Standard database of MIT-BIH is used as the reference data where each ECG record contains 650000 samples. CTM is calculated for both BBI and IHR for each ECG record of the database. A much higher value of CTM for IHR is observed for eleven patients with normal beats with a mean of 0.7737 and SD of 0.0946. On the contrary, the CTM for IHR of eleven patients with abnormal rhythm shows low value with a mean of 0.0833 and SD 0.0748. CTM for BBI of the same eleven normal rhythm records also shows high values with a mean of 0.6172 and SD 0.1472. CTM for BBI of eleven abnormal rhythm records show low values with a mean of 0.0478 and SD 0.0308. Phase space portrait also demonstrates visible attractor with little dispersion for a healthy person’s ECG and a widely dispersed plot in 2-D plane for the ailing person’s ECG. These results indicate that ECG can be classified based on this chaotic modeling which works on the nonlinear dynamics of the system.

  12. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    Science.gov (United States)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  13. Object-Based Classification of Abandoned Logging Roads under Heavy Canopy Using LiDAR

    Directory of Open Access Journals (Sweden)

    Jason Sherba

    2014-05-01

    Full Text Available LiDAR-derived slope models may be used to detect abandoned logging roads in steep forested terrain. An object-based classification approach of abandoned logging road detection was employed in this study. First, a slope model of the study site in Marin County, California was created from a LiDAR derived DEM. Multiresolution segmentation was applied to the slope model and road seed objects were iteratively grown into candidate objects. A road classification accuracy of 86% was achieved using this fully automated procedure and post processing increased this accuracy to 90%. In order to assess the sensitivity of the road classification to LiDAR ground point spacing, the LiDAR ground point cloud was repeatedly thinned by a fraction of 0.5 and the classification procedure was reapplied. The producer’s accuracy of the road classification declined from 79% with a ground point spacing of 0.91 to below 50% with a ground point spacing of 2, indicating the importance of high point density for accurate classification of abandoned logging roads.

  14. Different Classification Algorithms Based on Arabic Text Classification: Feature Selection Comparative Study

    Directory of Open Access Journals (Sweden)

    Ghazi Raho

    2015-02-01

    Full Text Available Feature selection is necessary for effective text classification. Dataset preprocessing is essential to make upright result and effective performance. This paper investigates the effectiveness of using feature selection. In this paper we have been compared the performance between different classifiers in different situations using feature selection with stemming, and without stemming.Evaluation used a BBC Arabic dataset, different classification algorithms such as decision tree (D.T, K-nearest neighbors (KNN, Naïve Bayesian (NB method and Naïve Bayes Multinomial(NBM classifier were used. The experimental results are presented in term of precision, recall, F-Measures, accuracy and time to build model.

  15. Classification of consumers based on perceptions

    DEFF Research Database (Denmark)

    Høg, Esben; Juhl, Hans Jørn; Poulsen, Carsten Stig

    1999-01-01

    This paper reports some results from a recent Danish study of fish consumption. One major purpose of the study was to identify consumer segments according to their perceptions of fish in comparison with other food categories. We present a model which has the capabilities to determine the number...... of segments and putting in order of priority the alternatives examined. Data consist of paiwise comparisons per respondent. The model allows for ties, i.e. the consumer´s expression of no preference among alternatives. All the parameters in the model are estimated simultaneously by the method of maximum...

  16. Classification of consumers based on perceptions

    DEFF Research Database (Denmark)

    Høg, Esben; Juhl, Hans Jørn; Poulsen, Carsten Stig

    1999-01-01

    This paper reports some results from a recent Danish study of fish consumption. One purpose of the study was to identify consumer segments according to their perceptions of fish in comparison with other food categories. We present a model, which has the capabilities to determine the number...... of segments and putting in order of priority the alternatives examined. The model allows for ties, i.e. the consumer's expression of no preference among alternatives. The parameters in the model are estimated simultaneously by the method of maximum likelihood. The approach is illustrated using data from...

  17. A hidden Markov model based algorithm for data stream classification algorithm%基于隐马尔可夫模型的流数据分类算法

    Institute of Scientific and Technical Information of China (English)

    潘怡; 何可可; 李国徽

    2014-01-01

    为优化周期性概念漂移分类精度,提出了一种基于隐马尔可夫模型的周期性流式数据分类(HMM -SDC)算法,算法结合实际可观测序列的输出建立漂移概念状态序列的转移矩阵概率模型,由观测值概率分布密度来预测状态的转移序列。当预测误差超过用户定义阈值时,算法能够更新优化转移矩阵参数,无须重复学习历史概念即可实现对数据概念漂移的有效预测。此外,算法采用半监督 K-M ean学习方法训练样本集,降低了人工标记样例的代价,能够避免隐形马尔可夫模型因标记样例不足而产生的欠学习问题。实验结果表明:相对传统集成分类算法,新算法对周期性数据漂移具有更好的分类精确度及分类时效性。%To improve the classification accuracy on data stream ,HMM -SDC(hidden Markov model based stream data classification )algorithm was presented . The invisible data concept states was a-ligned with the observable sequences through a hidden Markov chain model ,and the drifted concept could be forecasted with the actual observation value .When the mean predictive error was larger than a user defined threshold ,the state transition probability matrix was updated automatically without re-learning the historical data concepts . In addition , part of the unlabeled samples were classified through the semi-supervised K-Means method ,which reduced the impact of the insufficient labeled data for training the hidden Markov model .The experimental results show that the new algorithm has better performance than the traditional ensemble classification algorithm in periodical data stream clas-sification .

  18. Age group classification and gender detection based on forced expiratory spirometry.

    Science.gov (United States)

    Cosgun, Sema; Ozbek, I Yucel

    2015-08-01

    This paper investigates the utility of forced expiratory spirometry (FES) test with efficient machine learning algorithms for the purpose of gender detection and age group classification. The proposed method has three main stages: feature extraction, training of the models and detection. In the first stage, some features are extracted from volume-time curve and expiratory flow-volume loop obtained from FES test. In the second stage, the probabilistic models for each gender and age group are constructed by training Gaussian mixture models (GMMs) and Support vector machine (SVM) algorithm. In the final stage, the gender (or age group) of test subject is estimated by using the trained GMM (or SVM) model. Experiments have been evaluated on a large database from 4571 subjects. The experimental results show that average correct classification rate performance of both GMM and SVM methods based on the FES test is more than 99.3 % and 96.8 % for gender and age group classification, respectively.

  19. CLASSIFICATION OF LiDAR DATA WITH POINT BASED CLASSIFICATION METHODS

    OpenAIRE

    N. Yastikli; Cetin, Z.

    2016-01-01

    LiDAR is one of the most effective systems for 3 dimensional (3D) data collection in wide areas. Nowadays, airborne LiDAR data is used frequently in various applications such as object extraction, 3D modelling, change detection and revision of maps with increasing point density and accuracy. The classification of the LiDAR points is the first step of LiDAR data processing chain and should be handled in proper way since the 3D city modelling, building extraction, DEM generation, etc. applicati...

  20. A classification of empirical CGE modelling

    NARCIS (Netherlands)

    Thissen, Mark

    1998-01-01

    This paper investigates asymmetric effects of monetary policy over the business cycle. A two-state Markov Switching Model is employed to model both recessions and expansions. For the United States and Germany, strong evidence is found that monetary policy is more effective in a recession than during

  1. Classification and Target Group Selection Based Upon Frequent Patterns

    NARCIS (Netherlands)

    W.H.L.M. Pijls (Wim); R. Potharst (Rob)

    2000-01-01

    textabstractIn this technical report , two new algorithms based upon frequent patterns are proposed. One algorithm is a classification method. The other one is an algorithm for target group selection. In both algorithms, first of all, the collection of frequent patterns in the training set is constr

  2. Classification-Based Method of Linear Multicriteria Optimization

    OpenAIRE

    Vassilev, Vassil; Genova, Krassimira; Vassileva, Mariyana; Narula, Subhash

    2003-01-01

    The paper describes a classification-based learning-oriented interactive method for solving linear multicriteria optimization problems. The method allows the decision makers describe their preferences with greater flexibility, accuracy and reliability. The method is realized in an experimental software system supporting the solution of multicriteria optimization problems.

  3. Classification of CT-brain slices based on local histograms

    Science.gov (United States)

    Avrunin, Oleg G.; Tymkovych, Maksym Y.; Pavlov, Sergii V.; Timchik, Sergii V.; Kisała, Piotr; Orakbaev, Yerbol

    2015-12-01

    Neurosurgical intervention is a very complicated process. Modern operating procedures based on data such as CT, MRI, etc. Automated analysis of these data is an important task for researchers. Some modern methods of brain-slice segmentation use additional data to process these images. Classification can be used to obtain this information. To classify the CT images of the brain, we suggest using local histogram and features extracted from them. The paper shows the process of feature extraction and classification CT-slices of the brain. The process of feature extraction is specialized for axial cross-section of the brain. The work can be applied to medical neurosurgical systems.

  4. Pulse frequency classification based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; WANG Xu; YANG Dan; FU Rong

    2006-01-01

    In Traditional Chinese Medicine (TCM), it is an important parameter of the clinic disease diagnosis to analysis the pulse frequency. This article accords to pulse eight major essentials to identify pulse type of the pulse frequency classification based on back-propagation neural networks (BPNN). The pulse frequency classification includes slow pulse, moderate pulse, rapid pulse etc. By feature parameter of the pulse frequency analysis research and establish to identify system of pulse frequency features. The pulse signal from detecting system extracts period, frequency etc feature parameter to compare with standard feature value of pulse type. The result shows that identify-rate attains 92.5% above.

  5. Computerized Classification Testing under the Generalized Graded Unfolding Model

    Science.gov (United States)

    Wang, Wen-Chung; Liu, Chen-Wei

    2011-01-01

    The generalized graded unfolding model (GGUM) has been recently developed to describe item responses to Likert items (agree-disagree) in attitude measurement. In this study, the authors (a) developed two item selection methods in computerized classification testing under the GGUM, the current estimate/ability confidence interval method and the cut…

  6. Application of Classification Models to Pharyngeal High-Resolution Manometry

    Science.gov (United States)

    Mielens, Jason D.; Hoffman, Matthew R.; Ciucci, Michelle R.; McCulloch, Timothy M.; Jiang, Jack J.

    2012-01-01

    Purpose: The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). Method: Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were…

  7. Fuzzy modeling of farmers' knowledge for land suitability classification

    NARCIS (Netherlands)

    Sicat, R.S.; Carranza, E.J.M.; Nidumolu, U.B.

    2005-01-01

    In a case study, we demonstrate fuzzy modeling of farmers' knowledge (FK) for agricultural land suitability classification using GIS. Capture of FK was through rapid rural participatory approach. The farmer respondents consider, in order of decreasing importance, cropping season, soil color, soil te

  8. Modeling and evaluating repeatability and reproducibility of ordinal classifications

    NARCIS (Netherlands)

    J. de Mast; W.N. van Wieringen

    2010-01-01

    This paper argues that currently available methods for the assessment of the repeatability and reproducibility of ordinal classifications are not satisfactory. The paper aims to study whether we can modify a class of models from Item Response Theory, well established for the study of the reliability

  9. Habitat classification modeling with incomplete data: pushing the habitat envelope.

    Science.gov (United States)

    Zarnetske, Phoebe L; Edwards, Thomas C; Moisen, Gretchen G

    2007-09-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can bb used. Traditional techniques generate pseudo-absence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, threshold-independent receiver operating characteristic (ROC) plots, adjusted deviance (D(adj)2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant

  10. Investigation of the Effect of Traffic Parameters on Road Hazard Using Classification Tree Model

    Directory of Open Access Journals (Sweden)

    Md. Mahmud Hasan

    2012-09-01

    Full Text Available This paper presents a method for the identification of hazardous situations on the freeways. For this study, about 18 km long section of Eastern Freeway in Melbourne, Australia was selected as a test bed. Three categories of data i.e. traffic, weather and accident record data were used for the analysis and modelling. In developing the crash risk probability model, classification tree based model was developed in this study. In formulating the models, it was found that weather conditions did not have significant impact on accident occurrence so the classification tree was built using two traffic indices; traffic flow and vehicle speed only. The formulated classification tree is able to identify the possible hazard and non-hazard situations on freeway. The outcome of the study will aid the hazard mitigation strategies.

  11. Road geometry classification by adaptive shape models

    NARCIS (Netherlands)

    J.M. Álvarez; T. Gevers; F. Diego; A.M. López

    2012-01-01

    Vision-based road detection is important for different applications in transportation, such as autonomous driving, vehicle collision warning, and pedestrian crossing detection. Common approaches to road detection are based on low-level road appearance (e.g., color or texture) and neglect of the scen

  12. Torrent classification - Base of rational management of erosive regions

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilovic, Zoran; Stefanovic, Milutin; Milovanovic, Irina; Cotric, Jelena; Milojevic, Mileta [Institute for the Development of Water Resources ' Jaroslav Cerni' , 11226 Beograd (Pinosava), Jaroslava Cernog 80 (Serbia)], E-mail: gavrilovicz@sbb.rs

    2008-11-01

    A complex methodology for torrents and erosion and the associated calculations was developed during the second half of the twentieth century in Serbia. It was the 'Erosion Potential Method'. One of the modules of that complex method was focused on torrent classification. The module enables the identification of hydro graphic, climate and erosion characteristics. The method makes it possible for each torrent, regardless of its magnitude, to be simply and recognizably described by the 'Formula of torrentially'. The above torrent classification is the base on which a set of optimisation calculations is developed for the required scope of erosion-control works and measures, the application of which enables the management of significantly larger erosion and torrential regions compared to the previous period. This paper will present the procedure and the method of torrent classification.

  13. Torrent classification - Base of rational management of erosive regions

    International Nuclear Information System (INIS)

    A complex methodology for torrents and erosion and the associated calculations was developed during the second half of the twentieth century in Serbia. It was the 'Erosion Potential Method'. One of the modules of that complex method was focused on torrent classification. The module enables the identification of hydro graphic, climate and erosion characteristics. The method makes it possible for each torrent, regardless of its magnitude, to be simply and recognizably described by the 'Formula of torrentially'. The above torrent classification is the base on which a set of optimisation calculations is developed for the required scope of erosion-control works and measures, the application of which enables the management of significantly larger erosion and torrential regions compared to the previous period. This paper will present the procedure and the method of torrent classification.

  14. 3-Layered Bayesian Model Using in Text Classification

    Directory of Open Access Journals (Sweden)

    Chang Jiayu

    2013-01-01

    Full Text Available Naive Bayesian is one of quite effective classification methods in all of the text disaggregated models. Usually, the computed result will be large deviation from normal, with the reason of attribute relevance and so on. This study embarked from the degree of correlation, defined the node’s degree as well as the relations between nodes, proposed a 3-layered Bayesian Model. According to the conditional probability recurrence formula, the theory support of the 3-layered Bayesian Model is obtained. According to the theory analysis and the empirical datum contrast to the Naive Bayesian, the model has better attribute collection and classify. It can be also promoted to the Multi-layer Bayesian Model using in text classification.

  15. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  16. Refining personality disorder subtypes and classification using finite mixture modeling.

    Science.gov (United States)

    Yun, Rebecca J; Stern, Barry L; Lenzenweger, Mark F; Tiersky, Lana A

    2013-04-01

    The current Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnostic system for Axis II disorders continues to be characterized by considerable heterogeneity and poor discriminant validity. Such problems impede accurate personality disorder (PD) diagnosis. As a result, alternative assessment tools are often used in conjunction with the DSM. One popular framework is the object relational model developed by Kernberg and his colleagues (J. F. Clarkin, M. F. Lenzenweger, F. Yeomans, K. N. Levy, & O. F. Kernberg, 2007, An object relations model of borderline pathology, Journal of Personality Disorders, Vol. 21, pp. 474-499; O. F. Kernberg, 1984, Severe Personality Disorders, New Haven, CT: Yale University Press; O. F. Kernberg & E. Caligor, 2005, A psychoanalytic theory of personality disorders, in M. F. Lenzenweger & J. F. Clarkin, Eds., Major Theories of Personality Disorder, New York, NY: Guilford Press). Drawing on this model and empirical studies thereof, the current study attempted to clarify Kernberg's (1984) PD taxonomy and identify subtypes within a sample with varying levels of personality pathology using finite mixture modeling. Subjects (N = 141) were recruited to represent a wide range of pathology. The finite mixture modeling results indicated that 3 components were harbored within the variables analyzed. Group 1 was characterized by low levels of antisocial, paranoid, and aggressive features, and Group 2 was characterized by elevated paranoid features. Group 3 revealed the highest levels across the 3 variables. The validity of the obtained solution was then evaluated by reference to a variety of external measures that supported the validity of the identified grouping structure. Findings generally appear congruent with previous research, which argued that a PD taxonomy based on paranoid, aggressive, and antisocial features is a viable supplement to current diagnostic systems. Our study suggests that Kernberg's object relational model offers a

  17. Optimal query-based relevance feedback in medical image retrieval using score fusion-based classification.

    Science.gov (United States)

    Behnam, Mohammad; Pourghassem, Hossein

    2015-04-01

    In this paper, a new content-based medical image retrieval (CBMIR) framework using an effective classification method and a novel relevance feedback (RF) approach are proposed. For a large-scale database with diverse collection of different modalities, query image classification is inevitable due to firstly, reducing the computational complexity and secondly, increasing influence of data fusion by removing unimportant data and focus on the more valuable information. Hence, we find probability distribution of classes in the database using Gaussian mixture model (GMM) for each feature descriptor and then using the fusion of obtained scores from the dependency probabilities, the most relevant clusters are identified for a given query. Afterwards, visual similarity of query image and images in relevant clusters are calculated. This method is performed separately on all feature descriptors, and then the results are fused together using feature similarity ranking level fusion algorithm. In the RF level, we propose a new approach to find the optimal queries based on relevant images. The main idea is based on density function estimation of positive images and strategy of moving toward the aggregation of estimated density function. The proposed framework has been evaluated on ImageCLEF 2005 database consisting of 10,000 medical X-ray images of 57 semantic classes. The experimental results show that compared with the existing CBMIR systems, our framework obtains the acceptable performance both in the image classification and in the image retrieval by RF. PMID:25246167

  18. Hardware Accelerators Targeting a Novel Group Based Packet Classification Algorithm

    Directory of Open Access Journals (Sweden)

    O. Ahmed

    2013-01-01

    Full Text Available Packet classification is a ubiquitous and key building block for many critical network devices. However, it remains as one of the main bottlenecks faced when designing fast network devices. In this paper, we propose a novel Group Based Search packet classification Algorithm (GBSA that is scalable, fast, and efficient. GBSA consumes an average of 0.4 megabytes of memory for a 10 k rule set. The worst-case classification time per packet is 2 microseconds, and the preprocessing speed is 3 M rules/second based on an Xeon processor operating at 3.4 GHz. When compared with other state-of-the-art classification techniques, the results showed that GBSA outperforms the competition with respect to speed, memory usage, and processing time. Moreover, GBSA is amenable to implementation in hardware. Three different hardware implementations are also presented in this paper including an Application Specific Instruction Set Processor (ASIP implementation and two pure Register-Transfer Level (RTL implementations based on Impulse-C and Handel-C flows, respectively. Speedups achieved with these hardware accelerators ranged from 9x to 18x compared with a pure software implementation running on an Xeon processor.

  19. AN INTELLIGENT CLASSIFICATION MODEL FOR PHISHING EMAIL DETECTION

    Directory of Open Access Journals (Sweden)

    Adwan Yasin

    2016-07-01

    Full Text Available Phishing attacks are one of the trending cyber-attacks that apply socially engineered messages that are communicated to people from professional hackers aiming at fooling users to reveal their sensitive information, the most popular communication channel to those messages is through users’ emails. This paper presents an intelligent classification model for detecting phishing emails using knowledge discovery, data mining and text processing techniques. This paper introduces the concept of phishing terms weighting which evaluates the weight of phishing terms in each email. The pre-processing phase is enhanced by applying text stemming and WordNet ontology to enrich the model with word synonyms. The model applied the knowledge discovery procedures using five popular classification algorithms and achieved a notable enhancement in classification accuracy; 99.1% accuracy was achieved using the Random Forest algorithm and 98.4% using J48, which is –to our knowledge- the highest accuracy rate for an accredited data set. This paper also presents a comparative study with similar proposed classification techniques.

  20. Scene-Level Geographic Image Classification Based on a Covariance Descriptor Using Supervised Collaborative Kernel Coding.

    Science.gov (United States)

    Yang, Chunwei; Liu, Huaping; Wang, Shicheng; Liao, Shouyi

    2016-01-01

    Scene-level geographic image classification has been a very challenging problem and has become a research focus in recent years. This paper develops a supervised collaborative kernel coding method based on a covariance descriptor (covd) for scene-level geographic image classification. First, covd is introduced in the feature extraction process and, then, is transformed to a Euclidean feature by a supervised collaborative kernel coding model. Furthermore, we develop an iterative optimization framework to solve this model. Comprehensive evaluations on public high-resolution aerial image dataset and comparisons with state-of-the-art methods show the superiority and effectiveness of our approach.

  1. Invariance Properties for General Diagnostic Classification Models

    Science.gov (United States)

    Bradshaw, Laine P.; Madison, Matthew J.

    2016-01-01

    In item response theory (IRT), the invariance property states that item parameter estimates are independent of the examinee sample, and examinee ability estimates are independent of the test items. While this property has long been established and understood by the measurement community for IRT models, the same cannot be said for diagnostic…

  2. Cardiac arrhythmia classification using autoregressive modeling

    OpenAIRE

    Srinivasan Narayanan; Ge Dingfei; Krishnan Shankar M

    2002-01-01

    Abstract Background Computer-assisted arrhythmia recognition is critical for the management of cardiac disorders. Various techniques have been utilized to classify arrhythmias. Generally, these techniques classify two or three arrhythmias or have significantly large processing times. A simpler autoregressive modeling (AR) technique is proposed to classify normal sinus rhythm (NSR) and various cardiac arrhythmias including atrial premature contraction (APC), premature ventricular contraction (...

  3. A Classification System for Hospital-Based Infection Outbreaks

    Directory of Open Access Journals (Sweden)

    Paul S. Ganney

    2010-01-01

    Full Text Available Outbreaks of infection within semi-closed environments such as hospitals, whether inherent in the environment (such as Clostridium difficile (C.Diff or Methicillinresistant Staphylococcus aureus (MRSA or imported from the wider community (such as Norwalk-like viruses (NLVs, are difficult to manage. As part of our work on modelling such outbreaks, we have developed a classification system to describe the impact of a particular outbreak upon an organization. This classification system may then be used in comparing appropriate computer models to real outbreaks, as well as in comparing different real outbreaks in, for example, the comparison of differing management and containment techniques and strategies. Data from NLV outbreaks in the Hull and East Yorkshire Hospitals NHS Trust (the Trust over several previous years are analysed and classified, both for infection within staff (where the end of infection date may not be known and within patients (where it generally is known. A classification system consisting of seven elements is described, along with a goodness-of-fit method for comparing a new classification to previously known ones, for use in evaluating a simulation against history and thereby determining how ‘realistic’ (or otherwise it is.

  4. ALADDIN: a neural model for event classification in dynamic processes

    International Nuclear Information System (INIS)

    ALADDIN is a prototype system which combines fuzzy clustering techniques and artificial neural network (ANN) models in a novel approach to the problem of classifying events in dynamic processes. The main motivation for the development of such a system derived originally from the problem of finding new principled methods to perform alarm structuring/suppression in a nuclear power plant (NPP) alarm system. One such method consists in basing the alarm structuring/suppression on a fast recognition of the event generating the alarms, so that a subset of alarms sufficient to efficiently handle the current fault can be selected to be presented to the operator, minimizing in this way the operator's workload in a potentially stressful situation. The scope of application of a system like ALADDIN goes however beyond alarm handling, to include diagnostic tasks in general. The eventual application of the system to domains other than NPPs was also taken into special consideration during the design phase. In this document we report on the first phase of the ALADDIN project which consisted mainly in a comparative study of a series of ANN-based approaches to event classification, and on the proposal of a first system prototype which is to undergo further tests and, eventually, be integrated in existing alarm, diagnosis, and accident management systems such as CASH, IDS, and CAMS. (author)

  5. Classification Model with High Deviation for Intrusion Detection on System Call Traces

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new classification model for host intrusion detection based on the unidentified short sequences and RIPPER algorithm is proposed. The concepts of different short sequences on the system call traces are strictly defined on the basis of in-depth analysis of completeness and correctness of pattern databases. Labels of short sequences are predicted by learned RIPPER rule set and the nature of the unidentified short sequences is confirmed by statistical method. Experiment results indicate that the classification model increases clearly the deviation between the attack and the normal traces and improves detection capability against known and unknown attacks.

  6. A novel hybrid classification model of genetic algorithms, modified k-Nearest Neighbor and developed backpropagation neural network.

    Directory of Open Access Journals (Sweden)

    Nader Salari

    Full Text Available Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that

  7. Classification of Mental Disorders Based on Temperament

    Directory of Open Access Journals (Sweden)

    Nadi Sakhvidi

    2015-08-01

    Full Text Available Context Different paradoxical theories are available regarding psychiatric disorders. The current study aimed to establish a more comprehensive overall approach. Evidence Acquisition This basic study examined ancient medical books. “The Canon” by Avicenna and “Comprehensive Textbook of Psychiatry” by Kaplan and Sadock were the most important and frequently consulted books in this study. Results Four groups of temperaments were identified: high active, high flexible; high active, low flexible; low active, low flexible; and low active, high flexible. When temperament deteriorates personality, non-psychotic, and psychotic psychiatric disorders can develop. Conclusions Temperaments can provide a basis to classify psychiatric disorders. Psychiatric disorders can be placed in a spectrum based on temperaments.

  8. A markov classification model for metabolic pathways

    Directory of Open Access Journals (Sweden)

    Mamitsuka Hiroshi

    2010-01-01

    Full Text Available Abstract Background This paper considers the problem of identifying pathways through metabolic networks that relate to a specific biological response. Our proposed model, HME3M, first identifies frequently traversed network paths using a Markov mixture model. Then by employing a hierarchical mixture of experts, separate classifiers are built using information specific to each path and combined into an ensemble prediction for the response. Results We compared the performance of HME3M with logistic regression and support vector machines (SVM for both simulated pathways and on two metabolic networks, glycolysis and the pentose phosphate pathway for Arabidopsis thaliana. We use AltGenExpress microarray data and focus on the pathway differences in the developmental stages and stress responses of Arabidopsis. The results clearly show that HME3M outperformed the comparison methods in the presence of increasing network complexity and pathway noise. Furthermore an analysis of the paths identified by HME3M for each metabolic network confirmed known biological responses of Arabidopsis. Conclusions This paper clearly shows HME3M to be an accurate and robust method for classifying metabolic pathways. HME3M is shown to outperform all comparison methods and further is capable of identifying known biologically active pathways within microarray data.

