de Sousa, J. Ricardo; de Albuquerque, Douglas F.
1997-02-01
By using two approaches of renormalization group (RG), mean field RG (MFRG) and effective field RG (EFRG), we study the critical properties of the simple cubic lattice classical XY and classical Heisenberg models. The methods are illustrated by employing its simplest approximation version in which small clusters with one ( N‧ = 1) and two ( N = 2) spins are used. The thermal and magnetic critical exponents, Yt and Yh, and the critical parameter Kc are numerically obtained and are compared with more accurate methods (Monte Carlo, series expansion and ε-expansion). The results presented in this work are in excellent agreement with these sophisticated methods. We have also shown that the exponent Yh does not depend on the symmetry n of the Hamiltonian, hence the criteria of universality for this exponent is only a function of the dimension d.
Flowing states and vortices in the classical XY model in an external field
International Nuclear Information System (INIS)
Homma, Shigeo; Aoki, Toshizumi; Takeno, Shozo.
1981-01-01
Uniformly flowing states and vortices in the classical XY model in an external field are studied. This is done by using a continuum approximation and by paying attention to particular solutions to nonlinear partial differential equations for two angles theta and phi of rotation of spins for which phi satisfies the Laplace equation. For these two states equations for theta have forms similar to that in the classical Ising model in a transverse field. The uniformly flowing states are therefore described by kink-type excitations identical to those in the two-dimensional Ising model. Phonon modes associated with the uniformly flowing states are also studied, which are similar to Bogoliubov phonons. Vortex solutions and vortex formation energy are studied in close similarity to the case of liquid He 4 . By comparing the energies of these two states, an expression for critical velocity is obtained. By making correspondence to the case of liquid He 4 , numerical values of the critical velocity and of the velocity of phonons around the uniformly flowing states are estimated. For the former the numerical value is in fair agreement with experimental data. (author)
Magnetic properties of a classical XY spin dimer in a “planar” magnetic field
Energy Technology Data Exchange (ETDEWEB)
Ciftja, Orion, E-mail: ogciftja@pvamu.edu [Department of Physics, Prairie View A& M University, Prairie View, TX 77446 (United States); Prenga, Dode [Department of Physics, Faculty of Natural Sciences, University of Tirana, Bul. Zog I, Tirana (Albania)
2016-10-15
Single-molecule magnetism originates from the strong intra-molecular magnetic coupling of a small number of interacting spins. Such spins generally interact very weakly with the neighboring spins in the other molecules of the compound, therefore, inter-molecular spin couplings are negligible. In certain cases the number of magnetically coupled spins is as small as a dimer, a system that can be considered the smallest nanomagnet capable of storing non-trivial magnetic information on the molecular level. Additional interesting patterns arise if the spin motion is confined to a two-dimensional space. In such a scenario, clusters consisting of spins with large-spin values are particularly attractive since their magnetic interactions can be described well in terms of classical Heisenberg XY spins. In this work we calculate exactly the magnetic properties of a nanomagnetic dimer of classical XY spins in a “planar” external magnetic field. The problem is solved by employing a mathematical approach whose idea is the introduction of auxiliary spin variables into the starting expression of the partition function. Results for the total internal energy, total magnetic moment, spin–spin correlation function and zero-field magnetic susceptibility can serve as a basis to understand the magnetic properties of large-spin dimer building blocks. - Highlights: • Exact magnetic properties of a dimer system of classical XY spins in magnetic field. • Partition function in nonzero magnetic field obtained in closed-form. • Novel exact analytic results are important for spin models in a magnetic field. • Result provides benchmarks to gauge the accuracy of computational techniques.
XY model with higher-order exchange.
Žukovič, Milan; Kalagov, Georgii
2017-08-01
An XY model, generalized by inclusion of up to an infinite number of higher-order pairwise interactions with an exponentially decreasing strength, is studied by spin-wave theory and Monte Carlo simulations. At low temperatures the model displays a quasi-long-range-order phase characterized by an algebraically decaying correlation function with the exponent η=T/[2πJ(p,α)], nonlinearly dependent on the parameters p and α that control the number of the higher-order terms and the decay rate of their intensity, respectively. At higher temperatures the system shows a crossover from the continuous Berezinskii-Kosterlitz-Thouless to the first-order transition for the parameter values corresponding to a highly nonlinear shape of the potential well. The role of topological excitations (vortices) in changing the nature of the transition is discussed.
Coulomb-gas scaling, superfluid films, and the XY model
International Nuclear Information System (INIS)
Minnhagen, P.; Nylen, M.
1985-01-01
Coulomb-gas-scaling ideas are invoked as a link between the superfluid density of two-dimensional 4 He films and the XY model; the Coulomb-gas-scaling function epsilon(X) is extracted from experiments and is compared with Monte Carlo simulations of the XY model. The agreement is found to be excellent
Multipartite geometric entanglement in finite size XY model
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.
Ising critical behaviour in the one-dimensional frustrated quantum XY model
International Nuclear Information System (INIS)
Granato, E.
1993-06-01
A generalization of the one-dimensional frustrated quantum XY model is considered in which the inter and intra-chain coupling constants of the two infinite XY (planar rotor) chains have different strengths. The model can describe the superconductor-insulator transition due to charging effects in a ladder of Josephson junctions in a magnetic field with half a flux quantum per plaquette. From a fluctuation-effective action, this transition is expected to be in the universality class of the two-dimensional classical XY-Ising model. The critical behaviour is studied using a Monte Carlo transfer matrix applied to the path-integral representation of the model and a finite-size-scaling analysis of data on small system sizes. It is found that, unlike the previous studied case of equal inter and intra-chain coupling constants, the XY and Ising-like excitations of the quantum model decouple for large interchain coupling, giving rise to pure Ising model critical behaviour for the chirality order parameter in good agreement with the results for the XY-Ising model. (author). 18 refs, 4 figs
Logarithmic corrections to scaling in the XY2-model
International Nuclear Information System (INIS)
Kenna, R.; Irving, A.C.
1995-01-01
We study the distribution of partition function zeroes for the XY-model in two dimensions. In particular we find the scaling behaviour of the end of the distribution of zeroes in the complex external magnetic field plane in the thermodynamic limit (the Yang-Lee edge) and the form for the density of these zeroes. Assuming that finite-size scaling holds, we show that there have to exist logarithmic corrections to the leading scaling behaviour of thermodynamic quantities in this model. These logarithmic corrections are also manifest in the finite-size scaling formulae and we identify them numerically. The method presented here can be used to check the compatibility of scaling behaviour of odd and even thermodynamic functions in other models too. ((orig.))
Random isotropic one-dimensional XY-model
Gonçalves, L. L.; Vieira, A. P.
1998-01-01
The 1D isotropic s = ½XY-model ( N sites), with random exchange interaction in a transverse random field is considered. The random variables satisfy bimodal quenched distributions. The solution is obtained by using the Jordan-Wigner fermionization and a canonical transformation, reducing the problem to diagonalizing an N × N matrix, corresponding to a system of N noninteracting fermions. The calculations are performed numerically for N = 1000, and the field-induced magnetization at T = 0 is obtained by averaging the results for the different samples. For the dilute case, in the uniform field limit, the magnetization exhibits various discontinuities, which are the consequence of the existence of disconnected finite clusters distributed along the chain. Also in this limit, for finite exchange constants J A and J B, as the probability of J A varies from one to zero, the saturation field is seen to vary from Γ A to Γ B, where Γ A(Γ B) is the value of the saturation field for the pure case with exchange constant equal to J A(J B) .
International Nuclear Information System (INIS)
Korshunov, S.E.; Uimin, G.V.
1986-01-01
A most popular model in the family of two-dimensional uniformly-frustrated XY models is the antiferromagnetic model on a triangular lattice (AF XY(t) model). Its ground state is both continuously and twofold discretely degenerated. Different phase transitions possible in such systems are investigated. Relevant topological excitations are analyzed and a new class of such (vortices with a fractional number of circulation quanta) is discovered. Their role in determining the properties of the system proves itself essential. The characteristics of phase transitions related to breaking of discrete and continuous symmetries change. The phase diagram of the ''generalized'' AF XY(t) model is constructed. The results obtained are rederived in the representation of the Coulomb gas with half-interger charges, equivalent to the AF XY(t) model with the Berezinskii-Villain interaction
Mechanical Systems, Classical Models
Teodorescu, Petre P
2009-01-01
This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...
Improved variational estimates for the mass gap in the 2-dimensional XY-model
International Nuclear Information System (INIS)
Patkos, A.; Hari Dass, N.D.
1982-07-01
The variational estimate obtained recently for the mass gap of the 2-dimensional XY-model is improved by extending the treatment to higher powers of the transfer operator. The relativistic dispersion relation for single particle states of low momentum is also verified. (Auth.)
Quantum models of classical systems
International Nuclear Information System (INIS)
Hájíček, P
2015-01-01
Quantum statistical methods that are commonly used for the derivation of classical thermodynamic properties are extended to classical mechanical properties. The usual assumption that every real motion of a classical mechanical system is represented by a sharp trajectory is not testable and is replaced by a class of fuzzy models, the so-called maximum entropy (ME) packets. The fuzzier are the compared classical and quantum ME packets, the better seems to be the match between their dynamical trajectories. Classical and quantum models of a stiff rod will be constructed to illustrate the resulting unified quantum theory of thermodynamic and mechanical properties. (paper)
Collective modes in quantum lattice or three-dimensional XY model, 2
International Nuclear Information System (INIS)
Aoki, Toshizumi; Homma, Shigeo; Nakano, Fuzio
1982-01-01
An external field is applied to the XY model which was studied in a previous paper. With the help of Mori's memory function formalism, two types of collective modes are obtained. One of those, which was previously pointed out to correspond to the first sound in superfluid helium, survives at the critical temperature T sub(c). The other is a new mode, which disappears as a result of symmetry restored above T sub(c). This mode comes about owing to the coupling between the Goldstone mode and the energy fluctuation due to an external field, and is regarded to correspond to the second sound in superfluid helium. The linearized two-fluid hydrodynamic equations for superfluid helium are obtained in the context of the XY model, in which the detailed correspondence to the superfluid helium is clarified. (author)
Skew information in the XY model with staggered Dzyaloshinskii-Moriya interaction
Energy Technology Data Exchange (ETDEWEB)
Qiu, Liang, E-mail: lqiu@cumt.edu.cn [School of Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Quan, Dongxiao [State Key Laboratory of Integrated Services Networks, Xidian University, Xi' an, Shaanxi 710071 (China); Pan, Fei; Liu, Zhi [School of Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China)
2017-06-01
We study the performance of the lower bound of skew information in the vicinity of transition point for the anisotropic spin-1/2 XY chain with staggered Dzyaloshinskii-Moriya interaction by use of quantum renormalization-group method. For a fixed value of the Dzyaloshinskii-Moriya interaction, there are two saturated values for the lower bound of skew information corresponding to the spin-fluid and Néel phases, respectively. The scaling exponent of the lower bound of skew information closely relates to the correlation length of the model and the Dzyaloshinskii-Moriya interaction shifts the factorization point. Our results show that the lower bound of skew information can be a good candidate to detect the critical point of XY spin chain with staggered Dzyaloshinskii-Moriya interaction.
Linear-Optical Generation of Eigenstates of the Two-Site XY Model
Directory of Open Access Journals (Sweden)
Stefanie Barz
2015-04-01
Full Text Available Much of the anticipation accompanying the development of a quantum computer relates to its application to simulating dynamics of another quantum system of interest. Here, we study the building blocks for simulating quantum spin systems with linear optics. We experimentally generate the eigenstates of the XY Hamiltonian under an external magnetic field. The implemented quantum circuit consists of two cnot gates, which are realized experimentally by harnessing entanglement from a photon source and applying a cphase gate. We tune the ratio of coupling constants and the magnetic field by changing local parameters. This implementation of the XY model using linear quantum optics might open the door to future studies of quenching dynamics using linear optics.
Classical models for Regge trajectories
International Nuclear Information System (INIS)
Biedenharn, L.C.; Van Dam, H.; Marmo, G.; Morandi, G.; Mukunda, N.; Samuel, J.; Sudarshan, E.C.G.
1987-01-01
Two classical models for particles with internal structure and which describe Regge trajectories are developed. The remarkable geometric and other properties of the two internal spaces are highlighted. It is shown that the conditions of positive time-like four-velocity and energy momentum for the classical system imply strong and physically reasonable conditions on the Regge mass-spin relationship
Duality-mediated critical amplitude ratios for the (2 + 1)-dimensional S = 1XY model
Nishiyama, Yoshihiro
2017-09-01
The phase transition for the (2 + 1)-dimensional spin-S = 1XY model was investigated numerically. Because of the boson-vortex duality, the spin stiffness ρs in the ordered phase and the vortex-condensate stiffness ρv in the disordered phase should have a close relationship. We employed the exact diagonalization method, which yields the excitation gap directly. As a result, we estimate the amplitude ratios ρs,v/Δ (Δ: Mott insulator gap) by means of the scaling analyses for the finite-size cluster with N ≤ 22 spins. The ratio ρs/ρv admits a quantitative measure of deviation from selfduality.
Absence of vortex condensation in a two dimensional fermionic XY model
International Nuclear Information System (INIS)
Cecile, D. J.; Chandrasekharan, Shailesh
2008-01-01
Motivated by a puzzle in the study of two-dimensional lattice quantum electrodynamics with staggered fermions, we construct a two-dimensional fermionic model with a global U(1) symmetry. Our model can be mapped into a model of closed packed dimers and plaquettes. Although the model has the same symmetries as the XY model, we show numerically that the model lacks the well-known Kosterlitz-Thouless phase transition. The model is always in the gapless phase showing the absence of a phase with vortex condensation. In other words the low energy physics is described by a noncompact U(1) field theory. We show that by introducing an even number of layers one can introduce vortex condensation within the model and thus also induce a Kosterlitz-Thouless transition.
Critical behavior of the XY-rotor model on regular and small-world networks
De Nigris, Sarah; Leoncini, Xavier
2013-07-01
We study the XY rotors model on small networks whose number of links scales with the system size Nlinks˜Nγ, where 1≤γ≤2. We first focus on regular one-dimensional rings in the microcanonical ensemble. For γ1.5, the system equilibrium properties are found to be identical to the mean field, which displays a second-order phase transition at a critical energy density ɛ=E/N,ɛc=0.75. Moreover, for γc≃1.5 we find that a nontrivial state emerges, characterized by an infinite susceptibility. We then consider small-world networks, using the Watts-Strogatz mechanism on the regular networks parametrized by γ. We first analyze the topology and find that the small-world regime appears for rewiring probabilities which scale as pSW∝1/Nγ. Then considering the XY-rotors model on these networks, we find that a second-order phase transition occurs at a critical energy ɛc which logarithmically depends on the topological parameters p and γ. We also define a critical probability pMF, corresponding to the probability beyond which the mean field is quantitatively recovered, and we analyze its dependence on γ.
Interaction of a single mode field cavity with the 1D XY model: Energy spectrum
International Nuclear Information System (INIS)
Tonchev, H; Donkov, A A; Chamati, H
2016-01-01
In this work we use the fundamental in quantum optics Jaynes-Cummings model to study the response of spin 1/2chain to a single mode of a laser light falling on one of the spins, a focused interaction model between the light and the spin chain. For the spin-spin interaction along the chain we use the XY model. We report here the exact analytical results, obtained with the help of a computer algebra system, for the energy spectrum in this model for chains of up to 4 spins with nearest neighbors interactions, either for open or cyclic chain configurations. Varying the sign and magnitude of the spin exchange coupling relative to the light-spin interaction we have investigated both cases of ferromagnetic or antiferromagnetic spin chains. (paper)
International Nuclear Information System (INIS)
Mudry, Christopher; Wen Xiaogang
1999-01-01
Effective theories for random critical points are usually non-unitary, and thus may contain relevant operators with negative scaling dimensions. To study the consequences of the existence of negative-dimensional operators, we consider the random-bond XY model. It has been argued that the XY model on a square lattice, when weakly perturbed by random phases, has a quasi-long-range ordered phase (the random spin wave phase) at sufficiently low temperatures. We show that infinitely many relevant perturbations to the proposed critical action for the random spin wave phase were omitted in all previous treatments. The physical origin of these perturbations is intimately related to the existence of broadly distributed correlation functions. We find that those relevant perturbations do enter the Renormalization Group equations, and affect critical behavior. This raises the possibility that the random XY model has no quasi-long-range ordered phase and no Kosterlitz-Thouless (KT) phase transition
Classical model of intermediate statistics
International Nuclear Information System (INIS)
Kaniadakis, G.
1994-01-01
In this work we present a classical kinetic model of intermediate statistics. In the case of Brownian particles we show that the Fermi-Dirac (FD) and Bose-Einstein (BE) distributions can be obtained, just as the Maxwell-Boltzmann (MD) distribution, as steady states of a classical kinetic equation that intrinsically takes into account an exclusion-inclusion principle. In our model the intermediate statistics are obtained as steady states of a system of coupled nonlinear kinetic equations, where the coupling constants are the transmutational potentials η κκ' . We show that, besides the FD-BE intermediate statistics extensively studied from the quantum point of view, we can also study the MB-FD and MB-BE ones. Moreover, our model allows us to treat the three-state mixing FD-MB-BE intermediate statistics. For boson and fermion mixing in a D-dimensional space, we obtain a family of FD-BE intermediate statistics by varying the transmutational potential η BF . This family contains, as a particular case when η BF =0, the quantum statistics recently proposed by L. Wu, Z. Wu, and J. Sun [Phys. Lett. A 170, 280 (1992)]. When we consider the two-dimensional FD-BE statistics, we derive an analytic expression of the fraction of fermions. When the temperature T→∞, the system is composed by an equal number of bosons and fermions, regardless of the value of η BF . On the contrary, when T=0, η BF becomes important and, according to its value, the system can be completely bosonic or fermionic, or composed both by bosons and fermions
Phase transitions in two-dimensional uniformly frustrated XY models. II. General scheme
International Nuclear Information System (INIS)
Korshunov, S.E.
1986-01-01
For two-dimensional uniformly frustrated XY models the group of symmetry spontaneously broken in the ground state is a cross product of the group of two-dimensional rotations by some discrete group of finite order. Different possibilities of phase transitions in such systems are investigated. The transition to the Coulomb gas with noninteger charges is widely used when analyzing the properties of relevant topological excitations. The number of these excitations includes not only domain walls and traditional (integer) vortices, but also vortices with a fractional number of circulation quanta which are to be localized at bends and intersections of domain walls. The types of possible phase transitions prove to be dependent on their relative sequence: in the case the vanishing of domain wall free energy occurs earlier (at increasing temperature) than the dissociation of pairs of ordinary vortices, the second phase transition is to be associated with dissociation of pairs of fractional vortices. The general statements are illustrated with a number of examples
International Nuclear Information System (INIS)
Lima, R.A.T. de.
1982-01-01
Within the variational method in statistical mechanics, dynamical and thermodynamical properties of anharmonic crystal are discussed, in particular the thermal behavior of the crystalline expasion, phonons spectrum, specific heat and Debye-Weller factor (which satisfctorily describes the experimental data). Through the temperature dependent Green functions framework, dynamical and thermodynamical properties associated with the spin-Peierls transition in the magnetostrictive XY model (with one-dimensional magnetic interactions but structurally three-dimensional) are also discussed. Emphasis is given to the influence of an external magnetic field (along the z-axis) on the structural order parameter, phase diagram, specific heat, magnetization, magnetic susceptibility and phonons spectrun (acoustic and optic branches). Results are extended and new ons are exhibited such as: a) a structural Lifshitz point, which separates the uniform (U), dimerized (D) and modulated (M) phases in the T-H phase diagram; b) another special point is detected for high magnetic fields; c) the D-M first-order frontier and the metastability limits are obtained; d) for high elastic constants, fixed temperature and increasing magnetic field, the unusual sequence non uniform-uniform - non uniform-uniform is possible; e) the thermal dependence of the sound velocity presents a gap at the critical temperature. The present results have provided a quite satisfactory qualitative (and partially quantitative) description of the experiments on the TTF-BDT and MEM-(TCNQ) 2 ; this fact enables us to hope that several of our predictions indeed occur in nature. (Author) [pt
Pseudoclassical fermionic model and classical solutions
International Nuclear Information System (INIS)
Smailagic, A.
1981-08-01
We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)
Lima, J. P. De; Gonçalves, L. L.
The critical dynamics of the isotropic XY-model on the one-dimensional superlattice is considered in the framework of the position space renormalization group theory. The decimation transformation is introduced by considering the equations of motion of the operators associated to the excitations of the system, and it corresponds to an extension of the procedure introduced by Stinchcombe and dos Santos (J. Phys. A18, L597 (1985)) for the homogeneous lattice. The dispersion relation is obtained exactly and the static and dynamic scaling forms are explicitly determined. The dynamic critical exponent is also obtained and it is shown that it is identical to the one of the XY-model on the homogeneous chain.
International Nuclear Information System (INIS)
Mukhamedov, Farrukh; Saburov, Mansoor
2010-06-01
In the present paper we study forward Quantum Markov Chains (QMC) defined on a Cayley tree. Using the tree structure of graphs, we give a construction of quantum Markov chains on a Cayley tree. By means of such constructions we prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we mean the existence of two distinct QMC for the given family of interaction operators {K }. (author)
Critical properties of Sudden Quench Dynamics in the anisotropic XY Model
Guo, Hongli; Liu, Zhao; Fan, Heng; Chen, Shu
2010-01-01
We study the zero temperature quantum dynamical critical behavior of the anisotropic XY chain under a sudden quench in a transverse field. We demonstrate theoretically that both quench magnetic susceptibility and two-particle quench correlation can be used to describe the dynamical quantum phase transition (QPT) properties. Either the quench magnetic susceptibility or the derivative of correlation functions as a function of initial magnetic field $a$ exhibits a divergence at the critical poin...
Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model
Institute of Scientific and Technical Information of China (English)
SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian
2007-01-01
By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.
Quantum Models of Classical World
Directory of Open Access Journals (Sweden)
Petr Hájíček
2013-02-01
Full Text Available This paper is a review of our recent work on three notorious problems of non-relativistic quantum mechanics: realist interpretation, quantum theory of classical properties, and the problem of quantum measurement. A considerable progress has been achieved, based on four distinct new ideas. First, objective properties are associated with states rather than with values of observables. Second, all classical properties are selected properties of certain high entropy quantum states of macroscopic systems. Third, registration of a quantum system is strongly disturbed by systems of the same type in the environment. Fourth, detectors must be distinguished from ancillas and the states of registered systems are partially dissipated and lost in the detectors. The paper has two aims: a clear explanation of all new results and a coherent and contradiction-free account of the whole quantum mechanics including all necessary changes of its current textbook version.
International Nuclear Information System (INIS)
Heys, D.W.; Stump, D.R.
1987-01-01
Variational calculations are described that use multi-parameter trial wave functions for the U(1) lattice gauge theory in two space dimensions, and for the XY model. The trial functions are constructed as the exponential of a linear combination of states from the strong-coupling basis of the model, with the coefficients treated as variational parameters. The expectation of the hamiltonian is computed by the Monte Carlo method, using a reweighting technique to evaluate expectation values in finite patches of the parameter space. The trial function for the U(1) gauge theory involves six variational parameters, and its weak-coupling behaviour is in reasonable agreement with theoretical expectations. (orig.)
Critical behavior of the Higgs- and Goldstone-mass gaps for the two-dimensional S=1 XY model
Directory of Open Access Journals (Sweden)
Yoshihiro Nishiyama
2015-08-01
Full Text Available Spectral properties for the two-dimensional quantum S=1 XY model were investigated with the exact diagonalization method. In the symmetry-broken phase, there appear the massive Higgs and massless Goldstone excitations, which correspond to the longitudinal and transverse modes of the spontaneous magnetic moment, respectively. The former excitation branch is embedded in the continuum of the latter, and little attention has been paid to the details, particularly, in proximity to the critical point. The finite-size-scaling behavior is improved by extending the interaction parameters. An analysis of the critical amplitude ratio for these mass gaps is made.
A classical model for the electron
International Nuclear Information System (INIS)
Visser, M.
1989-01-01
The construction of classical and semi-classical models for the electron has had a long and distinguished history. Such models are useful more for what they teach us about field theory than what they teach us about the electron. In this Letter I exhibit a classical model of the electron consisting of ordinary electromagnetism coupled with a self-interacting version of Newtonian gravity. The gravitational binding energy of the system balances the electrostatic energy in such a manner that the total rest mass of the electron is finite. (orig.)
Quantum vertex model for reversible classical computing.
Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C
2017-05-12
Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.
Energy Technology Data Exchange (ETDEWEB)
Hui, Ning-Ju [Department of Applied Physics, Xi' an University of Technology, Xi' an 710054 (China); Xu, Yang-Yang; Wang, Jicheng; Zhang, Yixin [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Hu, Zheng-Da, E-mail: huyuanda1112@jiangnan.edu.cn [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China)
2017-04-01
We investigate the properties of geometric quantum coherence in the XY spin-1/2 chain with staggered Dzyaloshinsky-Moriya interaction via the quantum renormalization-group approach. It is shown that the geometric quantum coherence and its coherence susceptibility are effective to detect the quantum phase transition. In the thermodynamic limit, the geometric quantum coherence exhibits a sudden jump. The coherence susceptibilities versus the anisotropy parameter and the Dzyaloshinsky-Moriya interaction are infinite and vanishing, respectively, illustrating the distinct roles of the anisotropy parameter and the Dzyaloshinsky-Moriya interaction in quantum phase transition. Moreover, we also explore the finite-size scaling behaviors of the coherence susceptibilities. For a finite-size chain, the coherence susceptibility versus the phase-transition parameter is always maximal at the critical point, indicating the dramatic quantum fluctuation. Besides, we show that the correlation length can be revealed by the scaling exponent for the coherence susceptibility versus the Dzyaloshinsky-Moriya interaction.
Integrable models in classical and quantum mechanics
International Nuclear Information System (INIS)
Jurco, B.
1991-01-01
Integrable systems are investigated, especially the rational and trigonometric Gaudin models. The Gaudin models are diagonalized for the case of classical Lie algebras. Their relation to the other integrable models and to the quantum inverse scattering method is investigated. Applications in quantum optics and plasma physics are discussed. (author). 94 refs
Magnetic properties of a ferromagnet spin-S, Ising, XY and Heisenberg models semi-infinites systems
International Nuclear Information System (INIS)
Masrour, R.; Hamedoun, M.; Hourmatallah, A.; Bouslykhane, K.; Benzakour, N.
2008-01-01
The magnetic properties of a ferromagnet spin-S a disordered semi-infinite system with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system τ c =(k B T c )/(2S(S+1)J b ) is studied as function of the thickness of the film and the exchange interactions in the bulk, and within the surfaces J b ,J s and J perpendicular , respectively. It is found that τ c increases with the exchange interactions of surface. The magnetic phase diagrams (τ c versus the dilution x) and the percolation threshold are obtained
International Nuclear Information System (INIS)
Eynard, B; Orantin, N
2008-01-01
We compute expectation values of mixed traces containing both matrices in a two matrix model, i.e. a generating function for counting bicolored discrete surfaces with non-uniform boundary conditions. As an application, we prove the x-y symmetry of Eynard and Orantin (2007 Invariants of algebraic curves and topological expansion Preprint math-ph/0702045)
Model predictive control classical, robust and stochastic
Kouvaritakis, Basil
2016-01-01
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...
Classical Electron Model with QED Corrections
Lenk, Ron
2010-01-01
In this article we build a metric for a classical general relativistic electron model with QED corrections. We calculate the stress-energy tensor for the radiative corrections to the Coulomb potential in both the near-field and far-field approximations. We solve the three field equations in both cases by using a perturbative expansion to first order in alpha (the fine-structure constant) while insisting that the usual (+, +, -, -) structure of the stress-energy tensor is maintained. The resul...
International Nuclear Information System (INIS)
Scheinine, A.L.
1992-01-01
The frustrated XY model was studied on a lattice, primarily to test Fourier transform acceleration technique for a phase transition having more field structure than just spinwaves and vortices. Also, the spinless Hubbard model without hopping was simulated using continuous variables for the auxiliary field that mediates coupling between fermions. Finally, spin one-half Hubbard model was studied with a technique that sampled the fermion occupation configurations. The frustrated two-dimensional XY model was simulated using the Langevin equation with Fourier transform acceleration. Speedup due to Fourier acceleration was measured for frustration one-half at the transition temperature. The unfrustrated XY model was also studied. For the frustrated case, only long-distance spin correlation and the autocorrelation of the spin showed significant speedup. The frustrated case has Ising-like domains. It was found that Fourier acceleration speeds the evolution of spinwaves but has negligible effect on the Ising-like domains. In the Hubbard model, fermion determinant weight factor in the partition function changes sign, causing large statistical fluctuations of observables. A technique was found for sampling configuration space using continuous auxiliary fields, despite energy barriers where the fermion determinant changes sign. For two-dimensional spinless Hubbard model with no hopping, an exact solution was found for a 4 x 4 lattice; which could be compared to numerical simulations. The sign problem remained, and was found to be related to the sign problem encountered when a discrete variable is used for the auxiliary field. For spin one-half Hubbard model, a Monte Carlo simulation was done in which the fermion occupation configurations were varied. Rather than integrate-out the fermions and make a numerical estimate of the sum over the auxiliary field, the auxiliary field was integrated-out and a numerical estimate was made of the sum over fermion configurations
VOTERS DECIDE. CLASSICAL MODELS OF ELECTORAL BEHAVIOR.
Directory of Open Access Journals (Sweden)
Constantin SASU
2015-04-01
Full Text Available The decision to vote and choosing among the candidates is a extremely important one with repercussions on everyday life by determining, in global mode, its quality for the whole society. Therefore the whole process by which the voter decide becomes a central concern. In this paper we intend to locate the determinants of the vote decision in the electoral behavior classical theoretical models developed over time. After doing synthesis of classical schools of thought on electoral behavior we conclude that it has been made a journey through the mind, soul and cheek, as follows: the mind as reason in theory developed by Downs, soul as preferably for an actor in Campbell's theory, etc. and cheek as an expression of the impossibility of detachment from social groups to which we belong in Lazarsfeld's theory.
Two simple models of classical heat pumps.
Marathe, Rahul; Jayannavar, A M; Dhar, Abhishek
2007-03-01
Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous interpretation of results. We demonstrate that while both our models seem to be built on similar principles, one is able to function as a heat pump (or engine) while the other is not.
The simplest classical models of topological transitions
International Nuclear Information System (INIS)
Konstantinov, M.Yu.
1983-01-01
It is shown that simplest classical models of topologigal transitions possess scalar singularity of curvature with a point carrier being a source of space-time incompleteness. It is also shown that the condition of energy dominance is broken near the topological transition, asymptotic behaviour of the curvature tensor (growth of curvature at approximation to the topological transition) and energy-momentum tensor of (breaking the condition of energy dominance) being a common property of the considered models and being completely determined by the type of topological transition
Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.
2018-03-01
A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.
Quantum Vertex Model for Reversible Classical Computing
Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng
We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.
X-ray Modeling of Classical Novae
Nemeth, Peter
2010-01-01
It has been observed and theoretically supported in the last decade that the peak of the spectral energy distribution of classical novae gradually shifts to higher energies at constant bolometric luminosity after a nova event. For this reason, comprehensive evolutionary studies require spectral analysis in multiple spectral bands. After a nova explosion, the white dwarf can maintain stable surface hydrogen burning, the duration of which strongly correlates with the white dwarf mass. During this stage the peak of the luminosity is in the soft X-ray band (15 - 60 Angstroms). By extending the modeling range of TLUSTY/SYNSPEC, I analyse the luminosity and abundance evolution of classical novae. Model atoms required for this work were built using atomic data from NIST/ASD and TOPBASE. The accurate but incomplete set of energy levels and radiative transitions in NIST were completed with calculated data from TOPBASE. Synthetic spectra were then compared to observed data to derive stellar parameters. I show the capabilities and validity of this project on the example of V4743 Sgr. This nova was observed with both Chandra and XMM-Newton observatories and has already been modeled by several scientific groups (PHOENIX, TMAP).
Variational study of critical properties: the spectrum and phase structure of the XY-model
International Nuclear Information System (INIS)
Hari Dass, N.D.; Patkos, A.
1982-05-01
The wave functionals for the excited states of the two dimensional planar rotator model are constructed approximately with the help of analytical Ansaetze. The mass gap so calculated is found to be in quantitative agreement with theoretical expectations for any T > Tsub(c). The order-disorder type transition line of the generalized model with Ising type symmetry breaking term is obtained using a similar Ansatz. (Auth.)
Indian Academy of Sciences (India)
2013-11-11
Nov 11, 2013 ... Polanyi's classic paper, co-authored by Henry Eyring, reproduced in this ... spatial conf guration of the atoms in terms of the energy function of the diatomic .... The present communication deals with the construction of such .... These three contributions are complemented by a fourth term if one takes into.
Analysis of a classical chiral bag model
International Nuclear Information System (INIS)
Nadeau, H.
1985-01-01
The author studies a classical chiral bag model with a Mexican hat-type potential for the self-coupling of the pion fields. He assumes a static spherical bag of radius R, the hedgehog ansatz for the chiral fields and that the quarks are all in the lowest lying s state. The author has considered three classes of models, the cloudy or pantopionic bags, the little or exopionic bags and the endopionic bags, where the pions are allowed all through space, only outside the bag and only inside the bag respectively. In all cases, the quarks are confined in the interior. He calculates the bag radius R, the bag constant B and the total ground state energy R for wide ranges of the two free parameters of the theory, namely the coupling constant λ and the quark frequency omega. The author focuses the study on the endopionic bags, the least known class, and compares the results with the familiar ones of other classes
International Nuclear Information System (INIS)
Weber, H.; Jensen, H.J.
1992-01-01
We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high Tc superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature regime. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High Tc superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)
International Nuclear Information System (INIS)
Weber, H.; Tekniska Hoegskolan, Luleaa; Jeldtoft Jensen, H.
1991-01-01
We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high T c superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature region. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High T c superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)
International Nuclear Information System (INIS)
Pirouzmand, Ahmad; Hadad, Kamal
2011-01-01
Highlights: → This paper describes the solution of time-independent neutron transport equation. → Using a novel method based on cellular neural networks (CNNs) coupled with P N method. → Utilize the CNN model to simulate spatial scalar flux distribution in steady state. → The accuracy, stability, and capabilities of CNN model are examined in x-y geometry. - Abstract: This paper describes a novel method based on using cellular neural networks (CNN) coupled with spherical harmonics method (P N ) to solve the time-independent neutron transport equation in x-y geometry. To achieve this, an equivalent electrical circuit based on second-order form of neutron transport equation and relevant boundary conditions is obtained using CNN method. We use the CNN model to simulate spatial response of scalar flux distribution in the steady state condition for different order of spherical harmonics approximations. The accuracy, stability, and capabilities of CNN model are examined in 2D Cartesian geometry for fixed source and criticality problems.
A classical statistical model of heavy ion collisions
International Nuclear Information System (INIS)
Schmidt, R.; Teichert, J.
1980-01-01
The use of the computer code TRAJEC which represents the numerical realization of a classical statistical model for heavy ion collisions is described. The code calculates the results of a classical friction model as well as various multi-differential cross sections for heavy ion collisions. INPUT and OUTPUT information of the code are described. Two examples of data sets are given [ru
Simple improvements to classical bubble nucleation models.
Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg
2015-08-01
We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.
DEFF Research Database (Denmark)
Bhaskar, Mahajan Sagar; Sanjeevikumar, Padmanaban; Wheeler, Patrick
2016-01-01
A New breed of a buck boost converter, named as the XY converter family is proposed in this article. In the XY family, 16 topologies are presented which are highly suitable for renewable energy applications which require a high ratio of DC-DC converter; such as a photovoltaic multilevel inverter...... system, high voltage automotive applications and industrial drives. Compared to the traditional boost converter and existing recent converters, the proposed XY converter family has the ability to provide a higher output voltage by using less number of power devices and reactive components. Other distinct...... features of the XY converter family are i) Single control switch ii) Provide negative output voltage iii) Non-isolated topologies iv) High conversion ratio without making the use of high duty cycle and v) modular structure. XY family is compared with the recent high step-up converters and the detailed...
InXy and SeXy, compact heterologous reporter proteins for mammalian cells.
Fluri, David A; Kelm, Jens M; Lesage, Guillaume; Baba, Marie Daoud-El; Fussenegger, Martin
2007-10-15
Mammalian reporter proteins are essential for gene-function analysis, drugscreening initiatives and as model product proteins for biopharmaceutical manufacturing. Bacillus subtilis can maintain its metabolism by secreting Xylanase A (XynA), which converts xylan into shorter xylose oligosaccharides. XynA is a family 11 xylanase monospecific for D-xylose containing substrates. Mammalian cells transgenic for constitutive expression of wild-type xynA showed substantial secretion of this prokaryotic enzyme. Deletion analysis confirmed that a prokaryotic signal sequence encoded within the first 81 nucleotides was compatible with the secretory pathway of mammalian cells. Codon optimization combined with elimination of the prokaryotic signal sequence resulted in an exclusively intracellular mammalian Xylanase A variant (InXy) while replacement by an immunoglobulin-derived secretion signal created an optimal secreted Xylanase A derivative (SeXy). A variety of chromogenic and fluorescence-based assays adapted for use with mammalian cells detected InXy and SeXy with high sensitivity and showed that both reporter proteins resisted repeated freeze/thaw cycles, remained active over wide temperature and pH ranges, were extremely stable in human serum stored at room temperature and could independently be quantified in samples also containing other prominent reporter proteins such as the human placental alkaline phosphatase (SEAP) and the Bacillus stearothermophilus-derived secreted alpha-amylase (SAMY). Glycoprofiling revealed that SeXy produced in mammalian cells was N- glycosylated at four different sites, mutation of which resulted in impaired secretion. SeXy was successfully expressed in a variety of mammalian cell lines and primary cells following transient transfection and transduction with adeno-associated virus particles (AAV) engineered for constitutive SeXy expression. Intramuscular injection of transgenic AAVs into mice showed significant SeXy levels in the bloodstream
Classical probability model for Bell inequality
International Nuclear Information System (INIS)
Khrennikov, Andrei
2014-01-01
We show that by taking into account randomness of realization of experimental contexts it is possible to construct common Kolmogorov space for data collected for these contexts, although they can be incompatible. We call such a construction 'Kolmogorovization' of contextuality. This construction of common probability space is applied to Bell's inequality. It is well known that its violation is a consequence of collecting statistical data in a few incompatible experiments. In experiments performed in quantum optics contexts are determined by selections of pairs of angles (θ i ,θ ' j ) fixing orientations of polarization beam splitters. Opposite to the common opinion, we show that statistical data corresponding to measurements of polarizations of photons in the singlet state, e.g., in the form of correlations, can be described in the classical probabilistic framework. The crucial point is that in constructing the common probability space one has to take into account not only randomness of the source (as Bell did), but also randomness of context-realizations (in particular, realizations of pairs of angles (θ i , θ ' j )). One may (but need not) say that randomness of 'free will' has to be accounted for.
Classical anisotropies in models of open inflation
International Nuclear Information System (INIS)
Garriga, J.; Mukhanov, V.F.
1997-01-01
In the simplest model of open inflation there are two inflaton fields decoupled from each other. One of them, the tunneling field, produces a first stage of inflation which prepares the ground for the nucleation of a highly symmetric bubble. The other, a free field, drives a second period of slow-roll inflation inside the bubble. However, the second field also evolves during the first stage of inflation, which to some extent breaks the needed symmetry. We show that this generates large supercurvature anisotropies which, together with the results of Tanaka and Sasaki, rule out this class of simple models (unless, of course, Ω 0 is sufficiently close to 1). The problem does not arise in modified models where the second field does not evolve in the first stage of inflation. copyright 1997 The American Physical Society
Classical solutions of some field theoretic models
International Nuclear Information System (INIS)
Zakrzewski, W.J.
1982-01-01
In recent years much attention has been paid to simpler fields theories, so chosen that they possess several properties of nonabelian gauge theories. They preserve the conformal invariance of the action and one can define the topological charge for them. They possess nontrivial solutions to the equations of motion. The perturbation theory based on the fluctuations around each solution is characterized by asymptotic freedom. A model called CP sup(n-1) is presented and some models which are its natural generalizations are discussed. (M.F.W.)
A classical model explaining the OPERA velocity paradox
Broda, Boguslaw
2011-01-01
In the context of the paradoxical results of the OPERA Collaboration, we have proposed a classical mechanics model yielding the statistically measured velocity of a beam higher than the velocity of the particles constituting the beam. Ingredients of our model necessary to obtain this curious result are a non-constant fraction function and the method of the maximum-likelihood estimation.
Entropy in the classical and quantum polymer black hole models
International Nuclear Information System (INIS)
Livine, Etera R; Terno, Daniel R
2012-01-01
We investigate the entropy counting for black hole horizons in loop quantum gravity (LQG). We argue that the space of 3D closed polyhedra is the classical counterpart of the space of SU(2) intertwiners at the quantum level. Then computing the entropy for the boundary horizon amounts to calculating the density of polyhedra or the number of intertwiners at fixed total area. Following the previous work (Bianchi 2011 Class. Quantum Grav. 28 114006) we dub these the classical and quantum polymer models for isolated horizons in LQG. We provide exact micro-canonical calculations for both models and we show that the classical counting of polyhedra accounts for most of the features of the intertwiner counting (leading order entropy and log-correction), thus providing us with a simpler model to further investigate correlations and dynamics. To illustrate this, we also produce an exact formula for the dimension of the intertwiner space as a density of ‘almost-closed polyhedra’. (paper)
Bukhvostov–Lipatov model and quantum-classical duality
Directory of Open Access Journals (Sweden)
Vladimir V. Bazhanov
2018-02-01
Full Text Available The Bukhvostov–Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1+1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O(3 non-linear sigma model. In our previous work [arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov–Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.
Bukhvostov-Lipatov model and quantum-classical duality
Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.
2018-02-01
The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.
Current algebra of classical non-linear sigma models
International Nuclear Information System (INIS)
Forger, M.; Laartz, J.; Schaeper, U.
1992-01-01
The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)
Classical solutions for a one phase osmosis model
Lippoth, F.; Prokert, G.
2011-01-01
For a moving boundary problem modelling the motion of a semipermeable membrane by osmotic pressure and surface tension we prove the existence and uniqueness of classical solutions on small time intervals. Moreover, we construct solutions existing on arbitrary long time intervals, provided the
General classical solutions in the noncommutative CPN-1 model
International Nuclear Information System (INIS)
Foda, O.; Jack, I.; Jones, D.R.T.
2002-01-01
We give an explicit construction of general classical solutions for the noncommutative CP N-1 model in two dimensions, showing that they correspond to integer values for the action and topological charge. We also give explicit solutions for the Dirac equation in the background of these general solutions and show that the index theorem is satisfied
Rotating fluid models in classical and quantum mechanics
International Nuclear Information System (INIS)
Arvieu, R.; Troudet, T.
1979-01-01
To describe the behavior of high-spin nuclei it is necessary to refer back to the classical mechanics of fluids in rotation where some results are general enough to apply to the rotational nuclear fluid. It is then shown that the quantum model of rotational oscillator gives a simple classification of rotating configurations [fr
Classical model of the Dirac electron in curved space
International Nuclear Information System (INIS)
Barut, A.O.; Pavsic, M.
1987-01-01
The action for the classical model of the electron exhibiting Zitterbewegung is generalized to curved space by introducing a spin connection. The dynamical equations and the symplectic structure are given for several different choices of the variables. In particular, we obtain the equation of motion for spin and compare it with the Papapetrou equation. (author)
Modeling the quantum to classical crossover in topologically disordered networks
International Nuclear Information System (INIS)
Schijven, P; Kohlberger, J; Blumen, A; Mülken, O
2012-01-01
We model transport in topologically disordered networks that are subjected to an environment that induces classical diffusion. The dynamics is phenomenologically described within the framework of the recently introduced quantum stochastic walk, allowing study of the crossover between coherent transport and purely classical diffusion. To study the transport efficiency, we connect our system with a source and a drain and provide a detailed analysis of their effects. We find that the coupling to the environment removes all effects of localization and quickly leads to classical transport. Furthermore, we find that on the level of the transport efficiency, the system can be well described by reducing it to a two-node network (a dimer). (paper)
Curved-space classical solutions of a massive supermatrix model
International Nuclear Information System (INIS)
Azuma, Takehiro; Bagnoud, Maxime
2003-01-01
We investigate here a supermatrix model with a mass term and a cubic interaction. It is based on the super Lie algebra osp(1 vertical bar 32,R), which could play a role in the construction of the eleven-dimensional M-theory. This model contains a massive version of the IIB matrix model, where some fields have a tachyonic mass term. Therefore, the trivial vacuum of this theory is unstable. However, this model possesses several classical solutions where these fields build noncommutative curved spaces and these solutions are shown to be energetically more favorable than the trivial vacuum. In particular, we describe in details two cases, the SO(3)xSO(3)xSO(3) (three fuzzy 2-spheres) and the SO(9) (fuzzy 8-sphere) classical backgrounds
Classical solutions for the 4-dimensional σ-nonlinear model
International Nuclear Information System (INIS)
Tataru-Mihai, P.
1979-01-01
By interpreting the σ-nonlinear model as describing the Gauss map associated to a certain immersion, several classes of classical solutions for the 4-dimensional model are derived. As by-products one points out i) an intimate connection between the energy-momentum tensor of the solution and the second differential form of the immersion associated to it and ii) a connection between self- (antiself-)duality of the solution and the minimality of the associated immersion. (author)
Classical and Weak Solutions for Two Models in Mathematical Finance
Gyulov, Tihomir B.; Valkov, Radoslav L.
2011-12-01
We study two mathematical models, arising in financial mathematics. These models are one-dimensional analogues of the famous Black-Scholes equation on finite interval. The main difficulty is the degeneration at the both ends of the space interval. First, classical solutions are studied. Positivity and convexity properties of the solutions are discussed. Variational formulation in weighted Sobolev spaces is introduced and existence and uniqueness of the weak solution is proved. Maximum principle for weak solution is discussed.