  9. Subspace-based additive fuzzy systems for classification and dimension reduction

    Science.gov (United States)

    Jauch, Thomas W.

    1997-10-01

    In classification tasks the appearance of high dimensional feature vectors and small datasets is a common problem. It is well known that these two characteristics usually result in an oversized model with poor generalization power. In this contribution a new way to cope with such tasks is presented which is based on the assumption that in high dimensional problems almost all data points are located in a low dimensional subspace. A way is proposed to design a fuzzy system on a unified framework, and to use it to develop a new model for classification tasks. It is shown that the new model can be understood as an additive fuzzy system with parameter based basis functions. Different parts of the models are only defined in a subspace of the whole feature space. The subspaces are not defined a priori but are subject to an optimization procedure as all other parameters of the model. The new model has the capability to cope with high feature dimensions. The model has similarities to projection pursuit and to the mixture of experts architecture. The model is trained in a supervised manner via conjugate gradients and logistic regression, or backfitting and conjugate gradients to handle classification tasks. An efficient initialization procedure is also presented. In addition a technique based on oblique projections is presented which enlarges the capabilities of the model to use data with missing features. It is possible to use data with missing features in the training and in the classification phase. Based on the design of the model, it is possible to prune certain basis functions with an OLS (orthogonal least squares) based technique in order to reduce the model size. Results are presented on an artificial and an application example.

  10. Upper limit for context based crop classification

    DEFF Research Database (Denmark)

    Midtiby, Henrik; Åstrand, Björn; Jørgensen, Rasmus Nyholm;

    2012-01-01

    Mechanical in-row weed control of crops like sugarbeet require precise knowledge of where individual crop plants are located. If crop plants are placed in known pattern, information about plant locations can be used to discriminate between crop and weed plants. The success rate of such a classifier...... depends on the weed pressure, the position uncertainty of the crop plants and the crop upgrowth percentage. The first two measures can be combined to a normalized weed pressure, \\lambda. Given the normalized weed pressure an upper bound on the positive predictive value is shown to be 1/(1+\\lambda). If the...... weed pressure is \\rho = 400/m^2 and the crop position uncertainty is \\sigma_x = 0.0148m along the row and \\sigma_y = 0.0108m perpendicular to the row, the normalized weed pressure is \\lambda ~ 0.40$; the upper bound on the positive predictive value is then 0.71. This means that when a position based...

  11. Cardiac arrhythmia classification based on mutiple lead electrocardiogram signals and multivariate autoregressive modeling method%基于多导联心电信号和多变量回归模型的心律失常的分类

    Institute of Scientific and Technical Information of China (English)

    葛丁飞; 李时辉; Krishnan S. M.

    2004-01-01

    心电信号(ECG)智能分析非常有利于严重心脏病人的自动诊断.本文介绍了多变量回归模型(MAR)建模法,利用MAR模型从双导联ECG中提取特征对ECG信号进行分类.在分类时,利用MAR模型系数及其K-L变换(K-L MAR系数)作为信号特征,并采用了树状决策过程和二次判别函数(QDF)分类器.利用文中方法对MIT-BIH标准数据库中的正常窦性心律(NSR)、期收缩(APC)、心室早期收缩(PVC)、心室性心动过速(VT)和心室纤维性颤动(VF)各300个样本信号进行了建模和测试. 结果表明,为了达到分类目的,MAR模型阶数取4是足够的,基于MAR系数的分类取得了比基于K-L MAR系数的分类稍好的结果.基于MAR系数的分类获得了97.3%~98.6%的分类精度.%Artificial-intelligence analysis of electrocardiogram (ECG) signals is great benefit to the automatic diagnosis in critical ill patients. Multivariate autoregressive modeling (MAR) for the purpose of classification of cardiac arrhythmias has been introduced. The MAR coefficients and K-L transformation of MAR coefficients extracted from two-lead ECG signals have been utilized for representing the ECG signals. The ECG data obtained from MIT-BIH database included normal sinus rhythm, atria premature contraction, premature ventricular contraction, ventricular tachycardia, and ventricular fibrillation. The current classification was performed using a stage-by-stage quadratic discriminant function (QDF). The results showed a MAR order of 4 was sufficient for the purpose of classification, and MAR coefficients produced slightly better results than K-L transformation of MAR coefficients. The classification accuracy of 97.3% to 98.6% based on MAR coefficients is obtained in the research.

  12. A new Multiple ANFIS model for classification of hemiplegic gait.

    Science.gov (United States)

    Yardimci, A; Asilkan, O

    2014-01-01

    Neuro-fuzzy system is a combination of neural network and fuzzy system in such a way that neural network learning algorithms, is used to determine parameters of the fuzzy system. This paper describes the application of multiple adaptive neuro-fuzzy inference system (MANFIS) model which has hybrid learning algorithm for classification of hemiplegic gait acceleration (HGA) signals. Decision making was performed in two stages: feature extraction using the wavelet transforms (WT) and the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the HGA signals. PMID:25160151

  13. Object-Based Classification and Change Detection of Hokkaido, Japan

    Science.gov (United States)

    Park, J. G.; Harada, I.; Kwak, Y.

    2016-06-01

    Topography and geology are factors to characterize the distribution of natural vegetation. Topographic contour is particularly influential on the living conditions of plants such as soil moisture, sunlight, and windiness. Vegetation associations having similar characteristics are present in locations having similar topographic conditions unless natural disturbances such as landslides and forest fires or artificial disturbances such as deforestation and man-made plantation bring about changes in such conditions. We developed a vegetation map of Japan using an object-based segmentation approach with topographic information (elevation, slope, slope direction) that is closely related to the distribution of vegetation. The results found that the object-based classification is more effective to produce a vegetation map than the pixel-based classification.

  14. Zone-specific logistic regression models improve classification of prostate cancer on multi-parametric MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dikaios, Nikolaos; Halligan, Steve; Taylor, Stuart; Atkinson, David; Punwani, Shonit [University College London, Centre for Medical Imaging, London (United Kingdom); University College London Hospital, Departments of Radiology, London (United Kingdom); Alkalbani, Jokha; Sidhu, Harbir Singh [University College London, Centre for Medical Imaging, London (United Kingdom); Abd-Alazeez, Mohamed; Ahmed, Hashim U.; Emberton, Mark [University College London, Research Department of Urology, Division of Surgery and Interventional Science, London (United Kingdom); Kirkham, Alex [University College London Hospital, Departments of Radiology, London (United Kingdom); Freeman, Alex [University College London Hospital, Department of Histopathology, London (United Kingdom)

    2015-09-15

    To assess the interchangeability of zone-specific (peripheral-zone (PZ) and transition-zone (TZ)) multiparametric-MRI (mp-MRI) logistic-regression (LR) models for classification of prostate cancer. Two hundred and thirty-one patients (70 TZ training-cohort; 76 PZ training-cohort; 85 TZ temporal validation-cohort) underwent mp-MRI and transperineal-template-prostate-mapping biopsy. PZ and TZ uni/multi-variate mp-MRI LR-models for classification of significant cancer (any cancer-core-length (CCL) with Gleason > 3 + 3 or any grade with CCL ≥ 4 mm) were derived from the respective cohorts and validated within the same zone by leave-one-out analysis. Inter-zonal performance was tested by applying TZ models to the PZ training-cohort and vice-versa. Classification performance of TZ models for TZ cancer was further assessed in the TZ validation-cohort. ROC area-under-curve (ROC-AUC) analysis was used to compare models. The univariate parameters with the best classification performance were the normalised T2 signal (T2nSI) within the TZ (ROC-AUC = 0.77) and normalized early contrast-enhanced T1 signal (DCE-nSI) within the PZ (ROC-AUC = 0.79). Performance was not significantly improved by bi-variate/tri-variate modelling. PZ models that contained DCE-nSI performed poorly in classification of TZ cancer. The TZ model based solely on maximum-enhancement poorly classified PZ cancer. LR-models dependent on DCE-MRI parameters alone are not interchangeable between prostatic zones; however, models based exclusively on T2 and/or ADC are more robust for inter-zonal application. (orig.)

  15. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification

    KAUST Repository

    Sudhakaran, Sairam

    2013-03-01

    Ozonation is an oxidation process for the removal of organic micropollutants (OMPs) from water and the chemical reaction is governed by second-order kinetics. An advanced oxidation process (AOP), wherein the hydroxyl radicals (OH radicals) are generated, is more effective in removing a wider range of OMPs from water than direct ozonation. Second-order rate constants (kOH and kO3) are good indices to estimate the oxidation efficiency, where higher rate constants indicate more rapid oxidation. In this study, quantitative structure activity relationships (QSAR) models for O3 and AOP processes were developed, and rate constants, kOH and kO3, were predicted based on target compound properties. The kO3 and kOH values ranged from 5 * 10-4 to 105 M-1s-1 and 0.04 to 18 * (109) M-1 s-1, respectively. Several molecular descriptors which potentially influence O3 and OH radical oxidation were identified and studied. The QSAR-defining descriptors were double bond equivalence (DBE), ionisation potential (IP), electron-affinity (EA) and weakly-polar component of solvent accessible surface area (WPSA), and the chemical and statistical significance of these descriptors was discussed. Multiple linear regression was used to build the QSAR models, resulting in high goodness-of-fit, r2 (>0.75). The models were validated by internal and external validation along with residual plots. © 2012 Elsevier Ltd.

  16. Neural Network based Vehicle Classification for Intelligent Traffic Control

    Directory of Open Access Journals (Sweden)

    Saeid Fazli

    2012-06-01

    Full Text Available Nowadays, number of vehicles has been increased and traditional systems of traffic controlling couldn’t be able to meet the needs that cause to emergence of Intelligent Traffic Controlling Systems. They improve controlling and urban management and increase confidence index in roads and highways. The goal of thisarticle is vehicles classification base on neural networks. In this research, it has been used a immovable camera which is located in nearly close height of the road surface to detect and classify the vehicles. The algorithm that used is included two general phases; at first, we are obtaining mobile vehicles in the traffic situations by using some techniques included image processing and remove background of the images and performing edge detection and morphology operations. In the second phase, vehicles near the camera areselected and the specific features are processed and extracted. These features apply to the neural networks as a vector so the outputs determine type of vehicle. This presented model is able to classify the vehicles in three classes; heavy vehicles, light vehicles and motorcycles. Results demonstrate accuracy of the algorithm and its highly functional level.

  17. Classification data mining method based on dynamic RBF neural networks

    Science.gov (United States)

    Zhou, Lijuan; Xu, Min; Zhang, Zhang; Duan, Luping

    2009-04-01

    With the widely application of databases and sharp development of Internet, The capacity of utilizing information technology to manufacture and collect data has improved greatly. It is an urgent problem to mine useful information or knowledge from large databases or data warehouses. Therefore, data mining technology is developed rapidly to meet the need. But DM (data mining) often faces so much data which is noisy, disorder and nonlinear. Fortunately, ANN (Artificial Neural Network) is suitable to solve the before-mentioned problems of DM because ANN has such merits as good robustness, adaptability, parallel-disposal, distributing-memory and high tolerating-error. This paper gives a detailed discussion about the application of ANN method used in DM based on the analysis of all kinds of data mining technology, and especially lays stress on the classification Data Mining based on RBF neural networks. Pattern classification is an important part of the RBF neural network application. Under on-line environment, the training dataset is variable, so the batch learning algorithm (e.g. OLS) which will generate plenty of unnecessary retraining has a lower efficiency. This paper deduces an incremental learning algorithm (ILA) from the gradient descend algorithm to improve the bottleneck. ILA can adaptively adjust parameters of RBF networks driven by minimizing the error cost, without any redundant retraining. Using the method proposed in this paper, an on-line classification system was constructed to resolve the IRIS classification problem. Experiment results show the algorithm has fast convergence rate and excellent on-line classification performance.

  18. Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2012-09-01

    Full Text Available We present a novel and innovative automated processing environment for the derivation of land cover (LC and land use (LU information. This processing framework named TWOPAC (TWinned Object and Pixel based Automated classification Chain enables the standardized, independent, user-friendly, and comparable derivation of LC and LU information, with minimized manual classification labor. TWOPAC allows classification of multi-spectral and multi-temporal remote sensing imagery from different sensor types. TWOPAC enables not only pixel-based classification, but also allows classification based on object-based characteristics. Classification is based on a Decision Tree approach (DT for which the well-known C5.0 code has been implemented, which builds decision trees based on the concept of information entropy. TWOPAC enables automatic generation of the decision tree classifier based on a C5.0-retrieved ascii-file, as well as fully automatic validation of the classification output via sample based accuracy assessment.Envisaging the automated generation of standardized land cover products, as well as area-wide classification of large amounts of data in preferably a short processing time, standardized interfaces for process control, Web Processing Services (WPS, as introduced by the Open Geospatial Consortium (OGC, are utilized. TWOPAC’s functionality to process geospatial raster or vector data via web resources (server, network enables TWOPAC’s usability independent of any commercial client or desktop software and allows for large scale data processing on servers. Furthermore, the components of TWOPAC were built-up using open source code components and are implemented as a plug-in for Quantum GIS software for easy handling of the classification process from the user’s perspective.

  19. A computational theory for the classification of natural biosonar targets based on a spike code

    CERN Document Server

    Müller, R

    2003-01-01

    A computational theory for classification of natural biosonar targets is developed based on the properties of an example stimulus ensemble. An extensive set of echoes 84 800 from four different foliages was transcribed into a spike code using a parsimonious model (linear filtering, half-wave rectification, thresholding). The spike code is assumed to consist of time differences (interspike intervals) between threshold crossings. Among the elementary interspike intervals flanked by exceedances of adjacent thresholds, a few intervals triggered by disjoint half-cycles of the carrier oscillation stand out in terms of resolvability, visibility across resolution levels and a simple stochastic structure (uncorrelatedness). They are therefore argued to be a stochastic analogue to edges in vision. A three-dimensional feature vector representing these interspike intervals sustained a reliable target classification performance (0.06% classification error) in a sequential probability ratio test, which models sequential pr...

  20. Virtual Sensor Based Fault Detection and Classification on a Plasma Etch Reactor

    CERN Document Server

    Sofge, D A

    2007-01-01

    The SEMATECH sponsored J-88-E project teaming Texas Instruments with NeuroDyne (et al.) focused on Fault Detection and Classification (FDC) on a Lam 9600 aluminum plasma etch reactor, used in the process of semiconductor fabrication. Fault classification was accomplished by implementing a series of virtual sensor models which used data from real sensors (Lam Station sensors, Optical Emission Spectroscopy, and RF Monitoring) to predict recipe setpoints and wafer state characteristics. Fault detection and classification were performed by comparing predicted recipe and wafer state values with expected values. Models utilized include linear PLS, Polynomial PLS, and Neural Network PLS. Prediction of recipe setpoints based upon sensor data provides a capability for cross-checking that the machine is maintaining the desired setpoints. Wafer state characteristics such as Line Width Reduction and Remaining Oxide were estimated on-line using these same process sensors (Lam, OES, RFM). Wafer-to-wafer measurement of thes...

  1. An AERONET-based aerosol classification using the Mahalanobis distance

    Science.gov (United States)

    Hamill, Patrick; Giordano, Marco; Ward, Carolyne; Giles, David; Holben, Brent

    2016-09-01

    We present an aerosol classification based on AERONET aerosol data from 1993 to 2012. We used the AERONET Level 2.0 almucantar aerosol retrieval products to define several reference aerosol clusters which are characteristic of the following general aerosol types: Urban-Industrial, Biomass Burning, Mixed Aerosol, Dust, and Maritime. The classification of a particular aerosol observation as one of these aerosol types is determined by its five-dimensional Mahalanobis distance to each reference cluster. We have calculated the fractional aerosol type distribution at 190 AERONET sites, as well as the monthly variation in aerosol type at those locations. The results are presented on a global map and individually in the supplementary material. Our aerosol typing is based on recognizing that different geographic regions exhibit characteristic aerosol types. To generate reference clusters we only keep data points that lie within a Mahalanobis distance of 2 from the centroid. Our aerosol characterization is based on the AERONET retrieved quantities, therefore it does not include low optical depth values. The analysis is based on "point sources" (the AERONET sites) rather than globally distributed values. The classifications obtained will be useful in interpreting aerosol retrievals from satellite borne instruments.

  2. A Feature Selection Method for Large-Scale Network Traffic Classification Based on Spark

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2016-02-01

    Full Text Available Currently, with the rapid increasing of data scales in network traffic classifications, how to select traffic features efficiently is becoming a big challenge. Although a number of traditional feature selection methods using the Hadoop-MapReduce framework have been proposed, the execution time was still unsatisfactory with numeral iterative computations during the processing. To address this issue, an efficient feature selection method for network traffic based on a new parallel computing framework called Spark is proposed in this paper. In our approach, the complete feature set is firstly preprocessed based on Fisher score, and a sequential forward search strategy is employed for subsets. The optimal feature subset is then selected using the continuous iterations of the Spark computing framework. The implementation demonstrates that, on the precondition of keeping the classification accuracy, our method reduces the time cost of modeling and classification, and improves the execution efficiency of feature selection significantly.

  3. The high-density lipoprotein-adjusted SCORE model worsens SCORE-based risk classification in a contemporary population of 30,824 Europeans

    DEFF Research Database (Denmark)

    Mortensen, Martin B; Afzal, Shoaib; Nordestgaard, Børge G;

    2015-01-01

    AIMS: Recent European guidelines recommend to include high-density lipoprotein (HDL) cholesterol in risk assessment for primary prevention of cardiovascular disease (CVD), using a SCORE-based risk model (SCORE-HDL). We compared the predictive performance of SCORE-HDL with SCORE in an independent.......8 years of follow-up, 339 individuals died of CVD. In the SCORE target population (age 40-65; n = 30,824), fewer individuals were at baseline categorized as high risk (≥5% 10-year risk of fatal CVD) using SCORE-HDL compared with SCORE (10 vs. 17% in men, 1 vs. 3% in women). SCORE-HDL did not improve...... discrimination of future fatal CVD, compared with SCORE, but decreased the detection rate (sensitivity) of the 5% high-risk threshold from 42 to 26%, yielding a negative net reclassification index (NRI) of -12%. Importantly, using SCORE-HDL, the sensitivity was zero among women. Both SCORE and SCORE...

  4. Cancer Pain: A Critical Review of Mechanism-based Classification and Physical Therapy Management in Palliative Care.

    Science.gov (United States)

    Kumar, Senthil P

    2011-05-01

    Mechanism-based classification and physical therapy management of pain is essential to effectively manage painful symptoms in patients attending palliative care. The objective of this review is to provide a detailed review of mechanism-based classification and physical therapy management of patients with cancer pain. Cancer pain can be classified based upon pain symptoms, pain mechanisms and pain syndromes. Classification based upon mechanisms not only addresses the underlying pathophysiology but also provides us with an understanding behind patient's symptoms and treatment responses. Existing evidence suggests that the five mechanisms - central sensitization, peripheral sensitization, sympathetically maintained pain, nociceptive and cognitive-affective - operate in patients with cancer pain. Summary of studies showing evidence for physical therapy treatment methods for cancer pain follows with suggested therapeutic implications. Effective palliative physical therapy care using a mechanism-based classification model should be tailored to suit each patient's findings, using a biopsychosocial model of pain. PMID:21976851

  5. Cancer pain: A critical review of mechanism-based classification and physical therapy management in palliative care

    Directory of Open Access Journals (Sweden)

    Senthil P Kumar

    2011-01-01

    Full Text Available Mechanism-based classification and physical therapy management of pain is essential to effectively manage painful symptoms in patients attending palliative care. The objective of this review is to provide a detailed review of mechanism-based classification and physical therapy management of patients with cancer pain. Cancer pain can be classified based upon pain symptoms, pain mechanisms and pain syndromes. Classification based upon mechanisms not only addresses the underlying pathophysiology but also provides us with an understanding behind patient′s symptoms and treatment responses. Existing evidence suggests that the five mechanisms - central sensitization, peripheral sensitization, sympathetically maintained pain, nociceptive and cognitive-affective - operate in patients with cancer pain. Summary of studies showing evidence for physical therapy treatment methods for cancer pain follows with suggested therapeutic implications. Effective palliative physical therapy care using a mechanism-based classification model should be tailored to suit each patient′s findings, using a biopsychosocial model of pain.

  6. Prediction of Runoff Model Based on Bayes Classification of Markov Method%基于Bayes分类的Markov径流量预测模型

    Institute of Scientific and Technical Information of China (English)

    邱林; 安可君; 王文川

    2011-01-01

    Aiming at the characteristics of the complexity of runoff cause and randomness of hydrological processes,and limitation of a single prediction method applied,a new method,called Bayes-Markov combined model,is presented based on Bayes theory and Markov theory.This paper attempts to use the Bayes formula to classify the low high annual runoff firstly,then to create forecasting model with the weighted Markov analysis method.The two prediction methods were scientifically combined,which generalizes advantages of the ones and raises the accuracy of runoff prediction.The prediction model was identified by taking prediction of annual runoff variation in Lanzhou Station of Yellow River Basin.The results show that the predicted values from 2003 to 2009 meet the requirements of the Specifications,and the accuracy of it was 85.7%.%针对河川径流成因复杂性和水文过程随机性的特点,且用单一预测法存在一定局限性的现状,提出混合Bayes-Markov预测模型。先用Bayes公式对径流进行丰枯分类,然后采用加权Markov分析方法建立预测模型,该模型可综合利用Bayes和Markov方法的优点,提高径流预测精度。以兰州站河川径流量预测为例,进行模型验证。结果表明,2003~2009年径流量预测精度达到85.7%,能满足规范要求。

  7. Hierarchical Classification of Chinese Documents Based on N-grams

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We explore the techniques of utilizing N-gram informatio n tocategorize Chinese text documents hierarchically so that the classifier can shak e off the burden of large dictionaries and complex segmentation processing, and subsequently be domain and time independent. A hierarchical Chinese text classif ier is implemented. Experimental results show that hierarchically classifying Chinese text documents based N-grams can achieve satisfactory performance and outperforms the other traditional Chinese text classifiers.

  8. Understanding Acupuncture Based on ZHENG Classification from System Perspective

    OpenAIRE

    Junwei Fang; Ningning Zheng; Yang Wang; Huijuan Cao; Shujun Sun; Jianye Dai; Qianhua Li; Yongyu Zhang

    2013-01-01

    Acupuncture is an efficient therapy method originated in ancient China, the study of which based on ZHENG classification is a systematic research on understanding its complexity. The system perspective is contributed to understand the essence of phenomena, and, as the coming of the system biology era, broader technology platforms such as omics technologies were established for the objective study of traditional chinese medicine (TCM). Omics technologies could dynamically determine molecular c...

  9. Active Dictionary Learning in Sparse Representation Based Classification

    OpenAIRE

    Xu, Jin; He, Haibo; Man, Hong

    2014-01-01

    Sparse representation, which uses dictionary atoms to reconstruct input vectors, has been studied intensively in recent years. A proper dictionary is a key for the success of sparse representation. In this paper, an active dictionary learning (ADL) method is introduced, in which classification error and reconstruction error are considered as the active learning criteria in selection of the atoms for dictionary construction. The learned dictionaries are caculated in sparse representation based...

  10. Label-Embedding for Attribute-Based Classification

    OpenAIRE

    Akata, Zeynep; Perronnin, Florent; Harchaoui, Zaid; Schmid, Cordelia

    2013-01-01

    International audience; Attributes are an intermediate representation, which enables parameter sharing between classes, a must when training data is scarce. We propose to view attribute-based image classification as a label-embedding problem: each class is embedded in the space of attribute vectors. We introduce a function which measures the compatibility between an image and a label embedding. The parameters of this function are learned on a training set of labeled samples to ensure that, gi...

  11. DATA MINING BASED TECHNIQUE FOR IDS ALERT CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Hany Nashat Gabra

    2015-06-01

    Full Text Available Intrusion detection systems (IDSs have become a widely used measure for security systems. The main problem for such systems is the irrelevant alerts. We propose a data mining based method for classification to distinguish serious and irrelevant alerts with a performance of 99.9%, which is better in comparison with the other recent data mining methods that achieved 97%. A ranked alerts list is also created according to the alert’s importance to minimize human interventions.

  12. Simple-Random-Sampling-Based Multiclass Text Classification Algorithm

    OpenAIRE

    Wuying Liu; Lin Wang; Mianzhu Yi

    2014-01-01

    Multiclass text classification (MTC) is a challenging issue and the corresponding MTC algorithms can be used in many applications. The space-time overhead of the algorithms must be concerned about the era of big data. Through the investigation of the token frequency distribution in a Chinese web document collection, this paper reexamines the power law and proposes a simple-random-sampling-based MTC (SRSMTC) algorithm. Supported by a token level memory to store labeled documents, the SRSMTC al...

  13. Expected energy-based restricted Boltzmann machine for classification.

    Science.gov (United States)

    Elfwing, S; Uchibe, E; Doya, K

    2015-04-01

    In classification tasks, restricted Boltzmann machines (RBMs) have predominantly been used in the first stage, either as feature extractors or to provide initialization of neural networks. In this study, we propose a discriminative learning approach to provide a self-contained RBM method for classification, inspired by free-energy based function approximation (FE-RBM), originally proposed for reinforcement learning. For classification, the FE-RBM method computes the output for an input vector and a class vector by the negative free energy of an RBM. Learning is achieved by stochastic gradient-descent using a mean-squared error training objective. In an earlier study, we demonstrated that the performance and the robustness of FE-RBM function approximation can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that the learning performance of RBM function approximation can be further improved by computing the output by the negative expected energy (EE-RBM), instead of the negative free energy. To create a deep learning architecture, we stack several RBMs on top of each other. We also connect the class nodes to all hidden layers to try to improve the performance even further. We validate the classification performance of EE-RBM using the MNIST data set and the NORB data set, achieving competitive performance compared with other classifiers such as standard neural networks, deep belief networks, classification RBMs, and support vector machines. The purpose of using the NORB data set is to demonstrate that EE-RBM with binary input nodes can achieve high performance in the continuous input domain. PMID:25318375

  14. Genre classification using chords and stochastic language models

    OpenAIRE

    Pérez Sancho, Carlos; Rizo Valero, David; Iñesta Quereda, José Manuel

    2009-01-01

    Music genre meta-data is of paramount importance for the organisation of music repositories. People use genre in a natural way when entering a music store or looking into music collections. Automatic genre classification has become a popular topic in music information retrieval research both, with digital audio and symbolic data. This work focuses on the symbolic approach, bringing to music cognition some technologies, like the stochastic language models, already successfully applied to text ...

  15. Tree-based disease classification using protein data.

    Science.gov (United States)

    Zhu, Hongtu; Yu, Chang-Yung; Zhang, Heping

    2003-09-01

    A reliable and precise classification of diseases is essential for successful diagnosis and treatment. Using mass spectrometry from clinical specimens, scientists may find the protein variations among disease and use this information to improve diagnosis. In this paper, we propose a novel procedure to classify disease status based on the protein data from mass spectrometry. Our new tree-based algorithm consists of three steps: projection, selection and classification tree. The projection step aims to project all observations from specimens into the same bases so that the projected data have fixed coordinates. Thus, for each specimen, we obtain a large vector of 'coefficients' on the same basis. The purpose of the selection step is data reduction by condensing the large vector from the projection step into a much lower order of informative vector. Finally, using these reduced vectors, we apply recursive partitioning to construct an informative classification tree. This method has been successfully applied to protein data, provided by the Department of Radiology and Chemistry at Duke University.

  16. Prediction and Classification of Human G-protein Coupled Receptors Based on Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    Yun-Fei Wang; Huan Chen; Yan-Hong Zhou

    2005-01-01

    A computational system for the prediction and classification of human G-protein coupled receptors (GPCRs) has been developed based on the support vector machine (SVM) method and protein sequence information. The feature vectors used to develop the SVM prediction models consist of statistically significant features selected from single amino acid, dipeptide, and tripeptide compositions of protein sequences. Furthermore, the length distribution difference between GPCRsand non-GPCRs has also been exploited to improve the prediction performance.The testing results with annotated human protein sequences demonstrate that this system can get good performance for both prediction and classification of human GPCRs.

  17. Sports Video Classification Based on Marked Genre Shots and Bag of Words Model%基于类型标志镜头与词袋模型的体育视频分类

    Institute of Scientific and Technical Information of China (English)

    朱映映; 朱艳艳; 文振焜

    2013-01-01

    基于内容的体育视频分类是高效管理大量体育视频数据的关键步骤之一,为提高体育视频分类方法的正确率及泛化能力,提出一种基于类型标志镜头与视觉词袋模型相结合的体育视频分类方法.首先给出类型标志镜头的定义,并通过类型标志镜头构建该镜头视频帧训练库;然后构建基于视频帧训练库的金字塔视觉词袋模型,将视频帧标志为归一化的词频向量,使用SVM对视频帧进行分类;再通过分析视频帧分类错误的原因及表现形式提出基于时序连续性孤立帧去除算法,以消除视频帧的错误归类.由于体育视频按组合类型可分为单一体育视频与混合体育视频,因此分别提出了单一体育视频及混合体育视频2种分类算法.实验结果表明,文中算法具有实现简单、处理速度快和准确度高的优点.%Content-based classification of sports video is one of the critical steps in the efficient management of a large number of sports video data.To improve the accuracy and generalization ability of sports video classification,a new sports video classification method based on the combination of marked genre shots and bag of visual words model is proposed.Firstly,the definition of the marked genre shots is given,and the video frame training database of marked genre shots is constructed with the marked genre shots.Secondly,the pyramid visual word bag model is constructed based on the video frame training database,each video frame is represented with a visual words frequency vector,and then the SVM is used to classify the video frame.Subsequently,by analyzing the misclassification causes,the isolated frame removal algorithm is proposed to eliminate the representative frame misclassification.Finally,as the sports video,according to its combination type,can be divided into single sports video and mixed sports video,two different classification algorithms for single sports video and mixed sports

  18. Partial volume tissue classification of multichannel magnetic resonance images-a mixel model.

    Science.gov (United States)

    Choi, H S; Haynor, D R; Kim, Y

    1991-01-01

    A single volume element (voxel) in a medical image may be composed of a mixture of multiple tissue types. The authors call voxels which contain multiple tissue classes mixels. A statistical mixel image model based on Markov random field (MRF) theory and an algorithm for the classification of mixels are presented. The authors concentrate on the classification of multichannel magnetic resonance (MR) images of the brain although the algorithm has other applications. The authors also present a method for compensating for the gray-level variation of MR images between different slices, which is primarily caused by the inhomogeneity of the RF field produced by the imaging coil. PMID:18222842

  19. The DTW-based representation space for seismic pattern classification

    Science.gov (United States)

    Orozco-Alzate, Mauricio; Castro-Cabrera, Paola Alexandra; Bicego, Manuele; Londoño-Bonilla, John Makario

    2015-12-01

    Distinguishing among the different seismic volcanic patterns is still one of the most important and labor-intensive tasks for volcano monitoring. This task could be lightened and made free from subjective bias by using automatic classification techniques. In this context, a core but often overlooked issue is the choice of an appropriate representation of the data to be classified. Recently, it has been suggested that using a relative representation (i.e. proximities, namely dissimilarities on pairs of objects) instead of an absolute one (i.e. features, namely measurements on single objects) is advantageous to exploit the relational information contained in the dissimilarities to derive highly discriminant vector spaces, where any classifier can be used. According to that motivation, this paper investigates the suitability of a dynamic time warping (DTW) dissimilarity-based vector representation for the classification of seismic patterns. Results show the usefulness of such a representation in the seismic pattern classification scenario, including analyses of potential benefits from recent advances in the dissimilarity-based paradigm such as the proper selection of representation sets and the combination of different dissimilarity representations that might be available for the same data.

  20. Changing Histopathological Diagnostics by Genome-Based Tumor Classification

    Directory of Open Access Journals (Sweden)

    Michael Kloth

    2014-05-01

    Full Text Available Traditionally, tumors are classified by histopathological criteria, i.e., based on their specific morphological appearances. Consequently, current therapeutic decisions in oncology are strongly influenced by histology rather than underlying molecular or genomic aberrations. The increase of information on molecular changes however, enabled by the Human Genome Project and the International Cancer Genome Consortium as well as the manifold advances in molecular biology and high-throughput sequencing techniques, inaugurated the integration of genomic information into disease classification. Furthermore, in some cases it became evident that former classifications needed major revision and adaption. Such adaptations are often required by understanding the pathogenesis of a disease from a specific molecular alteration, using this molecular driver for targeted and highly effective therapies. Altogether, reclassifications should lead to higher information content of the underlying diagnoses, reflecting their molecular pathogenesis and resulting in optimized and individual therapeutic decisions. The objective of this article is to summarize some particularly important examples of genome-based classification approaches and associated therapeutic concepts. In addition to reviewing disease specific markers, we focus on potentially therapeutic or predictive markers and the relevance of molecular diagnostics in disease monitoring.

  1. Simple-Random-Sampling-Based Multiclass Text Classification Algorithm

    Directory of Open Access Journals (Sweden)

    Wuying Liu

    2014-01-01

    Full Text Available Multiclass text classification (MTC is a challenging issue and the corresponding MTC algorithms can be used in many applications. The space-time overhead of the algorithms must be concerned about the era of big data. Through the investigation of the token frequency distribution in a Chinese web document collection, this paper reexamines the power law and proposes a simple-random-sampling-based MTC (SRSMTC algorithm. Supported by a token level memory to store labeled documents, the SRSMTC algorithm uses a text retrieval approach to solve text classification problems. The experimental results on the TanCorp data set show that SRSMTC algorithm can achieve the state-of-the-art performance at greatly reduced space-time requirements.

  2. Semantic analysis based forms information retrieval and classification

    Science.gov (United States)

    Saba, Tanzila; Alqahtani, Fatimah Ayidh

    2013-09-01

    Data entry forms are employed in all types of enterprises to collect hundreds of customer's information on daily basis. The information is filled manually by the customers. Hence, it is laborious and time consuming to use human operator to transfer these customers information into computers manually. Additionally, it is expensive and human errors might cause serious flaws. The automatic interpretation of scanned forms has facilitated many real applications from speed and accuracy point of view such as keywords spotting, sorting of postal addresses, script matching and writer identification. This research deals with different strategies to extract customer's information from these scanned forms, interpretation and classification. Accordingly, extracted information is segmented into characters for their classification and finally stored in the forms of records in databases for their further processing. This paper presents a detailed discussion of these semantic based analysis strategies for forms processing. Finally, new directions are also recommended for future research. [Figure not available: see fulltext.

  3. Entropy coders for image compression based on binary forward classification

    Science.gov (United States)

    Yoo, Hoon; Jeong, Jechang

    2000-12-01

    Entropy coders as a noiseless compression method are widely used as final step compression for images, and there have been many contributions to increase of entropy coder performance and to reduction of entropy coder complexity. In this paper, we propose some entropy coders based on the binary forward classification (BFC). The BFC requires overhead of classification but there is no change between the amount of input information and the total amount of classified output information, which we prove this property in this paper. And using the proved property, we propose entropy coders that are the BFC followed by Golomb-Rice coders (BFC+GR) and the BFC followed by arithmetic coders (BFC+A). The proposed entropy coders introduce negligible additional complexity due to the BFC. Simulation results also show better performance than other entropy coders that have similar complexity to the proposed coders.

  4. An ellipse detection algorithm based on edge classification

    Science.gov (United States)

    Yu, Liu; Chen, Feng; Huang, Jianming; Wei, Xiangquan

    2015-12-01

    In order to enhance the speed and accuracy of ellipse detection, an ellipse detection algorithm based on edge classification is proposed. Too many edge points are removed by making edge into point in serialized form and the distance constraint between the edge points. It achieves effective classification by the criteria of the angle between the edge points. And it makes the probability of randomly selecting the edge points falling on the same ellipse greatly increased. Ellipse fitting accuracy is significantly improved by the optimization of the RED algorithm. It uses Euclidean distance to measure the distance from the edge point to the elliptical boundary. Experimental results show that: it can detect ellipse well in case of edge with interference or edges blocking each other. It has higher detecting precision and less time consuming than the RED algorithm.

  5. 以犯罪分类为基础的狱内防控模式%Crime Prevention Model inside Prison Based on Crime Classification

    Institute of Scientific and Technical Information of China (English)

    徐为霞; 王火钦; 王秀丽

    2014-01-01

    监狱安全的核心在于狱内犯罪的防控,狱内犯罪防控必须以犯罪分类为基础。狱内犯罪可以分为预谋犯罪、情景犯罪和激情犯罪三类。狱内防控主要有三种模式:预谋犯罪---主动侦查模式;情景犯罪---排查防控模式;激情犯罪---处置和解模式。%The core of prison safety lies in the prevention and control of crimes inside prison, which must be the basis for the classification of crime.Crimes inside prison can be divided into premeditated crime, scene crime and crimes of passion. Crime prevention inside prison has three modes : premeditated crime - active investigation;scene crime - investigation and prevention mode;crime of passion - disposal reconciliation mode.

  6. Variable Star Signature Classification using Slotted Symbolic Markov Modeling

    CERN Document Server

    Johnston, Kyle B

    2016-01-01

    With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. This paper focuses on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern classification algorithm for the identification of variable stars. A methodology for the reduction of stellar variable observations (time-domain data) into a novel feature space representation is introduced. The methodology presented will be referred to as Slotted Symbolic Markov Modeling (SSMM) and has a number of advantages which will be demonstrated to be beneficial; specifically to the supervised classification of stellar variables. It will be shown that the methodology outperformed a baseline standard methodology on a standardized set of stellar light curve data. The performance on ...

  7. [Animal Models of Depression: Behavior as the Basis for Methodology, Assessment Criteria and Classifications].

    Science.gov (United States)

    Grigoryan, G A; Gulyaeva, N V

    2015-01-01

    Analysis of the current state modeling of depression in animals is presented. Criteria and classification systems of the existing models are considered as well as approaches to the assessment of model validity. Though numerous approaches to modeling of depressive states based on disturbances of both motivational and emotional brain mechanisms have been elaborated, no satisfactory model of stable depression state has been developed yet. However, the diversity of existing models is quite positive since it allows performing targeted studies of selected neurobiological mechanisms and laws of depressive state development, as well as to investigate mechanisms of action and predict pharmacological profiles of potential antidepressants. PMID:26841653

  8. Local fractal dimension based approaches for colonic polyp classification.

    Science.gov (United States)

    Häfner, Michael; Tamaki, Toru; Tanaka, Shinji; Uhl, Andreas; Wimmer, Georg; Yoshida, Shigeto

    2015-12-01

    This work introduces texture analysis methods that are based on computing the local fractal dimension (LFD; or also called the local density function) and applies them for colonic polyp classification. The methods are tested on 8 HD-endoscopic image databases, where each database is acquired using different imaging modalities (Pentax's i-Scan technology combined with or without staining the mucosa) and on a zoom-endoscopic image database using narrow band imaging. In this paper, we present three novel extensions to a LFD based approach. These extensions additionally extract shape and/or gradient information of the image to enhance the discriminativity of the original approach. To compare the results of the LFD based approaches with the results of other approaches, five state of the art approaches for colonic polyp classification are applied to the employed databases. Experiments show that LFD based approaches are well suited for colonic polyp classification, especially the three proposed extensions. The three proposed extensions are the best performing methods or at least among the best performing methods for each of the employed databases. The methods are additionally tested by means of a public texture image database, the UIUCtex database. With this database, the viewpoint invariance of the methods is assessed, an important features for the employed endoscopic image databases. Results imply that most of the LFD based methods are more viewpoint invariant than the other methods. However, the shape, size and orientation adapted LFD approaches (which are especially designed to enhance the viewpoint invariance) are in general not more viewpoint invariant than the other LFD based approaches.

  9. Rule based fuzzy logic approach for classification of fibromyalgia syndrome.

    Science.gov (United States)

    Arslan, Evren; Yildiz, Sedat; Albayrak, Yalcin; Koklukaya, Etem

    2016-06-01

    Fibromyalgia syndrome (FMS) is a chronic muscle and skeletal system disease observed generally in women, manifesting itself with a widespread pain and impairing the individual's quality of life. FMS diagnosis is made based on the American College of Rheumatology (ACR) criteria. However, recently the employability and sufficiency of ACR criteria are under debate. In this context, several evaluation methods, including clinical evaluation methods were proposed by researchers. Accordingly, ACR had to update their criteria announced back in 1990, 2010 and 2011. Proposed rule based fuzzy logic method aims to evaluate FMS at a different angle as well. This method contains a rule base derived from the 1990 ACR criteria and the individual experiences of specialists. The study was conducted using the data collected from 60 inpatient and 30 healthy volunteers. Several tests and physical examination were administered to the participants. The fuzzy logic rule base was structured using the parameters of tender point count, chronic widespread pain period, pain severity, fatigue severity and sleep disturbance level, which were deemed important in FMS diagnosis. It has been observed that generally fuzzy predictor was 95.56 % consistent with at least of the specialists, who are not a creator of the fuzzy rule base. Thus, in diagnosis classification where the severity of FMS was classified as well, consistent findings were obtained from the comparison of interpretations and experiences of specialists and the fuzzy logic approach. The study proposes a rule base, which could eliminate the shortcomings of 1990 ACR criteria during the FMS evaluation process. Furthermore, the proposed method presents a classification on the severity of the disease, which was not available with the ACR criteria. The study was not limited to only disease classification but at the same time the probability of occurrence and severity was classified. In addition, those who were not suffering from FMS were

  10. Rule based fuzzy logic approach for classification of fibromyalgia syndrome.

    Science.gov (United States)

    Arslan, Evren; Yildiz, Sedat; Albayrak, Yalcin; Koklukaya, Etem

    2016-06-01

    Fibromyalgia syndrome (FMS) is a chronic muscle and skeletal system disease observed generally in women, manifesting itself with a widespread pain and impairing the individual's quality of life. FMS diagnosis is made based on the American College of Rheumatology (ACR) criteria. However, recently the employability and sufficiency of ACR criteria are under debate. In this context, several evaluation methods, including clinical evaluation methods were proposed by researchers. Accordingly, ACR had to update their criteria announced back in 1990, 2010 and 2011. Proposed rule based fuzzy logic method aims to evaluate FMS at a different angle as well. This method contains a rule base derived from the 1990 ACR criteria and the individual experiences of specialists. The study was conducted using the data collected from 60 inpatient and 30 healthy volunteers. Several tests and physical examination were administered to the participants. The fuzzy logic rule base was structured using the parameters of tender point count, chronic widespread pain period, pain severity, fatigue severity and sleep disturbance level, which were deemed important in FMS diagnosis. It has been observed that generally fuzzy predictor was 95.56 % consistent with at least of the specialists, who are not a creator of the fuzzy rule base. Thus, in diagnosis classification where the severity of FMS was classified as well, consistent findings were obtained from the comparison of interpretations and experiences of specialists and the fuzzy logic approach. The study proposes a rule base, which could eliminate the shortcomings of 1990 ACR criteria during the FMS evaluation process. Furthermore, the proposed method presents a classification on the severity of the disease, which was not available with the ACR criteria. The study was not limited to only disease classification but at the same time the probability of occurrence and severity was classified. In addition, those who were not suffering from FMS were

  11. A mixed effects least squares support vector machine model for classification of longitudinal data

    OpenAIRE

    Luts, Jan; Molenberghs, Geert; Verbeke, Geert; Van Huffel, Sabine; Suykens, Johan A.K.

    2012-01-01

    A mixed effects least squares support vector machine (LS-SVM) classifier is introduced to extend the standard LS-SVM classifier for handling longitudinal data. The mixed effects LS-SVM model contains a random intercept and allows to classify highly unbalanced data, in the sense that there is an unequal number of observations for each case at non-fixed time points. The methodology consists of a regression modeling and a classification step based on the obtained regression estimates. Regression...

  12. A Novel Algorithm of Network Trade Customer Classification Based on Fourier Basis Functions

    Directory of Open Access Journals (Sweden)

    Li Xinwu

    2013-11-01

    Full Text Available Learning algorithm of neural network is always an important research contents in neural network theory research and application field, learning algorithm about the feed-forward neural network has no satisfactory solution in particular for its defects in calculation speed. The paper presents a new Fourier basis functions neural network algorithm and applied it to classify network trade customer. First, 21 customer classification indicators are designed, based on characteristics and behaviors analysis of network trade customer, including customer characteristics type variables and customer behaviors type variables,; Second, Fourier basis functions is used to improve the calculation flow and algorithm structure of original BP neural network algorithm to speed up its convergence and then a new Fourier basis neural network model is constructed. Finally the experimental results show that the problem of convergence speed can been solved, and the accuracy of the customer classification are ensured when the new algorithm is used in network trade customer classification practically.

  13. Classification of Ocean Acoustic Data Using AR Modeling and Wavelet Transforms

    OpenAIRE

    Fargues, Monique P.; Bennett, R., Harris, J.; Barsanti, R. J.

    1997-01-01

    This study investigates the application of orthogonal, non-orthogonal wavelet-based procedures, and AR modeling as feature extraction techniques to classify several classes of underwater signals consisting of sperm whale, killer whale, gray whale, pilot whale, humpback whale, and underwater earthquake data. A two-hidden-layer back-propagation neural network is used for the classification procedure. Performance obtained using the two wavelet-based schemes are compared with those obtained usin...

  14. Classification and identification of amino acids based on THz spectroscopy

    Science.gov (United States)

    Huang, Ping J.; Ma, Ye H.; Li, Xian; Hou, Di B.; Cai, Jin H.; Zhang, Guang X.

    2015-11-01

    Amino acids are important nutrient substances for life, and many of them have several isomerides, while only L-type amino acids can be absorbed by body as nutrients. So it is certain worth to accurately classify and identify amino acids. In this paper, terahertz time-domain spectroscopy (THz-TDS) was used to detect isomers of various amino acids to obtain their absorption spectra, and their spectral characteristics were analyzed and compared. Results show that not all isomerides of amino acids have unique spectral characteristics, causing the difficulty of classification and identification. To solve this problem, partial least squares discriminant analysis (PLS-DA), firstly, was performed on extracting principal component of THz spectroscopy and classifying amino acids. Moreover, variable selection (VS) was employed to optimize spectral interval of feature extraction to improve analysis effect. As a result, the optimal classification model was determined and most samples can be accurately classified. Secondly, for each class of amino acids, PLS-DA combined with VS was also applied to identify isomerides. This work provides a suggestion for material classification and identification with THz spectroscopy.

  15. Analytical models and system topologies for remote multispectral data acquisition and classification

    Science.gov (United States)

    Huck, F. O.; Park, S. K.; Burcher, E. E.; Kelly, W. L., IV

    1978-01-01

    Simple analytical models are presented of the radiometric and statistical processes that are involved in multispectral data acquisition and classification. Also presented are basic system topologies which combine remote sensing with data classification. These models and topologies offer a preliminary but systematic step towards the use of computer simulations to analyze remote multispectral data acquisition and classification systems.

  16. Spectral classification of stars based on LAMOST spectra

    CERN Document Server

    Liu, Chao; Zhang, Bo; Wan, Jun-Chen; Deng, Li-Cai; Hou, Yonghui; Wang, Yuefei; Yang, Ming; Zhang, Yong

    2015-01-01

    In this work, we select the high signal-to-noise ratio spectra of stars from the LAMOST data andmap theirMK classes to the spectral features. The equivalentwidths of the prominent spectral lines, playing the similar role as the multi-color photometry, form a clean stellar locus well ordered by MK classes. The advantage of the stellar locus in line indices is that it gives a natural and continuous classification of stars consistent with either the broadly used MK classes or the stellar astrophysical parameters. We also employ a SVM-based classification algorithm to assignMK classes to the LAMOST stellar spectra. We find that the completenesses of the classification are up to 90% for A and G type stars, while it is down to about 50% for OB and K type stars. About 40% of the OB and K type stars are mis-classified as A and G type stars, respectively. This is likely owe to the difference of the spectral features between the late B type and early A type stars or between the late G and early K type stars are very we...

  17. Risk Classification and Risk-based Safety and Mission Assurance

    Science.gov (United States)

    Leitner, Jesse A.

    2014-01-01

    Recent activities to revamp and emphasize the need to streamline processes and activities for Class D missions across the agency have led to various interpretations of Class D, including the lumping of a variety of low-cost projects into Class D. Sometimes terms such as Class D minus are used. In this presentation, mission risk classifications will be traced to official requirements and definitions as a measure to ensure that projects and programs align with the guidance and requirements that are commensurate for their defined risk posture. As part of this, the full suite of risk classifications, formal and informal will be defined, followed by an introduction to the new GPR 8705.4 that is currently under review.GPR 8705.4 lays out guidance for the mission success activities performed at the Classes A-D for NPR 7120.5 projects as well as for projects not under NPR 7120.5. Furthermore, the trends in stepping from Class A into higher risk posture classifications will be discussed. The talk will conclude with a discussion about risk-based safety and mission assuranceat GSFC.

  18. Classification of body movements based on posturographic data.

    Science.gov (United States)

    Saripalle, Sashi K; Paiva, Gavin C; Cliett, Thomas C; Derakhshani, Reza R; King, Gregory W; Lovelace, Christopher T

    2014-02-01

    The human body, standing on two feet, produces a continuous sway pattern. Intended movements, sensory cues, emotional states, and illnesses can all lead to subtle changes in sway appearing as alterations in ground reaction forces and the body's center of pressure (COP). The purpose of this study is to demonstrate that carefully selected COP parameters and classification methods can differentiate among specific body movements while standing, providing new prospects in camera-free motion identification. Force platform data were collected from participants performing 11 choreographed postural and gestural movements. Twenty-three different displacement- and frequency-based features were extracted from COP time series, and supplied to classification-guided feature extraction modules. For identification of movement type, several linear and nonlinear classifiers were explored; including linear discriminants, nearest neighbor classifiers, and support vector machines. The average classification rates on previously unseen test sets ranged from 67% to 100%. Within the context of this experiment, no single method was able to uniformly outperform the others for all movement types, and therefore a set of movement-specific features and classifiers is recommended.

  19. An Approach for Leukemia Classification Based on Cooperative Game Theory

    Directory of Open Access Journals (Sweden)

    Atefeh Torkaman

    2011-01-01

    Full Text Available Hematological malignancies are the types of cancer that affect blood, bone marrow and lymph nodes. As these tissues are naturally connected through the immune system, a disease affecting one of them will often affect the others as well. The hematological malignancies include; Leukemia, Lymphoma, Multiple myeloma. Among them, leukemia is a serious malignancy that starts in blood tissues especially the bone marrow, where the blood is made. Researches show, leukemia is one of the common cancers in the world. So, the emphasis on diagnostic techniques and best treatments would be able to provide better prognosis and survival for patients. In this paper, an automatic diagnosis recommender system for classifying leukemia based on cooperative game is presented. Through out this research, we analyze the flow cytometry data toward the classification of leukemia into eight classes. We work on real data set from different types of leukemia that have been collected at Iran Blood Transfusion Organization (IBTO. Generally, the data set contains 400 samples taken from human leukemic bone marrow. This study deals with cooperative game used for classification according to different weights assigned to the markers. The proposed method is versatile as there are no constraints to what the input or output represent. This means that it can be used to classify a population according to their contributions. In other words, it applies equally to other groups of data. The experimental results show the accuracy rate of 93.12%, for classification and compared to decision tree (C4.5 with (90.16% in accuracy. The result demonstrates that cooperative game is very promising to be used directly for classification of leukemia as a part of Active Medical decision support system for interpretation of flow cytometry readout. This system could assist clinical hematologists to properly recognize different kinds of leukemia by preparing suggestions and this could improve the treatment

  20. Content-based image retrieval applied to BI-RADS tissue classification in screening mammography

    OpenAIRE

    2011-01-01

    AIM: To present a content-based image retrieval (CBIR) system that supports the classification of breast tissue density and can be used in the processing chain to adapt parameters for lesion segmentation and classification.

  1. Spatial uncertainty modeling of fuzzy information in images for pattern classification.

    Directory of Open Access Journals (Sweden)

    Tuan D Pham

    Full Text Available The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction.

  2. A minimum spanning forest based classification method for dedicated breast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Robert [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Sechopoulos, Ioannis [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 (United States); Fei, Baowei, E-mail: bfei@emory.edu [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322 (United States); Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322 (United States); Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 (United States)

    2015-11-15

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.