Modelling Of Flotation Processes By Classical Mathematical Methods - A Review
Jovanović, Ivana; Miljanović, Igor
2015-12-01
Flotation process modelling is not a simple task, mostly because of the process complexity, i.e. the presence of a large number of variables that (to a lesser or a greater extent) affect the final outcome of the mineral particles separation based on the differences in their surface properties. The attempts toward the development of the quantitative predictive model that would fully describe the operation of an industrial flotation plant started in the middle of past century and it lasts to this day. This paper gives a review of published research activities directed toward the development of flotation models based on the classical mathematical rules. The description and systematization of classical flotation models were performed according to the available references, with emphasize exclusively given to the flotation process modelling, regardless of the model application in a certain control system. In accordance with the contemporary considerations, models were classified as the empirical, probabilistic, kinetic and population balance types. Each model type is presented through the aspects of flotation modelling at the macro and micro process levels.
DEFF Research Database (Denmark)
Mouritsen, Ole G.; Praestgaard, Eigil
1988-01-01
obeys dynamical scaling and the shape of the dynamical scaling function pertaining to the structure factor is found to depend on P. Specifically, this function is described by a Porod-law behavior, q-ω, where ω increases with the wall softness. The kinetic exponent, which describes how the linear domain...... infinite to zero temperature as well as to nonzero temperatures below the ordering transition. The continuous nature of the spin variables causes the domain walls to be ‘‘soft’’ and characterized by a finite thickness. The steady-state thickness of the walls can be varied by a model parameter, P. At zero...... size varies with time, R(t)∼tn, is for both models at zero temperature determined to be n≃0.25, independent of P. At finite temperatures, the growth kinetics is found to cross over to the Lifshitz-Allen-Cahn law characterized by n≃0.50. The results support the idea of two separate zero...
Quantum–classical transition in the Caldeira–Leggett model
Energy Technology Data Exchange (ETDEWEB)
Kovács, J. [Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen (Hungary); Institute of Nuclear Research, P.O. Box 51, H-4001 Debrecen (Hungary); Fazekas, B. [Institute of Mathematics, University of Debrecen, P.O. Box 12, H-4010 Debrecen (Hungary); Nagy, S., E-mail: nagys@phys.unideb.hu [Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen (Hungary); Sailer, K. [Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen (Hungary)
2017-01-15
The quantum–classical transition in the Caldeira–Leggett model is investigated in the framework of the functional renormalization group method. It is shown that a divergent quadratic term arises in the action due to the heat bath in the model. By removing the divergence with a frequency cutoff we considered the critical behavior of the model. The critical exponents belonging to the susceptibility and the correlation length are determined and their independence of the frequency cutoff and the renormalization scheme is shown.
Classically integrable boundary conditions for symmetric-space sigma models
International Nuclear Information System (INIS)
MacKay, N.J.; Young, C.A.S.
2004-01-01
We investigate boundary conditions for the non-linear sigma model on the compact symmetric space G/H. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions which correspond to involutions which commute with the involution defining H. Applied to SO(3)/SO(2), the non-linear sigma model on S 2 , these yield the great circles as boundary submanifolds. Applied to GxG/G, they reproduce known results for the principal chiral model
Modeling classical and quantum radiation from laser-plasma accelerators
Directory of Open Access Journals (Sweden)
M. Chen
2013-03-01
Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.
Form factors of the finite quantum XY-chain
International Nuclear Information System (INIS)
Iorgov, Nikolai
2011-01-01
Explicit factorized formulas for the matrix elements (form factors) of the spin operators σ x and σ y between the eigenvectors of the Hamiltonian of the finite quantum periodic XY-chain in a transverse field were derived. The derivation is based on the relations between three models: the model of quantum XY-chain, Ising model on 2D lattice and N = 2 Baxter-Bazhanov-Stroganov τ (2) -model. Due to these relations we transfer the formulas for the form factors of the latter model recently obtained by the use of separation of variables method to the model of quantum XY-chain. Hopefully, the formulas for the form factors will help in analysis of multipoint dynamic correlation functions at a finite temperature. As an example, we re-derive the asymptotics of the two-point correlation function in the disordered phase without the use of the Toeplitz determinants and the Wiener-Hopf factorization method.
Classical kinematic model for direct reactions of oriented reagents
International Nuclear Information System (INIS)
Schechter, I.; Prisant, M.G.; Levine, R.D.
1987-01-01
A simple kinematic model based on the concept of an orientation-dependent critical configuration for reaction is introduced and applied. The model serves two complementary purposes. In the predictive mode the model provides an easily implemented procedure for computing the reactivity of oriented reagents (including those actually amenable to measure) from a given potential energy surface. The predictions of the model are compared against classical trajectory results for the H + D 2 reaction. By use of realistic potential energy surfaces the model is applied to the Li + HF and O + HCl reactions where the HX molecules are pumped by a polarized laser. A given classical trajectory is deemed reactive or not according to whether it can surmount the barrier at that particular orientation. The essential difference with the model of Levine and Bernstein is that the averaging over initial conditions is performed by using a Monte Carlo integration. One can therefore use the correct orientation-dependent shape (and not only height) of the barrier to reaction and, furthermore, use oriented or aligned reagents. Since the only numerical step is a Monte Carlo sampling of initial conditions, very many trajectories can be run. This suffices to determine the reaction cross section for different initial conditions. To probe the products, they have employed the kinematic approach of Elsum and Gordon. The result is a model where, under varying initial conditions, examining final-state distributions or screening different potential energy surfaces can be efficiently carried out
Completeness of classical spin models and universal quantum computation
International Nuclear Information System (INIS)
De las Cuevas, Gemma; Dür, Wolfgang; Briegel, Hans J; Van den Nest, Maarten
2009-01-01
We study mappings between different classical spin systems that leave the partition function invariant. As recently shown in Van den Nest et al (2008 Phys. Rev. Lett. 100 110501), the partition function of the 2D square lattice Ising model in the presence of an inhomogeneous magnetic field can specialize to the partition function of any Ising system on an arbitrary graph. In this sense the 2D Ising model is said to be 'complete'. However, in order to obtain the above result, the coupling strengths on the 2D lattice must assume complex values, and thus do not allow for a physical interpretation. Here we show how a complete model with real—and, hence, 'physical'—couplings can be obtained if the 3D Ising model is considered. We furthermore show how to map general q-state systems with possibly many-body interactions to the 2D Ising model with complex parameters, and give completeness results for these models with real parameters. We also demonstrate that the computational overhead in these constructions is in all relevant cases polynomial. These results are proved by invoking a recently found cross-connection between statistical mechanics and quantum information theory, where partition functions are expressed as quantum mechanical amplitudes. Within this framework, there exists a natural correspondence between many-body quantum states that allow for universal quantum computation via local measurements only, and complete classical spin systems
Macroeconomic Forecasts in Models with Bayesian Averaging of Classical Estimates
Directory of Open Access Journals (Sweden)
Piotr Białowolski
2012-03-01
Full Text Available The aim of this paper is to construct a forecasting model oriented on predicting basic macroeconomic variables, namely: the GDP growth rate, the unemployment rate, and the consumer price inflation. In order to select the set of the best regressors, Bayesian Averaging of Classical Estimators (BACE is employed. The models are atheoretical (i.e. they do not reflect causal relationships postulated by the macroeconomic theory and the role of regressors is played by business and consumer tendency survey-based indicators. Additionally, survey-based indicators are included with a lag that enables to forecast the variables of interest (GDP, unemployment, and inflation for the four forthcoming quarters without the need to make any additional assumptions concerning the values of predictor variables in the forecast period. Bayesian Averaging of Classical Estimators is a method allowing for full and controlled overview of all econometric models which can be obtained out of a particular set of regressors. In this paper authors describe the method of generating a family of econometric models and the procedure for selection of a final forecasting model. Verification of the procedure is performed by means of out-of-sample forecasts of main economic variables for the quarters of 2011. The accuracy of the forecasts implies that there is still a need to search for new solutions in the atheoretical modelling.
A possibilistic uncertainty model in classical reliability theory
International Nuclear Information System (INIS)
De Cooman, G.; Capelle, B.
1994-01-01
The authors argue that a possibilistic uncertainty model can be used to represent linguistic uncertainty about the states of a system and of its components. Furthermore, the basic properties of the application of this model to classical reliability theory are studied. The notion of the possibilistic reliability of a system or a component is defined. Based on the concept of a binary structure function, the important notion of a possibilistic function is introduced. It allows to calculate the possibilistic reliability of a system in terms of the possibilistic reliabilities of its components
Entanglement in the XY spin chain
International Nuclear Information System (INIS)
Its, A R; Jin, B-Q; Korepin, V E
2005-01-01
We consider the entanglement in the ground state of the XY model of an infinite chain. Following Bennett, Bernstein, Popescu and Schumacher, we use the entropy of a sub-system as a measure of entanglement. Vidal, Latorre, Rico and Kitaev have conjectured that the von Neumann entropy of a large block of neighbouring spins approaches a constant as the size of the block increases. We evaluate this limiting entropy as a function of anisotropy and transverse magnetic field. We use the methods based on the integrable Fredholm operators and the Riemann-Hilbert approach. It is shown how the entropy becomes singular at the phase transition points
Semi-classical analysis of optical model ambiguities
International Nuclear Information System (INIS)
Cuer, M.
1979-01-01
The ambiguities in the inverse problem at fixed energy in quantum mechanics are analyzed in the framework of the JWKB method. When the classical turning point is unique for all values of the impact parameter (high energies region), the ambiguities proceed only from the quantization of the angular momentum. In the asymptotic region the difference between two particular equivalent potentials changes sign infinitely often. In addition, the set of equivalent potentials which have a given asymptotic form is bounded (except perhaps at the origin). When there are several turning points for small values of the impact parameter (low-energy region), new ambiguities arise from the fact that the parts of the potential that are located between turning points are not ''visible'' in the classical limit. The set of equivalent potentials wich have a given asymptotic form is then not bounded. Mumerical examples (of real and complex equivalent potentials) are given. The optical model ambiguities are studied. The potential depth ambiguities also appear in classical mechanics, but their discrete nature is a quantum property. The VR/sup p//sup( V/)=constant ambiguities can be explained by the quantum corrections to the spiral scattering phenomenon. An attempt to explain why ambiguities arise only with heavy particles scattering is also given
Semi classical model of the neutron resonance compound nucleus
International Nuclear Information System (INIS)
Ohkubo, Makio
1995-01-01
A Semi-classical model of compound nucleus is developed, where time evolution and recurrence for many degrees of freedom (oscillators) excited simultaneously are explicitly considered. The effective number of oscillators plays the role in the compound nucleus, and the nuclear temperatures are derived, which are in good agreement with the traditional values. Time structures of the compound nucleus at resonance are considered, from which equidistant level series with an envelope of strength function of giant resonance nature is obtained. S-matrix formulation for fine structure resonance is derived. (author)
Classic and New Animal Models of Parkinson's Disease
Directory of Open Access Journals (Sweden)
Javier Blesa
2012-01-01
Full Text Available Neurological disorders can be modeled in animals so as to recreate specific pathogenic events and behavioral outcomes. Parkinson’s Disease (PD is the second most common neurodegenerative disease of an aging population, and although there have been several significant findings about the PD disease process, much of this process still remains a mystery. Breakthroughs in the last two decades using animal models have offered insights into the understanding of the PD disease process, its etiology, pathology, and molecular mechanisms. Furthermore, while cellular models have helped to identify specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are useful for testing new neuroprotective or neurorestorative strategies. Moreover, significant advances in the modeling of additional PD features have come to light in both classic and newer models. In this review, we try to provide an updated summary of the main characteristics of these models as well as the strengths and weaknesses of what we believe to be the most popular PD animal models. These models include those produced by 6-hydroxydopamine (6-OHDA, 1-methyl-1,2,3,6-tetrahydropiridine (MPTP, rotenone, and paraquat, as well as several genetic models like those related to alpha-synuclein, PINK1, Parkin and LRRK2 alterations.
Improvements on Semi-Classical Distorted-Wave model
Energy Technology Data Exchange (ETDEWEB)
Sun Weili; Watanabe, Y.; Kuwata, R. [Kyushu Univ., Fukuoka (Japan); Kohno, M.; Ogata, K.; Kawai, M.
1998-03-01
A method of improving the Semi-Classical Distorted Wave (SCDW) model in terms of the Wigner transform of the one-body density matrix is presented. Finite size effect of atomic nuclei can be taken into account by using the single particle wave functions for harmonic oscillator or Wood-Saxon potential, instead of those based on the local Fermi-gas model which were incorporated into previous SCDW model. We carried out a preliminary SCDW calculation of 160 MeV (p,p`x) reaction on {sup 90}Zr with the Wigner transform of harmonic oscillator wave functions. It is shown that the present calculation of angular distributions increase remarkably at backward angles than the previous ones and the agreement with the experimental data is improved. (author)
Hybrid quantum-classical modeling of quantum dot devices
Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas
2017-11-01
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
Continuing research on the classical spiraling photon model
Li, Hongrui
2014-11-01
Based no the classical spiraling photon model proposed by Hongrui Li, the laws of reflection, refraction of a single photon can be derived. Moreover, the polarization, total reflection, evanescent wave and Goos-Hanchen shift of a single photon can be elucidated. However, this photon model is still unfinished. Especially, the spiraling diameter of a photon is not definite. In this paper, the continuous research works on this new theory are reported. According to the facts that the diffraction limit of light and the smallest diameter of the focal spot of lenses are all equal to the wavelength λ of the light, we can get that the spiraling diameter of a photon equals to the wavelength λ, so we gain that the angle between the linear velocity of the spiraling photon υ and the component of the linear velocity in the forward direction υb is 45°, and the energy of a classical spiraling photon E = (1/2)mυ2 = (1/2)m2c2 = mc2. This coincides with Einstein's mass-energy relation. While it is obtained that the velocity of the evanescent wave in the vacuum is slower than the velocity of light in glass in straight line. In such a way, the optical fiber can slow the light down. In addition, the force analysis of a single photon in optical tweezers system is discussed. And the reason that the laser beam can capture the particle slightly downstream from the focal point can be explained.
Classical symmetries of some two-dimensional models
International Nuclear Information System (INIS)
Schwarz, J.H.
1995-01-01
It is well-known that principal chiral models and symmetric space models in two-dimensional Minkowski space have an infinite-dimensional algebra of hidden symmetries. Because of the relevance of symmetric space models to duality symmetries in string theory, the hidden symmetries of these models are explored in some detail. The string theory application requires including coupling to gravity, supersymmetrization, and quantum effects. However, as a first step, this paper only considers classical bosonic theories in flat space-time. Even though the algebra of hidden symmetries of principal chiral models is confirmed to include a Kac-Moody algebra (or a current algebra on a circle), it is argued that a better interpretation is provided by a doubled current algebra on a semi-circle (or line segment). Neither the circle nor the semi-circle bears any apparent relationship to the physical space. For symmetric space models the line segment viewpoint is shown to be essential, and special boundary conditions need to be imposed at the ends. The algebra of hidden symmetries also includes Virasoro-like generators. For both principal chiral models and symmetric space models, the hidden symmetry stress tensor is singular at the ends of the line segment. (orig.)
Simple classical model for Fano statistics in radiation detectors
Energy Technology Data Exchange (ETDEWEB)
Jordan, David V. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)], E-mail: David.Jordan@pnl.gov; Renholds, Andrea S.; Jaffe, John E.; Anderson, Kevin K.; Rene Corrales, L.; Peurrung, Anthony J. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)
2008-02-01
A simple classical model that captures the essential statistics of energy partitioning processes involved in the creation of information carriers (ICs) in radiation detectors is presented. The model pictures IC formation from a fixed amount of deposited energy in terms of the statistically analogous process of successively sampling water from a large, finite-volume container ('bathtub') with a small dipping implement ('shot or whiskey glass'). The model exhibits sub-Poisson variance in the distribution of the number of ICs generated (the 'Fano effect'). Elementary statistical analysis of the model clarifies the role of energy conservation in producing the Fano effect and yields Fano's prescription for computing the relative variance of the IC number distribution in terms of the mean and variance of the underlying, single-IC energy distribution. The partitioning model is applied to the development of the impact ionization cascade in semiconductor radiation detectors. It is shown that, in tandem with simple assumptions regarding the distribution of energies required to create an (electron, hole) pair, the model yields an energy-independent Fano factor of 0.083, in accord with the lower end of the range of literature values reported for silicon and high-purity germanium. The utility of this simple picture as a diagnostic tool for guiding or constraining more detailed, 'microscopic' physical models of detector material response to ionizing radiation is discussed.
Classical nucleation theory in the phase-field crystal model.
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
Coherent states and classical limit of algebraic quantum models
International Nuclear Information System (INIS)
Scutaru, H.
1983-01-01
The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines
Classical nucleation theory in the phase-field crystal model
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
A classical-quantum coupling strategy for a hierarchy of one dimensional models for semiconductors
Jourdana, Clément; Pietra, Paola; Vauchelet, Nicolas
2014-01-01
We consider one dimensional coupled classical-quantum models for quantum semiconductor device simulations. The coupling occurs in the space variable : the domain of the device is divided into a region with strong quantum effects (quantum zone) and a region where quantum effects are negligible (classical zone). In the classical zone, transport in diffusive approximation is modeled through diffusive limits of the Boltzmann transport equation. This leads to a hierarchy of classical model. The qu...
Neural network versus classical time series forecasting models
Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam
2017-05-01
Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.
Classical and Quantum Consistency of the DGP Model
Nicolis, A; Nicolis, Alberto; Rattazzi, Riccardo
2004-01-01
We study the Dvali-Gabadadze-Porrati model by the method of the boundary effective action. The truncation of this action to the bending mode \\pi consistently describes physics in a wide range of regimes both at the classical and at the quantum level. The Vainshtein effect, which restores agreement with precise tests of general relativity, follows straightforwardly. We give a simple and general proof of stability, i.e. absence of ghosts in the fluctuations, valid for most of the relevant cases, like for instance the spherical source in asymptotically flat space. However we confirm that around certain interesting self-accelerating cosmological solutions there is a ghost. We consider the issue of quantum corrections. Around flat space \\pi becomes strongly coupled below a macroscopic length of 1000 km, thus impairing the predictivity of the model. Indeed the tower of higher dimensional operators which is expected by a generic UV completion of the model limits predictivity at even larger length scales. We outline ...
Van der Waals coefficients beyond the classical shell model
Energy Technology Data Exchange (ETDEWEB)
Tao, Jianmin, E-mail: jianmint@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Fang, Yuan; Hao, Pan [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Scuseria, G. E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ruzsinszky, Adrienn; Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)
2015-01-14
Van der Waals (vdW) coefficients can be accurately generated and understood by modelling the dynamic multipole polarizability of each interacting object. Accurate static polarizabilities are the key to accurate dynamic polarizabilities and vdW coefficients. In this work, we present and study in detail a hollow-sphere model for the dynamic multipole polarizability proposed recently by two of the present authors (JT and JPP) to simulate the vdW coefficients for inhomogeneous systems that allow for a cavity. The inputs to this model are the accurate static multipole polarizabilities and the electron density. A simplification of the full hollow-sphere model, the single-frequency approximation (SFA), circumvents the need for a detailed electron density and for a double numerical integration over space. We find that the hollow-sphere model in SFA is not only accurate for nanoclusters and cage molecules (e.g., fullerenes) but also yields vdW coefficients among atoms, fullerenes, and small clusters in good agreement with expensive time-dependent density functional calculations. However, the classical shell model (CSM), which inputs the static dipole polarizabilities and estimates the static higher-order multipole polarizabilities therefrom, is accurate for the higher-order vdW coefficients only when the interacting objects are large. For the lowest-order vdW coefficient C{sub 6}, SFA and CSM are exactly the same. The higher-order (C{sub 8} and C{sub 10}) terms of the vdW expansion can be almost as important as the C{sub 6} term in molecular crystals. Application to a variety of clusters shows that there is strong non-additivity of the long-range vdW interactions between nanoclusters.
Cross validation for the classical model of structured expert judgment
International Nuclear Information System (INIS)
Colson, Abigail R.; Cooke, Roger M.
2017-01-01
We update the 2008 TU Delft structured expert judgment database with data from 33 professionally contracted Classical Model studies conducted between 2006 and March 2015 to evaluate its performance relative to other expert aggregation models. We briefly review alternative mathematical aggregation schemes, including harmonic weighting, before focusing on linear pooling of expert judgments with equal weights and performance-based weights. Performance weighting outperforms equal weighting in all but 1 of the 33 studies in-sample. True out-of-sample validation is rarely possible for Classical Model studies, and cross validation techniques that split calibration questions into a training and test set are used instead. Performance weighting incurs an “out-of-sample penalty” and its statistical accuracy out-of-sample is lower than that of equal weighting. However, as a function of training set size, the statistical accuracy of performance-based combinations reaches 75% of the equal weight value when the training set includes 80% of calibration variables. At this point the training set is sufficiently powerful to resolve differences in individual expert performance. The information of performance-based combinations is double that of equal weighting when the training set is at least 50% of the set of calibration variables. Previous out-of-sample validation work used a Total Out-of-Sample Validity Index based on all splits of the calibration questions into training and test subsets, which is expensive to compute and includes small training sets of dubious value. As an alternative, we propose an Out-of-Sample Validity Index based on averaging the product of statistical accuracy and information over all training sets sized at 80% of the calibration set. Performance weighting outperforms equal weighting on this Out-of-Sample Validity Index in 26 of the 33 post-2006 studies; the probability of 26 or more successes on 33 trials if there were no difference between performance
Isogeometric shell formulation based on a classical shell model
Niemi, Antti
2012-09-04
This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.
Reliability assessment using degradation models: bayesian and classical approaches
Directory of Open Access Journals (Sweden)
Marta Afonso Freitas
2010-04-01
Full Text Available Traditionally, reliability assessment of devices has been based on (accelerated life tests. However, for highly reliable products, little information about reliability is provided by life tests in which few or no failures are typically observed. Since most failures arise from a degradation mechanism at work for which there are characteristics that degrade over time, one alternative is monitor the device for a period of time and assess its reliability from the changes in performance (degradation observed during that period. The goal of this article is to illustrate how degradation data can be modeled and analyzed by using "classical" and Bayesian approaches. Four methods of data analysis based on classical inference are presented. Next we show how Bayesian methods can also be used to provide a natural approach to analyzing degradation data. The approaches are applied to a real data set regarding train wheels degradation.Tradicionalmente, o acesso à confiabilidade de dispositivos tem sido baseado em testes de vida (acelerados. Entretanto, para produtos altamente confiáveis, pouca informação a respeito de sua confiabilidade é fornecida por testes de vida no quais poucas ou nenhumas falhas são observadas. Uma vez que boa parte das falhas é induzida por mecanismos de degradação, uma alternativa é monitorar o dispositivo por um período de tempo e acessar sua confiabilidade através das mudanças em desempenho (degradação observadas durante aquele período. O objetivo deste artigo é ilustrar como dados de degradação podem ser modelados e analisados utilizando-se abordagens "clássicas" e Bayesiana. Quatro métodos de análise de dados baseados em inferência clássica são apresentados. A seguir, mostramos como os métodos Bayesianos podem também ser aplicados para proporcionar uma abordagem natural à análise de dados de degradação. As abordagens são aplicadas a um banco de dados real relacionado à degradação de rodas de trens.
Care of women with XY karyotype
DEFF Research Database (Denmark)
Jorgensen, Pernille Bach; Kjartansdóttir, Kristín Rós; Fedder, Jens
2010-01-01
OUTCOME MEASURE(S): Evaluation of etiology, diagnosis, treatment, and associated disorders in XY women. RESULT(S): Many gene mutations can cause abnormal fetal development leading to androgen insensitivity syndrome or gonadal dysgenesis disorders. Females with these disorders have an XY karyotype but look...... like girls. They are mostly diagnosed at puberty, and the condition will often lead to serious psychological problems. Increased risk of malignancies and problems with pregnancy and infertility are other aspects that should be considered. This guideline will aid doctors in caring for XY females...
Entanglement of periodic anisotropic XY chains
International Nuclear Information System (INIS)
Zhang Lifa; Tong Peiqing
2005-01-01
By using the concept of concurrence, the entanglement of periodic anisotropic XY chains in a transverse field is studied numerically. It is found that the derivatives ∂ λ C(1) of nearest-neighbour concurrence diverge at quantum critical points. By proper scaling, we found that all the derivatives ∂ λ C(1) for periodic XY chains in the vicinity of quantum critical points have the same behaviours as that of a uniform chain
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
Energy Technology Data Exchange (ETDEWEB)
Kamenshchik, A. Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna (Italy) and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation); Manti, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)
2013-02-21
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
International Nuclear Information System (INIS)
Kamenshchik, A. Yu.; Manti, S.
2013-01-01
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.
International Nuclear Information System (INIS)
Aspect, A.
1986-01-01
The author states that ''It is impossible to mimick the quantum mechanical predictions for the EPR correlations, with a reasonable classical-looking model, in the spirit of Einstein's ideas''. The author feels that if he is wrong somebody could make a classical model (i.e. following the laws of classical physics) mimicking all the quantum mechanical predictions for the EPR correlations. He attempts to show that it is not the case for Barut's model for the following reasons: the first version of his model is classical, but doesn't mimick at all an EPR type experiment; and by reinterpretation one can get a model that does mimick the experiment, but this model is no longer ''reasonably classical looking'' since it involves negative probabilities. The claim is put in the form of a challenge. It is shown that the model under discussion can be reinterpreted by adding a chip converting the continuous outputs into two-valved outputs
The classical Stefan problem basic concepts, modelling and analysis
Gupta, SC
2003-01-01
This volume emphasises studies related toclassical Stefan problems. The term "Stefan problem" isgenerally used for heat transfer problems with phase-changes suchas from the liquid to the solid. Stefan problems have somecharacteristics that are typical of them, but certain problemsarising in fields such as mathematical physics and engineeringalso exhibit characteristics similar to them. The term``classical" distinguishes the formulation of these problems fromtheir weak formulation, in which the solution need not possessclassical derivatives. Under suitable assumptions, a weak solutioncould be as good as a classical solution. In hyperbolic Stefanproblems, the characteristic features of Stefan problems arepresent but unlike in Stefan problems, discontinuous solutions areallowed because of the hyperbolic nature of the heat equation. Thenumerical solutions of inverse Stefan problems, and the analysis ofdirect Stefan problems are so integrated that it is difficult todiscuss one without referring to the other. So no...
On q-deformed supersymmetric classical mechanical models
International Nuclear Information System (INIS)
Colatto, L.P.; Matheus Valle, J.L.
1995-10-01
Based on the idea of quantum groups and paragrassmann variables, we present a generalization of supersymmetric classical mechanics with a deformation parameter q=exp 2πi/k dealing with the k=3 case. The coordinates of the q-superspace are a commuting parameter t and a paragrassmann variable θ, where θ 3 =0. The generator and covariant derivative are obtained, as well as the action for some possible superfields. (author). 13 refs
Aspects of modelling classical or synchronous modelling with Solid Edge ST 9
Directory of Open Access Journals (Sweden)
Goanta Adrian Mihai
2017-01-01
Full Text Available The current situation of the design activity is dependent on both the level of training of the human resources and the financial resources of companies required purchasing the design software packages and complex calculation equipment. Consequently, the situation is very diverse in the sense that there are design cases using only drawing software but also classical 3D or synchronous modelling situations, simple or integrated into software packages that meet the Product Lifecycle Management (PLM principles. The natural tendency in modelling and design is primarily to the high computing power integrated software or somewhat simplified versions that, however, allow at least FEA modelling, simulation and the related 2D documentation. The paper presents some aspects of modernity in synchronous modelling as compared to the classic one, made with 2016 version of Solid Edge software from SIEMENS. Basically there were studied and analysed aspects of modelling ease, speed of changes and also optimization of commands in the modelling process of the same piece in the two versions mentioned: classic and synchronous. It is also presented the alternative path from one method to another within the same process of piece modelling, depending on the advantages provided by each method. In other words, the work is based on a case study of modelling a piece under the two modelling versions of which some aspects were highlighted and conclusions were drawn.
Film models for transport phenomena with fog formation: The classical film model
Brouwers, Jos; Chesters, A.K.
1992-01-01
In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect
Film models for transport phenomena with fog formation: the classical film model
Brouwers, H.J.H.; Chesters, A.K.
1992-01-01
In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect
Quenched disorder and spin-glass correlations in XY nematics
International Nuclear Information System (INIS)
Petridis, L; Terentjev, E M
2006-01-01
We present a theoretical study of the equilibrium ordering in a 3D XY nematic system with quenched random disorder. Within this model, treated with the replica trick and Gaussian variational method, the correlation length is obtained as a function of the local nematic order parameter Q and the effective disorder strength Γ. These results, ξ ∼ Q 2 e 1/Q 2 and ξ ∼ (1/Γ) e -Γ , clarify what happens in the limiting cases of diminishing Q and Γ, that is near a phase transition of a pure system. In particular, it is found that quenched disorder is irrelevant as Q → 0 and hence does not change the character of the continuous XY nematic-isotropic phase transition. We discuss how these results compare with experiments and simulations
Pre-equilibrium nuclear reactions: An introduction to classical and quantum-mechanical models
International Nuclear Information System (INIS)
Koning, A.J.; Akkermans, J.M.
1999-01-01
In studies of light-ion induced nuclear reactions one distinguishes three different mechanisms: direct, compound and pre-equilibrium nuclear reactions. These reaction processes can be subdivided according to time scales or, equivalently, the number of intranuclear collisions taking place before emission. Furthermore, each mechanism preferably excites certain parts of the nuclear level spectrum and is characterized by different types of angular distributions. This presentation includes description of the classical, exciton model, semi-classical models, with some selected results, and quantum mechanical models. A survey of classical versus quantum-mechanical pre-equilibrium reaction theory is presented including practical applications
Rodent Models of Non-classical Progesterone Action Regulating Ovulation
Directory of Open Access Journals (Sweden)
Melinda A. Mittelman-Smith
2017-07-01
Full Text Available It is becoming clear that steroid hormones act not only by binding to nuclear receptors that associate with specific response elements in the nucleus but also by binding to receptors on the cell membrane. In this newly discovered manner, steroid hormones can initiate intracellular signaling cascades which elicit rapid effects such as release of internal calcium stores and activation of kinases. We have learned much about the translocation and signaling of steroid hormone receptors from investigations into estrogen receptor α, which can be trafficked to, and signal from, the cell membrane. It is now clear that progesterone (P4 can also elicit effects that cannot be exclusively explained by transcriptional changes. Similar to E2 and its receptors, P4 can initiate signaling at the cell membrane, both through progesterone receptor and via a host of newly discovered membrane receptors (e.g., membrane progesterone receptors, progesterone receptor membrane components. This review discusses the parallels between neurotransmitter-like E2 action and the more recently investigated non-classical P4 signaling, in the context of reproductive behaviors in the rodent.
Relation between quantum phase transitions and classical instability points in the pairing model
International Nuclear Information System (INIS)
Reis, Mauricio; Terra Cunha, M.O.; Oliveira, Adelcio C.; Nemes, M.C.
2005-01-01
A quantum phase transition, characterized by an accumulation of energy levels in the espectrum of the model, is associated with a qualitative change in the corresponding classical dynamic obtained upon generalized coherent states of angular momentum
Exact symplectic structures and a classical model for the Dirac electron
International Nuclear Information System (INIS)
Rawnsley, J.
1992-01-01
We show how the classical model for the Dirac electron of Barut and coworkers can be obtained as a Hamiltonian theory by constructing an exact symplectic form on the total space of the spin bundle over spacetime. (orig.)
Criticism of the Classical Theory of Macroeconomic Modeling
Directory of Open Access Journals (Sweden)
Konstantin K. Kumehov
2015-01-01
Full Text Available Abstract: Current approaches and methods of modeling of macroeconomic systems do not allow to generate research ideas that could be used in applications. This is largely due to the fact that the dominant economic schools and research directions are building their theories on misconceptions about the economic system as object modeling, and have no common methodological approaches in the design of macroeconomic models. All of them are focused on building a model aimed at establishing equilibrium parameters of supply and demand, production and consumption. At the same time as the underlying factors are not considered resource potential and the needs of society in material and other benefits. In addition, there is no unity in the choice of elements and mechanisms of interaction between them. Not installed, what are the criteria to determine the elements of the model: whether it is the institutions, whether the industry is whether the population, or banks, or classes, etc. From the methodological point of view, the design of the model all the most well-known authors extrapolated to the new models of the past state or past events. As a result, every time the model is ready by the time the situation changes, the last parameters underlying the model are losing relevance, so at best, the researcher may have to interpret the events and parameters that are not feasible in the future. In this paper, based on analysis of the works of famous authors, belonging to different schools and areas revealed weaknesses of their proposed macroeconomic models that do not allow you to use them to solve applied problems of economic development. A fundamentally new approaches and methods by which it is possible the construction of macroeconomic models that take into account the theoretical and applied aspects of modeling, as well as formulated the basic methodological requirements.
Generalized continua as models for classical and advanced materials
Forest, Samuel
2016-01-01
This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.
Isogeometric shell formulation based on a classical shell model
Niemi, Antti; Collier, Nathan; Dalcí n, Lisandro D.; Ghommem, Mehdi; Calo, Victor M.
2012-01-01
The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.
Classical Logic and Quantum Logic with Multiple and Common Lattice Models
Directory of Open Access Journals (Sweden)
Mladen Pavičić
2016-01-01
Full Text Available We consider a proper propositional quantum logic and show that it has multiple disjoint lattice models, only one of which is an orthomodular lattice (algebra underlying Hilbert (quantum space. We give an equivalent proof for the classical logic which turns out to have disjoint distributive and nondistributive ortholattices. In particular, we prove that both classical logic and quantum logic are sound and complete with respect to each of these lattices. We also show that there is one common nonorthomodular lattice that is a model of both quantum and classical logic. In technical terms, that enables us to run the same classical logic on both a digital (standard, two-subset, 0-1-bit computer and a nondigital (say, a six-subset computer (with appropriate chips and circuits. With quantum logic, the same six-element common lattice can serve us as a benchmark for an efficient evaluation of equations of bigger lattice models or theorems of the logic.
Engeli, Roger T; Rhouma, Bochra Ben; Sager, Christoph P; Tsachaki, Maria; Birk, Julia; Fakhfakh, Faiza; Keskes, Leila; Belguith, Neila; Odermatt, Alex
2016-01-01
Mutations in the HSD17B3 gene resulting in 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) deficiency cause 46, XY Disorders of Sex Development (46, XY DSD). Approximately 40 different mutations in HSD17B3 have been reported; only few mutant enzymes have been mechanistically investigated. Here, we report novel compound heterozygous mutations in HSD17B3, composed of the nonsense mutation C206X and the missense mutation G133R, in three Tunisian patients from two non-consanguineous families. Mutants C206X and G133R were constructed by site-directed mutagenesis and expressed in HEK-293 cells. The truncated C206X enzyme, lacking part of the substrate binding pocket, was moderately expressed and completely lost its enzymatic activity. Wild-type 17β-HSD3 and mutant G133R showed comparable expression levels and intracellular localization. The conversion of Δ4-androstene-3,17-dione (androstenedione) to testosterone was almost completely abolished for mutant G133R compared with wild-type 17β-HSD3. To obtain further mechanistic insight, G133 was mutated to alanine, phenylalanine and glutamine. G133Q and G133F were almost completely inactive, whereas G133A displayed about 70% of wild-type activity. Sequence analysis revealed that G133 on 17β-HSD3 is located in a motif highly conserved in 17β-HSDs and other short-chain dehydrogenase/reductase (SDR) enzymes. A homology model of 17β-HSD3 predicted that arginine or any other bulky residue at position 133 causes steric hindrance of cofactor NADPH binding, whereas substrate binding seems to be unaffected. The results indicate an essential role of G133 in the arrangement of the cofactor binding pocket, thus explaining the loss-of-function of 17β-HSD3 mutant G133R in the patients investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Construction of classical and quantum integrable field models ...
Indian Academy of Sciences (India)
Theory Division, Saha Institute of Nuclear Physics, Kolkata 700 064, India .... above models takes only two different forms: rational or trigonometric ..... parameters c, α, μ, which for different continuum choices for these parameters allows to. 910.
Modelling of classical ghost images obtained using scattered light
International Nuclear Information System (INIS)
Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A
2007-01-01
The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres
Modelling of classical ghost images obtained using scattered light
Energy Technology Data Exchange (ETDEWEB)
Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A [School of Physics, University of Melbourne, Victoria, 3010 (Australia)
2007-08-15
The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.
Leading-order classical Lagrangians for the nonminimal standard-model extension
Reis, J. A. A. S.; Schreck, M.
2018-03-01
In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.
Classical model for nuclear collisions including the meson degree of freedom
International Nuclear Information System (INIS)
Babinet, R.; Kunz, J.; Mosel, U.; Wilets, L.
1980-01-01
Many different approaches have been taken to describe high energy heavy ion collisions. L. Wilets et al proposed a classical treatment of the problem. In his model non-relativistic nucleons move on classical trajectories. However, the Pauli-principle is simulated by a momentum dependent potential acting between the nucleons. This model is extended in two ways. The nucleons are coupled to a pionfield, which enables us to describe inelastic processes. Nucleons and pionfiled are treated completely relativistically, this also assures Lorentz invariance. We aim at a set of classical equations of motion describing the interacting system of nucleons and pionfield. These classical equations should have a quantum mechanical basis. Further, they should contain such fundamental properties of the pion-nucleon system as the Δ(3,3)-resonance, at least in a qualitative manner. (orig./FKS)
Classical and quantum simulations of many-body systems
Energy Technology Data Exchange (ETDEWEB)
Murg, Valentin
2008-04-07
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
Classical and quantum simulations of many-body systems
International Nuclear Information System (INIS)
Murg, Valentin
2008-01-01
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new ''analog'' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
General classical solutions of the complex Grassmannian and CP sub(N-1) sigma models
International Nuclear Information System (INIS)
Sasaki, Ryu.
1983-05-01
General classical solutions are constructed for the complex Grassmannian non-linear sigma models in two euclidean dimensions in terms of holomorphic functions. The Grassmannian sigma models are a simple generalization of the well known CP sup(N-1) model in two dimensions and they share various interesting properties; existence of (anti-) instantons, an infinite number of conserved quantities and complete integrability. (author)
Modelling Systems of Classical/Quantum Identical Particles by Focusing on Algorithms
Guastella, Ivan; Fazio, Claudio; Sperandeo-Mineo, Rosa Maria
2012-01-01
A procedure modelling ideal classical and quantum gases is discussed. The proposed approach is mainly based on the idea that modelling and algorithm analysis can provide a deeper understanding of particularly complex physical systems. Appropriate representations and physical models able to mimic possible pseudo-mechanisms of functioning and having…
New classical r-matrices from integrable non-linear sigma-models
International Nuclear Information System (INIS)
Laartz, J.; Bordemann, M.; Forger, M.; Schaper, U.
1993-01-01
Non-linear sigma models on Riemannian symmetric spaces constitute the most general class of classical non-linear sigma models which are known to be integrable. Using the current algebra structure of these models their canonical structure is analyzed and it is shown that their non-ultralocal fundamental Poisson bracket relation is governed by a field dependent non antisymmetric r-matrix obeying a dynamical Yang Baxter equation. The fundamental Poisson bracket relations and the r-matrix are derived explicitly and a new kind of algebra is found that is supposed to replace the classical Yang Baxter algebra governing the canonical structure of ultralocal models. (Author) 9 refs
Thermal excitations of frustrated XY spins in two dimensions
International Nuclear Information System (INIS)
Benakli, M.; Zheng, H.; Gabay, M.
1996-11-01
We present a new variational approach to the study of phase transitions in frustrated 2D XY models. In the spirit of Villain's approach for the ferromagnetic case we divide thermal excitations into a low temperature long wavelength part (LW) and a high temperature short wavelength part (SW). In the present work we mainly deal with LW excitations and we explicitly consider the cases of the fully frustrated triangular (FFTXY) and square (FFSQXY) XY models. The novel aspect of our method is that it preserves the coupling between phase (spin angles) and chiral degrees of freedom. LW fluctuations consist of coupled phase and chiral excitations. As a result, we find that for frustrated systems the effective interactions between phase variables is long range and oscillatory in contrast to the unfrustrated problem. Using Monte Carlo (MC) simulations we show that our analytical calculations produce accurate results at all temperature T; this is seen at low T in the spin wave stiffness constant and in the staggered chirality; this is also the case near T c : transitions are driven by the SW part associated with domain walls and vortices, but the coupling between phase and chiral variables is still relevant in the critical region. In that regime our analytical results yield the correct T dependence for bare couplings (given by the LW fluctuations) such as the Coulomb gas temperature T CG of the frustrated XY models. In particular, we find that T CG tracks chiral rather than phase fluctuations. Our results provide support for a single phase transition scenario in the FFTXY and FFSQXY models. (author). 35 refs, 8 figs
The Lie-Poisson structure of integrable classical non-linear sigma models
International Nuclear Information System (INIS)
Bordemann, M.; Forger, M.; Schaeper, U.; Laartz, J.
1993-01-01
The canonical structure of classical non-linear sigma models on Riemannian symmetric spaces, which constitute the most general class of classical non-linear sigma models known to be integrable, is shown to be governed by a fundamental Poisson bracket relation that fits into the r-s-matrix formalism for non-ultralocal integrable models first discussed by Maillet. The matrices r and s are computed explicitly and, being field dependent, satisfy fundamental Poisson bracket relations of their own, which can be expressed in terms of a new numerical matrix c. It is proposed that all these Poisson brackets taken together are representation conditions for a new kind of algebra which, for this class of models, replaces the classical Yang-Baxter algebra governing the canonical structure of ultralocal models. The Poisson brackets for the transition matrices are also computed, and the notorious regularization problem associated with the definition of the Poisson brackets for the monodromy matrices is discussed. (orig.)
Classical and quantum stochastic models of resistive and memristive circuits
Gough, John E.; Zhang, Guofeng
2017-07-01
The purpose of this paper is to examine stochastic Markovian models for circuits in phase space for which the drift term is equivalent to the standard circuit equations. In particular, we include dissipative components corresponding to both a resistor and a memristor in series. We obtain a dilation of the problem which is canonical in the sense that the underlying Poisson bracket structure is preserved under the stochastic flow. We do this first of all for standard Wiener noise but also treat the problem using a new concept of symplectic noise, where the Poisson structure is extended to the noise as well as the circuit variables, and in particular where we have canonically conjugate noises. Finally, we construct a dilation which describes the quantum mechanical analogue.
Classical and quantum models of strong cosmic censorship
International Nuclear Information System (INIS)
Moncrief, V.E.
1983-01-01
The cosmic censorship conjecture states that naked singularities should not evolve from regular initial conditions in general relativity. In its strong form the conjecture asserts that space-times with Cauchy horizons must always be unstable and thus that the generic solution of Einstein's equations must be inextendible beyond its maximal Cauchy development. In this paper it is shown that one can construct an infinite-dimensional family of extendible cosmological solutions similar to Taub-NUT space-time; however, each of these solutions is unstable in precisely the way demanded by strong cosmic censorship. Finally it is shown that quantum fluctuations in the metric always provide (though in an unexpectedly subtle way) the ''generic perturbations'' which destroy the Cauchy horizons in these models. (author)
Classical and quantum models of strong cosmic censorship
Energy Technology Data Exchange (ETDEWEB)
Moncrief, V.E. (Yale Univ., New Haven, CT (USA). Dept. of Physics)
1983-04-01
The cosmic censorship conjecture states that naked singularities should not evolve from regular initial conditions in general relativity. In its strong form the conjecture asserts that space-times with Cauchy horizons must always be unstable and thus that the generic solution of Einstein's equations must be inextendible beyond its maximal Cauchy development. In this paper it is shown that one can construct an infinite-dimensional family of extendible cosmological solutions similar to Taub-NUT space-time; however, each of these solutions is unstable in precisely the way demanded by strong cosmic censorship. Finally it is shown that quantum fluctuations in the metric always provide (though in an unexpectedly subtle way) the ''generic perturbations'' which destroy the Cauchy horizons in these models.
Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.
2016-04-01
In this work we study the quantum phase transition, the phase diagram and the quantum criticality induced by the easy-plane single-ion anisotropy in a d-dimensional quantum spin-1 XY model in absence of an external longitudinal magnetic field. We employ the two-time Green function method by avoiding the Anderson-Callen decoupling of spin operators at the same sites which is of doubtful accuracy. Following the original Devlin procedure we treat exactly the higher order single-site anisotropy Green functions and use Tyablikov-like decouplings for the exchange higher order ones. The related self-consistent equations appear suitable for an analysis of the thermodynamic properties at and around second order phase transition points. Remarkably, the equivalence between the microscopic spin model and the continuous O(2) -vector model with transverse-Ising model (TIM)-like dynamics, characterized by a dynamic critical exponent z=1, emerges at low temperatures close to the quantum critical point with the single-ion anisotropy parameter D as the non-thermal control parameter. The zero-temperature critic anisotropy parameter Dc is obtained for dimensionalities d > 1 as a function of the microscopic exchange coupling parameter and the related numerical data for different lattices are found to be in reasonable agreement with those obtained by means of alternative analytical and numerical methods. For d > 2, and in particular for d=3, we determine the finite-temperature critical line ending in the quantum critical point and the related TIM-like shift exponent, consistently with recent renormalization group predictions. The main crossover lines between different asymptotic regimes around the quantum critical point are also estimated providing a global phase diagram and a quantum criticality very similar to the conventional ones.
Explosive synchronization coexists with classical synchronization in the Kuramoto model
Energy Technology Data Exchange (ETDEWEB)
Danziger, Michael M., E-mail: michael.danziger@biu.ac.il; Havlin, Shlomo [Department of Physics, Bar-Ilan University, Ramat Gan (Israel); Moskalenko, Olga I.; Kurkin, Semen A. [Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, Saratov 410012 (Russian Federation); Saratov State Technical University, Politehnicheskaya, 77, Saratov 410054 (Russian Federation); Zhang, Xiyun [Department of Physics, East China Normal University, Shanghai 200062 (China); Boccaletti, Stefano [CNR-Institute of Complex Systems, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy); The Italian Embassy in Israel, 25 Hamered Street, 68125 Tel Aviv (Israel)
2016-06-15
Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10{sup 6}) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.
Quantum dynamics in transverse-field Ising models from classical networks
Directory of Open Access Journals (Sweden)
Markus Schmitt, Markus Heyl
2018-02-01
Full Text Available The efficient representation of quantum many-body states with classical resources is a key challenge in quantum many-body theory. In this work we analytically construct classical networks for the description of the quantum dynamics in transverse-field Ising models that can be solved efficiently using Monte Carlo techniques. Our perturbative construction encodes time-evolved quantum states of spin-1/2 systems in a network of classical spins with local couplings and can be directly generalized to other spin systems and higher spins. Using this construction we compute the transient dynamics in one, two, and three dimensions including local observables, entanglement production, and Loschmidt amplitudes using Monte Carlo algorithms and demonstrate the accuracy of this approach by comparisons to exact results. We include a mapping to equivalent artificial neural networks, which were recently introduced to provide a universal structure for classical network wave functions.
Partial transpose of two disjoint blocks in XY spin chains
International Nuclear Information System (INIS)
Coser, Andrea; Tonni, Erik; Calabrese, Pasquale
2015-01-01
We consider the partial transpose of the spin reduced density matrix of two disjoint blocks in spin chains admitting a representation in terms of free fermions, such as XY chains. We exploit the solution of the model in terms of Majorana fermions and show that such partial transpose in the spin variables is a linear combination of four Gaussian fermionic operators. This representation allows to explicitly construct and evaluate the integer moments of the partial transpose. We numerically study critical XX and Ising chains and we show that the asymptotic results for large blocks agree with conformal field theory predictions if corrections to the scaling are properly taken into account. (paper)
International Nuclear Information System (INIS)
Kunz, J.
1982-01-01
In this thesis the classical model is extended in order to regard the inelastic processes important in the heavy ion collisions of the considered energy range. For this a classical pion field was coupled to the nucleons via the pseudo-scalar #betta# 5 -interactions. Nucleon and pion fields were treated in a completely relativistic way. The equations of motion were analytically studied for the one-nucleon system. From the statical solution the bare mass of the nucleon was determined, and its dependence on both parameters of this modell, the coupling constant and the cut-off momentum of the form factor, was considered. (orig./HSI) [de
Classical solutions of non-linear sigma-models and their quantum fluctuations
International Nuclear Information System (INIS)
Din, A.M.
1980-05-01
I study the properties of O(N) and CPsup(n-1) non-linear sigma-models in the two dimensional Euclidean space. All classical solutions of the equations of motion can be characterized and in the CPsup(n-1) model they can be expressed in a simple and explicit way in terms of holomorphic vectors. The topological winding number and the action of the general CPsup(n-1) solution can be evaluated and the latter turns out always to be a integer multiple of 2π. I further discuss the stability of the solutions and the problem of one-loop calculations of quantum fluctuations around classical solutions
Stiefel-Skyrem-Higgs models, their classical static solutions and Yang-Mills-Higgs monopoles
International Nuclear Information System (INIS)
Dobrev, V.K.
1981-07-01
A new series of models is introduced by adding Higgs fields to the earlier proposed euclidean four-dimensional Skyrme-like models with Yang-Mills composite fields constructed from Stiefel manifold-valued fields. The classical static versions of these models are discussed. The connection with the monopole solutions of the Yang-Mills-Higgs models in the Prasad-Sommerfield limit is pointed out and the BPS monopole is reobtained as an example. (author)
Generation of an induced pluripotent stem cell line from an adult male with 45,X/46,XY mosaicism
Directory of Open Access Journals (Sweden)
Yumei Luo
2018-03-01
Full Text Available Turner syndrome (TS with 45,X/46,XY mosaic karyotype is a rare sex chromosome disorder with an occurrence of 0.15‰ at birth. We report the generation of an induced pluripotent stem cell (iPSC line from peripheral blood mononuclear cells of a Chinese adult male with 45,X/46,XY mosaicism. The iPSC line retains the original 45,X/46,XY mosaic karyotype, expresses pluripotency markers and undergoes trilineage differentiation. Therefore, it offers an unprecedented cellular model to investigate the profound symptoms like infertility of TS in the male, and serve as a useful tool to develop therapies for the disease.
Classical trajectory perspective of atomic ionization in strong laser fields. Semiclassical modeling
International Nuclear Information System (INIS)
Liu, Jie
2014-01-01
Dealing with timely and interesting issues in strong laser physics. Illustrates complex strong field atomic ionization with the simple semiclassical model of classical trajectory perspective for the first time. Provides a theoretical model that can be used to account for recent experiments. The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.
Using the classical linear regression model in analysis of the dependences of conveyor belt life
Directory of Open Access Journals (Sweden)
Miriam Andrejiová
2013-12-01
Full Text Available The paper deals with the classical linear regression model of the dependence of conveyor belt life on some selected parameters: thickness of paint layer, width and length of the belt, conveyor speed and quantity of transported material. The first part of the article is about regression model design, point and interval estimation of parameters, verification of statistical significance of the model, and about the parameters of the proposed regression model. The second part of the article deals with identification of influential and extreme values that can have an impact on estimation of regression model parameters. The third part focuses on assumptions of the classical regression model, i.e. on verification of independence assumptions, normality and homoscedasticity of residuals.
General classical solutions in the noncommutative CP{sup N-1} model
Energy Technology Data Exchange (ETDEWEB)
Foda, O.; Jack, I.; Jones, D.R.T
2002-10-31
We give an explicit construction of general classical solutions for the noncommutative CP{sup N-1} model in two dimensions, showing that they correspond to integer values for the action and topological charge. We also give explicit solutions for the Dirac equation in the background of these general solutions and show that the index theorem is satisfied.
Baxter, Douglas A.; Byrne, John H.
2006-01-01
Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…
Khrennikov, Andrei
2011-09-01
We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of "quantum physical brain" reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a variety of concrete images given by temporal realizations of the corresponding (Gaussian) random signal. This signal has the covariance operator coinciding with the density operator encoding the abstract concept under consideration. The presence of various temporal scales in the brain plays the crucial role in creation of QLR in the brain. Moreover, in our model electromagnetic noise produced by neurons is a source of superstrong QL correlations between processes in different spatial domains in the brain; the binding problem is solved on the QL level, but with the aid of the classical background fluctuations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
International Nuclear Information System (INIS)
Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S.
2000-01-01
Classical and quantum theories of polarization bremsstrahlung in a statistical (Thomas-Fermi) potential of complex atoms and ions are developed. The basic assumptions of the theories correspond to the approximations employed earlier in classical and quantum calculations of ordinary bremsstrahlung in a static potential. This makes it possible to study on a unified basis the contribution of both channels in the radiation taking account of their interference. The classical model makes it possible to obtain simple universal formulas for the spectral characteristics of the radiation. The theory is applied to electrons with moderate energies, which are characteristic for plasma applications, specifically, radiation from electrons on the argon-like ion KII at frequencies close to its ionization potential. The computational results show the importance of taking account of the polarization channel of the radiation for plasma with heavy ions
Directory of Open Access Journals (Sweden)
Jimmy Boon Som Ong
Full Text Available The "classical model" for sexually transmitted infections treats partnerships as instantaneous events summarized by partner change rates, while individual-based and pair models explicitly account for time within partnerships and gaps between partnerships. We compared predictions from the classical and pair models over a range of partnership and gap combinations. While the former predicted similar or marginally higher prevalence at the shortest partnership lengths, the latter predicted self-sustaining transmission for gonorrhoea (GC and Chlamydia (CT over much broader partnership and gap combinations. Predictions on the critical level of condom use (C(c required to prevent transmission also differed substantially when using the same parameters. When calibrated to give the same disease prevalence as the pair model by adjusting the infectious duration for GC and CT, and by adjusting transmission probabilities for HIV, the classical model then predicted much higher C(c values for GC and CT, while C(c predictions for HIV were fairly close. In conclusion, the two approaches give different predictions over potentially important combinations of partnership and gap lengths. Assuming that it is more correct to explicitly model partnerships and gaps, then pair or individual-based models may be needed for GC and CT since model calibration does not resolve the differences.
Classical Causal Models for Bell and Kochen-Specker Inequality Violations Require Fine-Tuning
Directory of Open Access Journals (Sweden)
Eric G. Cavalcanti
2018-04-01
Full Text Available Nonlocality and contextuality are at the root of conceptual puzzles in quantum mechanics, and they are key resources for quantum advantage in information-processing tasks. Bell nonlocality is best understood as the incompatibility between quantum correlations and the classical theory of causality, applied to relativistic causal structure. Contextuality, on the other hand, is on a more controversial foundation. In this work, I provide a common conceptual ground between nonlocality and contextuality as violations of classical causality. First, I show that Bell inequalities can be derived solely from the assumptions of no signaling and no fine-tuning of the causal model. This removes two extra assumptions from a recent result from Wood and Spekkens and, remarkably, does not require any assumption related to independence of measurement settings—unlike all other derivations of Bell inequalities. I then introduce a formalism to represent contextuality scenarios within causal models and show that all classical causal models for violations of a Kochen-Specker inequality require fine-tuning. Thus, the quantum violation of classical causality goes beyond the case of spacelike-separated systems and already manifests in scenarios involving single systems.
On Lie point symmetry of classical Wess-Zumino-Witten model
International Nuclear Information System (INIS)
Maharana, Karmadeva
2001-06-01
We perform the group analysis of Witten's equations of motion for a particle moving in the presence of a magnetic monopole, and also when constrained to move on the surface of a sphere, which is the classical example of Wess-Zumino-Witten model. We also consider variations of this model. Our analysis gives the generators of the corresponding Lie point symmetries. The Lie symmetry corresponding to Kepler's third law is obtained in two related examples. (author)
From classical to quantum models: the regularising role of integrals, symmetry and probabilities
Gazeau, Jean-Pierre
2018-01-01
In physics, one is often misled in thinking that the mathematical model of a system is part of or is that system itself. Think of expressions commonly used in physics like "point" particle, motion "on the line", "smooth" observables, wave function, and even "going to infinity", without forgetting perplexing phrases like "classical world" versus "quantum world".... On the other hand, when a mathematical model becomes really inoperative with regard to correct predictions, one is forced to repla...
Phase diagram and quench dynamics of the cluster-XY spin chain.
Montes, Sebastián; Hamma, Alioscia
2012-08-01
We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.
Magnetic helices as metastable states of finite XY ferromagnetic chains: An analytical study
Popov, Alexander P.; Pini, Maria Gloria
2018-04-01
We investigated a simple but non trivial model, consisting of a chain of N classical XY spins with nearest neighbor ferromagnetic interaction, where each of the two end-point spins is assumed to be exchange-coupled to a fully-pinned fictitious spin. In the mean field approximation, the system might be representative of a soft ferromagnetic film sandwiched between two magnetically hard layers. We show that, while the ground state is ferromagnetic and collinear, the system can attain non-collinear metastable states in the form of magnetic helices. The helical solutions and their stability were studied analytically in the absence of an external magnetic field. There are four possible classes of solutions. Only one class is metastable, and its helical states contain an integer number of turns. Among the remaining unstable classes, there is a class of helices which contain an integer number of turns. Therefore, an integer number of turns in a helical configuration is a necessary, but not a sufficient, condition for metastability. These results may be useful to devise future applications of metastable magnetic helices as energy-storing elements.
Non-classic multiscale modeling of manipulation based on AFM, in aqueous and humid ambient
Korayem, M. H.; Homayooni, A.; Hefzabad, R. N.
2018-05-01
To achieve a precise manipulation, it is important that an accurate model consisting the size effect and environmental conditions be employed. In this paper, the non-classical multiscale modeling is developed to investigate the manipulation in a vacuum, aqueous and humid ambient. The manipulation structure is considered into two parts as a macro-field (MF) and a nano-field (NF). The governing equations of the AFM components (consist of the cantilever and tip) in the MF are derived based on the modified couple stress theory. The material length scale parameter is used to study the size effect. The fluid flow in the MF is assumed as the Couette and Creeping flows. Moreover, the NF is modeled using the molecular dynamics. The Electro-Based (ELBA) model is considered to model the ambient condition in the NF. The nanoparticle in the different conditions is taken into account to study the manipulation. The results of the manipulation indicate that the predicted deflection of the non-classical model is less than the classical one. Comparison of the nanoparticle travelled distance on substrate shows that the manipulation in the submerged condition is close to the ideal manipulation. The results of humid condition illustrate that by increasing the relative humidity (RH) the manipulation force decreases. Furthermore, Root Mean Square (RMS) as a criterion of damage demonstrates that the submerged nanoparticle has the minimum damage, however, the minimum manipulation force occurs in superlative humid ambient.
The unfolded protein response has a protective role in yeast models of classic galactosemia
Directory of Open Access Journals (Sweden)
Evandro A. De-Souza
2014-01-01
Full Text Available Classic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast, which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity. Impairment of the unfolded protein response in both yeast models makes cells even more sensitive to galactose, unmasking its cytotoxic effect. These results indicate that endoplasmic reticulum stress is induced under galactosemic conditions and underscores the importance of the unfolded protein response pathway to cellular adaptation in these models of classic galactosemia.
Zhu, Jian; Wu, Qing-Ding; Wang, Ping; Li, Ke-Lin; Lei, Ming-Jing; Zhang, Wei-Li
2013-11-01
In order to fully understand adsorption nature of Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Fe3+ onto natural diatomite, and to find problems of classical isothermal adsorption models' application in liquid/solid system, a series of isothermal adsorption tests were conducted. As results indicate, the most suitable isotherm models for describing adsorption of Pb2+, Cd2+, Cu2+, Zn2+, Mn2+, Fe3+ onto natural diatomite are Tenkin, Tenkin, Langmuir, Tenkin, Freundlich and Freundlich, respectively, the adsorption of each ion onto natural diatomite is mainly a physical process, and the adsorption reaction is favorable. It also can be found that, when using classical isothermal adsorption models to fit the experimental data in liquid/solid system, the equilibrium adsorption amount q(e) is not a single function of ion equilibrium concentration c(e), while is a function of two variables, namely c(e) and the adsorbent concentration W0, q(e) only depends on c(e)/W(0). Results also show that the classical isothermal adsorption models have a significant adsorbent effect, and their parameter values are unstable, the simulation values of parameter differ greatly from the measured values, which is unhelpful for practical use. The tests prove that four-adsorption-components model can be used for describing adsorption behavior of single ion in nature diatomite-liquid system, its parameters k and q(m) have constant values, which is favorable for practical quantitative calculation in a given system.
Direct detection of singlet dark matter in classically scale-invariant standard model
Directory of Open Access Journals (Sweden)
Kazuhiro Endo
2015-10-01
Full Text Available Classical scale invariance is one of the possible solutions to explain the origin of the electroweak scale. The simplest extension is the classically scale-invariant standard model augmented by a multiplet of gauge singlet real scalar. In the previous study it was shown that the properties of the Higgs potential deviate substantially, which can be observed in the International Linear Collider. On the other hand, since the multiplet does not acquire vacuum expectation value, the singlet components are stable and can be dark matter. In this letter we study the detectability of the real singlet scalar bosons in the experiment of the direct detection of dark matter. It is shown that a part of this model has already been excluded and the rest of the parameter space is within the reach of the future experiment.
An update of the classical Bokhman’s dualistic model of endometrial cancer
Directory of Open Access Journals (Sweden)
Miłosz Wilczyński
2016-07-01
Full Text Available According to the classical dualistic model introduced by Bokhman in 1983, endometrial cancer (EC is divided into two basic types. The prototypical histological type for type I and type II of EC is endometrioid carcinoma and serous carcinoma, respectively. The traditional classification is based on clinical, endocrine and histopathological features, however, it sometimes does not reflect the full heterogeneity of EC. New molecular evidence, supported by clinical diversity of the cancer, indicates that the classical dualistic model is valid only to some extent. The review updates a mutational diversity of EC, introducing a new molecular classification of the tumour in regard to data presented by The Cancer Genome Atlas Research Network (TGCA.
Directory of Open Access Journals (Sweden)
V. Balaji
2016-12-01
Full Text Available pH control plays a important role in any chemical plant and process industries. For the past four decades the classical PID controller has been occupied by the industries. Due to the faster computing technology in the industry demands a tighter advanced control strategy. To fulfill the needs and requirements Model Predictive Control (MPC is the best among all the advanced control algorithms available in the present scenario. The study and analysis has been done for First Order plus Delay Time (FOPDT model controlled by Proportional Integral Derivative (PID and MPC using the Matlab software. This paper explores the capability of the MPC strategy, analyze and compare the control effects with conventional control strategy in pH control. A comparison results between the PID and MPC is plotted using the software. The results clearly show that MPC provide better performance than the classical controller.
International Nuclear Information System (INIS)
Kiknadze, N.A.; Khelashvili, A.A.
1990-01-01
The problem on stability of classical soliton solutions is studied from the unique point of view: the Legendre condition - necessary condition of existence of weak local minimum for energy functional (term soliton is used here in the wide sense) is used. Limits to parameters of the model Lagrangians are obtained; it is shown that there is no soliton stabilization in some of them despite the phenomenological achievements. The Jacoby sufficient condition is discussed
Stability, convergence and Hopf bifurcation analyses of the classical car-following model
Kamath, Gopal Krishna; Jagannathan, Krishna; Raina, Gaurav
2016-01-01
Reaction delays play an important role in determining the qualitative dynamical properties of a platoon of vehicles traversing a straight road. In this paper, we investigate the impact of delayed feedback on the dynamics of the Classical Car-Following Model (CCFM). Specifically, we analyze the CCFM in no delay, small delay and arbitrary delay regimes. First, we derive a sufficient condition for local stability of the CCFM in no-delay and small-delay regimes using. Next, we derive the necessar...
46,XY hypergonadotropic hypogonadism and myasthenia gravis.
Lichiardopol, Corina; Herlea, V; Ioan, Virginia; Tomulescu, V; Mixich, F
2006-01-01
Both hypergonadotropic hypogonadism and myasthenia gravis can be parts of type II autoimmune polyendocrine syndrome and association between the two disorders has been reported in few cases. A 14 year old male patient with a personal history of bilateral cryptorchidism and ptosis was referred for delayed puberty. Clinical examination revealed eunuchoid habitus, small, soft testes, gynecomastia, ptosis, a myasthenic deficit score of 22.5 points and an IQ of 84 points. Decreased testosterone (0.064 ng/mL) and elevated LH (64.5 mUI/mL) were consistent with hypergonadotropic hypogonadism and karyotype was normal: 46,XY. Thyroid function, haematologic evaluation, BUN, electrolytes, and glycemia were in the normal range. Therapy consisted of anticholinesterase inhibitors, immunosuppressants, corticotherapy, testosterone; thoracoscopic thymectomy was performed showing thymic lymphoid hyperplasia on histopathologic examination. Myasthenic score improved (12.5 points), progressive virilization occurred, and a year later the patient presented with cushingoid features and obesity.
Directory of Open Access Journals (Sweden)
Mach Łukasz
2017-06-01
Full Text Available The research process aimed at building regression models, which helps to valuate residential real estate, is presented in the following article. Two widely used computational tools i.e. the classical multiple regression and regression models of artificial neural networks were used in order to build models. An attempt to define the utilitarian usefulness of the above-mentioned tools and comparative analysis of them is the aim of the conducted research. Data used for conducting analyses refers to the secondary transactional residential real estate market.
Asymptotics of Toeplitz determinants and the emptiness formation probability for the XY spin chain
International Nuclear Information System (INIS)
Franchini, Fabio; Abanov, Alexander G
2005-01-01
We study an asymptotic behaviour of a special correlator known as the emptiness formation probability (EFP) for the one-dimensional anisotropic XY spin-1/2 chain in a transverse magnetic field. This correlator is essentially the probability of formation of a ferromagnetic string of length n in the antiferromagnetic ground state of the chain and plays an important role in the theory of integrable models. For the XY spin chain, the correlator can be expressed as the determinant of a Toeplitz matrix and its asymptotical behaviours for n → ∞ throughout the phase diagram are obtained using known theorems and conjectures on Toeplitz determinants. We find that the decay is exponential everywhere in the phase diagram of the XY model except on the critical lines, i.e. where the spectrum is gapless. In these cases, a power-law prefactor with a universal exponent arises in addition to an exponential or Gaussian decay. The latter Gaussian behaviour holds on the critical line corresponding to the isotropic XY model, while at the critical value of the magnetic field the EFP decays exponentially. At small anisotropy one has a crossover from the Gaussian to the exponential behaviour. We study this crossover using the bosonization approach
Impossibility of Classically Simulating One-Clean-Qubit Model with Multiplicative Error
Fujii, Keisuke; Kobayashi, Hirotada; Morimae, Tomoyuki; Nishimura, Harumichi; Tamate, Shuhei; Tani, Seiichiro
2018-05-01
The one-clean-qubit model (or the deterministic quantum computation with one quantum bit model) is a restricted model of quantum computing where all but a single input qubits are maximally mixed. It is known that the probability distribution of measurement results on three output qubits of the one-clean-qubit model cannot be classically efficiently sampled within a constant multiplicative error unless the polynomial-time hierarchy collapses to the third level [T. Morimae, K. Fujii, and J. F. Fitzsimons, Phys. Rev. Lett. 112, 130502 (2014), 10.1103/PhysRevLett.112.130502]. It was open whether we can keep the no-go result while reducing the number of output qubits from three to one. Here, we solve the open problem affirmatively. We also show that the third-level collapse of the polynomial-time hierarchy can be strengthened to the second-level one. The strengthening of the collapse level from the third to the second also holds for other subuniversal models such as the instantaneous quantum polynomial model [M. Bremner, R. Jozsa, and D. J. Shepherd, Proc. R. Soc. A 467, 459 (2011), 10.1098/rspa.2010.0301] and the boson sampling model [S. Aaronson and A. Arkhipov, STOC 2011, p. 333]. We additionally study the classical simulatability of the one-clean-qubit model with further restrictions on the circuit depth or the gate types.
Directory of Open Access Journals (Sweden)
Patricia P. Jumbo-Lucioni
2013-01-01
Classic galactosemia is a genetic disorder that results from profound loss of galactose-1P-uridylyltransferase (GALT. Affected infants experience a rapid escalation of potentially lethal acute symptoms following exposure to milk. Dietary restriction of galactose prevents or resolves the acute sequelae; however, many patients experience profound long-term complications. Despite decades of research, the mechanisms that underlie pathophysiology in classic galactosemia remain unclear. Recently, we developed a Drosophila melanogaster model of classic galactosemia and demonstrated that, like patients, GALT-null Drosophila succumb in development if exposed to galactose but live if maintained on a galactose-restricted diet. Prior models of experimental galactosemia have implicated a possible association between galactose exposure and oxidative stress. Here we describe application of our fly genetic model of galactosemia to the question of whether oxidative stress contributes to the acute galactose sensitivity of GALT-null animals. Our first approach tested the impact of pro- and antioxidant food supplements on the survival of GALT-null and control larvae. We observed a clear pattern: the oxidants paraquat and DMSO each had a negative impact on the survival of mutant but not control animals exposed to galactose, and the antioxidants vitamin C and α-mangostin each had the opposite effect. Biochemical markers also confirmed that galactose and paraquat synergistically increased oxidative stress on all cohorts tested but, interestingly, the mutant animals showed a decreased response relative to controls. Finally, we tested the expression levels of two transcripts responsive to oxidative stress, GSTD6 and GSTE7, in mutant and control larvae exposed to galactose and found that both genes were induced, one by more than 40-fold. Combined, these results implicate oxidative stress and response as contributing factors in the acute galactose sensitivity of GALT-null Drosophila and, by
Entanglement entropy of two disjoint blocks in XY chains
International Nuclear Information System (INIS)
Fagotti, Maurizio; Calabrese, Pasquale
2010-01-01
We study the Rényi entanglement entropies of two disjoint intervals in XY chains. We exploit the exact solution of the model in terms of free Majorana fermions and we show how to construct the reduced density matrix in the spin variables by taking the Jordan–Wigner string between the two blocks properly into account. From this we can evaluate any Rényi entropy of finite integer order. We study in detail critical XX and Ising chains and we show that the asymptotic results for large blocks agree with recent conformal field theory predictions if corrections to the scaling are included in the analysis correctly. We also report results for the gapped phase and after a quantum quench
Ellipses of constant entropy in the XY spin chain
International Nuclear Information System (INIS)
Franchini, F; Its, A R; Jin, B-Q; Korepin, V E
2007-01-01
Entanglement in the ground state of the XY model on the infinite chain can be measured by the von Neumann entropy of a block of neighbouring spins. We study a double scaling limit: the size of the block is much larger than 1 but much smaller than the length of the whole chain. The entropy of the block has an asymptotic limit in the gapped regimes. We study this limiting entropy as a function of the anisotropy and of the magnetic field. We identify its minima at product states and its divergencies at the quantum phase transitions. We find that the curves of constant entropy are ellipses and hyperbolas, and that they all meet at one point (essential critical point). Depending on the approach to the essential critical point, the entropy can take any value between 0 and ∞. In the vicinity of this point, small changes in the parameters cause large change of the entropy
Modeling of nuclear glasses by classical and ab initio molecular dynamics
International Nuclear Information System (INIS)
Ganster, P.
2004-01-01
A calcium aluminosilicate glass of molar composition 67 % SiO 2 - 12 % Al 2 O 3 - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri-coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminum atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author) [fr
Modelling of nuclear glasses by classical and ab initio molecular dynamics
International Nuclear Information System (INIS)
Ganster, P.
2004-10-01
A calcium aluminosilicate glass of molar composition 67 % SiO 2 - 12 % Al 2 O 3 - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)
Quantum phase transitions in random XY spin chains
International Nuclear Information System (INIS)
Bunder, J.E.; McKenzie, R.H.
2000-01-01
Full text: The XY spin chain in a transverse field is one of the simplest quantum spin models. It is a reasonable model for heavy fermion materials such as CeCu 6-x Au x . It has two quantum phase transitions: the Ising transition and the anisotropic transition. Quantum phase transitions occur at zero temperature. We are investigating what effect the introduction of randomness has on these quantum phase transitions. Disordered systems which undergo quantum phase transitions can exhibit new universality classes. The universality class of a phase transition is defined by the set of critical exponents. In a random system with quantum phase transitions we can observe Griffiths-McCoy singularities. Such singularities are observed in regions which have no long range order, so they are not classified as critical regions, yet they display phenomena normally associated with critical points, such as a diverging susceptibility. Griffiths-McCoy phases are due to rare regions with stronger than! average interactions and may be present far from the quantum critical point. We show how the random XY spin chain may be mapped onto a random Dirac equation. This allows us to calculate the density of states without making any approximations. From the density of states we can describe the conditions which should allow a Griffiths-McCoy phase. We find that for the Ising transition the dynamic critical exponent, z, is not universal. It is proportional to the disorder strength and inversely proportional to the energy gap, hence z becomes infinite at the critical point where the energy gap vanishes
Classical mapping for Hubbard operators: Application to the double-Anderson model
Energy Technology Data Exchange (ETDEWEB)
Li, Bin; Miller, William H. [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Levy, Tal J.; Rabani, Eran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)
2014-05-28
A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to be accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.
A study of quantum mechanical probabilities in the classical Hodgkin-Huxley model.
Moradi, N; Scholkmann, F; Salari, V
2015-03-01
The Hodgkin-Huxley (HH) model is a powerful model to explain different aspects of spike generation in excitable cells. However, the HH model was proposed in 1952 when the real structure of the ion channel was unknown. It is now common knowledge that in many ion-channel proteins the flow of ions through the pore is governed by a gate, comprising a so-called "selectivity filter" inside the ion channel, which can be controlled by electrical interactions. The selectivity filter (SF) is believed to be responsible for the selection and fast conduction of particular ions across the membrane of an excitable cell. Other (generally larger) parts of the molecule such as the pore-domain gate control the access of ions to the channel protein. In fact, two types of gates are considered here for ion channels: the "external gate", which is the voltage sensitive gate, and the "internal gate" which is the selectivity filter gate (SFG). Some quantum effects are expected in the SFG due to its small dimensions, which may play an important role in the operation of an ion channel. Here, we examine parameters in a generalized model of HH to see whether any parameter affects the spike generation. Our results indicate that the previously suggested semi-quantum-classical equation proposed by Bernroider and Summhammer (BS) agrees strongly with the HH equation under different conditions and may even provide a better explanation in some cases. We conclude that the BS model can refine the classical HH model substantially.
Local and omnibus goodness-of-fit tests in classical measurement error models
Ma, Yanyuan
2010-09-14
We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal series-based, omnibus goodness-of-fit test in this context, where no likelihood function is available or calculated-i.e. all the tests are proposed in the semiparametric model framework. We demonstrate that our tests have optimality properties and computational advantages that are similar to those of the classical score tests in the parametric model framework. The test procedures are applicable to several semiparametric extensions of measurement error models, including when the measurement error distribution is estimated non-parametrically as well as for generalized partially linear models. The performance of the local score-type and omnibus goodness-of-fit tests is demonstrated through simulation studies and analysis of a nutrition data set.
A classical Master equation approach to modeling an artificial protein motor
International Nuclear Information System (INIS)
Kuwada, Nathan J.; Blab, Gerhard A.; Linke, Heiner
2010-01-01
Inspired by biomolecular motors, as well as by theoretical concepts for chemically driven nanomotors, there is significant interest in constructing artificial molecular motors. One driving force is the opportunity to create well-controlled model systems that are simple enough to be modeled in detail. A remaining challenge is the fact that such models need to take into account processes on many different time scales. Here we describe use of a classical Master equation approach, integrated with input from Langevin and molecular dynamics modeling, to stochastically model an existing artificial molecular motor concept, the Tumbleweed, across many time scales. This enables us to study how interdependencies between motor processes, such as center-of-mass diffusion and track binding/unbinding, affect motor performance. Results from our model help guide the experimental realization of the proposed motor, and potentially lead to insights that apply to a wider class of molecular motors.
Non-classical solutions of a continuum model for rock descriptions
Directory of Open Access Journals (Sweden)
Mikhail A. Guzev
2014-06-01
Full Text Available The strain-gradient and non-Euclidean continuum theories are employed for construction of non-classical solutions of continuum models. The linear approximation of both models' results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory. The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.
International Nuclear Information System (INIS)
Lucas, G.
2006-10-01
The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)
Electroweak vacuum stability in classically conformal B - L extension of the standard model
Energy Technology Data Exchange (ETDEWEB)
Das, Arindam; Okada, Nobuchika; Papapietro, Nathan [University of Alabama, Department of Physics and Astronomy, Alabama (United States)
2017-02-15
We consider the minimal U(1){sub B-L} extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1){sub B-L} gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1){sub B-L} Higgs field. Because of the classically conformal symmetry, all dimensional parameters are forbidden. The B - L gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, generating the mass for the U(1){sub B-L} gauge boson (Z{sup '} boson) and the right-handed neutrinos. Through a small negative coupling between the SM Higgs doublet and the B - L Higgs field, the negative mass term for the SM Higgs doublet is generated and the electroweak symmetry is broken. In this model context, we investigate the electroweak vacuum instability problem in the SM. It is well known that in the classically conformal U(1){sub B-L} extension of the SM, the electroweak vacuum remains unstable in the renormalization group analysis at the one-loop level. In this paper, we extend the analysis to the two-loop level, and perform parameter scans. We identify a parameter region which not only solve the vacuum instability problem, but also satisfy the recent ATLAS and CMS bounds from search for Z{sup '} boson resonance at the LHC Run-2. Considering self-energy corrections to the SM Higgs doublet through the right-handed neutrinos and the Z{sup '} boson, we derive the naturalness bound on the model parameters to realize the electroweak scale without fine-tunings. (orig.)
Directory of Open Access Journals (Sweden)
L. Toledo Sesma
2016-01-01
Full Text Available We construct an effective four-dimensional model by compactifying a ten-dimensional theory of gravity coupled with a real scalar dilaton field on a time-dependent torus. This approach is applied to anisotropic cosmological Bianchi type I model for which we study the classical coupling of the anisotropic scale factors with the two real scalar moduli produced by the compactification process. Under this approach, we present an isotropization mechanism for the Bianchi I cosmological model through the analysis of the ratio between the anisotropic parameters and the volume of the Universe which in general keeps constant or runs into zero for late times. We also find that the presence of extra dimensions in this model can accelerate the isotropization process depending on the momenta moduli values. Finally, we present some solutions to the corresponding Wheeler-DeWitt (WDW equation in the context of standard quantum cosmology.
Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations.
Koch, Gilbert; Krzyzanski, Wojciech; Pérez-Ruixo, Juan Jose; Schropp, Johannes
2014-08-01
In pharmacokinetics/pharmacodynamics (PKPD) the measured response is often delayed relative to drug administration, individuals in a population have a certain lifespan until they maturate or the change of biomarkers does not immediately affects the primary endpoint. The classical approach in PKPD is to apply transit compartment models (TCM) based on ordinary differential equations to handle such delays. However, an alternative approach to deal with delays are delay differential equations (DDE). DDEs feature additional flexibility and properties, realize more complex dynamics and can complementary be used together with TCMs. We introduce several delay based PKPD models and investigate mathematical properties of general DDE based models, which serve as subunits in order to build larger PKPD models. Finally, we review current PKPD software with respect to the implementation of DDEs for PKPD analysis.
Bayesian and Classical Estimation of Stress-Strength Reliability for Inverse Weibull Lifetime Models
Directory of Open Access Journals (Sweden)
Qixuan Bi
2017-06-01
Full Text Available In this paper, we consider the problem of estimating stress-strength reliability for inverse Weibull lifetime models having the same shape parameters but different scale parameters. We obtain the maximum likelihood estimator and its asymptotic distribution. Since the classical estimator doesn’t hold explicit forms, we propose an approximate maximum likelihood estimator. The asymptotic confidence interval and two bootstrap intervals are obtained. Using the Gibbs sampling technique, Bayesian estimator and the corresponding credible interval are obtained. The Metropolis-Hastings algorithm is used to generate random variates. Monte Carlo simulations are conducted to compare the proposed methods. Analysis of a real dataset is performed.
Mathematical modeling improves EC50 estimations from classical dose-response curves.
Nyman, Elin; Lindgren, Isa; Lövfors, William; Lundengård, Karin; Cervin, Ida; Sjöström, Theresia Arbring; Altimiras, Jordi; Cedersund, Gunnar
2015-03-01
The β-adrenergic response is impaired in failing hearts. When studying β-adrenergic function in vitro, the half-maximal effective concentration (EC50 ) is an important measure of ligand response. We previously measured the in vitro contraction force response of chicken heart tissue to increasing concentrations of adrenaline, and observed a decreasing response at high concentrations. The classical interpretation of such data is to assume a maximal response before the decrease, and to fit a sigmoid curve to the remaining data to determine EC50 . Instead, we have applied a mathematical modeling approach to interpret the full dose-response curve in a new way. The developed model predicts a non-steady-state caused by a short resting time between increased concentrations of agonist, which affect the dose-response characterization. Therefore, an improved estimate of EC50 may be calculated using steady-state simulations of the model. The model-based estimation of EC50 is further refined using additional time-resolved data to decrease the uncertainty of the prediction. The resulting model-based EC50 (180-525 nm) is higher than the classically interpreted EC50 (46-191 nm). Mathematical modeling thus makes it possible to re-interpret previously obtained datasets, and to make accurate estimates of EC50 even when steady-state measurements are not experimentally feasible. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database, and may be accessed at http://jjj.bio.vu.nl/database/nyman. © 2015 FEBS.
The effect of the number of seed variables on the performance of Cooke′s classical model
International Nuclear Information System (INIS)
Eggstaff, Justin W.; Mazzuchi, Thomas A.; Sarkani, Shahram
2014-01-01
In risk analysis, Cooke′s classical model for aggregating expert judgment has been widely used for over 20 years. However, the validity of this model has been the subject of much debate. Critics assert that this model′s scoring rule may unintentionally reward experts who manipulate their quantile estimates in order to receive a greater weight. In addition, the question of the number of seed variables required to ensure adequate performance of Cooke′s classical model remains unanswered. In this study, we conduct a comprehensive examination of the model through an iterative, cross validation test to perform an out-of-sample comparison between Cooke′s classical model and the equal-weight linear opinion pool method on almost all of the expert judgment studies compiled by Cooke and colleagues to date. Our results indicate that Cooke′s classical model significantly outperforms equally weighting expert judgment, regardless of the number of seed variables used; however, there may, in fact, be a maximum number of seed variables beyond which Cooke′s model cannot outperform an equally-weighted panel. - Highlights: • We examine Cooke′s classical model through an iterative, cross validation test. • The performance-based and equally weighted decision makers are compared. • Results strengthen Cooke′s argument for a two-fold cross-validation approach. • Accuracy test results show strong support in favor of Cooke′s classical method. • There may be a maximum number of seed variables that ensures model performance
Increased high-density lipoprotein cholesterol levels in mice with XX versus XY sex chromosomes.
Link, Jenny C; Chen, Xuqi; Prien, Christopher; Borja, Mark S; Hammerson, Bradley; Oda, Michael N; Arnold, Arthur P; Reue, Karen
2015-08-01
The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the four core genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male-female gonadal sex and XX-XY chromosome complement. Gonadectomy of adult mice revealed that the male-female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male-female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared with a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with 2 X chromosomes compared with mice with an X and Y chromosome. By generating mice with XX, XY, and XXY chromosome complements, we determined that the presence of 2 X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. We demonstrate that having 2 X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. © 2015 American Heart Association, Inc.
Classical and quantum analysis of a hetero-triatomic molecular Bose-Einstein condensate model
International Nuclear Information System (INIS)
Tonel, A.P.; Kuhn, C.C.N.; Foerster, A.; Santos, G.; Roditi, I.; Santos, Z.V.T.
2014-11-01
We investigate an integrable Hamiltonian modelling a hetero-triatomic-molecular Bose-Einstein condensate. This model describes a mixture of two species of atoms in different proportions, which can combine to form a triatomic molecule. Beginning with a classical analysis, we determine the fixed points of the system. Bifurcations of these points separate the parameter space into different regions. Three distinct scenarios are found, varying with the atomic population imbalance. This result suggests the ground state properties of the quantum model exhibits a sensitivity on the atomic population imbalance, which is confirmed by a quantum analysis using different approaches, such as the ground-state expectation values, the behaviour of the quantum dynamics, the energy gap and the ground state fidelity. (author)
International Nuclear Information System (INIS)
Tessier, Tracey E.; Caves, Carlton M.; Deutsch, Ivan H.; Eastin, Bryan; Bacon, Dave
2005-01-01
We present a model, motivated by the criterion of reality put forward by Einstein, Podolsky, and Rosen and supplemented by classical communication, which correctly reproduces the quantum-mechanical predictions for measurements of all products of Pauli operators on an n-qubit GHZ state (or 'cat state'). The n-2 bits employed by our model are shown to be optimal for the allowed set of measurements, demonstrating that the required communication overhead scales linearly with n. We formulate a connection between the generation of the local values utilized by our model and the stabilizer formalism, which leads us to conjecture that a generalization of this method will shed light on the content of the Gottesman-Knill theorem
Empiric model for mean generation time adjustment factor for classic point kinetics equations
Energy Technology Data Exchange (ETDEWEB)
Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C., E-mail: david.goes@poli.ufrj.br, E-mail: aquilino@lmp.ufrj.br, E-mail: alessandro@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear
2017-11-01
Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)
Empiric model for mean generation time adjustment factor for classic point kinetics equations
International Nuclear Information System (INIS)
Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C.
2017-01-01
Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)
A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.
Schneider, Julian; Ciacchi, Lucio Colombi
2011-02-08
The behavior of titanium implants in physiological environments is governed by the thin oxide layer that forms spontaneously on the metal surface and mediates the interactions with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water by means of extensive first-principles molecular dynamics simulations. Taking the obtained structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface. This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The interactions with arbitrary organic molecules are obtained via standard combination rules to established biomolecular force fields. The transferability of our potential to the case of organic molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential energy surfaces of representative systems to quantum mechanical results at the level of density functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and the detachment force of a single tyrosine residue from steered molecular dynamics simulations, finding good agreement with experimental reference data in both cases. As a first application, we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium surface, focusing particularly on the calculation of the free energy of desorption.
Quantum critical singularities in two-dimensional metallic XY ferromagnets
Varma, Chandra M.; Gannon, W. J.; Aronson, M. C.; Rodriguez-Rivera, J. A.; Qiu, Y.
2018-02-01
An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature, and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-critical point (QCP) is constructed, and its singularities are determined by comparing to the recent calculations of the correlation functions of the dissipative quantum XY model (DQXY). The calculations are motivated by the measured properties of the metallic compound YFe2Al10 , which is a realization of the DQXY model in 2D. The frequency, temperature, and magnetic field dependence of the scaling function as well as the singularities measured in the experiments are given by the theory without adjustable exponents. The same model is applicable to the superconductor-insulator transitions, classes of metallic AFM-QCPs, and as fluctuations of the loop-current ordered state in hole-doped cuprates. The results presented here lend credence to the solution found for the 2D-DQXY model and its applications in understanding quantum-critical properties of diverse systems.
International Nuclear Information System (INIS)
Eisenberg, Bob; Liu, Weishi; Xu, Hongguo
2015-01-01
In this work, we are interested in effects of a simple profile of permanent charges on ionic flows. We determine when a permanent charge produces current reversal. We adopt the classical Poisson–Nernst–Planck (PNP) models of ionic flows for this study. The starting point of our analysis is the recently developed geometric singular perturbation approach for PNP models. Under the setting in the paper for case studies, we are able to identify a single governing equation for the existence and the value of the permanent charge for a current reversal. A number of interesting features are established. The related topic on reversal potential can be viewed as a dual problem and is briefly examined in this work too. (paper)
Classically conformal radiative neutrino model with gauged B−L symmetry
Directory of Open Access Journals (Sweden)
Hiroshi Okada
2016-09-01
Full Text Available We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B−L symmetry in the standard model that is essential in order to work the Coleman–Weinberg mechanism well that induces the B−L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman–Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ→eγ, the current bound on the Z′ mass at the CERN Large Hadron Collider, and neutrino oscillations.
Turesson, Martin; Szparaga, Ryan; Ma, Ke; Woodward, Clifford E; Forsman, Jan
2014-05-14
A new classical density functional approach is developed to accurately treat a coarse-grained model of room temperature aromatic ionic liquids. Our major innovation is the introduction of charge-charge correlations, which are treated in a simple phenomenological way. We test this theory on a generic coarse-grained model for aromatic RTILs with oligomeric forms for both cations and anions, approximating 1-alkyl-3-methyl imidazoliums and BF₄⁻, respectively. We find that predictions by the new density functional theory for fluid structures at charged surfaces are very accurate, as compared with molecular dynamics simulations, across a range of surface charge densities and lengths of the alkyl chain. Predictions of interactions between charged surfaces are also presented.
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model
Savelyev, Alexey; MacKerell, Alexander D.
2014-01-01
Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978
Modeling the classical nova outburst. I. Exploring the physics of a new mechanism
International Nuclear Information System (INIS)
Kutter, G.S.; Sparks, W.M.
1989-01-01
Model calculations were performed to describe a mechanism that produces classical nova outbursts on white dwarfs of 1 solar mass or less and for accretion rates of 4 x 10 to the -10th solar mass/yr or greater, i.e., the parameters corresponding to observed data of nova systems. Calculations point to four factors that can induce nuclear runaways of sufficient strength to eject about 0.0001 solar mass at speeds of several hundred to a few thousand km per second, as is observed in classical novae. These are (1) the effects of storage of angular momentum in the star's envelope during the accretion phase; (2) the reduction of centrifugal forces in the star's outer layers during the early nuclear runaway phase, through the inward transport of angular momentum; (3) the inward movement of the zone of peak nuclear burning through the convectively induced shear instability during the runaway phase; and (4) the mixing of original CO stellar matter and H-rich matter, also through the convectively induced shear instability. 58 refs
Sarkadi, L.
2018-04-01
Fully differential cross sections (FDCSs) have been calculated for the single ionization of helium by 1- and 3-MeV proton and 100-MeV/u C6 + ion impact using the classical trajectory Monte Carlo (CTMC) method in the nonrelativistic, three-body approximation. The calculations were made employing a Wigner-type model in which the quantum-mechanical position distribution of the electron is approximated by a weighted integral of the microcanonical distribution over a range of the binding energy of the electron. In the scattering plane, the model satisfactorily reproduces the observed shape of the binary peak. In the region of the peak the calculated FDCSs agree well with the results of continuum-distorted-wave calculations for all the investigated collisions. For 1-MeV proton impact the experimentally observed shift of the binary peak with respect to the first Born approximation is compared with the shifts obtained by different higher-order quantum-mechanical theories and the present CTMC method. The best result was achieved by CTMC, but still a large part of the shift remained unexplained. Furthermore, it was found that the classical theory failed to reproduce the shape of the recoil peak observed in the experiments, it predicts a much narrower peak. This indicates that the formation of the recoil peak is dominated by quantum-mechanical effects. For 100-MeV/u C6 + ion impact the present CTMC calculations confirmed the existence of the "double-peak" structure of the angular distribution of the electron in the plane perpendicular to the momentum transfer, in accordance with the observation, the prediction of an incoherent semiclassical model, and previous CTMC results. This finding together with wave-packet calculations suggests that the "C6 + puzzle" may be solved by considering the loss of the projectile coherence. Experiments to be conducted using ion beams of anisotropic coherence are proposed for a more differential investigation of the ionization dynamics.
Rosini, Massimiliano Daniele
2013-01-01
This monograph presents a systematic treatment of the theory for hyperbolic conservation laws and their applications to vehicular traffics and crowd dynamics. In the first part of the book, the author presents very basic considerations and gradually introduces the mathematical tools necessary to describe and understand the mathematical models developed in the following parts focusing on vehicular and pedestrian traffic. The book is a self-contained valuable resource for advanced courses in mathematical modeling, physics and civil engineering. A number of examples and figures facilitate a better understanding of the underlying concepts and motivations for the students. Important new techniques are presented, in particular the wave front tracking algorithm, the operator splitting approach, the non-classical theory of conservation laws and the constrained problems. This book is the first to present a comprehensive account of these fundamental new mathematical advances.
Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall
2016-01-01
Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.
Directory of Open Access Journals (Sweden)
Emily L. Ryan
2012-11-01
Despite neonatal diagnosis and life-long dietary restriction of galactose, many patients with classic galactosemia grow to experience significant long-term complications. Among the more common are speech, cognitive, behavioral, ovarian and neurological/movement difficulties. Despite decades of research, the pathophysiology of these long-term complications remains obscure, hindering prognosis and attempts at improved intervention. As a first step to overcome this roadblock we have begun to explore long-term outcomes in our previously reported GALT-null Drosophila melanogaster model of classic galactosemia. Here we describe the first of these studies. Using a countercurrent device, a simple climbing assay, and a startle response test to characterize and quantify an apparent movement abnormality, we explored the impact of cryptic GALT expression on phenotype, tested the role of sublethal galactose exposure and galactose-1-phosphate (gal-1P accumulation, tested the impact of age, and searched for potential anatomical defects in brain and muscle. We found that about 2.5% residual GALT activity was sufficient to reduce outcome severity. Surprisingly, sublethal galactose exposure and gal-1P accumulation during development showed no effect on the adult phenotype. Finally, despite the apparent neurological or neuromuscular nature of the complication we found no clear morphological differences between mutants and controls in brain or muscle, suggesting that the defect is subtle and/or is physiologic rather than structural. Combined, our results confirm that, like human patients, GALT-null Drosophila experience significant long-term complications that occur independently of galactose exposure, and serve as a proof of principle demonstrating utility of the GALT-null Drosophila model as a tool for exploring genetic and environmental modifiers of long-term outcome in GALT deficiency.
BIM-based Modeling and Data Enrichment of Classical Architectural Buildings
Directory of Open Access Journals (Sweden)
Fabrizio Ivan Apollonio
2012-12-01
Full Text Available EnIn this paper we presented a BIM-based approach for the documentation of Architectural Heritage. Knowledge of classical architecture is first extracted from the treatises for parametric modeling in object level. Then we established a profile library based on semantic studies to sweep out different objects. Variants grow out from the parametric models by editing or regrouping parameters based on grammars. Multiple data including material, structure and real-life state are enriched with respect to different research motivations. The BIM models are expected to ease the modeling process and provide comprehensive data shared among different platforms for further simulations.ItIn questo articolo è presentata una procedura definita nell'ambito dei sistemi BIM con l'obiettivo di documentare il Patrimonio Architettonico. I dati conoscitivi relativi all'architettura classica sono, in una prima fase, ottenuti dai trattati al fine di modellare in maniera parametrica a livello di oggetti. Successivamente è stata definita una libreria di profili, basata su principi semantici, dalla quale è possibile ottenere oggetti differenti. Dati di natura differente, relativi ad esempio ai materiali, alle strutture, allo stato di fatto, sono implementati in funzione delle differenti esigenze. I modelli BIM hanno la potenzialità di facilitare le procedure di modellazione e di fornire informazioni e dati completi che possono essere condivisi tra piattaforme differenti per ulteriori simulazioni ed analisi.
Machine learning of frustrated classical spin models. I. Principal component analysis
Wang, Ce; Zhai, Hui
2017-10-01
This work aims at determining whether artificial intelligence can recognize a phase transition without prior human knowledge. If this were successful, it could be applied to, for instance, analyzing data from the quantum simulation of unsolved physical models. Toward this goal, we first need to apply the machine learning algorithm to well-understood models and see whether the outputs are consistent with our prior knowledge, which serves as the benchmark for this approach. In this work, we feed the computer data generated by the classical Monte Carlo simulation for the X Y model in frustrated triangular and union jack lattices, which has two order parameters and exhibits two phase transitions. We show that the outputs of the principal component analysis agree very well with our understanding of different orders in different phases, and the temperature dependences of the major components detect the nature and the locations of the phase transitions. Our work offers promise for using machine learning techniques to study sophisticated statistical models, and our results can be further improved by using principal component analysis with kernel tricks and the neural network method.
How far can radiation from atoms be represented by classical models
International Nuclear Information System (INIS)
Haar, D. Ter; Wergeland, H.
1978-01-01
In recent years some phenomena currently assumed to be essentially quantal have found an accurate description in classical terms. An example is Lamb's semiclassical theory of the laser. Consequently many physicists are discussing in how far a full quantum mechanical treatment is necessary. A good many of the formulae for the radiation from atoms can certainly be obtained by classical methods. But these methods fail already at the question of the line profiles. Even though the damping is a simple mechanism - classically speaking. It seems inevitible that the semi-classical formulae must be limited to those phenomena which essentially only involve the averages of photon numbers. (JIW)
Directory of Open Access Journals (Sweden)
Maricilda Palandi de Mello
2011-12-01
Full Text Available The steroid 5α-reductase type II enzyme catalyzes the conversion of testosterone (T to dihydrotestosterone (DHT, and its deficiency leads to undervirilization in 46,XY individuals, due to an impairment of this conversion in genital tissues. Molecular analysis in the steroid 5α-reductase type II gene (SRD5A2 was performed in two 46,XY female siblings. SRD5A2 gene sequencing revealed that the patients were homozygous for p.Gln126Arg missense mutation, which results from the CGA > CAA nucleotide substitution. The molecular result confirmed clinical diagnosis of 46,XY disorder of sex development (DSD for the older sister and directed the investigation to other family members. Studies on SRD5A2 protein structure showed severe changes at NADPH binding region indicating that structural modeling analysis can be useful to evaluate the deleterious role of a mutation as causing 5α-reductase type II enzyme deficiency.
Sun, Xiao; Chai, Guobei; Liu, Wei; Bao, Wenzhuo; Zhao, Xiaoning; Ming, Delie
2018-02-01
Simple cells in primary visual cortex are believed to extract local edge information from a visual scene. In this paper, inspired by different receptive field properties and visual information flow paths of neurons, an improved Combination of Receptive Fields (CORF) model combined with non-classical receptive fields was proposed to simulate the responses of simple cell's receptive fields. Compared to the classical model, the proposed model is able to better imitate simple cell's physiologic structure with consideration of facilitation and suppression of non-classical receptive fields. And on this base, an edge detection algorithm as an application of the improved CORF model was proposed. Experimental results validate the robustness of the proposed algorithm to noise and background interference.
On modeling of statistical properties of classical 3D spin glasses
International Nuclear Information System (INIS)
Gevorkyan, A.S.; Abajyan, H.G.; Ayryan, E.A.
2011-01-01
We study statistical properties of 3D classical spin glass layer of certain width and infinite length. The 3D spin glass is represented as an ensemble of disordered 1D spatial spin chains (SSC) where interactions are random between spin chains (nonideal ensemble of 1D SSCs). It is proved that in the limit of Birkhoff's ergodic hypothesis performance, 3D spin glasses can be generated by Hamiltonian of disordered 1D SSC with random environment. Disordered 1D SSC is defined on a regular lattice where one randomly oriented spin is put on each node of lattice. Also, it is supposed that each spin randomly interacts with six nearest-neighboring spins (two spins on lattice and four in the environment). The recurrent transcendental equations are obtained on the nodes of spin-chain lattice. These equations, combined with the Silvester conditions, allow step-by-step construction of spin chain in the ground state of energy where all spins are in the minimal energy of a classical Hamiltonian. On the basis of these equations an original high-performance parallel algorithm is developed for 3D spin glasses simulation. Distributions of different parameters of unperturbed spin glass are calculated. In particular, it is analytically proved and numerical calculations show that the distribution of spin-spin interaction constant in Heisenberg nearest-neighboring Hamiltonian model, as opposed to widely used Gauss-Edwards-Anderson distribution, satisfies the Levy alpha-stable distribution law which does not have variance. A new formula is proposed for construction of partition function in the form of a one-dimensional integral on the energy distribution of 1D SSCs
Kosterlitz-Thouless transitions in simple spin-models with strongly varying vortex densities
Himbergen, J.E.J.M. van
1985-01-01
A generalized XY-model, consisting of a family of nearest neighbour potentials of varying shape, for classical planar spins on a two-dimensional square lattice is analysed by a combination of Migdal-Kadanoff real-space renormalization and Monte Carlo simulations on a sequence of finite lattices of
Phase transition in Ising, XY and Heisenberg magnetic films
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid - BP 63 46000 Safi (Morocco); LMPHE, Faculte des Sciences, Universite Mohamed V, Rabat (Morocco); Hamedoun, M. [Institute for Nanomaterials and Nanotechnologies, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco); Benyoussef, A. [LMPHE, Faculte des Sciences, Universite Mohamed V, Rabat (Morocco); Institute for Nanomaterials and Nanotechnologies, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco)
2012-01-01
The phase transition and magnetic properties of a ferromagnet spin-S, a disordered diluted thin and semi-infinite film with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system {tau}{sub c} is studied as function of the thickness of the thin film and the exchange interactions in the bulk, and within the surfaces J{sub b}, J{sub s} and J{sub Up-Tack }, respectively. It is found that {tau}{sub c} increases with the exchange interactions of surface. The magnetic phase diagrams ({tau}{sub c} versus the dilution x) and the percolation threshold are obtained. The shifts of the critical temperatures T{sub c}(l) from the bulk value (T{sub c}({infinity})/T{sub c}(l) - 1) can be described by a power law l{sup -{lambda}}, where {lambda} = 1/{upsilon} is the inverse of the correlation length exponent.
Classically scale-invariant B–L model and conformal gravity
International Nuclear Information System (INIS)
Oda, Ichiro
2013-01-01
We consider a coupling of conformal gravity to the classically scale-invariant B–L extended standard model which has been recently proposed as a phenomenologically viable model realizing the Coleman–Weinberg mechanism of breakdown of the electroweak symmetry. As in a globally scale-invariant dilaton gravity, it is also shown in a locally scale-invariant conformal gravity that without recourse to the Coleman–Weinberg mechanism, the B–L gauge symmetry is broken in the process of spontaneous symmetry breakdown of the local scale invariance (Weyl invariance) at the tree level and as a result the B–L gauge field becomes massive via the Higgs mechanism. As a bonus of conformal gravity, the massless dilaton field does not appear and the parameters in front of the non-minimal coupling of gravity are completely fixed in the present model. This observation clearly shows that the conformal gravity has a practical application even if the scalar field does not possess any dynamical degree of freedom owing to the local scale symmetry
Affine q-deformed symmetry and the classical Yang-Baxter σ-model
Energy Technology Data Exchange (ETDEWEB)
Delduc, F.; Kameyama, T.; Magro, M. [Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon (France); Vicedo, B. [School of Physics, Astronomy and Mathematics, University of Hertfordshire,College Lane, Hatfield AL10 9AB (United Kingdom)
2017-03-23
The Yang-Baxter σ-model is an integrable deformation of the principal chiral model on a Lie group G. The deformation breaks the G×G symmetry to U(1){sup rank(G)}×G. It is known that there exist non-local conserved charges which, together with the unbroken U(1){sup rank(G)} local charges, form a Poisson algebra U{sub q}(g), which is the semiclassical limit of the quantum group U{sub q}(g), with g the Lie algebra of G. For a general Lie group G with rank(G)>1, we extend the previous result by constructing local and non-local conserved charges satisfying all the defining relations of the infinite-dimensional Poisson algebra U{sub q}(Lg), the classical analogue of the quantum loop algebra U{sub q}(Lg), where Lg is the loop algebra of g. Quite unexpectedly, these defining relations are proved without encountering any ambiguity related to the non-ultralocality of this integrable σ-model.
Saunders, Christina T; Blume, Jeffrey D
2017-10-26
Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.
Embedding inflation into the Standard Model — More evidence for classical scale invariance
International Nuclear Information System (INIS)
Kannike, Kristjan; Racioppi, Antonio; Raidal, Martti
2014-01-01
If cosmological inflation is due to a slowly rolling single inflation field taking trans-Planckian values as suggested by the BICEP2 measurement of primordial tensor modes in CMB, embedding inflation into the Standard Model challenges standard paradigm of effective field theories. Together with an apparent absence of Planck scale contributions to the Higgs mass and to the cosmological constant, BICEP2 provides further experimental evidence for the absence of large M_P induced operators. We show that classical scale invariance — the paradigm that all fundamental scales in Nature are induced by quantum effects — solves the problem and allows for a remarkably simple scale-free Standard Model extension with inflaton without extending the gauge group. Due to trans-Planckian inflaton values and vevs, a dynamically induced Coleman-Weinberg-type inflaton potential of the model can predict tensor-to-scalar ratio r in a large range, converging around the prediction of chaotic m"2ϕ"2 inflation for a large trans-Planckian value of the inflaton vev. Precise determination of r in future experiments will single out a unique scale-free inflation potential, allowing to test the proposed field-theoretic framework.
Directory of Open Access Journals (Sweden)
Pietra Paola
2012-04-01
Full Text Available We propose a hybrid classical-quantum model to study the motion of electrons in ultra-scaled confined nanostructures. The transport of charged particles, considered as one dimensional, is described by a quantum effective mass model in the active zone coupled directly to a drift-diffusion problem in the rest of the device. We explain how this hybrid model takes into account the peculiarities due to the strong confinement and we present numerical simulations for a simplified carbon nanotube. Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans des nanostructures très fortement confinées. Le transport des particules, consideré unidimensionel, est décrit par un modèle quantique avec masse effective dans la zone active couplé à un problème de dérive-diffusion dans le reste du domaine. Nous expliquons comment ce modèle hybride prend en compte les spécificités de ce très fort confinement et nous présentons des résultats numériques pour un nanotube de carbone simplifié.
International Nuclear Information System (INIS)
Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.
1997-03-01
We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors)
International Nuclear Information System (INIS)
Kulik, D.A.
2005-01-01
Full text of publication follows: Computer-aided surface complexation models (SCM) tend to replace the classic adsorption isotherm (AI) analysis in describing mineral-water interface reactions such as radionuclide sorption onto (hydr) oxides and clays. Any site-binding SCM based on the mole balance of surface sites, in fact, reproduces the (competitive) Langmuir isotherm, optionally amended with electrostatic Coulomb's non-ideal term. In most SCM implementations, it is difficult to incorporate real-surface phenomena (site heterogeneity, lateral interactions, surface condensation) described in classic AI approaches other than Langmuir's. Thermodynamic relations between SCMs and AIs that remained obscure in the past have been recently clarified using new definitions of standard and reference states of surface species [1,2]. On this basis, a method for separating the Langmuir AI into ideal (linear) and non-ideal parts [2] was applied to multi-dentate Langmuir, Frumkin, and BET isotherms. The aim of this work was to obtain the surface activity coefficient terms that make the SCM site mole balance constraints obsolete and, in this way, extend thermodynamic SCMs to cover sorption phenomena described by the respective AIs. The multi-dentate Langmuir term accounts for the site saturation with n-dentate surface species, as illustrated on modeling bi-dentate U VI complexes on goethite or SiO 2 surfaces. The Frumkin term corrects for the lateral interactions of the mono-dentate surface species; in particular, it has the same form as the Coulombic term of the constant-capacitance EDL combined with the Langmuir term. The BET term (three parameters) accounts for more than a monolayer adsorption up to the surface condensation; it can potentially describe the surface precipitation of nickel and other cations on hydroxides and clay minerals. All three non-ideal terms (in GEM SCMs implementation [1,2]) by now are used for non-competing surface species only. Upon 'surface dilution
Sussman, Joshua; Beaujean, A. Alexander; Worrell, Frank C.; Watson, Stevie
2013-01-01
Item response models (IRMs) were used to analyze Cross Racial Identity Scale (CRIS) scores. Rasch analysis scores were compared with classical test theory (CTT) scores. The partial credit model demonstrated a high goodness of fit and correlations between Rasch and CTT scores ranged from 0.91 to 0.99. CRIS scores are supported by both methods.…
Eyeblink Classical Conditioning and Post Traumatic Stress Disorder – A Model Systems Approach
Directory of Open Access Journals (Sweden)
Bernard G Schreurs
2015-04-01
Full Text Available Not everyone exposed to trauma suffers flashbacks, bad dreams, numbing, fear, anxiety, sleeplessness, hyper-vigilance, hyperarousal, or an inability to cope, but those who do may suffer from post traumatic stress disorder (PTSD. PTSD is a major physical and mental health problem for military personnel and civilians exposed to trauma. There is still debate about the incidence and prevalence of PTSD especially among the military, but for those who are diagnosed, behavioral therapy and drug treatment strategies have proven to be less than effective. A number of these treatment strategies are based on rodent fear conditioning research and are capable of treating only some of the symptoms because the extinction of fear does not deal with the various forms of hyper-vigilance and hyperarousal experienced by people with PTSD. To help address this problem, we have developed a preclinical eyeblink classical conditioning model of PTSD in which conditioning and hyperarousal can both be extinguished. We review this model and discuss findings showing that unpaired stimulus presentations can be effective in reducing levels of conditioning and hyperarousal even when unconditioned stimulus intensity is reduced to the point where it is barely capable of eliciting a response. These procedures have direct implications for the treatment of PTSD and could be implemented in a virtual reality environment.
Nonminimal quartic inflation in classically conformal U(1 ) X extended standard model
Oda, Satsuki; Okada, Nobuchika; Raut, Digesh; Takahashi, Dai-suke
2018-03-01
We propose quartic inflation with nonminimal gravitational coupling in the context of the classically conformal U(1 ) X extension of the standard model (SM). In this model, the U(1 ) X gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, by which the U(1 ) X gauge boson (Z' boson) and the right-handed Majorana neutrinos acquire their masses. We consider their masses in the range of O (10 GeV )-O (10 TeV ) , which are accessible to high-energy collider experiments. The radiative U(1 ) X gauge symmetry breaking also generates a negative mass squared for the SM Higgs doublet, and the electroweak symmetry breaking occurs subsequently. We identify the U(1 ) X Higgs field with inflaton and calculate the inflationary predictions. Because of the Coleman-Weinberg mechanism, the inflaton quartic coupling during inflation, which determines the inflationary predictions, is correlated to the U(1 ) X gauge coupling. With this correlation, we investigate complementarities between the inflationary predictions and the current constraint from the Z' boson resonance search at the LHC Run 2 as well as the prospect of the search for the Z' boson and the right-handed neutrinos at the future collider experiments.
Eyeblink classical conditioning and post-traumatic stress disorder - a model systems approach.
Schreurs, Bernard G; Burhans, Lauren B
2015-01-01
Not everyone exposed to trauma suffers flashbacks, bad dreams, numbing, fear, anxiety, sleeplessness, hyper-vigilance, hyperarousal, or an inability to cope, but those who do may suffer from post-traumatic stress disorder (PTSD). PTSD is a major physical and mental health problem for military personnel and civilians exposed to trauma. There is still debate about the incidence and prevalence of PTSD especially among the military, but for those who are diagnosed, behavioral therapy and drug treatment strategies have proven to be less than effective. A number of these treatment strategies are based on rodent fear conditioning research and are capable of treating only some of the symptoms because the extinction of fear does not deal with the various forms of hyper-vigilance and hyperarousal experienced by people with PTSD. To help address this problem, we have developed a preclinical eyeblink classical conditioning model of PTSD in which conditioning and hyperarousal can both be extinguished. We review this model and discuss findings showing that unpaired stimulus presentations can be effective in reducing levels of conditioning and hyperarousal even when unconditioned stimulus intensity is reduced to the point where it is barely capable of eliciting a response. These procedures have direct implications for the treatment of PTSD and could be implemented in a virtual reality environment.
A classical model wind turbine wake “blind test” revisited by remote sensing lidars
DEFF Research Database (Denmark)
Sjöholm, Mikael; Angelou, Nikolas; Nielsen, Morten Busk
2017-01-01
One of the classical model wind turbine wake “blind test” experiments1 conducted in the boundary-layer wind tunnel at NTNU in Trondheim and used for benchmarking of numerical flow models has been revisited by remote sensing lidars in a joint experiment called “Lidars For Wind Tunnels” (L4WT) under...... was D=0.894 m and it was designed for a tip speed ratio (TSR) of 6. However, the TSRs used were 3, 6, and 10 at a free-stream velocity of 10 m/s. Due to geometrical constraints imposed by for instance the locations of the wind tunnel windows, all measurements were performed in the very same vertical...... cross-section of the tunnel and the various down-stream distances of the wake, i.e. 1D, 3D, and 5D were achieved by re-positioning the turbine. The approach used allows for unique studies of the influence of the inherent lidar spatial filtering on previously both experimentally and numerically well...
An RXTE observation of the intermediate polar XY Arietis
International Nuclear Information System (INIS)
Hellier, Coel
1999-01-01
RXTE's observation of XY Ari covered more eclipses of this close binary at a higher count rate than ever before. The eclipses located the accretion regions on the white dwarf and showed that they covered < 0.002 of the white dwarf surface. Additionally we recorded the first outburst of XY Ari seen, allowing us to watch as an unstable accretion disk overwhelmed the magnetic field of the white dwarf and pushed inwards, cutting off our line-of-sight to the lower accretion pole. We also find limits on the mass of the white dwarf
Malpetti, Daniele; Roscilde, Tommaso
2017-02-01
The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical
The role of spatial topology in a toy model of classical electrodynamics in (1+1) dimensions
International Nuclear Information System (INIS)
Boozer, A.D.
2010-01-01
We discuss the role of spatial topology in a toy model of classical electrodynamics in (1+1) dimensions. The model describes a collection of Newtonian point particles coupled to a pair of scalar fields E(t,x) and B(t,x), which mediate forces between the particles and support freely propagating radiation. We formulate the model on both a line and a circle, and show that the behavior of the model strongly depends on the choice of spatial topology.
Sasidhar, Manda V; Itoh, Noriko; Gold, Stefan M; Lawson, Gregory W; Voskuhl, Rhonda R
2012-08-01
Many autoimmune diseases are characterised by a female predominance. This may be caused by sex hormones, sex chromosomes or both. This report uses a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. Survival, renal histopathology and markers of immune activation were compared in mice carrying the XX versus the XY(-) sex chromosome complement, with each genotype being ovary bearing. Mice with XX sex chromosome complement compared with XY(-) exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40 ligand expression and higher levels of activation markers ex vivo. Increased MMP, TGF and IL-13 production was found, while IL-2 was lower in XX mice. An accumulation of splenic follicular B cells and peritoneal marginal zone B cells was observed, coupled with upregulated costimulatory marker expression on B cells in XX mice. These data show that the XX sex chromosome complement, compared with XY(-), is associated with accelerated spontaneous lupus.
seXY: a tool for sex inference from genotype arrays.
Qian, David C; Busam, Jonathan A; Xiao, Xiangjun; O'Mara, Tracy A; Eeles, Rosalind A; Schumacher, Frederick R; Phelan, Catherine M; Amos, Christopher I
2017-02-15
Checking concordance between reported sex and genotype-inferred sex is a crucial quality control measure in genome-wide association studies (GWAS). However, limited insights exist regarding the true accuracy of software that infer sex from genotype array data. We present seXY, a logistic regression model trained on both X chromosome heterozygosity and Y chromosome missingness, that consistently demonstrated >99.5% sex inference accuracy in cross-validation for 889 males and 5,361 females enrolled in prostate cancer and ovarian cancer GWAS. Compared to PLINK, one of the most popular tools for sex inference in GWAS that assesses only X chromosome heterozygosity, seXY achieved marginally better male classification and 3% more accurate female classification. https://github.com/Christopher-Amos-Lab/seXY. Christopher.I.Amos@dartmouth.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Mutations of the SRY-responsive enhancer of SOX9 are uncommon in XY gonadal dysgenesis.
Georg, I; Bagheri-Fam, S; Knower, K C; Wieacker, P; Scherer, Gerd; Harley, V R
2010-01-01
During mouse sex determination, SRY upregulates the core testis-specific enhancer of Sox9, TESCO. Mutations in human SRY are found in one third of cases with XY pure gonadal dysgenesis (XY GD; Swyer syndrome), while two thirds remain unexplained. Heterozygous SOX9 mutations can cause XY GD in association with the skeletal malformation syndrome campomelic dysplasia. We hypothesized that human TESCO mutations could cause isolated XY GD. Sixty-six XY GD cases with an intact SRY were analyzed for TESCO point mutations or deletions. No mutations were identified. We conclude that TESCO mutations are not a common cause of XY GD. Copyright © 2010 S. Karger AG, Basel.
van Heerden C; Tiktak A
1994-01-01
This report gives a description of the graphical tool XY. This program is developed to be coupled with simulation models and database programs. The program contains options for creating line-graphs, scatter-graphs, area-graphs, ordination-graphs, countour-graphs, maps and vector diagrams. The
A classical density functional theory for the asymmetric restricted primitive model of ionic liquids
Lu, Hongduo; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan
2018-05-01
A new three-parameter (valency, ion size, and charge asymmetry) model, the asymmetric restricted primitive model (ARPM) of ionic liquids, has recently been proposed. Given that ionic liquids generally are composed of monovalent species, the ARPM effectively reduces to a two-parameter model. Monte Carlo (MC) simulations have demonstrated that the ARPM is able to reproduce key properties of room temperature ionic liquids (RTILs) in bulk and at charged surfaces. The relatively modest complexity of the model raises the possibility, which is explored here, that a classical density functional theory (DFT) could resolve its properties. This is relevant because it might generate great improvements in terms of both numerical efficiency and understanding in the continued research of RTILs and their applications. In this report, a DFT for rod-like molecules is proposed as an approximate theoretical tool for an ARPM fluid. Borrowing data on the ion pair fraction from a single bulk simulation, the ARPM is modelled as a mixture of dissociated ions and connected ion pairs. We have specifically studied an ARPM where the hard-sphere diameter is 5 Å, with the charge located 1 Å from the hard-sphere centre. We focus on fluid structure and electrochemical behaviour of this ARPM fluid, into which a model electrode is immersed. The latter is modelled as a perfect conductor, and surface polarization is handled by the method of image charges. Approximate methods, which were developed in an earlier study, to take image interactions into account, are also incorporated in the DFT. We make direct numerical comparisons between DFT predictions and corresponding simulation data. The DFT theory is implemented both in the normal mean field form with respect to the electrostatic interactions and in a correlated form based on hole formation by both steric repulsions and ion-ion Coulomb interactions. The results clearly show that ion-ion correlations play a very important role in the screening of
Structural plasticity in the dentate gyrus- revisiting a classic injury model.
Directory of Open Access Journals (Sweden)
Julia V. Perederiy
2013-02-01
Full Text Available The adult brain is in a continuous state of remodeling. This is nowhere more true than in the dentate gyrus, where competing forces such as neurodegeneration and neurogenesis dynamically modify neuronal connectivity, and can occur simultaneously. This plasticity of the adult nervous system is particularly important in the context of traumatic brain injury or deafferentation. In this review, we summarize a classic injury model, lesioning of the perforant path, which removes the main extrahippocampal input to the dentate gyrus. Early studies revealed that in response to deafferentation, axons of remaining fiber systems and dendrites of mature granule cells undergo lamina-specific changes, providing one of the first examples of structural plasticity in the adult brain. Given the increasing role of adult-generated new neurons in the function of the dentate gyrus, we also compare the response of newborn and mature granule cells following lesioning of the perforant path. These studies provide insights not only to plasticity in the dentate gyrus, but also to the response of neural circuits to brain injury.
Vispoel, Walter P; Morris, Carrie A; Kilinc, Murat
2018-03-01
Although widely recognized as a comprehensive framework for representing score reliability, generalizability theory (G-theory), despite its potential benefits, has been used sparingly in reporting of results for measures of individual differences. In this article, we highlight many valuable ways that G-theory can be used to quantify, evaluate, and improve psychometric properties of scores. Our illustrations encompass assessment of overall reliability, percentages of score variation accounted for by individual sources of measurement error, dependability of cut-scores for decision making, estimation of reliability and dependability for changes made to measurement procedures, disattenuation of validity coefficients for measurement error, and linkages of G-theory with classical test theory and structural equation modeling. We also identify computer packages for performing G-theory analyses, most of which can be obtained free of charge, and describe how they compare with regard to data input requirements, ease of use, complexity of designs supported, and output produced. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
International Nuclear Information System (INIS)
Recami, E.
1984-01-01
A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author) [pt
Graphics of (X,Y) spectrum for microcomputer; Graficado de espectro (X,Y) para microcomputadora
Energy Technology Data Exchange (ETDEWEB)
Macias B, L.R
1991-08-15
When carrying out diffraction works is frequently required to visualize the spectra of the data obtained in order to analyzing them. The design for the obtaining of data in the neutron diffractometer by means of the microcomputer allows to store them in a file by means of the one which transferring to the CYBER system so that by means of its utilities the mentioned spectrum is observed in a graph. In diffraction works, it is sought to study crystalline materials by means of the execution of the Bragg law by that the mounted sample on the diffractometer is subjected to a scanning of the sample with a radiation of a well-known wavelength and this way varying the angles, the corresponding interplanar distances are determined. The main objective of this work, is starting of a data set generated by the diffractometer, to generate the graph of the corresponding (X,Y) spectra in visual form in the screen of a microcomputer and if it is required, to obtain the graph in printed form by means of the same computer program for microcomputer. (Author)
International Nuclear Information System (INIS)
Fujiwara, Shigeyasu; Sakata, Fumihiko
2003-01-01
The quantum level fluctuation in various systems has been shown to be characterized by the random matrix theory, and to be related to a regular-to-chaos transition in classical system. We present a new qualitative analysis of quantum and classical fluctuation properties by exploiting correlation coefficients and variances. It is shown that the correlation coefficient of quantum level density is inversely proportional to the variance of consecutive phase-space point spacings on the Poincare section plane. (author)
Directory of Open Access Journals (Sweden)
Patricia Jumbo-Lucioni
2014-12-01
Full Text Available Classic galactosemia (CG is an autosomal recessive disorder resulting from loss of galactose-1-phosphate uridyltransferase (GALT, which catalyzes conversion of galactose-1-phosphate and uridine diphosphate (UDP-glucose to glucose-1-phosphate and UDP-galactose, immediately upstream of UDP–N-acetylgalactosamine and UDP–N-acetylglucosamine synthesis. These four UDP-sugars are essential donors for driving the synthesis of glycoproteins and glycolipids, which heavily decorate cell surfaces and extracellular spaces. In addition to acute, potentially lethal neonatal symptoms, maturing individuals with CG develop striking neurodevelopmental, motor and cognitive impairments. Previous studies suggest that neurological symptoms are associated with glycosylation defects, with CG recently being described as a congenital disorder of glycosylation (CDG, showing defects in both N- and O-linked glycans. Here, we characterize behavioral traits, synaptic development and glycosylated synaptomatrix formation in a GALT-deficient Drosophila disease model. Loss of Drosophila GALT (dGALT greatly impairs coordinated movement and results in structural overelaboration and architectural abnormalities at the neuromuscular junction (NMJ. Dietary galactose and mutation of galactokinase (dGALK or UDP-glucose dehydrogenase (sugarless genes are identified, respectively, as critical environmental and genetic modifiers of behavioral and cellular defects. Assaying the NMJ extracellular synaptomatrix with a broad panel of lectin probes reveals profound alterations in dGALT mutants, including depletion of galactosyl, N-acetylgalactosamine and fucosylated horseradish peroxidase (HRP moieties, which are differentially corrected by dGALK co-removal and sugarless overexpression. Synaptogenesis relies on trans-synaptic signals modulated by this synaptomatrix carbohydrate environment, and dGALT-null NMJs display striking changes in heparan sulfate proteoglycan (HSPG co-receptor and Wnt
International Nuclear Information System (INIS)
Angeli, Istvan
1990-01-01
The dependence of total neutron cross section on mass number can be calculated by the black nucleus formula, according to the optical model. The fine structure of mass number dependence is studied, and a correction factor formula is given on the basis of a semi-classical optical model. Yielding results in good agreement with experimental data. In addition to the mass number dependence, the neutron-energy dependence can also be calculated using this model. (K.A.)
Etiological Diagnosis of Undervirilized Male / XY Disorder of Sex Development
International Nuclear Information System (INIS)
Atta, I.; Ibrahim, M.; Parkash, A.; Lone, S. W.; Khan, Y. N.; Raza, J.
2014-01-01
Objective: To do clinical, hormonal and chromosomal analysis in undervirilized male / XY disorder of sex development and to make presumptive etiological diagnosis according to the new Disorder of Sex Development (DSD) classification system. Study Design: Case series. Place and Duration of Study: Endocrine Unit at National Institute of Child Health, Karachi, Pakistan, from January 2007 to December 2012. Methodology: Patients of suspected XY DSD / undervirilized male visiting endocrine clinic were enrolled in the study. Criteria suggested XY DSD include overt genital ambiguity, apparent female/male genitalia with inguinal/labial mass, apparent male genitalia with unilateral or bilateral non-palpable testes, micropenis and isolated hypospadias or with undescended testis. The older children who had delayed puberty were also evaluated with respect to DSD. As a part of evaluation of XY DSD, abdominopelvic ultrasound, karyotype, hormone measurement (testosterone, FSH, LH), FISH analysis with SRY probing, genitogram, laparoscopy, gonadal biopsy and HCG stimulation test were performed. Frequencies and percentages applied on categorical data whereas mean, median, standard deviation were calculated for continuous data. Results: A total of 187 patients met the criteria of XY DSD. Age ranged from 1 month to 15 years, 55 (29.4%) presented in infancy, 104 (55.6%) between 1 and 10 years and 28 (15%) older than 10 years. Twenty five (13.4%) were raised as female and 162 as (86.6%) male. The main complaints were ambiguous genitalia, unilateral cryptorchidism, bilateral cryptorchidism, micropenis, delayed puberty, hypospadias, female like genitalia with gonads, inguinal mass. The karyotype was 46 XY in 183 (97.9%), 46 XX in 2 (1.1%), 47 XXY in 1 (0.5%), 45 X/46 XY in 1 (0.5%) patient. HCG stimulation test showed low testosterone response in 43 (23 %), high testosterone response in 62 (33.2%), partial testosterone response in 32 (17.1%) and normal testosterone response in 50 (26
PAAR, [No Value; VORKAPIC, D; DIERPERINK, AEL
1992-01-01
We study the fluctuation properties of 0+ levels in rotational nuclei using the framework of SU(3) dynamical symmetry of the interacting boson model. Computations of Poincare sections for SU(3) dynamical symmetry and its breaking confirm the expected relation between dynamical symmetry and classical
Killing scalar of non-linear σ-model on G/H realizing the classical exchange algebra
International Nuclear Information System (INIS)
Aoyama, Shogo
2014-01-01
The Poisson brackets for non-linear σ-models on G/H are set up on the light-like plane. A quantity which transforms irreducibly by the Killing vectors, called Killing scalar, is constructed in an arbitrary representation of G. It is shown to satisfy the classical exchange algebra
Durbin, J.; Koopman, S.J.M.
1998-01-01
The analysis of non-Gaussian time series using state space models is considered from both classical and Bayesian perspectives. The treatment in both cases is based on simulation using importance sampling and antithetic variables; Monte Carlo Markov chain methods are not employed. Non-Gaussian
Three-dimensional classical-ensemble modeling of non-sequential double ionization
International Nuclear Information System (INIS)
Haan, S.L.; Breen, L.; Tannor, D.; Panfili, R.; Ho, Phay J.; Eberly, J.H.
2005-01-01
Full text: We have been using 1d ensembles of classical two-electron atoms to simulate helium atoms that are exposed to pulses of intense laser radiation. In this talk we discuss the challenges in setting up a 3d classical ensemble that can mimic the quantum ground state of helium. We then report studies in which each one of 500,000 two-electron trajectories is followed in 3d through a ten-cycle (25 fs) 780 nm laser pulse. We examine double-ionization yield for various intensities, finding the familiar knee structure. We consider the momentum spread of outcoming electrons in directions both parallel and perpendicular to the direction of laser polarization, and find results that are consistent with experiment. We examine individual trajectories and recollision processes that lead to double ionization, considering the best phases of the laser cycle for recollision events and looking at the possible time delay between recollision and emergence. We consider also the number of recollision events, and find that multiple recollisions are common in the classical ensemble. We investigate which collisional processes lead to various final electron momenta. We conclude with comments regarding the ability of classical mechanics to describe non-sequential double ionization, and a quick summary of similarities and differences between 1d and 3d classical double ionization using energy-trajectory comparisons. Refs. 3 (author)
Three-stage classical molecular dynamics model for simulation of heavy-ion fusion
Directory of Open Access Journals (Sweden)
Godre Subodh S.
2015-01-01
Full Text Available A three-stage Classical Molecular Dynamics (3S-CMD approach for heavy-ion fusion is developed. In this approach the Classical Rigid-Body Dynamics simulation for heavy-ion collision involving light deformed nucleus is initiated on their Rutherford trajectories at very large initial separation. Collision simulation is then followed by relaxation of the rigid-body constrains for one or both the colliding nuclei at distances close to the barrier when the trajectories of all the nucleons are obtained in a Classical Molecular Dynamics approach. This 3S-CMD approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but also the internal vibrational excitations of one or both the nuclei at distances close to the barrier. The results of the dynamical simulation for 24Mg+208Pb collision show significant modification of the fusion barrier and calculated fusion cross sections due to internal excitations.
International Nuclear Information System (INIS)
Hales, R.; Waalkens, H.
2009-01-01
We study the quantum transport through entropic barriers induced by hardwall constrictions of hyperboloidal shape in two and three spatial dimensions. Using the separability of the Schroedinger equation and the classical equations of motion for these geometries, we study in detail the quantum transmission probabilities and the associated quantum resonances, and relate them to the classical phase structures which govern the transport through the constrictions. These classical phase structures are compared to the analogous structures which, as has been shown only recently, govern reaction type dynamics in smooth systems. Although the systems studied in this paper are special due their separability they can be taken as a guide to study entropic barriers resulting from constriction geometries that lead to non-separable dynamics.
International Nuclear Information System (INIS)
Fujiwara, Shigeyasu; Sakata, Fumihiko
2003-01-01
In many quantum systems, random matrix theory has been used to characterize quantum level fluctuations, which is known to be a quantum correspondent to a regular-to-chaos transition in classical systems. We present a new qualitative analysis of quantum and classical fluctuation properties by exploiting correlation coefficients and variances. It is shown that the correlation coefficient of the quantum level density is roughly inversely proportional relation to the variance of consecutive phase-space point spacings on the Poincare section plane. (author)
Exponentially long Equilibration times in a 1-D Collisional Model of a classical gas
DEFF Research Database (Denmark)
Hjorth, Poul; Benettin, G.
1999-01-01
to the specific heat. Hence, the observed `freezing out' of the vibrational degrees of freedom could in principle be explained in terms of classical mechanics. We discuss the phenomenon analytically, on the basis of an approximation introduced by Landau and Teller (1936) for a related phenomenon, and estimate...
Kohli, Nidhi; Koran, Jennifer; Henn, Lisa
2015-01-01
There are well-defined theoretical differences between the classical test theory (CTT) and item response theory (IRT) frameworks. It is understood that in the CTT framework, person and item statistics are test- and sample-dependent. This is not the perception with IRT. For this reason, the IRT framework is considered to be theoretically superior…
TNOs are Cool: Thermophysical modeling of a sample of 20 classical KBOs using Herschel/PACS
Vilenius, E.; Müller, T.; Pal, A.; Santos-Sanz, P.; Rengel, M.; Hartogh, P.; Protopapa, S.; Mueller, M.; Mommert, M.; Stansberry, J.; Lellouch, E.; Böhnhardt, H.; Ortiz, J. L.; Thirouin, A.; Henry, F.; Delsanti, A.; Fornasier, S.; Hestroffer, D.; Dotto, E.
2011-01-01
We determine the sizes and albedos of 20 classical Kuiper belt objects. Our observations with the PACS instrument on-board Herschel Space Observatory cover the wavelength range where the thermal emission from trans-Neptunian objects has its maximum. We use a consistent method for data reduction and
International Nuclear Information System (INIS)
Miller, W.H.; Hase, W.L.; Darling, C.L.
1989-01-01
A simple model is proposed for correcting problems with zero point energy in classical trajectory simulations of dynamical processes in polyatomic molecules. The ''problems'' referred to are that classical mechanics allows the vibrational energy in a mode to decrease below its quantum zero point value, and since the total energy is conserved classically this can allow too much energy to pool in other modes. The proposed model introduces hard sphere-like terms in action--angle variables that prevent the vibrational energy in any mode from falling below its zero point value. The algorithm which results is quite simple in terms of the cartesian normal modes of the system: if the energy in a mode k, say, decreases below its zero point value at time t, then at this time the momentum P k for that mode has its sign changed, and the trajectory continues. This is essentially a time reversal for mode k (only exclamation point), and it conserves the total energy of the system. One can think of the model as supplying impulsive ''quantum kicks'' to a mode whose energy attempts to fall below its zero point value, a kind of ''Planck demon'' analogous to a Brownian-like random force. The model is illustrated by application to a model of CH overtone relaxation
Properties of the matrix A- XY
Steerneman, A.G.M.; van Perlo-ten Kleij, F.; Wong, A.
2002-01-01
As a management problem the identification of stakeholders is not easily solved. It comprises a modelling and a normative issue, which need to be solved in connection with each other. In stakeholder literature knowledge can be found, e.g. on various stakeholder categorizations, that could be useful
Benacquista, Matthew J
2018-01-01
This textbook provides an introduction to classical mechanics at a level intermediate between the typical undergraduate and advanced graduate level. This text describes the background and tools for use in the fields of modern physics, such as quantum mechanics, astrophysics, particle physics, and relativity. Students who have had basic undergraduate classical mechanics or who have a good understanding of the mathematical methods of physics will benefit from this book.
International Nuclear Information System (INIS)
Martin, L.
1987-01-01
Existing coastal sedimentation models have not properly incorporated the fundamental role of Holocene sea-level history in the development of modern coastal regions. For example the classical work by COLEMAN and WRIGHT (1975), although analyzing the influence of as many as 400 parameters on the geometry of deltaic sand bodies, did not address the effects of Holocene sea-level oscillations. Previous work on the central portion of the Brazilian coastline indicated that the relative construction of the coastal plains. Detailed mapping and radiocarbon dating have allowed us to establish the different phases involved in the depositional history of the plain situated at the Paraiba do Sul river mouth. This history is not in keeping with the classical model of wave dominated delta. (author)
Transport of particles by surface waves: a modification of the classical bouncer model
International Nuclear Information System (INIS)
Ragulskis, M; Sanjuan, M A F
2008-01-01
We consider a ball under the influence of gravity on a platform. A propagating surface wave travels on the surface of the platform, while the platform remains motionless. This is a modification of the classical bouncing ball problem and describes the transport of particles by surface waves. Phase and velocity maps cannot be expressed in an explicit form owing to implicit formulations, and no formal analytical analysis is possible. Numerical analysis shows that the transition to chaos is produced via a period doubling route, which is a common property for classical bouncers. The bouncing process can be sensitive to the initial conditions, which can build the ground for control techniques that can dramatically increase the effectiveness of particle transport in practical applications
Witte, E.H.
2002-01-01
This paper separates empirical research on ethics from classical research on morality and relates it to other central questions of social psychology and sociology, e.g., values, culture, justice, attribution. In addition, reference is made to some founding studies of ethical research and its historical development. Based on this line of tradition the development of prescriptive attribution research is introduced, which concentrates on the justification of actions by weighting the importance o...
Critical behavior in a random field classical Heisenberg model for amorphous systems
International Nuclear Information System (INIS)
Albuquerque, Douglas F. de; Alves, Sandro Roberto L.; Arruda, Alberto S. de
2005-01-01
By using the differential operator technique and the effective field theory scheme, the critical behavior of amorphous classical Heisenberg ferromagnet of spin-1/2 in a random field is studied. The phase diagram in the T-H and T-α planes on a simple cubic lattice for a cluster with two spins is obtained. Tricritical points, reentrant phenomena and influence of the random field and amorphization on the transition temperature are discussed
Semi-classical precompound decay models for heavy ion reactions of 10-100 MeV/nucleon
International Nuclear Information System (INIS)
Blann, M.
1986-01-01
The hybrid and Boltzmann master equation, which predict heavy ion precompound decay phenomena, are investigated. These are both semi-classical approaches. The physical concepts of these two models are discussed, and their numerical formulations are summarized. Their success in reproducing experimentally measured (HI,n) spectra and in estimating limits on beam momentum transfer due to the precompound nucleon emission cascade are summarized. Results of calculations for subthreshold pion production are presented and compared with experimental yields. 19 refs., 5 figs
Mohammad M M Abu Omar; Khairul Anuar Abdullah
2015-01-01
Management information system (MIS) is used to solve management problems in the practical life, the designing and building of the management information systems is done by using one of the systems development methodologies. Classical approach is one of these methodologies which still suffer from some critical problems when it is used in designing and building the management information systems, it consumes more time and cost during its life cycle. This paper develops a new integrated model to...
Thermal quantum coherence and correlation in the extended XY spin chain
Sha, Ya-Ting; Wang, Yue; Sun, Zheng-Hang; Hou, Xi-Wen
2018-05-01
Quantum coherence and correlation of thermal states in the extended XY spin chain are studied in terms of the recently proposed l1 norm, skew information, and Bures distance of geometry discord (BGD), respectively. The entanglement measured via concurrence is calculated for reference. A two-dimensional susceptibility is introduced to explore their capability in highlighting the critical lines associated with quantum phase transitions in the model. It is shown that the susceptibility of the skew information and BGD is a genuine indicator of quantum phase transitions, and characterizes the factorization. However, the l1 norm is trivial for the factorization. An explicit scaling law of BGD is captured at low temperature in the XY model. In contrast to the entanglement, quantum coherence reveals a kind of long-range nonclassical correlation. Moreover, the obvious relation among model parameters is extracted for the factorized line in the extended model. Those are instructive for the understanding of quantum coherence and correlation in the theory of quantum information, and quantum phase transitions and factorization in condensed-matter physics.
Baryon string model. II. Special solutions of classical three-string equations of motion
International Nuclear Information System (INIS)
Klimenko, S.V.; Kochin, V.N.; Plyushchai, M.S.; Pron'ko, G.P.