  3. A minimum spanning forest based classification method for dedicated breast CT images

    International Nuclear Information System (INIS)

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging

  4. Content Based Image Retrieval : Classification Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Shereena V.B

    2014-10-01

    Full Text Available In a content-based image retrieval system (CBIR, the main issue is to extract the image features that effectively represent the image contents in a database. Such an extraction requires a detailed evaluation of retrieval performance of image features. This paper presents a review of fundamental aspects of content based image retrieval including feature extraction of color and texture features. Commonly used color features including color moments, color histogram and color correlogram and Gabor texture are compared. The paper reviews the increase in efficiency of image retrieval when the color and texture features are combined. The similarity measures based on which matches are made and images are retrieved are also discussed. For effective indexing and fast searching of images based on visual features, neural network based pattern learning can be used to achieve effective classification.

  5. Content Based Image Retrieval : Classification Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Shereena V.B

    2014-11-01

    Full Text Available In a content-based image retrieval system (CBIR, the main issue is to extract the image features that effectively represent the image contents in a database. Such an extraction requires a detailed evaluation of retrieval performance of image features. This paper presents a review of fundamental aspects of content based image retrieval including feature extraction of color and texture features. Commonly used color features including color moments, color histogram and color correlogram and Gabor texture are compared. The paper reviews the increase in efficiency of image retrieval when the color and texture features are combined. The similarity measures based on which matches are made and images are retrieved are also discussed. For effective indexing and fast searching of images based on visual features, neural network based pattern learning can be used to achieve effective classification.

  6. Texton Based Shape Features on Local Binary Pattern for Age Classification

    OpenAIRE

    V. Vijaya Kumar; B. Eswara Reddy; P. Chandra Sekhar Reddy

    2012-01-01

    Classification and recognition of objects is interest of many researchers. Shape is a significant feature of objects and it plays a crucial role in image classification and recognition. The present paper assumes that the features that drastically affect the adulthood classification system are the Shape features (SF) of face. Based on this, the present paper proposes a new technique of adulthood classification by extracting feature parameters of face on Integrated Texton based LBP (IT-LBP) ima...

  7. A generalized representation-based approach for hyperspectral image classification

    Science.gov (United States)

    Li, Jiaojiao; Li, Wei; Du, Qian; Li, Yunsong

    2016-05-01

    Sparse representation-based classifier (SRC) is of great interest recently for hyperspectral image classification. It is assumed that a testing pixel is linearly combined with atoms of a dictionary. Under this circumstance, the dictionary includes all the training samples. The objective is to find a weight vector that yields a minimum L2 representation error with the constraint that the weight vector is sparse with a minimum L1 norm. The pixel is assigned to the class whose training samples yield the minimum error. In addition, collaborative representation-based classifier (CRC) is also proposed, where the weight vector has a minimum L2 norm. The CRC has a closed-form solution; when using class-specific representation it can yield even better performance than the SRC. Compared to traditional classifiers such as support vector machine (SVM), SRC and CRC do not have a traditional training-testing fashion as in supervised learning, while their performance is similar to or even better than SVM. In this paper, we investigate a generalized representation-based classifier which uses Lq representation error, Lp weight norm, and adaptive regularization. The classification performance of Lq and Lp combinations is evaluated with several real hyperspectral datasets. Based on these experiments, recommendation is provide for practical implementation.

  8. Risk Classification Model for Design and Build Projects

    Directory of Open Access Journals (Sweden)

    O. E. Ogunsanmi

    2011-07-01

    Full Text Available The purpose of this paper is to investigate if the various risk sources in Design and Build projects can be classified into three risk groups of cost, time and quality using the discriminant analysis technique. Literature search was undertaken to review issues of risk sources, classification of the identified risks into a risk structure, management of risks and effects of risks all on Design and Build projects as well as concepts of discriminant analysis as a statistical technique. This literature review was undertaken through the use of internet, published papers, journal articles and other published reports on risks in Design and Build projects. A research questionnaire was further designed to collect research information. This research study is a survey research that utilized cross-sectional design to capture the primary data. The data for the survey was collected in Nigeria. In all 40 questionnaires were sent to various respondents that included Architects, Engineers, Quantity Surveyors and Builders who had used Design and Build procurement method for their recently completed projects. Responses from these retrieved questionnaires that measured the impact of risks on Design and Build were analyzed using the discriminant analysis technique through the use of SPSS software package to build two discriminant models for classifying risks into cost, time and quality risk groups. Results of the study indicate that time overrun and poor quality are the two factors that discriminate between cost, time and quality related risk groups. These two discriminant functions explain the variation between the risk groups. All the discriminating variables of cost overrun, time overrun and poor quality demonstrate some relationships with the two discriminant functions. The two discriminant models built can classify risks in Design and Build projects into risk groups of cost, time and quality. These classifications models have 72% success rate of classification

  9. Active Build-Model Random Forest Method for Network Traffic Classification

    Directory of Open Access Journals (Sweden)

    Alhamza Munther

    2014-05-01

    Full Text Available Network traffic classification continues to be an interesting subject among numerous networking communities. This method introduces multi-beneficial solutions in different avenues, such as network security, network management, anomaly detection, and quality-of-service. In this paper, we propose a supervised machine learning method that efficiently classifies different types of applications using the Active Build-Model Random Forest (ABRF method. This method constructs a new build model for the original Random Forest (RF method to decrease processing time. This build model includes only the active trees (i.e., trees with high accuracy, whereas the passive trees are excluded from the forest. The passive trees were excluded without any negative effect on classification accuracy. Results show that the ABRF method decreases the processing time by up to 37.5% compared with the original RF method. Our model has an overall accuracy of 98.66% based on the benchmark dataset considered in this paper.

  10. Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral Images and LiDAR Data

    Directory of Open Access Journals (Sweden)

    Xiaolong Liu

    2015-01-01

    Full Text Available Identification of crop species is an important issue in agricultural management. In recent years, many studies have explored this topic using multi-spectral and hyperspectral remote sensing data. In this study, we perform dedicated research to propose a framework for mapping crop species by combining hyperspectral and Light Detection and Ranging (LiDAR data in an object-based image analysis (OBIA paradigm. The aims of this work were the following: (i to understand the performances of different spectral dimension-reduced features from hyperspectral data and their combination with LiDAR derived height information in image segmentation; (ii to understand what classification accuracies of crop species can be achieved by combining hyperspectral and LiDAR data in an OBIA paradigm, especially in regions that have fragmented agricultural landscape and complicated crop planting structure; and (iii to understand the contributions of the crop height that is derived from LiDAR data, as well as the geometric and textural features of image objects, to the crop species’ separabilities. The study region was an irrigated agricultural area in the central Heihe river basin, which is characterized by many crop species, complicated crop planting structures, and fragmented landscape. The airborne hyperspectral data acquired by the Compact Airborne Spectrographic Imager (CASI with a 1 m spatial resolution and the Canopy Height Model (CHM data derived from the LiDAR data acquired by the airborne Leica ALS70 LiDAR system were used for this study. The image segmentation accuracies of different feature combination schemes (very high-resolution imagery (VHR, VHR/CHM, and minimum noise fractional transformed data (MNF/CHM were evaluated and analyzed. The results showed that VHR/CHM outperformed the other two combination schemes with a segmentation accuracy of 84.8%. The object-based crop species classification results of different feature integrations indicated that

  11. Using decision models to decompose anxiety-related bias in threat classification.

    Science.gov (United States)

    White, Corey N; Skokin, Kimberly; Carlos, Brandon; Weaver, Alexandria

    2016-03-01

    Individuals with high levels of anxiety show preferential processing of threatening information, and this cognitive bias is thought to be an integral component of anxiety disorders. In threat classification tasks, this bias manifests as high-anxiety participants being more likely to classify stimuli as threatening than their low-anxiety counterparts. However, it is unclear which cognitive mechanisms drive this bias in threat classification. To better understand this phenomenon, threat classification data were analyzed with 2 decision models: a signal detection model and a drift-diffusion model. Signal detection models can dissociate measures of discriminability and bias, and diffusion models can further dissociate bias due to response preparation from bias due to stimulus evaluation. Individuals in the study completed a trait anxiety measure and classified threatening and neutral words based on whether they deemed them threatening. Signal detection analysis showed that high-anxiety participants had a bias driven by a weaker threat criterion than low-anxiety participants, but no differences in discriminability. Drift-diffusion analysis further decomposed the threat bias to show that it is driven by both an expectation bias that the threat response was more likely to be correct, and a stimulus bias driven by a weaker criterion for evaluating the stimuli under consideration. These model-based analyses provide valuable insight and show that multiple cognitive mechanisms underlie differential threat processing in anxiety. Implications for theories of anxiety are discussed.

  12. Classification and radiative-transfer modeling of meteorite spectra

    Science.gov (United States)

    Pentikäinen, H.; Penttilä, A.; Peltoniemi, J.; Muinonen, K.

    2014-07-01

    The interpretation of asteroid spectra is closely tied to surface structure and composition. Asteroid surfaces are usually assumed to be covered with a regolith, which is a mixture of mineral grains ranging from micrometers to centimeters in size. The inverse problem of deducing the characteristics of the grains from the scattering of light (e.g., using photometric and polarimetric observations) is difficult. Meteorite spectroscopy can be a valuable alternative source of information considering that unweathered meteoritic ''falls'' are almost pristine samples of their parent bodies. Reflectance spectra of 18 different meteorite samples were measured with the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO) covering a wavelength range of 450--2250 nm [1,2]. The measurements expand the database of reflectance spectra obtained by Paton et al. [3] and Gaffey [4]. Principal Component Analysis (PCA) performed on the spectra indicates a separation of the undifferentiated ordinary chondrites and the differentiated achondrites. The principal components also suggest a discrimination between the spectra of ordinary chondrites with petrologic grades 5 and 6. The distinction is not present when the data are supplemented with the spectra from the two other data sets obtained with differing measuring techniques. To further investigate the different classifications, the PCA is implemented with selected spectral features contrary to the previous analyses, which encompassed the complete spectra. Single-scattering albedos for meteoritic fundamental scatterers were derived with a Monte Carlo radiative-transfer model [1]. In the derivation, realistic scattering phase functions were utilized. The functions were obtained by fitting triple Henyey-Greenstein functions to the measured scattering phase functions of olivine powder for two different size distributions [5,6]. The simulated reflectances for different scattering phase functions were matched to the measured meteorite

  13. Concept Association and Hierarchical Hamming Clustering Model in Text Classification

    Institute of Scientific and Technical Information of China (English)

    Su Gui-yang; Li Jian-hua; Ma Ying-hua; Li Sheng-hong; Yin Zhong-hang

    2004-01-01

    We propose two models in this paper. The concept of association model is put forward to obtain the co-occurrence relationships among keywords in the documents and the hierarchical Hamming clustering model is used to reduce the dimensionality of the category feature vector space which can solve the problem of the extremely high dimensionality of the documents' feature space. The results of experiment indicate that it can obtain the co-occurrence relations among keywords in the documents which promote the recall of classification system effectively. The hierarchical Hamming clustering model can reduce the dimensionality of the category feature vector efficiently, the size of the vector space is only about 10% of the primary dimensionality.

  14. Generalization performance of graph-based semisupervised classification

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Semi-supervised learning has been of growing interest over the past few years and many methods have been proposed. Although various algorithms are provided to implement semi-supervised learning,there are still gaps in our understanding of the dependence of generalization error on the numbers of labeled and unlabeled data. In this paper,we consider a graph-based semi-supervised classification algorithm and establish its generalization error bounds. Our results show the close relations between the generalization performance and the structural invariants of data graph.

  15. GSM-MRF based classification approach for real-time moving object detection

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Statistical and contextual information are typically used to detect moving regions in image sequences for a fixed camera. In this paper, we propose a fast and stable linear discriminant approach based on Gaussian Single Model (GSM) and Markov Random Field (MRF). The performance of GSM is analyzed first, and then two main improvements corresponding to the drawbacks of GSM are proposed: the latest filtered data based update scheme of the background model and the linear classification judgment rule based on spatial-temporal feature specified by MRF. Experimental results show that the proposed method runs more rapidly and accurately when compared with other methods.

  16. A Method for Data Classification Based on Discernibility Matrix and Discernibility Function

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method for data classification will influence the efficiency of classification. Attributes reduction based on discernibility matrix and discernibility function in rough sets can use in data classification, so we put forward a method for data classification. Namely, firstly, we use discernibility matrix and discernibility function to delete superfluous attributes in formation system and get a necessary attribute set. Secondly, we delete superfluous attribute values and get decision rules. Finally, we classify data by means of decision rules. The experiments show that data classification using this method is simpler in the structure, and can improve the efficiency of classification.

  17. Feature-Opinion Pairs Classification Based on Dependency Relations and Maximum Entropy Model%基于依存关系和最大熵的特征-情感对分类

    Institute of Scientific and Technical Information of China (English)

    张磊; 李珊; 彭舰; 陈黎; 黎红友

    2014-01-01

    In recent years, feature-opinion pairs classification of Chinese product review is one of the most important research field in Web data mining technology. In this paper, five types of Chinese dependency relationships for product review have been concluded based on the traditional English dependency grammar. The maximum entropy model is used to predict the opinion-relevant product feature relations. To train the model, a set of feature symbol combinations have been designed by means of Chinese dependency. The experiment result shows that the recall and F-score of our approach could reach 78.68%and 75.36%respectively, which is clearly superior to Hu’s adjacent based method and Popesecu’s pattern based method.%中文产品评论特征词与关联的情感词的分类是观点挖掘的重要研究内容之一。该文改进了英文依存关系语法,总结出5种常用的中文产品评论依存关系;利用最大熵模型进行训练,设计了基于依存关系的复合特征模板。实验证明,应用该复合模板进行特征-情感对的提取,系统的查全率和F-score相比于传统方法,分别提高到78.68%和75.36%。

  18. A Categorical Framework for Model Classification in the Geosciences

    Science.gov (United States)

    Hauhs, Michael; Trancón y Widemann, Baltasar; Lange, Holger

    2016-04-01

    Models have a mixed record of success in the geosciences. In meteorology, model development and implementation has been among the first and most successful examples of triggering computer technology in science. On the other hand, notorious problems such as the 'equifinality issue' in hydrology lead to a rather mixed reputation of models in other areas. The most successful models in geosciences are applications of dynamic systems theory to non-living systems or phenomena. Thus, we start from the hypothesis that the success of model applications relates to the influence of life on the phenomenon under study. We thus focus on the (formal) representation of life in models. The aim is to investigate whether disappointment in model performance is due to system properties such as heterogeneity and historicity of ecosystems, or rather reflects an abstraction and formalisation problem at a fundamental level. As a formal framework for this investigation, we use category theory as applied in computer science to specify behaviour at an interface. Its methods have been developed for translating and comparing formal structures among different application areas and seems highly suited for a classification of the current "model zoo" in the geosciences. The approach is rather abstract, with a high degree of generality but a low level of expressibility. Here, category theory will be employed to check the consistency of assumptions about life in different models. It will be shown that it is sufficient to distinguish just four logical cases to check for consistency of model content. All four cases can be formalised as variants of coalgebra-algebra homomorphisms. It can be demonstrated that transitions between the four variants affect the relevant observations (time series or spatial maps), the formalisms used (equations, decision trees) and the test criteria of success (prediction, classification) of the resulting model types. We will present examples from hydrology and ecology in

  19. Feature selection gait-based gender classification under different circumstances

    Science.gov (United States)

    Sabir, Azhin; Al-Jawad, Naseer; Jassim, Sabah

    2014-05-01

    This paper proposes a gender classification based on human gait features and investigates the problem of two variations: clothing (wearing coats) and carrying bag condition as addition to the normal gait sequence. The feature vectors in the proposed system are constructed after applying wavelet transform. Three different sets of feature are proposed in this method. First, Spatio-temporal distance that is dealing with the distance of different parts of the human body (like feet, knees, hand, Human Height and shoulder) during one gait cycle. The second and third feature sets are constructed from approximation and non-approximation coefficient of human body respectively. To extract these two sets of feature we divided the human body into two parts, upper and lower body part, based on the golden ratio proportion. In this paper, we have adopted a statistical method for constructing the feature vector from the above sets. The dimension of the constructed feature vector is reduced based on the Fisher score as a feature selection method to optimize their discriminating significance. Finally k-Nearest Neighbor is applied as a classification method. Experimental results demonstrate that our approach is providing more realistic scenario and relatively better performance compared with the existing approaches.

  20. Task Classification Based Energy-Aware Consolidation in Clouds

    Directory of Open Access Journals (Sweden)

    HeeSeok Choi

    2016-01-01

    Full Text Available We consider a cloud data center, in which the service provider supplies virtual machines (VMs on hosts or physical machines (PMs to its subscribers for computation in an on-demand fashion. For the cloud data center, we propose a task consolidation algorithm based on task classification (i.e., computation-intensive and data-intensive and resource utilization (e.g., CPU and RAM. Furthermore, we design a VM consolidation algorithm to balance task execution time and energy consumption without violating a predefined service level agreement (SLA. Unlike the existing research on VM consolidation or scheduling that applies none or single threshold schemes, we focus on a double threshold (upper and lower scheme, which is used for VM consolidation. More specifically, when a host operates with resource utilization below the lower threshold, all the VMs on the host will be scheduled to be migrated to other hosts and then the host will be powered down, while when a host operates with resource utilization above the upper threshold, a VM will be migrated to avoid using 100% of resource utilization. Based on experimental performance evaluations with real-world traces, we prove that our task classification based energy-aware consolidation algorithm (TCEA achieves a significant energy reduction without incurring predefined SLA violations.

  1. New Classification Method Based on Support-Significant Association Rules Algorithm

    Science.gov (United States)

    Li, Guoxin; Shi, Wen

    One of the most well-studied problems in data mining is mining for association rules. There was also research that introduced association rule mining methods to conduct classification tasks. These classification methods, based on association rule mining, could be applied for customer segmentation. Currently, most of the association rule mining methods are based on a support-confidence structure, where rules satisfied both minimum support and minimum confidence were returned as strong association rules back to the analyzer. But, this types of association rule mining methods lack of rigorous statistic guarantee, sometimes even caused misleading. A new classification model for customer segmentation, based on association rule mining algorithm, was proposed in this paper. This new model was based on the support-significant association rule mining method, where the measurement of confidence for association rule was substituted by the significant of association rule that was a better evaluation standard for association rules. Data experiment for customer segmentation from UCI indicated the effective of this new model.

  2. Energy Based Feature Extraction for Classification of Respiratory Signals Using Modified Threshold Based Algorithm

    Directory of Open Access Journals (Sweden)

    A.BHAVANI SANKAR,

    2010-10-01

    Full Text Available In this work, we carried out a detailed study of various features of respiratory signal. Respiratory signals contains potentially precise information that could assist clinicians in making appropriate and timely decisions during sleeping disorder and labour. The extraction and detection of the sleep apnea from composite abdominal signals with powerful and advance methodologies is becoming a very important requirement in apnea patient monitoring. The method we proposed in this work is based on the extraction of four main features of respiratory signal. The automatic signal classification starts by extracting signal features from 30 seconds respiratory data through autoregressive modeling (AR and other techniques. Four features are: signal energy, zero crossing frequency, dominant frequency estimated by AR and strength of dominant frequency based on AR. These features are then compared to threshold values and introduced to a series of conditions to determine the signal category for each specific epoch.

  3. Development of a definition, classification system, and model for cultural geology

    Science.gov (United States)

    Mitchell, Lloyd W., III

    The concept for this study is based upon a personal interest by the author, an American Indian, in promoting cultural perspectives in undergraduate college teaching and learning environments. Most academicians recognize that merged fields can enhance undergraduate curricula. However, conflict may occur when instructors attempt to merge social science fields such as history or philosophy with geoscience fields such as mining and geomorphology. For example, ideologies of Earth structures derived from scientific methodologies may conflict with historical and spiritual understandings of Earth structures held by American Indians. Specifically, this study addresses the problem of how to combine cultural studies with the geosciences into a new merged academic discipline called cultural geology. This study further attempts to develop the merged field of cultural geology using an approach consisting of three research foci: a definition, a classification system, and a model. Literature reviews were conducted for all three foci. Additionally, to better understand merged fields, a literature review was conducted specifically for academic fields that merged social and physical sciences. Methodologies concentrated on the three research foci: definition, classification system, and model. The definition was derived via a two-step process. The first step, developing keyword hierarchical ranking structures, was followed by creating and analyzing semantic word meaning lists. The classification system was developed by reviewing 102 classification systems and incorporating selected components into a system framework. The cultural geology model was created also utilizing a two-step process. A literature review of scientific models was conducted. Then, the definition and classification system were incorporated into a model felt to reflect the realm of cultural geology. A course syllabus was then developed that incorporated the resulting definition, classification system, and model. This

  4. Likelihood ratio model for classification of forensic evidence

    International Nuclear Information System (INIS)

    One of the problems of analysis of forensic evidence such as glass fragments, is the determination of their use-type category, e.g. does a glass fragment originate from an unknown window or container? Very small glass fragments arise during various accidents and criminal offences, and could be carried on the clothes, shoes and hair of participants. It is therefore necessary to obtain information on their physicochemical composition in order to solve the classification problem. Scanning Electron Microscopy coupled with an Energy Dispersive X-ray Spectrometer and the Glass Refractive Index Measurement method are routinely used in many forensic institutes for the investigation of glass. A natural form of glass evidence evaluation for forensic purposes is the likelihood ratio-LR = p(E|H1)/p(E|H2). The main aim of this paper was to study the performance of LR models for glass object classification which considered one or two sources of data variability, i.e. between-glass-object variability and(or) within-glass-object variability. Within the proposed model a multivariate kernel density approach was adopted for modelling the between-object distribution and a multivariate normal distribution was adopted for modelling within-object distributions. Moreover, a graphical method of estimating the dependence structure was employed to reduce the highly multivariate problem to several lower-dimensional problems. The performed analysis showed that the best likelihood model was the one which allows to include information about between and within-object variability, and with variables derived from elemental compositions measured by SEM-EDX, and refractive values determined before (RIb) and after (RIa) the annealing process, in the form of dRI = log10|RIa - RIb|. This model gave better results than the model with only between-object variability considered. In addition, when dRI and variables derived from elemental compositions were used, this model outperformed two other

  5. Scene classification of infrared images based on texture feature

    Science.gov (United States)

    Zhang, Xiao; Bai, Tingzhu; Shang, Fei

    2008-12-01

    Scene Classification refers to as assigning a physical scene into one of a set of predefined categories. Utilizing the method texture feature is good for providing the approach to classify scenes. Texture can be considered to be repeating patterns of local variation of pixel intensities. And texture analysis is important in many applications of computer image analysis for classification or segmentation of images based on local spatial variations of intensity. Texture describes the structural information of images, so it provides another data to classify comparing to the spectrum. Now, infrared thermal imagers are used in different kinds of fields. Since infrared images of the objects reflect their own thermal radiation, there are some shortcomings of infrared images: the poor contrast between the objectives and background, the effects of blurs edges, much noise and so on. Because of these shortcomings, it is difficult to extract to the texture feature of infrared images. In this paper we have developed an infrared image texture feature-based algorithm to classify scenes of infrared images. This paper researches texture extraction using Gabor wavelet transform. The transformation of Gabor has excellent capability in analysis the frequency and direction of the partial district. Gabor wavelets is chosen for its biological relevance and technical properties In the first place, after introducing the Gabor wavelet transform and the texture analysis methods, the infrared images are extracted texture feature by Gabor wavelet transform. It is utilized the multi-scale property of Gabor filter. In the second place, we take multi-dimensional means and standard deviation with different scales and directions as texture parameters. The last stage is classification of scene texture parameters with least squares support vector machine (LS-SVM) algorithm. SVM is based on the principle of structural risk minimization (SRM). Compared with SVM, LS-SVM has overcome the shortcoming of

  6. 基于多传感器的一种新型车型车种分类识别系统%A New Models and Vehicles Classification System Based on Multi-sensor

    Institute of Scientific and Technical Information of China (English)

    吕成超; 刘伟铭

    2011-01-01

    On the basis of the numbers of axes and wheels , the height of headstock, wheelbase this four common characteristics, the new models and vehicles classification system adds some parameters which is closely associated with domestic vehicle and model category, such as wheelbase, wheel-width and two-dimensional shape of headstock. It respectively uses the pressure sensitive line sensor, double-infrared column measuring light curtains to judge the axes-base and wheelbase, collect two-dimensional shape of vehicle and determine their direction of travel , then it combine with BP neural network algorithm for information extraction from multiple sensor data to judge the model car categories. The experiment proves that the system can make a good performance in classifying the model and vehicles easily, accurately and quickly.%新型车型车种分类系统在轴数、轮数、车头高度、轴距这四个常用特征的基础上,增加了轮距、轮宽和车头二维形状等与国内车辆车型类别有较强关联的参数.分别采用压敏线列传感器、双红外列测量光幕来判断轮距和轴距,采集车辆的二维形状和确定其行进方向,并结合BP神经网络算法对多个传感器数据进行信息提取,判断出车型车种类别.试验证明该系统能实现车型车种类别的简便、准确和快速判定.

  7. Histotype-based prognostic classification of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Anna Maria Chiaravalli; Catherine Klersy; Alessandro Vanoli; Andrea Ferretti; Carlo Capella; Enrico Solcia

    2012-01-01

    AIM:To test the efficiency of a recently proposed histotype-based grading system in a consecutive series of gastric cancers.METHOIS:Two hundred advanced gastric cancers operated upon in 1980-1987 and followed for a median 159 mo were investigated on hematoxylin-eosinstained sections to identify low-grade [muconodular,well differentiated tubular,diffuse desmoplastic and high lymphoid response (HLR)],high-grade (anaplastic and mucinous invasive) and intermediate-grade (ordinarycohesive,diffuse and mucinous) cancers,in parallel with a previously investigated series of 292 cases.In addition,immunohistochemical analyses for CD8,CD11 and HLA-DR antigens,pancytokeratin and podoplanin,as well as immunohistochemical and molecular tests for microsatellite DNA instability and in situ hybridization for the Epstein-Barr virus (EBV) EBER1 gene were performed.Patient survival was assessed with death rates per 100 person-years and with Kaplan-Meier or Cox model estimates.RESULTS:Collectively,the four low-grade histotypes accounted for 22% and the two high-grade histotypes for 7% of the consecutive cancers investigated,while the remaining 71% of cases were intermediate-grade cancers,with highly significant,stage-independent,survival differences among the three tumor grades (P =0.004 for grade 1 vs 2 and P =0.0019 for grade 2 vs grade 3),thus confirming the results in the original series.A combined analysis of 492 cases showed an improved prognostic value of histotype-based grading compared with the Lauren classification.In addition,it allowed better characterization of rare histotypes,particularly the three subsets of prognostically different mucinous neoplasms,of which 10 ordinary mucinous cancers showed stage-inclusive survival worse than that of 20 muconodular (P =0.037) and better than that of 21 high-grade (P < 0.001) cases.Tumors with high-level microsatellite DNA instability(MSI-H) or EBV infection,together with a third subset negative for both conditions,formed the

  8. Vertebral classification using localized pathology-related shape model

    Science.gov (United States)

    Zewail, R.; Elsafi, A.; Durdle, N.

    2008-03-01

    Radiographs of the spine are frequently examined for assessment of vertebral abnormalities. Features like osteophytes (bony growth of vertebra's corners), and disc space narrowing are often used as visual evidence of osteoarthris or degenerative joint disease. These symptoms result in remarkable changes in the shapes of the vertebral body. Statistical analysis of anatomical structure has recently gained increased popularity within the medical imaging community, since they have the potential to enhance the automated diagnosis process. In this paper, we present a novel method for computer-assisted vertebral classification using a localized, pathology-related shape model. The new classification scheme is able to assess the condition of multiple vertebrae simultaneously, hence is possible to directly classify the whole spine anatomy according to the condition of interest (anterior osteophites). At the core of this method is a new localized shape model that uses concepts of sparsity, dimension reduction, and statistical independence to extract sets of localized modes of deformations specific to each of the vertebrae under investigation. By projection of the shapes onto any specific set of deformation modes (or basis), we obtain low-dimensional features that are most directly related to the pathology of the vertebra of interest. These features are then used as input to a support vector machine classifier to classify the vertebra under investigation as normal or upnormal. Experiments are conducted using contours from digital x-ray images of five vertebrae of lumbar spine. The accuracy of the classification scheme is assessed using the ROC curves. An average specifity of 96.8 % is achieved with a sensitivity of 80 %.

  9. A Novel Land Cover Classification Map Based on a MODIS Time-Series in Xinjiang, China

    OpenAIRE

    Linlin Lu; Claudia Kuenzer; Huadong Guo; Qingting Li; Tengfei Long; Xinwu Li

    2014-01-01

    Accurate mapping of land cover on a regional scale is useful for climate and environmental modeling. In this study, we present a novel land cover classification product based on spectral and phenological information for the Xinjiang Uygur Autonomous Region (XUAR) in China. The product is derived at a 500 m spatial resolution using an innovative approach employing moderate resolution imaging spectroradiometer (MODIS) surface reflectance and the enhanced vegetation index (EVI) time series. The ...

  10. Soft computing based feature selection for environmental sound classification

    NARCIS (Netherlands)

    Shakoor, A.; May, T.M.; Van Schijndel, N.H.

    2010-01-01

    Environmental sound classification has a wide range of applications,like hearing aids, mobile communication devices, portable media players, and auditory protection devices. Sound classification systemstypically extract features from the input sound. Using too many features increases complexity unne

  11. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    Science.gov (United States)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  12. Understanding Acupuncture Based on ZHENG Classification from System Perspective

    Directory of Open Access Journals (Sweden)

    Junwei Fang

    2013-01-01

    Full Text Available Acupuncture is an efficient therapy method originated in ancient China, the study of which based on ZHENG classification is a systematic research on understanding its complexity. The system perspective is contributed to understand the essence of phenomena, and, as the coming of the system biology era, broader technology platforms such as omics technologies were established for the objective study of traditional chinese medicine (TCM. Omics technologies could dynamically determine molecular components of various levels, which could achieve a systematic understanding of acupuncture by finding out the relationships of various response parts. After reviewing the literature of acupuncture studied by omics approaches, the following points were found. Firstly, with the help of omics approaches, acupuncture was found to be able to treat diseases by regulating the neuroendocrine immune (NEI network and the change of which could reflect the global effect of acupuncture. Secondly, the global effect of acupuncture could reflect ZHENG information at certain structure and function levels, which might reveal the mechanism of Meridian and Acupoint Specificity. Furthermore, based on comprehensive ZHENG classification, omics researches could help us understand the action characteristics of acupoints and the molecular mechanisms of their synergistic effect.

  13. ECG-based heartbeat classification for arrhythmia detection: A survey.

    Science.gov (United States)

    Luz, Eduardo José da S; Schwartz, William Robson; Cámara-Chávez, Guillermo; Menotti, David

    2016-04-01

    An electrocardiogram (ECG) measures the electric activity of the heart and has been widely used for detecting heart diseases due to its simplicity and non-invasive nature. By analyzing the electrical signal of each heartbeat, i.e., the combination of action impulse waveforms produced by different specialized cardiac tissues found in the heart, it is possible to detect some of its abnormalities. In the last decades, several works were developed to produce automatic ECG-based heartbeat classification methods. In this work, we survey the current state-of-the-art methods of ECG-based automated abnormalities heartbeat classification by presenting the ECG signal preprocessing, the heartbeat segmentation techniques, the feature description methods and the learning algorithms used. In addition, we describe some of the databases used for evaluation of methods indicated by a well-known standard developed by the Association for the Advancement of Medical Instrumentation (AAMI) and described in ANSI/AAMI EC57:1998/(R)2008 (ANSI/AAMI, 2008). Finally, we discuss limitations and drawbacks of the methods in the literature presenting concluding remarks and future challenges, and also we propose an evaluation process workflow to guide authors in future works.

  14. A Cluster Based Approach for Classification of Web Results

    Directory of Open Access Journals (Sweden)

    Apeksha Khabia

    2014-12-01

    Full Text Available Nowadays significant amount of information from web is present in the form of text, e.g., reviews, forum postings, blogs, news articles, email messages, web pages. It becomes difficult to classify documents in predefined categories as the number of document grows. Clustering is the classification of a data into clusters, so that the data in each cluster share some common trait – often vicinity according to some defined measure. Underlying distribution of data set can somewhat be depicted based on the learned clusters under the guidance of initial data set. Thus, clusters of documents can be employed to train the classifier by using defined features of those clusters. One of the important issues is also to classify the text data from web into different clusters by mining the knowledge. Conforming to that, this paper presents a review on most of document clustering technique and cluster based classification techniques used so far. Also pre-processing on text dataset and document clustering method is explained in brief.

  15. ECG-based heartbeat classification for arrhythmia detection: A survey.

    Science.gov (United States)

    Luz, Eduardo José da S; Schwartz, William Robson; Cámara-Chávez, Guillermo; Menotti, David

    2016-04-01

    An electrocardiogram (ECG) measures the electric activity of the heart and has been widely used for detecting heart diseases due to its simplicity and non-invasive nature. By analyzing the electrical signal of each heartbeat, i.e., the combination of action impulse waveforms produced by different specialized cardiac tissues found in the heart, it is possible to detect some of its abnormalities. In the last decades, several works were developed to produce automatic ECG-based heartbeat classification methods. In this work, we survey the current state-of-the-art methods of ECG-based automated abnormalities heartbeat classification by presenting the ECG signal preprocessing, the heartbeat segmentation techniques, the feature description methods and the learning algorithms used. In addition, we describe some of the databases used for evaluation of methods indicated by a well-known standard developed by the Association for the Advancement of Medical Instrumentation (AAMI) and described in ANSI/AAMI EC57:1998/(R)2008 (ANSI/AAMI, 2008). Finally, we discuss limitations and drawbacks of the methods in the literature presenting concluding remarks and future challenges, and also we propose an evaluation process workflow to guide authors in future works. PMID:26775139

  16. Gear Crack Level Classification Based on EMD and EDT

    Directory of Open Access Journals (Sweden)

    Haiping Li

    2015-01-01

    Full Text Available Gears are the most essential parts in rotating machinery. Crack fault is one of damage modes most frequently occurring in gears. So, this paper deals with the problem of different crack levels classification. The proposed method is mainly based on empirical mode decomposition (EMD and Euclidean distance technique (EDT. First, vibration signal acquired by accelerometer is processed by EMD and intrinsic mode functions (IMFs are obtained. Then, a correlation coefficient based method is proposed to select the sensitive IMFs which contain main gear fault information. And energy of these IMFs is chosen as the fault feature by comparing with kurtosis and skewness. Finally, Euclidean distances between test sample and four classes trained samples are calculated, and on this basis, fault level classification of the test sample can be made. The proposed approach is tested and validated through a gearbox experiment, in which four crack levels and three kinds of loads are utilized. The results show that the proposed method has high accuracy rates in classifying different crack levels and may be adaptive to different conditions.

  17. Purchase-oriented Classification Model of the Spare Parts of Agricultural Machinery

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Based on the classification of spare parts and the research results of the demand of spare parts,a three-dimensional classification model of spare parts of agricultural machinery is established,which includes the application axis sorted by technical characteristics,the cost axis classified by ABC method,and the demand axis classified by the demand of the spare parts of agricultural machinery.These dimension axes represent different factors,and the application of factors in purchase is analyzed.Guiding value of each dimension axis is summarized in the field of the spare parts purchase;and corresponding strategy instruction is put forward.Integrated application of these strategies by model makes the purchase have more realistic operational meaning.Application field of the three-dimensional model of spare parts is discussed;and the direction for further research is pointed out.

  18. AR-based Method for ECG Classification and Patient Recognition

    Directory of Open Access Journals (Sweden)

    Branislav Vuksanovic

    2013-09-01

    Full Text Available The electrocardiogram (ECG is the recording of heart activity obtained by measuring the signals from electrical contacts placed on the skin of the patient. By analyzing ECG, it is possible to detect the rate and consistency of heartbeats and identify possible irregularities in heart operation. This paper describes a set of techniques employed to pre-process the ECG signals and extract a set of features – autoregressive (AR signal parameters used to characterise ECG signal. Extracted parameters are in this work used to accomplish two tasks. Firstly, AR features belonging to each ECG signal are classified in groups corresponding to three different heart conditions – normal, arrhythmia and ventricular arrhythmia. Obtained classification results indicate accurate, zero-error classification of patients according to their heart condition using the proposed method. Sets of extracted AR coefficients are then extended by adding an additional parameter – power of AR modelling error and a suitability of developed technique for individual patient identification is investigated. Individual feature sets for each group of detected QRS sections are classified in p clusters where p represents the number of patients in each group. Developed system has been tested using ECG signals available in MIT/BIH and Politecnico of Milano VCG/ECG database. Achieved recognition rates indicate that patient identification using ECG signals could be considered as a possible approach in some applications using the system developed in this work. Pre-processing stages, applied parameter extraction techniques and some intermediate and final classification results are described and presented in this paper.

  19. Rainfall Prediction using Data-Core Based Fuzzy Min-Max Neural Network for Classification

    OpenAIRE

    Rajendra Palange,; Nishikant Pachpute

    2015-01-01

    This paper proposes the Rainfall Prediction System by using classification technique. The advanced and modified neural network called Data Core Based Fuzzy Min Max Neural Network (DCFMNN) is used for pattern classification. This classification method is applied to predict Rainfall. The neural network called fuzzy min max neural network (FMNN) that creates hyperboxes for classification and predication, has a problem of overlapping neurons that resoled in DCFMNN to give greater accu...

  20. [Hyperspectral remote sensing image classification based on radical basis function neural network].

    Science.gov (United States)

    Tan, Kun; Du, Pei-jun

    2008-09-01

    Based on the radial basis function neural network (RBFNN) theory and the specialty of hyperspectral remote sensing data, the effective feature extraction model was designed, and those extracted features were connected to the input layer of RBFNN, finally the classifier based on radial basis function neural network was constructed. The hyperspectral image with 64 bands of OMIS II made by Chinese was experimented, and the case study area was zhongguancun in Beijing. Minimum noise fraction (MNF) was conducted, and the former 20 components were extracted for further processing. The original data (20 dimension) of extraction by MNF, the texture transformation data (20 dimension) extracted from the former 20 components after MNF, and the principal component analysis data (20 dimension) of extraction were combined to 60 dimension. For classification by RBFNN, the sizes of training samples were less than 6.13% of the whole image. That classifier has a simple structure and fast convergence capacity, and can be easily trained. The classification precision of radial basis function neural network classifier is up to 69.27% in contrast with the 51.20% of back propagation neural network (BPNN) and 40. 88% of traditional minimum distance classification (MDC), so RBFNN classifier performs better than the other three classifiers. It proves that RBFNN is of validity in hyperspectral remote sensing classification.

  1. Utilizing ECG-Based Heartbeat Classification for Hypertrophic Cardiomyopathy Identification.

    Science.gov (United States)

    Rahman, Quazi Abidur; Tereshchenko, Larisa G; Kongkatong, Matthew; Abraham, Theodore; Abraham, M Roselle; Shatkay, Hagit

    2015-07-01

    Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease where the heart muscle is partially thickened and blood flow is (potentially fatally) obstructed. A test based on electrocardiograms (ECG) that record the heart electrical activity can help in early detection of HCM patients. This paper presents a cardiovascular-patient classifier we developed to identify HCM patients using standard 10-second, 12-lead ECG signals. Patients are classified as having HCM if the majority of their recorded heartbeats are recognized as characteristic of HCM. Thus, the classifier's underlying task is to recognize individual heartbeats segmented from 12-lead ECG signals as HCM beats, where heartbeats from non-HCM cardiovascular patients are used as controls. We extracted 504 morphological and temporal features—both commonly used and newly-developed ones—from ECG signals for heartbeat classification. To assess classification performance, we trained and tested a random forest classifier and a support vector machine classifier using 5-fold cross validation. We also compared the performance of these two classifiers to that obtained by a logistic regression classifier, and the first two methods performed better than logistic regression. The patient-classification precision of random forests and of support vector machine classifiers is close to 0.85. Recall (sensitivity) and specificity are approximately 0.90. We also conducted feature selection experiments by gradually removing the least informative features; the results show that a relatively small subset of 264 highly informative features can achieve performance measures comparable to those achieved by using the complete set of features. PMID:25915962

  2. Comparison of Cheng's Index-and SSR Marker-based Classification of Asian Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    WANG Cai-hong; XU Qun; YU Ping; YUAN Xiao-ping; YU Han-yong; WANG Yi-ping; TANG Sheng-xiang

    2013-01-01

    A total of 100 cultivated rice accessions,with a clear isozyme-based classification,were analyzed based on Cheng's index and simple sequence repeat (SSR) marker.The results showed that the isozyme-based classification was in high accordance with that based on Cheng's index and SSR markers.Mantel-test revealed that the Euclidean distance of Cheng's index was significantly correlated with Nei's unbiased genetic distance of SSR markers (r =0.466,P ≤ 0.01).According to the model-based group and cluster analysis,the Cheng's index-and SSR-based classification coincided with each other,with the goodness of fit of 82.1% and 84.7% in indica,97.4% and 95.1% in japonica,respectively,showing higher accordance than that within subspecies.Therefore,Cheng's index could be used to classify subspecies,while SSR marker could be more efficient to analyze the subgroups within subspecies.

  3. Toward the classification of the realistic free fermionic models

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, A.E.

    1997-08-01

    The realistic free fermionic models have had remarkable success in providing plausible explanations for various properties of the Standard Model which include the natural appearance of three generations, the explanation of the heavy top quark mass and the qualitative structure of the fermion mass spectrum in general, the stability of the proton and more. These intriguing achievements makes evident the need to understand the general space of these models. While the number of possibilities is large, general patterns can be extracted. In this paper the author presents a detailed discussion on the construction of the realistic free fermionic models with the aim of providing some insight into the basic structures and building blocks that enter the construction. The role of free phases in the determination of the phenomenology of the models is discussed in detail. The author discusses the connection between the free phases and mirror symmetry in (2,2) models and the corresponding symmetries in the case of (2,0) models. The importance of the free phases in determining the effective low energy phenomenology is illustrated in several examples. The classification of the models in terms of boundary condition selection rules, real world-sheet fermion pairings, exotic matter states and the hidden sector is discussed.

  4. Self-adaptive image semantic classification based on tolerance granular space model%基于相容粒度空间模型的自适应图像语义分类方法

    Institute of Scientific and Technical Information of China (English)

    蒙祖强; 史忠植

    2012-01-01

    针对图像底层特征和高层语义之间存在的语义鸿沟问题,运用相容粒度空间模型对图像语义分类进行了研究,提出一种自适应的图像语义分类方法,为解决此问题探索出了一种有效途径.该方法将图像集建模为基于原始特征的相容粒度空间;在此空间中,通过引入相容参数和构造距离函数来定义相容关系,从而通过调整相容参数可有效控制对象邻域粒的大小,最终可直接处理图像的实数型特征而无需进行离散化等预处理;此外,通过引入相容度的方法实现对相容参数的自适应优化,从而自动调整邻域粒的大小,使得构造的分类器几乎不需要手工设置参数即可自动适应于各种不同类型的图像集,并获得比同类算法更好的分类准确率.实验结果验证了这种方法的有效性和可行性.%Aiming at the problem of the semantic gap between the low-level feature and the high-level semantic, the paper uses the tolerance granular space model to study image semantic classification, and then proposes a self-adaptive image semantic classification method, thus an effective way for solving the semantic gap problem is given. The proposed method models an image set as a primitive feature-based tolerance granular space, in which the tolerance relation is defined by using tolerance parameters and establishing a distance function, and then the size of an object' s neighborhood granule can be controlled effectively and finally the real-valued features can be directly dealt with without any pretreatment, such as discretization. In addition, tolerance parameters can be self-adaptively optimized by introducing the concept of tolerance degree, so as to automatically control the size of an object' s neighborhood granule, and in this way, the obtained classifier can adjust itself to a variety of image sets almost without any manual parameter configuration. The experimental results show that the proposed method

  5. Classification of EMG Signal Based on Human Percentile using SOM

    Directory of Open Access Journals (Sweden)

    M.H. Jali

    2014-07-01

    Full Text Available Electromyography (EMG is a bio signal that is formed by physiological variations in the state of muscle fibre membranes. Pattern recognition is one of the fields in the bio-signal processing which classified the signal into certain desired categories with subject to their area of application. This study described the classification of the EMG signal based on human body percentile using Self Organizing Mapping (SOM technique. Different human percentile definitively varies the arm circumference size. Variation of arm circumference is due to fatty tissue that lay between active muscle and skin. Generally the fatty tissue would decrease the overall amplitude of the EMG signal. Data collection is conducted randomly with fifteen subjects that have numerous percentiles using non-invasive technique at Biceps Brachii muscle. The signals are then going through filtering process to prepare them for the next stage. Then, five well known time domain feature extraction methods are applied to the signal before the classification process. Self Organizing Map (SOM technique is used as a classifier to discriminate between the human percentiles. Result shows that SOM is capable in clustering the EMG signal to the desired human percentile categories by optimizing the neurons of the technique.

  6. Classification of knee arthropathy with accelerometer-based vibroarthrography.

    Science.gov (United States)

    Moreira, Dinis; Silva, Joana; Correia, Miguel V; Massada, Marta

    2016-01-01

    One of the most common knee joint disorders is known as osteoarthritis which results from the progressive degeneration of cartilage and subchondral bone over time, affecting essentially elderly adults. Current evaluation techniques are either complex, expensive, invasive or simply fails into detection of small and progressive changes that occur within the knee. Vibroarthrography appeared as a new solution where the mechanical vibratory signals arising from the knee are recorded recurring only to an accelerometer and posteriorly analyzed enabling the differentiation between a healthy and an arthritic joint. In this study, a vibration-based classification system was created using a dataset with 92 healthy and 120 arthritic segments of knee joint signals collected from 19 healthy and 20 arthritic volunteers, evaluated with k-nearest neighbors and support vector machine classifiers. The best classification was obtained using the k-nearest neighbors classifier with only 6 time-frequency features with an overall accuracy of 89.8% and with a precision, recall and f-measure of 88.3%, 92.4% and 90.1%, respectively. Preliminary results showed that vibroarthrography can be a promising, non-invasive and low cost tool that could be used for screening purposes. Despite this encouraging results, several upgrades in the data collection process and analysis can be further implemented.

  7. Hyperspectral image classification based on spatial and spectral features and sparse representation

    Institute of Scientific and Technical Information of China (English)

    Yang Jing-Hui; Wang Li-Guo; Qian Jin-Xi

    2014-01-01

    To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method (Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed (GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance.

  8. Pro duct Image Classification Based on Fusion Features

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-hui; LIU Jing-jing; YANG Li-jun

    2015-01-01

    Two key challenges raised by a product images classification system are classi-fication precision and classification time. In some categories, classification precision of the latest techniques, in the product images classification system, is still low. In this paper, we propose a local texture descriptor termed fan refined local binary pattern, which captures more detailed information by integrating the spatial distribution into the local binary pattern feature. We compare our approach with different methods on a subset of product images on Amazon/eBay and parts of PI100 and experimental results have demonstrated that our proposed approach is superior to the current existing methods. The highest classification precision is increased by 21%and the average classification time is reduced by 2/3.

  9. Software for automated classification of probe-based confocal laser endomicroscopy videos of colorectal polyps

    Institute of Scientific and Technical Information of China (English)

    Barbara André; Tom Vercauteren; Anna M Buchner; Murli Krishna; Nicholas Ayache; Michael B Wallace

    2012-01-01

    not a "black box" but an informative tool based on the query by example model that produces,as intermediate results,visually similar annotated videos that are directly interpretable by the endoscopist.CONCLUSION:The proposed software for automated classification of pCLE videos of colonic polyps achieves high performance,comparable to that of off-line diagnosis of pCLE videos established by expert endoscopists.

  10. Study on a pattern classification method of soil quality based on simplified learning sample dataset

    Science.gov (United States)

    Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.

    2011-01-01

    Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

  11. A Method of Soil Salinization Information Extraction with SVM Classification Based on ICA and Texture Features

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fei; TASHPOLAT Tiyip; KUNG Hsiang-te; DING Jian-li; MAMAT.Sawut; VERNER Johnson; HAN Gui-hong; GUI Dong-wei

    2011-01-01

    Salt-affected soils classification using remotely sensed images is one of the most common applications in remote sensing,and many algorithms have been developed and applied for this purpose in the literature.This study takes the Delta Oasis of Weigan and Kuqa Rivers as a study area and discusses the prediction of soil salinization from ETM+ Landsat data.It reports the Support Vector Machine(SVM) classification method based on Independent Component Analysis(ICA) and Texture features.Meanwhile,the letter introduces the fundamental theory of SVM algorithm and ICA,and then incorporates ICA and texture features.The classification result is compared with ICA-SVM classification,single data source SVM classification,maximum likelihood classification(MLC) and neural network classification qualitatively and quantitatively.The result shows that this method can effectively solve the problem of low accuracy and fracture classification result in single data source classification.It has high spread ability toward higher array input.The overall accuracy is 98.64%,which increases by 10.2% compared with maximum likelihood classification,even increases by 12.94% compared with neural net classification,and thus acquires good effectiveness.Therefore,the classification method based on SVM and incorporating the ICA and texture features can be adapted to RS image classification and monitoring of soil salinization.

  12. Variable selection in model-based discriminant analysis

    OpenAIRE

    Maugis, Cathy; Celeux, Gilles; Martin-Magniette, Marie-Laure

    2010-01-01

    A general methodology for selecting predictors for Gaussian generative classification models is presented. The problem is regarded as a model selection problem. Three different roles for each possible predictor are considered: a variable can be a relevant classification predictor or not, and the irrelevant classification variables can be linearly dependent on a part of the relevant predictors or independent variables. This variable selection model was inspired by the model-based clustering mo...

  13. Radiological classification of renal angiomyolipomas based on 127 tumors

    Directory of Open Access Journals (Sweden)

    Prando Adilson

    2003-01-01

    Full Text Available PURPOSE: Demonstrate radiological findings of 127 angiomyolipomas (AMLs and propose a classification based on the radiological evidence of fat. MATERIALS AND METHODS: The imaging findings of 85 consecutive patients with AMLs: isolated (n = 73, multiple without tuberous sclerosis (TS (n = 4 and multiple with TS (n = 8, were retrospectively reviewed. Eighteen AMLs (14% presented with hemorrhage. All patients were submitted to a dedicated helical CT or magnetic resonance studies. All hemorrhagic and non-hemorrhagic lesions were grouped together since our objective was to analyze the presence of detectable fat. Out of 85 patients, 53 were monitored and 32 were treated surgically due to large perirenal component (n = 13, hemorrhage (n = 11 and impossibility of an adequate preoperative characterization (n = 8. There was not a case of renal cell carcinoma (RCC with fat component in this group of patients. RESULTS: Based on the presence and amount of detectable fat within the lesion, AMLs were classified in 4 distinct radiological patterns: Pattern-I, predominantly fatty (usually less than 2 cm in diameter and intrarenal: 54%; Pattern-II, partially fatty (intrarenal or exophytic: 29%; Pattern-III, minimally fatty (most exophytic and perirenal: 11%; and Pattern-IV, without fat (most exophytic and perirenal: 6%. CONCLUSIONS: This proposed classification might be useful to understand the imaging manifestations of AMLs, their differential diagnosis and determine when further radiological evaluation would be necessary. Small (< 1.5 cm, pattern-I AMLs tend to be intra-renal, homogeneous and predominantly fatty. As they grow they tend to be partially or completely exophytic and heterogeneous (patterns II and III. The rare pattern-IV AMLs, however, can be small or large, intra-renal or exophytic but are always homogeneous and hyperdense mass. Since no renal cell carcinoma was found in our series, from an evidence-based practice, all renal mass with detectable

  14. Radiological classification of renal angiomyolipomas based on 127 tumors

    Energy Technology Data Exchange (ETDEWEB)

    Prando, Adilson [Hospital Vera Cruz, Campinas, SP (Brazil). Dept. de Radiologia]. E-mail: aprando@mpc.com.br

    2003-05-15

    Purpose: Demonstrate radiological findings of 127 angiomyolipomas (AMLs) and propose a classification based on the radiological evidence of fat. Materials And Methods: The imaging findings of 85 consecutive patients with AMLs: isolated (n = 73), multiple without tuberous sclerosis (TS) (n = 4) and multiple with TS (n = 8), were retrospectively reviewed. Eighteen AMLs (14%) presented with hemorrhage. All patients were submitted to a dedicated helical CT or magnetic resonance studies. All hemorrhagic and non-hemorrhagic lesions were grouped together since our objective was to analyze the presence of detectable fat. Out of 85 patients, 53 were monitored and 32 were treated surgically due to large perirenal component (n = 13), hemorrhage (n = 11) and impossibility of an adequate preoperative characterization (n = 8). There was not a case of renal cell carcinoma (RCC) with fat component in this group of patients. Results: Based on the presence and amount of detectable fat within the lesion, AMLs were classified in 4 distinct radiological patterns: Pattern-I, predominantly fatty (usually less than 2 cm in diameter and intrarenal): 54%; Pattern-II, partially fatty (intrarenal or exo phytic): 29%; Pattern-III, minimally fatty (most exo phytic and peri renal): 11%; and Pattern-IV, without fat (most exo phytic and peri renal): 6%. Conclusions: This proposed classification might be useful to understand the imaging manifestations of AMLs, their differential diagnosis and determine when further radiological evaluation would be necessary. Small (< 1.5 cm), pattern-I AMLs tend to be intra-renal, homogeneous and predominantly fatty. As they grow they tend to be partially or completely exo phytic and heterogeneous (patterns II and III). The rare pattern-IV AMLs, however, can be small or large, intra-renal or exo phytic but are always homogeneous and hyperdense mass. Since no renal cell carcinoma was found in our series, from an evidence-based practice, all renal mass with

  15. Radiological classification of renal angiomyolipomas based on 127 tumors

    International Nuclear Information System (INIS)

    Purpose: Demonstrate radiological findings of 127 angiomyolipomas (AMLs) and propose a classification based on the radiological evidence of fat. Materials And Methods: The imaging findings of 85 consecutive patients with AMLs: isolated (n = 73), multiple without tuberous sclerosis (TS) (n = 4) and multiple with TS (n = 8), were retrospectively reviewed. Eighteen AMLs (14%) presented with hemorrhage. All patients were submitted to a dedicated helical CT or magnetic resonance studies. All hemorrhagic and non-hemorrhagic lesions were grouped together since our objective was to analyze the presence of detectable fat. Out of 85 patients, 53 were monitored and 32 were treated surgically due to large perirenal component (n = 13), hemorrhage (n = 11) and impossibility of an adequate preoperative characterization (n = 8). There was not a case of renal cell carcinoma (RCC) with fat component in this group of patients. Results: Based on the presence and amount of detectable fat within the lesion, AMLs were classified in 4 distinct radiological patterns: Pattern-I, predominantly fatty (usually less than 2 cm in diameter and intrarenal): 54%; Pattern-II, partially fatty (intrarenal or exo phytic): 29%; Pattern-III, minimally fatty (most exo phytic and peri renal): 11%; and Pattern-IV, without fat (most exo phytic and peri renal): 6%. Conclusions: This proposed classification might be useful to understand the imaging manifestations of AMLs, their differential diagnosis and determine when further radiological evaluation would be necessary. Small (< 1.5 cm), pattern-I AMLs tend to be intra-renal, homogeneous and predominantly fatty. As they grow they tend to be partially or completely exo phytic and heterogeneous (patterns II and III). The rare pattern-IV AMLs, however, can be small or large, intra-renal or exo phytic but are always homogeneous and hyperdense mass. Since no renal cell carcinoma was found in our series, from an evidence-based practice, all renal mass with

  16. Finite mixture models and model-based clustering

    Directory of Open Access Journals (Sweden)

    Volodymyr Melnykov

    2010-01-01

    Full Text Available Finite mixture models have a long history in statistics, having been used to model population heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classification. This paper provides a detailed review into mixture models and model-based clustering. Recent trends as well as open problems in the area are also discussed.

  17. ANALYZING AVIATION SAFETY REPORTS: FROM TOPIC MODELING TO SCALABLE MULTI-LABEL CLASSIFICATION

    Data.gov (United States)

    National Aeronautics and Space Administration — ANALYZING AVIATION SAFETY REPORTS: FROM TOPIC MODELING TO SCALABLE MULTI-LABEL CLASSIFICATION AMRUDIN AGOVIC*, HANHUAI SHAN, AND ARINDAM BANERJEE Abstract. The...

  18. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms.

    Science.gov (United States)

    Şen, Baha; Peker, Musa; Çavuşoğlu, Abdullah; Çelebi, Fatih V

    2014-03-01

    Sleep scoring is one of the most important diagnostic methods in psychiatry and neurology. Sleep staging is a time consuming and difficult task undertaken by sleep experts. This study aims to identify a method which would classify sleep stages automatically and with a high degree of accuracy and, in this manner, will assist sleep experts. This study consists of three stages: feature extraction, feature selection from EEG signals, and classification of these signals. In the feature extraction stage, it is used 20 attribute algorithms in four categories. 41 feature parameters were obtained from these algorithms. Feature selection is important in the elimination of irrelevant and redundant features and in this manner prediction accuracy is improved and computational overhead in classification is reduced. Effective feature selection algorithms such as minimum redundancy maximum relevance (mRMR); fast correlation based feature selection (FCBF); ReliefF; t-test; and Fisher score algorithms are preferred at the feature selection stage in selecting a set of features which best represent EEG signals. The features obtained are used as input parameters for the classification algorithms. At the classification stage, five different classification algorithms (random forest (RF); feed-forward neural network (FFNN); decision tree (DT); support vector machine (SVM); and radial basis function neural network (RBF)) classify the problem. The results, obtained from different classification algorithms, are provided so that a comparison can be made between computation times and accuracy rates. Finally, it is obtained 97.03 % classification accuracy using the proposed method. The results show that the proposed method indicate the ability to design a new intelligent assistance sleep scoring system.

  19. [Classification models of structure - P-glycoprotein activity of drugs].

    Science.gov (United States)

    Grigorev, V Yu; Solodova, S L; Polianczyk, D E; Raevsky, O A

    2016-01-01

    Thirty three classification models of substrate specificity of 177 drugs to P-glycoprotein have been created using of the linear discriminant analysis, random forest and support vector machine methods. QSAR modeling was carried out using 2 strategies. The first strategy consisted in search of all possible combinations from 1÷5 descriptors on the basis of 7 most significant molecular descriptors with clear physico-chemical interpretation. In the second case forward selection procedure up to 5 descriptors, starting from the best single descriptor was used. This strategy was applied to a set of 387 DRAGON descriptors. It was found that only one of 33 models has necessary statistical parameters. This model was designed by means of the linear discriminant analysis on the basis of a single descriptor of H-bond (ΣC(ad)). The model has good statistical characteristics as evidenced by results to both internal cross-validation, and external validation with application of 44 new chemicals. This confirms an important role of hydrogen bond in the processes connected with penetration of chemical compounds through a blood-brain barrier.

  20. Classification of cassava genotypes based on qualitative and quantitative data.

    Science.gov (United States)

    Oliveira, E J; Oliveira Filho, O S; Santos, V S

    2015-02-02

    We evaluated the genetic variation of cassava accessions based on qualitative (binomial and multicategorical) and quantitative traits (continuous). We characterized 95 accessions obtained from the Cassava Germplasm Bank of Embrapa Mandioca e Fruticultura; we evaluated these accessions for 13 continuous, 10 binary, and 25 multicategorical traits. First, we analyzed the accessions based only on quantitative traits; next, we conducted joint analysis (qualitative and quantitative traits) based on the Ward-MLM method, which performs clustering in two stages. According to the pseudo-F, pseudo-t2, and maximum likelihood criteria, we identified five and four groups based on quantitative trait and joint analysis, respectively. The smaller number of groups identified based on joint analysis may be related to the nature of the data. On the other hand, quantitative data are more subject to environmental effects in the phenotype expression; this results in the absence of genetic differences, thereby contributing to greater differentiation among accessions. For most of the accessions, the maximum probability of classification was >0.90, independent of the trait analyzed, indicating a good fit of the clustering method. Differences in clustering according to the type of data implied that analysis of quantitative and qualitative traits in cassava germplasm might explore different genomic regions. On the other hand, when joint analysis was used, the means and ranges of genetic distances were high, indicating that the Ward-MLM method is very useful for clustering genotypes when there are several phenotypic traits, such as in the case of genetic resources and breeding programs.

  1. [Galaxy/quasar classification based on nearest neighbor method].

    Science.gov (United States)

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification. PMID:22097877

  2. BRAIN TUMOR CLASSIFICATION USING NEURAL NETWORK BASED METHODS

    OpenAIRE

    Kalyani A. Bhawar*, Prof. Nitin K. Bhil

    2016-01-01

    MRI (Magnetic resonance Imaging) brain neoplasm pictures Classification may be a troublesome tasks due to the variance and complexity of tumors. This paper presents two Neural Network techniques for the classification of the magnetic resonance human brain images. The proposed Neural Network technique consists of 3 stages, namely, feature extraction, dimensionality reduction, and classification. In the first stage, we have obtained the options connected with tomography pictures victimization d...

  3. Genetic Programming for the Generation of Crisp and Fuzzy Rule Bases in Classification and Diagnosis of Medical Data

    DEFF Research Database (Denmark)

    Dounias, George; Tsakonas, Athanasios; Jantzen, Jan;

    2002-01-01

    programming system for the generation of fuzzy rule-based systems. Two different medical domains are used to evaluate the models. The first field is the diagnosis of subtypes of Aphasia. Two models for crisp rule-bases are presented. The first one discriminates between four major types and the second attempts......This paper demonstrates two methodologies for the construction of rule-based systems in medical decision making. The first approach consists of a method combining genetic programming and heuristic hierarchical rule-base construction. The second model is composed by a strongly-typed genetic...... the classification between all common types. A third model consisted of a GP-generated fuzzy rule-based system is tested on the same domain. The second medical domain is the classification of Pap-Smear Test examinations where a crisp rule-based system is constructed. Results denote the effectiveness of the proposed...

  4. CLASSIFICATION OF MULTIVARIATE DATA SETS WITHOUT MISSING VALUES USING MEMORY BASED CLASSIFIERS – AN EFFECTIVENESS EVALUATION

    Directory of Open Access Journals (Sweden)

    C. Lakshmi Devasena

    2013-01-01

    Full Text Available Classification is a gradual practice for allocating a given piece of input into any of the known category. Classification is a crucial Machine Learning technique. There are many classification problem occurs in different application areas and need to be solved. Different types are classification algorithms like memorybased, tree-based, rule-based, etc are widely used. This work evaluates the performance of different memory based classifiers for classification of Multivariate data set without having Missing values from UCI machine learning repository using the open source machine learning tool. A comparison of different memory based classifiers used and a practical guideline for selecting the renowned and most suited algorithm for a classification is presented. Apart from that some pragmatic criteria for describing and evaluating the best classifiers are discussed.

  5. Classification of Multivariate Data Sets without Missing Values Using Memory Based Classifiers - An Effectiveness Evaluation

    Directory of Open Access Journals (Sweden)

    C. Lakshmi Devasena

    2013-02-01

    Full Text Available Classification is a gradual practice for allocating a given piece of input into any of the known category.Classification is a crucial Machine Learning technique. There are many classification problem occurs indifferent application areas and need to be solved. Different types are classification algorithms like memorybased,tree-based, rule-based, etc are widely used. This work evaluates the performance of differentmemory based classifiers for classification of Multivariate data set without having Missing values fromUCI machine learning repository using the open source machine learning tool. A comparison of differentmemory based classifiers used and a practical guideline for selecting the renowned and most suitedalgorithm for a classification is presented. Apart from that some pragmatic criteria for describing andevaluating the best classifiers are discussed.

  6. Organizational information assets classification model and security architecture methodology

    Directory of Open Access Journals (Sweden)

    Mostafa Tamtaji

    2015-12-01

    Full Text Available Today's, Organizations are exposed with huge and diversity of information and information assets that are produced in different systems shuch as KMS, financial and accounting systems, official and industrial automation sysytems and so on and protection of these information is necessary. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released.several benefits of this model cuses that organization has a great trend to implementing Cloud computing. Maintaining and management of information security is the main challenges in developing and accepting of this model. In this paper, at first, according to "design science research methodology" and compatible with "design process at information systems research", a complete categorization of organizational assets, including 355 different types of information assets in 7 groups and 3 level, is presented to managers be able to plan corresponding security controls according to importance of each groups. Then, for directing of organization to architect it’s information security in cloud computing environment, appropriate methodology is presented. Presented cloud computing security architecture , resulted proposed methodology, and presented classification model according to Delphi method and expers comments discussed and verified.

  7. The research of land covers classification based on waveform features correction of full-waveform LiDAR

    Science.gov (United States)

    Zhou, Mei; Liu, Menghua; Zhang, Zheng; Ma, Lian; Zhang, Huijing

    2015-10-01

    In order to solve the problem of insufficient classification types and low classification accuracy using traditional discrete LiDAR, in this paper, the waveform features of Full-waveform LiDAR were analyzed and corrected to be used for land covers classification. Firstly, the waveforms were processed, including waveform preprocessing, waveform decomposition and features extraction. The extracted features were distance, amplitude, waveform width and the backscattering cross-section. In order to decrease the differences of features of the same land cover type and further improve the effectiveness of the features for land covers classification, this paper has made comprehensive correction on the extracted features. The features of waveforms obtained in Zhangye were extracted and corrected. It showed that the variance of corrected features can be reduced by about 20% compared to original features. Then classification ability of corrected features was clearly analyzed using the measured waveform data with different characteristics. To further verify whether the corrected features can improve the classification accuracy, this paper has respectively classified typical land covers based on original features and corrected features. Since the features have independently Gaussian distribution, the Gaussian mixture density model (GMDM) was put forward to be the classification model to classify the targets as road, trees, buildings and farmland in this paper. The classification results of these four land cover types were obtained according to the ground truth information gotten from CCD image data of the targets region. It showed that the classification accuracy can be improved by about 8% when the corrected features were used.

  8. Multiscale modeling for classification of SAR imagery using hybrid EM algorithm and genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Xianbin Wen; Hua Zhang; Jianguang Zhang; Xu Jiao; Lei Wang

    2009-01-01

    A novel method that hybridizes genetic algorithm (GA) and expectation maximization (EM) algorithm for the classification of syn-thetic aperture radar (SAR) imagery is proposed by the finite Gaussian mixtures model (GMM) and multiscale autoregressive (MAR)model. This algorithm is capable of improving the global optimality and consistency of the classification performance. The experiments on the SAR images show that the proposed algorithm outperforms the standard EM method significantly in classification accuracy.

  9. Multimodal Classification of Mild Cognitive Impairment Based on Partial Least Squares.

    Science.gov (United States)

    Wang, Pingyue; Chen, Kewei; Yao, Li; Hu, Bin; Wu, Xia; Zhang, Jiacai; Ye, Qing; Guo, Xiaojuan

    2016-08-10

    In recent years, increasing attention has been given to the identification of the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). Brain neuroimaging techniques have been widely used to support the classification or prediction of MCI. The present study combined magnetic resonance imaging (MRI), 18F-fluorodeoxyglucose PET (FDG-PET), and 18F-florbetapir PET (florbetapir-PET) to discriminate MCI converters (MCI-c, individuals with MCI who convert to AD) from MCI non-converters (MCI-nc, individuals with MCI who have not converted to AD in the follow-up period) based on the partial least squares (PLS) method. Two types of PLS models (informed PLS and agnostic PLS) were built based on 64 MCI-c and 65 MCI-nc from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The results showed that the three-modality informed PLS model achieved better classification accuracy of 81.40%, sensitivity of 79.69%, and specificity of 83.08% compared with the single-modality model, and the three-modality agnostic PLS model also achieved better classification compared with the two-modality model. Moreover, combining the three modalities with clinical test score (ADAS-cog), the agnostic PLS model (independent data: florbetapir-PET; dependent data: FDG-PET and MRI) achieved optimal accuracy of 86.05%, sensitivity of 81.25%, and specificity of 90.77%. In addition, the comparison of PLS, support vector machine (SVM), and random forest (RF) showed greater diagnostic power of PLS. These results suggested that our multimodal PLS model has the potential to discriminate MCI-c from the MCI-nc and may therefore be helpful in the early diagnosis of AD. PMID:27567818

  10. Uncertainty classification method of remote sensing image based on high-dimensional cloud model and RBF neural network%基于高维云模型和RBF神经网络的遥感影像不确定性分类方法

    Institute of Scientific and Technical Information of China (English)

    李刚; 万幼川

    2012-01-01

    云模型是用自然语言值表示的某个定性概念与其定量表示之间的不确定性转换模型,RBF神经网络已经广泛应用于遥感影像分类.考虑到传统的RBF神经网络分类技术不能有效表达影像分类过程中存在的不确定性、难以自适应地确定隐含层神经元,本文提出了一个基于高维云模型和改进RBF神经网络的不确定性分类技术.利用高维正态云创建隐含层神经元,使RBF神经网络能充分表达影像分类过程中存在的不确定性.通过峰值法云变换和高维云算法自适应地确定最优隐含层神经元.通过基于概率的权值确定和频率阈值调整,进一步优化RBF神经网络的结构.实验表明,本文提出的方法有较高的分类精度,分类结果基本上与人眼目视解译一致.%Cloud model is an uncertainty conversion model between qualitative concept described by natural language and its quantitative expression. The RBF neural network has been applied widely to remote sensing image classification. Considering the traditional RBF neural network classification technique couldn ' t effectively express uncertainty existing in image classification, and couldn' t determine adaptively hidden layer neurons, this paper proposed an uncertainty classification technique based on high-dimension cloud model and improved RBF neural network. Firstly, by using high-dimensional normal cloud models to construct hidden layer neurons, RBF neural network could fully express the uncertainty existing in image classification. Then, by using peak-based cloud transform and high-dimensional cloud algorithm, the optimal neurons of hidden layer were adaptively determined. Finally, by using probability-based weight determination and frequency threshold adjustment, the RBF neural network was further optimized. The experiments showed that the proposed method had higher classification accuracy and could produce good classification results which were consistent with

  11. Sequence-based classification using discriminatory motif feature selection.

    Directory of Open Access Journals (Sweden)

    Hao Xiong

    Full Text Available Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-mer patterns. The motivation behind such (enumerative approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length ≤ k, such that potentially important, longer (> k predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated. We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is

  12. Multiview Sample Classification Algorithm Based on L1-Graph Domain Adaptation Learning

    OpenAIRE

    Huibin Lu; Zhengping Hu; Hongxiao Gao

    2015-01-01

    In the case of multiview sample classification with different distribution, training and testing samples are from different domains. In order to improve the classification performance, a multiview sample classification algorithm based on L1-Graph domain adaptation learning is presented. First of all, a framework of nonnegative matrix trifactorization based on domain adaptation learning is formed, in which the unchanged information is regarded as the bridge of knowledge transformation from the...

  13. Automated classification of mouse pup isolation syllables: from cluster analysis to an Excel-based "mouse pup syllable classification calculator".

    Science.gov (United States)

    Grimsley, Jasmine M S; Gadziola, Marie A; Wenstrup, Jeffrey J

    2012-01-01

    Mouse pups vocalize at high rates when they are cold or isolated from the nest. The proportions of each syllable type produced carry information about disease state and are being used as behavioral markers for the internal state of animals. Manual classifications of these vocalizations identified 10 syllable types based on their spectro-temporal features. However, manual classification of mouse syllables is time consuming and vulnerable to experimenter bias. This study uses an automated cluster analysis to identify acoustically distinct syllable types produced by CBA/CaJ mouse pups, and then compares the results to prior manual classification methods. The cluster analysis identified two syllable types, based on their frequency bands, that have continuous frequency-time structure, and two syllable types featuring abrupt frequency transitions. Although cluster analysis computed fewer syllable types than manual classification, the clusters represented well the probability distributions of the acoustic features within syllables. These probability distributions indicate that some of the manually classified syllable types are not statistically distinct. The characteristics of the four classified clusters were used to generate a Microsoft Excel-based mouse syllable classifier that rapidly categorizes syllables, with over a 90% match, into the syllable types determined by cluster analysis.

  14. Research and Application of Human Capital Strategic Classification Tool: Human Capital Classification Matrix Based on Biological Natural Attribute

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2014-12-01

    Full Text Available In order to study the causes of weak human capital structure strategic classification management in China, we analyze that enterprises around the world face increasingly difficult for human capital management. In order to provide strategically sound answers, the HR managers need the critical information provided by the right technology processing and analytical tools. In this study, there are different types and levels of human capital in formal organization management, which is not the same contribution to a formal organization. An important guarantee for sustained and healthy development of the formal or informal organization is lower human capital risk. To resist this risk is primarily dependent on human capital hedge force and appreciation force in value, which is largely dependent on the strategic value of the performance of senior managers. Based on the analysis of high-level managers perspective, we also discuss the value and configuration of principles and methods to be followed in human capital strategic classification based on Boston Consulting Group (BCG matrix and build Human Capital Classification (HCC matrix based on biological natural attribute to effectively realize human capital structure strategic classification.

  15. [ECoG classification based on wavelet variance].

    Science.gov (United States)

    Yan, Shiyu; Liu, Chong; Wang, Hong; Zhao, Haibin

    2013-06-01

    For a typical electrocorticogram (ECoG)-based brain-computer interface (BCI) system in which the subject's task is to imagine movements of either the left small finger or the tongue, we proposed a feature extraction algorithm using wavelet variance. Firstly the definition and significance of wavelet variance were brought out and taken as feature based on the discussion of wavelet transform. Six channels with most distinctive features were selected from 64 channels for analysis. Consequently the EEG data were decomposed using db4 wavelet. The wavelet coeffi-cient variances containing Mu rhythm and Beta rhythm were taken out as features based on ERD/ERS phenomenon. The features were classified linearly with an algorithm of cross validation. The results of off-line analysis showed that high classification accuracies of 90. 24% and 93. 77% for training and test data set were achieved, the wavelet vari-ance had characteristics of simplicity and effectiveness and it was suitable for feature extraction in BCI research. K PMID:23865300

  16. A Neural-Network-Based Semi-Automated Geospatial Classification Tool

    Science.gov (United States)

    Hale, R. G.; Herzfeld, U. C.

    2014-12-01

    North America's largest glacier system, the Bering Bagley Glacier System (BBGS) in Alaska, surged in 2011-2013, as shown by rapid mass transfer, elevation change, and heavy crevassing. Little is known about the physics controlling surge glaciers' semi-cyclic patterns; therefore, it is crucial to collect and analyze as much data as possible so that predictive models can be made. In addition, physical signs frozen in ice in the form of crevasses may help serve as a warning for future surges. The BBGS surge provided an opportunity to develop an automated classification tool for crevasse classification based on imagery collected from small aircraft. The classification allows one to link image classification to geophysical processes associated with ice deformation. The tool uses an approach that employs geostatistical functions and a feed-forward perceptron with error back-propagation. The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network (NN) can recognize. In an application to preform analysis on airborne video graphic data from the surge of the BBGS, an NN was able to distinguish 18 different crevasse classes with 95 percent or higher accuracy, for over 3,000 images. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we designed the tool's semi-automated pre-training algorithm to be adaptable. The tool can be optimized to specific settings and variables of image analysis: (airborne and satellite imagery, different camera types, observation altitude, number and types of classes, and resolution). The generalization of the classification tool brings three important advantages: (1) multiple types of problems in geophysics can be studied, (2) the training process is sufficiently formalized to allow non-experts in neural nets to perform the training process, and (3) the time required to

  17. Support vector machine based classification and mapping of atherosclerotic plaques using fluorescence lifetime imaging (Conference Presentation)

    Science.gov (United States)

    Fatakdawala, Hussain; Gorpas, Dimitris S.; Bec, Julien; Ma, Dinglong M.; Yankelevich, Diego R.; Bishop, John W.; Marcu, Laura

    2016-02-01

    The progression of atherosclerosis in coronary vessels involves distinct pathological changes in the vessel wall. These changes manifest in the formation of a variety of plaque sub-types. The ability to detect and distinguish these plaques, especially thin-cap fibroatheromas (TCFA) may be relevant for guiding percutaneous coronary intervention as well as investigating new therapeutics. In this work we demonstrate the ability of fluorescence lifetime imaging (FLIm) derived parameters (lifetime values from sub-bands 390/40 nm, 452/45 nm and 542/50 nm respectively) for generating classification maps for identifying eight different atherosclerotic plaque sub-types in ex vivo human coronary vessels. The classification was performed using a support vector machine based classifier that was built from data gathered from sixteen coronary vessels in a previous study. This classifier was validated in the current study using an independent set of FLIm data acquired from four additional coronary vessels with a new rotational FLIm system. Classification maps were compared to co-registered histological data. Results show that the classification maps allow identification of the eight different plaque sub-types despite the fact that new data was gathered with a different FLIm system. Regions with diffuse intimal thickening (n=10), fibrotic tissue (n=2) and thick-cap fibroatheroma (n=1) were correctly identified on the classification map. The ability to identify different plaque types using FLIm data alone may serve as a powerful clinical and research tool for studying atherosclerosis in animal models as well as in humans.

  18. Hyperspectral remote sensing image classification based on decision level fusion

    Institute of Scientific and Technical Information of China (English)

    Peijun Du; Wei Zhang; Junshi Xia

    2011-01-01

    @@ To apply decision level fusion to hyperspectral remote sensing (HRS) image classification, three decision level fusion strategies are experimented on and compared, namely, linear consensus algorithm, improved evidence theory, and the proposed support vector machine (SVM) combiner.To evaluate the effects of the input features on classification performance, four schemes are used to organize input features for member classifiers.In the experiment, by using the operational modular imaging spectrometer (OMIS) II HRS image, the decision level fusion is shown as an effective way for improving the classification accuracy of the HRS image, and the proposed SVM combiner is especially suitable for decision level fusion.The results also indicate that the optimization of input features can improve the classification performance.%To apply decision level fusion to hyperspectral remote sensing (HRS) image classification, three decision level fusion strategies are experimented on and compared, namely, linear consensus algorithm, improved evidence theory, and the proposed support vector machine (SVM) combiner. To evaluate the effects of the input features on classification performance, four schemes are used to organize input features for member classifiers. In the experiment, by using the operational modular imaging spectrometer (OMIS) Ⅱ HRS image, the decision level fusion is shown as an effective way for improving the classification accuracy of the HRS image, and the proposed SVM combiner is especially suitable for decision level fusion. The results also indicate that the optimization of input features can improve the classification performance.

  19. Text Classification Retrieval Based on Complex Network and ICA Algorithm

    Directory of Open Access Journals (Sweden)

    Hongxia Li

    2013-08-01

    Full Text Available With the development of computer science and information technology, the library is developing toward information and network. The library digital process converts the book into digital information. The high-quality preservation and management are achieved by computer technology as well as text classification techniques. It realizes knowledge appreciation. This paper introduces complex network theory in the text classification process and put forwards the ICA semantic clustering algorithm. It realizes the independent component analysis of complex network text classification. Through the ICA clustering algorithm of independent component, it realizes character words clustering extraction of text classification. The visualization of text retrieval is improved. Finally, we make a comparative analysis of collocation algorithm and ICA clustering algorithm through text classification and keyword search experiment. The paper gives the clustering degree of algorithm and accuracy figure. Through simulation analysis, we find that ICA clustering algorithm increases by 1.2% comparing with text classification clustering degree. Accuracy can be improved by 11.1% at most. It improves the efficiency and accuracy of text classification retrieval. It also provides a theoretical reference for text retrieval classification of eBook

  20. Diagnostics of enterprise bankruptcy occurrence probability in an anti-crisis management: modern approaches and classification of models

    Directory of Open Access Journals (Sweden)

    I.V. Zhalinska

    2015-09-01

    Full Text Available Diagnostics of enterprise bankruptcy occurrence probability is defined as an important tool ensuring the viability of an organization under conditions of unpredictable dynamic environment. The paper aims to define the basic features of diagnostics of bankruptcy occurrence probability models and their classification. The article grounds the objective increasing of crisis probability in modern enterprises where such increasing leads to the need to improve the efficiency of anti-crisis enterprise activities. The system of anti-crisis management is based on the subsystem of diagnostics of bankruptcy occurrence probability. Such a subsystem is the main one for further measures to prevent and overcome the crisis. The classification of existing models of enterprise bankruptcy occurrence probability has been suggested. The classification is based on methodical and methodological principles of models. The following main groups of models are determined: the models using financial ratios, aggregates and scores, the models of discriminated analysis, the methods of strategic analysis, informal models, artificial intelligence systems and the combination of the models. The classification made it possible to identify the analytical capabilities of each of the groups of models suggested.

  1. The ARMA model's pole characteristics of Doppler signals from the carotid artery and their classification application

    Institute of Scientific and Technical Information of China (English)

    CHEN Xi; WANG Yuanyuan; ZHANG Yu; WANG Weiqi

    2002-01-01

    In order to diagnose the cerebral infarction, a classification system based onthe ARMA model and BP (Back-Propagation) neural network is presented to analyzeblood flow Doppler signals from the carotid artery. In this system, an ARMA modelis first used to analyze the audio Doppler blood flow signals from the carotid artery.Then several characteristic parameters of the pole's distribution are estimated. Afterstudies of these characteristic parameters' sensitivity to the textcolor cerebral infarctiondiagnosis, a BP neural network using sensitive parameters is established to classify thenormal or abnormal state of the cerebral vessel. With 474 cases used to establish theappropriate neural network, and 52 cases used to test the network, the results showthat the correct classification rate of both training and testing are over 94%. Thus thissystem is useful to diagnose the cerebral infarction.

  2. Region-based geometric active contour for classification using hyperspectral remote sensing images

    Science.gov (United States)

    Yan, Lin

    2011-12-01

    The high spectral resolution of hyperspectral imaging (HSI) systems greatly enhances the capabilities of discrimination, identification and quantification of objects of different materials from remote sensing images, but they also bring challenges to the processing and analysis of HSI data. One issue is the high computation cost and the curse of dimensionality associated with the high dimensions of HSI data. A second issue is how to effectively utilize the information including spectral and spatial information embedded in HSI data. Geometric Active Contour (GAC) is a widely used image segmentation method that utilizes the geometric information of objects within images. One category of GAC models, the region-based GAC models (RGAC), have good potential for remote sensing image processing because they use both spectral and geometry information in images are robust to initial contour placement. These models have been introduced to target extractions and classifications on remote sensing images. However, there are some restrictions on the applications of the RGAC models on remote sensing. First, the heavy involvement of iterative contour evolutions makes GAC applications time-consuming and inconvenient to use. Second, the current RGAC models must be based on a certain distance metric and the performance of RGAC classifiers are restricted by the performance of the employed distance metrics. According to the key features of the RGAC models analyzed in this dissertation, a classification framework is developed for remote sensing image classifications using the RGAC models. This framework allows the RGAC models to be combined with conventional pixel-based classifiers to promote them to spectral-spatial classifiers and also greatly reduces the iterations of contour evolutions. An extended Chan-Vese (ECV) model is proposed that is able to incorporate the widely used distance metrics in remote sensing image processing. A new type of RGAC model, the edge-oriented RGAC model

  3. A Novel Hepatocellular Carcinoma Image Classification Method Based on Voting Ranking Random Forests.

    Science.gov (United States)

    Xia, Bingbing; Jiang, Huiyan; Liu, Huiling; Yi, Dehui

    2015-01-01

    This paper proposed a novel voting ranking random forests (VRRF) method for solving hepatocellular carcinoma (HCC) image classification problem. Firstly, in preprocessing stage, this paper used bilateral filtering for hematoxylin-eosin (HE) pathological images. Next, this paper segmented the bilateral filtering processed image and got three different kinds of images, which include single binary cell image, single minimum exterior rectangle cell image, and single cell image with a size of n⁎n. After that, this paper defined atypia features which include auxiliary circularity, amendment circularity, and cell symmetry. Besides, this paper extracted some shape features, fractal dimension features, and several gray features like Local Binary Patterns (LBP) feature, Gray Level Co-occurrence Matrix (GLCM) feature, and Tamura features. Finally, this paper proposed a HCC image classification model based on random forests and further optimized the model by voting ranking method. The experiment results showed that the proposed features combined with VRRF method have a good performance in HCC image classification problem.

  4. Comprehensive Study on Lexicon-based Ensemble Classification Sentiment Analysis

    Directory of Open Access Journals (Sweden)

    Łukasz Augustyniak

    2015-12-01

    Full Text Available We propose a novel method for counting sentiment orientation that outperforms supervised learning approaches in time and memory complexity and is not statistically significantly different from them in accuracy. Our method consists of a novel approach to generating unigram, bigram and trigram lexicons. The proposed method, called frequentiment, is based on calculating the frequency of features (words in the document and averaging their impact on the sentiment score as opposed to documents that do not contain these features. Afterwards, we use ensemble classification to improve the overall accuracy of the method. What is important is that the frequentiment-based lexicons with sentiment threshold selection outperform other popular lexicons and some supervised learners, while being 3–5 times faster than the supervised approach. We compare 37 methods (lexicons, ensembles with lexicon’s predictions as input and supervised learners applied to 10 Amazon review data sets and provide the first statistical comparison of the sentiment annotation methods that include ensemble approaches. It is one of the most comprehensive comparisons of domain sentiment analysis in the literature.

  5. Multi-Stage Feature Selection Based Intelligent Classifier for Classification of Incipient Stage Fire in Building

    Directory of Open Access Journals (Sweden)

    Allan Melvin Andrew

    2016-01-01

    Full Text Available In this study, an early fire detection algorithm has been proposed based on low cost array sensing system, utilising off- the shelf gas sensors, dust particles and ambient sensors such as temperature and humidity sensor. The odour or “smellprint” emanated from various fire sources and building construction materials at early stage are measured. For this purpose, odour profile data from five common fire sources and three common building construction materials were used to develop the classification model. Normalised feature extractions of the smell print data were performed before subjected to prediction classifier. These features represent the odour signals in the time domain. The obtained features undergo the proposed multi-stage feature selection technique and lastly, further reduced by Principal Component Analysis (PCA, a dimension reduction technique. The hybrid PCA-PNN based approach has been applied on different datasets from in-house developed system and the portable electronic nose unit. Experimental classification results show that the dimension reduction process performed by PCA has improved the classification accuracy and provided high reliability, regardless of ambient temperature and humidity variation, baseline sensor drift, the different gas concentration level and exposure towards different heating temperature range.

  6. Intelligent Video Object Classification Scheme using Offline Feature Extraction and Machine Learning based Approach

    Directory of Open Access Journals (Sweden)

    Chandra Mani Sharma

    2012-01-01

    Full Text Available Classification of objects in video stream is important because of its application in many emerging areas such as visual surveillance, content based video retrieval and indexing etc. The task is far more challenging because the video data is of heavy and highly variable nature. The processing of video data is required to be in real-time. This paper presents a multiclass object classification technique using machine learning approach. Haar-like features are used for training the classifier. The feature calculation is performed using Integral Image representation and we train the classifier offline using a Stage-wise Additive Modeling using a Multiclass Exponential loss function (SAMME. The validity of the method has been verified from the implementation of a real-time human-car detector. Experimental results show that the proposed method can accurately classify objects, in video, into their respective classes. The proposed object classifier works well in outdoor environment in presence of moderate lighting conditions and variable scene background. The proposed technique is compared, with other object classification techniques, based on various performance parameters.

  7. Defining and evaluating classification algorithm for high-dimensional data based on latent topics.

    Directory of Open Access Journals (Sweden)

    Le Luo

    Full Text Available Automatic text categorization is one of the key techniques in information retrieval and the data mining field. The classification is usually time-consuming when the training dataset is large and high-dimensional. Many methods have been proposed to solve this problem, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the Latent Dirichlet Allocation (LDA algorithm and the Support Vector Machine (SVM. LDA is first used to generate reduced dimensional representation of topics as feature in VSM. It is able to reduce features dramatically but keeps the necessary semantic information. The Support Vector Machine (SVM is then employed to classify the data based on the generated features. We evaluate the algorithm on 20 Newsgroups and Reuters-21578 datasets, respectively. The experimental results show that the classification based on our proposed LDA+SVM model achieves high performance in terms of precision, recall and F1 measure. Further, it can achieve this within a much shorter time-frame. Our process improves greatly upon the previous work in this field and displays strong potential to achieve a streamlined classification process for a wide range of applications.

  8. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification...

  9. The Zipf Law revisited: An evolutionary model of emerging classification

    Energy Technology Data Exchange (ETDEWEB)

    Levitin, L.B. [Boston Univ., MA (United States); Schapiro, B. [TINA, Brandenburg (Germany); Perlovsky, L. [NRC, Wakefield, MA (United States)

    1996-12-31

    Zipf`s Law is a remarkable rank-frequency relationship observed in linguistics (the frequencies of the use of words are approximately inversely proportional to their ranks in the decreasing frequency order) as well as in the behavior of many complex systems of surprisingly different nature. We suggest an evolutionary model of emerging classification of objects into classes corresponding to concepts and denoted by words. The evolution of the system is derived from two basic assumptions: first, the probability to recognize an object as belonging to a known class is proportional to the number of objects in this class already recognized, and, second, there exists a small probability to observe an object that requires creation of a new class ({open_quotes}mutation{close_quotes} that gives birth to a new {open_quotes}species{close_quotes}). It is shown that the populations of classes in such a system obey the Zipf Law provided that the rate of emergence of new classes is small. The model leads also to the emergence of a second-tier structure of {open_quotes}super-classes{close_quotes} - groups of classes with almost equal populations.

  10. 精神疲劳实时监测中多面部特征时序分类模型%Time-series classification model based on multiple facial feature for real-time mental fatigue monitoring

    Institute of Scientific and Technical Information of China (English)

    陈云华; 张灵; 丁伍洋; 严明玉

    2013-01-01

    针对现有疲劳监测方法仅根据单帧图像嘴巴形态进行哈欠识别准确率低,采用阈值法分析眨眼参数适应性较差,无法对疲劳状态的过渡进行实时监测等问题,提出一种新的进行精神疲劳实时监测的多面部特征时序分类模型.首先,通过面部视觉特征提取张口度曲线与虹膜似圆比曲线;然后,采用滑动窗口分段、隐马尔可夫模型(HMM)建模等方法在张口度曲线的基础上构建哈欠特征时序并进行类别标记,在虹膜似圆比曲线的基础上构建眨眼持续时间时序并进行类别标记;最后,在HMM的基础上增加时间戳,以便自适应地选取时序初始时刻点并进行多个特征时序的同步与标记结果的融合.实验结果表明,本文模型可降低哈欠误判率,对不同年龄的人群眨眼具有很好的适应性,并可实现对精神疲劳过渡状态的实时监测.%In computer vision based fatigue monitoring,there are still some unresolved issues remained,including low recognition accuracy in yawn detection based on a single-frame; poor adaptability in blink analysis because of the required threshold,the inability to monitor the transition stages of fatigue in real-time.Attempted to solve these problems,we propose a new classification model in this paper,which is based on two feature time-series for real-time mental fatigue monitoring.First,the mouth opening degree and iris circularity ratio are calculated through facial visual feature extraction.Based on this,we can generate a corresponding time-series called α (the proportion of the time during which mouth opening exceeds a given threshold) time series and eye blink time (EBT) time series.Then,using sliding window to partition and annotate the two kinds of time series and build hidden markov model (HMM) for EBT time series.Finally,add a time stamp on HMM to adaptively calculate the initial time point of the next time series,in addition,we can use it to perform the

  11. An approach for mechanical fault classification based on generalized discriminant analysis

    Institute of Scientific and Technical Information of China (English)

    LI Wei-hua; SHI Tie-lin; YANG Shu-zi

    2006-01-01

    To deal with pattern classification of complicated mechanical faults,an approach to multi-faults classification based on generalized discriminant analysis is presented.Compared with linear discriminant analysis (LDA),generalized discriminant analysis (GDA),one of nonlinear discriminant analysis methods,is more suitable for classifying the linear non-separable problem.The connection and difference between KPCA (Kernel Principal Component Analysis) and GDA is discussed.KPCA is good at detection of machine abnormality while GDA performs well in multi-faults classification based on the collection of historical faults symptoms.When the proposed method is applied to air compressor condition classification and gear fault classification,an excellent performance in complicated multi-faults classification is presented.

  12. A NEW SVM BASED EMOTIONAL CLASSIFICATION OF IMAGE

    Institute of Scientific and Technical Information of China (English)

    Wang Weining; Yu Yinglin; Zhang Jianchao

    2005-01-01

    How high-level emotional representation of art paintings can be inferred from percep tual level features suited for the particular classes (dynamic vs. static classification)is presented. The key points are feature selection and classification. According to the strong relationship between notable lines of image and human sensations, a novel feature vector WLDLV (Weighted Line Direction-Length Vector) is proposed, which includes both orientation and length information of lines in an image. Classification is performed by SVM (Support Vector Machine) and images can be classified into dynamic and static. Experimental results demonstrate the effectiveness and superiority of the algorithm.

  13. Hydrogeological discrete fracture modelling to support rock suitability classification

    International Nuclear Information System (INIS)

    This report presents hydrogeological discrete fracture network (Hydro-DFN) modelling in support of the testing and development of the Posiva's Rock Suitability Classification (RSC) system. The aims are to: quantify information on the fulfilment of the inflow and large fracture criteria in the deposition tunnels and deposition holes; provide information on likely properties adjacent to large fractures and deformation zones; and quantify saline water upconing to support definition of the respect distances to the fault zones and hydraulically active zones. The work presented is an update to a previous RSC study performed in 2010, making use of an updated Hydro-DFN model developed for the 2012 Site Descriptive Model (SDM) accounting for new data, in particular that acquired underground in the pilot holes drilled ahead of the ONKALO facility. The interpretation of the tunnel pilot holes has provided a lower detection limit on the specific capacity of hydraulic fractures resulting in a higher overall number of inflows to deposition holes being simulated than in the previous study, although these are small in magnitude, and simulated inflows above 1 L/min are now very rare. Out of the 5391 possible deposition hole positions considered in the modelling, of order 100 are above the RSC limit of 0.1 L/min. It is demonstrated that screening such positions generally avoids locations with the highest post-closure flow-rates. Screening of positions in direct contact with large hydraulic fractures (defined as connected open fractures with equivalent radius greater than 75 m and at least one intersect with a deposition tunnel) is also very effective in avoiding the majority of locations with relatively high predicted post-closure flow-rates. Total inflows to the c. 40 km of deposition and adjacent central tunnels after grouting are of order 100 L/min. (orig.)

  14. Hydrogeological discrete fracture modelling to support rock suitability classification

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, L.; Hoek, J.; Swan, D.; Baxter, D.; Woollard, H. [AMEC, Oxford (United Kingdom)

    2014-01-15

    This report presents hydrogeological discrete fracture network (Hydro-DFN) modelling in support of the testing and development of the Posiva's Rock Suitability Classification (RSC) system. The aims are to: quantify information on the fulfilment of the inflow and large fracture criteria in the deposition tunnels and deposition holes; provide information on likely properties adjacent to large fractures and deformation zones; and quantify saline water upconing to support definition of the respect distances to the fault zones and hydraulically active zones. The work presented is an update to a previous RSC study performed in 2010, making use of an updated Hydro-DFN model developed for the 2012 Site Descriptive Model (SDM) accounting for new data, in particular that acquired underground in the pilot holes drilled ahead of the ONKALO facility. The interpretation of the tunnel pilot holes has provided a lower detection limit on the specific capacity of hydraulic fractures resulting in a higher overall number of inflows to deposition holes being simulated than in the previous study, although these are small in magnitude, and simulated inflows above 1 L/min are now very rare. Out of the 5391 possible deposition hole positions considered in the modelling, of order 100 are above the RSC limit of 0.1 L/min. It is demonstrated that screening such positions generally avoids locations with the highest post-closure flow-rates. Screening of positions in direct contact with large hydraulic fractures (defined as connected open fractures with equivalent radius greater than 75 m and at least one intersect with a deposition tunnel) is also very effective in avoiding the majority of locations with relatively high predicted post-closure flow-rates. Total inflows to the c. 40 km of deposition and adjacent central tunnels after grouting are of order 100 L/min. (orig.)

  15. 基于流记录偏好度的多分类器融合流量识别模型%Traffic classification model based on fusion of multiple classifiers with flow preference

    Institute of Scientific and Technical Information of China (English)

    董仕; 丁伟

    2013-01-01

    The concept of multi-classifier fusion was introduced which can improve the classification accuracy and over-come the disadvantage of single classifier. DS theory was introduced into decision module of traffic classification and preference and timeliness was proposed. After analyzing multi-classifier model by simulation, the results show the new classifier model can overcome one sidedness of single classifier, depending on multiple evidences to optimize the traffic results.%通过将证据理论引入到流量分类的决策模块中,提出了偏好度和时效度权值,并通过实测数据对多分类器识别模型进行验证,其结果表明该模型较好的克服了单分类器的片面性,通过对多个证据的融合来优化识别的结果。

  16. Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery

    OpenAIRE

    Yuguo Qian; Weiqi Zhou; Jingli Yan; Weifeng Li; Lijian Han

    2014-01-01

    This study evaluates and compares the performance of four machine learning classifiers—support vector machine (SVM), normal Bayes (NB), classification and regression tree (CART) and K nearest neighbor (KNN)—to classify very high resolution images, using an object-based classification procedure. In particular, we investigated how tuning parameters affect the classification accuracy with different training sample sizes. We found that: (1) SVM and NB were superior to CART and KNN, and both could...

  17. Analysis on Design of Kohonen-network System Based on Classification of Complex Signals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The key methods of detection and classification of the electroencephalogram(EEG) used in recent years are introduced . Taking EEG for example, the design plan of Kohonen neural network system based on detection and classification of complex signals is proposed, and both the network design and signal processing are analyzed, including pre-processing of signals, extraction of signal features, classification of signal and network topology, etc.

  18. Improving Sparse Representation-Based Classification Using Local Principal Component Analysis

    OpenAIRE

    Weaver, Chelsea; Saito, Naoki

    2016-01-01

    Sparse representation-based classification (SRC), proposed by Wright et al., seeks the sparsest decomposition of a test sample over the dictionary of training samples, with classification to the most-contributing class. Because it assumes test samples can be written as linear combinations of their same-class training samples, the success of SRC depends on the size and representativeness of the training set. Our proposed classification algorithm enlarges the training set by using local princip...

  19. The Discriminative validity of "nociceptive," "peripheral neuropathic," and "central sensitization" as mechanisms-based classifications of musculoskeletal pain.

    LENUS (Irish Health Repository)

    Smart, Keith M

    2012-02-01

    OBJECTIVES: Empirical evidence of discriminative validity is required to justify the use of mechanisms-based classifications of musculoskeletal pain in clinical practice. The purpose of this study was to evaluate the discriminative validity of mechanisms-based classifications of pain by identifying discriminatory clusters of clinical criteria predictive of "nociceptive," "peripheral neuropathic," and "central sensitization" pain in patients with low back (+\\/- leg) pain disorders. METHODS: This study was a cross-sectional, between-patients design using the extreme-groups method. Four hundred sixty-four patients with low back (+\\/- leg) pain were assessed using a standardized assessment protocol. After each assessment, patients\\' pain was assigned a mechanisms-based classification. Clinicians then completed a clinical criteria checklist indicating the presence\\/absence of various clinical criteria. RESULTS: Multivariate analyses using binary logistic regression with Bayesian model averaging identified a discriminative cluster of 7, 3, and 4 symptoms and signs predictive of a dominance of "nociceptive," "peripheral neuropathic," and "central sensitization" pain, respectively. Each cluster was found to have high levels of classification accuracy (sensitivity, specificity, positive\\/negative predictive values, positive\\/negative likelihood ratios). DISCUSSION: By identifying a discriminatory cluster of symptoms and signs predictive of "nociceptive," "peripheral neuropathic," and "central" pain, this study provides some preliminary discriminative validity evidence for mechanisms-based classifications of musculoskeletal pain. Classification system validation requires the accumulation of validity evidence before their use in clinical practice can be recommended. Further studies are required to evaluate the construct and criterion validity of mechanisms-based classifications of musculoskeletal pain.

  20. Knowledge-based sea ice classification by polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Dierking, Wolfgang

    2004-01-01

    Polarimetric SAR images acquired at C- and L-band over sea ice in the Greenland Sea, Baltic Sea, and Beaufort Sea have been analysed with respect to their potential for ice type classification. The polarimetric data were gathered by the Danish EMISAR and the US AIRSAR which both are airborne...... systems. A hierarchical classification scheme was chosen for sea ice because our knowledge about magnitudes, variations, and dependences of sea ice signatures can be directly considered. The optimal sequence of classification rules and the rules themselves depend on the ice conditions/regimes. The use...... of the polarimetric phase information improves the classification only in the case of thin ice types but is not necessary for thicker ice (above about 30 cm thickness)...

  1. Trace elements based classification on clinkers. Application to Spanish clinkers

    Directory of Open Access Journals (Sweden)

    Tamás, F. D.

    2001-12-01

    Full Text Available The qualitative identification to determine the origin (i.e. manufacturing factory of Spanish clinkers is described. The classification of clinkers produced in different factories can be based on their trace element content. Approximately fifteen clinker sorts are analysed, collected from 11 Spanish cement factories to determine their Mg, Sr, Ba, Mn, Ti, Zr, Zn and V content. An expert system formulated by a binary decision tree is designed based on the collected data. The performance of the obtained classifier was measured by ten-fold cross validation. The results show that the proposed method is useful to identify an easy-to-use expert system that is able to determine the origin of the clinker based on its trace element content.

    En el presente trabajo se describe el procedimiento de identificación cualitativa de clínkeres españoles con el objeto de determinar su origen (fábrica. Esa clasificación de los clínkeres se basa en el contenido de sus elementos traza. Se analizaron 15 clínkeres diferentes procedentes de 11 fábricas de cemento españolas, determinándose los contenidos en Mg, Sr, Ba, Mn, Ti, Zr, Zn y V. Se ha diseñado un sistema experto mediante un árbol de decisión binario basado en los datos recogidos. La clasificación obtenida fue examinada mediante la validación cruzada de 10 valores. Los resultados obtenidos muestran que el modelo propuesto es válido para identificar, de manera fácil, un sistema experto capaz de determinar el origen de un clínker basándose en el contenido de sus elementos traza.

  2. Basic Hand Gestures Classification Based on Surface Electromyography.

    Science.gov (United States)

    Palkowski, Aleksander; Redlarski, Grzegorz

    2016-01-01

    This paper presents an innovative classification system for hand gestures using 2-channel surface electromyography analysis. The system developed uses the Support Vector Machine classifier, for which the kernel function and parameter optimisation are conducted additionally by the Cuckoo Search swarm algorithm. The system developed is compared with standard Support Vector Machine classifiers with various kernel functions. The average classification rate of 98.12% has been achieved for the proposed method. PMID:27298630

  3. Basic Hand Gestures Classification Based on Surface Electromyography

    Directory of Open Access Journals (Sweden)

    Aleksander Palkowski

    2016-01-01

    Full Text Available This paper presents an innovative classification system for hand gestures using 2-channel surface electromyography analysis. The system developed uses the Support Vector Machine classifier, for which the kernel function and parameter optimisation are conducted additionally by the Cuckoo Search swarm algorithm. The system developed is compared with standard Support Vector Machine classifiers with various kernel functions. The average classification rate of 98.12% has been achieved for the proposed method.

  4. Consistent image-based measurement and classification of skin color

    OpenAIRE

    Harville, Michael; Baker, Harlyn; Bhatti, Nina; Süsstrunk, Sabine

    2005-01-01

    Little prior image processing work has addressed estimation and classification of skin color in a manner that is independent of camera and illuminant. To this end, we first present new methods for 1) fast, easy-to-use image color correction, with specialization toward skin tones, and 2) fully automated estimation of facial skin color, with robustness to shadows, specularities, and blemishes. Each of these is validated independently against ground truth, and then combined with a classification...

  5. Basic Hand Gestures Classification Based on Surface Electromyography

    Science.gov (United States)

    Palkowski, Aleksander; Redlarski, Grzegorz

    2016-01-01

    This paper presents an innovative classification system for hand gestures using 2-channel surface electromyography analysis. The system developed uses the Support Vector Machine classifier, for which the kernel function and parameter optimisation are conducted additionally by the Cuckoo Search swarm algorithm. The system developed is compared with standard Support Vector Machine classifiers with various kernel functions. The average classification rate of 98.12% has been achieved for the proposed method. PMID:27298630

  6. Basic Hand Gestures Classification Based on Surface Electromyography

    OpenAIRE

    Aleksander Palkowski; Grzegorz Redlarski

    2016-01-01

    This paper presents an innovative classification system for hand gestures using 2-channel surface electromyography analysis. The system developed uses the Support Vector Machine classifier, for which the kernel function and parameter optimisation are conducted additionally by the Cuckoo Search swarm algorithm. The system developed is compared with standard Support Vector Machine classifiers with various kernel functions. The average classification rate of 98.12% has been achieved for the prop...

  7. IMPROVEMENT OF TCAM-BASED PACKET CLASSIFICATION ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Xu Zhen; Zhang Jun; Rui Liyang; Sun Jun

    2008-01-01

    The feature of Ternary Content Addressable Memories (TCAMs) makes them particularly attractive for IP address lookup and packet classification applications in a router system. However, the limitations of TCAMs impede their utilization. In this paper, the solutions for decreasing the power consumption and avoiding entry expansion in range matching are addressed. Experimental results demonstrate that the proposed techniques can make some big improvements on the performance of TCAMs in IP address lookup and packet classification.

  8. Texture Features based Blur Classification in Barcode Images

    OpenAIRE

    Shamik Tiwari; Vidya Prasad Shukla; Sangappa Birada; Ajay Singh

    2013-01-01

    Blur is an undesirable phenomenon which appears as image degradation. Blur classification is extremely desirable before application of any blur parameters estimation approach in case of blind restoration of barcode image. A novel approach to classify blur in motion, defocus, and co-existence of both blur categories is presented in this paper. The key idea involves statistical features extraction of blur pattern in frequency domain and designing of blur classification system with feed forward ...

  9. Classification of Counseling and Therapy Theorists, Methods, Processes, and Goals: The E-R-A Model.

    Science.gov (United States)

    L'Abate, Luciano

    1981-01-01

    Presents an Emotionality-Rationality-Activity model that integrates recent classifications of counseling and psychotherapy. The model also serves as a theoretical basis from which methods, goals, and processes during counseling, psychotherapy, and training can be derived and integrated. (Author)

  10. Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images

    Directory of Open Access Journals (Sweden)

    Inhye Yoon

    2015-03-01

    Full Text Available Since incoming light to an unmanned aerial vehicle (UAV platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i image segmentation based on geometric classes; (ii generation of the context-adaptive transmission map; and (iii intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  11. Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.

    Science.gov (United States)

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-03-19

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  12. Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.

    Science.gov (United States)

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-01-01

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results. PMID:25808767

  13. SAR images classification method based on Dempster-Shafer theory and kernel estimate

    Institute of Scientific and Technical Information of China (English)

    He Chu; Xia Guisong; Sun Hong

    2007-01-01

    To study the scene classification in the Synthetic Aperture Radar (SAR) image, a novel method based on kernel estimate, with the Markov context and Dempster-Shafer evidence theory is proposed.Initially, a nonparametric Probability Density Function (PDF) estimate method is introduced, to describe the scene of SAR images.And then under the Markov context, both the determinate PDF and the kernel estimate method are adopted respectively, to form a primary classification.Next, the primary classification results are fused using the evidence theory in an unsupervised way to get the scene classification.Finally, a regularization step is used, in which an iterated maximum selecting approach is introduced to control the fragments and modify the errors of the classification.Use of the kernel estimate and evidence theory can describe the complicated scenes with little prior knowledge and eliminate the ambiguities of the primary classification results.Experimental results on real SAR images illustrate a rather impressive performance.

  14. Speech/Music Classification Enhancement for 3GPP2 SMV Codec Based on Support Vector Machine

    Science.gov (United States)

    Kim, Sang-Kyun; Chang, Joon-Hyuk

    In this letter, we propose a novel approach to speech/music classification based on the support vector machine (SVM) to improve the performance of the 3GPP2 selectable mode vocoder (SMV) codec. We first analyze the features and the classification method used in real time speech/music classification algorithm in SMV, and then apply the SVM for enhanced speech/music classification. For evaluation of performance, we compare the proposed algorithm and the traditional algorithm of the SMV. The performance of the proposed system is evaluated under the various environments and shows better performance compared to the original method in the SMV.

  15. Forward selection radial basis function networks applied to bacterial classification based on MALDI-TOF-MS.

    Science.gov (United States)

    Zhang, Zhuoyong; Wang, Dan; Harrington, Peter de B; Voorhees, Kent J; Rees, Jon

    2004-06-17

    Forward selection improved radial basis function (RBF) network was applied to bacterial classification based on the data obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The classification of each bacterium cultured at different time was discussed and the effect of parameters of the RBF network was investigated. The new method involves forward selection to prevent overfitting and generalized cross-validation (GCV) was used as model selection criterion (MSC). The original data was compressed by using wavelet transformation to speed up the network training and reduce the number of variables of the original MS data. The data was normalized prior training and testing a network to define the area the neural network to be trained in, accelerate the training rate, and reduce the range the parameters to be selected in. The one-out-of-n method was used to split the data set of p samples into a training set of size p-1 and a test set of size 1. With the improved method, the classification correctness for the five bacteria discussed in the present paper are 87.5, 69.2, 80, 92.3, and 92.8%, respectively.

  16. A neurally inspired musical instrument classification system based upon the sound onset.

    Science.gov (United States)

    Newton, Michael J; Smith, Leslie S

    2012-06-01

    Physiological evidence suggests that sound onset detection in the auditory system may be performed by specialized neurons as early as the cochlear nucleus. Psychoacoustic evidence shows that the sound onset can be important for the recognition of musical sounds. Here the sound onset is used in isolation to form tone descriptors for a musical instrument classification task. The task involves 2085 isolated musical tones from the McGill dataset across five instrument categories. A neurally inspired tone descriptor is created using a model of the auditory system's response to sound onset. A gammatone filterbank and spiking onset detectors, built from dynamic synapses and leaky integrate-and-fire neurons, create parallel spike trains that emphasize the sound onset. These are coded as a descriptor called the onset fingerprint. Classification uses a time-domain neural network, the echo state network. Reference strategies, based upon mel-frequency cepstral coefficients, evaluated either over the whole tone or only during the sound onset, provide context to the method. Classification success rates for the neurally-inspired method are around 75%. The cepstral methods perform between 73% and 76%. Further testing with tones from the Iowa MIS collection shows that the neurally inspired method is considerably more robust when tested with data from an unrelated dataset. PMID:22712950

  17. Support vector machine based classification of fast Fourier transform spectroscopy of proteins

    Science.gov (United States)

    Lazarevic, Aleksandar; Pokrajac, Dragoljub; Marcano, Aristides; Melikechi, Noureddine

    2009-02-01

    Fast Fourier transform spectroscopy has proved to be a powerful method for study of the secondary structure of proteins since peak positions and their relative amplitude are affected by the number of hydrogen bridges that sustain this secondary structure. However, to our best knowledge, the method has not been used yet for identification of proteins within a complex matrix like a blood sample. The principal reason is the apparent similarity of protein infrared spectra with actual differences usually masked by the solvent contribution and other interactions. In this paper, we propose a novel machine learning based method that uses protein spectra for classification and identification of such proteins within a given sample. The proposed method uses principal component analysis (PCA) to identify most important linear combinations of original spectral components and then employs support vector machine (SVM) classification model applied on such identified combinations to categorize proteins into one of given groups. Our experiments have been performed on the set of four different proteins, namely: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor 2 and Osteopontin. Our proposed method of applying principal component analysis along with support vector machines exhibits excellent classification accuracy when identifying proteins using their infrared spectra.

  18. Association Technique based on Classification for Classifying Microcalcification and Mass in Mammogram

    Directory of Open Access Journals (Sweden)

    Herwanto

    2013-01-01

    Full Text Available Currently, mammography is recognized as the most effective imaging modality for breast cancer screening. The challenge of using mammography is how to locate the area, which is indeed a solitary geographic abnormality. In mammography screening it is important to define the risk for women who have radiologically negative findings and for those who might develop malignancy later in life. Microcalcification and mass segmentation are used frequently as the first step in mammography screening. The main objective of this paper is to apply association technique based on classification algorithm to classify microcalcification and mass in mammogram. The system that we propose consists of: (i a preprocessing phase to enhance the quality of the image and followed by segmentating region of interest; (ii a phase for mining a transactional table; and (iii a phase for organizing the resulted association rules in a classification model. This paper also illustrates how important the data cleaning phase in building the data mining process for image classification. The proposed method was evaluated using the mammogram data from Mammographic Image Analysis Society (MIAS. The MIAS data consist of 207 images of normal breast, 64 benign, and 51 malignant. 85 mammograms of MIAS data have mass, and 25 mammograms have microcalcification. The features of mean and Gray Level Co-occurrence Matrix homogeneity have been proved to be potential for discriminating microcalcification from mass. The accuracy obtained by this method is 83%.

  19. Classification Model of Customer Value Based on Rough sets-Neural Network%基于粗糙集-神经网络技术的客户价值分类模型的研究

    Institute of Scientific and Technical Information of China (English)

    陈亮; 苏翔; 王金钟

    2011-01-01

    Evaluation of customer value and then classifing the customer is one of the core of customer relationship management. This article first identifies some affecting factors of the customer value classification, uses the rough set-neural network model, that is to say using complementary advantages of rough set and neural network, preprocess the data by using rough set, and then chooses neural network as the evaluation method, finally,classifies the customer value according to the results evaluation.%客户关系管理的核心内容之一是对客户价值的评价进而对客户进行分类.文章首先找出对客户价值分类有影响的一些因子,应用粗糙集-神经网络的模型,即利用神经网络与粗糙集理论的优势互补,采用粗糙集对数据进行预处理,然后选择神经网络作为评价方法,最后根据客户价值评价结果进行客户价值分类.

  20. Review of Remotely Sensed Imagery Classification Patterns Based on Object-oriented Image Analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Yongxue; LI Manchun; MAO Liang; XU Feifei; HUANG Shuo

    2006-01-01

    With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed information classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of methodology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS information classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.

  1. Amino acid classification based spectrum kernel fusion for protein subnuclear localization

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2010-01-01

    Full Text Available Abstract Background Prediction of protein localization in subnuclear organelles is more challenging than general protein subcelluar localization. There are only three computational models for protein subnuclear localization thus far, to the best of our knowledge. Two models were based on protein primary sequence only. The first model assumed homogeneous amino acid substitution pattern across all protein sequence residue sites and used BLOSUM62 to encode k-mer of protein sequence. Ensemble of SVM based on different k-mers drew the final conclusion, achieving 50% overall accuracy. The simplified assumption did not exploit protein sequence profile and ignored the fact of heterogeneous amino acid substitution patterns across sites. The second model derived the PsePSSM feature representation from protein sequence by simply averaging the profile PSSM and combined the PseAA feature representation to construct a kNN ensemble classifier Nuc-PLoc, achieving 67.4% overall accuracy. The two models based on protein primary sequence only both achieved relatively poor predictive performance. The third model required that GO annotations be available, thus restricting the model's applicability. Methods In this paper, we only use the amino acid information of protein sequence without any other information to design a widely-applicable model for protein subnuclear localization. We use K-spectrum kernel to exploit the contextual information around an amino acid and the conserved motif information. Besides expanding window size, we adopt various amino acid classification approaches to capture diverse aspects of amino acid physiochemical properties. Each amino acid classification generates a series of spectrum kernels based on different window size. Thus, (I window expansion can capture more contextual information and cover size-varying motifs; (II various amino acid classifications can exploit multi-aspect biological information from the protein sequence. Finally

  2. Deep-Learning-Based Classification for DTM Extraction from ALS Point Cloud

    Directory of Open Access Journals (Sweden)

    Xiangyun Hu

    2016-09-01

    Full Text Available Airborne laser scanning (ALS point cloud data are suitable for digital terrain model (DTM extraction given its high accuracy in elevation. Existing filtering algorithms that eliminate non-ground points mostly depend on terrain feature assumptions or representations; these assumptions result in errors when the scene is complex. This paper proposes a new method for ground point extraction based on deep learning using deep convolutional neural networks (CNN. For every point with spatial context, the neighboring points within a window are extracted and transformed into an image. Then, the classification of a point can be treated as the classification of an image; the point-to-image transformation is carefully crafted by considering the height information in the neighborhood area. After being trained on approximately 17 million labeled ALS points, the deep CNN model can learn how a human operator recognizes a point as a ground point or not. The model performs better than typical existing algorithms in terms of error rate, indicating the significant potential of deep-learning-based methods in feature extraction from a point cloud.

  3. INDUS - a composition-based approach for rapid and accurate taxonomic classification of metagenomic sequences

    OpenAIRE

    Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Reddy, Rachamalla Maheedhar; Reddy, Chennareddy Venkata Siva Kumar; Singh, Nitin Kumar; Sharmila S Mande

    2011-01-01

    Background Taxonomic classification of metagenomic sequences is the first step in metagenomic analysis. Existing taxonomic classification approaches are of two types, similarity-based and composition-based. Similarity-based approaches, though accurate and specific, are extremely slow. Since, metagenomic projects generate millions of sequences, adopting similarity-based approaches becomes virtually infeasible for research groups having modest computational resources. In this study, we present ...

  4. Classification and Identification of Over-voltage Based on HHT and SVM

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; YANG Qing; CHEN Lin; SIMA Wenxia

    2012-01-01

    This paper proposes an effective method for over-voltage classification based on the Hilbert-Huang transform(HHT) method.Hilbert-Huang transform method is composed of empirical mode decomposition(EMD) and Hilbert transform.Nine kinds of common power system over-voltages are calculated and analyzed by HHT.Based on the instantaneous amplitude spectrum,Hilbert marginal spectrum and Hilbert time-frequency spectrum,three kinds of over-voltage characteristic quantities are obtained.A hierarchical classification system is built based on HHT and support vector machine(SVM).This classification system is tested by 106 field over-voltage signals,and the average classification rate is 94.3%.This research shows that HHT is an effective time-frequency analysis algorithms in the application of over-voltage classification and identification.

  5. Image-classification-based global dimming algorithm for LED backlights in LCDs

    Science.gov (United States)

    Qibin, Feng; Huijie, He; Dong, Han; Lei, Zhang; Guoqiang, Lv

    2015-07-01

    Backlight dimming can help LCDs reduce power consumption and improve CR. With fixed parameters, dimming algorithm cannot achieve satisfied effects for all kinds of images. The paper introduces an image-classification-based global dimming algorithm. The proposed classification method especially for backlight dimming is based on luminance and CR of input images. The parameters for backlight dimming level and pixel compensation are adaptive with image classifications. The simulation results show that the classification based dimming algorithm presents 86.13% power reduction improvement compared with dimming without classification, with almost same display quality. The prototype is developed. There are no perceived distortions when playing videos. The practical average power reduction of the prototype TV is 18.72%, compared with common TV without dimming.

  6. Initial steps towards an evidence-based classification system for golfers with a physical impairment

    NARCIS (Netherlands)

    Stoter, Inge K; Hettinga, Florentina J; Altmann, Viola; Eisma, Wim; Arendzen, Hans; Bennett, Tony; van der Woude, Lucas H; Dekker, Rienk

    2015-01-01

    PURPOSE: The present narrative review aims to make a first step towards an evidence-based classification system in handigolf following the International Paralympic Committee (IPC). It intends to create a conceptual framework of classification for handigolf and an agenda for future research. METHOD:

  7. 78 FR 58153 - Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System...

    Science.gov (United States)

    2013-09-23

    ... RIN 3206-AM78 Prevailing Rate Systems; North American Industry Classification System Based Federal... Industry Classification System (NAICS) codes currently used in Federal Wage System wage survey industry..., 2013, the U.S. Office of Personnel Management (OPM) issued a proposed rule (78 FR 18252) to update...

  8. Efficient multilevel brain tumor segmentation with integrated bayesian model classification.

    Science.gov (United States)

    Corso, J J; Sharon, E; Dube, S; El-Saden, S; Sinha, U; Yuille, A

    2008-05-01

    We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor. PMID:18450536

  9. Extreme learning machine-based classification of ADHD using brain structural MRI data.

    Directory of Open Access Journals (Sweden)

    Xiaolong Peng

    Full Text Available BACKGROUND: Effective and accurate diagnosis of attention-deficit/hyperactivity disorder (ADHD is currently of significant interest. ADHD has been associated with multiple cortical features from structural MRI data. However, most existing learning algorithms for ADHD identification contain obvious defects, such as time-consuming training, parameters selection, etc. The aims of this study were as follows: (1 Propose an ADHD classification model using the extreme learning machine (ELM algorithm for automatic, efficient and objective clinical ADHD diagnosis. (2 Assess the computational efficiency and the effect of sample size on both ELM and support vector machine (SVM methods and analyze which brain segments are involved in ADHD. METHODS: High-resolution three-dimensional MR images were acquired from 55 ADHD subjects and 55 healthy controls. Multiple brain measures (cortical thickness, etc. were calculated using a fully automated procedure in the FreeSurfer software package. In total, 340 cortical features were automatically extracted from 68 brain segments with 5 basic cortical features. F-score and SFS methods were adopted to select the optimal features for ADHD classification. Both ELM and SVM were evaluated for classification accuracy using leave-one-out cross-validation. RESULTS: We achieved ADHD prediction accuracies of 90.18% for ELM using eleven combined features, 84.73% for SVM-Linear and 86.55% for SVM-RBF. Our results show that ELM has better computational efficiency and is more robust as sample size changes than is SVM for ADHD classification. The most pronounced differences between ADHD and healthy subjects were observed in the frontal lobe, temporal lobe, occipital lobe and insular. CONCLUSION: Our ELM-based algorithm for ADHD diagnosis performs considerably better than the traditional SVM algorithm. This result suggests that ELM may be used for the clinical diagnosis of ADHD and the investigation of different brain diseases.

  10. Quantitative measurement of retinal ganglion cell populations via histology-based random forest classification.

    Science.gov (United States)

    Hedberg-Buenz, Adam; Christopher, Mark A; Lewis, Carly J; Fernandes, Kimberly A; Dutca, Laura M; Wang, Kai; Scheetz, Todd E; Abràmoff, Michael D; Libby, Richard T; Garvin, Mona K; Anderson, Michael G

    2016-05-01

    The inner surface of the retina contains a complex mixture of neurons, glia, and vasculature, including retinal ganglion cells (RGCs), the final output neurons of the retina and primary neurons that are damaged in several blinding diseases. The goal of the current work was two-fold: to assess the feasibility of using computer-assisted detection of nuclei and random forest classification to automate the quantification of RGCs in hematoxylin/eosin (H&E)-stained retinal whole-mounts; and if possible, to use the approach to examine how nuclear size influences disease susceptibility among RGC populations. To achieve this, data from RetFM-J, a semi-automated ImageJ-based module that detects, counts, and collects quantitative data on nuclei of H&E-stained whole-mounted retinas, were used in conjunction with a manually curated set of images to train a random forest classifier. To test performance, computer-derived outputs were compared to previously published features of several well-characterized mouse models of ophthalmic disease and their controls: normal C57BL/6J mice; Jun-sufficient and Jun-deficient mice subjected to controlled optic nerve crush (CONC); and DBA/2J mice with naturally occurring glaucoma. The result of these efforts was development of RetFM-Class, a command-line-based tool that uses data output from RetFM-J to perform random forest classification of cell type. Comparative testing revealed that manual and automated classifications by RetFM-Class correlated well, with 83.2% classification accuracy for RGCs. Automated characterization of C57BL/6J retinas predicted 54,642 RGCs per normal retina, and identified a 48.3% Jun-dependent loss of cells at 35 days post CONC and a 71.2% loss of RGCs among 16-month-old DBA/2J mice with glaucoma. Output from automated analyses was used to compare nuclear area among large numbers of RGCs from DBA/2J mice (n = 127,361). In aged DBA/2J mice with glaucoma, RetFM-Class detected a decrease in median and mean nucleus size

  11. Multi-label literature classification based on the Gene Ontology graph

    Directory of Open Access Journals (Sweden)

    Lu Xinghua

    2008-12-01

    Full Text Available Abstract Background The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. Results In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Conclusion Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate

  12. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Directory of Open Access Journals (Sweden)

    Srdjan Sladojevic

    2016-01-01

    Full Text Available The latest generation of convolutional neural networks (CNNs has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%.

  13. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Science.gov (United States)

    Sladojevic, Srdjan; Arsenovic, Marko; Culibrk, Dubravko; Stefanovic, Darko

    2016-01-01

    The latest generation of convolutional neural networks (CNNs) has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%. PMID:27418923

  14. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification.

    Science.gov (United States)

    Sladojevic, Srdjan; Arsenovic, Marko; Anderla, Andras; Culibrk, Dubravko; Stefanovic, Darko

    2016-01-01

    The latest generation of convolutional neural networks (CNNs) has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%. PMID:27418923

  15. SPAM CLASSIFICATION BASED ON SUPERVISED LEARNING USING MACHINE LEARNING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Hamsapriya

    2011-12-01

    Full Text Available E-mail is one of the most popular and frequently used ways of communication due to its worldwide accessibility, relatively fast message transfer, and low sending cost. The flaws in the e-mail protocols and the increasing amount of electronic business and financial transactions directly contribute to the increase in e-mail-based threats. Email spam is one of the major problems of the today’s Internet, bringing financial damage to companies and annoying individual users. Spam emails are invading users without their consent and filling their mail boxes. They consume more network capacity as well as time in checking and deleting spam mails. The vast majority of Internet users are outspoken in their disdain for spam, although enough of them respond to commercial offers that spam remains a viable source of income to spammers. While most of the users want to do right think to avoid and get rid of spam, they need clear and simple guidelines on how to behave. In spite of all the measures taken to eliminate spam, they are not yet eradicated. Also when the counter measures are over sensitive, even legitimate emails will be eliminated. Among the approaches developed to stop spam, filtering is the one of the most important technique. Many researches in spam filtering have been centered on the more sophisticated classifier-related issues. In recent days, Machine learning for spam classification is an important research issue. The effectiveness of the proposed work is explores and identifies the use of different learning algorithms for classifying spam messages from e-mail. A comparative analysis among the algorithms has also been presented.

  16. SAR target classification based on multiscale sparse representation

    Science.gov (United States)

    Ruan, Huaiyu; Zhang, Rong; Li, Jingge; Zhan, Yibing

    2016-03-01

    We propose a novel multiscale sparse representation approach for SAR target classification. It firstly extracts the dense SIFT descriptors on multiple scales, then trains a global multiscale dictionary by sparse coding algorithm. After obtaining the sparse representation, the method applies spatial pyramid matching (SPM) and max pooling to summarize the features for each image. The proposed method can provide more information and descriptive ability than single-scale ones. Moreover, it costs less extra computation than existing multiscale methods which compute a dictionary for each scale. The MSTAR database and ship database collected from TerraSAR-X images are used in classification setup. Results show that the best overall classification rate of the proposed approach can achieve 98.83% on the MSTAR database and 92.67% on the TerraSAR-X ship database.

  17. NONSUBSAMPLED CONTOURLET TRANSFORM BASED CLASSIFICATION OF MICROCALCIFICATION IN DIGITAL MAMMOGRAMS

    Directory of Open Access Journals (Sweden)

    J. S. Leena Jasmine

    2013-01-01

    Full Text Available Mammogram is the best available radiographic method to detect breast cancer in the early stage. However detecting a microcalcification clusters in the early stage is a tough task for the radiologist. Herein we present a novel approach for classifying microcalcification in digital mammograms using Nonsubsampled Contourlet Transform (NSCT and Support Vector Machine (SVM. The classification of microcalcification is achieved by extracting the microcalcification features from the Contourlet coefficients of the image and the outcomes are used as an input to the SVM for classification. The system classifies the mammogram images as normal or abnormal and the abnormal severity as benign or malignant. The evaluation of the system is carried on using Mammography Image Analysis Society (MIAS database. The experimental result shows that the proposed method provides improved classification rate.

  18. MASS CLASSIFICATION IN DIGITAL MAMMOGRAMS BASED ON DISCRETE SHEARLET TRANSFORM

    Directory of Open Access Journals (Sweden)

    J. Amjath Ali

    2013-01-01

    Full Text Available The most significant health problem in the world is breast cancer and early detection is the key to predict it. Mammography is the most reliable method to diagnose breast cancer at the earliest. The classification of the two most findings in the digital mammograms, micro calcifications and mass are valuable for early detection. Since, the appearance of the masses are similar to the surrounding parenchyma, the classification is not an easy task. In this study, an efficient approach to classify masses in the Mammography Image Analysis Society (MIAS database mammogram images is presented. The key features used for the classification is the energies of shearlet decomposed image. These features are fed into SVM classifier to classify mass/non mass images and also benign/malignant. The results demonstrate that the proposed shearlet energy features outperforms the wavelet energy features in terms of accuracy."

  19. Simulation of Single Chip Microcomputer Efficient Scheduling Model Based on Partition Thinking Classification%基于分区思维分类下的单片机节能调度模型仿真

    Institute of Scientific and Technical Information of China (English)

    马宏骞

    2015-01-01

    In order to lower the total energy consumption of single chip microcomputer system scheduling and put forward a partition thinking under the classification fusion energy-saving scheduling method of traveling salesman algorithm and genetic algorithm. Analyzes the single chip microcomputer scheduling three key part of the total energy consumption, process switching transition energy consumption, adjust the energy consumption of energy consumption and stable operation, mold the MCU to complete the transition process scheduling model of energy consumption, smooth process based on single mode for the node, transition mode for branch, build SCM process scheduling total energy consumption of the directed graph model, a single set of process energy consumption optimization process as a classical traveling salesman problem, through improved step by step a multi-objective genetic algorithm (ga) and traveling salesman algorithm path optimization principle, query the best processing parameters under different SCM process scheduling and the best production order of multiple processes, which lower the total energy consumption in the SCM process scheduling. Experimental results indicate that the proposed model can improve the efficiency of single chip microcomputer process scheduling, reduce energy consumption of scheduling.%为了降低单片机系统调度过程的总能耗,提出一种分区思维分类下融合旅行商算法以及遗传算法的节能调度方法。基于分区思维分类方法,将单片机进程调度总能耗,划分成进程切换能耗、进程过渡调整能耗以及进程稳定调度能耗,将单片机进程节能调度问题,转化成单片机多进程调度的能耗优化问题,将单进程调度平稳模态作为节点、进程调度过渡模态作为支路,构建单片机进程调度总能耗的有向图模型,将单片机进程能耗优化过程看成旅行商问题,通过遗传算法的多目标逐层改进以及旅行商算法

  20. Joint Probability-Based Neuronal Spike Train Classification

    OpenAIRE

    Yan Chen; Vitaliy Marchenko; Robert F. Rogers

    2009-01-01

    Neuronal spike trains are used by the nervous system to encode and transmit information. Euclidean distance-based methods (EDBMs) have been applied to quantify the similarity between temporally-discretized spike trains and model responses. In this study, using the same discretization procedure, we developed and applied a joint probability-based method (JPBM) to classify individual spike trains of slowly adapting pulmonary stretch receptors (SARs). The activity of individual SARs was recorded ...