1986-01-01
The authors consider special solutions of the classical threestring equations of motion. The basic results needed for construction and analysis of the special solutions are examined. The authors consider very simple solutions in which the three-string node moves with the velocity of light. Singlemode solutions are studied. The graphical packet Atom is used to study and visualize the string dynamics. A new procedure was developed within the packet for graphical representation of many parameter functions. The distinctive feature of these procedures is the large class of functions (including explicit, implicit, and parametric functions) that can be represented by means of parametric, coordinate, and functional isolines
International Nuclear Information System (INIS)
Forger, M.; Mannheim Univ.; Laartz, J.; Schaeper, U.
1994-01-01
The recently derived current algrbra of classical non-linear sigma models on arbitrary Riemannian manifolds is extended to include the energy-momentum tensor. It is found that in two dimensions the energy-momentum tensor θ μv , the Noether current j μ associated with the global symmetry of the theory and the composite field j appearing as the coefficient of the Schwinger term in the current algebra, together with the derivatives of j μ and j, generte a closed algebra. The subalgebra generated by the light-cone components of the energy-momentum tensor consists of two commuting copies of the Virasoro algebra, with central charge c=0, reflecting the classical conformal invariance of the theory, but the current algebra part and the semidirect product structure are quite different from the usual Kac-Moody/Sugawara type contruction. (orig.)
International Nuclear Information System (INIS)
Baran, V.
1995-01-01
The thesis has three main parts. In the first part a fourth order quadrupole boson Hamiltonian is semi classically treated through a time-dependent variational principle (TDVP), the variational states being of coherent type for the boson operators b 20 + and 1/√2 (b 22 + + b 2-2 + ). The static ground state is studied as a function of the parameters involved in the model Hamiltonian. Linearizing the classical equations of motion one obtains the RPA approach for the many boson correlations. There are two RPA roots which describe the beta and gamma vibrations, respectively. Several quantization procedures for both small and large amplitude regimes are discussed. The quantized Hamiltonians are compared with some others which were previously obtained by using different methods. A special attention is paid to the quantal states associated to some of the peaks appearing in the Fourier spectrum of the classical action density. Some of the quantal states exhibit a pronounced anharmonic structure. Therefore the procedure may be used for a unified description of small and large amplitude regimes. In the next part the semiclassical foundations of the Coherent State Model are established using the formalism elaborated in the previous section. In the third part the semiclassical treatment through a time-dependent variational principle (TDVP) of the fourth order quadrupole boson Hamiltonian H is continued. In the parameter space of H there are regions, conventionally called as 'nuclear phases', determining specific static properties. Several ground states corresponding to different equilibrium shapes are found as static solutions of classical equations of motion. The non-integrable system may follow a chaotic trajectory. The mechanism of destroying the tori bearing regular orbits and the onset of chaos may depend on nuclear phase. The regular and chaotic motions are analyzed in terms of Poincare sections and Lyapunov largest exponent. Specific features of various phases are
International Nuclear Information System (INIS)
Chen Changxin; Zhang Wei; Zhao Bo; Zhang Yafei
2009-01-01
An efficient semi-classical numerical modeling approach has been developed to simulate the coaxial Schottky-barrier carbon nanotube field-effect transistor (SB-CNTFET). In the modeling, the electrostatic potential of the CNT is obtained by self-consistently solving the analytic expression of CNT carrier distribution and the cylindrical Poisson equation, which significantly enhances the computational efficiency and simultaneously present a result in good agreement to that obtained from the non-equilibrium Green's function (NEGF) formalism based on the first principle. With this method, the effects of the CNT diameter, power supply voltage, thickness and dielectric constant of gate insulator on the device performance are investigated.
Local hidden variable modelling, classicality, quantum separability and the original Bell inequality
International Nuclear Information System (INIS)
Loubenets, Elena R
2011-01-01
We introduce a general condition sufficient for the validity of the original Bell inequality (1964) in a local hidden variable (LHV) frame. This condition can be checked experimentally and incorporates only as a particular case the assumption on perfect correlations or anticorrelations usually argued for this inequality in the literature. Specifying this general condition for a quantum bipartite case, we introduce the whole class of bipartite quantum states, separable and nonseparable, that (i) admit an LHV description under any bipartite measurements with two settings per site; (ii) do not necessarily exhibit perfect correlations and may even have a negative correlation function if the same quantum observable is measured at both sites, but (iii) satisfy the 'perfect correlation' version of the original Bell inequality for any three bounded quantum observables A 1 , A 2 = B 1 , B 2 at sites 'A' and 'B', respectively. Analysing the validity of this general LHV condition under classical and quantum correlation scenarios with the same physical context, we stress that, unlike the Clauser-Horne-Shimony-Holt inequality, the original Bell inequality distinguishes between classicality and quantum separability.
Fermions from classical statistics
International Nuclear Information System (INIS)
Wetterich, C.
2010-01-01
We describe fermions in terms of a classical statistical ensemble. The states τ of this ensemble are characterized by a sequence of values one or zero or a corresponding set of two-level observables. Every classical probability distribution can be associated to a quantum state for fermions. If the time evolution of the classical probabilities p τ amounts to a rotation of the wave function q τ (t)=±√(p τ (t)), we infer the unitary time evolution of a quantum system of fermions according to a Schroedinger equation. We establish how such classical statistical ensembles can be mapped to Grassmann functional integrals. Quantum field theories for fermions arise for a suitable time evolution of classical probabilities for generalized Ising models.
SILENE and TDT: A code for collision probability calculations in XY geometries
International Nuclear Information System (INIS)
Sanchez, R.; Stankovski, Z.
1993-01-01
Collision probability methods are routinely used for cell and assembly multigroup transport calculations in core design tasks. Collision probability methods use a specialized tracking routine to compute neutron trajectories within a given geometric object. These trajectories are then used to generate the appropriate collision matrices in as many groups as required. Traditional tracking routines are based on open-quotes globalclose quotes geometric descriptions (such as regular meshes) and are not able to cope with the geometric detail required in actual core calculations. Therefore, users have to modify their geometry in order to match the geometric model accepted by the tracking routine, introducing thus a modeling error whose evaluation requires the use of a open-quotes referenceclose quotes method. Recently, an effort has been made to develop more flexible tracking routines either by directly adopting tracking Monte Carlo techniques or by coding of complicated geometries. Among these, the SILENE and TDT package is being developed at the Commissariat a l' Energie Atomique to provide routine as well as reference calculations in arbitrarily shaped XY geometries. This package combines a direct graphical acquisition system (SILENE) together with a node-based collision probability code for XY geometries (TDT)
Kraus, Wayne A; Wagner, Albert F
1986-04-01
A triatomic classical trajectory code has been modified by extensive vectorization of the algorithms to achieve much improved performance on an FPS 164 attached processor. Extensive timings on both the FPS 164 and a VAX 11/780 with floating point accelerator are presented as a function of the number of trajectories simultaneously run. The timing tests involve a potential energy surface of the LEPS variety and trajectories with 1000 time steps. The results indicate that vectorization results in timing improvements on both the VAX and the FPS. For larger numbers of trajectories run simultaneously, up to a factor of 25 improvement in speed occurs between VAX and FPS vectorized code. Copyright © 1986 John Wiley & Sons, Inc.
Scale-lengths and instabilities in magnetized classical and relativistic plasma fluid models
International Nuclear Information System (INIS)
Diver, D A; Laing, E W
2015-01-01
The validity of the traditional plasma continuum is predicated on a hierarchy of scale-lengths, with the Debye length being considered to be effectively unresolvable in the continuum limit. In this article, we revisit the strong magnetic field case in which the Larmor radius is comparable or smaller than the Debye length in the classical plasma, and also for a relativistic plasma. Fresh insight into the validity of the continuum assumption in each case is offered, including a fluid limit on the Alfvén speed that may impose restrictions on the validity of magnetohydrodynamics (MHD) in some solar and fusion contexts. Additional implications concerning the role of the firehose instability are also explored. (paper)
Survival of classical models in Bartolomeo Facio's description of battles. Some considerations
Directory of Open Access Journals (Sweden)
Giancarlo Abbamonte
2011-04-01
Full Text Available Facio's work, entitled Rerum gestarum Alphonsi regis libri decem, mainly describes the conquest of the Kingdom of Naples by the Aragonese king Alphonso the Magnanimous. However, the historical events are not only narrated on the basis of contemporary documents, but they are also shaped according to the various patterns provided by classical authors. Thus, in Alphonso's speech to the troops we can find a direct quotation of Cicero, or in Facio's preface there is a blend of arguments taken from Livy's praefatio and Cicero's well-known opinion on Caesar's style. Finally, in the episode on the siege of Gerba and the return of the fleet to Trapani, Facio depicts Alphonso's Tunisian enemies as if they were old Carthaginians, whilst the forced stop of the Aragonese fleet in Trapani allows the historian to establish a wisely disguised comparison with Aeneas' stop at Trapani/Drepanum in the 5th book of the Aeneid.
On a model of a classical relativistic particle of constant and universal mass and spin
Energy Technology Data Exchange (ETDEWEB)
Kassandrov, V; Markova, N [Institute of Gravitation and Cosmology, Russian Peoples' Friendship University, Moscow (Russian Federation); Schaefer, G; Wipf, A [Institute of Theoretical Physics, Friedrich-Schiller University, Jena (Germany)
2009-08-07
The deformation of the classical action for a point-like particle recently suggested by Staruszkiewicz gives rise to a spin structure which constrains the values of the invariant mass and the invariant spin to be the same for any solution of the equations of motion. Both these Casimir invariants, the square of the 4-momentum vector and the square of the Pauli-Lubanski vector, are shown to preserve the same fixed values also in the presence of an arbitrary external electromagnetic field. In the 'free' case, in the centre-of-mass reference frame, the particle moves along a circle of fixed radius with arbitrary varying frequency. In a homogeneous magnetic field, a number of rotational 'states' are possible with frequencies slightly different from the cyclotron frequency, and 'phase-like' transitions with spin flops occur at some critical values of the particle's 3-momentum.
Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties.
Hosoya, Haruo
2012-08-01
We study the interplay of Bayesian inference and natural image learning in a hierarchical vision system, in relation to the response properties of early visual cortex. We particularly focus on a Bayesian network with multinomial variables that can represent discrete feature spaces similar to hypercolumns combining minicolumns, enforce sparsity of activation to learn efficient representations, and explain divisive normalization. We demonstrate that maximal-likelihood learning using sampling-based Bayesian inference gives rise to classical receptive field properties similar to V1 simple cells and V2 cells, while inference performed on the trained network yields nonclassical context-dependent response properties such as cross-orientation suppression and filling in. Comparison with known physiological properties reveals some qualitative and quantitative similarities.
A rare case report of 46XY mixed gonadal dysgenesis
Directory of Open Access Journals (Sweden)
Rakesh Arora
2013-01-01
Full Text Available A 16-year-old person, reared as female presented with complaints of genital ambiguity and primary amenorrhoea along with lack of secondary sexual characters, but without short stature and Turner′s stigmata. She was taking steroids after being misdiagnosed as congenital adrenal hyperplasia (CAH. Karyotype analysis revealed 46XY karyotype. There was no evidence of hypocortisolemia (cortisol 9.08 μg/dl, adrenocorticotropic hormone [ACTH] 82.5 pg/ml or elevated level of 17-OH-progesterone (0.16 ng/ml. Pooled luteinizing hormone (LH was 11.79 mIU/ml and follicle-stimulating hormone (FSH was 66.37 mIU/ml. Serum estradiol level was 25 pg/ml (21-251. Basal and 72 h post beta-human chorionic gonadotropin (hCG levels of androstenedione and testosterone levels were done (basal testosterone of 652 ng/dl and basal androstenedione of 1.17 ng/ml; 72 h post hCG testosterone of 896 ng/dl and androstenedione of 1.34 ng/ml. Magnetic resonance imaging (MRI pelvis (with ultrasonogrphy [USG] correlation revealed uterus didelphys with obstructed right moiety and bilateral ovarian-like structures. Right sided gonads and adjacent tubal structures were visualized laparoscopically and removed. Left sided gonads were not visualized and Mullerian remnants were adhered to sigmoid colon. Histopathological examination revealed presence of testicular tissue showing atrophic seminiferous tubules with hyperplasia of Leydig cells. No ovarian tissue was seen. Based on these results a diagnosis of 46XY mixed gonadal dysgenesis (MGD was made, which is rare and is difficult to distinguish from 46XY ovotesticular disorder of sexual differentiation (OT-DSD. The patient was managed with a multidisciplinary approach and fertility issues discussed with the patient′s caregivers.
Energy Technology Data Exchange (ETDEWEB)
Caplan, Matthew E.; Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)
2014-04-21
We develop an analytical model for the thermal boundary conductance between a solid and a liquid. By infusing recent developments in the phonon theory of liquid thermodynamics with diffuse mismatch theory, we derive a closed form model that can predict the effects of wetting on the thermal boundary conductance across an interface between a solid and a classical liquid. We account for the complete wetting (hydrophilicity), or lack thereof (hydrophobicity), of the liquid to the solid by considering varying contributions of transverse mode interactions between the solid and liquid interfacial layers; this transverse coupling relationship is determined with local density of states calculations from molecular dynamics simulations between Lennard-Jones solids and a liquids with different interfacial interaction energies. We present example calculations for the thermal boundary conductance between both hydrophobic and hydrophilic interfaces of Al/water and Au/water, which show excellent agreement with measured values reported by Ge et al. [Z. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006)]. Our model does not require any fitting parameters and is appropriate to model heat flow across any planar interface between a solid and a classical liquid.
Photoelectric elements of the eclipsing binary XY Ceti
International Nuclear Information System (INIS)
Srivastava, R.K.; Padalia, T.D.
1975-01-01
The absolute elements of the system XY Ceti have been obtained on the basis of the spectroscopic elements given by Popper (1971) and the photoelectric elements derived previously. The colours of the components have been obtained. Both components are found to lie fairly on the Main Sequence. The primary component of the system, however, is slightly more evolved as it shows a tendency to drift away from the Main Sequence. The spectral classes now assigned are A5V (primary) and A7V (secondary). The values of Roche constants indicate that the system is a detached one. (Auth.)
Dual mechanism of chromatin remodeling in the common shrew sex trivalent (XY 1Y 2
Directory of Open Access Journals (Sweden)
Sergey N. Matveevsky
2017-11-01
Full Text Available Here we focus on the XY1Y2 condition in male common shrew Sorex araneus Linnaeus, 1758, applying electron microscopy and immunocytochemistry for a comprehensive analysis of structure, synapsis and behaviour of the sex trivalent in pachytene spermatocytes. The pachytene sex trivalent consists of three distinct parts: short and long synaptic SC fragments (between the X and Y1 and between the X and Y2, respectively and a long asynaptic region of the X in-between. Chromatin inactivation was revealed in the XY1 synaptic region, the asynaptic region of the X and a very small asynaptic part of the Y2. This inactive part of the sex trivalent, that we named the ‘head’, forms a typical sex body and is located at the periphery of the meiotic nucleus at mid pachytene. The second part or ‘tail’, a long region of synapsis between the X and Y2 chromosomes, is directed from the periphery into the nucleus. Based on the distribution patterns of four proteins involved in chromatin inactivation, we propose a model of meiotic silencing in shrew sex chromosomes. Thus, we conclude that pachytene sex chromosomes are structurally and functionally two different chromatin domains with specific nuclear topology: the peripheral inactivated ‘true’ sex chromosome regions (part of the X and the Y1 and more centrally located transcriptionally active autosomal segments (part of the X and the Y2.
Smectic-like phase for modulated XY spins in two dimensions
International Nuclear Information System (INIS)
Benakli, M.; Gabay, M.; Saslow, W.M.
1997-09-01
The row model for frustrated XY spins on a triangular lattice in 2D is used to study incommensurate (IC) and commensurate (C) phases, in the regime where a (C)-(IC) transition may be observed. Thermodynamic quantities for the (IC) state are computed analytically by means of the NSCHA, a new variational method appropriate for frustrated systems. On the commensurate side of the (C)-(IC) boundary, NSCHA predicts an instability of the (C) phase suggesting that this state is in fact spatially inhomogeneous. Detailed Monte-Carlo (MC) simulations using fluctuating boundary conditions and specific histogram techniques show that in this regime the configuration consists of stripes of (C) and (IC) phases alternating in space. This state, which resembles the smectic-A phase of liquid crystals, exists because of the strong coupling between chiral and phase (spin angle) variables. As a result, the transition between the (IC) and the (C) states can only occur at zero temperature T so that the Lifshitz point is at T = 0 for modulated XY spins in 2D. (author)
A novel hybrid actuation mechanism based XY nanopositioning stage with totally decoupled kinematics
Zhu, Wu-Le; Zhu, Zhiwei; Guo, Ping; Ju, Bing-Feng
2018-01-01
This paper reports the design, analysis and testing of a parallel two degree-of-freedom piezo-actuated compliant stage for XY nanopositioning by introducing an innovative hybrid actuation mechanism. It mainly features the combination of two Scott-Russell and a half-bridge mechanisms for double-stage displacement amplification as well as moving direction modulation. By adopting the leaf-type double parallelogram (LTDP) structures at both input and output ends of the hybrid mechanism, the lateral stiffness and dynamic characteristics are significantly improved while the parasitic motions are greatly eliminated. The XY nanopositioning stage is constructed with two orthogonally configured hybrid mechanisms along with the LTDP mechanisms for totally decoupled kinematics at both input and output ends. An analytical model was established to describe the complete elastic deformation behavior of the stage, with further verification through the finite element simulation. Finally, experiments were implemented to comprehensively evaluate both the static and dynamic performances of the proposed stage. Closed-loop control of the piezoelectric actuators (PEA) by integrating strain gauges was also conducted to effectively eliminate the nonlinear hysteresis of the stage.
Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with Z2n Grading
International Nuclear Information System (INIS)
Ke San-Min; Li Xin-Ying; Wang Chun; Yue Rui-Hong
2011-01-01
The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with Z 2n grading is derived using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution. When n = 2, our results coincide with the results given by Magro for the pure spinor description of AdS 5 × S 5 string theory (when the ghost terms are omitted). (the physics of elementary particles and fields)
Espejo, Elio; Winkler, Michael
2018-04-01
The interplay of chemotaxis, convection and reaction terms is studied in the particular framework of a refined model for coral broadcast spawning, consisting of three equations describing the population densities of unfertilized sperms and eggs and the concentration of a chemical released by the latter, coupled to the incompressible Navier-Stokes equations. Under mild assumptions on the initial data, global existence of classical solutions to an associated initial-boundary value problem in bounded planar domains is established. Moreover, all these solutions are shown to approach a spatially homogeneous equilibrium in the large time limit.
International Nuclear Information System (INIS)
Zhang Jingshang
1990-04-01
A semi-classical model of multi-step direct and compound nuclear reactions has been proposed to describe the angular distributions of light particles emitted in reaction processes induced by nucleons with energies of several tens of MeV. The exact closed solution for the time-dependent master equation of the exciton model is applied. Based on the Fermi gas model, the scattering kernel for two-nucleon collisions includes the influence of the Fermi motion and the Pauli exclusion principle, which give a significant improvement in the description of the rise of the backward distributions. The angle-energy correlation for the first few steps of the collision process (multi-step direct process) yields further improvements in the description of the angular distribution. The pick-up mechanism is employed to describe the composite particle emission. This reasonable physical picture reproduces the experimental data of the energy spectra of composite particles satisfactorily. The angular distribution of the emitted composite particles is determined by an angular factor in terms of the momentum conservation of the nucleons forming the composite cluster. The generalized master equation is employed for the multi-step compound process. Thus a classical approach has been established to calculate the double differential cross sections for all kinds of particles emitted in multi-step nuclear reaction processes. (author). 19 refs, 6 figs, 1 tab
Cowled, Brendan D; Garner, M Graeme; Negus, Katherine; Ward, Michael P
2012-01-16
Disease modelling is one approach for providing new insights into wildlife disease epidemiology. This paper describes a spatio-temporal, stochastic, susceptible- exposed-infected-recovered process model that simulates the potential spread of classical swine fever through a documented, large and free living wild pig population following a simulated incursion. The study area (300 000 km2) was in northern Australia. Published data on wild pig ecology from Australia, and international Classical Swine Fever data was used to parameterise the model. Sensitivity analyses revealed that herd density (best estimate 1-3 pigs km-2), daily herd movement distances (best estimate approximately 1 km), probability of infection transmission between herds (best estimate 0.75) and disease related herd mortality (best estimate 42%) were highly influential on epidemic size but that extraordinary movements of pigs and the yearly home range size of a pig herd were not. CSF generally established (98% of simulations) following a single point introduction. CSF spread at approximately 9 km2 per day with low incidence rates (management in wildlife. An important finding was that it may only be necessary to cull or vaccinate relatively small proportions of a population to successfully contain and eradicate some wildlife disease epidemics.
Classical Trajectories and Quantum Spectra
Mielnik, Bogdan; Reyes, Marco A.
1996-01-01
A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.
Non-Gaussian statistics, classical field theory, and realizable Langevin models
International Nuclear Information System (INIS)
Krommes, J.A.
1995-11-01
The direct-interaction approximation (DIA) to the fourth-order statistic Z ∼ left-angle λψ 2 ) 2 right-angle, where λ is a specified operator and ψ is a random field, is discussed from several points of view distinct from that of Chen et al. [Phys. Fluids A 1, 1844 (1989)]. It is shown that the formula for Z DIA already appeared in the seminal work of Martin, Siggia, and Rose (Phys. Rev. A 8, 423 (1973)] on the functional approach to classical statistical dynamics. It does not follow from the original generalized Langevin equation (GLE) of Leith [J. Atmos. Sd. 28, 145 (1971)] and Kraichnan [J. Fluid Mech. 41, 189 (1970)] (frequently described as an amplitude representation for the DIA), in which the random forcing is realized by a particular superposition of products of random variables. The relationship of that GLE to renormalized field theories with non-Gaussian corrections (''spurious vertices'') is described. It is shown how to derive an improved representation, that realizes cumulants through O(ψ 4 ), by adding to the GLE a particular non-Gaussian correction. A Markovian approximation Z DIA M to Z DIA is derived. Both Z DIA and Z DIA M incorrectly predict a Gaussian kurtosis for the steady state of a solvable three-mode example
Local and omnibus goodness-of-fit tests in classical measurement error models
Ma, Yanyuan; Hart, Jeffrey D.; Janicki, Ryan; Carroll, Raymond J.
2010-01-01
We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal
Owens, Robert L; Edwards, Bradley A; Sands, Scott A; Butler, James P; Eckert, Danny J; White, David P; Malhotra, Atul; Wellman, Andrew
2014-04-15
The upper airway is often modeled as a classical Starling resistor, featuring a constant inspiratory airflow, or plateau, over a range of downstream pressures. However, airflow tracings from clinical sleep studies often show an initial peak before the plateau. To conform to the Starling model, the initial peak must be of small magnitude or dismissed as a transient. We developed a method to simulate fast or slow inspirations through the human upper airway, to test the hypothesis that this initial peak is a transient. Eight subjects [4 obstructive sleep apnea (OSA), 4 controls] slept in an "iron lung" and wore a nasal mask connected to a continuous/bilevel positive airway pressure machine. Downstream pressure was measured using an epiglottic catheter. During non-rapid eye movement (NREM) sleep, subjects were hyperventilated to produce a central apnea, then extrathoracic pressure was decreased slowly (∼2-4 s) or abruptly (resistor model, the upper airway exhibits marked NED in some subjects.
Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain
Directory of Open Access Journals (Sweden)
P.Hlushak
2005-01-01
Full Text Available One-dimensional quantum spin-1/2 XY models admit the rigorous analysis not only of their static properties (i.e. the thermodynamic quantities and the equal-time spin correlation functions but also of their dynamic properties (i.e. the different-time spin correlation functions, the dynamic susceptibilities, the dynamic structure factors. This becomes possible after exploiting the Jordan-Wigner transformation which reduces the spin model to a model of spinless noninteracting fermions. A number of dynamic quantities (e.g. related to transverse spin operator or dimer operator fluctuations are entirely determined by two-fermion excitations and can be examined in much detail.
Bezbaruah, Achintya N; Zhang, Tian C
2009-01-01
It has been long established that plants play major roles in a treatment wetland. However, the role of plants has not been incorporated into wetland models. This study tries to incorporate wetland plants into a biochemical oxygen demand (BOD) model so that the relative contributions of the aerobic and anaerobic processes to meeting BOD can be quantitatively determined. The classical dissolved oxygen (DO) deficit model has been modified to simulate the DO curve for a field subsurface flow constructed wetland (SFCW) treating municipal wastewater. Sensitivities of model parameters have been analyzed. Based on the model it is predicted that in the SFCW under study about 64% BOD are degraded through aerobic routes and 36% is degraded anaerobically. While not exhaustive, this preliminary work should serve as a pointer for further research in wetland model development and to determine the values of some of the parameters used in the modified DO deficit and associated BOD model. It should be noted that nitrogen cycle and effects of temperature have not been addressed in these models for simplicity of model formulation. This paper should be read with this caveat in mind.
CERN. Geneva; Franklin, M
2001-01-01
These will be a set of lectures on classic particle physics experiments, with emphasis on how the emasurements are made. I will discuss experiments made to measure the electric charge distribution of particles, to measure the symmetries of the weak decays, to measure the magnetic moment of the muon. As well as experiments performed which discovered new particles or resonances, like the tAU2and the J/Psi. The coverage will be general and should be understandable to someone knowing little particle physics.
Xiu-Xing, Zhang; Fu-Li, Li
2012-01-01
We study the classical correlation (CC) and quantum discord (QD) between two spin subgroups of the Lipkin-Meshkov-Glick (LMG) model in both binary and trinary decompositions of spins. In the case of bipartition, we find that the classical correlations and all the quantum correlations including the QD, the entanglement of formation (EoF) and the logarithmic negativity (LN) are divergent in the same singular behavior at the critical point of the LMG model. In the case of tripartition, however, ...
The classical r-matrix method for nonlinear sigma-model
Sevostyanov, Alexey
1995-01-01
The canonical Poisson structure of nonlinear sigma-model is presented as a Lie-Poisson r-matrix bracket on coadjoint orbits. It is shown that the Poisson structure of this model is determined by some `hidden singularities' of the Lax matrix.
2006-01-01
As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. This handbook explores the connection between nature-inspired and traditional computational paradigms. It presents computing paradigms and models based on natural phenomena.
INVESTIGATION INTO ACCOUNT OF A TIME VALUE OF MONEY IN CLASSICAL MULTITOPIC INVENTORY MODELS
Directory of Open Access Journals (Sweden)
Natalya A. Chernyaeva
2013-01-01
Full Text Available The article describes two types of models. The first is a traditional multitopic inventory model with constant demand and the second is a model based on the average cost of inventory in optimizing inventory management system. The authors taking into account the time value of money in the models study three possible schemes for the payment of costs: «prenumerando» (at the time of the general batch order delivery, «postnumerando» (at the time of the general next batch order delivery and the scheme of payment of costs in the mid-term.Maximization of the total intensity of revenue for outgoing and incoming cash flows occurring in the inventory management system that characterize the analyzed models was adopted as the criterion of optimization of inventory control strategy.
Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R
2014-02-18
Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.
Directory of Open Access Journals (Sweden)
A. Poltorak
2011-01-01
Full Text Available Abstract. Identification and studying of numerous functions of all genes of the human beings is one of the main objects of modern biological science. Due to high level of homology between mouse and human genomes the important role to reach above mentioned goal belongs to the mouse model which using in the classical genetics increase in connection with appearance of different inbred mouse lines. For instance, the differences in immune response to infectious pathogens in various mouse lines were used many times to determine immunologically competent genes. That is why the contribution of mouse model in understanding of the mechanisms of immune response to infectious pathogens is difficult to overestimate. In the current review some of the most successful and well known examples of mouse using in studies of anti-infectious response are described.
Age structure and capital dilution effects in neo-classical growth models.
Blanchet, D
1988-01-01
Economists often over estimate capital dilution effects when applying neoclassical growth models which use age structured population and depreciation of capital stock. This occurs because capital stock is improperly characterized. A standard model which assumes a constant depreciation of capital intimates that a population growth rate equal to a negative constant savings ratio is preferable to any higher growth rate. Growth rates which are lower than a negative constant savings ratio suggest an ever growing capital/labor ratio and an ever growing standard of living, even if people do not save. This is suggested because the natural reduction of the capital stock through depreciation is slower than the population decrease which is simply unrealistic. This model overlooks the fact that low or negative growth rates result in an ageing of the capital stock, and this ageing subsequently results in an increase of the overall rate of capital depreciation. In that overly simplistic model, depreciation was assumed independent of the age of the captial stock. Incorporating depreciation as a variable into a model allows a more symmetric treatment of capital. Using models with heterogenous capital, this article explores what occurs when more than 1 kind of capital good is involved in production and when these various captial goods have different lengths of life. Applying economic models, it also examines what occurs when the length of life of capital may vary. These variations correct the negative impact that population growth can have on per capital production and consumption.
Classical, Semi-classical and Quantum Noise
Poor, H; Scully, Marlan
2012-01-01
David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...
The high-temperature expansion of the classical Ising model with Sz2 term
Directory of Open Access Journals (Sweden)
M.T. Thomaz
2012-03-01
Full Text Available We derive the high-temperature expansion of the Helmholtz free energy up to order β17 of the one-dimensional spin-S Ising model, with single-ion anisotropy term, in the presence of a longitudinal magnetic field. We show that the values of some thermodynamical functions for the ferromagnetic models, in the presence of a weak magnetic field, are not small corrections to their values with h=0. This model with S=3 was applied by Kishine et al. [J.-i. Kishine et al., Phys. Rev. B, 2006, 74, 224419] to analyze experimental data of the single-chain magnet [Mn (saltmen]2 [Ni(pac2 (py2] (PF62 for T<40 K. We show that for T<35 K the thermodynamic functions of the large-spin limit model are poor approximations to their analogous spin-3 functions.
Classical Michaelis-Menten and system theory approach to modeling metabolite formation kinetics.
Popović, Jovan
2004-01-01
When single doses of drug are administered and kinetics are linear, techniques, which are based on the compartment approach and the linear system theory approach, in modeling the formation of the metabolite from the parent drug are proposed. Unlike the purpose-specific compartment approach, the methodical, conceptual and computational uniformity in modeling various linear biomedical systems is the dominant characteristic of the linear system approach technology. Saturation of the metabolic reaction results in nonlinear kinetics according to the Michaelis-Menten equation. The two compartment open model with Michaelis-Menten elimination kinetics is theorethicaly basic when single doses of drug are administered. To simulate data or to fit real data using this model, one must resort to numerical integration. A biomathematical model for multiple dosage regimen calculations of nonlinear metabolic systems in steady-state and a working example with phenytoin are presented. High correlation between phenytoin steady-state serum levels calculated from individual Km and Vmax values in the 15 adult epileptic outpatients and the observed levels at the third adjustment of phenytoin daily dose (r=0.961, p<0.01) were found.
Hygge, S
1976-06-01
Four groups with 16 observers each participated in a differential, vicarious conditioning experiment with skin conductance responses as the dependent variable. The information available to the observer about the model's unconditioned stimulus and response was varied in a 2 X 2 factorial design. Results clearly showed that information about the model's unconditioned stimulus (a high or low dB level) was not necessary for vicarious instigation, but that information about the unconditioned response (a high or low emotional aversiveness) was necessary. Data for conditioning of responses showed almost identical patterns to those for vicarious instigation. To explain the results, a distinction between factors necessary for the development and elicitation of vicariously instigated responses was introduced, and the effectiveness of information about the model's response on the elicitation of vicariously instigated responses was considered in terms of an expansion of Bandura's social learning theory.
On low rank classical groups in string theory, gauge theory and matrix models
International Nuclear Information System (INIS)
Intriligator, Ken; Kraus, Per; Ryzhov, Anton V.; Shigemori, Masaki; Vafa, Cumrun
2004-01-01
We consider N=1 supersymmetric U(N), SO(N), and Sp(N) gauge theories, with two-index tensor matter and added tree-level superpotential, for general breaking patterns of the gauge group. By considering the string theory realization and geometric transitions, we clarify when glueball superfields should be included and extremized, or rather set to zero; this issue arises for unbroken group factors of low rank. The string theory results, which are equivalent to those of the matrix model, refer to a particular UV completion of the gauge theory, which could differ from conventional gauge theory results by residual instanton effects. Often, however, these effects exhibit miraculous cancellations, and the string theory or matrix model results end up agreeing with standard gauge theory. In particular, these string theory considerations explain and remove some apparent discrepancies between gauge theories and matrix models in the literature
Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N
2018-02-13
Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.
Classical mechanics on the GL(n, R) group and Euler-Calogero-Sutherland model
International Nuclear Information System (INIS)
Khvedelidze, A.M.; Mladenov, D.M.
2002-01-01
Relations between free motion on the GL + (n, R) group manifold and the dynamics of an n-particle system with spin degrees of freedom on a line interacting with a pairwise 1/sinh 2 x 'potential' (Euler-Calogero-Sutherland model) are discussed within a Hamiltonian reduction. Two kinds of reductions of the degrees of freedom are considered: that which is due to continuous invariance and that which is due to discrete symmetry. It is shown that, upon projecting onto the corresponding invariant manifolds, the resulting Hamiltonian system represents the Euler-Calogero-Sutherland model in both cases
Development of x-y table for baby electron beam detection using dispose printer
International Nuclear Information System (INIS)
Leo Kwee Wah; Mohd Rizal Md Chulan; Muhamad Zahidee Taat; Abu Bakar Md Ghazali; Mohamad Nor Atan; Siti A'iasah Hashim
2005-01-01
This paper describes the development of X-Y table using the dispose printer. It consists the mechanical part and the control (Interfacing and software/programming) part description. As the result, the x-y table will be used to moves the electron beam detector for the baby electron beam machine. (Author)
Graphical Representation of Complex Solutions of the Quadratic Equation in the "xy" Plane
McDonald, Todd
2006-01-01
This paper presents a visual representation of complex solutions of quadratic equations in the xy plane. Rather than moving to the complex plane, students are able to experience a geometric interpretation of the solutions in the xy plane. I am also working on these types of representations with higher order polynomials with some success.
Detection of epistatic effects with logic regression and a classical linear regression model.
Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata
2014-02-01
To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.
DEFF Research Database (Denmark)
Engsted, Tom
1994-01-01
I tidligere studier af de klassiske Europæiske hyperinflationer antages det at stød til pengeefterspørgslen er ikke-stationære. I artiklen vises det v.h.a. kointegrationstests at denne antagelse er fejlagtig. Med udgangspunkt i en kointegreret VAR model findes det, at der under de Europæiske hype...
The love equation: Computational modeling of romantic relationships in French classical drama
Karsdorp, F.; Kestemont, M.; Schöch, C.; Bosch, A.P.J. van den; Finlayson, M.; Miller, B.; Lieto, A.; Ronfard, R.
2015-01-01
We report on building a computational model of romantic relationships in a corpus of historical literary texts. We frame this task as a ranking problem in which, for a given character, we try to assign the highest rank to the character with whom (s)he is most likely to be romantically involved. As
The Love Equation : Computational Modeling of Romantic Relationships in French Classical Drama
Karsdorp, F.B.; Kestemont, Mike; Schöch, Christof; van den Bosch, Antal; Finlayson, Mark; Miller, Ben; Lieto, Antonio; Ronfard, Remi
We report on building a computational model of romantic relationships in a corpus of historical literary texts. We frame this task as a ranking problem in which, for a given character, we try to assign the highest rank to the character with whom (s)he is most likely to be romantically involved. As
Comparing Classical Water Models Using Molecular Dynamics to Find Bulk Properties
Kinnaman, Laura J.; Roller, Rachel M.; Miller, Carrie S.
2018-01-01
A computational chemistry exercise for the undergraduate physical chemistry laboratory is described. In this exercise, students use the molecular dynamics package Amber to generate trajectories of bulk liquid water for 4 different water models (TIP3P, OPC, SPC/E, and TIP4Pew). Students then process the trajectory to calculate structural (radial…
Energy Technology Data Exchange (ETDEWEB)
Flandoli, F. [Dip.to di Matematica Applicata, Universita di Pisa, Pisa (Italy); Giorgi, E. [Dip.to di Matematica Applicata, Universita di Pisa, Pisa (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, via della Faggiola 32, 56126 Pisa (Italy); Aspinall, W.P. [Dept. of Earth Sciences, University of Bristol, and Aspinall and Associates, Tisbury (United Kingdom); Neri, A., E-mail: neri@pi.ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, via della Faggiola 32, 56126 Pisa (Italy)
2011-10-15
The problem of ranking and weighting experts' performances when quantitative judgments are being elicited for decision support is considered. A new scoring model, the Expected Relative Frequency model, is presented, based on the closeness between central values provided by the expert and known values used for calibration. Using responses from experts in five different elicitation datasets, a cross-validation technique is used to compare this new approach with the Cooke Classical Model, the Equal Weights model, and individual experts. The analysis is performed using alternative reward schemes designed to capture proficiency either in quantifying uncertainty, or in estimating true central values. Results show that although there is only a limited probability that one approach is consistently better than another, the Cooke Classical Model is generally the most suitable for assessing uncertainties, whereas the new ERF model should be preferred if the goal is central value estimation accuracy. - Highlights: > A new expert elicitation model, named Expected Relative Frequency (ERF), is presented. > A cross-validation approach to evaluate the performance of different elicitation models is applied. > The new ERF model shows the best performance with respect to the point-wise estimates.
DEFF Research Database (Denmark)
Berglund, Agnethe; Johannsen, Trine H; Stochholm, Kirstine
2018-01-01
Context: Little is known about long-term health outcomes in phenotypic females with 46,XY disorders of sex development (XY females) and the socioeconomic profile is not described in detail. Objective: To describe morbidity, mortality and socioeconomic status in XY females in a comparison...... the general population. Interventions: None. Main outcome measures: combined mortality and morbidity as well as chapter-specific morbidity. Medicinal use and socioeconomic profile, including education, cohabitation and retirement. Results: Compared to female controls overall morbidity was increased in XY...... closely related to the DSD condition. Judged on educational level and income XY females perform well on the labor market. However, DSD seems to impact on the prospects of family life.....
DEFF Research Database (Denmark)
Berglund, Agnethe; Johannsen, Trine H; Krag, Kirstine Stochholm
2016-01-01
CONTEXT: The prevalence of phenotypic females with a 46,XY karyotype is low, thus current knowledge about age and clinical presentation at diagnosis is sparse even for the most frequent conditions, androgen insensitivity syndrome (AIS), and gonadal dysgenesis. OBJECTIVE: To estimate incidence......, prevalence, age at diagnosis, and clinical presentation at diagnosis in 46,XY females. DESIGN AND SETTING: A nationwide study covering all known females with a 46,XY karyotype in Denmark since 1960. The diagnosis of 46,XY disorder of sex development (DSD) was determined by medical record evaluation, data.......0-13.5; range, 0-34 y) in AIS and 17.0 years (95% confidence interval, 15.5-19.0; range, 0-28 y) in gonadal dysgenesis (P = .001). Clinical presentation was dependent on cause of DSD. CONCLUSIONS: The first estimate on prevalence of 46,XY females is 6.4 per 100 000 live born females. The presentation of AIS...
Energy Technology Data Exchange (ETDEWEB)
Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India)
2016-05-06
We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlights a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.
Massive lepton pair production: what has QCD done to the classical Drell-Yan model
International Nuclear Information System (INIS)
Berger, E.L.
1982-11-01
A report is presented of recent experimental and theoretical progress in studies of the production of massive lepton pairs in hadronic collisions. Among the topics discussed are deviations from scaling, the status of the proofs of factorization in the parton model, higher-order terms in the QCD expansion, the discrepancy between measured and predicted yields (K factor), high-twist terms, soft gluon effects, and transverse momentum distributions
Directory of Open Access Journals (Sweden)
Olson Peter D
2010-12-01
Full Text Available Abstract Background Hymenolepis microstoma (Dujardin, 1845 Blanchard, 1891, the mouse bile duct tapeworm, is a rodent/beetle-hosted laboratory model that has been used in research and teaching since its domestication in the 1950s. Recent characterization of its genome has prompted us to describe the specific strain that underpins these data, anchoring its identity and bringing the 150+ year-old original description up-to-date. Results Morphometric and ultrastructural analyses were carried out on laboratory-reared specimens of the 'Nottingham' strain of Hymenolepis microstoma used for genome characterization. A contemporary description of the species is provided including detailed illustration of adult anatomy and elucidation of its taxonomy and the history of the specific laboratory isolate. Conclusions Our work acts to anchor the specific strain from which the H. microstoma genome has been characterized and provides an anatomical reference for researchers needing to employ a model tapeworm system that enables easy access to all stages of the life cycle. We review its classification, life history and development, and briefly discuss the genome and other model systems being employed at the beginning of a genomic era in cestodology.
International Nuclear Information System (INIS)
Ke Sanmin; Yang Wenli; Shi Kangjie; Wang Chun; Jiang Kexia
2011-01-01
We investigate the classical exchange algebra of the monodromy matrix for a Green-Schwarz sigma model on supercoset target space with Z 4m grading by using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution in the Poisson bracket sense. Our calculation is based on a general world-sheet metric. Taking a particular case of m= 1 (and a particular choice of supergroup), our results coincide with those of the Green-Schwarz superstring theory in AdS 5 xS 5 background obtained by Magro [J. High Energy Phys. 0901, 021 (2009)].
International Nuclear Information System (INIS)
Jain, Piyush; Weinfurtner, Silke; Visser, Matt; Gardiner, C. W.
2007-01-01
Analog models of gravity have been motivated by the possibility of investigating phenomena not readily accessible in their cosmological counterparts. In this paper, we investigate the analog of cosmological particle creation in a Friedmann-Robertson-Walker universe by numerically simulating a Bose-Einstein condensate with a time-dependent scattering length. In particular, we focus on a two-dimensional homogeneous condensate using the classical field method via the truncated Wigner approximation. We show that for various forms of the scaling function the particle production is consistent with the underlying theory in the long wavelength limit. In this context, we further discuss the implications of modified dispersion relations that arise from the microscopic theory of a weakly interacting Bose gas
Shahzad, Munir; Sengupta, Pinaki
2017-08-01
We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.
Dynamical decoupling assisted acceleration of two-spin evolution in XY spin-chain environment
Energy Technology Data Exchange (ETDEWEB)
Wei, Yong-Bo; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wang, Zhao-Ming [Department of Physics, Ocean University of China, Qingdao 266100 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Hai [School of Information and Electronic Engineering, Shandong Institute of Business and Technology, Yantai 264000 (China)
2016-01-28
We study the speed-up role of dynamical decoupling in an open system, which is modeled as two central spins coupled to their own XY spin-chain environment. We show that the fast bang–bang pulses can suppress the system evolution, which manifests the quantum Zeno effect. In contrast, with the increasing of the pulse interval time, the bang–bang pulses can enhance the decay of the quantum speed limit time and induce the speed-up process, which displays the quantum anti-Zeno effect. In addition, we show that the random pulses can also induce the speed-up of quantum evolution. - Highlights: • We propose a scheme to accelerate the dynamical evolution of central spins in an open system. • The quantum speed limit of central spins can be modulated by changing pulse frequency. • The random pulses can play the same role as the regular pulses do for small perturbation.
Parallelization of a Quantum-Classic Hybrid Model For Nanoscale Semiconductor Devices
Directory of Open Access Journals (Sweden)
Oscar Salas
2011-07-01
Full Text Available The expensive reengineering of the sequential software and the difficult parallel programming are two of the many technical and economic obstacles to the wide use of HPC. We investigate the chance to improve in a rapid way the performance of a numerical serial code for the simulation of the transport of a charged carriers in a Double-Gate MOSFET. We introduce the Drift-Diffusion-Schrödinger-Poisson (DDSP model and we study a rapid parallelization strategy of the numerical procedure on shared memory architectures.
On modeling of the neutron in classical physics: a methodical review
International Nuclear Information System (INIS)
Eganova, I.A.; Kallies, W.
2015-01-01
In the given work it is shown that the question about the neutron as a non-elementary particle started recently by B.V. Vasiliev in JINR Communication P3-2014-77 demands to take into consideration the entire system of the logically relevant and based on experiments knowledge which was found by M. Gryzinski in the deterministic atomic physics, and also the two interpretations declared in this communication are refuted: 1) of an electron-like elementary particle in the neutron structure that has no magnetic properties and 2) of the planetary-type model for a neutron with point objects.
THE 3C COOPERATION MODEL APPLIED TO THE CLASSICAL REQUIREMENT ANALYSIS
Directory of Open Access Journals (Sweden)
Vagner Luiz Gava
2012-08-01
Full Text Available Aspects related to the users' cooperative work are not considered in the traditional approach of software engineering, since the user is viewed independently of his/her workplace environment or group, with the individual model generalized to the study of collective behavior of all users. This work proposes a process for software requirements to address issues involving cooperative work in information systems that provide distributed coordination in the users' actions and the communication among them occurs indirectly through the data entered while using the software. To achieve this goal, this research uses ergonomics, the 3C cooperation model, awareness and software engineering concepts. Action-research is used as a research methodology applied in three cycles during the development of a corporate workflow system in a technological research company. This article discusses the third cycle, which corresponds to the process that deals with the refinement of the cooperative work requirements with the software in actual use in the workplace, where the inclusion of a computer system changes the users’ workplace, from the face to face interaction to the interaction mediated by the software. The results showed that the highest degree of users' awareness about their activities and other system users contribute to a decrease in their errors and in the inappropriate use of the system
Quantum features derived from the classical model of a bouncer-walker coupled to a zero-point field
International Nuclear Information System (INIS)
Schwabl, H; Mesa Pascasio, J; Fussy, S; Grössing, G
2012-01-01
In our bouncer-walker model a quantum is a nonequilibrium steady-state maintained by a permanent throughput of energy. Specifically, we consider a 'particle' as a bouncer whose oscillations are phase-locked with those of the energy-momentum reservoir of the zero-point field (ZPF), and we combine this with the random-walk model of the walker, again driven by the ZPF. Starting with this classical toy model of the bouncer-walker we were able to derive fundamental elements of quantum theory. Here this toy model is revisited with special emphasis on the mechanism of emergence. Especially the derivation of the total energy hω o and the coupling to the ZPF are clarified. For this we make use of a sub-quantum equipartition theorem. It can further be shown that the couplings of both bouncer and walker to the ZPF are identical. Then we follow this path in accordance with Ref. [2], expanding the view from the particle in its rest frame to a particle in motion. The basic features of ballistic diffusion are derived, especially the diffusion constant D, thus providing a missing link between the different approaches of our previous works.
Quantum discord for a central two-qubit system coupled to an XY-spin-chain environment
International Nuclear Information System (INIS)
Liu Benqiong; Shao Bin; Zou Jian
2010-01-01
We investigate the dynamic behaviors of quantum discord for a central two-qubit system coupled to an XY-spin-chain environment. In the weak-coupling regime, we show that the quantum discord for the two central qubits can become minimized rapidly close to the critical point of a quantum phase transition. By considering the two qubits that are initially prepared in the Werner state, we study the evolution of the quantum discord and that of entanglement under the same conditions. Our results imply that entanglement can disappear completely after a finite time, while the quantum discord decreases and tends to be a stable value according to the initial-state parameter for a very-long-time interval. In this sense, the quantum discord is more robust than entanglement for the quantum system exposed to the environment. The relation between the quantum correlations and the classical correlation is also shown for two particular cases.
Classical dynamics of the Abelian Higgs model from the critical point and beyond
Directory of Open Access Journals (Sweden)
G.C. Katsimiga
2015-09-01
Full Text Available We present two different families of solutions of the U(1-Higgs model in a (1+1 dimensional setting leading to a localization of the gauge field. First we consider a uniform background (the usual vacuum, which corresponds to the fully higgsed-superconducting phase. Then we study the case of a non-uniform background in the form of a domain wall which could be relevantly close to the critical point of the associated spontaneous symmetry breaking. For both cases we obtain approximate analytical nodeless and nodal solutions for the gauge field resulting as bound states of an effective Pöschl–Teller potential created by the scalar field. The two scenaria differ only in the scale of the characteristic localization length. Numerical simulations confirm the validity of the obtained analytical solutions. Additionally we demonstrate how a kink may be used as a mediator driving the dynamics from the critical point and beyond.
Modern challenges for flow investigations in model hydraulic turbines on classical test rig
International Nuclear Information System (INIS)
Deschênes, C; Houde, S; Aeschlimann, V; Fraser, R; Ciocan, G D
2014-01-01
The BulbT project involved several investigations of flow phenomena in different parts of a model bulb turbine installed on the test rig of Laval University Laboratory. The aim is to create a comprehensive data base in order to increase the knowledge of the flow phenomena in this type of turbines and to validate or improve numerical flow simulation strategies. This validation being based on a kinematic comparison between experimental and numerical data, the project had to overcome challenges to facilitate the use of the experimental data for that purpose. Many parameters were checked, such as the test bench repeatability, the intrusiveness of a priori non-intrusive methods, the geometry of the runner and draft tube. This paper illustrates how some of those problematic were solved
Nonplanar spiral states of the t-J model with classical spins
International Nuclear Information System (INIS)
Hamada, M.; Shimahara, H.; Mori, H.
1995-01-01
The spiral state in the two-dimensional t-J model is studied by numerical diagonalization of an effective Hamiltonian. We examine all possibilities of the spiral spin states including the nonplanar states. It is found that nonplanar spiral states occur, but the deviations from the planar spiral state in the nonplanar spiral states are small for small hole concentrations where our effective Hamiltonian is valid. The modulation of the spin configuration increases continuously from the antiferromagnetic order as the hole concentration increases, and discontinuously changes at a critical hole concentration. Then the state undergoes the first-order phase transition either to the (π,0) phase or to the ferromagnetic phase, depending on the value of J/t
Energy Technology Data Exchange (ETDEWEB)
Kubo, Jisuke [Institute for Theoretical Physics, Kanazawa University,Kanazawa 920-1192 (Japan); Yamada, Masatoshi [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan); Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, 69120 Heidelberg (Germany)
2016-12-01
We assume that the origin of the electroweak (EW) scale is a gauge-invariant scalar-bilinear condensation in a strongly interacting non-abelian gauge sector, which is connected to the standard model via a Higgs portal coupling. The dynamical scale genesis appears as a phase transition at finite temperature, and it can produce a gravitational wave (GW) background in the early Universe. We find that the critical temperature of the scale phase transition lies above that of the EW phase transition and below few O(100) GeV and it is strongly first-order. We calculate the spectrum of the GW background and find the scale phase transition is strong enough that the GW background can be observed by DECIGO.
A classical mechanics model for the interpretation of piezoelectric property data
Energy Technology Data Exchange (ETDEWEB)
Bell, Andrew J., E-mail: a.j.bell@leeds.ac.uk [Institute for Materials Research, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)
2015-12-14
In order to provide a means of understanding, the relationship between the primary electromechanical coefficients and simple crystal chemistry parameters for piezoelectric materials, a static analysis of a 3 atom, dipolar molecule has been undertaken to derive relationships for elastic compliance s{sup E}, dielectric permittivity ε{sup X}, and piezoelectric charge coefficient d in terms of an effective ionic charge and two inter-atomic force constants. The relationships demonstrate the mutual interdependence of the three coefficients, in keeping with experimental evidence from a large dataset of commercial piezoelectric materials. It is shown that the electromechanical coupling coefficient k is purely an expression of the asymmetry in the two force constants or bond compliances. The treatment is extended to show that the quadratic electrostriction relation between strain and polarization, in both centrosymmetric and non-centrosymmetric systems, is due to the presence of a non-zero 2nd order term in the bond compliance. Comparison with experimental data explains the counter-intuitive, positive correlation of k with s{sup E} and ε{sup X} and supports the proposition that high piezoelectric activity in single crystals is dominated by large compliance coupled with asymmetry in the sub-cell force constants. However, the analysis also shows that in polycrystalline materials, the dielectric anisotropy of the constituent crystals can be more important for attaining large charge coefficients. The model provides a completely new methodology for the interpretation of piezoelectric and electrostrictive property data and suggests methods for rapid screening for high activity in candidate piezoelectric materials, both experimentally and by novel interrogation of ab initio calculations.
A classical mechanics model for the interpretation of piezoelectric property data
International Nuclear Information System (INIS)
Bell, Andrew J.
2015-01-01
In order to provide a means of understanding, the relationship between the primary electromechanical coefficients and simple crystal chemistry parameters for piezoelectric materials, a static analysis of a 3 atom, dipolar molecule has been undertaken to derive relationships for elastic compliance s E , dielectric permittivity ε X , and piezoelectric charge coefficient d in terms of an effective ionic charge and two inter-atomic force constants. The relationships demonstrate the mutual interdependence of the three coefficients, in keeping with experimental evidence from a large dataset of commercial piezoelectric materials. It is shown that the electromechanical coupling coefficient k is purely an expression of the asymmetry in the two force constants or bond compliances. The treatment is extended to show that the quadratic electrostriction relation between strain and polarization, in both centrosymmetric and non-centrosymmetric systems, is due to the presence of a non-zero 2nd order term in the bond compliance. Comparison with experimental data explains the counter-intuitive, positive correlation of k with s E and ε X and supports the proposition that high piezoelectric activity in single crystals is dominated by large compliance coupled with asymmetry in the sub-cell force constants. However, the analysis also shows that in polycrystalline materials, the dielectric anisotropy of the constituent crystals can be more important for attaining large charge coefficients. The model provides a completely new methodology for the interpretation of piezoelectric and electrostrictive property data and suggests methods for rapid screening for high activity in candidate piezoelectric materials, both experimentally and by novel interrogation of ab initio calculations
Physarum polycephalum—a new take on a classic model system
Oettmeier, Christina; Brix, Klaudia; Döbereiner, Hans-Günther
2017-10-01
Physarum polycephalum, literally the ‘many-headed’ slime mold, is a giant multi-nucleated but unicellular protist. Since the time of its first description, it has been the subject of a multitude of cell biological, biochemical, genetic, and lately physical studies. The enormous size of the cell, the easy method of in vitro cultivation, the unique life cycle and its highly visible internal cytoplasmic streaming have made it invaluable for investigations on cell cycle regulation, differentiation, cytoskeleton and locomotion. Research on P. polycephalum lost its prominent role when animal cell culture and genetic techniques became more advanced, thereby replacing the slime mold as a state-of-the-art model. However, research continued, driven by a small number of groups, resulting in full sequencing of the slime mold’s genome, hence reviving interest in studying molecular processes that enable the astounding features of P. polycephalum. In recent years, research on P. polycephalum has again become cutting-edge. In 2000, Japanese researcher Toshiyuki Nakagaki performed a seminal experiment showing that the slime mold is able to find the shortest route through a maze. Ever since, smart problem-solving P. polycephalum has returned from the shadows and is nowadays back to center-stage when questions regarding the origins of intelligence and cognition are discussed. The basic mechanisms with which organisms perceive their environment, integrate this information and make decisions based on this input are investigated. The aim is to find underlying universal mechanisms of decision making and awareness. If those mechanisms can be found in as primordial an organism as a slime mold, it could fundamentally change our perception of the nature and evolution of cognition.
From quantum to classical modeling of radiation reaction: A focus on stochasticity effects
Niel, F.; Riconda, C.; Amiranoff, F.; Duclous, R.; Grech, M.
2018-04-01
Radiation reaction in the interaction of ultrarelativistic electrons with a strong external electromagnetic field is investigated using a kinetic approach in the nonlinear moderately quantum regime. Three complementary descriptions are discussed considering arbitrary geometries of interaction: a deterministic one relying on the quantum-corrected radiation reaction force in the Landau and Lifschitz (LL) form, a linear Boltzmann equation for the electron distribution function, and a Fokker-Planck (FP) expansion in the limit where the emitted photon energies are small with respect to that of the emitting electrons. The latter description is equivalent to a stochastic differential equation where the effect of the radiation reaction appears in the form of the deterministic term corresponding to the quantum-corrected LL friction force, and by a diffusion term accounting for the stochastic nature of photon emission. By studying the evolution of the energy moments of the electron distribution function with the three models, we are able to show that all three descriptions provide similar predictions on the temporal evolution of the average energy of an electron population in various physical situations of interest, even for large values of the quantum parameter χ . The FP and full linear Boltzmann descriptions also allow us to correctly describe the evolution of the energy variance (second-order moment) of the distribution function, while higher-order moments are in general correctly captured with the full linear Boltzmann description only. A general criterion for the limit of validity of each description is proposed, as well as a numerical scheme for the inclusion of the FP description in particle-in-cell codes. This work, not limited to the configuration of a monoenergetic electron beam colliding with a laser pulse, allows further insight into the relative importance of various effects of radiation reaction and in particular of the discrete and stochastic nature of high
Physarum polycephalum —a new take on a classic model system
International Nuclear Information System (INIS)
Oettmeier, Christina; Döbereiner, Hans-Günther; Brix, Klaudia
2017-01-01
Physarum polycephalum , literally the ‘many-headed’ slime mold, is a giant multi–nucleated but unicellular protist. Since the time of its first description, it has been the subject of a multitude of cell biological, biochemical, genetic, and lately physical studies. The enormous size of the cell, the easy method of in vitro cultivation, the unique life cycle and its highly visible internal cytoplasmic streaming have made it invaluable for investigations on cell cycle regulation, differentiation, cytoskeleton and locomotion. Research on P. polycephalum lost its prominent role when animal cell culture and genetic techniques became more advanced, thereby replacing the slime mold as a state-of-the-art model. However, research continued, driven by a small number of groups, resulting in full sequencing of the slime mold’s genome, hence reviving interest in studying molecular processes that enable the astounding features of P. polycephalum . In recent years, research on P. polycephalum has again become cutting-edge. In 2000, Japanese researcher Toshiyuki Nakagaki performed a seminal experiment showing that the slime mold is able to find the shortest route through a maze. Ever since, smart problem-solving P. polycephalum has returned from the shadows and is nowadays back to center-stage when questions regarding the origins of intelligence and cognition are discussed. The basic mechanisms with which organisms perceive their environment, integrate this information and make decisions based on this input are investigated. The aim is to find underlying universal mechanisms of decision making and awareness. If those mechanisms can be found in as primordial an organism as a slime mold, it could fundamentally change our perception of the nature and evolution of cognition. (topical review)
Minami, Kazuhiko
2017-12-01
An infinite number of spin chains are solved and it is derived that the ground-state phase transitions belong to the universality classes with central charge c = m / 2, where m is an integer. The models are diagonalized by automatically obtained transformations, many of which are different from the Jordan-Wigner transformation. The free energies, correlation functions, string order parameters, exponents, central charges, and the phase diagram are obtained. Most of the examples consist of the stabilizers of the cluster state. A unified structure of the one-dimensional XY and cluster-type spin chains is revealed, and other series of solvable models can be obtained through this formula.
Antonietti, Alberto; Casellato, Claudia; D'Angelo, Egidio; Pedrocchi, Alessandra
The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the
Stahnke, N; Liebscher, V; Staubach, C; Ziller, M
2013-11-01
The analysis of epidemiological field data from monitoring and surveillance systems (MOSSs) in wild animals is of great importance in order to evaluate the performance of such systems. By parameter estimation from MOSS data, conclusions about disease dynamics in the observed population can be drawn. To strengthen the analysis, the implementation of a maximum likelihood estimation is the main aim of our work. The new approach presented here is based on an underlying simple SIR (susceptible-infected-recovered) model for a disease scenario in a wildlife population. The three corresponding classes are assumed to govern the intensities (number of animals in the classes) of non-homogeneous Poisson processes. A sampling rate was defined which describes the process of data collection (for MOSSs). Further, the performance of the diagnostics was implemented in the model by a diagnostic matrix containing misclassification rates. Both descriptions of these MOSS parts were included in the Poisson process approach. For simulation studies, the combined model demonstrates its ability to validly estimate epidemiological parameters, such as the basic reproduction rate R0. These parameters will help the evaluation of existing disease control systems. They will also enable comparison with other simulation models. The model has been tested with data from a Classical Swine Fever (CSF) outbreak in wild boars (Sus scrofa scrofa L.) from a region of Germany (1999-2002). The results show that the hunting strategy as a sole control tool is insufficient to decrease the threshold for susceptible animals to eradicate the disease, since the estimated R0 confirms an ongoing epidemic of CSF. Copyright © 2013 Elsevier B.V. All rights reserved.
Qian, Ma; Ma, Jie
2009-06-07
Fletcher's spherical substrate model [J. Chem. Phys. 29, 572 (1958)] is a basic model for understanding the heterogeneous nucleation phenomena in nature. However, a rigorous thermodynamic formulation of the model has been missing due to the significant complexities involved. This has not only left the classical model deficient but also likely obscured its other important features, which would otherwise have helped to better understand and control heterogeneous nucleation on spherical substrates. This work presents a rigorous thermodynamic formulation of Fletcher's model using a novel analytical approach and discusses the new perspectives derived. In particular, it is shown that the use of an intermediate variable, a selected geometrical angle or pseudocontact angle between the embryo and spherical substrate, revealed extraordinary similarities between the first derivatives of the free energy change with respect to embryo radius for nucleation on spherical and flat substrates. Enlightened by the discovery, it was found that there exists a local maximum in the difference between the equivalent contact angles for nucleation on spherical and flat substrates due to the existence of a local maximum in the difference between the shape factors for nucleation on spherical and flat substrate surfaces. This helps to understand the complexity of the heterogeneous nucleation phenomena in a practical system. Also, it was found that the unfavorable size effect occurs primarily when R<5r( *) (R: radius of substrate and r( *): critical embryo radius) and diminishes rapidly with increasing value of R/r( *) beyond R/r( *)=5. This finding provides a baseline for controlling the size effects in heterogeneous nucleation.
Berglund, Agnethe; Johannsen, Trine H; Stochholm, Kirstine; Viuff, Mette H; Fedder, Jens; Main, Katharina M; Gravholt, Claus H
2016-12-01
The prevalence of phenotypic females with a 46,XY karyotype is low, thus current knowledge about age and clinical presentation at diagnosis is sparse even for the most frequent conditions, androgen insensitivity syndrome (AIS), and gonadal dysgenesis. To estimate incidence, prevalence, age at diagnosis, and clinical presentation at diagnosis in 46,XY females. A nationwide study covering all known females with a 46,XY karyotype in Denmark since 1960. The diagnosis of 46,XY disorder of sex development (DSD) was determined by medical record evaluation, data from the Danish National Patient Registry, and genetic testing, if available. A total of 166 females registered as 46,XY females in the Danish Cytogenetic Central Registry were identified. A total of 124 females were classified as having 46,XY DSD, 78 with AIS and 25 with gonadal dysgenesis, whereas the remaining subjects had a variety of different diagnoses. The prevalence of 46,XY females was 6.4 per 100 000 live born females, and for AIS and gonadal dysgenesis, it was 4.1 and 1.5 per 100 000, respectively. Median age at diagnosis was 7.5 years (95% confidence interval, 4.0-13.5; range, 0-34 y) in AIS and 17.0 years (95% confidence interval, 15.5-19.0; range, 0-28 y) in gonadal dysgenesis (P = .001). Clinical presentation was dependent on cause of DSD. The first estimate on prevalence of 46,XY females is 6.4 per 100 000 live born females. The presentation of AIS and gonadal dysgenesis is distinctly different, with AIS being diagnosed during childhood and gonadal dysgenesis during pubertal years. The presenting phenotype is dependent on the cause of 46,XY DSD.
Exact solution to the moment problem for the XY chain
International Nuclear Information System (INIS)
Witte, N.S.
1996-01-01
We present the exact solution to the moment problem for the spin-1/2 isotropic antiferromagnetic XY chain with explicit forms for the moments with respect to the Neel state, the cumulant generating function, and the Resolvent Operator. We verify the correctness of the Horn-Weinstein Theorems, but the analytic structure of the generating function (e -tH ) in the complex t-plane is quite different from that assumed by the t-Expansion and the Connected Moments Expansion due to the vanishing gap. This function has a finite radius of convergence about t = 0, and for large 't' has a leading descending algebraic series E(t)-E o ∼ At -2 . The Resolvent has a branch cut and essential singularity near the ground state energy of the form G(s)/s∼B|s+1| -3/4 exp(C|s+1| 1/2 ). Consequently extrapolation strategies based on these assumptions are flawed and in practice we find that the CMX methods are pathological and cannot be applied, while numerical evidence for two of the t-expansion methods indicates a clear asymptotic convergence behaviour with truncation order. (author). 28 refs., 2 figs
Graphics of (X,Y) spectrum for microcomputer
International Nuclear Information System (INIS)
Macias B, L.R.
1991-08-01
When carrying out diffraction works is frequently required to visualize the spectra of the data obtained in order to analyzing them. The design for the obtaining of data in the neutron diffractometer by means of the microcomputer allows to store them in a file by means of the one which transferring to the CYBER system so that by means of its utilities the mentioned spectrum is observed in a graph. In diffraction works, it is sought to study crystalline materials by means of the execution of the Bragg law by that the mounted sample on the diffractometer is subjected to a scanning of the sample with a radiation of a well-known wavelength and this way varying the angles, the corresponding interplanar distances are determined. The main objective of this work, is starting of a data set generated by the diffractometer, to generate the graph of the corresponding (X,Y) spectra in visual form in the screen of a microcomputer and if it is required, to obtain the graph in printed form by means of the same computer program for microcomputer. (Author)
International Nuclear Information System (INIS)
Blinder, S M
2003-01-01
It is shown how point charges and point dipoles with finite self-energies can be accommodated in classical electrodynamics. The key idea is the introduction of constitutive relations for the electromagnetic vacuum, which actually mirrors the physical reality of vacuum polarization. Our results reduce to conventional electrodynamics for scales large compared to the classical electron radius r 0 ∼ 2.8 x 10 -15 m. A classical simulation for a structureless electron is proposed, with the appropriate values of mass, spin and magnetic moment
Magnetic and Mössbauer studies of amorphous Fe 72- xY xHo 8B 20 alloys
Krishnan, R.; Driouch, L.; Lassri, H.; Dumond, Y.; Ajan, Antony; Shringi, S. N.; Prasad, Shiva
1996-11-01
We have carried out magnetic and Mössbauer studies of amorphous Fe 72- xY xHo 8B 20 alloys. The Fe moment decreases with the addition of Y and a magnetic compensation occurs at 4 K for x = 16. The temperature and field dependences of the magnetization have been interpreted using the mean field theory and Chudnovsky's model, respectively. These analyses yield some interesting parameters such as the random anisotropy, the exchange interactions JFe-Fe, JFe-Ho, etc. The Mössbauer studies show that the average hyperfine field decreases linearly with the addition of Y, in accordance with the decrease in the Fe moment.
International Nuclear Information System (INIS)
Wu, Song; Xiao, Yong; Wang, Lu; Zheng, Yue; Chang, Kenlin; Zheng, Zhiyong; Yang, Zhaohui; Varcoe, John R.; Zhao, Feng
2014-01-01
Extracellular electron transfer (EET) of microorganisms represents a communicative bridge between the interior and exterior of the cells. Most prior EET studies have focused on Gram-negative bacteria. However, fungi and Gram-positive bacteria, that contain dense cellular walls, have rarely been reported. Herein, two model dense cell wall microorganisms (Bacillus sp. WS-XY1 and the yeast Pichia stipitis) were identified to be electrochemically active. Further analysis indicated that the two microorganisms were able to secrete flavins to mediate their EET. The discovery, that dense cell wall containing microorganisms can undertake mediated EET, adds to the body of knowledge towards building a comprehensive understanding of biogeochemical and bioelectrical processes
CHOLESK, Diffusion Calculation with 2-D Source in X-Y or R-Z Geometry
International Nuclear Information System (INIS)
1988-01-01
1 - Description of problem or function: Solution of the diffusion equation with source in two-dimensional geometries x-y or r-z. 2 - Method of solution: The finite-element method of Ritz-Galerkin is applied
Deformation of products cut on AWJ x-y tables and its suppression
Hlaváč, L. M.; Hlaváčová, I. M.; Plančár, Š.; Krenický, T.; Geryk, V.
2018-02-01
The aim of this study is namely investigation of the abrasive water jet (AWJ) cutting of column pieces on commercial x-y cutting machines with AWJ. The shape deformation in curved and/or stepped parts of cutting trajectories caused by both the trailback (declination angle) and the taper (inclination of cut walls) can be calculated from submitted analytical model. Some of the results were compared with data measured on samples cut on two types of commercial tables. The main motivation of this investigation is determination of the percentage difference between predicted and real distortion of cutting product, i.e. accuracy of prepared analytical model. Subsequently, the possibility of reduction of the distortion can be studied through implementation of the theoretical model into the control systems of the cutting machines with the system for cutting head tilting. Despite some limitations of the used AWJ machines the comparison of calculated dimensions with the real ones shows very good correlation of model and experimental data lying within the range of measurement uncertainty. Results on special device demonstrated that the shape deformation in curved parts of the cutting trajectory can be substantially reduced through tilting of the cutting head.
Dynamics of unitarization by classicalization
International Nuclear Information System (INIS)
Dvali, Gia; Pirtskhalava, David
2011-01-01
We study dynamics of the classicalization phenomenon suggested in G. Dvali et al. , according to which a class of non-renormalizable theories self-unitarizes at very high-energies via creation of classical configurations (classicalons). We study this phenomenon in an explicit model of derivatively-self-coupled scalar that serves as a prototype for a Nambu-Goldstone-Stueckelberg field. We prepare the initial state in form of a collapsing wave-packet of a small occupation number but of very high energy, and observe that the classical configuration indeed develops. Our results confirm the previous estimates, showing that because of self-sourcing the wave-packet forms a classicalon configuration with radius that increases with center of mass energy. Thus, classicalization takes place before the waves get any chance of probing short-distances. The self-sourcing by energy is the crucial point, which makes classicalization phenomenon different from the ordinary dispersion of the wave-packets in other interacting theories. Thanks to this, unlike solitons or other non-perturbative objects, the production of classicalons is not only unsuppressed, but in fact dominates the high-energy scattering. In order to make the difference between classicalizing and non-classicalizing theories clear, we use a language in which the scattering cross section in a generic theory can be universally understood as a geometric cross section set by a classical radius down to which waves can propagate freely, before being scattered. We then show, that in non-classicalizing examples this radius shrinks with increasing energy and becomes microscopic, whereas in classicalizing theories expands and becomes macroscopic. We study analogous scattering in a Galileon system and discover that classicalization also takes place there, although somewhat differently. We thus observe, that classicalization is source-sensitive and that Goldstones pass the first test.
Boulanger, Eliot; Thiel, Walter
2012-11-13
Accurate quantum mechanical/molecular mechanical (QM/MM) treatments should account for MM polarization and properly include long-range electrostatic interactions. We report on a development that covers both these aspects. Our approach combines the classical Drude oscillator (DO) model for the electronic polarizability of the MM atoms with the generalized solvent boundary Potential (GSBP) and the solvated macromolecule boundary potential (SMBP). These boundary potentials (BP) are designed to capture the long-range effects of the outer region of a large system on its interior. They employ a finite difference approximation to the Poisson-Boltzmann equation for computing electrostatic interactions and take into account outer-region bulk solvent through a polarizable dielectric continuum (PDC). This approach thus leads to fully polarizable three-layer QM/MM-DO/BP methods. As the mutual responses of each of the subsystems have to be taken into account, we propose efficient schemes to converge the polarization of each layer simultaneously. For molecular dynamics (MD) simulations using GSBP, this is achieved by considering the MM polarizable model as a dynamical degree of freedom, and hence contributions from the boundary potential can be evaluated for a frozen state of polarization at every time step. For geometry optimizations using SMBP, we propose a dual self-consistent field approach for relaxing the Drude oscillators to their ideal positions and converging the QM wave function with the proper boundary potential. The chosen coupling schemes are evaluated with a test system consisting of a glycine molecule in a water ball. Both boundary potentials are capable of properly reproducing the gradients at the inner-region atoms and the Drude oscillators. We show that the effect of the Drude oscillators must be included in all terms of the boundary potentials to obtain accurate results and that the use of a high dielectric constant for the PDC does not lead to a polarization
Rakovic, D.; Dugic, M.
2005-05-01
Quantum bases of consciousness are considered with psychosomatic implications of three front lines of psychosomatic medicine (hesychastic spirituality, holistic Eastern medicine, and symptomatic Western medicine), as well as cognitive implications of two modes of individual consciousness (quantum-coherent transitional and altered states, and classically reduced normal states) alongside with conditions of transformations of one mode into another (considering consciousness quantum-coherence/classical-decoherence acupuncture system/nervous system interaction, direct and reverse, with and without threshold limits, respectively) - by using theoretical methods of associative neural networks and quantum neural holography combined with quantum decoherence theory.
Franklin, Joel
2017-01-01
Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...
Jinzenji, Masao
2018-01-01
This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...
Romero, Yannick; Conne, Béatrice; Truong, Vy; Papaioannou, Marilena D.; Schaad, Olivier; Docquier, Mylène; Herrera, Pedro Luis; Wilhelm, Dagmar; Nef, Serge
2013-01-01
Mouse sex determination provides an attractive model to study how regulatory genetic networks and signaling pathways control cell specification and cell fate decisions. This study characterizes in detail the essential role played by the insulin receptor (INSR) and the IGF type I receptor (IGF1R) in adrenogenital development and primary sex determination. Constitutive ablation of insulin/IGF signaling pathway led to reduced proliferation rate of somatic progenitor cells in both XX and XY gonads prior to sex determination together with the downregulation of hundreds of genes associated with the adrenal, testicular, and ovarian genetic programs. These findings indicate that prior to sex determination somatic progenitors in Insr;Igf1r mutant gonads are not lineage primed and thus incapable of upregulating/repressing the male and female genetic programs required for cell fate restriction. In consequence, embryos lacking functional insulin/IGF signaling exhibit (i) complete agenesis of the adrenal cortex, (ii) embryonic XY gonadal sex reversal, with a delay of Sry upregulation and the subsequent failure of the testicular genetic program, and (iii) a delay in ovarian differentiation so that Insr;Igf1r mutant gonads, irrespective of genetic sex, remained in an extended undifferentiated state, before the ovarian differentiation program ultimately is initiated at around E16.5. PMID:23300479
Fujitani, Y.; Sumino, Y.
2018-04-01
A classically scale invariant extension of the standard model predicts large anomalous Higgs self-interactions. We compute missing contributions in previous studies for probing the Higgs triple coupling of a minimal model using the process e+e- → Zhh. Employing a proper order counting, we compute the total and differential cross sections at the leading order, which incorporate the one-loop corrections between zero external momenta and their physical values. Discovery/exclusion potential of a future e+e- collider for this model is estimated. We also find a unique feature in the momentum dependence of the Higgs triple vertex for this class of models.
Directory of Open Access Journals (Sweden)
Rafael Fabiano Machado Rosa
2008-11-01
Full Text Available OBJETIVO: verificar a prevalência e as características clínicas de pacientes com amenorréia primária e cariótipo XY avaliadas em nosso Serviço com o intuito de identificar achados que possam auxiliar em seu reconhecimento. MÉTODOS: no período de Janeiro de 1975 a Novembro de 2007, foram avaliadas 104 pacientes com amenorréia primária. Para todos os casos foi realizada a análise pelo cariótipo por bandas GTG. Destas, 21 (20,2% apresentavam uma constituição 46,XY. Contudo, duas foram excluídas do estudo por terem prontuários incompletos. Das 19 pacientes que compuseram a amostra, a maior parte veio encaminhada pela ginecologia (63,2%. Suas idades variaram entre 16 e 41 anos (média de 22,1 anos. Realizou-se uma coleta de dados sobre sua história familiar e pregressa, exame físico e resultados de exames complementares. Para determinação dos seus diagnósticos levaram-se em consideração essas informações. RESULTADOS: a síndrome de resistência aos androgênios foi o diagnóstico predominante (n=12; 63,2%. Cinco pacientes (26,3% apresentavam disgenesia gonadal pura XY (DGP XY, uma (5,3% deficiência de 17-alfa hidroxilase e uma (5,3% deficiência de 5-alfa redutase. Achados clínicos freqüentemente observados nessas pacientes incluíram desenvolvimento anormal dos caracteres sexuais secundários (n=19, agenesia uterina com vagina em fundo de saco (n=14, história familiar de amenorréia (n=8 e gônadas palpáveis no canal inguinal (n=5. Duas delas apresentavam história de hérnia inguinal. Hipertensão arterial sistêmica foi diagnosticada somente na paciente com deficiência de 17-alfa hidroxilase, e malignização gonadal, naquela com DGP XY. CONCLUSÕES: a freqüência de pacientes com cariótipo XY (20% foi superior à usualmente descrita na literatura (3 a 11%. Acreditamos que isso tenha relação com a forma de encaminhamento das pacientes ao Serviço. Certos achados da história clínica e do exame físico deveriam
Indian Academy of Sciences (India)
Journal of Genetics, Vol. 85, No. 2, August 2006. 101. Page 2. J. Genet. classic. 102. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 3. J. Genet. classic. Journal of Genetics, Vol. 85, No. 2, August 2006. 103. Page 4. J. Genet. classic. 104. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 5. J. Genet. classic.
Indian Academy of Sciences (India)
Unknown
Journal of Genetics, Vol. 84, No. 1, April 2005. 37. Page 2. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 38. Page 3. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 39. Page 4. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 40. Page 5. J. Genet. classic. Journal of ...
XY females do better than the XX in the African pygmy mouse, Mus minutoides.
Saunders, Paul A; Perez, Julie; Rahmoun, Massilva; Ronce, Ophélie; Crochet, Pierre-André; Veyrunes, Frédéric
2014-07-01
All therian mammals have a similar XY/XX sex-determination system except for a dozen species. The African pygmy mouse, Mus minutoides, harbors an unconventional system in which all males are XY, and there are three types of females: the usual XX but also XX* and X*Y ones (the asterisk designates a sex-reversal mutation on the X chromosome). The long-term evolution of such a system is a paradox, because X*Y females are expected to face high reproductive costs (e.g., meiotic disruption and loss of unviable YY embryos), which should prevent invasion and maintenance of a sex-reversal mutation. Hence, mechanisms for compensating for the costs could have evolved in M. minutoides. Data gathered from our laboratory colony revealed that X*Y females do compensate and even show enhanced reproductive performance in comparison to the XX and XX*; they produce significantly more offspring due to (i) a higher probability of breeding, (ii) an earlier first litter, and (iii) a larger litter size, linked to (iv) a greater ovulation rate. These findings confirm that rare conditions are needed for an atypical sex-determination mechanism to evolve in mammals, and provide valuable insight into understanding modifications of systems with highly heteromorphic sex chromosomes. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Directory of Open Access Journals (Sweden)
Trentini Clarissa M
2008-01-01
Full Text Available Abstract Background Aging has determined a demographic shift in the world, which is considered a major societal achievement, and a challenge. Aging is primarily a subjective experience, shaped by factors such as gender and culture. There is a lack of instruments to assess attitudes to aging adequately. In addition, there is no instrument developed or validated in developing region contexts, so that the particularities of ageing in these areas are not included in the measures available. This paper aims to develop and validate a reliable attitude to aging instrument by combining classical psychometric approach and Rasch analysis. Methods Pilot study and field trial are described in details. Statistical analysis included classic psychometric theory (EFA and CFA and Rasch measurement model. The latter was applied to examine unidimensionality, response scale and item fit. Results Sample was composed of 424 Brazilian old adults, which was compared to an international sample (n = 5238. The final instrument shows excellent psychometric performance (discriminant validity, confirmatory factor analysis and Rasch fit statistics. Rasch analysis indicated that modifications in the response scale and item deletions improved the initial solution derived from the classic approach. Conclusion The combination of classic and modern psychometric theories in a complementary way is fruitful for development and validation of instruments. The construction of a reliable Brazilian Attitudes to Aging Questionnaire is important for assessing cultural specificities of aging in a transcultural perspective and can be applied in international cross-cultural investigations running less risk of cultural bias.
Directory of Open Access Journals (Sweden)
Mikhail G Divashuk
Full Text Available Hemp (Cannabis sativa L. was karyotyped using by DAPI/C-banding staining to provide chromosome measurements, and by fluorescence in situ hybridization with probes for 45 rDNA (pTa71, 5S rDNA (pCT4.2, a subtelomeric repeat (CS-1 and the Arabidopsis telomere probes. The karyotype has 18 autosomes plus a sex chromosome pair (XX in female and XY in male plants. The autosomes are difficult to distinguish morphologically, but three pairs could be distinguished using the probes. The Y chromosome is larger than the autosomes, and carries a fully heterochromatic DAPI positive arm and CS-1 repeats only on the less intensely DAPI-stained, euchromatic arm. The X is the largest chromosome of all, and carries CS-1 subtelomeric repeats on both arms. The meiotic configuration of the sex bivalent locates a pseudoautosomal region of the Y chromosome at the end of the euchromatic CS-1-carrying arm. Our molecular cytogenetic study of the C. sativa sex chromosomes is a starting point for helping to make C. sativa a promising model to study sex chromosome evolution.
XY vs X Mixer in Quantum Alternating Operator Ansatz for Optimization Problems with Constraints
Wang, Zhihui; Rubin, Nicholas; Rieffel, Eleanor G.
2018-01-01
Quantum Approximate Optimization Algorithm, further generalized as Quantum Alternating Operator Ansatz (QAOA), is a family of algorithms for combinatorial optimization problems. It is a leading candidate to run on emerging universal quantum computers to gain insight into quantum heuristics. In constrained optimization, penalties are often introduced so that the ground state of the cost Hamiltonian encodes the solution (a standard practice in quantum annealing). An alternative is to choose a mixing Hamiltonian such that the constraint corresponds to a constant of motion and the quantum evolution stays in the feasible subspace. Better performance of the algorithm is speculated due to a much smaller search space. We consider problems with a constant Hamming weight as the constraint. We also compare different methods of generating the generalized W-state, which serves as a natural initial state for the Hamming-weight constraint. Using graph-coloring as an example, we compare the performance of using XY model as a mixer that preserves the Hamming weight with the performance of adding a penalty term in the cost Hamiltonian.
Divashuk, Mikhail G; Alexandrov, Oleg S; Razumova, Olga V; Kirov, Ilya V; Karlov, Gennady I
2014-01-01
Hemp (Cannabis sativa L.) was karyotyped using by DAPI/C-banding staining to provide chromosome measurements, and by fluorescence in situ hybridization with probes for 45 rDNA (pTa71), 5S rDNA (pCT4.2), a subtelomeric repeat (CS-1) and the Arabidopsis telomere probes. The karyotype has 18 autosomes plus a sex chromosome pair (XX in female and XY in male plants). The autosomes are difficult to distinguish morphologically, but three pairs could be distinguished using the probes. The Y chromosome is larger than the autosomes, and carries a fully heterochromatic DAPI positive arm and CS-1 repeats only on the less intensely DAPI-stained, euchromatic arm. The X is the largest chromosome of all, and carries CS-1 subtelomeric repeats on both arms. The meiotic configuration of the sex bivalent locates a pseudoautosomal region of the Y chromosome at the end of the euchromatic CS-1-carrying arm. Our molecular cytogenetic study of the C. sativa sex chromosomes is a starting point for helping to make C. sativa a promising model to study sex chromosome evolution.
Temperature-dependent pitch and phase diagram for incommensurate XY spins in a slab geometry
International Nuclear Information System (INIS)
Collins, M.; Saslow, W.M.
1996-01-01
Strain-engineered Heisenberg antiferromagnets recently have been produced by controlling the layer thickness of MnSe/ZnTe superlattices. Neutron-scattering studies reveal a spiral that tends to untwist with increasing temperature. To simulate this system, we employ an XY model with nearest- and second-nearest neighbor antiferromagnetic interactions. The bulk mean-field phase diagram has four possible phases, for the full range of the exchange constants. Monte Carlo calculations are performed for a slab geometry, using an algorithm that allows the system to choose incommensurate boundary conditions. The phase diagram is constructed by monitoring the spiral pitch as a function of temperature for a range of exchange constants. For appropriate exchange constants, good agreement is obtained with experiment. From the mean-field phase diagram it appears that strain engineering an NaCl structure in a superlattice configuration might produce a type of spiral phase, and an associated antiferromagnetic-to-spiral phase transition. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Spurr, Robert; Stamnes, Knut; Eide, Hans; Li Wei; Zhang Kexin; Stamnes, Jakob
2007-01-01
In this paper and the sequel, we investigate the application of classic inverse methods based on iterative least-squares cost-function minimization to the simultaneous retrieval of aerosol and ocean properties from visible and near infrared spectral radiance measurements such as those from the SeaWiFS and MODIS instruments. Radiance measurements at the satellite are simulated directly using an accurate coupled atmosphere-ocean-discrete-ordinate radiative transfer (CAO-DISORT) code as the main component of the forward model. For this kind of cost-function inverse problem, we require the forward model to generate weighting functions (radiance partial derivatives) with respect to the aerosol and marine properties to be retrieved, and to other model parameters which are sources of error in the retrievals. In this paper, we report on the linearization of the CAO-DISORT model. This linearization provides a complete analytic differentiation of the coupled-media radiative transfer theory, and it allows the model to generate analytic weighting functions for any atmospheric or marine parameter. For high solar zenith angles, we give an implementation of the pseudo-spherical (P-S) approach to solar beam attenuation in the atmosphere in the linearized model. We summarize a number of performance enhancements such as the use of an exact single-scattering calculation to improve accuracy. We derive inherent optical property inputs for the linearized CAO-DISORT code for a simple 2-parameter bio-optical model for the marine environment coupled to a 2-parameter bimodal atmospheric aerosol medium
Theoretical solid-state physics. From the classical models to modern themes of research. 3. upd. ed.
International Nuclear Information System (INIS)
Czycholl, Gerd
2008-01-01
This book gives an introduction in methods, contents, and results of modern solid-state physics. It is based on the fundamental course of theoretical physics, i. e. presupposed are knowledges in classical mechanics, electrodynamics, and especially quantum mechanics and statistical physics, as they are mediated in the at all German-speaking universities usual course in theoretical physics generally until the end of the 6th special semester. The especially for the treatment of many-body effects unavoidable formalism of the 2nd quantization (occupation number representation) is introduced and used in the book. The content reaches from the classical fields of solid-state physics (phonons and electrons in the periodic potentia, Bloch theorem, Hartree-Fock approximation, electron-phonon interactions) through fields of applications as superconductivity and magnetism until fields, which are actual object of research (for instance quantum Hall effect, high-temperature superconductivity). The third editions was comprehensively revised [de
Gu, Riliang; Li, Li; Liang, Xiaolin; Wang, Yanbo; Fan, Tinglu; Wang, Ying; Wang, Jianhua
2017-12-13
To identify the ideal harvest time (IHT) for the seed production of XY335 and ZD958, six seed-related traits were evaluated in seeds harvested at 11 harvest stages in 8 environments. Standard germination (SG), accelerated aging germination (AAG) and cold test germination (CTG) were vigor traits; hundred-seed weight (HSW) and seed moisture content (SMC) were physiological traits; and ≥10 °C accumulated temperature from pollination to harvest (AT10 ph ) was an ecological trait. All the traits were significantly affected by harvest stage. The responses of SG, AAG, CTG and HSW to postponing harvest stage fit quadratic models, while SMC and AT10 ph fit linear models. The IHT (indicated by the last date to reach maximum SG, AAG and CTG) were 57.97 DAP and 56.80 DAP for XY335 and ZD958, respectively. SMC and AT10 ph at IHT were 33.15% and 1234 °C for XY335, and 34.98% and 1226 °C for ZD958, respectively. The period to reach the maximum HSW was 5 days later than the IHT. Compared to HSW and SMC, AT10 ph had a closer relationship to the seed vigor traits. Together with the fact that AT10 ph was less affected by environment, these results suggested that AT10 ph may be a novel indicator for determining the IHT.
Racca, Joseph D; Chen, Yen-Shan; Yang, Yanwu; Phillips, Nelson B; Weiss, Michael A
2016-10-14
A general problem is posed by analysis of transcriptional thresholds governing cell fate decisions in metazoan development. A model is provided by testis determination in therian mammals. Its key step, Sertoli cell differentiation in the embryonic gonadal ridge, is initiated by SRY, a Y-encoded architectural transcription factor. Mutations in human SRY cause gonadal dysgenesis leading to XY female development (Swyer syndrome). Here, we have characterized an inherited mutation compatible with either male or female somatic phenotypes as observed in an XY father and XY daughter, respectively. The mutation (a crevice-forming substitution at a conserved back surface of the SRY high mobility group box) markedly destabilizes the domain but preserves specific DNA affinity and induced DNA bend angle. On transient transfection of diverse human and rodent cell lines, the variant SRY exhibited accelerated proteasomal degradation (relative to wild type) associated with increased ubiquitination; in vitro susceptibility to ubiquitin-independent ("default") cleavage by the 20S core proteasome was unchanged. The variant's gene regulatory activity (as assessed in a cellular model of the rat embryonic XY gonadal ridge) was reduced by 2-fold relative to wild-type SRY at similar levels of mRNA expression. Chemical proteasome inhibition restored native-like SRY expression and transcriptional activity in association with restored occupancy of a sex-specific enhancer element in principal downstream gene Sox9, demonstrating that the variant SRY exhibits essentially native activity on a per molecule basis. Our findings define a novel mechanism of impaired organogenesis, accelerated ubiquitin-directed proteasomal degradation of a master transcription factor leading to a developmental decision poised at the edge of ambiguity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Directory of Open Access Journals (Sweden)
Ramon F. Alvarez-Estrada
2012-02-01
Full Text Available We consider non-equilibrium open statistical systems, subject to potentials and to external “heat baths” (hb at thermal equilibrium at temperature T (either with ab initio dissipation or without it. Boltzmann’s classical equilibrium distributions generate, as Gaussian weight functions in momenta, orthogonal polynomials in momenta (the position-independent Hermite polynomialsHn’s. The moments of non-equilibrium classical distributions, implied by the Hn’s, fulfill a hierarchy: for long times, the lowest moment dominates the evolution towards thermal equilibrium, either with dissipation or without it (but under certain approximation. We revisit that hierarchy, whose solution depends on operator continued fractions. We review our generalization of that moment method to classical closed many-particle interacting systems with neither a hb nor ab initio dissipation: with initial states describing thermal equilibrium at T at large distances but non-equilibrium at finite distances, the moment method yields, approximately, irreversible thermalization of the whole system at T, for long times. Generalizations to non-equilibrium quantum interacting systems meet additional difficulties. Three of them are: (i equilibrium distributions (represented through Wigner functions are neither Gaussian in momenta nor known in closed form; (ii they may depend on dissipation; and (iii the orthogonal polynomials in momenta generated by them depend also on positions. We generalize the moment method, dealing with (i, (ii and (iii, to some non-equilibrium one-particle quantum interacting systems. Open problems are discussed briefly.
Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis
Directory of Open Access Journals (Sweden)
Isabelle Gillot
2009-01-01
Full Text Available During prophase I of male meiosis, the sex chromosomes form a compact structure called XY body that associates with the nuclear membrane of pachytene spermatocytes. Ret Finger Protein is a transcriptional repressor, able to interact with both nuclear matrix-associated proteins and double-stranded DNA. We report the precise and unique localization of Ret Finger Protein in pachytene spermatocytes, in which Ret Finger Protein takes place of lamin B1, between the XY body and the inner nuclear membrane. This localization of Ret Finger Protein does not seem to be associated with O-glycosylation or sumoylation. In addition, we demonstrate that Ret Finger Protein contains an E3 ubiquitin ligase activity. These observations lead to an attractive hypothesis in which Ret Finger Protein would be involved in the positioning and the attachment of XY body to the nuclear lamina of pachytene spermatocytes.
Dysgerminoma in a case of 46, XY pure gonadal dysgenesis (swyer syndrome: a case report
Directory of Open Access Journals (Sweden)
He Anguang
2011-09-01
Full Text Available Abstract Simple 46, XY gonadal dysgenesis syndrome, also called Swyer syndrome, is known as pure gonadal dysgenesis. Individuals with the syndrome are characterized by 46, XY karyotype and phenotypically female with female genital appearance, normal Müllerian structures and absent testicular tissue. The condition usually first becomes apparent in adolescence with delayed puberty and primary amenorrhea due to the gonads have no hormonal or reproductive potential. Herein, we report a case of dysgerminoma diagnosed in a dysgenetic gonad of a 21-year-old patient with Swyer syndrome.
Energy Technology Data Exchange (ETDEWEB)
Ganster, P
2004-10-15
A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)
Directory of Open Access Journals (Sweden)
Kazuhiko Minami
2017-12-01
Full Text Available An infinite number of spin chains are solved and it is derived that the ground-state phase transitions belong to the universality classes with central charge c=m/2, where m is an integer. The models are diagonalized by automatically obtained transformations, many of which are different from the JordanâWigner transformation. The free energies, correlation functions, string order parameters, exponents, central charges, and the phase diagram are obtained. Most of the examples consist of the stabilizers of the cluster state. A unified structure of the one-dimensional XY and cluster-type spin chains is revealed, and other series of solvable models can be obtained through this formula.
Jiménez de Bagüés, María P; Iturralde, María; Arias, Maykel A; Pardo, Julián; Cloeckaert, Axel; Zygmunt, Michel S
2014-08-01
Recently, novel atypical Brucella strains isolated from humans and wild rodents have been reported. They are phenotypically close to Ochrobactrum species but belong to the genus Brucella, based on genetic relatedness, although genetic diversity is higher among the atypical Brucella strains than between the classic species. They were classified within or close to the novel species Brucella inopinata. However, with the exception of Brucella microti, the virulence of these novel strains has not been investigated in experimental models of infection. The type species B. inopinata strain BO1 (isolated from a human) and Brucella species strain 83-210 (isolated from a wild Australian rodent) were investigated. A classic infectious Brucella reference strain, B. suis 1330, was also used. BALB/c, C57BL/6, and CD1 mice models and C57BL/6 mouse bone-marrow-derived macrophages (BMDMs) were used as infection models. Strains BO1 and 83-210 behaved similarly to reference strain 1330 in all mouse infection models: there were similar growth curves in spleens and livers of mice and similar intracellular replication rates in BMDMs. However, unlike strain 1330, strains BO1 and 83-210 showed lethality in the 3 mouse models. The novel atypical Brucella strains of this study behave like classic intracellular Brucella pathogens. In addition, they cause death in murine models of infection, as previously published for B. microti, another recently described environmental and wildlife species. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Baran, V.
1995-01-01
This resume of the Ph.D. thesis has three main parts. In the first part a fourth order quadrupole boson Hamiltonian is semi classically treated through a time-dependent variational principle (TDVP), the variational states being of coherent type for the boson operators b 20 + and 1/√2 (b 22 + + b 2-2 + ). The static ground state is studied as a function of the parameters involved in the model Hamiltonian. Linearizing the classical equations of motion one obtains the RPA approach for the many boson correlations. There are two RPA roots which describe the beta and gamma vibrations, respectively. Several quantization procedures for both small and large amplitude regimes are discussed. The quantized Hamiltonians are compared with some others which were previously obtained by using different methods. A special attention is paid to the quantal states associated to some of the peaks appearing in the Fourier spectrum of the classical action density. Some of the quantal states exhibit a pronounced anharmonic structure. Therefore the procedure may be used for a unified description of small and large amplitude regimes. In the next part the semiclassical foundations of the Coherent State Model are established using the formalism elaborated in the previous section. In the third part the semiclassical treatment through a time-dependent variational principle (TDVP) of the fourth order quadrupole boson Hamiltonian H is continued. In the parameter space of H there are regions, conventionally called as 'nuclear phases', determining specific static properties. Several ground states corresponding to different equilibrium shapes are found as static solutions of classical equations of motion. The non-integrable system may follow a chaotic trajectory. The mechanism of destroying the tori bearing regular orbits and the onset of chaos may depend on nuclear phase. The regular and chaotic motions are analyzed in terms of Poincare sections and Lyapunov largest exponent. Specific features of
Johnston, Jessica M; Connizzo, Brianne K; Shetye, Snehal S; Robinson, Kelsey A; Huegel, Julianne; Rodriguez, Ashley B; Sun, Mei; Adams, Sheila M; Birk, David E; Soslowsky, Louis J
2017-12-01
Classic Ehlers-Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1 +/- mouse, a model for classic EDS. These analyses were done comparing tendons from a classic EDS model (Col5a1 +/- ) with wild-type controls. Tendons were subjected to mechanical testing, histological, and fibril analysis before injury as well as 3 and 6 weeks after injury. We found that Col5a1 +/- tendons demonstrated diminished recovery of mechanical competency after injury as compared to normal wild-type tendons, which recovered their pre-injury values by 6 weeks post injury. Additionally, the Col5a1 +/- tendons demonstrated altered fibril morphology and diameter distributions compared to the wild-type tendons. This study indicates that collagen V plays an important role in regulating collagen fibrillogenesis and the associated recovery of mechanical integrity in tendons after injury. In addition, the dysregulation with decreased collagen V expression in EDS is associated with a diminished injury response. The results presented herein have the potential to direct future targeted therapeutics for classic EDS patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2707-2715, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Clerc, Daryl G
2016-07-21
An ab initio approach was used to study the molecular-level interactions that connect gene-mutation to changes in an organism׳s phenotype. The study provides new insights into the evolutionary process and presents a simplification whereby changes in phenotypic properties may be studied in terms of the binding affinities of the chemical interactions affected by mutation, rather than by correlation to the genes. The study also reports the role that nonlinear effects play in the progression of organs, and how those effects relate to the classical theory of evolution. Results indicate that the classical theory of evolution occurs as a special case within the ab initio model - a case having two attributes. The first attribute: proteins and promoter regions are not shared among organs. The second attribute: continuous limiting behavior exists in the physical properties of organs as well as in the binding affinity of the associated chemical interactions, with respect to displacements in the chemical properties of proteins and promoter regions induced by mutation. Outside of the special case, second-order coupling contributions are significant and nonlinear effects play an important role, a result corroborated by analyses of published activity levels in binding and transactivation assays. Further, gradations in the state of perfection of an organ may be small or large depending on the type of mutation, and not necessarily closely-separated as maintained by the classical theory. Results also indicate that organs progress with varying degrees of interdependence, the likelihood of successful mutation decreases with increasing complexity of the affected chemical system, and differences between the ab initio model and the classical theory increase with increasing complexity of the organism. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
DEFF Research Database (Denmark)
Chodos, Steven L.; Berg, Rolf W.
1979-01-01
This paper deals with the observation and identification of phonon frequencies resulting from the low temperature phase transitions in K2XY6 crystals. By means of a simple lattice dynamical model, the vibrational Raman and IR data available in the literature and obtained here have been analyzed. ...
Phase diagram with an enhanced spin-glass region of the mixed Ising-XY magnet LiHo_{x}Er_{1-x}F_{4}
DEFF Research Database (Denmark)
Piatek, J. O.; Dalla Piazza, B.; Nikseresht, N.
2013-01-01
We present the experimental phase diagram of LiHoxEr1-xF4, a dilution series of dipolar-coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagn...
International Nuclear Information System (INIS)
Zhang, Xiu-xing; Li, Fu-li
2013-01-01
By using the lowest order expansion in the number of spins, we study the classical correlation (CC) and quantum correlations (QCs) between two spin subgroups of the Lipkin–Meshkov–Glick (LMG) model in both binary and trinary decompositions of spins. In the case of bipartitions, we find that the CC and all the QCs are divergent in the same singular behavior at the critical point of the LMG model. In the case of tripartitions, however, the CC is still divergent but the QCs remain finite at the critical point. The present result shows that the CC is very robust but the QCs are much frangible to the environment disturbance.
Kaganovich, I D; Startsev, E
2005-01-01
Ion-atom ionization cross sections are needed in many applications employing the propagation of fast ions through matter. When experimental data or full-scale theoretical calculations are non-existent, approximate methods must be used. The most robust and easy-to-use approximations include the Born approximation of quantum mechanics and the quasi-classical approach utilizing classical mechanics together with the Bohr-Sommerfeld quantization rule.* The simplest method to extend the validity of both approaches is to combine them, i.e., use the two different approaches but only for the regions of impact parameters in which they are valid, and sum the results to obtain the total cross section. We have recently investigated theoretically and experimentally the stripping of more than 18 different pairs of projectile and target atoms in the range of 3-38 MeV/amu to study the range of validity of various approximations. The results of the modified approach agree better with the experimental data than either the Born ...
Yang, C Y; Chou, C W; Chen, S Y; Cheng, H M
2001-04-01
Hypopituitarism is the clinical syndrome that results from failure of the anterior pituitary gland to produce its hormones. Hypopituitarism can result from: (1) intrinsic or primary pituitary disease; (2) intrinsic hypothalamic or secondary pituitary disease; or (3) extrinsic extrasellar or parasellar disease. The etiologies of primary hypopituitarism are miscellaneous. The dominant clinical picture of hypopituitarism in the adult is that of hypogonadism. Reports have associated hypopituitarism with anti-pituitary-antibodies, hereditary syndrome and chromosome defects, but hypopituitarism has rarely been associated with balanced chromosome translocation (11;22)(q24;q13). Here, we describe a case of anterior pituitary failure with balanced chromosome translocation. A 19-year-old Chinese teenager presented with failure of pubertal development and sexual infantilism. On examination, the patient had the classic appearance of hypogonadism. Endocrine studies and three combined pituitary function tests revealed panhypopituitarism. A chromosomal study revealed 46,XY,t(11;22)(q24;q13), a balanced translocation between 11q24 and 22q13. Chest films showed delayed fusion of bilateral humeral head epiphyses and bilateral acromions. Scrotal sonography revealed testes were small bilaterally. Magnetic resonance imaging (MRI) of the sella revealed pituitary dwarfism. The patient received 19 months replacement therapy, including steroids (prednisolone 5 mg each day), L-thyroxine (Eltroxin 100 ug each day), and testosterone enanthate 250 mg every two weeks. His height increased 4 cm with secondary sexual characteristics developed, and muscle power increased.
Indian Academy of Sciences (India)
Unknown
Journal of Genetics, Vol. 83, No. 3, December 2004. 235. Page 2. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 236. Page 3. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 237. Page 4. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 238. Page 5 ...
Deffner, Veronika; Küchenhoff, Helmut; Breitner, Susanne; Schneider, Alexandra; Cyrys, Josef; Peters, Annette
2018-03-13
The ultrafine particle measurements in the Augsburger Umweltstudie, a panel study conducted in Augsburg, Germany, exhibit measurement error from various sources. Measurements of mobile devices show classical possibly individual-specific measurement error; Berkson-type error, which may also vary individually, occurs, if measurements of fixed monitoring stations are used. The combination of fixed site and individual exposure measurements results in a mixture of the two error types. We extended existing bias analysis approaches to linear mixed models with a complex error structure including individual-specific error components, autocorrelated errors, and a mixture of classical and Berkson error. Theoretical considerations and simulation results show, that autocorrelation may severely change the attenuation of the effect estimations. Furthermore, unbalanced designs and the inclusion of confounding variables influence the degree of attenuation. Bias correction with the method of moments using data with mixture measurement error partially yielded better results compared to the usage of incomplete data with classical error. Confidence intervals (CIs) based on the delta method achieved better coverage probabilities than those based on Bootstrap samples. Moreover, we present the application of these new methods to heart rate measurements within the Augsburger Umweltstudie: the corrected effect estimates were slightly higher than their naive equivalents. The substantial measurement error of ultrafine particle measurements has little impact on the results. The developed methodology is generally applicable to longitudinal data with measurement error. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Classical databases and knowledge organization
DEFF Research Database (Denmark)
Hjørland, Birger
2015-01-01
This paper considers classical bibliographic databases based on the Boolean retrieval model (such as MEDLINE and PsycInfo). This model is challenged by modern search engines and information retrieval (IR) researchers, who often consider Boolean retrieval a less efficient approach. The paper...
A silicon integrated micro nano-positioning XY-stage for nano-manipulation
International Nuclear Information System (INIS)
Sun Lining; Wang Jiachou; Rong Weibin; Li Xinxin; Bao Haifei
2008-01-01
An integrated micro XY-stage with a 2 × 2 mm 2 movable table is designed and fabricated for application in nanometer-scale operation and nanometric positioning precision. The device integrates the functions of both actuating and sensing in a monolithic chip and is mainly composed of a silicon-based XY-stage, comb-drive actuator and a displacement sensor, which are developed by using double-sided bulk-micromachining technology. The high-aspect-ratio comb-driven XY-stage is achieved by deep reactive ion etching (DRIE) on both sides of the wafer. The displacement sensor is formed on four vertical sidewall surface piezoresistors with a full Wheatstone bridge circuit, where a novel fabrication process of a vertical sidewall surface piezoresistor is proposed. Comprehensive design and analysis of the comb actuator, the piezoresistive displacement sensor and the XY-stage are given in full detail, and the experimental results verify the design and fabrication of the device. The final realization of the device shows that the sensitivity of the fabricated piezoresistive sensors is better than 1.17 mV µm −1 without amplification, and the linearity is better than 0.814%. Under 28.5 V driving voltage, a ±10 µm single-axis displacement is measured without crosstalk and the resonant frequency is measured at 983 Hz in air
Primary amenorrhoea: Swyer syndrome in a woman with pure 46,XY ...
African Journals Online (AJOL)
patient who presented with primary amenorrhoea and primary infertility. She was a 24-year-old phenotypically female patient with a delayed diagnosis of Swyer syndrome. S Afr J Obstet Gynaecol 2015;21(1):16-17. DOI:10.7196/SAJOG.891. Primary amenorrhoea: Swyer syndrome in a woman with pure. 46,XY gonadal ...
A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.
Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou
2017-01-01
A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY -scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.
A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans
Directory of Open Access Journals (Sweden)
Xu Chen
2017-01-01
Full Text Available A new scan-head structure for the scanning tunneling microscope (STM is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan. They are fixed at one end (called common end. A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.
Experimental Insights into Ground-State Selection of Quantum XY Pyrochlores
Hallas, Alannah M.; Gaudet, Jonathan; Gaulin, Bruce D.
2018-03-01
Extensive experimental investigations of the magnetic structures and excitations in the XY pyrochlores have been carried out over the past decade. Three families of XY pyrochlores have emerged: Yb2B2O7, Er2B2O7, and, most recently, [Formula: see text]Co2F7. In each case, the magnetic cation (either Yb, Er, or Co) exhibits XY anisotropy within the local pyrochlore coordinates, a consequence of crystal field effects. Materials in these families display rich phase behavior and are candidates for exotic ground states, such as quantum spin ice, and exotic ground-state selection via order-by-disorder mechanisms. In this review, we present an experimental summary of the ground-state properties of the XY pyrochlores, including evidence that they are strongly influenced by phase competition. We empirically demonstrate the signatures for phase competition in a frustrated magnet: multiple heat capacity anomalies, suppressed TN or TC, sample- and pressure-dependent ground states, and unconventional spin dynamics.
Spontaneous magnetization of quantum XY-chain from finite chain form-factor
International Nuclear Information System (INIS)
Iorgov, N.Z.
2010-01-01
Using the explicit factorized formulas for matrix elements (form-factors) of the spin operators between vectors of the Hamiltonian of a finite quantum XY-chain in a transverse field, the spontaneous magnetization for σ x and σ y is re-derived in a simple way.
γ/δ T cell subsets in human aging using the classical α/β T cell model.
Vasudev, Anusha; Ying, Crystal Tan Tze; Ayyadhury, Shamini; Puan, Kia Joo; Andiappan, Anand Kumar; Nyunt, Ma Shwe Zin; Shadan, Nurhidaya Binte; Mustafa, Seri; Low, Ivy; Rotzschke, Olaf; Fulop, Tamas; Ng, Tze Pin; Larbi, Anis
2014-10-01
Aging is associated with an increased susceptibility to infections and diseases. It has also been associated with reduced functionality and altered distribution of immune cells, especially T cells. Whereas classical α/β T cells, especially CD8(+) T cells, were shown to be highly susceptible to aging, the effects of viral persistent stimulations on the fate of γ/δ T cells are much less documented. Healthy, elderly individuals of Chinese ethnical background were recruited under the aegis of SLAS-II. In this observational study, γ/δ T cell populations were characterized by flow cytometry and compared with the α/β CD4(+) and CD8(+) T cells in elderly and young controls. In our study, we identified a reduced frequency of γ/δ T cells but not α/β T cells with aging. The classical markers of α/β T cell aging, including CD28, CD27, and CD57, did not prove significant for γ/δ T cells. The extreme range of expression of these markers in γ/δ T cells was responsible for the lack of relationship between γ/δ T cell subsets, CD4/CD8 ratio, and anti-CMV titers that was significant for α/β T cells and, especially, CD8(+) T cells. Although markers of aging for γ/δ T cells are not clearly identified, our data collectively suggest that the presence of CD27 γ/δ T cells is associated with markers of α/β T cell aging. © 2014 Society for Leukocyte Biology.
Energy Technology Data Exchange (ETDEWEB)
Links, Jon, E-mail: jrl@maths.uq.edu.au
2017-03-15
Solutions of the classical Yang–Baxter equation provide a systematic method to construct integrable quantum systems in an algebraic manner. A Lie algebra can be associated with any solution of the classical Yang–Baxter equation, from which commuting transfer matrices may be constructed. This procedure is reviewed, specifically for solutions without skew-symmetry. A particular solution with an exotic symmetry is identified, which is not obtained as a limiting expansion of the usual Yang–Baxter equation. This solution facilitates the construction of commuting transfer matrices which will be used to establish the integrability of a multi-species boson tunnelling model. The model generalises the well-known two-site Bose–Hubbard model, to which it reduces in the one-species limit. Due to the lack of an apparent reference state, application of the algebraic Bethe Ansatz to solve the model is prohibitive. Instead, the Bethe Ansatz solution is obtained by the use of operator identities and tensor product decompositions.
Directory of Open Access Journals (Sweden)
Maryann Wilson
2013-01-01
Full Text Available BACKGROUND: The impact of a scientific article is proportional to the citations it has received. In this study, we set out to identify the most cited works in epileptology in order to evaluate research trends in this field. METHODS: According to the Web of Science database, articles with more than 400 citations qualify as "citation classics". We conducted a literature search on the ISI Web of Science bibliometric database for scientific articles relevant to epilepsy. RESULTS: We retrieved 67 highly cited articles (400 or more citations, which were published in 31 journals: 17 clinical studies, 42 laboratory studies, 5 reviews and 3 classification articles. Clinical studies consisted of epidemiological analyses (n=3, studies on the clinical phenomenology of epilepsy (n=5 – including behavioral and prognostic aspects – and articles focusing on pharmacological (n=6 and non-pharmacological (n=3 treatment. The laboratory studies dealt with genetics (n=6, animal models (n=27, and neurobiology (n=9 – including both neurophysiology and neuropathology studies. The majority (61% of citation classics on epilepsy were published after 1986, possibly reflecting the expansion of research interest in laboratory studies driven by the development of new methodologies, specifically in the fields of genetics and animal models. Consequently, clinical studies were highly cited both before and after the mid 80s, whilst laboratory researches became widely cited after 1990. CONCLUSIONS: Our study indicates that the main drivers of scientific impact in the field of epileptology have increasingly become genetic and neurobiological studies, along with research on animal models of epilepsy. These articles are able to gain the highest numbers of citations in the time span of a few years and suggest potential directions for future research.
Classical solutions and extended supergravity
International Nuclear Information System (INIS)
de Alfaro, V.; Fubini, S.; Furlan, G.
1980-03-01
The existence and properties of classical solutions for gravity coupled to matter fields have been investigated previously with the limitation to conformally flat solutions. In the search for a guiding criterion to determine the form of the coupling among the fields, one is led to consider supersymmetric theories, and the question arises whether classical solutions persist in these models. It is found that a discrepancy persists between supergravity and standard meron solutions. Owing to the appearance of the scalar field, a new set of meron solutions exists for particular Lagrangian models. In conclusion, the form of solutions in Minkowski space is discussed
From four- to two-channel Kondo effect in junctions of XY spin chains
Directory of Open Access Journals (Sweden)
Domenico Giuliano
2016-08-01
Full Text Available We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.
From four- to two-channel Kondo effect in junctions of XY spin chains
International Nuclear Information System (INIS)
Giuliano, Domenico; Sodano, Pasquale; Tagliacozzo, Arturo; Trombettoni, Andrea
2016-01-01
We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair) channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.
From four- to two-channel Kondo effect in junctions of XY spin chains
Energy Technology Data Exchange (ETDEWEB)
Giuliano, Domenico, E-mail: domenico.giuliano@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Arcavacata di Rende I-87036, Cosenza (Italy); INFN, Gruppo collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza (Italy); Sodano, Pasquale, E-mail: pasquale.sodano02@gmail.com [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Departemento de Física Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Tagliacozzo, Arturo, E-mail: arturo.tagliacozzo@na.infn.it [INFN, Gruppo collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza (Italy); Dipartimento di Fisica, Università di Napoli “Federico II”, Monte S. Angelo-Via Cintia, I-80126 Napoli (Italy); CNR-SPIN, Monte S. Angelo-Via Cintia, I-80126 Napoli (Italy); Trombettoni, Andrea, E-mail: andreatr@sissa.it [CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste (Italy); SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste (Italy)
2016-08-15
We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair) channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.
Directory of Open Access Journals (Sweden)
George P. Papaioannou
2016-08-01
Full Text Available In this work we propose a new hybrid model, a combination of the manifold learning Principal Components (PC technique and the traditional multiple regression (PC-regression, for short and medium-term forecasting of daily, aggregated, day-ahead, electricity system-wide load in the Greek Electricity Market for the period 2004–2014. PC-regression is shown to effectively capture the intraday, intraweek and annual patterns of load. We compare our model with a number of classical statistical approaches (Holt-Winters exponential smoothing of its generalizations Error-Trend-Seasonal, ETS models, the Seasonal Autoregressive Moving Average with exogenous variables, Seasonal Autoregressive Integrated Moving Average with eXogenous (SARIMAX model as well as with the more sophisticated artificial intelligence models, Artificial Neural Networks (ANN and Support Vector Machines (SVM. Using a number of criteria for measuring the quality of the generated in-and out-of-sample forecasts, we have concluded that the forecasts of our hybrid model outperforms the ones generated by the other model, with the SARMAX model being the next best performing approach, giving comparable results. Our approach contributes to studies aimed at providing more accurate and reliable load forecasting, prerequisites for an efficient management of modern power systems.
International Nuclear Information System (INIS)
Viridi, S.; Kurniadi, R.; Waris, A.; Perkasa, Y. S.
2012-01-01
Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between 1 H 2 and 1 H 3 is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary 2 He 4 nucleus.
Classical and quantum cosmology
Calcagni, Gianluca
2017-01-01
This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...
Classical mechanics with Mathematica
Romano, Antonio
2018-01-01
This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dyna...
Energy Technology Data Exchange (ETDEWEB)
Hassan, Ali Saif M [Department of Physics, University of Amran, Amran (Yemen); Lari, Behzad; Joag, Pramod S, E-mail: alisaif73@gmail.co, E-mail: behzadlari1979@yahoo.co, E-mail: pramod@physics.unipune.ac.i [Department of Physics, University of Pune, Pune 411007 (India)
2010-12-03
We investigate how thermal quantum discord (QD) and classical correlations (CC) of a two-qubit one-dimensional XX Heisenberg chain in thermal equilibrium depend on the temperature of the bath as well as on nonuniform external magnetic fields applied to two qubits and varied separately. We show that the behavior of QD differs in many unexpected ways from the thermal entanglement (EOF). For the nonuniform case (B{sub 1} = -B{sub 2}), we find that QD and CC are equal for all values of (B{sub 1} = -B{sub 2}) and for different temperatures. We show that, in this case, the thermal states of the system belong to a class of mixed states and satisfy certain conditions under which QD and CC are equal. The specification of this class and the corresponding conditions are completely general and apply to any quantum system in a state in this class satisfying these conditions. We further find that the relative contributions of QD and CC can be controlled easily by changing the relative magnitudes of B{sub 1} and B{sub 2}. Finally, we connect our results with the monogamy relations between the EOF, CC and the QD of two qubits and the environment.
Feingold, Alan
2009-01-01
The use of growth-modeling analysis (GMA)--including hierarchical linear models, latent growth models, and general estimating equations--to evaluate interventions in psychology, psychiatry, and prevention science has grown rapidly over the last decade. However, an effect size associated with the difference between the trajectories of the…
Classicality in quantum mechanics
International Nuclear Information System (INIS)
Dreyer, Olaf
2007-01-01
In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity
Classicality in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Dreyer, Olaf [Theoretical Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ (United Kingdom)
2007-05-15
In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity.
Filatrella, G
2002-01-01
The technology to build reproducible and accurately defined structures consisting of many lumped junctions has become available only recently, therefore extended investigations are relatively new. However, beside the interest of such discrete structures per se, it has been suggested soon after the discovery of high-T sub c superconductivity that granular superconductors might be modelled as superconducting islands surrounded by non-superconducting material and weakly coupled to each other. This program has been vigorously carried on, and models of planar Josephson junction arrays (JJAs) have been successfully used to mimic the magnetic behaviour of granular superconductors. The JJA model has been compared to continuous models of non-granular superconductors. We will show how to derive the height of pinning barriers in the JJA model and compare the results with the continuous model. In particular, the existence of current dependent activation energy has been proved to be a key characteristic to understand flux...
The Dirac equation in classical statistical mechanics
International Nuclear Information System (INIS)
Ord, G.N.
2002-01-01
The Dirac equation, usually obtained by 'quantizing' a classical stochastic model is here obtained directly within classical statistical mechanics. The special underlying space-time geometry of the random walk replaces the missing analytic continuation, making the model 'self-quantizing'. This provides a new context for the Dirac equation, distinct from its usual context in relativistic quantum mechanics
Classical planning and causal implicatures
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Benotti, Luciana
In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...... to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate...
46,XY female sex reversal syndrome with bilateral gonadoblastoma and dysgerminoma.
DU, Xue; Zhang, Xuhong; Li, Yongmei; Han, Yukun
2014-10-01
Sex reversal syndrome is a rare congenital condition of complete or disordered gonadal development leading to discordance between the genetic, gonadal and phenotypic sexes, including 46,XX and 46,XY. The gonadoblastoma on the Y-chromosome (GBY) region is associated with an increased risk of developing type II germ cell tumors/cancer. The present study reports a unique case of a phenotypically normal female (age 17 years), presenting with primary amenorrhea and later diagnosed with 46,XY female sex reversal syndrome. Following bilateral gonadectomy, bilateral gonadoblastoma and dysgerminoma were diagnosed. Thus, estrogen replacement therapy was administered periodically to promote the development of secondary sexual characteristics and menstruation, and to prevent osteoporosis. A four year follow-up showed no tumor recurrence and a regular menstrual cycle in this patient.
Mulheres XY e a Síndrome de Insensibilidade aos Andrógenos
Directory of Open Access Journals (Sweden)
João Edson Marques Bandeira
2015-06-01
Full Text Available Objective: The aims are to report a case of Androgen-Insensitivity Syndrome (AIS and discuss aspects of opportune diagnosis and treatment of AIS. Case Report: C.F.F., 35, sought medical assistance reporting overweight and hypertension. During the anamnesis did not present menarche; with normal breast development, but late, around 14 years. Physical examination shows normal female external genitalia, with scarce pubic hair (P2 and the absence of axillary hair; breasts with normal development (M5. Conclusions: The result of the G band karyotype was 46, XY for the sisters and the screening in relatives revealed prepubescent girl with XY karyotype. The risk of tumor development is difficult to be predicted recently markers were identified that may be useful in determining individual risk and suggest the time of gonadectomy. The current consensus on the approach related to intersex disorders recommends gonadectomy at diagnosis for patients with AIS, after puberty, due to the ease of hormone replacement.
Classical spins in superconductors
Energy Technology Data Exchange (ETDEWEB)
Shiba, H [Tokyo Univ.; Maki, K
1968-08-01
It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.
Valley, Lois
1989-01-01
The SPS product, Classic-Ada, is a software tool that supports object-oriented Ada programming with powerful inheritance and dynamic binding. Object Oriented Design (OOD) is an easy, natural development paradigm, but it is not supported by Ada. Following the DOD Ada mandate, SPS developed Classic-Ada to provide a tool which supports OOD and implements code in Ada. It consists of a design language, a code generator and a toolset. As a design language, Classic-Ada supports the object-oriented principles of information hiding, data abstraction, dynamic binding, and inheritance. It also supports natural reuse and incremental development through inheritance, code factoring, and Ada, Classic-Ada, dynamic binding and static binding in the same program. Only nine new constructs were added to Ada to provide object-oriented design capabilities. The Classic-Ada code generator translates user application code into fully compliant, ready-to-run, standard Ada. The Classic-Ada toolset is fully supported by SPS and consists of an object generator, a builder, a dictionary manager, and a reporter. Demonstrations of Classic-Ada and the Classic-Ada Browser were given at the workshop.
Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael
2017-01-01
We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.
Scaling of quantum Fisher information close to the quantum phase transition in the XY spin chain
Energy Technology Data Exchange (ETDEWEB)
Ye, En-Jia, E-mail: yeenjia@jiangnan.edu.cn [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Hu, Zheng-Da [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Wu, Wei [Zhejiang Institute of Modern Physics and Physics Department, Zhejiang University, Hangzhou 310027 (China)
2016-12-01
The quantum phase transition of an XY spin chain is investigated by employing the quantum Fisher information encoded in the ground state. It is shown that the quantum Fisher information is an effective tool for characterizing the quantum criticality. The quantum Fisher information, its first and second derivatives versus the transverse field display the phenomena of sudden transition, sudden jump and divergence, respectively. Besides, the analysis of finite size scaling for the second derivative of quantum Fisher information is performed.
Design of X-Y steering magnet for extraction beamline of K-500 superconducting cyclotron
International Nuclear Information System (INIS)
Naser, Md. Zamal A.; Paul, S.; Bhunia, U.; Pradhan, J.; Dey, M.K.; Nandi, C.; Mallik, C.; Bhandari, R.K.
2005-01-01
The K-500 Superconducting Cyclotron is in the advanced stage of commissioning at VEC Centre, Kolkata. This accelerator is designed to accelerate up to maximum 80 MeV/nucleon energy. A X-Y steering magnet is essential to guide this high energy beam into the external high energy beam line. This paper describes the designing and the other related necessary aspects of such a steering magnet. (author)
Tata Laksana Kasus Perempuan dengan Pure Gonadal Dysgenesis 46, XY (Sindrom Swyer)
Kanadi Sumapradja; Mila Maidarti; Achmad K. Harzif; Budi Wiweko; Gita Pratama; Muharam Natadisastra; Andon Hestiantoro
2016-01-01
Disorders of sex development (DSD) adalah kelainan medis yang dikaitkan dengan ketidakcocokan antara kromosom, gonad dan fenotip. Sindrom Swyer adalah kelainan berupa disgenesis gonad 46,XY dan diikuti dengan tidak terjadinya pelepasan anti-mullerian hormone (AMH) dari gonad yang mengalami disgenesis sehingga mengakibatkan berkembangnya duktus muller menjadi uterus. Keadaan tersebut mengakibatkan pasien mengeluh amenorea primer dan organ seks sekunder tidak berkembang. Orientasi gender umumn...
High-fidelity state transfer over an unmodulated linear XY spin chain
International Nuclear Information System (INIS)
Bishop, C. Allen; Ou Yongcheng; Byrd, Mark S.; Wang Zhaoming
2010-01-01
We provide a class of initial encodings that can be sent with a high fidelity over an unmodulated, linear, XY spin chain. As an example, an average fidelity of 96% can be obtained using an 11-spin encoding to transmit a state over a chain containing 10 000 spins. An analysis of the magnetic-field dependence is given, and conditions for field optimization are provided.
XX/XY system of sex determination in the geophilomorph centipede Strigamia maritima
Czech Academy of Sciences Publication Activity Database
Green, J. E.; Dalíková, Martina; Sahara, K.; Marec, František; Akam, M.
2016-01-01
Roč. 11, č. 2 (2016), č. článku e0150292. E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA600960925; GA ČR(CZ) GA14-22765S Institutional support: RVO:60077344 Keywords : sex determination * Strigamia maritima * XX/XY system Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150292
The size effect of the quantum coherence in the transverse-field XY chain
Energy Technology Data Exchange (ETDEWEB)
Wang, Lu; Yang, Cui-hong; Wang, Jun-feng [Department of Physics, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Lei, Shu-guo, E-mail: sglei@njtech.edu.cn [College of Science, Nanjing Tech University, Nanjing, 211816 (China)
2016-12-15
Based on the Wigner–Yanase skew information, the size effect of the quantum coherence in the ground state of the finite transverse-field spin-1/2 XY chain is explored. It is found that the first-order derivatives of the single-spin coherence and the two-spin local coherence both have scaling behaviors in the vicinity of the critical point. A simplified version of coherence is also studied and the same characteristics with its counterpart are found.
Distribution of sex chromosomes (XY) in lymphocyte metaphase spreads of dairy bulls
Kotikalapudi Rosaiah; Patel Rajesh Kumar; Medidi Hemanth; Sugali Nagaraju Naik
2013-01-01
Position of autosome and sex chromosomes in metaphase spreads is grate concerned of Cytogeneticians worldwide to understand cell biology. A few isolated studies have been conducted for the distribution of chromosomes in metaphase spread. Our studies reveal that most sex chromosomes (XY) remain on periphery and semi-periphery, 84.16% for X and 86.97% for Y respectively, in round metaphase spreads. The application of sex chromosome position in metaphase sprea...
Thermodynamical properties of random spin-1/2 XY chain with Dzyaloshinskii-Moriya interaction
International Nuclear Information System (INIS)
Derzhko, O.; Krokhmalskii, T.; Verkholyak, T.
1995-07-01
For computation of the equilibrium statistical properties of finite spin-1/2 XY chains with Dzyaloshinskii-Moriya interaction the suggested earlier approach (JMMM 140-144 (1995) 1623) is generalized. It is applied for calculation of transverse dynamical susceptibility of spin-1/2 Ising chain in non-random and random Gaussian transverse field with Dzyaloshinskii-Moriya interaction. (author). 7 refs, 2 figs
Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.
2010-05-01
varies from strata- to structure-bound and occurs above regional unconformities. The Proterozoic basins in the Mount Isa Inlier rest unconformably on Palaeoproterozoic basement accompanied by volcanic and igneous rocks, which were deformed and metamorphosed in the Mesoproterozoic. Uranium occurrences in the Western Succession of Mount Isa are either hosted in clastic metasediments or mafic volcanics that belong to the Palaeoproterozoic Eastern Creek Volcanics. Uranium and vanadium mineralization occur in metasomatised and hematite-magnetite-carbonate alteration zones, bounded by major faults and regional unconformities. The results of this study highlight the importance of unconformities in uranium minerals systems as possible fluid pathways and/or surfaces of physico-chemical contrast that could have facilitated the precipitation of uranium, not only in classical unconformity style uranium deposits but in several other styles of uranium mineralization as well. References Cuney, M., 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44, 3-9. Dahlkamp, F. J., 1993. Uranium ore deposits. Springer, Berlin, p 460. OECD / NEA Red Book & IAEA, 2000. Uranium 1999: Resources, Production and Demand. OECD Nuclear Energy Agency and International Atomic Energy Agency, Paris.
Gender role behavior in children with XY karyotype and disorders of sex development.
Jürgensen, Martina; Hiort, Olaf; Holterhus, Paul-Martin; Thyen, Ute
2007-03-01
Children exhibit gender-typical preferences in play, toys, activities and interests, and playmates. Several studies suggest that high concentrations of pre- and postnatal androgens contribute to male-typical behavior development, whereas female-typical behavior develops in the absence of high androgens levels. This study aims to explore the consequences of hypoandrogenization on gender-typical behavior in children who have an XY karyotype and disorder of sex development (DSD). Participants included 33 children (ages 2-12 years) with an XY karyotype and DSD; 21 reared as girls and 12 reared as boys. Children's preferred activities and interests and playmate preferences were assessed with parent report questionnaires, a structured free-play task, and choice of a toy to keep as a gift. Participant's responses were compared to those of children recruited in a pre-school and elementary school survey (N=166). In this study, the degree of hypoandrogenization as indicated by genital stage and diagnosis showed a significant relationship to nearly all of the gender-related behaviors assessed, supporting the hypothesis that masculinization of gender role behavior is a function of prenatal androgen exposure. Despite the fact that children with partial androgen effects reared as girls showed increased "boyish" behaviors, they did not show increased signs of gender identity confusion or instability on a group level. We conclude that androgen exposure plays a decisive role in the development of gender-typical behavior in children with XY karyotype and DSD conditions.
Behavioural Problems in Children with 46XY Disorders of Sex Development
Directory of Open Access Journals (Sweden)
Nalini M. Selveindran
2017-01-01
Full Text Available The aim of this study is to determine the behavioural problems of children with 46XY disorders of sex development (DSD with genital ambiguity and to identify the risk factors that may influence behaviour. The 27 participants (aged 6–18 years consisted of 21 patients raised as boys and 6 patients raised as girls. Control data were obtained from a representative sibling of each patient who was matched for age and gender. The study tool used was the Child Behaviour Checklist (CBCL, which is a parent-administered questionnaire. The analysis of the behavioural scores revealed that the patient group had poorer scores in the total, externalizing, and internalizing realms. This group also had poorer scores in the anxious-depressed, social, and rule-breaking realms as compared to the control group. In addition, the XY-F group had higher scores (more pathological than the XY-M group, although the difference in the scores was not statistically significant. A comparison of the prevalence of patients with scores in the clinical range with that of the control group was not statistically significant. These findings support the current recommendations that psychological counselling should be an integral part of the professional support offered to patients with DSD.
Existence and uniqueness of Gibbs states for a statistical mechanical polyacetylene model
International Nuclear Information System (INIS)
Park, Y.M.
1987-01-01
One-dimensional polyacetylene is studied as a model of statistical mechanics. In a semiclassical approximation the system is equivalent to a quantum XY model interacting with unbounded classical spins in one-dimensional lattice space Z. By establishing uniform estimates, an infinite-volume-limit Hilbert space, a strongly continuous time evolution group of unitary operators, and an invariant vector are constructed. Moreover, it is proven that any infinite-limit state satisfies Gibbs conditions. Finally, a modification of Araki's relative entropy method is used to establish the uniqueness of Gibbs states
Ben Hadj Hmida, Imen; Mougou-Zerelli, Soumaya; Hadded, Anis; Dimassi, Sarra; Kammoun, Molka; Bignon-Topalovic, Joelle; Bibi, Mohamed; Saad, Ali; Bashamboo, Anu; McElreavey, Ken
2016-07-01
To determine the genetic cause of 46,XY primary amenorrhea in three 46,XY girls. Whole exome sequencing. University cytogenetics center. Three patients with unexplained 46,XY primary amenorrhea were included in the study. Potentially pathogenic variants were confirmed by Sanger sequencing, and familial segregation was determined where parents' DNA was available. Exome sequencing was performed in the three patients, and the data were analyzed for potentially pathogenic mutations. The functional consequences of mutations were predicted. Three novel homozygous nonsense mutations in the luteinizing hormone receptor (LHCGR) gene were identified:c.1573 C→T, p.Gln525Ter, c.1435 C→T p.Arg479Ter, and c.508 C→T, p.Gln170Ter. Inactivating mutations of the LHCGR gene may be a more common cause of 46,XY primary amenorrhea than previously considered. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Mutihac, R.; Mutihac, R.C.; Cicuttin, A.
2001-09-01
Parameter-search methods are problem-sensitive. All methods depend on some meta-parameters of their own, which must be determined experimentally in advance. A better choice of these intrinsic parameters for a certain parameter-search method may improve its performance. Moreover, there are various implementations of the same method, which may also affect its performance. The choice of the matching (error) function has a great impact on the search process in terms of finding the optimal parameter set and minimizing the computational cost. An initial assessment of the matching function ability to distinguish between good and bad models is recommended, before launching exhaustive computations. However, different runs of a parameter search method may result in the same optimal parameter set or in different parameter sets (the model is insufficiently constrained to accurately characterize the real system). Robustness of the parameter set is expressed by the extent to which small perturbations in the parameter values are not affecting the best solution. A parameter set that is not robust is unlikely to be physiologically relevant. Robustness can also be defined as the stability of the optimal parameter set to small variations of the inputs. When trying to estimate things like the minimum, or the least-squares optimal parameters of a nonlinear system, the existence of multiple local minima can cause problems with the determination of the global optimum. Techniques such as Newton's method, the Simplex method and Least-squares Linear Taylor Differential correction technique can be useful provided that one is lucky enough to start sufficiently close to the global minimum. All these methods suffer from the inability to distinguish a local minimum from a global one because they follow the local gradients towards the minimum, even if some methods are resetting the search direction when it is likely to get stuck in presumably a local minimum. Deterministic methods based on
Directory of Open Access Journals (Sweden)
M Wolkewitz
2008-01-01
Full Text Available Background In addition to the close contact between patients and medical staff, the contamination of surfaces plays an important role in the transmission of pathogens such as vancomycin-resistant enterococci (VRE. Mathematical modeling is a very convenient tool for hospital infection control as it allows the quantitative prediction of the effects of special hygiene and control interventions. Methods We present a compartmental model which describes the dynamics of transmission from patient to patient, also taking into account the interaction with medical staff and environmental contamination. Empirical data from a VRE outbreak in the onco-haematological unit at the University Medical Center Freiburg (Germany were collected with 100 consecutive admissions being followed up for 90 days. Stochastical simulations were used to predict the prevalence of patients colonised with VRE at the time when at least one of the following interventions were introduced: hand hygiene, disinfection of surfaces, cohorting, screening and antibiotic reduction. Results Graphical figures show the temporal dynamics of several simulation scenarios. If no prevention or intervention is present, simulations based on transmission models predict an expected endemic prevalence per ward of 0.83 (95% CI:0.66, 1.00 after the first infected person enters the unit. Interventions may reduce this prevalence, but only the combination of several interventions can control a VRE outbreak. Conclusions The model predicts that only the combination of several interventions can control an VRE outbreak in this setting. The inclusion of environmental contamination improves the compartmental model and allows a prediction of the efficacy of the disinfection of surfaces. These results can be applied to other settings and will therefore help to understand and control the spread of nosocomial pathogens.
Quantum remnants in the classical limit
International Nuclear Information System (INIS)
Kowalski, A.M.; Plastino, A.
2016-01-01
We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.
Quantum remnants in the classical limit
Energy Technology Data Exchange (ETDEWEB)
Kowalski, A.M., E-mail: kowalski@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Comision de Investigaciones Científicas (CIC) (Argentina); Plastino, A., E-mail: plastino@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Argentina' s National Research Council (CONICET) (Argentina); SThAR, EPFL Innovation Park, Lausanne (Switzerland)
2016-09-16
We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.
Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field
Energy Technology Data Exchange (ETDEWEB)
Yeo Ye [Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Liu Tongqi [Department of Engineering, Trumpington Street, Cambridge CB3 1PZ (United Kingdom); Lu Yuen [Computer Laboratory, William Gates Building, 15 J J Thomson Avenue, Cambridge CB3 0FD (United Kingdom); Yang Qizhong [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)
2005-04-08
In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains.
Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field
International Nuclear Information System (INIS)
Yeo Ye; Liu Tongqi; Lu Yuen; Yang Qizhong
2005-01-01
In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains
Bounceur, Nabila; Crucifix, Michel
2010-05-01
The climate is a multivariable dynamic complex system, governed by equations which are strongly nonlinear. The space-time modes of climatic variability extend on a very broad scale and constitute a major difficulty to represent this variability over long time-scales. It is generally decided to separate the dynamics of the slow components (ice sheets, carbon cycle, deep oceans) which have a time scale of about thousand of years and more, from those of the fast components (atmosphere, mixed layer, earth and ice surface) for which the time scale is for about some years. In this framework, the time-evolution of the slow components depends on the statistics of the fast components, and the latter are controlled by the slow components and the external forcing particularly astronomical ones characterised by the variation of the orbital parameters: Obliquity, precession and eccentricity. The statistics of the fast components of the climate could in principle be estimated with a general circulation model of the atmosphere and ocean. However, the demand on computing resources would be far too excessive. Given the complexity of the climatic system, the great number of dynamic equations which govern it and its degree of nonlinearity we are interested in the statistical reduction rather than an analytical one. The order reduction problem is equivalent to approximator construction. We will focus on neural networks because they constitute very powerful estimators in presence of non-linearity. The training of this network would be done using the output of the climate model of intermediate complexity "LoveClim" developed and available in the Institute of Astronomy and Geophysics G.Lemaître in Belgium as a first step of statistical reduction. The output of the model are first reduced using different methods of reduction order going from linear ones as principal component analysis (PCA) and empirical orthogonal functions (EOF) to non linear ones as Non Linear Principal component
A NEW ANALYSIS OF THE TWO CLASSICAL ZZ CETI WHITE DWARFS GD 165 AND ROSS 548. II. SEISMIC MODELING
International Nuclear Information System (INIS)
Giammichele, N.; Fontaine, G.; Brassard, P.; Charpinet, S.
2016-01-01
We present the second of a two-part seismic analysis of the bright, hot ZZ Ceti stars GD 165 and Ross 548. In this second part, we report the results of detailed searches in parameter space for identifying an optimal model for each star that can account well for the observed periods, while being consistent with the spectroscopic constraints derived in our first paper. We find optimal models for each target that reproduce the six observed periods well within ∼0.3% on the average. We also find that there is a sensitivity on the core composition for Ross 548, while there is practically none for GD 165. Our optimal model of Ross 548, with its thin envelope, indeed shows weight functions for some confined modes that extend relatively deep into the interior, thus explaining the sensitivity of the period spectrum on the core composition in that star. In contrast, our optimal seismic model of its spectroscopic sibling, GD 165 with its thick envelope, does not trap/confine modes very efficiently, and we find weight functions for all six observed modes that do not extend into the deep core, hence accounting for the lack of sensitivity in that case. Furthermore, we exploit after the fact the observed multiplet structure that we ascribe to rotation. We are able to map the rotation profile in GD 165 (Ross 548) over the outermost ∼20% (∼5%) of its radius, and we find that the profile is consistent with solid-body rotation
Qin, Yuming
2016-01-01
This book presents recent findings on the global existence, the uniqueness and the large-time behavior of global solutions of thermo(vis)coelastic systems and related models arising in physics, mechanics and materials science such as thermoviscoelastic systems, thermoelastic systems of types II and III, as well as Timoshenko-type systems with past history. Part of the book is based on the research conducted by the authors and their collaborators in recent years. The book will benefit interested beginners in the field and experts alike.
Directory of Open Access Journals (Sweden)
Nelson Maculan
2003-01-01
Full Text Available We present integer linear models with a polynomial number of variables and constraints for combinatorial optimization problems in graphs: optimum elementary cycles, optimum elementary paths and optimum tree problems.Apresentamos modelos lineares inteiros com um número polinomial de variáveis e restrições para problemas de otimização combinatória em grafos: ciclos elementares ótimos, caminhos elementares ótimos e problemas em árvores ótimas.
Crowder, Martin J
2001-01-01
If something can fail, it can often fail in one of several ways and sometimes in more than one way at a time. There is always some cause of failure, and almost always, more than one possible cause. In one sense, then, survival analysis is a lost cause. The methods of Competing Risks have often been neglected in the survival analysis literature. Written by a leading statistician, Classical Competing Risks thoroughly examines the probability framework and statistical analysis of data of Competing Risks. The author explores both the theory of the subject and the practicalities of fitting the models to data. In a coherent, self-contained, and sequential account, the treatment moves from the bare bones of the Competing Risks setup and the associated likelihood functions through survival analysis using hazard functions. It examines discrete failure times and the difficulties of identifiability, and concludes with an introduction to the counting-process approach and the associated martingale theory.With a dearth of ...
Supersymmetric classical mechanics
International Nuclear Information System (INIS)
Biswas, S.N.; Soni, S.K.
1986-01-01
The purpose of the paper is to construct a supersymmetric Lagrangian within the framework of classical mechanics which would be regarded as a candidate for passage to supersymmetric quantum mechanics. 5 refs. (author)
Mathematical physics classical mechanics
Knauf, Andreas
2018-01-01
As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.
Botyánszki, János; Kasen, Daniel; Plewa, Tomasz
2018-01-01
The classic single-degenerate model for the progenitors of Type Ia supernova (SN Ia) predicts that the supernova ejecta should be enriched with solar-like abundance material stripped from the companion star. Spectroscopic observations of normal SNe Ia at late times, however, have not resulted in definite detection of hydrogen. In this Letter, we study line formation in SNe Ia at nebular times using non-LTE spectral modeling. We present, for the first time, multidimensional radiative transfer calculations of SNe Ia with stripped material mixed in the ejecta core, based on hydrodynamical simulations of ejecta–companion interaction. We find that interaction models with main-sequence companions produce significant Hα emission at late times, ruling out these types of binaries being viable progenitors of SNe Ia. We also predict significant He I line emission at optical and near-infrared wavelengths for both hydrogen-rich or helium-rich material, providing an additional observational probe of stripped ejecta. We produce models with reduced stripped masses and find a more stringent mass limit of M st ≲ 1 × 10‑4 M ⊙ of stripped companion material for SN 2011fe.
Mattsson, Thomas R.; Jones, Reese; Ward, Donald; Spataru, Catalin; Shulenburger, Luke; Benedict, Lorin X.
2015-06-01
Window materials are ubiquitous in shock physics and with high energy density drivers capable of reaching multi-Mbar pressures the use of LiF is increasing. Velocimetry and temperature measurements of a sample through a window are both influenced by the assumed index of refraction and thermal conductivity, respectively. We report on calculations of index of refraction using the many-body theory GW and thermal ionic conductivity using linear response theory and model potentials. The results are expected to increase the accuracy of a broad range of high-pressure shock- and ramp compression experiments. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Directory of Open Access Journals (Sweden)
Huiming Zhu
2014-01-01
Full Text Available We focus on the expected discounted penalty function of a compound Poisson risk model with random incomes and potentially delayed claims. It is assumed that each main claim will produce a byclaim with a certain probability and the occurrence of the byclaim may be delayed depending on associated main claim amount. In addition, the premium number process is assumed as a Poisson process. We derive the integral equation satisfied by the expected discounted penalty function. Given that the premium size is exponentially distributed, the explicit expression for the Laplace transform of the expected discounted penalty function is derived. Finally, for the exponential claim sizes, we present the explicit formula for the expected discounted penalty function.
Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations
Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei
2017-02-01
Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.
Lin, Chung-Ying; Broström, Anders; Nilsen, Per; Griffiths, Mark D; Pakpour, Amir H
2017-12-01
Background and aims The Bergen Social Media Addiction Scale (BSMAS), a six-item self-report scale that is a brief and effective psychometric instrument for assessing at-risk social media addiction on the Internet. However, its psychometric properties in Persian have never been examined and no studies have applied Rasch analysis for the psychometric testing. This study aimed to verify the construct validity of the Persian BSMAS using confirmatory factor analysis (CFA) and Rasch models among 2,676 Iranian adolescents. Methods In addition to construct validity, measurement invariance in CFA and differential item functioning (DIF) in Rasch analysis across gender were tested for in the Persian BSMAS. Results Both CFA [comparative fit index (CFI) = 0.993; Tucker-Lewis index (TLI) = 0.989; root mean square error of approximation (RMSEA) = 0.057; standardized root mean square residual (SRMR) = 0.039] and Rasch (infit MnSq = 0.88-1.28; outfit MnSq = 0.86-1.22) confirmed the unidimensionality of the BSMAS. Moreover, measurement invariance was supported in multigroup CFA including metric invariance (ΔCFI = -0.001; ΔSRMR = 0.003; ΔRMSEA = -0.005) and scalar invariance (ΔCFI = -0.002; ΔSRMR = 0.005; ΔRMSEA = 0.001) across gender. No item displayed DIF (DIF contrast = -0.48 to 0.24) in Rasch across gender. Conclusions Given the Persian BSMAS was unidimensional, it is concluded that the instrument can be used to assess how an adolescent is addicted to social media on the Internet. Moreover, users of the instrument may comfortably compare the sum scores of the BSMAS across gender.
Maffei, Giovanni; Santos-Pata, Diogo; Marcos, Encarni; Sánchez-Fibla, Marti; Verschure, Paul F M J
2015-12-01
Animals successfully forage within new environments by learning, simulating and adapting to their surroundings. The functions behind such goal-oriented behavior can be decomposed into 5 top-level objectives: 'how', 'why', 'what', 'where', 'when' (H4W). The paradigms of classical and operant conditioning describe some of the behavioral aspects found in foraging. However, it remains unclear how the organization of their underlying neural principles account for these complex behaviors. We address this problem from the perspective of the Distributed Adaptive Control theory of mind and brain (DAC) that interprets these two paradigms as expressing properties of core functional subsystems of a layered architecture. In particular, we propose DAC-X, a novel cognitive architecture that unifies the theoretical principles of DAC with biologically constrained computational models of several areas of the mammalian brain. DAC-X supports complex foraging strategies through the progressive acquisition, retention and expression of task-dependent information and associated shaping of action, from exploration to goal-oriented deliberation. We benchmark DAC-X using a robot-based hoarding task including the main perceptual and cognitive aspects of animal foraging. We show that efficient goal-oriented behavior results from the interaction of parallel learning mechanisms accounting for motor adaptation, spatial encoding and decision-making. Together, our results suggest that the H4W problem can be solved by DAC-X building on the insights from the study of classical and operant conditioning. Finally, we discuss the advantages and limitations of the proposed biologically constrained and embodied approach towards the study of cognition and the relation of DAC-X to other cognitive architectures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Voss, Clifford I.; Soliman, Safaa M.
2014-03-01
Parsimonious groundwater modeling provides insight into hydrogeologic functioning of the Nubian Aquifer System (NAS), the world's largest non-renewable groundwater system (belonging to Chad, Egypt, Libya, and Sudan). Classical groundwater-resource issues exist (magnitude and lateral extent of drawdown near pumping centers) with joint international management questions regarding transboundary drawdown. Much of NAS is thick, containing a large volume of high-quality groundwater, but receives insignificant recharge, so water-resource availability is time-limited. Informative aquifer data are lacking regarding large-scale response, providing only local-scale information near pumps. Proxy data provide primary underpinning for understanding regional response: Holocene water-table decline from the previous pluvial period, after thousands of years, results in current oasis/sabkha locations where the water table still intersects the ground. Depletion is found to be controlled by two regional parameters, hydraulic diffusivity and vertical anisotropy of permeability. Secondary data that provide insight are drawdowns near pumps and isotope-groundwater ages (million-year-old groundwaters in Egypt). The resultant strong simply structured three-dimensional model representation captures the essence of NAS regional groundwater-flow behavior. Model forecasts inform resource management that transboundary drawdown will likely be minimal—a nonissue—whereas drawdown within pumping centers may become excessive, requiring alternative extraction schemes; correspondingly, significant water-table drawdown may occur in pumping centers co-located with oases, causing oasis loss and environmental impacts.
Joshi, M S; Bernard, D B
1999-08-01
In recent years, health and disease management has emerged as an effective means of delivering, integrating, and improving care through a population-based approach. Since 1997 the University of Pennsylvania Health System (UPHS) has utilized the key principles and components of continuous quality improvement (CQI) and disease management to form a model for health care improvement that focuses on designing best practices, using best practices to influence clinical decision making, changing processes and systems to deploy and deliver best practices, and measuring outcomes to improve the process. Experience with 28 programs and more than 14,000 patients indicates significant improvement in outcomes, including high physician satisfaction, increased patient satisfaction, reduced costs, and improved clinical process and outcome measures across multiple diseases. DIABETES DISEASE MANAGEMENT: In three months a UPHS multidisciplinary diabetes disease management team developed a best practice approach for the treatment of all patients with diabetes in the UPHS. After the program was pilot tested in three primary care physician sites, it was then introduced progressively to additional practice sites throughout the health system. The establishment of the role of the diabetes nurse care managers (certified diabetes educators) was central to successful program deployment. Office-based coordinators ensure incorporation of the best practice protocols into routine flow processes. A disease management intranet disseminates programs electronically. Outcomes of the UPHS health and disease management programs so far demonstrate success across multiple dimensions of performance-service, clinical quality, access, and value. The task of health care leadership today is to remove barriers and enable effective implementation of key strategies, such as health and disease management. Substantial effort and resources must be dedicated to gain physician buy-in and achieve compliance. The
Gamado, Kokouvi; Marion, Glenn; Porphyre, Thibaud
2017-01-01
Livestock epidemics have the potential to give rise to significant economic, welfare, and social costs. Incursions of emerging and re-emerging pathogens may lead to small and repeated outbreaks. Analysis of the resulting data is statistically challenging but can inform disease preparedness reducing potential future losses. We present a framework for spatial risk assessment of disease incursions based on data from small localized historic outbreaks. We focus on between-farm spread of livestock pathogens and illustrate our methods by application to data on the small outbreak of Classical Swine Fever (CSF) that occurred in 2000 in East Anglia, UK. We apply models based on continuous time semi-Markov processes, using data-augmentation Markov Chain Monte Carlo techniques within a Bayesian framework to infer disease dynamics and detection from incompletely observed outbreaks. The spatial transmission kernel describing pathogen spread between farms, and the distribution of times between infection and detection, is estimated alongside unobserved exposure times. Our results demonstrate inference is reliable even for relatively small outbreaks when the data-generating model is known. However, associated risk assessments depend strongly on the form of the fitted transmission kernel. Therefore, for real applications, methods are needed to select the most appropriate model in light of the data. We assess standard Deviance Information Criteria (DIC) model selection tools and recently introduced latent residual methods of model assessment, in selecting the functional form of the spatial transmission kernel. These methods are applied to the CSF data, and tested in simulated scenarios which represent field data, but assume the data generation mechanism is known. Analysis of simulated scenarios shows that latent residual methods enable reliable selection of the transmission kernel even for small outbreaks whereas the DIC is less reliable. Moreover, compared with DIC, model choice
Classical-driving-assisted entanglement dynamics control
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ying-Jie, E-mail: yingjiezhang@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Han, Wei [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Xia, Yun-Jie, E-mail: yjxia@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing, 100190 (China)
2017-04-15
We propose a scheme of controlling entanglement dynamics of a quantum system by applying the external classical driving field for two atoms separately located in a single-mode photon cavity. It is shown that, with a judicious choice of the classical-driving strength and the atom–photon detuning, the effective atom–photon interaction Hamiltonian can be switched from Jaynes–Cummings model to anti-Jaynes–Cummings model. By tuning the controllable atom–photon interaction induced by the classical field, we illustrate that the evolution trajectory of the Bell-like entanglement states can be manipulated from entanglement-sudden-death to no-entanglement-sudden-death, from no-entanglement-invariant to entanglement-invariant. Furthermore, the robustness of the initial Bell-like entanglement can be improved by the classical driving field in the leaky cavities. This classical-driving-assisted architecture can be easily extensible to multi-atom quantum system for scalability.
Gowrishankar, Lavanya; Bhaskar, Vidhyacharan; Sundarammal, K.
2018-04-01
The developed model comprises of a single server capable of handling two different job types X and Y type job. Job Y takes more time for execution than job X. The objective is to construct a single server which would replace the standard M/M/2 queuing model The method used to find the relative measures involves the cost equation. The properties of the service distribution are discussed in detail. The maximum likelihood estimates for the parameters are obtained. The results are analytically derived for the M/Geo[xy]/1 model. A comparison is done between the model proposed and the standard M/M/2 queue. From the numerical results, it is observed that the waiting time in queue increases as the number of cycles is increased but however it is more economical than the M/M/2 model with restriction on the number of time slices.
Disentanglement of two qubits coupled to an XY spin chain: Role of quantum phase transition
International Nuclear Information System (INIS)
Yuan Zigang; Li Shushen; Zhang Ping
2007-01-01
We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed
DEFF Research Database (Denmark)
Brincker, Benedikte
The last book Anthony D. Smith wrote before he died, and which will be published in Spring 2017, has the title Nation and Classical Music. Smith had for a long time been intrigued by the intimate relationship between the nation and classical music. At the most manifest level it involves...... them into their compositions thus challenging the romantic musical style searching for an authentic national musical expression. Against the backdrop of the extensive research carried out by Anthony Smith into the relationship between the nation and classical music, the present paper seeks to add...... cultural centers. In doing this, the paper seeks to unfold how composers channeled musical inspiration embedded in cultural environments that cut across national boundaries into national musical traditions thus catering to specific national audiences. The paper is written as a tribute to a great mentor...
Twisted classical Poincare algebras
International Nuclear Information System (INIS)
Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.
1993-11-01
We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)
Dynamics of quantum-classical differences for chaotic systems
International Nuclear Information System (INIS)
Ballentine, L.E.
2002-01-01
The differences between quantum and classical dynamics can be studied through the moments and correlations of the position and momentum variables in corresponding quantum and classical statistical states. In chaotic states the quantum-classical differences grow exponentially with an exponent that exceeds the classical Lyapunov exponent. It is shown analytically that the quantum-classical differences scale as (ℎ/2π) 2 , and that the exponent for the growth of these differences is independent of (ℎ/2π). The quantum-classical difference exponent is studied for two quartic potential models, and the results are compared with previous work on the Henon-Heiles model
Classical mechanics with Maxima
Timberlake, Todd Keene
2016-01-01
This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.
Iselin, F Christoph
1996-01-01
Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Clas Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty.
Learning Classical Music Club
2010-01-01
There is a new CERN Club called “Learning Classical Music at CERN”. We are aiming to give classical music lessons for different instruments (see link) for students from 5 to 100 years old. We are now ready to start our activities in the CERN barracks. We are now in the enrollment phase and hope to start lessons very soon ! Club info can be found in the list of CERN Club: http://user.web.cern.ch/user/Communication/SocialLifeActivities/Clubs/Clubs.html Salvatore Buontempo Club President
International Nuclear Information System (INIS)
Starrfield, S.G.
1988-01-01
The classical nova outburst occurs on the white dwarf component in a close binary system. Nova systems are members of the general class of cataclysmic variables and other members of the class are the Dwarf Novae, AM Her variables, Intermediate Polars, Recurrent Novae, and some of the Symbiotic variables. Although multiwavelength observations have already provided important information about all of these systems, in this review I will concentrate on the outbursts of the classical and recurrent novae and refer to other members of the class only when necessary. 140 refs., 1 tab
Elementary classical hydrodynamics
Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C
1967-01-01
Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c
Classic Problems of Probability
Gorroochurn, Prakash
2012-01-01
"A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin
Fluctuations of wavefunctions about their classical average
International Nuclear Information System (INIS)
Benet, L; Flores, J; Hernandez-Saldana, H; Izrailev, F M; Leyvraz, F; Seligman, T H
2003-01-01
Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics
A quantum model of option pricing: When Black-Scholes meets Schrödinger and its semi-classical limit
Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo; Ruiz, Aaron
2010-12-01
The Black-Scholes equation can be interpreted from the point of view of quantum mechanics, as the imaginary time Schrödinger equation of a free particle. When deviations of this state of equilibrium are considered, as a product of some market imperfection, such as: Transaction cost, asymmetric information issues, short-term volatility, extreme discontinuities, or serial correlations; the classical non-arbitrage assumption of the Black-Scholes model is violated, implying a non-risk-free portfolio. From Haven (2002) [1] we know that an arbitrage environment is a necessary condition to embedding the Black-Scholes option pricing model in a more general quantum physics setting. The aim of this paper is to propose a new Black-Scholes-Schrödinger model based on the endogenous arbitrage option pricing formulation introduced by Contreras et al. (2010) [2]. Hence, we derive a more general quantum model of option pricing, that incorporates arbitrage as an external time dependent force, which has an associated potential related to the random dynamic of the underlying asset price. This new resultant model can be interpreted as a Schrödinger equation in imaginary time for a particle of mass 1/σ2 with a wave function in an external field force generated by the arbitrage potential. As pointed out above, this new model can be seen as a more general formulation, where the perfect market equilibrium state postulated by the Black-Scholes model represent a particular case. Finally, since the Schrödinger equation is in place, we can apply semiclassical methods, of common use in theoretical physics, to find an approximate analytical solution of the Black-Scholes equation in the presence of market imperfections, as it is the case of an arbitrage bubble. Here, as a numerical illustration of the potential of this Schrödinger equation analogy, the semiclassical approximation is performed for different arbitrage bubble forms (step, linear and parabolic) and compare with the exact
Classical and semiclassical aspects of chemical dynamics
International Nuclear Information System (INIS)
Gray, S.K.
1982-08-01
Tunneling in the unimolecular reactions H 2 C 2 → HC 2 H, HNC → HCN, and H 2 CO → H 2 + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I → Na + + I - is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features
International Nuclear Information System (INIS)
Sitanggang, Ramli; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Kadhum, Abdul Amir H.; Iyuke, S.E.
2009-01-01
The x-y robotic spraying technique developed in the Universiti Kebangsaan Malaysia is capable of fabricating various sizes of thickness and porosity of gas diffusion layer (GDL) used in the proton exchange membrane fuel cell (PEMFC). These parameters are obtained by varying the characteristic spray numbers of the robotic spraying machine. This investigation results were adequately represented with mathematical equations for hydrogen gas distribution in GDL. Volumetric modulus (M) parameter is used to determine the value of current density produced on the electrode of a single cell PEMFC. Thus the M parameter can be employed as indicator for a successful GDL fabrication. GDL type 4 has three variables of layer design that can be optimized to function as gas distributor, gas storage, flooding preventer on GDL surface, to evacuate water from the electrode and to control the electrical conductivity. The gas distribution in GDL was mathematically represented with average error of 15.5%. The M value of GDL type 4 according to the model was 0.22 cm 3 /s and yielded a current density of 750 A/m 2 .
2-DB, 2-D Multigroup Diffusion, X-Y, R-Theta, Hexagonal Geometry Fast Reactor, Criticality Search
International Nuclear Information System (INIS)
Little, W.W. Jr.; Hardie, R.W.; Hirons, T.J.; O'Dell, R.D.
1969-01-01
1 - Description of problem or function: 2DB is a flexible, two- dimensional (x-y, r-z, r-theta, hex geometry) diffusion code for use in fast reactor analyses. The code can be used to: (a) Compute fuel burnup using a flexible material shuffling scheme. (b) Perform criticality searches on time absorption (alpha), material concentrations, and region dimensions using a regular or adjoint model. Criticality searches can be performed during burnup to compensate for fuel depletion. (c) Compute flux distributions for an arbitrary extraneous source. 2 - Method of solution: Standard source-iteration techniques are used. Group re-balancing and successive over-relaxation with line inversion are used to accelerate convergence. Material burnup is by reactor zone. The burnup rate is determined by the zone and energy (group) averaged cross sections which are recomputed after each time-step. The isotopic chains, which can contain any number of isotopes, are formed by the user. The code does not contain built-in or internal chains. 3 - Restrictions on the complexity of the problem: Since variable dimensioning is employed, no simple bounds can be stated. The current 1108 version, however, is nominally restricted to 50 energy groups in a 65 K memory. In the 6600 version the power fraction, average burnup rate, and breeding ratio calculations are limited to reactors with a maximum of 50 zones
Driven topological systems in the classical limit
Duncan, Callum W.; Öhberg, Patrik; Valiente, Manuel
2017-03-01
Periodically driven quantum systems can exhibit topologically nontrivial behavior, even when their quasienergy bands have zero Chern numbers. Much work has been conducted on noninteracting quantum-mechanical models where this kind of behavior is present. However, the inclusion of interactions in out-of-equilibrium quantum systems can prove to be quite challenging. On the other hand, the classical counterpart of hard-core interactions can be simulated efficiently via constrained random walks. The noninteracting model, proposed by Rudner et al. [Phys. Rev. X 3, 031005 (2013), 10.1103/PhysRevX.3.031005], has a special point for which the system is equivalent to a classical random walk. We consider the classical counterpart of this model, which is exact at a special point even when hard-core interactions are present, and show how these quantitatively affect the edge currents in a strip geometry. We find that the interacting classical system is well described by a mean-field theory. Using this we simulate the dynamics of the classical system, which show that the interactions play the role of Markovian, or time-dependent disorder. By comparing the evolution of classical and quantum edge currents in small lattices, we find regimes where the classical limit considered gives good insight into the quantum problem.
Reinventing classics: the hidden design strategies of renowned chefs
Agogué , Marine; Hatchuel , Armand
2015-01-01
International audience; Reinventing classics is a well-used yet complex design pattern. Indeed, a reinterpreted classic needs to relate to the original object while simultaneously challenging the initial model and providing a new and fresh look to the well established classic. However, this design strategy remains understudied, and we aimed to contribute to the literature by addressing the lack of theoretical models for reinventing classics. Reinterpreting tradition is a key process for chefs...
George, Judith W.
2009-01-01
The article identifies some key findings in pedagogical research over recent decades, placing them within a framework of logical curriculum development and current practice in quality assurance and enhancement. Throughout, the ideas and comments are related to the practice of teaching classics in university. (Contains 1 figure and 3 notes.)
Classical electromagnetic radiation
Heald, Mark A
2012-01-01
Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.
Classical solutions in supergravity
International Nuclear Information System (INIS)
Baaklini, N.S.; Ferrara, S.; Nieuwenhuizen Van, P.
1977-06-01
Classical solutions of supergravity are obtained by making finite global supersymmetry rotation on known solutions of the field equations of the bosonic sector. The Schwarzschild and the Reissner-Nordstoem solutions of general relativity are extended to various supergravity systems and the modification to the perihelion precession of planets is discussed
Huddleston, Gregory H.
1993-01-01
Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)
Classical Mythology. Fourth Edition.
Morford, Mark P. O.; Lenardon, Robert J.
Designed for students with little or no background in classical literature, this book introduces the Greek and Roman myths of creation, myths of the gods, Greek sagas and local legends, and presents contemporary theories about the myths. Drawing on Homer, Hesiod, Pindar, Vergil, and others, the book provides many translations and paraphrases of…
Tighe, Mary Ann; Avinger, Charles
1994-01-01
Describes young adult novels that may prove to be classics of the genre. Discusses "The "Chocolate War" by Robert Cormier, "The Outsiders" by S. E. Hinton, "The Witch of Blackbird Pond" by Elizabeth George Speare, and "On Fortune's Wheel" by Cynthia Voight. (HB)
Why Study Classical Languages?
Lieberman, Samuel
This speech emphasizes the significance of living literatures and living cultures which owe a direct debt to the Romans and the Greeks from whom they can trace their origins. After commenting on typical rejoinders to the question "Why study classical languages?" and poking fun at those who advance jaded, esoteric responses, the author dispels the…
Angular quadrature sets for the streaming ray method in x-y geometry
International Nuclear Information System (INIS)
England, R.; Filippone, W.L.
1983-01-01
Steaming ray (SR) computations normally employ a set of specially selected ray directions. For x-y geometry, these directions are not uniformly spaced in the azimuthal angle, nor do they conform to any of the standard quadrature sets in current use. For simplicity in all previous SR computations, uniform angular weights were used. This note investigates two methods--a bisection scheme and a Fourier scheme--for selecting more appropriate azimuthal angular weights. In the bisection scheme, the azimuthal weight assigned to an SR direction is half the angular spread (in the x-y plane) between its two adjacent ray directions. In the Fourier method, the weights are chosen such that the number of terms in a Fourier series exactly integrable on the interval (0, 2π) is maximized. Several sample calculations have been performed. While both the Fourier and bisection weights showed significant advantage over the uniform weights used previously, the Fourier scheme appears to be the best method. Lists of bisection and Fourier weights are given for quadrature sets containing 4, 8, 12, ..., 60 azimuthal SR directions
XX/XY System of Sex Determination in the Geophilomorph Centipede Strigamia maritima.
Directory of Open Access Journals (Sweden)
Jack E Green
Full Text Available We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.
One-norm geometric quantum discord and critical point estimation in the XY spin chain
Energy Technology Data Exchange (ETDEWEB)
Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com
2016-11-15
In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparing with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.
Case of successful IVF treatment of an oligospermic male with 46,XX/46,XY chimerism.
Laursen, R J; Alsbjerg, B; Vogel, I; Gravholt, C H; Elbaek, H; Lildballe, D L; Humaidan, P; Vestergaard, E M
2018-04-30
We present a case of an infertile male with 46,XX/46,XYchimerism fathering a child after ICSI procedure. Conventional cytogenetic analysis on chromosomes, derived from lymphocytes, using standard Q-banding procedures with a 450-550-band resolution and short-tandem-repeat analysis of 14 loci. Analysis of 20 metaphases from lymphocytes indicated that the proband was a karyotypic mosaic with an almost equal distribution between male and female cell lines. In total, 12 of 20 (60%) metaphases exhibited a normal female karyotype 46,XX, while 8 of 20 (40%) metaphases demonstrated a normal male karyotype 46,XY. No structural chromosomal abnormalities were present. Out of 14 STR loci, two loci (D18S51 and D21S11) showed four different alleles in peripheral blood, buccal mucosal cells, conjunctival mucosal cells, and seminal fluid. In three loci (D2S1338, D7S820, and vWA), three alleles were detected with quantitative differences that indicated presence of four alleles. In DNA extracted from washed semen, four alleles were detected in one locus, and three alleles were detected in three loci. This pattern is consistent with tetragametic chimerism. There were no quantitative significant differences in peak heights between maternal and paternal alleles. STR-analysis on DNA from the son confirmed paternity. We report a unique case with 46,XX/46,XY chimerism confirmed to be tetragametic, demonstrated in several tissues, with male phenotype and no genital ambiguity with oligospermia fathering a healthy child after IVF with ICSI procedure.
Çatlı, Gönül; Alparslan, Caner; Can, P Şule; Akbay, Sinem; Kelekçi, Sefa; Atik, Tahir; Özyılmaz, Berk; Dündar, Bumin N
2015-06-01
46,XY pure gonadal dysgenesis (Swyer syndrome) is characterized by normal female genitalia at birth. It usually first becomes apparent in adolescence with delayed puberty and amenorrhea. Rarely, patients can present with spontaneous breast development and/or menstruation. A fifteen-year-old girl presented to our clinic with the complaint of primary amenorrhea. On physical examination, her external genitals were completely female. Breast development and pubic hair were compatible with Tanner stage V. Hormonal evaluation revealed a hypergonadotropic state despite a normal estrogen level. Chromosome analysis revealed a 46,XY karyotype. Pelvic ultrasonography showed small gonads and a normal sized uterus for age. SRY gene expression was confirmed by multiplex polymerase chain reaction. Direct sequencing on genomic DNA did not reveal a mutation in the SRY, SF1 and WT1 genes. After the diagnosis of Swyer syndrome was made, the patient started to have spontaneous menstrual cycles and therefore failed to attend her follow-up visits. After nine months, the patient underwent diagnostic laparoscopy. Frozen examination of multiple biopsies from gonad tissues revealed gonadoblastoma. With this report, we emphasize the importance of performing karyotype analysis, which is diagnostic for Swyer syndrome, in all cases with primary or secondary amenorrhea even in the presence of normal breast development. We also suggest that normal pubertal development in patients with Swyer syndrome may be associated with the presence of a hormonally active tumor.
Performance of Multiplexed XY Resistive Micromegas detectors in a high intensity beam
Banerjee, D.; Burtsev, V.; Chumakov, A.; Cooke, D.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dubinin, F.; Dusaev, R. R.; Emmenegger, S.; Fabich, A.; Frolov, V. N.; Gardikiotis, A.; Gninenko, S. N.; Hösgen, M.; Karneyeu, A. E.; Ketzer, B.; Kirsanov, M. M.; Konorov, I. V.; Kramarenko, V. A.; Kuleshov, S. V.; Levchenko, E.; Lyubovitskij, V. E.; Lysan, V.; Mamon, S.; Matveev, V. A.; Mikhailov, Yu. V.; Myalkovskiy, V. V.; Peshekhonov, V. D.; Peshekhonov, D. V.; Polyakov, V. A.; Radics, B.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Vasilishin, B.; Arenas, G. Vasquez; Ulloa, P.; Crivelli, P.
2018-02-01
We present the performance of multiplexed XY resistive Micromegas detectors tested in the CERN SPS 100 GeV/c electron beam at intensities up to 3 . 3 × 105e- /(s ṡcm2) . So far, all studies with multiplexed Micromegas have only been reported for tests with radioactive sources and cosmic rays. The use of multiplexed modules in high intensity environments was not explored due to the effect of ambiguities in the reconstruction of the hit point caused by the multiplexing feature. For the specific mapping and beam intensities analyzed in this work with a multiplexing factor of five, more than 50% level of ambiguity is introduced due to particle pile-up as well as fake clusters due to the mapping feature. Our results prove that by using the additional information of cluster size and integrated charge from the signal clusters induced on the XY strips, the ambiguities can be reduced to a level below 2%. The tested detectors are used in the CERN NA64 experiment for tracking the incoming particles bending in a magnetic field in order to reconstruct their momentum. The average hit detection efficiency of each module was found to be ∼96% at the highest beam intensities. By using four modules a tracking resolution of 1.1% was obtained with ∼85% combined tracking efficiency.
Directory of Open Access Journals (Sweden)
Hachisu I.
2012-06-01
Full Text Available We have analyzed the optical light curve of the symbiotic star V407 Cyg that underwent a classical nova outburst in 2010 March. Being guided by a supersoft X-ray phase observed during days 20-40 after the nova outburst, we are able to reproduce the light curve during a very early phase of the nova outburst. Our model consists of an outbursting white dwarf and an extended equatorial disk. An extremely massive white dwarf of 1.35-1.37 M⊙ is suggested. the optical light curve is also consistent with a sharp drop 47 days after the outburst, which is the end of hydrogen shell-burning on the white dwarf. Although the extremely massive white dwarf is favourable to the interpretation that V407 Cyg is a recurrent nova, enrichment of heavy elements in the ejecta suggests that the white dwarf is eroded and, as a result, its mass is not increasing. Therefore, V407 Cyg may not explode as a Type Ia supernova even if it is a carbon-oxygen white dwarf.
Directory of Open Access Journals (Sweden)
Beatriz Martínez-López
2014-05-01
Full Text Available The spatial pattern and epidemiology of backyard pig farming and other low bio-security pig production systems and their role in the occurrence of classical swine fever (CSF is described and evaluated. A spatial Bayesian model was used to explore the risk factors, including human demographics, socioeconomic and environmental factors. The analyses were performed for Bulgaria, which has a large number of backyard farms (96% of all pig farms in the country are classified as backyard farms, and it is one of the countries for which both backyard pig and farm counts were available. Results reveal that the high-risk areas are typically concentrated in areas with small family farms, high numbers of outgoing pig shipments and low levels of personal consumption (i.e. economically deprived areas. Identification of risk factors and high-risk areas for CSF will allow to targeting risk-based surveillance strategies leading to prevention, control and, ultimately, elimination of the disease in Bulgaria and other countries with similar socio-epidemiological conditions.
International Nuclear Information System (INIS)
Schiffer, S; Hansen, H P; Hehmann-Titt, G; Huhn, M; Fischer, R; Barth, S; Thepen, T
2013-01-01
Tumors develop when infiltrating immune cells contribute growth stimuli, and cancer cells are selected to survive within such a cytotoxic microenvironment. One possible immune-escape mechanism is the upregulation of PI-9 (Serpin B9) within cancer cells. This serine proteinase inhibitor selectively inactivates apoptosis-inducing granzyme B (GrB) from cytotoxic granules of innate immune cells. We demonstrate that most classical Hodgkin lymphoma (cHL)-derived cell lines express PI-9, which protects them against the GrB attack and thereby renders them resistant against GrB-based immunotherapeutics. To circumvent this disadvantage, we developed PI-9-insensitive human GrB mutants as fusion proteins to target the Hodgkin-selective receptor CD30. In contrast to the wild-type GrB, a R201K point-mutated GrB construct most efficiently killed PI-9-positive and -negative cHL cells. This was tested in vitro and also in vivo whereby a novel optical imaging-based tumor model with HL cell line L428 was applied. Therefore, this variant, as part of the next generation immunotherapeutics, also named cytolytic fusion proteins showing reduced immunogenicity, is a promising molecule for (targeted) therapy of patients with relapsing malignancies, such as cHL, and possibly other PI-9-positive malignancies, such as breast or lung carcinoma
Tata Laksana Kasus Perempuan dengan Pure Gonadal Dysgenesis 46, XY (Sindrom Swyer
Directory of Open Access Journals (Sweden)
Kanadi Sumapradja
2016-06-01
Full Text Available Disorders of sex development (DSD adalah kelainan medis yang dikaitkan dengan ketidakcocokan antara kromosom, gonad dan fenotip. Sindrom Swyer adalah kelainan berupa disgenesis gonad 46,XY dan diikuti dengan tidak terjadinya pelepasan anti-mullerian hormone (AMH dari gonad yang mengalami disgenesis sehingga mengakibatkan berkembangnya duktus muller menjadi uterus. Keadaan tersebut mengakibatkan pasien mengeluh amenorea primer dan organ seks sekunder tidak berkembang. Orientasi gender umumnya adalah sebagai perempuan, karena kurangnya paparan hormon androgen terhadap otak. Tatalaksana kasus Disorders of sex development (DSD sangat mementingkan pasien (patient-centered sehingga tatalaksana medikamentosa maupun pembedahan harus berdasarkan pemahaman pasien terhadap orientasi gendernya. Pada makalah ini dilaporkan kasus sindrom swyer pada seorang perempuan usia 29 tahun dengan keluhan amenorea primer. Hasil analisis kromosom 46,XY (20 metafase dengan hormon follicle stimulating hormone (FSH 31.5miu/ml, luteinizing hormone (LH 10.8miu/ml, estradiol (E2 <5pg/ml, testosteron total (T <0.0025ng/ml. Tatalaksana medikamentosa adalah memberikan terapi hormon estrogen untuk membantu proses feminisasi. Karena risiko tinggi terjadinya tumor pada kasus disgenesis gonad intra-abdomen dengan kromosom Y, maka direncanakan tindakan gonadektomi. Kata kunci: Tatalaksana, Sindrom Swyer, pure gonadal dysgenesis Case Management of Pure Gonadal Dysgenesis 46, XY (Sindrom Swyer Abstract Disorders of sex development (DSD are medical conditions in which the development of chromosomal, gonadal or anatomic sex varies from normal and may be incongruent with each other. Swyer syndrome is a condition caused by pure gonadal dysgenesis 46,XY, which followed by inadequate anti-mullerian (AMH production results in maintenance and further development of mullerian duct into uterus. Therefore, many patients who suffer from this condition initially come with chief complaint of primary
A simple and powerful XY-Type current monitor for 30 MeV IPEN/CNEN-SP cyclotron
Energy Technology Data Exchange (ETDEWEB)
Barcellos, Henrique; Matsuda, Hylton; Sumyia, Luiz Carlos do A.; Junqueira, Fernando de C.; Costa, Osvaldo L. da, E-mail: hbolivei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2017-11-01
A water-cooled XY-type current monitor was designed and built in the Cyclotrons Laboratory of the Nuclear and Energy Research Institute (IPEN). It is a very simple design and easily adaptable to the cyclotron beam lines. Tests were done demonstrating to be an instrument of great assistance in proton beam position along beam transport line and target port. Nowadays the XY-type current monitor has been widely used in {sup 18}F-FDG routine productions, employing irradiation system which were originally designed for productions on 18 MeV cyclotron accelerator only, however, applying the XY-type current monitor the target port may be exchanged between the 30 MeV and 18 MeV cyclotrons and the observed results are in perfect agreement with expected. (author)
DEFF Research Database (Denmark)
Müller, J; Torsson, A; Damkjaer Nielsen, M
1991-01-01
We have investigated gonadal development and growth in 4 individuals (3 with 46,XY and 1 with 46,XX karyotype) with P450scc deficiency. One patient died at 2 months of age from adrenal insufficiency, while the remaining 3 individuals were healthy and developed normally (age at follow-up: 18, 10...... and 8 years). In the surviving individuals, the diagnosis was established during the first 2-4 months of life by extensive endocrine studies of blood and urine. In the remaining patient, the diagnosis was made on the basis of karyotype (46,XY), anatomy of internal and external genitalia and adrenal...... pathology. Gonadectomy was performed in the 2 surviving 46,XY individuals at the age of 7 years, and histological examination showed normal testicular morphology but very few germ cells. Postmortem examination of the testes of the 2-month-old subject showed normal testicular histology, and quantitative...
Rossi, Sophie; Toigo, Carole; Hars, Jean; Pol, Françoise; Hamann, Jean-Luc; Depner, Klaus; Le Potier, Marie-Frederique
2011-01-01
The understanding of host-parasite systems in wildlife is of increasing interest in relation to the risk of emerging diseases in livestock and humans. In this respect, many efforts have been dedicated to controlling classical swine fever (CSF) in the European Wild Boar. But CSF eradication has not always been achieved even though vaccination has been implemented at a large-scale. Piglets have been assumed to be the main cause of CSF persistence in the wild since they appeared to be more often infected and less often immune than older animals. However, this assumption emerged from laboratory trials or cross-sectional surveys based on the hunting bags. In the present paper we conducted a capture-mark-recapture study in free-ranging wild boar piglets that experienced both CSF infection and vaccination under natural conditions. We used multi-state capture recapture models to estimate the immunization and infection rates, and their variations according to the periods with or without vaccination. According to the model prediction, 80% of the infected piglets did not survive more than two weeks, while the other 20% quickly recovered. The probability of becoming immune did not increase significantly during the summer vaccination sessions, and the proportion of immune piglets was not higher after the autumn vaccination. Given the high lethality of CSF in piglets highlighted in our study, we consider unlikely that piglets could maintain the chain of CSF virus transmission. Our study also revealed the low efficacy of vaccination in piglets in summer and autumn, possibly due to the low palatability of baits to that age class, but also to the competition between baits and alternative food sources. Based on this new information, we discuss the prospects for the improvement of CSF control and the interest of the capture-recapture approach for improving the understanding of wildlife diseases.
Classical and non-classical effective medium theories: New perspectives
Energy Technology Data Exchange (ETDEWEB)
Tsukerman, Igor, E-mail: igor@uakron.edu
2017-05-18
Highlights: • Advanced non-asymptotic and nonlocal homogenization theories of metamaterials, valid in electrostatics and electrodynamics. • Classical theories (Clausius–Mossotti, Lorenz–Lorentz, Maxwell Garnett) fit well into the proposed framework. • Nonlocal effects can be included in the model, making order-of-magnitude accuracy improvements possible. • A challenging problem for future research is to determine what effective tensors are attainable for given constituents of a metamaterial. - Abstract: Future research in electrodynamics of periodic electromagnetic composites (metamaterials) can be expected to produce sophisticated homogenization theories valid for any composition and size of the lattice cell. The paper outlines a promising path in that direction, leading to non-asymptotic and nonlocal homogenization models, and highlights aspects of homogenization that are often overlooked: the finite size of the sample and the role of interface boundaries. Classical theories (e.g. Clausius–Mossotti, Maxwell Garnett), while originally derived from a very different set of ideas, fit well into the proposed framework. Nonlocal effects can be included in the model, making an order-of-magnitude accuracy improvements possible. One future challenge is to determine what effective parameters can or cannot be obtained for a given set of constituents of a metamaterial lattice cell, thereby delineating the possible from the impossible in metamaterial design.
Classical and non-classical effective medium theories: New perspectives
International Nuclear Information System (INIS)
Tsukerman, Igor
2017-01-01
Highlights: • Advanced non-asymptotic and nonlocal homogenization theories of metamaterials, valid in electrostatics and electrodynamics. • Classical theories (Clausius–Mossotti, Lorenz–Lorentz, Maxwell Garnett) fit well into the proposed framework. • Nonlocal effects can be included in the model, making order-of-magnitude accuracy improvements possible. • A challenging problem for future research is to determine what effective tensors are attainable for given constituents of a metamaterial. - Abstract: Future research in electrodynamics of periodic electromagnetic composites (metamaterials) can be expected to produce sophisticated homogenization theories valid for any composition and size of the lattice cell. The paper outlines a promising path in that direction, leading to non-asymptotic and nonlocal homogenization models, and highlights aspects of homogenization that are often overlooked: the finite size of the sample and the role of interface boundaries. Classical theories (e.g. Clausius–Mossotti, Maxwell Garnett), while originally derived from a very different set of ideas, fit well into the proposed framework. Nonlocal effects can be included in the model, making an order-of-magnitude accuracy improvements possible. One future challenge is to determine what effective parameters can or cannot be obtained for a given set of constituents of a metamaterial lattice cell, thereby delineating the possible from the impossible in metamaterial design.
On the quantization of classically chaotic system
International Nuclear Information System (INIS)
Godoy, N.F. de.
1988-01-01
Some propeties of a quantization in terms of observables of a classically chaotic system, which exhibits a strange are studied. It is shown in particular that convenient expected values of some observables have the correct classical limit and that in these cases the limits ℎ → O and t → ∞ (t=time) rigorously comute. This model was alternatively quantized by R.Graham in terms of Wigner function. The Graham's analysis is completed a few points, in particular, we find out a remarkable analogy with general results about the semi-classical limit of Wigner function. Finally the expected values obtained by both methods of quantization were compared. (author) [pt
Directory of Open Access Journals (Sweden)
Adriana Coutinho de Azevedo Guimarães
2008-06-01
Full Text Available This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external rotation at hip level and to undue use of point ballet slippers. The commonest lesions are in feet and ankles, followed by knees and hips. The rarest ones are in the upper limbs. These injuries are caused by exercise excess, by repetitions always in the same side and by wrong and early use of point slippers. The study reached the conclusion that incorrect application of classical ballet technique predisposes the dancers to characteristic injuries.
International Nuclear Information System (INIS)
Iselin, F. Christoph
1997-01-01
Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Class Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator design. It includes modules for building accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty
Classical Diophantine equations
1993-01-01
The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...
Classical and statistical thermodynamics
Rizk, Hanna A
2016-01-01
This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.
Invitation to classical analysis
Duren, Peter
2012-01-01
This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level, building on basic principles of advanced calculus without appeal to more sophisticated techniques of complex analysis and Lebesgue integration. Among the topics covered are Fourier series and integrals, approximation theory, Stirling's formula, the gamma function, Bernoulli numbers and polynomials, the Riemann zeta function, Tauberian theorems, elliptic integrals, ramifications of the Cantor set, and a theoretical discussion of differ
Strong, John
1958-01-01
An intermediate course in optics, this volume explores both experimental and theoretical concepts, offering practical knowledge of geometrical optics that will enhance students' comprehension of any relevant applied science. Its exposition of the concepts of classical optics is presented with a minimum of mathematical detail but presumes some knowledge of calculus, vectors, and complex numbers.Subjects include light as wave motion; superposition of wave motions; electromagnetic waves; interaction of light and matter; velocities and scattering of light; polarized light and dielectric boundarie
Generalized classical mechanics
International Nuclear Information System (INIS)
De Leon, M.; Rodrigues, P.R.
1985-01-01
The geometrical study of Classical Mechanics shows that the Hamiltonian (respectively, Lagrangian) formalism may be characterized by intrinsical structures canonically defined on the cotangent (respectively, tangent) bundle of a differentiable manifold. A generalized formalism for higher order Lagrangians is developed. Then the Hamiltonian form of the theory is developed. Finally, the Poisson brackets are defined and the conditions under which a mapping is a canonical transformation are studied. The Hamilton-Jacobi equation for this type of mechanics is established. (Auth.)
Classical Weyl transverse gravity
Energy Technology Data Exchange (ETDEWEB)
Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)
2017-05-15
We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)
Metastable gravity on classical defects
International Nuclear Information System (INIS)
Ringeval, Christophe; Rombouts, Jan-Willem
2005-01-01
We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity
Classical algebraic chromodynamics
International Nuclear Information System (INIS)
Adler, S.L.
1978-01-01
I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance