WorldWideScience

Sample records for classical trajectory calculations

  1. Efficient ab initio free energy calculations by classically assisted trajectory sampling

    Science.gov (United States)

    Wilson, Hugh F.

    2015-12-01

    A method for efficiently performing ab initio free energy calculations based on coupling constant thermodynamic integration is demonstrated. By the use of Boltzmann-weighted sums over states generated from a classical ensemble, the free energy difference between the classical and ab initio ensembles is readily available without the need for time-consuming integration over molecular dynamics trajectories. Convergence and errors in this scheme are discussed and characterised in terms of a quantity representing the degree of misfit between the classical and ab initio systems. Smaller but still substantial efficiency gains over molecular dynamics are also demonstrated for the calculation of average properties such as pressure and total energy for systems in equilibrium.

  2. Nonadiabatic nuclear dynamics of the ammonia cation studied by surface hopping classical trajectory calculations

    CERN Document Server

    Belyaev, Andrey K; Lasser, Caroline; Trigila, Giulio

    2014-01-01

    The Landau--Zener (LZ) type classical-trajectory surface-hopping algorithm is applied to the nonadiabatic nuclear dynamics of the ammonia cation after photoionization of the ground-state neutral molecule to the excited states of the cation. The algorithm employs the recently proposed formula for nonadiabatic LZ transition probabilities derived from the adiabatic potential energy surfaces. The evolution of the populations of the ground state and the two lowest excited adiabatic states is calculated up to 200 fs. The results agree well with quantum simulations available for the first 100 fs based on the same potential energy surfaces. Four different time scales are detected for the nuclear dynamics: Ultrafast Jahn--Teller dynamics between the excited states on a 5 fs time scale; fast transitions between the excited state and the ground state within a time scale of 20 fs; relatively slow partial conversion of a first-excited-state population to the ground state within a time scale of 100 fs; and nearly constant ...

  3. Nonadiabatic nuclear dynamics of the ammonia cation studied by surface hopping classical trajectory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, Andrey K., E-mail: belyaev@herzen.spb.ru [Department of Theoretical Physics, Herzen University, St. Petersburg 191186 (Russian Federation); Domcke, Wolfgang, E-mail: wolfgang.domcke@ch.tum.de [Department Chemie, Technische Universität München, D-85747 Garching (Germany); Lasser, Caroline, E-mail: classer@ma.tum.de; Trigila, Giulio, E-mail: trigila@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching (Germany)

    2015-03-14

    The Landau–Zener (LZ) type classical-trajectory surface-hopping algorithm is applied to the nonadiabatic nuclear dynamics of the ammonia cation after photoionization of the ground-state neutral molecule to the excited states of the cation. The algorithm employs a recently proposed formula for nonadiabatic LZ transition probabilities derived from the adiabatic potential energy surfaces. The evolution of the populations of the ground state and the two lowest excited adiabatic states is calculated up to 200 fs. The results agree well with quantum simulations available for the first 100 fs based on the same potential energy surfaces. Three different time scales are detected for the nuclear dynamics: Ultrafast Jahn–Teller dynamics between the excited states on a 5 fs time scale; fast transitions between the excited state and the ground state within a time scale of 20 fs; and relatively slow partial conversion of a first-excited-state population to the ground state within a time scale of 100 fs. Beyond 100 fs, the adiabatic electronic populations are nearly constant due to a dynamic equilibrium between the three states. The ultrafast nonradiative decay of the excited-state populations provides a qualitative explanation of the experimental evidence that the ammonia cation is nonfluorescent.

  4. Calculation Of Change-Changing Cross Sections Of IONS Or Atoms Colliding With Fast IONS Using The Classical Trajectory Method

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D., Shnidman, Ariel, Mebane, Harrison, Davidson, R.C.

    2008-10-10

    Evaluation of ion-atom charge-changing cross sections is needed for many accelerator applications. A classical trajectory Monte Carlo (CTMC) simulation has been used to calculate ionization and charge exchange cross sections. For benchmarking purposes, an extensive study has been performed for the simple case of hydrogen and helium targets in collisions with various ions. Despite the fact that the simulation only accounts for classical mechanics, the calculations are comparable to experimental results for projectile velocities in the region corresponding to the vicinity of the maximum cross section. Shortcomings of the CTMC method for multielectron target atoms are discussed.

  5. Calculation Of Change-Changing Cross Sections Of IONS Or Atoms Colliding With Fast IONS Using The Classical Trajectory Method

    International Nuclear Information System (INIS)

    Evaluation of ion-atom charge-changing cross sections is needed for many accelerator applications. A classical trajectory Monte Carlo (CTMC) simulation has been used to calculate ionization and charge exchange cross sections. For benchmarking purposes, an extensive study has been performed for the simple case of hydrogen and helium targets in collisions with various ions. Despite the fact that the simulation only accounts for classical mechanics, the calculations are comparable to experimental results for projectile velocities in the region corresponding to the vicinity of the maximum cross section. Shortcomings of the CTMC method for multielectron target atoms are discussed

  6. Comparison of quantum mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative - and positive -ions for heavy ion fusion applications

    OpenAIRE

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2GeV I$^{-}$ and Cs$^{+}$ ions. A large difference in cross section, up to a factor of six, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stri...

  7. Classical-trajectory calculations on Ar+ sputtering of a Si(001) surface using an ab initio potential

    International Nuclear Information System (INIS)

    We describe classical-trajectory calculations of sputtering yields for Ar+-ion collisions with a Si(001) surface. The Ar+-Si and short-ranged Si-Si interaction potentials were calculated using the ab initio Hartree-Fock and configuration-interaction methods. The low-energy potential describing the silicon solid is the two- and three-body form due to Stillinger and Weber. We compare the calculated sputtering yields with experiment. The potential-energy surface strongly influences the calculated sputtering yields, and it is found that the most reasonable agreement is obtained from our potentials using the (2 x 1) Si(001) reconstructed surface rather than the bulk-terminated surface. Analysis of the kinetic energy and angular distributions of the sputtered silicon atoms and of cluster yields has provided a mechanism of ejection

  8. Classical trajectory Monte Carlo model calculations for the antiproton-induced ionization of atomic hydrogen at low impact energy

    CERN Document Server

    Sarkadi, L

    2015-01-01

    The three-body dynamics of the ionization of the atomic hydrogen by 30 keV antiproton impact has been investigated by calculation of fully differential cross sections (FDCS) using the classical trajectory Monte Carlo (CTMC) method. The results of the calculations are compared with the predictions of quantum mechanical descriptions: The semi-classical time-dependent close-coupling theory, the fully quantal, time-independent close-coupling theory, and the continuum-distorted-wave-eikonal-initial-state model. In the analysis particular emphasis was put on the role of the nucleus-nucleus (NN) interaction played in the ionization process. For low-energy electron ejection CTMC predicts a large NN interaction effect on FDCS, in agreement with the quantum mechanical descriptions. By examining individual particle trajectories it was found that the relative motion between the electron and the nuclei is coupled very weakly with that between the nuclei, consequently the two motions can be treated independently. A simple ...

  9. Anderson localization from classical trajectories

    OpenAIRE

    Brouwer, Piet W.; Altland, Alexander

    2008-01-01

    We show that Anderson localization in quasi-one dimensional conductors with ballistic electron dynamics, such as an array of ballistic chaotic cavities connected via ballistic contacts, can be understood in terms of classical electron trajectories only. At large length scales, an exponential proliferation of trajectories of nearly identical classical action generates an abundance of interference terms, which eventually leads to a suppression of transport coefficients. We quantitatively descri...

  10. Comparison of quantum mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative - and positive -ions for heavy ion fusion applications

    CERN Document Server

    Kaganovich, I D; Davidson, R C; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2GeV I$^{-}$ and Cs$^{+}$ ions. A large difference in cross section, up to a factor of six, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stripping cross sections at high energies for electron orbitals with low ionization potential.

  11. Classical trajectory calculations for anisotropy-dependent cross sections for He-N2 mixtures

    International Nuclear Information System (INIS)

    The classical expressions for kinetic theory cross sections which are related to the Senftleben-Beenakker effect on viscosity, diffusion, conductivity and thermal diffusion are evaluated, in the temperature range 77.3-1100 K. The depolarised Rayleigh scattering and rotational-relaxation cross sections are also obtained. Comparisons with experiment show that the present values for these cross sections are 10-80% larger than the measurments. These consistent discrepancies suggest that this potential surface is too anisotropic. (author)

  12. Calculation of charge-changing cross-sections of ions or atoms colliding with fast ions using the classical trajectory method

    International Nuclear Information System (INIS)

    Evaluation of ion-atom charge-changing cross-sections is needed for many accelerator applications. A Classical Trajectory Monte Carlo (CTMC) simulation has been used to calculate ionization and charge-exchange cross-sections. For benchmarking purposes, an extensive study has been performed for the simple case of hydrogen and helium targets in collisions with various ions. Despite the fact that the simulation only accounts for classical mechanics, the calculations are comparable to experimental results for projectile velocities in the region corresponding to the vicinity of the maximum cross-section. The shortcomings of the CTMC method for multielectron target atoms are discussed.

  13. Comparison of quantum-mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative and positive ions for heavy-ion fusion applications

    International Nuclear Information System (INIS)

    Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2 GeV I- and Cs+ ions. A large difference in cross section, up to a factor of 6, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stripping cross sections at high energies for electron orbitals with low ionization potential

  14. Pair-correlated product speed and angular distributions for the OH+CH4/CD4 reactions: Further remarks on their classical trajectory calculations in a quantum spirit

    CERN Document Server

    Bonnet, L; Corchado, J

    2015-01-01

    Ten years ago, Liu and co-workers measured pair-correlated product speed and angular distributions for the OH+CH4/CD4 reactions at the collision energy of ~ 10 kcal/mol [B. Zhang, W. Shiu, J. J. Lin and K. Liu, J. Chem. Phys 122, 131102 (2005); B. Zhang, W. Shiu and K. Liu, J. Phys. Chem. A 2005, 109, 8989]. Recently, two of us could semi-quantitatively reproduce these measurements by performing full-dimensional classical trajectory calculations in a quantum spirit on an ab-initio potential energy surface of their own [J. Espinosa-Garcia and J. C. Corchado, Theor Chem Acc, 2015, 134, 6 ; J. Phys. Chem. B, Article ASAP, DOI: 10.1021/acs.jpcb.5b04290]. The goal of the present work is to show that these calculations can be significantly improved by adding a few more constraints to better comply with the experimental conditions. Overall, the level of agreement between theory and experiment is remarkable considering the large dimensionality of the processes under scrutiny.

  15. Nonadiabatic nuclear dynamics of atomic collisions based on branching classical trajectories

    International Nuclear Information System (INIS)

    The branching classical trajectory method for inelastic atomic collision processes is proposed. The approach is based on two features: (i) branching of a classical trajectory in a nonadiabatic region and (ii) the nonadiabatic transition probability formulas particularly adapted for a classical trajectory treatment. In addition to transition probabilities and inelastic cross sections, the proposed approach allows one to calculate incoming and outgoing currents. The method is applied to inelastic Na + H collisions providing the results in reasonable agreement with full quantum calculations.

  16. Simulation of molecular transitions using classical trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, A.; Martens, C. C. [University of California, California (United States)

    2001-03-01

    In the present work, we describe the implementation of a semiclassical method to study physical-chemical processes in molecular systems where electronic state transitions and quantum coherence play a dominant role. The method is based on classical trajectory propagation on the underlying coupled electronic surfaces and is derived from the semiclassical limit of the quantum Liouville equation. Unlike previous classical trajectory-based methods, quantum electronic coherence are treated naturally within this approach as complex weighted trajectory ensembles propagating on the average electronic surfaces. The method is tested on a model problem consisting of one-dimensional motion on two crossing electronic surfaces. Excellent agreement is obtained when compared to the exact results obtained by wave packet propagation. The method is applied to model quantum wave packet interferometry, where two wave packets, differing only in a relative phase, collide in the region where the two electronic surfaces cross. The dependence of the resulting population transfer on the initial relative phase of the wave packets is perfectly captured by our classical trajectory method. Comparison with an alternative method, surface hopping, shows that our approach is appropriate for modelling quantum interference phenomena. [Spanish] En este trabajo se describe la implementacion de un metodo semiclasico para estudiar procesos fisicos-quimicos en sistemas moleculares donde las transiciones entre estados electronicos y las coherencias cuanticas juegan un papel predominante. El metodo se basa en la propagacion de trayectorias clasicas sobre las correspondientes superficies electronicas acopladas y se deriva a partir del limite semiclasico de la ecuacion cuantica de Liouville. A diferencia de metodos previos basados en trayectoria clasica, dentro de este esquema, las coherencias electronicas cuanticas son tratadas de manera natural como ensamble de trayectorias con pesos complejos, moviendose en

  17. Decoherence and the Branching of Chaos-less Classical Trajectory

    CERN Document Server

    Ishikawa, Takuji

    2016-01-01

    This study was started to know mysterious classicality of nuclei. This time, I found a new rule for decoherence. I used a model without chaos. As a result, it was shown that not only the intersection of classical trajectories but also branching of classical trajectories are needed for decoherence. In other words, it was shown that interactions between a main system and environments have to make enough branchings of classical trajectories of the main system for decoherence.

  18. Classical trajectory study of rotational excitation in collisions of hydrogen molecules

    International Nuclear Information System (INIS)

    The results of classical trajectory calculations for rigid rotator p-H2-p-H2 collisions are presented. Several trajectory methodologies are compared. Over the range for which quantal results are available classical-quantal comparisons are poor. (Auth.)

  19. Effects of complex parameters on classical trajectories of Hamiltonian systems

    Indian Academy of Sciences (India)

    Asiri Nanayakkara; Thilagarajah Mathanaranjan

    2014-06-01

    Anderson et al have shown that for complex energies, the classical trajectories of real quartic potentials are closed and periodic only on a discrete set of eigencurves. Moreover, recently it was revealed that when time is complex $t(t = t_r e^{i_})$, certain real Hermitian systems possess close periodic trajectories only for a discrete set of values of . On the other hand, it is generally true that even for real energies, classical trajectories of non-PT symmetric Hamiltonians with complex parameters are mostly non-periodic and open. In this paper, we show that for given real energy, the classical trajectories of complex quartic Hamiltonians $H = p^2 + ax^4 + bx^k$ (where is real, is complex and = 1 or 2) are closed and periodic only for a discrete set of parameter curves in the complex -plane. It was further found that given complex parameter , the classical trajectories are periodic for a discrete set of real energies (i.e., classical energy gets discretized or quantized by imposing the condition that trajectories are periodic and closed). Moreover, we show that for real and positive energies (continuous), the classical trajectories of complex Hamiltonian $H = p^2 + x^4$, ($= _r$ e$^{i}$) are periodic when $ = 4 \\tan^{−1}$[($n/(2m + n)$)] for $\\forall n$ and $m \\mathbb{Z}$.

  20. Numerical Calculation of Model Rocket Trajectories.

    Science.gov (United States)

    Keeports, David

    1990-01-01

    Discussed is the use of model rocketry to teach the principles of Newtonian mechanics. Included are forces involved; calculations for vertical launches; two-dimensional trajectories; and variations in mass, drag, and launch angle. (CW)

  1. Numerical calculation of classical and non-classical electrostatic potentials

    CERN Document Server

    Christensen, D; Neyenhuis, B; Christensen, Dan; Durfee, Dallin S.; Neyenhuis, Brian

    2006-01-01

    We present a numerical exercise in which classical and non-classical electrostatic potentials were calculated. The non-classical fields take into account effects due to a possible non-zero photon rest mass. We show that in the limit of small photon rest mass, both the classical and non-classical potential can be found by solving Poisson's equation twice, using the first calculation as a source term in the second calculation. Our results support the assumptions in a recent proposal to use ion interferometry to search for a non-zero photon rest mass.

  2. Trajectory Calculations in Light-Particle Fission

    International Nuclear Information System (INIS)

    Trajectory calculations based on a three-point-charge model were carried out for fission accompanied by 1H, 2H, 3H, 4He, 6He, 3He emission. The calculations were carried out with the intent of obtaining for each of these modes of fission the initial conditions which best fit the experimental results. The results indicate that both the initial distances between the fission fragments at scission and the initial kinetic energies of the particles tend to decrease as the mass of the light particle increases. In addition it was found that the experimental results could be better fitted by assuming that the particles are emitted off the axis connecting both fission fragments rather than on this axis. (author)

  3. Quantum theory of single events: Localized de Broglie-wavelets, Schroedinger waves and classical trajectories

    International Nuclear Information System (INIS)

    For an arbitrary potential V with classical trajectories x-vector=g-vector(t) we construct localized oscillating three-dimensional wave lumps ψ(x-vector,t,g-vector) representing a single quantum particle. The crest of the envelope of the ripple follows the classical orbit g-vector(t) slightly modified due to potential V and ψ(x-vector,t;g-vector) satisfies the Schroedinger equation. The field energy, momentum and angular momentum calculated as integrals over all space are equal to particle energy, momentum and angular momentum. The relation to coherent states and to Schroedinger waves are also discussed. (author). 6 refs

  4. Comparison between the sensitivity behavior of direct and long-lived classical trajectories and quantum wave packets

    International Nuclear Information System (INIS)

    We compare the sensitivities to initial conditions for both direct (regular) and long-lived (chaotic) trajectories in classical scattering calculations with the corresponding properties of trajectories of position and momentum expectation values for quantum wave packets. The collinear H+H2 reaction is used as an example. The results show that the high sensitivity seen in chaotic trajectories is not reflected in the quantum dynamics. We conclude that it is possible for a classical ensemble consisting of only regular trajectories to respond trajectory by trajectory to perturbations in much the same way as a quantum wave packet. (There will of course be cases that are exceptions to this rule.) The response of an ensemble consisting of chaotic trajectories may on the average be similar to that of a wave packet, but not at the level of individual trajectories. In addition, the sensitivities of these trajectories to variations in the potential are analyzed. We conclude that the large contributions to the sensitivities from particular long-lived trajectories must approximately cancel when an exact ensemble average is taken. An algorithm is presented to smoothly account for the contributions to the sensitivities from these trajectories

  5. A coupled-trajectory quantum-classical approach to decoherence in non-adiabatic processes

    CERN Document Server

    Min, Seung Kyu; Gross, E K U

    2015-01-01

    We present a novel quantum-classical approach to non-adiabatic dynamics, deduced from the coupled electronic and nuclear equations in the framework of the exact factorization of the electron-nuclear wave function. The method is based on the quasi-classical interpretation of the nuclear wave function, whose phase is related to the classical momentum and whose density is represented in terms of classical trajectories. In this approximation, electronic decoherence is naturally induced as effect of the coupling to the nuclei and correctly reproduces the expected quantum behaviour. Moreover, the splitting of the nuclear wave packet is captured as consequence of the correct approximation of the time-dependent potential of the theory. This new approach offers a clear improvement over Ehrenfest-like dynamics. The theoretical derivation presented in the Letter is supported by numerical results that are compared to quantum mechanical calculations.

  6. Classical trajectory study of the photodissociation spectrum of H+3

    International Nuclear Information System (INIS)

    The photodissociation spectrum of H+3 is studied using classical mechanical methods. Tunneling rates and product translational energies are computed for a large range of total angular momentum and energy. We predict that the experimentally measured spectrum of Carrington and Kennedy is dominated by low total angular momentum and low energy (relative to dissociation). There is an almost one to one correspondence between the measured product translational energy and the total angular momentum. The classical dipole spectrum of chaotic trajectories is found to be relatively structureless, changes slowly with total J, and does not show any correspondence or indication of the experimentally measured regular structure found in the coarse grained spectrum. We conclude that the regularity found in the coarse grained spectrum should be associated with a stable manifold of trajectories. We find that the horseshoe periodic orbit previously found to be stable at J = 0 exists also for nonzero J and is stable with respect to small perturbations in 3D. The rotational constant of the rotating horseshoe is 30 cm-1 in interesting agreement with the experiment. The properties of the rotating horseshoe are studied in detail, a novel adiabatic switching method is used to study the stability of the orbit. A quantum formalism of Taylor and Zakrzewski that shows how periodic orbits may cause structure in quantal spectra is used to indicate why the features of the rotating horseshoe orbit may appear in the coarse grained spectrum. The experimental coarse grained features are interpreted as an R branch of the ν3 mode of the rotating horseshoe

  7. Coupled-Trajectory Quantum-Classical Approach to Electronic Decoherence in Nonadiabatic Processes

    Science.gov (United States)

    Min, Seung Kyu; Agostini, Federica; Gross, E. K. U.

    2015-08-01

    We present a novel quantum-classical approach to nonadiabatic dynamics, deduced from the coupled electronic and nuclear equations in the framework of the exact factorization of the electron-nuclear wave function. The method is based on the quasiclassical interpretation of the nuclear wave function, whose phase is related to the classical momentum and whose density is represented in terms of classical trajectories. In this approximation, electronic decoherence is naturally induced as an effect of the coupling to the nuclei and correctly reproduces the expected quantum behavior. Moreover, the splitting of the nuclear wave packet is captured as a consequence of the correct approximation of the time-dependent potential of the theory. This new approach offers a clear improvement over Ehrenfest-like dynamics. The theoretical derivation presented in this Letter is supported by numerical results that are compared to quantum mechanical calculations.

  8. Trajectory Calculation as Forecasting Support Tool for Dust Storms

    Directory of Open Access Journals (Sweden)

    Sultan Al-Yahyai

    2014-01-01

    Full Text Available In arid and semiarid regions, dust storms are common during windy seasons. Strong wind can blow loose sand from the dry surface. The rising sand and dust is then transported to other places depending on the wind conditions (speed and direction at different levels of the atmosphere. Considering dust as a moving object in space and time, trajectory calculation then can be used to determine the path it will follow. Trajectory calculation is used as a forecast supporting tool for both operational and research activities. Predefined dust sources can be identified and the trajectories can be precalculated from the Numerical Weather Prediction (NWP forecast. In case of long distance transported dust, the tool should allow the operational forecaster to perform online trajectory calculation. This paper presents a case study for using trajectory calculation based on NWP models as a forecast supporting tool in Oman Meteorological Service during some dust storm events. Case study validation results showed a good agreement between the calculated trajectories and the real transport path of the dust storms and hence trajectory calculation can be used at operational centers for warning purposes.

  9. Trajectory description of the quantum-classical transition for wave packet interference

    Science.gov (United States)

    Chou, Chia-Chun

    2016-08-01

    The quantum-classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum-classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum-classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow the main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum-classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum-classical transition of wave packet interference.

  10. Classical trajectory Monte Carlo investigation for Lorentz ionization of H (1s)

    Institute of Scientific and Technical Information of China (English)

    He Bin; Wang Jian-Guo; Liu Chun-Lei

    2013-01-01

    Lorentz ionization of H(1s) is investigated by classical trajectory Monte Carlo (CTMC) simulation.The effect of the transverse magnetic field on the considered process is analyzed in terms of the time evolution of interactions in the system,total electron energy,and electron trajectories.A classical mechanism for the ionization is found,where the variation of the kinetic energy of the nuclei is found to be important in the process.Compared with the results of tunneling ionization,the classical mechanism becomes more and more important with the increase of the velocity of the H-atom or the strength of the magnetic field.

  11. Real-time quantum trajectories for classically allowed dynamics in strong laser fields

    CERN Document Server

    Plimak, L I

    2015-01-01

    Both the physical picture of the dynamics of atoms and molecules in intense infrared fields and its theoretical description use the concept of electron trajectories. Here we address a key question which arises in this context: Are distinctly quantum features of these trajectories, such as the complex-valued coordinates, physically relevant in the classically allowed region of phase space, and what is their origin? First, we argue that solutions of classical equations of motion can account for quantum effects. To this end, we construct an exact solution to the classical Hamilton-Jacobi equation which accounts for dynamics of the wave packet, and show that this solution is physically correct in the limit $\\hbar \\to 0$. Second, we show that imaginary components of classical trajectories are directly linked to the finite size of the initial wavepacket in momentum space. This way, if the electronic wavepacket produced by optical tunneling in strong infrared fiels is localised both in coordinate and momentum, its m...

  12. A model of carbon ion interactions in water using the classical trajectory Monte Carlo method

    International Nuclear Information System (INIS)

    In this paper, model calculations for interactions of C6+ of energies from 1 keV u-1 to 1 MeV u-1 in water are presented. The calculations were carried out using the classical trajectory Monte Carlo method, taking into account the dynamic screening of the target core. The total cross sections (TCS) for electron capture and ionisation, and the singly and doubly differential cross sections (SDCS and DDCS) for ionisation were calculated for the five potential energy levels of the water molecule. The peaks in the DDCS for the electron capture to continuum and for the binary-encounter collision were obtained for 500-keV u-1 carbon ions. The calculated SDCS agree reasonably well with the z2 scaled proton data for 500 keV u-1 and 1 MeV u-1 projectiles, but a large deviation of up to 8-folds was observed for 100-keV u-1 projectiles. The TCS for ionisation are in agreement with the values calculated from the first born approximation (FBA) at the highest energy region investigated, but become smaller than the values from the FBA at the lower-energy region. (authors)

  13. Comparison of classical and quantal calculations of helium three-body recombination

    CERN Document Server

    Pérez-Ríos, Jesús; Wang, Jia; Greene, Chris H

    2013-01-01

    A general method to study classical scattering in $n$-dimension is developed. Through classical trajectory calculations, the three-body recombination is computed as a function of the collision energy for helium atoms, as an example. Quantum calculations are also performed for the $J^{\\Pi}$ = $0^{+}$ symmetry of the three-body recombination rate in order to compare with the classical results, yielding good agreement for $E\\gtrsim$ 1 K. The classical threshold law is derived and numerically confirmed for the Newtonian three-body recombination rate. Finally, a relationship is found between the quantum and classical three-body hard hypersphere elastic cross sections which is analogous to the well-known shadow scattering in two-body collisions.

  14. Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling

    CERN Document Server

    Liu, Jie

    2014-01-01

    The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...

  15. Quantum-Classical Nonadiabatic Dynamics: Coupled- vs Independent-Trajectory Methods.

    Science.gov (United States)

    Agostini, Federica; Min, Seung Kyu; Abedi, Ali; Gross, E K U

    2016-05-10

    Trajectory-based mixed quantum-classical approaches to coupled electron-nuclear dynamics suffer from well-studied problems such as the lack of (or incorrect account for) decoherence in the trajectory surface hopping method and the inability of reproducing the spatial splitting of a nuclear wave packet in Ehrenfest-like dynamics. In the context of electronic nonadiabatic processes, these problems can result in wrong predictions for quantum populations and in unphysical outcomes for the nuclear dynamics. In this paper, we propose a solution to these issues by approximating the coupled electronic and nuclear equations within the framework of the exact factorization of the electron-nuclear wave function. We present a simple quantum-classical scheme based on coupled classical trajectories and test it against the full quantum mechanical solution from wave packet dynamics for some model situations which represent particularly challenging problems for the above-mentioned traditional methods. PMID:27030209

  16. Current flow paths in deformed graphene: from quantum transport to classical trajectories in curved space

    Science.gov (United States)

    Stegmann, Thomas; Szpak, Nikodem

    2016-05-01

    In this work we compare two fundamentally different approaches to the electronic transport in deformed graphene: (a) the condensed matter approach in which current flow paths are obtained by applying the non-equilibrium Green’s function (NEGF) method to the tight-binding model with local strain, (b) the general relativistic approach in which classical trajectories of relativistic point particles moving in a curved surface with a pseudo-magnetic field are calculated. The connection between the two is established in the long-wave limit via an effective Dirac Hamiltonian in curved space. Geometrical optics approximation, applied to focused current beams, allows us to directly compare the wave and the particle pictures. We obtain very good numerical agreement between the quantum and the classical approaches for a fairly wide set of parameters, improving with the increasing size of the system. The presented method offers an enormous reduction of complexity from irregular tight-binding Hamiltonians defined on large lattices to geometric language for curved continuous surfaces. It facilitates a comfortable and efficient tool for predicting electronic transport properties in graphene nanostructures with complicated geometries. Combination of the curvature and the pseudo-magnetic field paves the way to new interesting transport phenomena such as bending or focusing (lensing) of currents depending on the shape of the deformation. It can be applied in designing ultrasensitive sensors or in nanoelectronics.

  17. Tropical troposphere-to-stratosphere transport inferred from trajectory calculations

    Science.gov (United States)

    Fueglistaler, S.; Wernli, H.; Peter, T.

    2004-02-01

    We present an analysis of trajectory calculations in the tropical tropopause layer (TTL) based on European Centre for Medium-Range Weather Forecasts (ECMWF) analysis wind and temperature fields. Over 500,000 forward and backward trajectories were calculated for January/February and July/August 2001. We analyze the pathways between 340 K and 400 K potential temperature (θ) of those trajectories involved in troposphere-to-stratosphere transport (TST). Even though trajectory calculations in this region may suffer from deficiencies in the underlying vertical wind field, they incorporate not only slow radiative ascent but also effects of deep convection, zonal and meridional transport, and their regional variability. From the trajectory calculations we derive a mean residence time of air parcels in the TTL, which shows a maximum at θ ≈360 K of ˜13 days for a change in potential temperature of ±10 K. The analysis of trajectory pathways reveals that approximately 80% of the trajectories ascending into the stratosphere enter the TTL over the western Pacific. Upon further ascent, they typically travel ˜5000-10,000 km before they arrive at the location where they assume minimum water mixing ratios. These pathways show regional and seasonal patterns and are largely controlled by the upper level circulation of the Asian-Australian monsoon, the northern hemispherical subtropical jet and the equatorial easterly jet from South Asia to Africa. As a consequence of the interplay of these meteorological systems, about 70% of TST trajectories assume their minimum water mixing ratio over the western Pacific, which shows also a global minimum in tropopause temperatures. Average water mixing ratios of air after TST are χH2O = 1.6 ppmv for January/February and χH2O = 3.6 ppmv for July/August 2001. Mixing of stratospherically young air, which just underwent TST, with older air masses entering the lower tropical stratosphere sideways yields an estimate of χH2O = 2.3 ppmv for

  18. Real-time quantum trajectories for classically allowed dynamics in strong laser fields

    Science.gov (United States)

    Plimak, L. I.; Ivanov, Misha Yu.

    2015-10-01

    Both the physical picture of the dynamics of atoms and molecules in intense infrared fields and its theoretical description use the concept of electron trajectories. Here, we address a key question which arises in this context: Are distinctly quantum features of these trajectories, such as the complex-valued coordinates, physically relevant in the classically allowed region of phase space, and what is their origin? First, we argue that solutions of classical equations of motion can account for quantum effects. To this end, we construct an exact solution to the classical Hamilton-Jacobi equation which accounts for dynamics of the wave packet, and show that this solution is physically correct in the limit ?. Second, we show that imaginary components of classical trajectories are directly linked to the finite size of the initial wave packet in momentum space. This way, if the electronic wave packet produced by optical tunnelling in strong infrared fields is localised both in coordinate and momentum, its motion after tunnelling ipso facto cannot be described with purely classical trajectories - in contrast to popular models in the literature.

  19. Comparisons of classical and Wigner sampling of transition state energy levels for quasiclassical trajectory chemical dynamics simulations

    International Nuclear Information System (INIS)

    Quasiclassical trajectory calculations are compared, with classical and Wigner sampling of transition state (TS) energy levels, for C2H5F≠→HF+C2H4 product energy partitioning and [Cl···CH3···Cl]- central barrier dynamics. The calculations with Wigner sampling are reported here for comparison with the previously reported calculations with classical sampling [Y. J. Cho et al., J. Chem. Phys. 96, 8275 (1992); L. Sun and W. L. Hase, J. Chem. Phys. 121, 8831 (2004)]. The C2H5F≠ calculations were performed with direct dynamics at the MP2/6-31G* level of theory. Classical and Wigner sampling give post-transition state dynamics, for these two chemical systems, which are the same within statistical uncertainties. This is a result of important equivalences in these two sampling methods for selecting initial conditions at a TS. In contrast, classical and Wigner sampling often give different photodissociation dynamics [R. Schinke, J. Phys. Chem. 92, 3195 (1988)]. Here the sampling is performed for a vibrational state of the ground electronic state potential energy surface (PES), which is then projected onto the excited electronic state's PES. Differences between the ground and the excited PESs may give rise to substantially different excitations of the vibrational and dissociative coordinates on the excited state PES by classical and Wigner sampling, resulting in different photodissociation dynamics.

  20. Convergence and accuracy of numerical methods for trajectory calculations

    International Nuclear Information System (INIS)

    Computation of trajectories by a kinematic method requires the numerical solution of the differential equation by which the trajectory is defined. A widely used method is the iterative scheme of Petterssen which has second-order accuracy. The convergence and accuracy of this scheme is investigated for some simple flow types where analytical solutions are available. The results are discussed in comparison to other methods, especially a method similar to the Patterssen scheme, which has been recommended for use in semi-Lagrangian advection schemes. The truncation error in trajectory calculations should be kept about one order of magnitude smaller than the total uncertainty, which is mainly due to analysis errors and limited resolution of the wind data. It is shown that for trajectory calculations based on the typical output of current numerical weather prediction models or comparable data, this requires a time step 15% of the time step necessary to achieve convergence. If a fixed time step is used, it should not exceed about 0.5 h. Flexible time steps, based on the estimate of the truncation error which is provided by the difference between the first and the second iteration, are an attractive alternative. 26 refs., 8 figs

  1. Classical trajectory perspective of atomic ionization in strong laser fields. Semiclassical modeling

    International Nuclear Information System (INIS)

    Dealing with timely and interesting issues in strong laser physics. Illustrates complex strong field atomic ionization with the simple semiclassical model of classical trajectory perspective for the first time. Provides a theoretical model that can be used to account for recent experiments. The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.

  2. Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2011-01-01

    A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and

  3. The stereodynamic properties of the F + HO (v, j) → HF + O reaction on 1A′ and 3A′ potential energy surfaces by quasi-classical trajectory calculations: Initial excitation effect (v =1-3, j =0 and v =0, j =1-3)

    Institute of Scientific and Technical Information of China (English)

    Zhao Dan; Chu Tian-Shu; Hao Ce

    2013-01-01

    The stereodynamic properties of the F + HO (v,j) reaction are explored by quasi-classical trajectory (QCT) calculations performed on the 1A′ and 3A′ potential energy surfaces (PESs).Based on the polarization-dependent differential cross sections (PDDCSs) and the angular distributions of the product angular momentum with the reactant at different values of initial v or j,the results show that the product scattering and product polarization have strong links with initial vibrationalrotational numbers of v and j.The significant manifestation of the normal DCSs is that the forward scattering gradually becomes predominant with the initial vibrational excitation increasing,and the scattering angle of the HF product taking place on the 3A′ potential energy surface is found to be more sensitive to the initial value of v.The product orientation and alignment are strongly dependent on the initial rovibrational excitation effect.With enhancement in the initial rovibrational excitation effect,there is an overall decrease in the product orientation as well as in the product alignment either perpendicular to the reagent relative velocity vector k or along the direction of the y axis,for which the initial rotational excitation effect is much more noticeable than the vibrational excitation effect.Moreover,the initial rovibrational excitation effect on the product polarization is more pronounced for the 3A′ potential energy surface than for the 1A′ potential energy surface.

  4. Vibrational nonequilibrium in chain branching reactions of hydrogen combustion using quasi-classical trajectory analysis

    Science.gov (United States)

    Voelkel, Stephen; Raman, Venkat; Varghese, Philip

    2015-11-01

    In high-speed reactive flows in scramjets, thermal nonequilibrium is introduced in the flow via shock waves. Though rotational and translational energy modes relax back to equilibrium quickly, vibrational relaxation is comparable to the bulk mixing and reaction timescales. The discrepancy between vibration and rotation/translation energy distributions can dramatically alter on the initiation of the fuel oxidation process. For continuum-scale applications, thermal nonequilibrium effects are derived from the rovibrational state-specific reaction and scattering rates associated with the chemical mechanism. In this work, the state-specific reaction rates are calculated for the chain branching reactions in the hydrogen combustion mechanism using a quasi-classical trajectory (QCT) framework. The state-specific rates are incorporated into a multiple temperature continuum-scale model whereby each species is characterized by a Boltzmann distribution parametrized by its own vibrational temperature. The flame ignition rates are implemented in a CFD code to simulate a reactive coflow. Funded by AFOSR FA9550-12-1-0460.

  5. Transition state theory description of surface self-diffusion: Comparison with classical trajectory results

    International Nuclear Information System (INIS)

    We have computed the surface self-diffusion constants on four different crystal faces [fcc(111), fcc(100), bcc(110), and bcc(211)] using classical transition state theory methods. These results can be compared directly with previous classical-trajectory results which used the same Lennard-Jones 6-12 potential and template model; the agreement is good, though dynamical effects are evident for the fcc(111) and bcc(110) surfaces. Implications are discussed for low-temperature diffusion studies, which are inaccessible to direct molecular dynamics, and the use of ab initio potentials rather than approximate pairwise potentials

  6. Use of hyperfunctions for classical radiation-reaction calculations

    International Nuclear Information System (INIS)

    It is shown that the use of hyperfunctions for the evaluation of radiation reaction in classical field theories leads to calculational simplifications compared to other methods. As illustrations, we calculate the radiation-reaction terms for systems of point particles in electrodynamics and in the lowest nontrivial order of the ''fast motion'' approximation of general relativity. Applications to other field theories are discussed briefly

  7. Classical trajectory study on an ab initio CI vibrotor potential energy surface for Li+-CO differential cross sections

    International Nuclear Information System (INIS)

    A previous rigid rotor potential surface for Li+-CO has been improved by computing surface points for two additional CO bond lengths at three different angles of orientation. The CI calculations including all single and double excitations which can be generated within the Hartree-Fock SCF molecular orbital basis have been improved by taking certain quadrupole excitations into account in an approximate way. Classical trajectories computed on this surface have been used to determine differential cross sections at scattering angles of 37.10, 43.20 and 49.20, and for a relative kinetic energy of 4.23 eV. Comparison with experiment shows that inclusion of CO vibrations does not account for the discrepancy found previously between the classical rigid rotor and the experimental results. When summed over all final vibrational levels the vibrotor results are nearly identical to the rigid rotor cross sections. (Auth.)

  8. Calculating trajectories for atoms in near-resonant lightfields

    International Nuclear Information System (INIS)

    We review several methods for calculating the time development of the internal state and the external motion of atoms in near-resonant light fields, with emphasis on studying the focussing of atomic beams into microscopic and potentially nanoscopic patterns. Three different approaches are considered: two-level semiclassical, multi-level semiclassical, and the Monte Carlo wavefunction method. The two-level semiclassical technique of McClelland and Scheinfein (1991) and McClelland (1995) is extended to three dimensions, and used to calculate the trajectories of atoms and the imaging properties of a simple lens formed from a near-resonant travelling TEM01 mode laser. The model is then extended to multi-level atoms, where we calculate the density matrix for the internal state of a sample of thermal atoms in a standing wave, and show how cooling processes can be simulated. Finally, we use the Monte Carlo wavefunction method to calculate the internal state of the atom, and compare the results and required computation time to those of the multi-level semiclassical technique. (authors)

  9. Classical Dynamics of Rotating Relativistic String with Massive Ends: the Regge Trajectories and Quark Masses

    International Nuclear Information System (INIS)

    Dynamic equations in the theory of a relativistic string with point masses at the ends are formulated in terms of geometric invariants of the world trajectories of the massive ends of the string (curvature ki and torsion κi(τ), i=1,2 of the trajectories). With these characteristics we reproduce the string world surface up to its position in Minkowski space E21. The torsions κi(τ), i=1,2 obey a system of second order differential equations with delay arguments describing the retardation effects of the interaction of masses through the string, ki being constants. The constant torsions are investigated in detail. In this case the string world sheet is a helicoid in E21. A nonlinear relation (the Regge trajectory) between the angular momentum of the system, J and the mass squared, M2, is derived. For given meson masses (M) and spin (J), the masses of quarks are calculated. 14 refs., 1 fig., 1 tab

  10. Quantum-classical hybrids in a simplified model of QED and geometric phase induced by charged particle trajectory

    CERN Document Server

    Koide, T

    2016-01-01

    We derive a model of quantum-classical hybrids for a simplified model of quantum electrodynamics in the framework of the stochastic variational method. In this model, charged particle trajectories are affected by the interaction with quantized electromagnetic fields, and this quantum-classical interaction induces a displacement current. We further investigate a geometric phase in the wave functional of the gauge field configuration, which is induced by adiabatic motions of the charged particles. This phase contains the quantum-classical backreaction effect and usual Berry's phase is reproduced in the vanishing limit of the fluctuation of the charged particle trajectories.

  11. Characterization of induced nanoplasmonic fields in time-resolved photoemission from gold nanospheres: a classical trajectory approach

    Science.gov (United States)

    Saydanzad, Erfan; Thumm, Uwe

    2016-05-01

    Attosecond time-resolved (XUV-pump, IR-probe) spectroscopy has been shown to be a powerful method for investigating the electron dynamics in atoms, and this technique is now being transferred to the investigation of electronic excitations, electron propagation, and collective electronic (plasmonic) effects in solids. Based on classical trajectory calculations, we simulated (i) the final photoelectron velocity distribution in order to provide observable velocity-map images for gold nanospheres of 10 and 100 nm diameter and (ii) streaked photoemission spectra. By analyzing our numerical results, we illustrate how spatio-temporal information about the sub-IR-cycle plasmonic and electronic dynamics is encoded in velocity-map images and streaked photoelectron spectra. Supported by the NE/KS NSF-EPSCOR program.

  12. The calculation of the ion trajectory in an accelerating tube

    International Nuclear Information System (INIS)

    An accelerating tube is an electrostatic lens system. The author has deduced the ion trajectory in an accelerating tube by integrating the one in a unit electrostatic lens. The results show that tube focusing effect on ion trajectory is greatly affected by ion incident angle and the electrode dimension but almost independent of the number of the electrodes

  13. Solid body equations to calculate the trajectory of ramjet

    OpenAIRE

    Imai, Kenji

    1982-01-01

    Six-degree-of-freedom trajectory equations for a ranrjet propelled, gun launched projectile are formulated. An outline for FORTRAN computer program flow charts also appear in the report. Special emphasis is given to the effect of wind on trajectory errors.

  14. PLATYPUS: a code for fusion and breakup in reactions induced by weakly-bound nuclei within a classical trajectory model with stochastic breakup

    CERN Document Server

    Diaz-Torres, Alexis

    2007-01-01

    A self-contained Fortran-90 program based on a classical trajectory model with stochastic breakup is presented, which should be a powerful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates complete and incomplete fusion cross sections and their angular momentum distribution, as well as breakup observables (angle, kinetic energy and relative energy distributions).

  15. Torpedo's Search Trajectory Design Based on Acquisition and Hit Probability Calculation

    Institute of Scientific and Technical Information of China (English)

    LI Wen-zhe; ZHANG Yu-wen; FAN Hui; WANG Yong-hu

    2008-01-01

    Taking aim at light torpedo search trajectory characteristic of warship, by analyzing common used torpedo search trajectory, a better torpedo search trajectory is designed, a mathematic model is built up, and the simulation calculation taking MK46 torpedo for example is carried out. The calculation results testify that this method can increase acquisition probability and hit probability by about 10%-30% at some situations and becomes feasible for the torpedo trajectory design. The research is of great reference value for the acoustic homing torpedo trajectory design and the torpedo combat efficiency research.

  16. Analytical potential energy surfaces for the four-center elimination reaction of HCl from 1,1-dichloroethylene: translational energy release from classical trajectory studies

    International Nuclear Information System (INIS)

    Analytical potential energy surfaces have been constructed for the four-center elimination of HCl from 1,1-dichloroethylene. The potential functions are Morse-type functions which are modified by appropriate switching and attenuating functions with adjustable parameters. The parameters have been found by fitting the calculated vibrational frequencies, reaction endothermicity, equilibrium geometries of the reactant and products to those of experiments and ab initio calculations. The translational energy release obtained from classical trajectory calculations on this surface is in good agreement with the experiment

  17. Calculation of trajectory parameters of long pass in basketball.

    Directory of Open Access Journals (Sweden)

    Charikova K.M.

    2011-08-01

    Full Text Available Values of a ball's flight trajectory parameters depending on a distance of long pass, a corner of a ball's start and height of a throwing point are submitted in article. Coordinates of reference points installation for training to long pass with an optimum trajectory of a ball's flight are designed. Requirements to simulators design are determined. Corners of ball's long pass performance in various game situations are recommended.

  18. Conditions for the quantum-to-classical transition: trajectories versus phase-space distributions.

    Science.gov (United States)

    Greenbaum, Benjamin D; Jacobs, Kurt; Sundaram, Bala

    2007-09-01

    We contrast two sets of conditions that govern the transition in which classical dynamics emerges from the evolution of a quantum system. The first was derived by considering the trajectories seen by an observer (dubbed the "strong" transition) [Bhattacharya et al., Phys. Rev. Lett. 85, 4852 (2000)], and the second by considering phase-space densities (the "weak" transition) [Greenbaum et al., Chaos 15, 033302 (2005)]. On the face of it these conditions appear rather different. We show, however, that in the semiclassical regime, in which the action of the system is large compared to h, and the measurement noise is small, they both offer an essentially equivalent local picture. Within this regime, the weak conditions dominate while in the opposite regime where the action is not much larger than h, the strong conditions dominate. PMID:17930329

  19. Quasi-classical trajectory approach to the stereo-dynamics of the reaction F+HO→HF+O

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quasi-classical trajectory (QCT) calculations are employed for the reaction F + HO(0,0)→HF + O based on the adiabatic potential energy surface (PES) of the ground 3A″triplet state. The average rotational alignment factor as a function of collision energy and the four polarization dependent generalized differential cross sections have been calculated in the center-of-mass (CM) frame, separately. The distribution P(θr) of the angle between k and j′, the distribution P(θr) of dihedral angle denoting k-k′-j′ correlation, and the angular distribution P(θr, Φr) of product rotational vectors in the form of polar plots are calculated as well. The effect of Heavy-Light-Heavy (HLH) mass combination and atom F’s relatively strong absorbability to charges on the alignment and the orientation of product molecule HF rotational angular momentum vectors j′ is revealed.

  20. Calculation of differential-turning barrier surfaces. [aircraft pair trajectories for evasive maneuvers

    Science.gov (United States)

    Kelley, H. J.; Lefton, L.

    1976-01-01

    The computation of composite differential-turn trajectory pairs is studied for 'fast-evader' and 'neutral-evader' idealizations introduced in earlier publications. Transversality and generalized corner conditions are examined and the joining of trajectory segments discussed. A criterion is given for the screening of 'tandem-motion' trajectory segments. Main focus is upon the computation of barrier surfaces. Fortunately, from a computational viewpoint, the trajectory pairs defining these surfaces need not be calculated completely, the final subarc of multiple-subarc pairs not being required. Some calculations for pairs of example aircraft are presented.

  1. Exact trajectory in semiclassical line broadening and line shifting calculation test for H2-He Q(1) line

    International Nuclear Information System (INIS)

    The semiclassical model RB (Robert, D. and Bonamy, J. (Journal de Physique (Paris), 1979, 40, 923 for calculation of line width and line shift has been used in many applications. It contains an approximate 'parabolic' trajectory. Bykov, A.D. et al, Atmospheric and Oceanic Optics (1992) 5, 587, have recently proposed an analytical expression for an exact treatment of the classical path. This paper analyses the consequence of introducing the exact trajectory within the RB model for the H2-He Q(1) line chosen as a simple test. Moreover, a comparison with results of exact close-coupling calculations is also given for this molecular system. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. An hydrodynamic model for the calculation of oil spills trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Paladino, Emilio Ernesto; Maliska, Clovis Raimundo [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Dinamica dos Fluidos Computacionais]. E-mails: emilio@sinmec.ufsc.br; maliska@sinmec.ufsc.br

    2000-07-01

    The aim of this paper is to present a mathematical model and its numerical treatment to forecast oil spills trajectories in the sea. The knowledge of the trajectory followed by an oil slick spilled on the sea is of fundamental importance in the estimation of potential risks for pipeline and tankers route selection, and in combating the pollution using floating barriers, detergents, etc. In order to estimate these slicks trajectories a new model, based on the mass and momentum conservation equations is presented. The model considers the spreading in the regimes when the inertial and viscous forces counterbalance gravity and takes into account the effects of winds and water currents. The inertial forces are considered for the spreading and the displacement of the oil slick, i.e., is considered its effects on the movement of the mass center of the slick. The mass loss caused by oil evaporation is also taken into account. The numerical model is developed in generalized coordinates, making the model easily applicable to complex coastal geographies. (author)

  3. Heavy-ion fusion: comparison of experimental data with classical trajectory models

    International Nuclear Information System (INIS)

    Currently available data on fusion excitation functions for heavy-ion induced reactions over a wide mass range are compared to results calculated with a classical dynamical model based on the proximity nuclear potential of Blocki et al., the Coulomb potential of Bondorf et al., and one-body nuclear friction in the proximity formalism of Randrup. With these conservative and dissipative forces and the radial parameters of Myers, overall good agreement is obtained between the theoretical excitation functions and most of the available data. Extensive calculations have been performed to test the sensitivity of the calculated fusion cross-sections to a number of parameters, including the radial dependence of the Coulomb and nuclear potentials, the radial and tangential friction form factors as well as the projectile and target radii. (Auth.)

  4. Oscillatory reaction cross sections caused by normal mode sampling in quasiclassical trajectory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Tibor; Vikár, Anna; Lendvay, György, E-mail: lendvay.gyorgy@ttk.mta.hu [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest (Hungary)

    2016-01-07

    The quasiclassical trajectory (QCT) method is an efficient and important tool for studying the dynamics of bimolecular reactions. In this method, the motion of the atoms is simulated classically, and the only quantum effect considered is that the initial vibrational states of reactant molecules are semiclassically quantized. A sensible expectation is that the initial ensemble of classical molecular states generated this way should be stationary, similarly to the quantum state it is supposed to represent. The most widely used method for sampling the vibrational phase space of polyatomic molecules is based on the normal mode approximation. In the present work, it is demonstrated that normal mode sampling provides a nonstationary ensemble even for a simple molecule like methane, because real potential energy surfaces are anharmonic in the reactant domain. The consequences were investigated for reaction CH{sub 4} + H → CH{sub 3} + H{sub 2} and its various isotopologs and were found to be dramatic. Reaction probabilities and cross sections obtained from QCT calculations oscillate periodically as a function of the initial distance of the colliding partners and the excitation functions are erratic. The reason is that in the nonstationary ensemble of initial states, the mean bond length of the breaking C–H bond oscillates in time with the frequency of the symmetric stretch mode. We propose a simple method, one-period averaging, in which reactivity parameters are calculated by averaging over an entire period of the mean C–H bond length oscillation, which removes the observed artifacts and provides the physically most reasonable reaction probabilities and cross sections when the initial conditions for QCT calculations are generated by normal mode sampling.

  5. Oscillatory reaction cross sections caused by normal mode sampling in quasiclassical trajectory calculations.

    Science.gov (United States)

    Nagy, Tibor; Vikár, Anna; Lendvay, György

    2016-01-01

    The quasiclassical trajectory (QCT) method is an efficient and important tool for studying the dynamics of bimolecular reactions. In this method, the motion of the atoms is simulated classically, and the only quantum effect considered is that the initial vibrational states of reactant molecules are semiclassically quantized. A sensible expectation is that the initial ensemble of classical molecular states generated this way should be stationary, similarly to the quantum state it is supposed to represent. The most widely used method for sampling the vibrational phase space of polyatomic molecules is based on the normal mode approximation. In the present work, it is demonstrated that normal mode sampling provides a nonstationary ensemble even for a simple molecule like methane, because real potential energy surfaces are anharmonic in the reactant domain. The consequences were investigated for reaction CH4 + H → CH3 + H2 and its various isotopologs and were found to be dramatic. Reaction probabilities and cross sections obtained from QCT calculations oscillate periodically as a function of the initial distance of the colliding partners and the excitation functions are erratic. The reason is that in the nonstationary ensemble of initial states, the mean bond length of the breaking C-H bond oscillates in time with the frequency of the symmetric stretch mode. We propose a simple method, one-period averaging, in which reactivity parameters are calculated by averaging over an entire period of the mean C-H bond length oscillation, which removes the observed artifacts and provides the physically most reasonable reaction probabilities and cross sections when the initial conditions for QCT calculations are generated by normal mode sampling. PMID:26747798

  6. Oscillatory reaction cross sections caused by normal mode sampling in quasiclassical trajectory calculations

    International Nuclear Information System (INIS)

    The quasiclassical trajectory (QCT) method is an efficient and important tool for studying the dynamics of bimolecular reactions. In this method, the motion of the atoms is simulated classically, and the only quantum effect considered is that the initial vibrational states of reactant molecules are semiclassically quantized. A sensible expectation is that the initial ensemble of classical molecular states generated this way should be stationary, similarly to the quantum state it is supposed to represent. The most widely used method for sampling the vibrational phase space of polyatomic molecules is based on the normal mode approximation. In the present work, it is demonstrated that normal mode sampling provides a nonstationary ensemble even for a simple molecule like methane, because real potential energy surfaces are anharmonic in the reactant domain. The consequences were investigated for reaction CH4 + H → CH3 + H2 and its various isotopologs and were found to be dramatic. Reaction probabilities and cross sections obtained from QCT calculations oscillate periodically as a function of the initial distance of the colliding partners and the excitation functions are erratic. The reason is that in the nonstationary ensemble of initial states, the mean bond length of the breaking C–H bond oscillates in time with the frequency of the symmetric stretch mode. We propose a simple method, one-period averaging, in which reactivity parameters are calculated by averaging over an entire period of the mean C–H bond length oscillation, which removes the observed artifacts and provides the physically most reasonable reaction probabilities and cross sections when the initial conditions for QCT calculations are generated by normal mode sampling

  7. An explanation of interference effects in the double slit experiment: Classical trajectories plus ballistic diffusion caused by zero-point fluctuations

    International Nuclear Information System (INIS)

    A classical explanation of interference effects in the double slit experiment is proposed. We claim that for every single “particle” a thermal context can be defined, which reflects its embedding within boundary conditions as given by the totality of arrangements in an experimental apparatus. To account for this context, we introduce a “path excitation field”, which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a “particle” can take via thermal path fluctuations. The intensity distribution on a screen behind a double slit is calculated, as well as the corresponding trajectories and the probability density current. The trajectories are shown to obey a “no crossing” rule with respect to the central line, i.e., between the two slits and orthogonal to their connecting line. This agrees with the Bohmian interpretation, but appears here without the necessity of invoking the quantum potential. - Highlights: ► We model quantum mechanical interference with classical means. ► The intensity distribution on a screen behind a double slit is calculated. ► Also, the corresponding trajectories and the probability density current are obtained.

  8. On the calculation of quantum mechanical ground states from classical geodesic motion on certain spaces of constant negative curvature

    International Nuclear Information System (INIS)

    We consider geodesic motion on three-dimensional Riemannian manifolds of constant negative curvature, topologically equivalent to S x ]0,1[, S a compact surface of genus two. To those trajectories which are recurrent in both directions of the time evolution t → +∞, t → -∞ a fractal limit set is associated whose Hausdorff dimension is intimately connected with the quantum mechanical energy ground state, determined by the Schroedinger operator on the manifold. We give a rather detailed and pictorial description of the hyperbolic spaces we have in mind, discuss various aspects of classical and quantum mechanical motion on them as far as they are needed to establish the connection between energy ground state and Hausdorff dimension and give finally some examples of ground state calculations in terms of Hausdorff dimensions of limit sets of classical trajectories. (orig.)

  9. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Bernard L., E-mail: bernard.jones@ucdenver.edu; Westerly, David; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)

    2015-02-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. The authors developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. The accuracies of the proposed methods were evaluated by comparing the known and calculated BB trajectories in phantom-simulated clinical scenarios using abdominal tumor volumes. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square trajectory errors averaged 3.8% ± 1.1% of the marker amplitude. Dosimetric calculations using Phase methods were more accurate, with mean absolute error less than 0.5%, and with error less than 1% in the highest-noise trajectory. MC-based trajectories prevent the overestimation of dose, but when viewed in an absolute sense, add a small amount of dosimetric error (<0.1%). Conclusions: Marker trajectory and target dose-of-the-day were accurately calculated using CBCT projections. This technique provides a method to evaluate highly mobile tumors using ordinary CBCT data, and could facilitate better strategies to mitigate or compensate for motion during

  10. Dispersive calculation of complex Regge trajectories for the lightest $f_2$ resonances

    CERN Document Server

    Carrasco, J A; Pelaez, J R; Szczepaniak, A P

    2015-01-01

    We apply a recently developed dispersive formalism to calculate the Regge trajectories of the $f_2(1270)$ and $f_2'(1525)$ mesons. Trajectories are calculated, not fitted to a family of resonances. Assuming that these spin-2 resonances can be treated in the elastic approximation the only input are the pole position and residue of the resonances. In both cases, the predicted Regge trajectories are almost real and linear, with slopes in agreement with the universal value of order 1 GeV$^{-2}$.

  11. Monte Carlo/RRKM/classical trajectories modeling of collisional excitation and dissociation of n-butylbenzene ion in multipole collision cells of tandem mass spectrometers.

    Science.gov (United States)

    Knyazev, Vadim D; Stein, Stephen E

    2010-06-10

    The two-channel reaction of collision-induced dissociation (CID) of the n-butylbenzene cation under the conditions of multipole collision cells of tandem mass spectrometers was studied computationally. The results were compared with the experimental data from earlier CID studies. The Monte Carlo method used includes simulation of the trajectories of flight of the parent (n-C(4)H(9)C(6)H(5)(+)) and the product (C(7)H(7)(+) and C(7)H(8)(+)) ions in the electromagnetic field of multipole ion guides and collision cells, classical trajectory modeling of collisional activation and scattering of ions, and RRKM modeling of the parent ion decomposition. Experimental information on the energy dependences of the rates of the n-butylbenzene cation dissociation via two channels was used to create an RRKM model of the reaction. Effects of uncertainties in the critical parameters of the model of the reaction and the collision cells on the results of calculations were evaluated and shown to be minor. The results of modeling demonstrate a good agreement with experiment, providing support for the applied computational method in general and the use of classical trajectory modeling of collisional activation of ions in particular. PMID:20481494

  12. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    CERN Document Server

    Jones, Bernard L; Miften, Moyed

    2015-01-01

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. Resu...

  13. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electron transfer

    International Nuclear Information System (INIS)

    It has recently been shown [S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112 (2013)] that a symmetrical windowing quasi-classical (SQC) approach [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] applied to the Meyer-Miller model [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] for the electronic degrees of freedom in electronically non-adiabatic dynamics is capable of quantitatively reproducing quantum mechanical results for a variety of test applications, including cases where “quantum” coherence effects are significant. Here we apply this same SQC methodology, within a flux-side correlation function framework, to calculate thermal rate constants corresponding to several proposed models of electron transfer processes [P. Huo, T. F. Miller III, and D. F. Coker, J. Chem. Phys. 139, 151103 (2013); A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011)]. Good quantitative agreement with Marcus Theory is obtained over several orders of magnitude variation in non-adiabatic coupling. Moreover, the “inverted regime” in thermal rate constants (with increasing bias) known from Marcus Theory is also reproduced with good accuracy by this very simple classical approach. The SQC treatment is also applied to a recent model of photoinduced proton coupled electron transfer [C. Venkataraman, A. V. Soudackov, and S. Hammes-Schiffer, J. Chem. Phys. 131, 154502 (2009)] and population decay of the photoexcited donor state is found to be in reasonable agreement with results calculated via reduced density matrix theory

  14. Mission design applications of QUICK. [software for interactive trajectory calculation

    Science.gov (United States)

    Skinner, David L.; Bass, Laura E.; Byrnes, Dennis V.; Cheng, Jeannie T.; Fordyce, Jess E.; Knocke, Philip C.; Lyons, Daniel T.; Pojman, Joan L.; Stetson, Douglas S.; Wolf, Aron A.

    1990-01-01

    An overview of an interactive software environment for space mission design termed QUICK is presented. This stand-alone program provides a programmable FORTRAN-like calculator interface to a wide range of both built-in and user defined functions. QUICK has evolved into a general-purpose software environment that can be intrinsically and dynamically customized for a wide range of mission design applications. Specific applications are described for some space programs, e.g., the earth-Venus-Mars mission, the Cassini mission to Saturn, the Mars Observer, the Galileo Project, and the Magellan Spacecraft.

  15. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry

    International Nuclear Information System (INIS)

    We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hopping (SH) study of the photochemical ring opening in oxirane. Previous preparatory work limited to the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation (TDA) is important for improving the performance of TDDFT away from the equilibrium geometry. This observation is supported by the present TDDFT TDA/SH calculations which successfully confirm the main experimentally derived Gomer-Noyes mechanism for the photochemical CO ring opening of oxirane and, in addition, provide important state-specific information not easily accessible from experiments. In particular, we find that, while one of the lowest two excited states is photochemically relatively inert, excitation into the other excited state leads predominantly to rapid ring opening, cyclic-C2H4O→CH2CH2O. This is followed by hopping to the electronic ground state where hot (4000 K) dynamics leads to further reactions, namely, CH2CH2O→CH3CHO→CH3+CHO and CH4+CO. We note that, in the dynamics, we are not limited to following minimum energy pathways and several surface hops may actually be needed before products are finally reached. The performance of different functionals is then assessed by comparison of TDDFT and diffusion Monte Carlo potential energy curves along a typical TDDFT TDA/SH reaction path. Finally, although true (S0,S1) conical intersections are expected to be absent in adiabatic TDDFT, we show that the TDDFT TDA is able to approximate a conical intersection in this system.

  16. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry

    Science.gov (United States)

    Tapavicza, Enrico; Tavernelli, Ivano; Rothlisberger, Ursula; Filippi, Claudia; Casida, Mark E.

    2008-09-01

    We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hopping (SH) study of the photochemical ring opening in oxirane. Previous preparatory work limited to the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation (TDA) is important for improving the performance of TDDFT away from the equilibrium geometry. This observation is supported by the present TDDFT TDA/SH calculations which successfully confirm the main experimentally derived Gomer-Noyes mechanism for the photochemical CO ring opening of oxirane and, in addition, provide important state-specific information not easily accessible from experiments. In particular, we find that, while one of the lowest two excited states is photochemically relatively inert, excitation into the other excited state leads predominantly to rapid ring opening, cyclic-C2H4O→C•H2CH2O•. This is followed by hopping to the electronic ground state where hot (4000K) dynamics leads to further reactions, namely, C•H2CH2O•→CH3CHO→C•H3+C•HO and CH4+CO. We note that, in the dynamics, we are not limited to following minimum energy pathways and several surface hops may actually be needed before products are finally reached. The performance of different functionals is then assessed by comparison of TDDFT and diffusion Monte Carlo potential energy curves along a typical TDDFT TDA/SH reaction path. Finally, although true (S0,S1) conical intersections are expected to be absent in adiabatic TDDFT, we show that the TDDFT TDA is able to approximate a conical intersection in this system.

  17. Quasi-classical Trajectory Study of Reaction O (3P) + HCl (v = 2; j = 1,6,9) → OH + Cl

    International Nuclear Information System (INIS)

    The reaction O (3P) + HCl (v = 2; j = 1,6,9) → OH+ Cl is theoretically studied with a quasi-classical trajectory method (QCT) on the benchmark potential energy surface of the ground 3A'' state [J. Chem. Phys. 119(2003)9550]. The QCT-calculated state-resolved rotational distributions are in good agreement with the experimental results. The rotational polarization of the product OH molecule becomes weaker as the initial HCl rotation is excited. The calculated results can be explained from the large mass factor cos2 β of the title reaction, the van der Waals well in the potential energy surface and the secondary encounters in the exit channel. (atomic and molecular physics)

  18. Effects of bending and bending angular momentum on reaction of NO2+ with C2H2: a quasi-classical trajectory study.

    Science.gov (United States)

    Boyle, Jason M; Liu, Jianbo; Anderson, Scott L

    2009-04-23

    A large set of quasi-classical trajectories were calculated at the PBE1PBE/6-311G** level of theory, in an attempt to understand the mechanistic origins of the large, mode-specific enhancement of the O-transfer reaction by NO2+ bending vibration and the surprisingly large suppressing effect of bending angular momentum. The trajectories reproduce the magnitude of the absolute reaction cross section, and also get the dependence of reactivity on NO2+ vibrational state, and the vibrational state dependent scattering behavior qualitatively correct. Analysis of the trajectories shows that the bending effect is not simply a consequence of enhanced reactivity in bent geometries but, rather, that excitation of bending motion allows reaction in a wider range of orientation angles, even if the NO2+ is not bent at the onset of the collisional interaction. There is a strong interplay between NO2+ bending and transient charge transfer during the collisions. Such charge transfer enhances reactivity, but only if the reactants are oriented correctly. PMID:19182967

  19. Mixed Quantum-Classical Dynamics Methods for Strong-Field Processes: Multiple-trajectory Ehrenfest dynamics + decoherence terms

    Science.gov (United States)

    Suzuki, Yasumitsu; Watanabe, Kazuyuki; Abedi, Ali; Agostini, Federica; Min, Seung Kyu; Maitra, Neepa; Gross, E. K. U.

    The exact factorization of the electron-nuclear wave function allows to define the time-dependent potential energy surfaces (TDPESs) responsible for the nuclear dynamics and electron dynamics. Recently a novel coupled-trajectory mixed quantum-classical (CT-MQC) approach based on this TDPES has been developed, which accurately reproduces both nuclear and electron dynamics. Here we study the TDPES for laser-induced electron localization with a view to developing a MQC method for strong-field processes. We show our recent progress in applying the CT-MQC approach to the systems with many degrees of freedom.

  20. Are classical molecular dynamics calculations accurate for state-to-state transition probabilities in the H + D2 reaction?

    International Nuclear Information System (INIS)

    We present converged quantum dynamics for the H + D2 reaction at a total energy high enough to produce HD in the v' = 3, j' = 7 vibrational-rotational state and for total angular momenta J = 0, 1, and 2. We compare state-to-state partial cross sections for H + D2 (v = 0-2, j = 0, J = 0-2) → HD (v' = 0-2, j') + H and H + D2 (v = 1, j = 6, J = 0-2) → HD (v' = 0-2, j') + H as calculated from classical trajectory calculations with quantized initial conditions, i.e., a quasiclassical trajectory (QCT) simulation, to the results of converged quantum dynamics calculations involving up to 654 coupled channels. Final states in the QCT calculations are assigned by the quadratic smooth sampling (QSS) method. Since the quasiclassical and quantal calculations are carried out with the same potential energy surface, the comparison provides a direct test of the accuracy of the quasiclassical simulations as a function of the initial vibrational-rotational state and the final vibrational-rotational state

  1. Mode specific dynamics of the H2 + CH3 → H + CH4 reaction studied using quasi-classical trajectory and eight-dimensional quantum dynamics methods

    International Nuclear Information System (INIS)

    An eight-dimensional quantum dynamical model is proposed and applied to the title reaction. The reaction probabilities and integral cross sections have been determined for both the ground and excited vibrational states of the two reactants. The results indicate that the H2 stretching and CH3 umbrella modes, along with the translational energy, strongly promote the reactivity, while the CH3 symmetric stretching mode has a negligible effect. The observed mode specificity is confirmed by full-dimensional quasi-classical trajectory calculations. The mode specificity can be interpreted by the recently proposed sudden vector projection model, which attributes the enhancement effects of the reactant modes to their strong couplings with the reaction coordinate at the transition state

  2. Effect of Reagent Vibrational and Rotational Excitation on the F+H2 Reaction: Theoretical Study of the Stereodynamics Using Quasi-Classical Trajectory Method

    International Nuclear Information System (INIS)

    The vector correlations in the reaction F+H2 (v = 0–3, j = 0–3) → HF(v', j')+H are investigated using the quasi-classical trajectory method on the Stark–Werner potential energy surface at a collision energy of 1.0eV. The potential distribution P(θr) to angles between k and j', the distribution P(ør) to dihedral angles, denoting k – k' – j' correlation and the polarization-dependent generalized differential cross sections, are calculated. The effect of reagent vibrational and rotational excitation on the F+H2 reaction is discussed in detail. The results suggest that the different vibrational and rotational quantum states of H2 have different influences on the product polarization. (atomic and molecular physics)

  3. Scattering of fast N-2 from Pd(111) : A classical trajectory study

    NARCIS (Netherlands)

    Schlathölter, Thomas; Vicanek, M; Heiland, W

    1997-01-01

    Molecular nitrogen is well known for its chemical inactivity. Experimental results for grazing incidence N-2 scattering from Pd(111) surfaces in the keV range also reveal negligible influences of electronical processes on molecular fragmentation. Therefore, we carry out gn appropriate classical trea

  4. Semiclassical approach to mesoscopic systems. Classical trajectory correlations and wave interface

    Energy Technology Data Exchange (ETDEWEB)

    Waltner, Daniel [Regensburg Univ. (Germany). Institut fuer Theoretische Physik

    2012-07-01

    This volume describes mesoscopic systems with classically chaotic dynamics using semiclassical methods which combine elements of classical dynamics and quantum interference effects. Experiments and numerical studies show that Random Matrix Theory (RMT) explains physical properties of these systems well. This was conjectured more than 25 years ago by Bohigas, Giannoni and Schmit for the spectral properties. Since then, it has been a challenge to understand this connection analytically. The author offers his readers a clearly-written and up-to-date treatment of the topics covered. He extends previous semiclassical approaches that treated spectral and conductance properties. He shows that RMT results can in general only be obtained semiclassically when taking into account classical configurations not considered previously, for example those containing multiply traversed periodic orbits. Furthermore, semiclassics is capable of describing effects beyond RMT. In this context he studies the effect of a non-zero Ehrenfest time, which is the minimal time needed for an initially spatially localized wave packet to show interference. He derives its signature on several quantities characterizing mesoscopic systems, e. g. dc and ac conductance, dc conductance variance, n-pair correlation functions of scattering matrices and the gap in the density of states of Andreev billiards. (orig.)

  5. Quasi-classical trajectory study of the reaction H' + HS on a new ab initio potential energy surface H2S (3A")

    Indian Academy of Sciences (India)

    Jinghan Zou; Shuhui Yin; Dan Wu; Mingxing Guo; Xuesong Xu; Hong Gao; Lei Li; Li Che

    2013-09-01

    Theoretical study on the dynamics of reactions H' + HS( = 0, = 0)→H2 + S and H' + HS( =0, = 0)→ H + H'S is performed with quasi-classical trajectory (QCT) method on a new ab initio potential energy surface for the lowest triplet state of H2S (3A") constructed in 2012 by Lv et al. The QCT-calculated reaction integral cross-sections are in good agreement with previous quantum wave packet results over the collision energy range of 0-50 kcal/mol. Both the abstraction and exchange reactions are governed by direct reaction dynamics and the trajectories follow the minimum energy path. The rotational angular momentum vector ' of products in the two reaction channels are not only aligned perpendicular to scattering plane but also oriented along the negative direction of the axis perpendicular to the scattering plane. With the increase in collision energy, the variation trends of product polarization in the two reaction channels are different and that may be attributed to the obviously different characteristic of the two channels on the potential energy surface.

  6. Extension of high-order harmonic cutoff frequency by synthesizing the waveform of a laser field via the optimization of classical electron trajectory in the laser field

    International Nuclear Information System (INIS)

    We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of the dependence of high-order harmonic generation on the waveform of laser fields. The dependence is investigated via detailed analysis of the classical trajectories of the ionized electron moving in the continuum in the velocity—position plane. The classical trajectory consists of three sections (Acceleration Away, Deceleration Away, and Acceleration Back), and their relationship with the electron recollision energy is investigated. The analysis of classical trajectories indicates that, besides the final (Acceleration Back) section, the electron recollision energy also relies on the previous two sections. We simultaneously optimize the waveform in all three sections to increase the electron recollision energy, and an extension of the cutoff frequency up to Ip + 20.26Up is presented with a theoretically synthesized waveform of the laser field

  7. Comparison of 3D Classical Trajectory and Transition-State Theory Reaction Cross Sections

    Science.gov (United States)

    Koeppl, G. W.; Karplus, Martin

    1970-10-01

    Although there is excellent agreement for a system such as H+H{sub 2} --> H{sub 2}+H, in which both the potential and the particle masses are symmetric, significant deviations occur for more asymmetric reactions. A detailed analysis show that the calculated differences are from the violation of two assumptions of transition-state theory.

  8. Comparison of molecular energies calculation using simulated quantum algorithm and classical computer methods

    Science.gov (United States)

    Lesniak, Joseph; Behrman, Elizabeth; Zandler, Melvin; Kumar, Preethika

    2008-03-01

    Very few quantum algorithms are currently useable today. When calculating molecular energies, using a quantum algorithm takes advantage of the quantum nature of the algorithm and calculation. A few small molecules have been used to show that this method is possible. This method will be applied to larger molecules and compared to classical computer methods.

  9. Collision energy effect on the H′ + BrH (ν = 0, j = 0) → H′Br + H reaction: A quasi-classical trajectory study

    International Nuclear Information System (INIS)

    Graphical abstract: The theoretical studies of the dynamics of the exchange reaction H′ + BrH (ν = 0, j = 0) → H′Br + H reactions are presented by stereodynamics calculations with quasiclassical trajectory method. Highlights: ► The cross sections for collision energies from 0.5 to 2.0 eV are determined. ► The rotational, vibrational and translational fractions are presented. ► The repulsive character of the potential energy surface is explored. ► The alignment and the orientation of H′Br are found to be close relation to Ec. - Abstract: Theoretical studies on the dynamics of the exchange reaction H′ + BrH (ν = 0, j = 0) → H′Br + H are performed on potential energy surface (PES) (Kurosaki et al., private communication) for the ground state using the quasi-classical trajectory method. The cross sections, computed at the collision energies (Ec) of 0.5–2.0 eV, are in good agreement with the earlier quantum wave packet results. The rotational, vibrational, and translational fractions in the total energy and the vibrational distribution for the product molecule are calculated at the same collision-energy range. The results support the repulsive character of the PES. In the considered Ec range, it has little chance to occur in an indirect reaction. The alignment and orientation of the product H′Br are investigated in detail with stereodynamics. The results show that Ec can effect on both the alignment and the orientation of product.

  10. Comparison of close coupling and quasiclassical trajectory calculations for rotational energy transfer in the collision of two HF molecules on a realistic potential energy surface

    International Nuclear Information System (INIS)

    We report rigid-rotator close coupling calculations and quasiclassical trajectory calculations for HF--HF collisions with total angular momentum zero. The results are compared to test the trajectory method

  11. Temperature-dependent kinetic measurements and quasi-classical trajectory studies for the OH+ + H2/D2 → H2O+/HDO+ + H/D reactions

    International Nuclear Information System (INIS)

    We have measured the temperature-dependent kinetics for the reactions of OH+ with H2 and D2 using a selected ion flow tube apparatus. Reaction occurs via atom abstraction to result in H2O+/HDO+ + H/D. Room temperature rate coefficients are in agreement with prior measurements and resulting temperature dependences are T0.11 for the hydrogen and T0.25 for the deuterated reactions. This work is prompted in part by recent theoretical work that mapped a full-dimensional global potential energy surface of H3O+ for the OH+ + H2 → H + H2O+ reaction [A. Li and H. Guo, J. Phys. Chem. A 118, 11168 (2014)], and reported results of quasi-classical trajectory calculations, which are extended to a wider temperature range and initial rotational state specification here. Our experimental results are in excellent agreement with these calculations which accurately predict the isotope effect in addition to an enhancement of the reaction rate constant due to the molecular rotation of OH+. The title reaction is of high importance to astrophysical models, and the temperature dependence of the rate coefficients determined here should now allow for better understanding of this reaction at temperatures more relevant to the interstellar medium

  12. Comparison of quasi-classical, transition state theory, and quantum calculations of rate constants and activation energies for the collinear reaction X + F2 → XF + F (X = Mu, H, D, T)

    International Nuclear Information System (INIS)

    Accurate quantum total reaction probabilities for the collinear reaction X + F2 (upsilon = 0.1) → XF + F (X = Mu, H, D, T) have been used to calculate collinear rate constants and activation energies. Comparison is made with collinear quasi-classical trajectory calculations and transition state theory assuming classical motion along a separable reaction coordinate and vibrational adiabaticity. Considerable differences between the quantum and quasi-classical and transition state theory results are found only for the Mu reaction at low temperatures. 5 figures, 35 references, 6 tables

  13. A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions

    Science.gov (United States)

    Mastin, Larry G.

    2001-01-01

    During the past century, numerous observers have described the violent ejection of large blocks and bombs from volcanoes during volcanic explosions. Minakami (1942) mapped the locations of blocks ejected from Asama Volcano during explosions in 1937. He developed a mathematical expression relating initial velocity and trajectory angle of ejected blocks to the ejection distance, taking into account air drag and assuming a constant drag coefficient. In the late 1950’s, Gorshkov (1959) estimated ejection velocities at Bezymianny volcano during its sector-collapse eruption. Wilson (1972) developed the first mathematical algorithm for ballistic trajectories in the volcanological literature (earlier ones had been available for military applications) that considered variations in drag coefficient with Reynolds number. Fagents and Wilson (1993) advanced the method of Wilson (1972) by considering the effect of reduced drag near the vent. From the 1970’s through the 1990’s other papers, too numerous to mention, have estimated volcanic ejection velocities from ballistic blocks. Since the early 1990’s there has been a decrease in the number of published papers that quantify ejection velocities from ballistic trajectories. This decrease has resulted in part from the appreciation that ejection velocities cannot be uniquely determined by ejection distance due to uncertainties in initial trajectory angle and drag force. On the other hand, the decrease in usage has coincided with an increase in the ease with which ballistic calculations can be made, due to the vast improvement in computer power and in the user-friendliness of computers. During the 1970’s, only volcanologists with mathematical acumen or those who could collaborate with applied mathematicians were able to make such estimates. With 21st century computer power, ballistic computation should be available to anyone as a back-of-the-envelope indicator of explosive power; the only factor preventing such usage is

  14. Experimental studies by complementary terahertz techniques and semi-classical calculations of N2- broadening coefficients of CH335Cl

    International Nuclear Information System (INIS)

    Room-temperature N2-broadening coefficients of methyl chloride rotational lines are measured over a large interval of quantum numbers (6≤J≤50, 0≤K≤18) by a submillimeter frequency-multiplication chain (J≤31) and a terahertz photomixing continuous-wave spectrometer (J≥31). In order to check the accuracy of both techniques, the measurements of identical lines are compared for J=31. The pressure broadening coefficients are deduced from line fits using mainly a Voigt profile model. The excellent signal-to-noise ratio of the frequency-multiplication scheme highlights some speed dependence effect on the line shape. Theoretical values of these coefficients are calculated by a semi-classical approach with exact trajectories. An intermolecular potential including atom-atom interactions is used for the first time. It is shown that, contrary to the previous theoretical predictions, the contributions of short-range forces are important for all values of the rotational quantum numbers. Additional testing of modifications required in the semi-classical formalism for a correct application of the cumulant expansion is also performed. It is stated that the use of the cumulant average on the rotational states of the perturbing molecule leads, for high J and small K values, to slightly higher line-broadening coefficients, as expected for the relatively strong interacting CH3Cl-N2 system. The excellent agreement between the theoretical and the experimental results ensures the reliability of these data.

  15. Ionization of small molecules induced by H+, H e+ , and N+ projectiles: Comparison of experiment with quantum and classical calculations

    Science.gov (United States)

    Kovács, S. T. S.; Herczku, P.; Juhász, Z.; Sarkadi, L.; Gulyás, L.; Sulik, B.

    2016-07-01

    We report the energy and angular distribution of ejected electrons from C H4 and H2O molecules impacted by 1 MeV H+, H e+ , and 650 keV N+ ions. Spectra were measured at different observation angles, from 2 to 2000 eV. The obtained absolute double-differential electron-emission cross sections (DDCSs) were compared with the results of classical trajectory Monte Carlo (CTMC) and continuum distorted wave, eikonal initial state (CDW-EIS) calculations. For the bare H+ projectile both theories show remarkable agreement with the experiment at all observed angles and energies. The CTMC results are in similarly good agreement with the DDCS spectra obtained for impact by dressed H e+ and N+ ions, where screening effects and electron loss from the projectile gain importance. The CDW-EIS calculations slightly overestimate the electron loss for 1 MeV H e+ impact, and overestimate both the target and projectile ionization at low emitted electron energies for 650 keV N+ impact. The contribution of multiple electron scattering by the projectile and target centers (Fermi shuttle) dominates the N+-impact spectra at higher electron energies, and it is well reproduced by the nonperturbative CTMC calculations. The contributions of different processes in medium-velocity collisions of dressed ions with molecules are determined.

  16. Thermodynamic characteristics of air masses along the Guadalquivir valley determined through the calculation of trajectories

    Directory of Open Access Journals (Sweden)

    M. A. Hernández-Ceballos

    2011-01-01

    Full Text Available The Guadalquivir valley favors the channeling of air masses from coastal areas to inland Andalusia. This paper presents a first approximation of the spatial variation along the Guadalquivir valley in some of the representative thermodynamic properties of air masses. We have selected three representative sites of its lower, middle and high course, analyzing all of them on their daily trajectories and hourly records of potential temperature, specific humidity and wind speed during the period 2000-2007. The set of trajectories has been calculated using the HYSPLIT model (Hybrid Single-Particle Lagrangian Integrated Trajectory, establishing 12 UTC as the arrivaltime, a duration of 120 hours and a final height of incidence of 500 m. The cluster analysis has allowed the selection of ten different types of air masses, and those with a clear origin from the west were selected from this group. Analysis in the three sites of the daily cycles of potential temperature show a gradual cooling (3-4 K during the cold period (November-February of the year and warming during the warm period (June-September in the range of 5-6 K between the ends of the valley. The specific humidity experiences a drop, regardless of the period and type of air mass, as the air mass travels through the valley, being more intense during the warm period with up to 8 g kg-1 instead of the 1-2 g kg-1 in the cold period. The wind speed cycles show a progressive drop of intensity along the valley, more marked in the final section with a reduction of up to 3 m s-1 per 100 km, the more intense values being recorded during the warm period of the year with average values of up to 4 m s-1.

  17. Particle-tracking calculation of classical transport in high-beta field-reversed configuration plasma

    International Nuclear Information System (INIS)

    In this paper, classical particle transport processes in field-reversed configuration plasma is investigated by particle-tracking calculations. The end-loss rate is found to increase with ion temperature, and the temperature dependence is much stronger than that of the Bohm scaling and the empirical scaling. (author)

  18. Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S) + CH(X2Π; υ = 0, j = 1) → C(1D) + H2(X1Σg+)

    International Nuclear Information System (INIS)

    The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory (QCT) method on the 11A' potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(θr), P(φr), P(θr,φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D. (atomic and molecular physics)

  19. Chemical reaction dynamics of Rydberg atoms with neutral molecules: A comparison of molecular-beam and classical trajectory results for the H(n)+D2→HD+D(n') reaction

    International Nuclear Information System (INIS)

    Recent molecular-beam experiments have probed the dynamics of the Rydberg-atom reaction, H(n)+D2→HD+D(n) at low collision energies. It was discovered that the rotationally resolved product distribution was remarkably similar to a much more limited data set obtained at a single scattering angle for the ion-molecule reaction H++D2→D++HD. The equivalence of these two problems would be consistent with the Fermi-independent-collider model (electron acting as a spectator) and would provide an important new avenue for the study of ion-molecule reactions. In this work, we employ a classical trajectory calculation on the ion-molecule reaction to facilitate a more extensive comparison between the two systems. The trajectory simulations tend to confirm the equivalence of the ion+molecule dynamics to that for the Rydberg-atom+molecule system. The theory reproduces the close relationship of the two experimental observations made previously. However, some differences between the Rydberg-atom experiments and the trajectory simulations are seen when comparisons are made to a broader data set. In particular, the angular distribution of the differential cross section exhibits more asymmetry in the experiment than in the theory. The potential breakdown of the classical model is discussed. The role of the 'spectator' Rydberg electron is addressed and several crucial issues for future theoretical work are brought out

  20. Scission-point configurations in ternary fission of 252Cf from trajectory calculations

    International Nuclear Information System (INIS)

    Trajectory calculations have been carried out in a three-point- charge model for the case of spontaneous ternary fission of 252Cf with a view to obtain the initial parameters characterizing the scission configuration. Without any a priori assumptions regarding the distribution of the points of emission of the α particle and the fragment velocity at the time of scission, the values of the initial parameters were obtained by fitting the observed energy distributions by making use of the method of multivariate analysis. It was found that there exist two points of α particle emission, nearer to either of the two fragments and off the axis joining the fragment centers, which reproduce the experijmental distributions equally well. This result does not support the often made assumption that the point of α particle emission coincides with the potential energy minimum on the line joining the fragment centers. With the initial parameters thus obtained, an inverse Monte Carlo calculation was carried out to obtain various correlations between the final values of the energy and the angle of emission of the α particle and the fission fragment kinetic energy. The calculated results agree well with the experiments. The implication of present results on the emission mechanism of the α particle in ternary fission is discussed

  1. Introducing DInaMo: A Package for Calculating Protein Circular Dichroism Using Classical Electromagnetic Theory

    OpenAIRE

    Uporov, Igor V.; Forlemu, Neville Y.; Rahul Nori; Tsvetan Aleksandrov; Sango, Boris A.; Yvonne E. Bongfen Mbote; Sandeep Pothuganti; Thomasson, Kathryn A.

    2015-01-01

    The dipole interaction model is a classical electromagnetic theory for calculating circular dichroism (CD) resulting from the π-π* transitions of amides. The theoretical model, pioneered by J. Applequist, is assembled into a package, DInaMo, written in Fortran allowing for treatment of proteins. DInaMo reads Protein Data Bank formatted files of structures generated by molecular mechanics or reconstructed secondary structures. Crystal structures cannot be used directly with DInaMo; they either...

  2. Calculation of electron trajectory and energy deposition in no screening region

    Science.gov (United States)

    Kia, Mohammad Reza; Noshad, Houshyar

    2016-01-01

    The probability density function (PDF) of energy for inelastic collision is obtained by solving the integro-differential form of the quantity equation with the Bhabha differential cross section for particles with spin 1/2. Hence, the total PDF in no screening region is determined by folding theory with the following two assumptions: (1) the electron loses energy by collision and radiation and (2) the electron velocity does not change with a thin absorber. Therefore, a set of coupled stochastic differential equations based on the deviation and energy loss PDFs for electron is presented to obtain the electron trajectory inside the target. The energy PDFs for an electron beam with incident energy of 15.7 MeV inside aluminum and copper are calculated. Besides, the dose distributions for an electron beam with incident energies of 20, 10.2, 6, and 0.5 MeV in water are obtained. The results are in excellent agreement with the experimental data reported in the literature.

  3. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface

    Science.gov (United States)

    Buryak, Ilya; Vigasin, Andrey A.

    2015-12-01

    The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.

  4. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Buryak, Ilya; Vigasin, Andrey A., E-mail: vigasin@ifaran.ru [Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, 3 Pyzhevsky per., 119017 Moscow (Russian Federation)

    2015-12-21

    The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.

  5. POLYANA-A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

    Science.gov (United States)

    Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios

    2015-12-01

    We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.

  6. PERL-2 and LAVR-2 programs for Monte Carlo calculation of reactivity disturbances with trajectory correlation using random numbers

    International Nuclear Information System (INIS)

    Realization of BESM-6 computer of a technique is described for calculating a wide class of reactivity disturbances by plotting trajectories in undisturbed and disturbed systems using one sequence of random numbers. The technique was realized on the base of earlier created programs of calculation of widespreed (PERL) and local (LAVR) reactivity disturbances. The efficiency of the technique and programs is demonstrated by calculation of change of effective neutron-multiplication factor when absorber is substituted for fuel element in a BFS-40 critical assembly and by calculation of control drum characteristics

  7. Dynamics of the reaction H2+(He,H)HeH+. Endoergic channels with H2+ in γ=0,1 vibrational states: beam experiment and trajectory calculations

    International Nuclear Information System (INIS)

    A vibrationally selected beam of H2+ was used to investigate experimentally the reaction dynamics of the lowest two (endoergic) channels of the process H2+(γ=0,1)+He=HeH++H at the relative collision energy 3.58 eV, and to provide data for comparison with quasi-classical trajectory calculations. The process proceeds via a direct mechanism. In comparison with the reaction dynamics observed for the non-selected beam, where various vibrationally excited reactant ions participated, the results show - in a good agreement between theory and experiment - a prominent decrease of the forward 'stripping' scattering, and apparently an increased peak value of the recoil translational energy. This is consistent with the simple idea that small impact-parameter collisions leading to large-angle scattering are required to achieve an effective translational energy transfer necessary to overcome the reaction barrier. (Auth.)

  8. Calculation of Regge trajectories of strange resonances and identification of the K0*(800) as a non-ordinary meson

    CERN Document Server

    Peláez, J R

    2016-01-01

    We review how the Regge trajectory of an elastic resonance can be obtained just from its pole position and coupling, using a dispersive formalism. This allows us to deal correctly with the finite widths of resonances in Regge trajectories. In this way we can calculate the Regge trajectories for the $K^*(892)$, $K_1(1400)$ and $K^*_0(1430)$, obtaining ordinary linear Regge trajectories, expected for $q \\bar q$ resonances. In contrast, for the $K^*_0(800)$ meson, the resulting Regge trajectory is non-linear and with much smaller slope, strongly supporting its non-ordinary nature.

  9. Calculating TMDs of a large nucleus: Quasi-classical approximation and quantum evolution

    Directory of Open Access Journals (Sweden)

    Yuri V. Kovchegov

    2016-02-01

    Full Text Available We set up a formalism for calculating transverse-momentum-dependent parton distribution functions (TMDs of a large nucleus using the tools of saturation physics. By generalizing the quasi-classical Glauber–Gribov–Mueller/McLerran–Venugopalan approximation to allow for the possibility of spin–orbit coupling, we show how any TMD can be calculated in the saturation framework. This can also be applied to the TMDs of a proton by modeling it as a large “nucleus.” To illustrate our technique, we calculate the quark TMDs of an unpolarized nucleus at large-x: the unpolarized quark distribution and the quark Boer–Mulders distribution. We observe that spin–orbit coupling leads to mixing between different TMDs of the nucleus and of the nucleons. We then consider the evolution of TMDs: at large-x, in the double-logarithmic approximation, we obtain the Sudakov form factor. At small-x the evolution of unpolarized-target quark TMDs is governed by BK/JIMWLK evolution, while the small-x evolution of polarized-target quark TMDs appears to be dominated by the QCD Reggeon.

  10. Calculating TMDs of a large nucleus: Quasi-classical approximation and quantum evolution

    Science.gov (United States)

    Kovchegov, Yuri V.; Sievert, Matthew D.

    2016-02-01

    We set up a formalism for calculating transverse-momentum-dependent parton distribution functions (TMDs) of a large nucleus using the tools of saturation physics. By generalizing the quasi-classical Glauber-Gribov-Mueller/McLerran-Venugopalan approximation to allow for the possibility of spin-orbit coupling, we show how any TMD can be calculated in the saturation framework. This can also be applied to the TMDs of a proton by modeling it as a large "nucleus." To illustrate our technique, we calculate the quark TMDs of an unpolarized nucleus at large-x: the unpolarized quark distribution and the quark Boer-Mulders distribution. We observe that spin-orbit coupling leads to mixing between different TMDs of the nucleus and of the nucleons. We then consider the evolution of TMDs: at large-x, in the double-logarithmic approximation, we obtain the Sudakov form factor. At small-x the evolution of unpolarized-target quark TMDs is governed by BK/JIMWLK evolution, while the small-x evolution of polarized-target quark TMDs appears to be dominated by the QCD Reggeon.

  11. Calculating TMDs of an Unpolarized Target: Quasi-Classical Approximation and Quantum Evolution

    CERN Document Server

    Kovchegov, Yuri V

    2016-01-01

    We set up a formalism for calculating transverse-momentum-dependent parton distribution functions (TMDs) using the tools of saturation physics. By generalizing the quasi-classical Glauber-Gribov-Mueller/McLerran-Venugopalan approximation to allow for the possibility of spin-orbit coupling, we show how any TMD can be calculated in the saturation framework. This can also be applied to the TMDs of a proton by modeling it as a large "nucleus." To illustrate our technique, we calculate the quark TMDs of an unpolarized nucleus at large-x: the unpolarized quark distribution and the quark Boer-Mulders distribution. We observe that spin-orbit coupling leads to mixing between different TMDs of the nucleus and of the nucleons. We then consider the evolution of TMDs: at large-x, in the double-logarithmic approximation, we obtain the Sudakov form factor. At small-x the evolution of unpolarized-target quark TMDs is governed by BK/JIMWLK evolution, while the small-x evolution of polarized-target quark TMDs appears to be dom...

  12. Quasi-classical trajectory study of the role of vibrational and translational energy in the Cl(2P) + NH3 reaction.

    Science.gov (United States)

    Monge-Palacios, M; Corchado, J C; Espinosa-Garcia, J

    2012-05-28

    A detailed state-to-state dynamics study was performed to analyze the effects of vibrational excitation and translational energy on the dynamics of the Cl((2)P) + NH(3)(v) gas-phase reaction, effects which are connected to such issues as mode selectivity and Polanyi's rules. This reaction evolves along two deep wells in the entry and exit channels. At low and high collision energies quasi-classical trajectory calculations were performed on an analytical potential energy surface previously developed by our group, together with a simplified model surface in which the reactant well is removed to analyze the influence of this well. While at high energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity by a factor ≈1.1-2.9 with respect to the vibrational ground-state, at low energy the opposite behaviour is found (factor ≈ 0.4-0.9). However, when the simplified model surface is used at low energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Moreover, we find that this reaction exhibits negligible mode selectivity, first because the independent excitation of the N-H symmetric and asymmetric stretch modes, which lie within 200 cm(-1) of each other, leads to reactions with similar reaction probabilities, and second because the vibrational excitation of the reactive N-H stretch mode is only partially retained in the products. For this "late transition-state" reaction, we also find that vibrational energy is more effective in driving the reaction than an equivalent amount of energy in translation, consistent with an extension of Polanyi's rules. Finally, we find that the non-reactive events, Cl((2)P)+NH(3)(v) → Cl((2)P) + NH(3)(v'), lead to a great number of populated vibrational states in the NH(3)(v') product, even starting from the NH(3)(v = 0) vibrational ground state at low energies

  13. Periodic trajectories for two-dimensional nonintegrable Hamiltonians

    International Nuclear Information System (INIS)

    I want to report on some calculations of classical periodic trajectories in a two-dimensional nonintegrable potential. After a brief introduction, I will present some details of the theory. The main part of this report will be devoted to showing pictures of the various families of trajectories and to discussing the topology (in E-τ space) and branching behavior of these families. Then I will demonstrate the connection between periodic trajectories and ''nearby'' nonperiodic trajectories, which nicely illustrates the relationship of this work to chaos. Finally, I will discuss very briefly how periodic trajectories can be used to calculate tori. 12 refs., 40 figs

  14. Mode specific dynamics of the H{sub 2} + CH{sub 3} → H + CH{sub 4} reaction studied using quasi-classical trajectory and eight-dimensional quantum dynamics methods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); School of Chemical and Environmental Engineering, Hubei University for Nationalities, Enshi 445000 (China); Li, Jun; Guo, Hua, E-mail: yangmh@wipm.ac.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Chen, Liuyang; Yang, Minghui, E-mail: yangmh@wipm.ac.cn, E-mail: hguo@unm.edu [Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Lu, Yunpeng [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2015-10-21

    An eight-dimensional quantum dynamical model is proposed and applied to the title reaction. The reaction probabilities and integral cross sections have been determined for both the ground and excited vibrational states of the two reactants. The results indicate that the H{sub 2} stretching and CH{sub 3} umbrella modes, along with the translational energy, strongly promote the reactivity, while the CH{sub 3} symmetric stretching mode has a negligible effect. The observed mode specificity is confirmed by full-dimensional quasi-classical trajectory calculations. The mode specificity can be interpreted by the recently proposed sudden vector projection model, which attributes the enhancement effects of the reactant modes to their strong couplings with the reaction coordinate at the transition state.

  15. O método das trajectórias clássicas: colisões coplanares do tipo A+BC Classical trajectory method: A+BC coplanar collisions

    Directory of Open Access Journals (Sweden)

    Jorge M. C. Marques

    2003-10-01

    Full Text Available The general methodology of classical trajectories as applied to elementary chemical reactions of the A+BC type is presented. The goal is to elucidate students about the main theoretical features and potentialities in applying this versatile method to calculate the dynamical properties of reactive systems. Only the methodology for two-dimensional (2D case is described, from which the general theory for 3D follows straightforwardly. The adopted point of view is, as much as possible, that of allowing a direct translation of the concepts into a working program. An application to the reaction O(¹D+H2->O+OH with relevance in atmospheric chemistry is also presented. The FORTRAN codes used are available through the web page www.qqesc.qui.uc.pt.

  16. A self-consistent lowest-order dual-topological unitarization Regge-trajectory and coupling calculation

    International Nuclear Information System (INIS)

    Recently a generalized topological unitarization scheme has been developed in which the effect of ''sea''-quark loops is taken into account from the beginning. At the lowest-order planar ''zero-entropy'' level, a self-consistent calculation of the leading Regge trajectory α (t) gives a ground-state mass m0=0.13 α'-1 and a coupling g02/4π of the order of the fine structure constant, suggesting a strong-electroweak unification. This calculation does not entail any free (input) parameters

  17. Quantum and quasi-classical calculations for the S⁺ + H₂(v,j) → SH⁺(v',j') + H reactive collisions.

    Science.gov (United States)

    Zanchet, Alexandre; Roncero, Octavio; Bulut, Niyazi

    2016-04-28

    State-to-state cross-sections for the S(+) + H2(v,j) → SH(+)(v',j') + H endothermic reaction are obtained using quantum wave packet (WP) and quasi-classical (QCT) methods for different initial ro-vibrational H2(v,j) over a wide range of translation energies. The final state distribution as a function of the initial quantum number is obtained and discussed. Additionally, the effect of the internal excitation of H2 on the reactivity is carefully studied. It appears that energy transfer among modes is very inefficient that vibrational energy is the most favorable for the reaction, and rotational excitation significantly enhances the reactivity when vibrational energy is sufficient to reach the product. Special attention is also paid to an unusual discrepancy between classical and quantum dynamics for low rotational levels while agreement improves with rotational excitation of H2. An interesting resonant behaviour found in WP calculations is also discussed and associated with the existence of roaming classical trajectories that enhance the reactivity of the title reaction. Finally, a comparison with the experimental results of Stowe et al. for S(+) + HD and S(+) + D2 reactions exhibits a reasonably good agreement with those results. PMID:27055725

  18. Study of the H+HS reaction on a newly built potential energy surface using the quasi-classical trajectory method

    Institute of Scientific and Technical Information of China (English)

    Bai Meng-Meng; Ge Mei-Hua; Yang Huan; Zheng Yu-Jun

    2012-01-01

    The quasi-classical trajectory (QCT) method is used to study the H+HS reaction on a newly built potential energy surface (PES) of the triplet state of H2S (3A") in a collision energy range of 0-60 kcal/mol.Both scalar properties,such as the reaction probability and the integral cross section (ICS),and the vector properties,such as the angular distribution between the relative velocity vector of the reactant and that of the product,etc.,are investigated using the QCT method.It is found that the ICSs obtained by the QCT method and the quantum mechanical (QM) method accord well with each other.In addition,the distribution for the product vibrational states is cold,while that for the product rotational states is hot for both reaction channels in the whole energy range studied here.

  19. Product Translational and Vibrational Distributions for the OH/OD + CH4/CD4 Reactions from Quasiclassical Trajectory Calculations. Comparison with Experiment.

    Science.gov (United States)

    Espinosa-Garcia, Joaquin; Corchado, Jose C

    2016-03-01

    For the OH + CH4/CD4 hydrogen abstraction reactions, the methyl radical (CH3 and CD3) product translational distributions and the water (H2O and HOD) product vibrational distributions experimentally reported by Liu's group are reproduced by quasi-classical trajectory (QCT) calculations on an analytical full-dimensional potential energy surface when a quantum spirit is included in the analysis. Our simulations correctly predict: (i) the vibrational excitation of the water product, (ii) the inversion of the water vibrational population, and (iii) the propensity of transfer from reactant kinetic energy to product translational energy. These reactions therefore present a marked isotopic effect. In addition, the water product vibrational distributions for the OH/OD + CH4 reactions agree reasonably well with Butkovskaya and Setser's experiments for a similar alkane reaction. The theory/experiment agreement is better for the HOD than for the H2O product due to the mode coupling in the H2O molecule, which is absent in the HOD stretching modes, which show a more "local" character. In summary, for polyatomic systems with many degrees of freedom (15 in the present reaction), QCT calculations analyzed with a quantum spirit represent a useful alternative to quantum scattering methods. PMID:26061483

  20. Communication: Overcoming the root search problem in complex quantum trajectory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zamstein, Noa; Tannor, David J. [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-01-28

    Three new developments are presented regarding the semiclassical coherent state propagator. First, we present a conceptually different derivation of Huber and Heller's method for identifying complex root trajectories and their equations of motion [D. Huber and E. J. Heller, J. Chem. Phys. 87, 5302 (1987)]. Our method proceeds directly from the time-dependent Schrödinger equation and therefore allows various generalizations of the formalism. Second, we obtain an analytic expression for the semiclassical coherent state propagator. We show that the prefactor can be expressed in a form that requires solving significantly fewer equations of motion than in alternative expressions. Third, the semiclassical coherent state propagator is used to formulate a final value representation of the time-dependent wavefunction that avoids the root search, eliminates problems with caustics and automatically includes interference. We present numerical results for the 1D Morse oscillator showing that the method may become an attractive alternative to existing semiclassical approaches.

  1. Communication: Overcoming the root search problem in complex quantum trajectory calculations

    International Nuclear Information System (INIS)

    Three new developments are presented regarding the semiclassical coherent state propagator. First, we present a conceptually different derivation of Huber and Heller's method for identifying complex root trajectories and their equations of motion [D. Huber and E. J. Heller, J. Chem. Phys. 87, 5302 (1987)]. Our method proceeds directly from the time-dependent Schrödinger equation and therefore allows various generalizations of the formalism. Second, we obtain an analytic expression for the semiclassical coherent state propagator. We show that the prefactor can be expressed in a form that requires solving significantly fewer equations of motion than in alternative expressions. Third, the semiclassical coherent state propagator is used to formulate a final value representation of the time-dependent wavefunction that avoids the root search, eliminates problems with caustics and automatically includes interference. We present numerical results for the 1D Morse oscillator showing that the method may become an attractive alternative to existing semiclassical approaches

  2. Algebraic-numeric calculations of proton trajectories in bending magnets of synchrotron accelerator

    International Nuclear Information System (INIS)

    We study a solution of nonlinear differential equation of the second degree which describes the trajectories of the charged particles in the fully inhomogeneous field of cyclic accelerator. We give the clear mathematical statement of the problem and algorithm of solving it. We realize this algorithm on the Computer Algebra System REDUCE 3.2. Our algorithm is based both on the existence of exact solution in terms of hyperelliptic integral and on the existence of power series solution of specific inversion problem. We use the known REDUCE procedures of operation on generalized power series. Using the FORTRAN code we give the numerical analysis of these series in the close relation to the concrete physical situation. We apply our results to the beam dynamics modelling of the protons in the bending magnets in synchrotron accelerator. 18 refs.; 2 figs

  3. Trajectory calculations for particle-particle correlations: Probes of source lifetime, rotational motion, momentum conservation and particle-unstable fragments

    International Nuclear Information System (INIS)

    In heavy-ion induced nuclear reactions one can produce transient systems with excitation energies up to 5 MeV per nucleon and spins up to ≅100 ℎ. The equilibrium statistical model can predict the mean lifetime for particle emission from moderately hot nuclei provided they are completely thermalized. However, as the excitation energy is increased, one expects to reach a situation of incomplete equilibration and hence a breakdown of the simplest equilibrium model. Determinations of the lifetime for (or intervals between) particle or fragment emissions can be useful both for testing the equilibrium model at low temperatures as well as for characterizing pre-equilibrium emission from partially thermalized nuclei. The net effect is best demonstrated by means of a correlation function, which can be interpreted by comparison to a reaction simulation. By such comparisons one can characterize the mean time intervals between emissions. The simulation programs MENEKA and COULGAN have been written for this purpose; they are Monte Carlo programs based on the following elements: a) Particles are emitted from the surface of an excited nucleus with a distribution of orbital angular momenta. b) Emission energies of the particles are chosen to reproduce experimental measurements or theoretical calculations. c) The distribution of time delays between particle emissions is given by exponential decay laws. d) A three-body trajectory is followed for the two particles and for the recoil nucleus. e) An event is accepted as a valid coincidence if the particle pair satisfies experimental requirements of detector thresholds and geometry. Particle trajectories are calculated numerically using time steps that are controlled by the requirement for energy conservation. An ancillary program SHOWTRAJ can be used to display and study trajectories event by event. (orig.)

  4. Classical trajectories and RRKM modeling of collisional excitation and dissociation of benzylammonium and tert-butyl benzylammonium ions in a quadrupole-hexapole-quadrupole tandem mass spectrometer.

    Science.gov (United States)

    Knyazev, Vadim D; Stein, Stephen E

    2010-03-01

    Collision-induced dissociation of the benzylammonium and the 4-tert-butyl benzylammonium ions was studied experimentally in an electrospray ionization quadrupole-hexapole-quadrupole tandem mass spectrometer. Ion fragmentation efficiencies were determined as functions of the kinetic energy of ions and the collider gas (argon) pressure. A theoretical Monte Carlo model of ion collisional excitation, scattering, and decomposition was developed. The model includes simulation of the trajectories of the parent and the product ions flight through the hexapole collision cell, quasiclassical trajectory modeling of collisional activation and scattering of ions, and Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the parent ion decomposition. The results of modeling demonstrate a general agreement between calculations and experiment. Calculated values of ion fragmentation efficiency are sensitive to initial vibrational excitation of ions, scattering of product ions from the collision cell, and distribution of initial ion velocities orthogonal to the axis of the collision cell. Three critical parameters of the model were adjusted to reproduce the experimental data on the dissociation of the benzylammonium ion: reaction enthalpy and initial internal and translational temperatures of the ions. Subsequent application of the model to decomposition of the t-butyl benzylammonium ion required adjustment of the internal ion temperature only. Energy distribution functions obtained in modeling depend on the average numbers of collisions between the ion and the atoms of the collider gas and, in general, have non-Boltzmann shapes. PMID:20060316

  5. Quantum trajectories

    CERN Document Server

    Chattaraj, Pratim Kumar

    2010-01-01

    The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area of quantum mechanics. Quantum Trajectories brings the expertise of an international panel of experts who focus on the epistemological significance of quantum mechanics through the quantum theory of motion.Emphasizing a classical interpretation of quan

  6. Quasiclassical trajectory calculations of the OH+NO2 association reaction on a global potential energy surface.

    Science.gov (United States)

    Chen, Chao; Shepler, Benjamin C; Braams, Bastiaan J; Bowman, Joel M

    2007-09-14

    We report a full-dimensional potential energy surface (PES) for the OH+NO(2) reaction based on fitting more than 55,000 energies obtained with density functional theory-B3LYP6-311G(d,p) calculations. The PES is invariant with respect to permutation of like nuclei and describes all isomers of HOONO, HONO(2), and the fragments OH+NO(2) and HO(2)+NO. Detailed comparison of the structures, energies, and harmonic frequencies of various stationary points on the PES are made with previous and present high-level ab initio calculations. Two hydrogen-bond complexes are found on the PES and confirmed by new ab initio CASPT2 calculations. Quasiclassical trajectory calculations of the cross sections for ground rovibrational OH+NO(2) association reactions to form HOONO and HONO(2) are done using this PES. The cross section to form HOONO is larger than the one to form HONO(2) at low collision energies but the reverse is found at higher energies. The enhancement of the HOONO complex at low collision energies is shown to be due, in large part, to the transient formation of a H-bond complex, which decays preferentially to HOONO. The association cross sections are used to obtain rate constants for formation of HOONO and HONO(2) for the ground rovibrational states in the high-pressure limit. PMID:17867750

  7. Probabilities for classically forbidden transitions using classical and classical path methods

    International Nuclear Information System (INIS)

    Limits are established for the applicability of purely classical methods for calculating nonreactive, inelastic transition probabilities in collinear collisions of a structureless atom and a harmonic oscillator. These limits, obtained by comparison with previous exact quantum mechanical results, indicate that such methods are inappropriate not only for ''classically forbidden'' but for many ''classically allowed'' transitions (in spite of the fact that they are widely used to calculate probabilities for such processes). A classical path method in the context of infinite-order time-dependent perturbation theory is described which yields extremely accurate transition probabilities even for the most classically forbidden transitions in the collinear atom--harmonic oscillator system. The essential features of this method are: (1) the use of the expectation value of the total interaction potential in determining the atom--oscillator (central force) trajectory, and (2) the use of the arithmetic mean of the initial and final velocities of relative motion in the (elastic) central force trajectory. This choice of interaction potential allows the relative motion to be coupled to changes in the internal state of the oscillator. The present classical method is further applied to three-dimensional atom-breathing sphere collisions, and exact quantum mechanical calculations are also carried out. Comparison of the classical path and exact quantum results shows excellent agreement both in the specific inelastic cross section and in the individual partial-wave contributions

  8. WOLF: a computer code package for the calculation of ion beam trajectories

    International Nuclear Information System (INIS)

    The WOLF code solves POISSON'S equation within a user-defined problem boundary of arbitrary shape. The code is compatible with ANSI FORTRAN and uses a two-dimensional Cartesian coordinate geometry represented on a triangular lattice. The vacuum electric fields and equipotential lines are calculated for the input problem. The use may then introduce a series of emitters from which particles of different charge-to-mass ratios and initial energies can originate. These non-relativistic particles will then be traced by WOLF through the user-defined region. Effects of ion and electron space charge are included in the calculation. A subprogram PISA forms part of this code and enables optimization of various aspects of the problem. The WOLF package also allows detailed graphics analysis of the computed results to be performed

  9. Quasi-Classical Trajectory Study of Atom-Diatomic Molecule Collisions in Symmetric Hyperspherical Coordinates: The F + HCl Reaction as a Test Case.

    Science.gov (United States)

    Freixas-Lemus, Victor Manuel; Martínez-Mesa, Aliezer; Uranga-Piña, Llinersy

    2016-04-01

    We investigate the reactive dynamics of the triatomic system F + HCl → HF + Cl for total angular momentum equal zero and for different low-lying rovibrational states of the diatomic molecule. For each of the initial vibrational quantum numbers, the time evolution of the atom-diatom collision process is investigated for a wide range of impact angles and collision energies. To this purpose, the Quasi-Classical Trajectories (QCT) method was implemented in a hyperspherical configuration space. The Hamilton equations of motion are solved numerically in an intermediate effective Cartesian space to exploit the relative simplicity of this intermediate representation. Interatomic interactions are described by a London-Eyring-Polanyi-Sato potential energy surface, specifically developed for the title reaction, and the results of the QCT simulations are discussed in terms of the time-evolution of the hyperangles. The analysis of the collision dynamics using symmetric hyperspherical coordinates provides, in addition to the description in terms of a natural reaction coordinate (the hyperradius), a more striking representation of the exchange dynamics, in terms of the time-dependent probability distribution along the kinematic rotation hyperangle, and a precise distinction between direct and indirect mechanisms of the reaction. PMID:27002240

  10. Quasi-classical trajectory study of the reaction N(4S) + H2 and its reverse reaction: Role of initial vibrational and rotational excitations in chemical stereodynamics

    Indian Academy of Sciences (India)

    Juan Zhang; Shunle Dong

    2013-07-01

    To investigate the effects of reagent vibrational and rotational states on the stereodynamical properties of the N(4S) + H2(, )→NH + H reaction and its reverse reaction of H(2S) + NH(, )→N(4S) + H2, we reported a detailed quasiclassical trajectory study using the 4A" double many-body expansion potential energy surface and at the collision energy of 35 kcal/mol. The density distribution of (r) as a function of the angle between and ', and that of (r) as a function of the dihedral angle between the plane containing -' and the plane containing '- ', the normal differential cross-sections as well as the averaged product rotational alignment parameter 〈 2('.) 〉 are calculated and reported. Comparison between the two reactions has showed that the degrees of alignment and orientation of products related to reagent rovibrational state have marked differences for the two reactive systems.

  11. The ortho-to-para ratio of interstellar NH$_2$: Quasi-classical trajectory calculations and new simulations

    CERN Document Server

    Gal, Romane Le; Xie, Changjian; Li, Anyang; Guo, Hua

    2016-01-01

    Based on recent $Herschel$ results, the ortho-to-para ratio (OPR) of NH$_2$ has been measured towards the following high-mass star-forming regions: W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4), and G34.3+0.1. The OPR at thermal equilibrium ranges from the statistical limit of three at high temperatures to infinity as the temperature tends toward zero, unlike the case of H$_{2}$. Depending on the position observed along the lines-of-sight, the OPR was found to lie either slightly below the high temperature limit of three (in the range $2.2-2.9$) or above this limit ($\\sim3.5$, $\\gtrsim 4.2$, and $\\gtrsim 5.0$). In low temperature interstellar gas, where the H$_{2}$ is para-enriched, our nearly pure gas-phase astrochemical models with nuclear-spin chemistry can account for anomalously low observed NH$_2$-OPR values. We have tentatively explained OPR values larger than three by assuming that spin thermalization of NH$_2$ can proceed at least partially by H-atom exchange collisions with atomic hydrogen, th...

  12. Semi-classical calculations of ultracold and cold collisions with frequency-chirped light

    International Nuclear Information System (INIS)

    There has been considerable interest in using shaped laser pulses as a means to control the dynamics of atoms and molecules. We conduct semi-classical Monte-Carlo simulations of ultracold collisions utilizing frequency-chirped laser light on a nanosecond timescale. Recent experiments demonstrated partial control of light-assisted collisional mechanisms with relatively slow chirp rates (10 GHz/μs). Collisions induced with positive chirped light enhance the inelastic collisional loss rate of atoms from a magneto-optical trap due to rapid adiabatic passage, whereas trap loss collisions can be coherently blocked when negative chirped light is used. Early quantum and classical simulations show that for negative chirps, laser frequency continually interacts with the atom pair during the collision. We investigate how this process depends on the chirp rate and show that by moderately speeding up the chirp (>50 GHz/μs), we can significantly enhance coherent processes. We extend our semi-classical model to examine using pulse shaping as a means to coherently control collisions and show that features in the pulse shape should be on the order of or less than 1 ns. We also show that coherent control of collisions using this technique can be extended to temperatures exceeding 1 K. (author)

  13. Algorithms and FORTRAN programs to calculate classical collision integrals for realistic intermolecular potentials

    International Nuclear Information System (INIS)

    Numerical methods and computer programs are given to evaluate, for an arbitrary intermolecular potential, the classical transport collision integrals which appear in the kinetic theory of dilute gases. The method of Gaussian quadrature was employed to integrate the triple integral. A detailed discussion is given of the mathematics necessary to determine the boundaries of the individual integrations as well as a detailed analysis of errors introduced by the numerical procedures. Results for a recently published helium potential, the HFDHE2, are given. 5 references

  14. Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application

    Science.gov (United States)

    Barghouty, A. F.

    2014-01-01

    Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.

  15. TU-F-17A-05: Calculating Tumor Trajectory and Dose-Of-The-Day for Highly Mobile Tumors Using Cone-Beam CT Projections

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B; Miften, M [University of Colorado School of Medicine, Aurora, CO (United States)

    2014-06-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed a method using these projections to determine the trajectory and dose of highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, where the trajectory mimicked a lung tumor with high amplitude (2.4 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each projection. A Gaussian probability density function for tumor position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two methods to improve the accuracy of tumor track reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation, and second, using the Monte Carlo method to sample the estimated Gaussian tumor position distribution. 15 clinically-drawn abdominal/lung CTV volumes were used to evaluate the accuracy of the proposed methods by comparing the known and calculated BB trajectories. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square (RMS) trajectory errors were lower than 5% of marker amplitude. Use of respiratory phase information decreased RMS errors by 30%, and decreased the fraction of large errors (>3 mm) by half. Mean dose to the clinical volumes was calculated with an average error of 0.1% and average absolute error of 0.3%. Dosimetric parameters D90/D95 were determined within 0.5% of maximum dose. Monte-Carlo sampling increased RMS trajectory and dosimetric errors slightly, but prevented over-estimation of dose in trajectories with high noise. Conclusions: Tumor trajectory and dose-of-the-day were accurately calculated using CBCT projections. This technique provides a widely-available method to evaluate highly-mobile tumors, and could facilitate better

  16. Verifying calculations forty years on : an overview of classical verification techniques for FEM simulations

    CERN Document Server

    Díez, Pedro

    2016-01-01

    This work provides an overview of a posteriori error assessment techniques for Finite Element (FE) based numerical models. These tools aim at estimating and controlling the discretization error in scientific computational models, being the basis for the numerical verification of the FE solutions. The text discusses the capabilities and limitations of classical methods to build error estimates which can be used to control the quality of numerical simulations and drive adaptive algorithms, with a focus on Computational Mechanics engineering applications. Fundamentals principles of residual methods, smoothing (recovery) methods, and constitutive relation error (duality based) methods are thus addressed along the manuscript. Attention is paid to recent advances and forthcoming research challenges on related topics.  The book constitutes a useful guide for students, researchers, or engineers wishing to acquire insights into state-of-the-art techniques for numerical verification.

  17. Classical Calculations of Scattering Signatures from a Gravitational Singularity or the Scattering and Absorption Cross-Sections of a Black Hole

    Indian Academy of Sciences (India)

    Felix C. Difilippo

    2012-09-01

    Within the context of general relativity theory we calculate, analytically, scattering signatures around a gravitational singularity: angular and time distributions of scattered massive objects and photons and the time and space modulation of Doppler effects. Additionally, the scattering and absorption cross sections for the gravitational interactions are calculated. The results of numerical simulations of the trajectories are compared with the analytical results.

  18. Statement of all scission-point configurations according to trajectory calculations on the example of the neutron-induced particle-accompanied fission of 92236U

    International Nuclear Information System (INIS)

    In the framework of the present thesis by comparison of the experimental measurement data obtained by means of the detector system DIOGENES with calculated trajectories possible scission-point configurations of the fissioning nucleus should be stated. Special interest was dedicated to the evaluation of the so-called particle-accompanied fission in which beside the two fission fragments yet a light particle is additionally emitted. The initial conditions of a fission searched for are obtained by means of trajectory calculations which yield for assumed starting values the physical quantities as result which are also experimental accessible like final energies of all three contributing particles and angle between the light particle and the light fragment. The calculations were performed both for spherical and for rotational-ellipsoidally deformed fragments. All calculations were performed including the Coulomb and nuclear interaction forces between the three contributing nuclei, the fission fragment, and the α particle. (orig./HSI)

  19. Classical calculation of high-order harmonic generation of atomic and molecular gases in intense laser fields

    OpenAIRE

    Lee, Chaohong; Duan, Yiwu; Liu, Wing-Ki; Yuan, Jian-Min; Shi, Lei; Zhu, Xiwen; Gao, Kelin

    2001-01-01

    Based upon our previous works (Eur.Phys.J.D 6, 319(1999); Chin.Phys.Lett. 18, 236(2001)), we develop a classical approach to calculate the high-order harmonic generation of the laser driven atoms and molecules. The Coulomb singularities in the system have been removed by a regularization procedure. Action-angle variables have been used to generate the initial microcanonical distribution which satisfies the inversion symmetry of the system. The numerical simulation show, within a proper laser ...

  20. Analysis of cosmic ray intensity data and trajectory calculated vertical cutoff rigidities for the latitude survey made during the 22nd Soviet Antarctic Expedition

    International Nuclear Information System (INIS)

    We have derived, by the standard trajectory-tracing procedure, vertical cutoff rigidities for the locations of the stratospheric balloon measurements made during the 22nd Soviet Antarctic Expedition (1975-1976). Using the International Geomagnetic Reference Field Model for Epoch 1975, trajectories were calculated at 0.01 GV rigidity intervals to determine the vertical cutoff rigidities for each location. A comparison of the cosmic ray intensity vs. vertical cutoff rigidities for the entire survey shows a reasonable ordering of the data with an asymmetry between the northen and southern hemispheres

  1. The cross sections calculations of hadrons and complex particles elastic scattering of nuclei with phase using in quasi-classic approximation

    International Nuclear Information System (INIS)

    The method of nuclear elastic scattering cross sections calculations has proposed for incident hadrons and complex particles within quasi-classic approximation using scattering phases. The calculation have performed for proton-nucleus elastic scattering cross sections from 182 MeV to 1 GeV. The calculating cross sections angular dependencies describe satisfactorily the experimental data behaviour in secondary maxima neighbourhood

  2. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach

    International Nuclear Information System (INIS)

    The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics. (paper)

  3. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach

    Science.gov (United States)

    Sakko, Arto; Rossi, Tuomas P.; Nieminen, Risto M.

    2014-08-01

    The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics.

  4. Classical calculation of high-order harmonic generation of atomic and molecular gases in intense laser fields

    CERN Document Server

    Lee, C; Liu, W K; Yuan Jian Min; Shi, L; Zhu, X; Gao, K; Lee, Chaohong; Duan, Yiwu; Liu, Wing-Ki; Yuan, Jian-Min; Shi, Lei; Zhu, Xiwen; Gao, Kelin

    2001-01-01

    Based upon our previous works (Eur.Phys.J.D 6, 319(1999); Chin.Phys.Lett. 18, 236(2001)), we develop a classical approach to calculate the high-order harmonic generation of the laser driven atoms and molecules. The Coulomb singularities in the system have been removed by a regularization procedure. Action-angle variables have been used to generate the initial microcanonical distribution which satisfies the inversion symmetry of the system. The numerical simulation show, within a proper laser intensity, a harmonic plateau with only odd harmonics appears. At higher intensities, the spectra become noisier because of the existence of chaos. With further increase in laser intensity, ionization takes place, and the high-order harmonics disappear. Thus chaos introduces noise in the spectra, and ionization suppresses the harmonic generation, with the onset of the ionization follows the onset of chaos.

  5. New ways of approach and calculation of second and trird order transformations for charged particle trajectories, performed by dipole, quadrupole and sextupole magnets

    International Nuclear Information System (INIS)

    Consideration is being given to a new way of approach of second and third order transformations for charged particle trajectories, performed by dipole, quadrupole magnets, widely used for acceleration and transport, separation and monochromatization of particles. The Way is based on the fact that for determination of transformation factors is necessary to conjugate two parts of particle trajectory, one of which is determined by initial particle coordinates, and another one - by terminal coordinates, presented in the form of series expansion according to initial coordinates and small parameters. Two trajectory parts are conjugated in that spot of transformation, where trajectories, typical for one out of four possible types of tra ectory brush transformation (''point to point'', ''point to parallels'', ''parallels to point'', ''parallels to parallels'') are parallel to the optical axis of transforming element or cross it. A new way of approach was used to obtain the system of unified, compact and symmetrical analytical expression for the first order coefficient with the obvious geometrical interpretation and simple algorithms for parameter search and calculation of characteristics of focusing and analyzing magnetic and electric elements (dipole magnets, electric deflectors, magnetic and electric quadrupole lenses)

  6. Comment on "Classical description of H (1 s ) and H*(n =2 ) for cross-section calculations relevant to charge-exchange diagnostics"

    Science.gov (United States)

    Jorge, A.; Errea, L. F.; Illescas, Clara; Méndez, L.

    2016-06-01

    Cariatore et al. [Phys. Rev. A 91, 042709 (2015), 10.1103/PhysRevA.91.042709] have introduced a modification of the classical trajectory Monte Carlo (CTMC) method, specially conceived to provide an accurate representation of charge-exchange processes between highly charged ions and H (1 s ) , H*(n =2 ) . We point out that this new CTMC treatment is based on nonstable initial distributions for H*(n =2 ) targets and an improper description of the H (1 s ) target.

  7. On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts

    Science.gov (United States)

    Stewart, Sean M.

    2012-01-01

    Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…

  8. The Astrophysical r-Process: A Comparison of Calculations following Adiabatic Expansion with Classical Calculations Based on Neutron Densities and Temperatures

    International Nuclear Information System (INIS)

    The rapid neutron-capture process (r-process) encounters unstable nuclei far from β-stability. Therefore its observable features, like the abundances, witness (still uncertain) nuclear structure as well as the conditions in the appropriate astrophysical environment. With the remaining lack of a full understanding of its astrophysical origin, parameterized calculations are still needed. We consider two approaches: (1) the classical approach is based on (constant) neutron number densities nn and temperatures T over duration timescales τ; (2) recent investigations, motivated by the neutrino wind scenario from hot neutron stars after a supernova explosion, followed the expansion of matter with initial entropies S and electron fractions Ye over expansion timescales τ. In the latter case the freezeout of reactions with declining temperatures and densities can be taken into account explicitly. We compare the similarities and differences between the two approaches with respect to resulting abundance features and their relation to solar r-process abundances, applying for the first time different nuclear mass models in entropy-based calculations. Special emphasis is given to the questions of (a) whether the same nuclear properties far from stability lead to similar abundance patterns and possible deficiencies in (1) and (2), and (b) whether some features can also provide clear constraints on the astrophysical conditions in terms of permitted entropies, Ye values, and expansion timescales in (2). This relates mostly to the A<110 mass range, where a fit to solar r-abundances in high-entropy supernova scenarios seems to be hard to attain. Possible low-entropy alternatives are presented. copyright copyright 1999. The American Astronomical Society

  9. Reliability of Functional Connectivity of Electroencephalography Applying Microstate-Segmented Versus Classical Calculation of Phase Lag Index.

    Science.gov (United States)

    Hatz, Florian; Hardmeier, Martin; Bousleiman, Habib; Rüegg, Stephan; Schindler, Christian; Fuhr, Peter

    2016-07-01

    Connectivity analysis characterizes normal and altered brain function, for example, using the phase lag index (PLI), which is based on phase relations. However, reliability of PLI over time is limited, especially for single- or regional-link analysis. One possible cause is repeated changes of network configuration during registration. These network changes may be associated with changes of the surface potential fields, which can be characterized by microstate analysis. Microstate analysis describes repeating periods of quasistable surface potential fields lasting in the subsecond time range. This study aims to describe a novel combination of PLI with microstate analysis (microstate-segmented PLI = msPLI) and to determine its impact on the reliability of single links, regional links, and derived graph measures. msPLI was calculated in a cohort of 34 healthy controls three times over 2 years. A fully automated processing of electroencephalography was used. Resulting connectomes were compared using Pearson correlation, and test-retest reliability (TRT reliability) was assessed using the intraclass correlation coefficient. msPLI resulted in higher TRT reliability than classical PLI analysis for single or regional links, average clustering coefficient, average shortest path length, and degree diversity. Combination of microstates and phase-derived connectivity measures such as PLI improves reliability of single-link, regional-link, and graph analysis. PMID:27220459

  10. Simulation of chemical reactions in solution by a combination of classical and quantum mechanical approach

    Science.gov (United States)

    Onida, Giovanni; Andreoni, Wanda

    1995-09-01

    A classical trajectory mapping method was developed to study chemical reactions in solution and in enzymes. In this method, the trajectories were calculated on a classical potential surface and the free energy profile was obtained by mapping the classical surface to the quantum mechanical surface obtained by the semiempirical AM1 method. There is no need to perform expensive quantum mechanical calculations at each iteration step. This method was applied to proton transfer reactions both in aqueous solution and in papain. The results are encouraging, indicating the applicability of this hybrid method to chemical reactions both in solution and in enzymes.

  11. Trajectory Calculations for Bergman Cyclization Predict H/D Kinetic Isotope Effects Due to Nonstatistical Dynamics in the Product.

    Science.gov (United States)

    Doubleday, Charles; Boguslav, Mayla; Howell, Caronae; Korotkin, Scott D; Shaked, David

    2016-06-22

    An unusual H/D kinetic isotope effect (KIE) is described, in which isotopic selectivity arises primarily from nonstatistical dynamics in the product. In DFT-based quasiclassical trajectories of Bergman cyclization of (Z)-3-hexen-1,5-diyne (1) at 470 K, the new CC bond retains its energy, and 28% of nascent p-benzyne recrosses back to the enediyne on a vibrational time scale. The competing process of intramolecular vibrational redistribution (IVR) in p-benzyne is too slow to prevent this. Deuteration increases the rate of IVR, which decreases the fraction of recrossing and increases the yield of statistical (trapable) p-benzyne, 2. Trapable yields for three isotopomers of 2 range from 72% to 86%. The resulting KIEs for Bergman cyclization differ substantially from KIEs predicted by transition state theory, which suggests that IVR in this reaction can be studied by conventional KIEs. Leakage of vibrational zero point energy (ZPE) into the reaction coordinate was probed by trajectories in which initial ZPE in the CH/CD stretching modes was reduced by 25%. This did not change the predicted KIEs. PMID:27281683

  12. An explanation of interference effects in the double slit experiment: Classical trajectories plus ballistic diffusion caused by zero-point fluctuations

    OpenAIRE

    Groessing, Gerhard; Fussy, Siegfried; Pascasio, Johannes Mesa; Schwabl, Herbert

    2011-01-01

    A classical explanation of interference effects in the double slit experiment is proposed. We claim that for every single "particle" a thermal context can be defined, which reflects its embedding within boundary conditions as given by the totality of arrangements in an experimental apparatus. To account for this context, we introduce a "path excitation field", which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a "particle" can take via therm...

  13. Photodissociation dynamics of nitromethane and methyl nitrite by infrared multiphoton dissociation imaging with quasiclassical trajectory calculations: Signatures of the roaming pathway

    Science.gov (United States)

    Dey, Arghya; Fernando, Ravin; Abeysekera, Chamara; Homayoon, Zahra; Bowman, Joel M.; Suits, Arthur G.

    2014-02-01

    We combine the techniques of infrared multiphoton dissociation (IRMPD) with state selective ion imaging to probe roaming dynamics in the unimolecular dissociation of nitromethane and methyl nitrite. Recent theoretical calculations suggest a "roaming-mediated isomerization" pathway of nitromethane to methyl nitrite prior to decomposition. State-resolved imaging of the NO product coupled with infrared multiphoton dissociation was carried out to examine this unimolecular decomposition near threshold. The IRMPD images for the NO product from nitromethane are consistent with the earlier IRMPD studies that first suggested the importance of an isomerization pathway. A significant Λ-doublet propensity is seen in nitromethane IRMPD but not methyl nitrite. The experimental observations are augmented by quasiclassical trajectory calculations for nitromethane and methyl nitrite near threshold for each dissociation pathway. The observation of distinct methoxy vibrational excitation for trajectories from nitromethane and methyl nitrite dissociation at the same total energy show that the nitromethane dissociation bears a nonstatistical signature of the roaming isomerization pathway, and this is possibly responsible for the nitromethane Λ-doublet propensity as well.

  14. Galileo's Trajectory with Mild Resistance

    Science.gov (United States)

    Groetsch, C. W.

    2012-01-01

    An aspect of Galileo's classical trajectory that persists in a simple resistance model is noted. The resistive model provides a case study for the classroom analysis of limiting behaviour of an implicitly defined function. (Contains 1 note.)

  15. Theory of spontaneous radiation by electrons in a trajectory-coherent approximation

    International Nuclear Information System (INIS)

    The first-order quantum correction for the characterization of spontaneous radiation is calculated by means of electron quasi-classical trajectory-coherent states in an arbitrary electromagnetic field. Well known expressions for the characterization of spontaneous radiation are obtained using quasi-classical approximation. The first-order quantum correction is derived as a function from a classical trajectory (among which is a classical spin vector). Transitions with spin flip and without spin flip are distinguished. Those elements connected with photon kick and quantum motion characteristics are selected for first-order quantum correction. It is shown that, using an ultra-relativistic approximation, the latter may be ignored, but when using a non-relativistic approximation their contributions are approximately equal. A special trajectory-coherent representation that significantly simplifies the investigation of spontaneous radiation is proposed. (author)

  16. Neutron response calculation on the basis of variable track etch rates along the secondary particle trajectories in CR-39

    CERN Document Server

    Hermsdorf, D; Dörschel, B; Henniger, J

    1999-01-01

    The calculation of the response of CR-39 detectors exposed to neutrons is of high importance for their dosimetric application. A computer code system has been developed for this purpose. Whereas the generation of secondary charged particles is carried out using non-analogue Monte-Carlo techniques with variance reduction the simulation of the track formation process is treated without any free parameter starting from the etch rate ratio V(REL) only. Results are given for the contribution of recoil protons to the response as a function of the neutron energy and angle of incidence. Furthermore, the influence of an external radiator has been studied. The comparison of the calculated values with experimental data confirm the reliability of the track etch model applied.

  17. Application of the Landau-Zener model and the classical trajectory Monte Carlo method for capture processes in collisions of highly charged ions with light atoms

    International Nuclear Information System (INIS)

    In describing the collision dynamics of processes SEC and DEC (single and double electron capture, respectively) in case of the He target the one active electron approximation was used with a single-centre effective potential for calculations of the dominant (n,l)-level state selective and total charge exchange cross sections. For He target part of the diexcited states of the projectile ions produced by DEC decay by Auger emission of one electron. This autoionizing double capture channel (ADEC) is not taken into account in the present work. (R.P.)

  18. Comparison of trajectory models in calculations of N2-broadened half-widths and N2-induced line shifts for the rotational band of H216O and comparison with measurements

    International Nuclear Information System (INIS)

    In this work, Complex Robert-Bonamy calculations of half-widths and line shifts were done for N2-broadening of water for 1639 transitions in the rotational band using two models for the trajectories. The first is a model correct to second order in time, the Robert-Bonamy parabolic approximation. The second is the solution of Hamilton's equations. Both models use the isotropic part of the atom-atom potential to determine the trajectories. The present calculations used an intermolecular potential expanded to 20th order to assure the convergence of the half-widths and line shifts. The aim of the study is to assess if the difference in the half-widths and line shifts determined from the two trajectory models is greater than the accuracy requirements of the spectroscopic and remote sensing communities. The results of the calculations are compared with measurements of the half-widths and line shifts. It is shown that the effects of the trajectory model greatly exceed the needs of current remote sensing measurements and that line shape parameters calculated using trajectories determined by solving Hamilton's equations agree better with measurement.

  19. Dynamical conservation of invariants by toroidal trajectories of guiding centres

    International Nuclear Information System (INIS)

    The classical problem of calculating toroidal trajectories is treated here by comparing the results of two different methods in a given magnetic configuration, a standard divergence-free magnetic field model. The present work consists of adapting the analytical criteria of MERCIER et al. for classical toroidal trajectories, and to examine numerically the dynamical conservation of the toroidal invariant. The first method is based on the evolution equations for the guiding centres. These equations are then solved numerically (code TRATORIA) and the trajectories are drawn for different initial conditions. We use a modified standard model for the magnetic field, which insures a manifestly divergence-free field. Moreover we take into account the contribution of the poloidal field to the total strength of the magnetic field. These corrections contribute to the analytical expression of the conserved toroidal momentum. The latter is verified to be conserved by the present numerical simulation with a precision generally of the order of 10-14. The second method is based on the analytical treatment of the invariants to yield a semi-analytical (semi graphical) determination of the intersection point of a given trajectory with the equatorial plane. Both methods allows one to recover well-known toroidal trajectories with passing and trapped particles (bananas). The present analysis brings a clear description of some other, less well-known types of trajectories, namely the stagnation orbits, the smallest D-shape banana, some small circulating de-flated bananas, some huge classical bananas (potatoes), and the largest puffed bananas which exhibit only local mirroring, along with several kind of escaping or open trajectories which are of importance for fast ion losses and target damages in the machines

  20. Classical confined particles

    Science.gov (United States)

    Horzela, Andrzej; Kapuscik, Edward

    1993-01-01

    An alternative picture of classical many body mechanics is proposed. In this picture particles possess individual kinematics but are deprived from individual dynamics. Dynamics exists only for the many particle system as a whole. The theory is complete and allows to determine the trajectories of each particle. It is proposed to use our picture as a classical prototype for a realistic theory of confined particles.

  1. NMscatt: a program for calculating inelastic scattering from large biomolecular systems using classical force-field simulations

    CERN Document Server

    Merzel, F; Johnson, M R; Fontaine-Vive, Fabien; Johnson, Mark R.; Merzel, Franci

    2006-01-01

    Computational tools for normal mode analysis, which are widely used in physics and materials science problems, are designed here in a single package called NMscatt (Normal Modes & scattering) that allows arbitrarily large systems to be handled. The package allows inelastic neutron and X-ray scattering observables to be calculated, allowing comparison with experimental data produced at large scale facilities. Various simplification schemes are presented for analysing displacement vectors, which are otherwise too complicated to understand in very large systems.

  2. Inverse variational problem and ambiguity of classical system quantization

    International Nuclear Information System (INIS)

    It is shown that the problem of ambiguity of classical systems quantization is not limited by substitution of classical values for operators and by ordering of noncommutating operators. It is demonstrated that one and the same classical system can be described. Using an infinite number of various (differing more than for a total derivative) Lagrangians or Hamiltonians. The Feynman quantization is used by means of trajectory integrals. The problem of quantization of the classical system of equations of motion turns to be closely related to the inverse variational calculation problem. The inverse variational problem consists in finding a functional proceeding, from given equations, the extremals of which coincide with the solutions of the given equations. It is shown by concrete examples that with different Lagrangians though leading to identical classic equations of motion various quantum systems are obtained

  3. Comparison of Classical and Modern Uncertainty Qualification Methods for the Calculation of Critical Speeds in Railway Vehicle Dynamics

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; True, Hans

    2012-01-01

    This paper describes the results of the application of Uncertainty Quantification methods to a railway vehicle dynamical example. Uncertainty Quantification methods take the probability distribution of the system parameters that stems from the parameter tolerances into account in the result. In...... this paper the methods are applied to a lowdimensional vehicle dynamical model composed by a two-axle bogie, which is connected to a car body by a lateral linear spring, a lateral damper and a torsional spring. Their characteristics are not deterministically defined, but they are defined by probability...... distributions. The model - but with deterministically defined parameters - was studied in [1], and this article will focus on the calculation of the critical speed of the model, when the distribution of the parameters is taken into account. Results of the application of the traditional Monte Carlo sampling...

  4. Ab initio calculations on the spectroscopic constants,vibrational levels and classical turning points for the 21Πu state of dimer 7Li2

    Institute of Scientific and Technical Information of China (English)

    Liu Yu-Fang; Sun Jin-Feng; Ma Heng; Zhu Zun-Lue

    2007-01-01

    The accurate dissociation energy and harmonic frequency for the highly excited 21 Πu state of dimer 7Li2 have been calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space.The calculated results are in excellent agreement with experimental measurements.The potential energy curves at numerous basis sets for this state are obtained over a wide internuclear separation range from about 2.4ao to 37.0ao.And the conclusion is gained that the basis set 6-311++G(d,p) is a most suitable one.The calculated spectroscopic constants De,Re,ωe,ωeχe,αe and Be at 6-311++G(d,p) are 0.9670 eV,0.3125 nm,238.6 cm-1,1.3705cm-1,0.0039 cm-1 and 0.4921 cm-1.respectively.The vibrational levels are calculated by solving the radial Schr(o)dinger equation of nuclear motion.A total of 53 vibrational levels are found and reported for the first time.The classical turning points have been computed.Comparing with the measurements,in which only the first nine vibrational levels have been obtained so far,the present calculations are very encouraging.A careful comparison of the present results of the parameters De and ωe with those obtained from previous theories clearly shows that the present calculations are much closer to the measurements than previous theoretical results,thus representing an improvement on the accuracy of the ab initio calculations of the potentials for this state.

  5. On the validity of trajectory methods for calculating the transport of very low energy (<1 keV) electrons in liquids and amorphous media

    International Nuclear Information System (INIS)

    It is easily demonstrated that a trajectory picture of low energy electron transport in condensed matter is not compatible with the Heisenberg uncertainty principle. The uncertainty in the position of a low energy electron is large and may in fact be larger than an entire simulated trajectory. This might be interpreted to mean that trajectory methods are not applicable. However, this conclusion is not correct. In the present paper, the evidence for the validity of low energy electron trajectory simulation is discussed, as well as the wave aspects and quantum nature of low energy electron transport in liquids and amorphous solids. It is pointed out that the validity of a trajectory approach to low energy electron transport in a liquid or amorphous solid partly is due to its ability to reproduce the average results of coherent elastic multiple wave scattering in a randomlike medium, and moreover that this ability may be further enhanced by the presence of inelastic scattering. The resulting validity of the trajectory method may be referred to as circumstancial validity, which is of a nature different from the explicit validity of trajectory methods which are compatible with the uncertainty principle. A previous systematic analysis of the limits of circumstancial validity is revisited and discussed for the basic case of multiple elastic scattering of a particle in a random medium of point scatterers. The detailed limits of circumstancial validity are graphically demonstrated in terms of particle wavelength, average distance between scatterers and elastic mean free path. Their immediate applicability to neutron transport is noted. The approximate nature of the point scatterer model as regards electron transport is adressed. In order to obtain an extrapolation of the result of the point scatterer model, it is observed that an increasing error of the trajectory method appears together with an increased amplitude of the multiple wave scattering taking place within the

  6. Wigner phase space distribution via classical adiabatic switching

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Amartya [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Makri, Nancy [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, Illinois 61801 (United States)

    2015-09-21

    Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.

  7. Wigner phase space distribution via classical adiabatic switching

    International Nuclear Information System (INIS)

    Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations

  8. The effects of the reagent rotation and vibration excitation on the cross section and product polarization of the reaction H+HS:a quasi-classical trajectory study%QCT方法研究振转激发对H+HS反应的反应截面和产物极化的影响

    Institute of Scientific and Technical Information of China (English)

    李艳青; 王美山; 朱子亮

    2016-01-01

    基于Lv等人最新构建的高精度的最低三重态势能面H2 S(3 A″),利用准经典轨线(QCT)方法计算了H+HS反应的两个反应通道提取反应和交换反应的动力学性质.主要研究了在反应物HS的碰撞能为0.1-2.0 eV时,不同振转态(v=0-3,j=0-3)对积分反应截面和产物极化的影响.研究结果表明:在总角动量J=0时,QCT方法计算出的动力学结果和吕等人的量子力学(QM)结果符合的很好.因此,对标题反应的动力学性质进行了进一步的研究.%The quasi-classical trajectory ( QCT) calculation are carried out for both exchange and abstraction processes of the reaction H+HS on a newly constructed high-quality lowest triplet state potential energy surface ( 3 A″) of H2 S. The integral cross section and the product polarization are investigated over the collision energy range of 0. 1-2. 0 eV for the reagent HS at the different vibrational and rotational states (v=0-3, j=0-3). The QCT-calculated integral cross sections are in good agreement with the previous QM results at the total angu-lar momentum J=0 as a function of collision energy for the H+HS ( v=0 , j=0 ) reaction. The detailed study of the dynamics properties for the title reaction is presented.

  9. A trajectory description of quantum processes. I. Fundamentals. A Bohmian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Angel S.; Miret-Artes, Salvador [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Inst. de Fisica Fundamental

    2012-11-01

    Offers a thorough introduction to, and treatment of, trajectory-based quantum-mechanical calculations. Presents the fundamentals of Bohmian mechanics. Useful for a wide range of scattering problems, as described in Vol. 2. Trajectory-based formalisms are an intuitively appealing way of describing quantum processes because they allow the use of ''classical'' concepts. Beginning at an introductory level suitable for students, this two-volume monograph presents (1) the fundamentals and (2) the applications of the trajectory description of basic quantum processes. This first volume is focussed on the classical and quantum background necessary to understand the fundamentals of Bohmian mechanics, which can be considered the main topic of this work. Extensions of the formalism to the fields of open quantum systems and to optics are also proposed and discussed.

  10. On the classical limit of Bohmian mechanics for Hagedorn wave packets

    CERN Document Server

    Dürr, Detlef

    2010-01-01

    We consider the classical limit of quantum mechanics in terms of Bohmian trajectories. For wave packets as defined by Hagedorn we show that the Bohmian trajectories converge to Newtonian trajectories in probability.

  11. Classical approach to H2+-H(1s) collisions

    International Nuclear Information System (INIS)

    Collisions between H2+ ion projectiles with H targets have been investigated in the 2.5-1000 keV energy range by means of classical-trajectory Monte Carlo calculations. It has been possible to simulate classically a dynamical H2+ molecule and, therefore, the approach includes all the Coulomb interactions between the five classical particles. Particular attention is paid to the description of the H2+ ion projectile, initially in its first vibration (v=0) ground state, and to the identification of the various reaction products after collision. Total cross sections for all the possible reaction channels are calculated, and are found in fair agreement with recent experimental data in the 20-100 keV energy range. Final n-state distributions for the hydrogen fragments are also determined

  12. Calculation of total cross sections for electron capture in collisions of Carbon ions with H(D,T)(1s)

    International Nuclear Information System (INIS)

    The calculations of total cross sections of electron capture in collisions of Cq+ with H(1s) are reviewed. At low collision energies, new calculations have been performed, using molecular expansions, to analyze isotope effects. The Classical Trajectory Monte Carlo method have been also applied to discuss the accuracy of previous calculations and to extend the energy range of the available cross sections

  13. Calculation and creating a modified magnetic system of classical cyclotron U-150 of Institute of Nuclear Physics of Academy of Sciences of Republic of Uzbekistan

    International Nuclear Information System (INIS)

    Full text: Classical cyclotron U-150, located in the Institute of Nuclear Physics of Academy of Sciences of Republic of Uzbekistan (Tashkent). The cyclotron was created more than 50 years ago and assumed it to accelerate different particles (protons, deuterons, ions, He), for the restructuring of the magnetic field used the coil current. In recent decades, the cyclotron is used to accelerate protons to energies of 15-20 MeV, which is produced at the target isotopes for medical or industrial applications. In order to save electric energy and help control the accelerator requested to create a decaying average magnetic field of the cyclotron only ferromagnetic rings and discs. To do this, we calculated the magnetic system with additional steel components (instead of the current), which create a decaying focusing magnetic field. The selected steel parts are made the cyclotron, an accelerator installed in the magnet and the measured magnetic field settings. Current coils are controlled only by the amplitude and phase of the first harmonic of magnetic field. Estimated processing of measurement results showed that using the resulting field of the accelerator can get the required isotopes, and the electric energy savings is about 15%. (author)

  14. Transmission Enhancement of High-$k$ Waves through Metal-InGaAsP Multilayers Calculated via Scattering Matrix Method with Semi-Classical Optical Gain

    CERN Document Server

    Smalley, Joseph S T; Shahin, Shiva; Kanté, Boubacar; Fainman, Yeshaiahu

    2015-01-01

    We analyze the steady-state transmission of high-momentum (high-$k$) electromagnetic waves through metal-semiconductor multilayer systems with loss and gain in the near-infrared (NIR). Using a semi-classical optical gain model in conjunction with the scattering matrix method (SMM), we study indium gallium arsenide phosphide (InGaAsP) quantum wells as the active semiconductor, in combination with the metals, aluminum-doped zinc oxide (AZO) and silver (Ag). Under moderate external pumping levels, we find that NIR transmission through Ag/InGaAsP systems may be enhanced by several orders of magnitude relative to the unpumped case, over a large angular and frequency bandwidth. Conversely, transmission enhancement through AZO/InGaAsP systems is orders of magnitude smaller, and has a strong frequency dependence. We discuss the relative importance of Purcell enhancement on our results and validate analytical calculations based on the SMM with numerical finite-difference time domain simulations.

  15. Classical antiparticles

    Energy Technology Data Exchange (ETDEWEB)

    Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.

    1997-03-01

    We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors). 13 refs., 1 tab.

  16. Quantum corrections to transport in graphene: a trajectory-based semiclassical analysis

    International Nuclear Information System (INIS)

    We review a calculation of the quantum corrections to electrical transport in graphene, using the trajectory-based semiclassical method. Compared to conventional metals, for graphene the semiclassical propagator contains an additional pseudospin structure that influences the results for weak localization, and interaction-induced effects, such as the Altshuler–Aronov correction and dephasing. Our results apply to a sample of graphene that is doped away from the Dirac point and subject to a smooth disorder potential, such that electrons follow classical trajectories. In such a system, the Ehrenfest time enters as an additional timescale. (paper)

  17. Total and differential cross sections for charge transfer in He2+-He+ collisions: trajectory effects

    International Nuclear Information System (INIS)

    Cross sections have been computed for charge transfer in collisions between 4He+ and 4He2+ ions for centre-of-mass collision energies 0.21 ≤ E ≤ 2.50 keV. The semi-classical impact parameter method was employed, with a basis of atomic orbitals modified by plane-wave translation factors. Both rectilinear and Coulomb trajectories were used, and the differential cross sections were found to be sensitive to the assumed form of trajectory. Comparison is made with molecular orbital calculations by previous workers. (author)

  18. Ballistic trajectories

    Science.gov (United States)

    Bender, D. F.

    1978-01-01

    The only ballistic trajectory mode feasible for a close solar probe or for an orbit inclined approximately 90 degrees to the ecliptic is the Jupiter gravity assisted mode. A comparison of the trajectories of the Solar Polar and the Solar Probe Mission for 1983 launches is shown. The geometry of the solar encounter phase is practically the same for the 4.3 year orbit achieved by a Jupiter gravity assist and for a one year orbit. Data describing the geometry of an orbit with perihelion at 4 solar radii and aphelion at Jupiter are listed. The range of apparent directions of the solar wind if it is flowing radially outward from the Sun with a speed of either 150 or 300 km/sec is shown. The minimum sun-earth-probe angle during the solar encounter as a function of the earth-node angle and the orbital inclination is also shown. If the inclination is 60 degrees or more, the minimum SEP angle is not greatly different from the 90 degree value.

  19. Iterative quantum-classical path integral with dynamically consistent state hopping.

    Science.gov (United States)

    Walters, Peter L; Makri, Nancy

    2016-01-28

    We investigate the convergence of iterative quantum-classical path integral calculations in sluggish environments strongly coupled to a quantum system. The number of classical trajectories, thus the computational cost, grows rapidly (exponentially, unless filtering techniques are employed) with the memory length included in the calculation. We argue that the choice of the (single) trajectory branch during the time preceding the memory interval can significantly affect the memory length required for convergence. At short times, the trajectory branch associated with the reactant state improves convergence by eliminating spurious memory. We also introduce an instantaneous population-based probabilistic scheme which introduces state-to-state hops in the retained pre-memory trajectory branch, and which is designed to choose primarily the trajectory branch associated with the reactant at early times, but to favor the product state more as the reaction progresses to completion. Test calculations show that the dynamically consistent state hopping scheme leads to accelerated convergence and a dramatic reduction of computational effort. PMID:26827203

  20. Iterative quantum-classical path integral with dynamically consistent state hopping

    Science.gov (United States)

    Walters, Peter L.; Makri, Nancy

    2016-01-01

    We investigate the convergence of iterative quantum-classical path integral calculations in sluggish environments strongly coupled to a quantum system. The number of classical trajectories, thus the computational cost, grows rapidly (exponentially, unless filtering techniques are employed) with the memory length included in the calculation. We argue that the choice of the (single) trajectory branch during the time preceding the memory interval can significantly affect the memory length required for convergence. At short times, the trajectory branch associated with the reactant state improves convergence by eliminating spurious memory. We also introduce an instantaneous population-based probabilistic scheme which introduces state-to-state hops in the retained pre-memory trajectory branch, and which is designed to choose primarily the trajectory branch associated with the reactant at early times, but to favor the product state more as the reaction progresses to completion. Test calculations show that the dynamically consistent state hopping scheme leads to accelerated convergence and a dramatic reduction of computational effort.

  1. Iterative quantum-classical path integral with dynamically consistent state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Peter L.; Makri, Nancy [Department of Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-01-28

    We investigate the convergence of iterative quantum-classical path integral calculations in sluggish environments strongly coupled to a quantum system. The number of classical trajectories, thus the computational cost, grows rapidly (exponentially, unless filtering techniques are employed) with the memory length included in the calculation. We argue that the choice of the (single) trajectory branch during the time preceding the memory interval can significantly affect the memory length required for convergence. At short times, the trajectory branch associated with the reactant state improves convergence by eliminating spurious memory. We also introduce an instantaneous population-based probabilistic scheme which introduces state-to-state hops in the retained pre-memory trajectory branch, and which is designed to choose primarily the trajectory branch associated with the reactant at early times, but to favor the product state more as the reaction progresses to completion. Test calculations show that the dynamically consistent state hopping scheme leads to accelerated convergence and a dramatic reduction of computational effort.

  2. Iterative quantum-classical path integral with dynamically consistent state hopping

    International Nuclear Information System (INIS)

    We investigate the convergence of iterative quantum-classical path integral calculations in sluggish environments strongly coupled to a quantum system. The number of classical trajectories, thus the computational cost, grows rapidly (exponentially, unless filtering techniques are employed) with the memory length included in the calculation. We argue that the choice of the (single) trajectory branch during the time preceding the memory interval can significantly affect the memory length required for convergence. At short times, the trajectory branch associated with the reactant state improves convergence by eliminating spurious memory. We also introduce an instantaneous population-based probabilistic scheme which introduces state-to-state hops in the retained pre-memory trajectory branch, and which is designed to choose primarily the trajectory branch associated with the reactant at early times, but to favor the product state more as the reaction progresses to completion. Test calculations show that the dynamically consistent state hopping scheme leads to accelerated convergence and a dramatic reduction of computational effort

  3. Trajectory of the harmonic oscillator in the Schreodinger wave

    OpenAIRE

    Nishiyama, Yoshio

    2001-01-01

    A trajectory of a harmonic oscillator obeying the Schreodinger wave equation is exactly derived and illustrated. The trajectory resembles well the classical orbit between the turning points, and also runs through the tunneling region. The dynamics of the `particle' motion and the wave function associated with the motion are proposed. The period of a round trip on the trajectory is exactly equal to that obtained in classical mechanics.

  4. Trajectory of the harmonic oscillator in the Schrodinger wave

    OpenAIRE

    Nishiyama, Yoshio

    1999-01-01

    A trajectory of a harmonic oscillator obeying the Schrodinger equation is exactly derived and illustrated. The trajectory resembles well the classical orbit between the turning points, and also runs through the tunneling region. The dynamics of the 'particle' motion and the wave function associated with the motion are proposed. The period of a round trip on the trajectory is exactly equal to that obtained in classical mechanics.

  5. Measurement of the track etch rates along proton and alpha particle trajectories in CR-39 and calculation of the detection efficiency

    CERN Document Server

    Dörschel, B; Hermsdorf, D; Kadner, K; Kuehne, H

    1999-01-01

    Computation of the neutron response of CR-39 detectors needs to simulate the track formation by neutron induced charged particles taking into account the bulk etch rate and the track etch rate varying along the particle trajectories. The latter one was determined experimentally by track length measurement. The results allowed to derive the relationship between the track etch rate and the restricted energy loss of the charged particles. On this basis, the geometrical track parameters and track etch rates as well as the critical angle of particle incidence could be determined for protons and alpha particles in the energy range from 0.2 to 8.8 MeV. The energy dependence of the critical angle enabled to determine the detection efficiency for a charged particle of given energy and direction.

  6. Evaluation of photoexcitation and photoionization probabilities by the trajectory method

    International Nuclear Information System (INIS)

    A new trajectory-based method of transition probability evaluation in quantum system was developed. It is based on a path integral representation of probability and uses Weyl symbols for initial and final states. The method belongs to the efficient initial value representation (IVR) schemes. The pre-exponential factor specific to the semi-classical method is equal to one, and does not need be separately calculated. This eliminates problems with caustics and Maslov indices of trajectories. The method is equally efficient for evaluation of the transition probabilities into separate states and groups of states, including an entire ionization continuum, for example. The capabilities of the method are demonstrated by the evaluation of the photo-excitation and photo-ionization probabilities in the hydrogen atom exposed to an ultrashort photo-pulse, and total photo-ionization probability in the helium atom. (authors)

  7. Electron trajectory program

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B.

    1979-11-01

    The SLAC Electron Trajectory Program is described and instructions and examples for users are given. The program is specifically written to compute trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes. Either rectangular or cylindrically symmetric geometry may be used. Magntic fields may be specified using arbitrary configurations of coils, or the output of a magnet program such as Poisson or by an externally calculated array of the axial fields. The program is available in IBM FORTRAN but can be easily converted for use on other brands of hardware. The program is intended to be used with a plotter whose interface the user must provide.

  8. Electron trajectory program

    International Nuclear Information System (INIS)

    The SLAC Electron Trajectory Program is described and instructions and examples for users are given. The program is specifically written to compute trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes. Either rectangular or cylindrically symmetric geometry may be used. Magntic fields may be specified using arbitrary configurations of coils, or the output of a magnet program such as Poisson or by an externally calculated array of the axial fields. The program is available in IBM FORTRAN but can be easily converted for use on other brands of hardware. The program is intended to be used with a plotter whose interface the user must provide

  9. Three-stage classical molecular dynamics model for simulation of heavy-ion fusion

    Directory of Open Access Journals (Sweden)

    Godre Subodh S.

    2015-01-01

    Full Text Available A three-stage Classical Molecular Dynamics (3S-CMD approach for heavy-ion fusion is developed. In this approach the Classical Rigid-Body Dynamics simulation for heavy-ion collision involving light deformed nucleus is initiated on their Rutherford trajectories at very large initial separation. Collision simulation is then followed by relaxation of the rigid-body constrains for one or both the colliding nuclei at distances close to the barrier when the trajectories of all the nucleons are obtained in a Classical Molecular Dynamics approach. This 3S-CMD approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but also the internal vibrational excitations of one or both the nuclei at distances close to the barrier. The results of the dynamical simulation for 24Mg+208Pb collision show significant modification of the fusion barrier and calculated fusion cross sections due to internal excitations.

  10. Classical integrability

    Science.gov (United States)

    Torrielli, Alessandro

    2016-08-01

    We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin–Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand–Levitan–Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.

  11. Rydberg atoms in external fields as an example of open quantum systems with classical chaos

    International Nuclear Information System (INIS)

    We examine the quantum spectra of hydrogen atoms in external magnetic and electric fields above the ionization threshold with respect to signatures of classical chaos characteristics of open systems. The spectra are obtained by calculating wavefunctions and photionization cross sections in the continuum region with the aid of the complex-coordinate-rotation method. We find that the photoionization cross sections exhibit strong Ericson fluctuations, a quantum feature characteristic of classically chaotic scattering, in energy-field regions where classical trajectory calculations reveal a fractal dependence of the classical ionization time on the initial conditions. We also compare the nearest-neighbour-spacing distributions of complex resonance energies with predictions of random-matrix theories and find that our results are well reproduced by a Ginibre distribution. (author)

  12. Calculation of controls for fixed trajectories of motion of controlling station generators. Raschet upravleniy po fiksirovannym trayektoriyam dvizheniya generatorov upravlyayushchikh stantsiy

    Energy Technology Data Exchange (ETDEWEB)

    Khrushchev, Yu.V.; Danilov, S.N.; Savich, V.A.

    1983-01-01

    In the proposed method for forming controlling effects in dynamic transition of EPS, an additional system of equations is used of small order which can be solved at each step of integration of the system of differential equations of motion. The calculation algorithm for smooth control in this case is relatively simple and makes it possible to use standard programs. The program of formation and solution to the additional system of equations can be built into the known programs for calculating the dynamic stability of the EPS without their significant change, as a result of which a considerable improvement in their efficient use is possible.

  13. Classical Tunneling

    CERN Document Server

    Cohn, A G; Rabinowitz, Mario

    2003-01-01

    A classical representation of an extended body over barriers of height greater than the energy of the incident body is shown to have many features in common with quantum tunneling as the center-of-mass literally goes through the barrier. It is even classically possible to penetrate any finite barrier with a body of arbitrarily low energy if the body is sufficiently long. A distribution of body lengths around the de Broglie wavelength leads to reasonable agreement with the quantum transmission coefficient.

  14. Classical Tunneling

    OpenAIRE

    Cohn, Arthur; Rabinowitz, Mario

    2003-01-01

    A classical representation of an extended body over barriers of height greater than the energy of the incident body is shown to have many features in common with quantum tunneling as the center-of-mass literally goes through the barrier. It is even classically possible to penetrate any finite barrier with a body of arbitrarily low energy if the body is sufficiently long. A distribution of body lengths around the de Broglie wavelength leads to reasonable agreement with the quantum transmission...

  15. Classical Motion

    OpenAIRE

    Mould, Richard A

    2003-01-01

    Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previous...

  16. Soccer ball lift coefficients via trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goff, John Eric [Department of Physics, Lynchburg College, Lynchburg, VA 24501 (United States); Carre, Matt J, E-mail: goff@lynchburg.ed [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-07-15

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  17. Exceptional points in quantum and classical dynamics

    CERN Document Server

    Smilga, A V

    2008-01-01

    We notice that, when a quantum system involves exceptional points, i.e. the special values of parameters where the Hamiltonian loses its self-adjointness and acquires the Jordan block structure, the corresponding classical system also exhibits a singular behaviour associated with restructuring of classical trajectories. The system with the crypto-Hermitian Hamiltonian H = (p^2+z^2)/2 -igz^5 and hyper-ellictic classical dynamics is studied in details. Analogies with supersymmetric Yang-Mills dynamics are elucidated.

  18. Exceptional points in quantum and classical dynamics

    Science.gov (United States)

    Smilga, A. V.

    2009-03-01

    We note that when a quantum system involves exceptional points, i.e. the special values of parameters where the Hamiltonian loses its self-adjointness and acquires the Jordan block structure, the corresponding classical system also exhibits singular behaviour associated with the restructuring of classical trajectories. A system with the crypto-Hermitian Hamiltonian H = (p2 + z2)/2 - igz5 and hyper-elliptic classical dynamics is studied in detail. Analogies with supersymmetric Yang-Mills dynamics are elucidated.

  19. Trajectory Optimization: OTIS 4

    Science.gov (United States)

    Riehl, John P.; Sjauw, Waldy K.; Falck, Robert D.; Paris, Stephen W.

    2010-01-01

    The latest release of the Optimal Trajectories by Implicit Simulation (OTIS4) allows users to simulate and optimize aerospace vehicle trajectories. With OTIS4, one can seamlessly generate optimal trajectories and parametric vehicle designs simultaneously. New features also allow OTIS4 to solve non-aerospace continuous time optimal control problems. The inputs and outputs of OTIS4 have been updated extensively from previous versions. Inputs now make use of objectoriented constructs, including one called a metastring. Metastrings use a greatly improved calculator and common nomenclature to reduce the user s workload. They allow for more flexibility in specifying vehicle physical models, boundary conditions, and path constraints. The OTIS4 calculator supports common mathematical functions, Boolean operations, and conditional statements. This allows users to define their own variables for use as outputs, constraints, or objective functions. The user-defined outputs can directly interface with other programs, such as spreadsheets, plotting packages, and visualization programs. Internally, OTIS4 has more explicit and implicit integration procedures, including high-order collocation methods, the pseudo-spectral method, and several variations of multiple shooting. Users may switch easily between the various methods. Several unique numerical techniques such as automated variable scaling and implicit integration grid refinement, support the integration methods. OTIS4 is also significantly more user friendly than previous versions. The installation process is nearly identical on various platforms, including Microsoft Windows, Apple OS X, and Linux operating systems. Cross-platform scripts also help make the execution of OTIS and post-processing of data easier. OTIS4 is supplied free by NASA and is subject to ITAR (International Traffic in Arms Regulations) restrictions. Users must have a Fortran compiler, and a Python interpreter is highly recommended.

  20. Using Selectively Applied Accelerated Molecular Dynamics to Enhance Free Energy Calculations

    OpenAIRE

    Wereszczynski, Jeff; McCammon, J. Andrew

    2010-01-01

    Accelerated molecular dynamics (aMD) has been shown to enhance conformational space sampling relative to classical molecular dynamics; however, the exponential reweighting of aMD trajectories, which is necessary for the calculation of free energies relating to the classical system, is oftentimes problematic, especially for systems larger than small poly peptides. Here, we propose a method of accelerating only the degrees of freedom most pertinent to sampling, thereby reducing the total accele...

  1. Classical Motion

    CERN Document Server

    Mould, R A

    2003-01-01

    Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previously given rules support all of these cases. Key Words: brain states, conscious observer, detector, measurement, probability current, state reduction, von Neumann, wave collapse.

  2. Calculation of fusion time scales in 11B + 237Np, 12C + 232Th and 16O + 232Th reactions in a dynamical trajectory model

    International Nuclear Information System (INIS)

    There are several theoretical models which treat the fusion process and energy dissipation in heavy ion collision in terms of a fluctuating force represented by the coupling between macroscopic and intrinsic degrees of freedom. One such dynamical model has been developed by Feldmeier (1987), where the properties of the dissipative force are determined from a microscopic picture of particle exchange between two nuclei. The macroscopic shapes of the nuclear system are represented by axially symmetric configuration with sharp surfaces. We have used the above model to calculate the fusion time scales for the systems 11B + 237Np, 12C +232Th and 16O + 232Th at 77, 86 and 104 MeV bombarding energies to examine the effect of mass asymmetry in fusion dynamics. (author). 2 figs

  3. Method and Apparatus for Generating Flight-Optimizing Trajectories

    Science.gov (United States)

    Ballin, Mark G. (Inventor); Wing, David J. (Inventor)

    2015-01-01

    An apparatus for generating flight-optimizing trajectories for a first aircraft includes a receiver capable of receiving second trajectory information associated with at least one second aircraft. The apparatus also includes a traffic aware planner (TAP) module operably connected to the receiver to receive the second trajectory information. The apparatus also includes at least one internal input device on board the first aircraft to receive first trajectory information associated with the first aircraft and a TAP application capable of calculating an optimal trajectory for the first aircraft based at least on the first trajectory information and the second trajectory information. The optimal trajectory at least avoids conflicts between the first trajectory information and the second trajectory information.

  4. Classical entanglement

    OpenAIRE

    Danforth, Douglas G.

    2001-01-01

    Classical systems can be entangled. Entanglement is defined by coincidence correlations. Quantum entanglement experiments can be mimicked by a mechanical system with a single conserved variable and 77.8% conditional efficiency. Experiments are replicated for four particle entanglement swapping and GHZ entanglement.

  5. Classical Mechanics

    OpenAIRE

    Gallavotti, Giovanni

    1999-01-01

    This is the English version of a friendly graduate course on Classical Mechanics, containing about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. For the Spanish version, see physics/9906066

  6. Emergence of classical theories from quantum mechanics

    CERN Document Server

    Hajicek, Petr

    2012-01-01

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is ...

  7. Quantum trajectories based on the weak value

    Science.gov (United States)

    Mori, Takuya; Tsutsui, Izumi

    2015-04-01

    The notion of the trajectory of an individual particle is strictly inhibited in quantum mechanics because of the uncertainty principle. Nonetheless, the weak value, which has been proposed as a novel and measurable quantity definable to any quantum observable, can offer a possible description of trajectory on account of its statistical nature. In this paper, we explore the physical significance provided by this "weak trajectory" by considering various situations where interference takes place simultaneously with the observation of particles, that is, in prototypical quantum situations for which no classical treatment is available. These include the double slit experiment and Lloyd's mirror, where in the former case it is argued that the real part of the weak trajectory describes an average over the possible classical trajectories involved in the process, and that the imaginary part is related to the variation of interference. It is shown that this average interpretation of the weak trajectory holds universally under the complex probability defined from the given transition process. These features remain essentially unaltered in the case of Lloyd's mirror where interference occurs with a single slit.

  8. Modularity-Based Clustering for Network-Constrained Trajectories

    OpenAIRE

    EL MAHRSI, Mohamed Khalil; Rossi, Fabrice

    2012-01-01

    We present a novel clustering approach for moving object trajectories that are constrained by an underlying road network. The approach builds a similarity graph based on these trajectories then uses modularity-optimization hiearchical graph clustering to regroup trajectories with similar profiles. Our experimental study shows the superiority of the proposed approach over classic hierarchical clustering and gives a brief insight to visualization of the clustering results.

  9. Quantum trajectories for Brownian motion

    CERN Document Server

    Strunz, W T; Gisin, Nicolas; Yu, T; Strunz, Walter T.; Diosi, Lajos; Gisin, Nicolas

    1999-01-01

    We present the stochastic Schroedinger equation for the dynamics of a quantum particle coupled to a high temperature environment and apply it the dynamics of a driven, damped, nonlinear quantum oscillator. Apart from an initial slip on the environmental memory time scale, in the mean, our result recovers the solution of the known non-Lindblad quantum Brownian motion master equation. A remarkable feature of our approach is its localization property: individual quantum trajectories remain localized wave packets for all times, even for the classically chaotic system considered here, the localization being stronger the smaller $\\hbar$.

  10. Nonadiabatic Molecular Dynamics Based on Trajectories

    Directory of Open Access Journals (Sweden)

    Felipe Franco de Carvalho

    2013-12-01

    Full Text Available Performing molecular dynamics in electronically excited states requires the inclusion of nonadiabatic effects to properly describe phenomena beyond the Born-Oppenheimer approximation. This article provides a survey of selected nonadiabatic methods based on quantum or classical trajectories. Among these techniques, trajectory surface hopping constitutes an interesting compromise between accuracy and efficiency for the simulation of medium- to large-scale molecular systems. This approach is, however, based on non-rigorous approximations that could compromise, in some cases, the correct description of the nonadiabatic effects under consideration and hamper a systematic improvement of the theory. With the help of an in principle exact description of nonadiabatic dynamics based on Bohmian quantum trajectories, we will investigate the origin of the main approximations in trajectory surface hopping and illustrate some of the limits of this approach by means of a few simple examples.

  11. Properties of Regge Trajectories

    CERN Document Server

    Tang, A; Tang, Alfred; Norbury, John W.

    2000-01-01

    Early Chew-Frautschi plots show that meson and baryon Regge trajectoies are approximately linear and non-intersecting. In this paper, we reconstruct all Regge trajectories from the most recent data. Our plots show that meson trajectories are non-linear and intersecting. We also show that all current meson Regge trajectories models are ruled out by data.

  12. Computing with spatial trajectories

    CERN Document Server

    2011-01-01

    Covers the fundamentals and the state-of-the-art research inspired by the spatial trajectory data Readers are provided with tutorial-style chapters, case studies and references to other relevant research work This is the first book that presents the foundation dealing with spatial trajectories and state-of-the-art research and practices enabled by trajectories

  13. Detection of Bohmian trajectories for mixed states

    CERN Document Server

    Luis, A

    2013-01-01

    Here Bohmian mechanics is used to explore the dynamics of mixed states, often regarded as the result of classical-like ignorance, or incoherence inhibiting interference. Because of the nonlinear nature of the Bohmian guidance equation, it is shown that the corresponding trajectories do not exhibit the behavior expected from a typical context of classical ignorance. On the contrary, they preserve their full nonlocal quantum signature. This fact is illustrated by means of a simple Young-type experiment with incoherent slits, where the lack of interference usually involves a classical interpretation in terms of path (which-way) knowledge. The experimental evidence of this behavior entails important fundamental implications: even if trajectories can be measured, as claimed in recent years, they cannot remove uncertainty, which is intrinsic to quantum systems.

  14. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description

    International Nuclear Information System (INIS)

    The present state of modeling radio-induced effects at the cellular level does not account for the microscopic inhomogeneity of the nucleus from the non-aqueous contents (i.e. proteins, DNA) by approximating the entire cellular nucleus as a homogenous medium of water. Charged particle track-structure calculations utilizing this approximation are therefore neglecting to account for approximately 30% of the molecular variation within the nucleus. To truly understand what happens when biological matter is irradiated, charged particle track-structure calculations need detailed knowledge of the secondary electron cascade, resulting from interactions with not only the primary biological component—water-–but also the non-aqueous contents, down to very low energies. This paper presents our work on a generic approach for calculating low-energy interaction cross-sections between incident charged particles and individual molecules. The purpose of our work is to develop a self-consistent computational method for predicting molecule-specific interaction cross-sections, such as the component molecules of DNA and proteins (i.e. nucleotides and amino acids), in the very low-energy regime. These results would then be applied in a track-structure code and thereby reduce the homogenous water approximation. The present methodology—inspired by seeking a combination of the accuracy of quantum mechanics and the scalability, robustness, and flexibility of Monte Carlo methods—begins with the calculation of a solution to the many-body Schrödinger equation and proceeds to use Monte Carlo methods to calculate the perturbations in the internal electron field to determine the interaction processes, such as ionization and excitation. As a test of our model, the approach is applied to a water molecule in the same method as it would be applied to a nucleotide or amino acid and compared with the low-energy cross-sections from the GEANT4-DNA physics package of the Geant4 simulation toolkit

  15. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description

    Science.gov (United States)

    Madsen, J. R.; Akabani, G.

    2014-05-01

    The present state of modeling radio-induced effects at the cellular level does not account for the microscopic inhomogeneity of the nucleus from the non-aqueous contents (i.e. proteins, DNA) by approximating the entire cellular nucleus as a homogenous medium of water. Charged particle track-structure calculations utilizing this approximation are therefore neglecting to account for approximately 30% of the molecular variation within the nucleus. To truly understand what happens when biological matter is irradiated, charged particle track-structure calculations need detailed knowledge of the secondary electron cascade, resulting from interactions with not only the primary biological component—water--but also the non-aqueous contents, down to very low energies. This paper presents our work on a generic approach for calculating low-energy interaction cross-sections between incident charged particles and individual molecules. The purpose of our work is to develop a self-consistent computational method for predicting molecule-specific interaction cross-sections, such as the component molecules of DNA and proteins (i.e. nucleotides and amino acids), in the very low-energy regime. These results would then be applied in a track-structure code and thereby reduce the homogenous water approximation. The present methodology—inspired by seeking a combination of the accuracy of quantum mechanics and the scalability, robustness, and flexibility of Monte Carlo methods—begins with the calculation of a solution to the many-body Schrödinger equation and proceeds to use Monte Carlo methods to calculate the perturbations in the internal electron field to determine the interaction processes, such as ionization and excitation. As a test of our model, the approach is applied to a water molecule in the same method as it would be applied to a nucleotide or amino acid and compared with the low-energy cross-sections from the GEANT4-DNA physics package of the Geant4 simulation toolkit

  16. Classical tachyons

    International Nuclear Information System (INIS)

    A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author)

  17. Are superparamagnetic spins classical?

    OpenAIRE

    Garanin, D. A.

    2008-01-01

    Effective giant spins of magnetic nanoparticles are considered classically in the conventional theory of superparamagnetism based on the Landau-Lifshitz-Langevin equation. However, microscopic calculations for a large spin with uniaxial anisotropy, coupled to the lattice via the simplest generic mechanism, show that the results of the conventional theory are not reproduced in the limit S ->\\infty. In particular, the prefactor Gamma_0 in the Arrhenius escape rate over the barrier Gamma =Gamma_...

  18. Bohmian mechanics and the emergence of classicality

    International Nuclear Information System (INIS)

    Bohmian mechanics is endowed with an ontological package that supposedly allows to solve the main interpretational problems of quantum mechanics. We are concerned in this work by the emergence of classicality from the quantum mechanical substrate. We will argue that although being superficially attractive, the de Broglie-Bohm interpretation does not shed new light on the quantum-to-classical transition. This is due to nature of the dynamical law of Bohmian mechanics by which the particles follow the streamlines of the probability flow. As a consequence, Bohmian trajectories can be highly non-classical even when the wavefunction propagates along classical trajectories, as happens in semiclassical systems. In order to account for classical dynamics, Bohmian mechanics needs non-spreading and non-interfering wave packets: this is achieved for practical purposes by having recourse to decoherence and dense measurements. However one then faces the usual fundamental problems associated with the meaning of reduced density matrices. Moreover the specific assets of the de Broglie-Bohm interpretation - in particular the existence of point-like particles pursuing well-defined trajectories - would play no role in accounting for the emergence of classical dynamics.

  19. Bohmian mechanics and the emergence of classicality

    Science.gov (United States)

    Matzkin, A.

    2009-06-01

    Bohmian mechanics is endowed with an ontological package that supposedly allows to solve the main interpretational problems of quantum mechanics. We are concerned in this work by the emergence of classicality from the quantum mechanical substrate. We will argue that although being superficially attractive, the de Broglie-Bohm interpretation does not shed new light on the quantum-to-classical transition. This is due to nature of the dynamical law of Bohmian mechanics by which the particles follow the streamlines of the probability flow. As a consequence, Bohmian trajectories can be highly non-classical even when the wavefunction propagates along classical trajectories, as happens in semiclassical systems. In order to account for classical dynamics, Bohmian mechanics needs non-spreading and non-interfering wave packets: this is achieved for practical purposes by having recourse to decoherence and dense measurements. However one then faces the usual fundamental problems associated with the meaning of reduced density matrices. Moreover the specific assets of the de Broglie-Bohm interpretation - in particular the existence of point-like particles pursuing well-defined trajectories - would play no role in accounting for the emergence of classical dynamics.

  20. Cross-correlation trajectory study of vibrational relaxation of HF (v=1--7) by HF (v=0)

    International Nuclear Information System (INIS)

    Results are presented for a three-dimensional quasiclassical trajectory study of the vibrational deactivation of vibrationally excited HF (v=1--7) by ground vibrational HF. A cross-correlation method of analysis is used to calculate probabilities and rate constants for V--V and V--RT transitions using trajectory results. Comparisons are made of calculated total deactivation rate constants (V--V plus V--RT) with experimental values. The V--RT dominates the relaxation for higher v states, and increases particularly rapidly with increasing v. Comparisons are made with recent classical-path calculations for this system, and in the use of Morse versus equivalent harmonic oscillator potentials

  1. Proposal for an experiment to measure the Hausdorff dimension of quantum mechanical trajectories

    OpenAIRE

    Kr{ö}ger, H.

    1997-01-01

    We make a proposal for a Gedanken experiment, based on the Aharonov-Bohm effect, how to measure in principle the zig-zagness of the trajectory of propagation (abberation from its classical trajectory) of a massive particle in quantum mechanics. Experiment I is conceived to show that contributions from quantum paths abberating from the classical trajectory are directly observable. Experiment II is conceived to measure average length, scaling behavior and critical exponent (Hausdorff dimension)...

  2. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  3. Trajectories of Martian Habitability

    OpenAIRE

    Cockell, Charles S.

    2014-01-01

    Beginning from two plausible starting points—an uninhabited or inhabited Mars—this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-sc...

  4. Trajectory analysis of the rotational dynamics of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, S. V., E-mail: spswix@rambler.ru; Lokshtanov, S. E. [Moscow State University (Russian Federation)

    2015-08-15

    A method for analysis of the rotational dynamics of molecular systems has been proposed on the basis of the calculation of the set of exact classical vibrational–rotational trajectories. It has been proposed to compose and to numerically solve the complete system of dynamic equations consisting of Hamilton’s equations and generalized Euler equations for an arbitrary system. The computer algebra system can be applied to automatize the process of derivation and subsequent solution of dynamic equations. The variation of the picture of known bifurcation in the rotational dynamics of symmetric triatomic hydride molecules with an increase in vibrational excitation has been studied within the proposed approach. It has been shown that manifestations of bifurcation completely disappear at a quite high level of vibrational excitations.

  5. Quantum Dynamics with Gaussian Bases Defined by the Quantum Trajectories.

    Science.gov (United States)

    Gu, Bing; Garashchuk, Sophya

    2016-05-19

    Development of a general approach to construction of efficient high-dimensional bases is an outstanding challenge in quantum dynamics describing large amplitude motion of molecules and fragments. A number of approaches, proposed over the years, utilize Gaussian bases whose parameters are somehow-usually by propagating classical trajectories or by solving coupled variational equations-tailored to the shape of a wave function evolving in time. In this paper we define the time-dependent Gaussian bases through an ensemble of quantum or Bohmian trajectories, known to provide a very compact representation of a wave function due to conservation of the probability density associated with each trajectory. Though the exact numerical implementation of the quantum trajectory dynamics itself is, generally, impractical, the quantum trajectories can be obtained from the wave function expanded in a basis. The resulting trajectories are used to guide compact Gaussian bases, as illustrated on several model problems. PMID:26735750

  6. Classical-limit S-matrix for heavy ion scattering. [S matrix

    Energy Technology Data Exchange (ETDEWEB)

    Donangelo, R.J.

    1977-01-01

    An integral representation for the classical limit of the quantum mechanical S-matrix is developed and applied to heavy-ion Coulomb excitation and Coulomb-nuclear interference. The method combines the quantum principle of superposition with exact classical dynamics to describe the projectile-target system. A detailed consideration of the classical trajectories and of the dimensionless parameters that characterize the system is carried out. The results are compared, where possible, to exact quantum mechanical calculations and to conventional semiclassical calculations. It is found that in the case of backscattering the classical limit S-matrix method is able to almost exactly reproduce the quantum-mechanical S-matrix elements, and therefore the transition probabilities, even for projectiles as light as protons. The results also suggest that this approach should be a better approximation for heavy-ion multiple Coulomb excitation than earlier semiclassical methods, due to a more accurate description of the classical orbits in the electromagnetic field of the target nucleus. Calculations using this method indicate that the rotational excitation probabilities in the Coulomb-nuclear interference region should be very sensitive to the details of the potential at the surface of the nucleus, suggesting that heavy-ion rotational excitation could constitute a sensitive probe of the nuclear potential in this region. The application to other problems as well as the present limits of applicability of the formalism are also discussed.

  7. Inelastic collisions of Li+ with N2-molecules: a comparison of experimental results with trajectory studies

    International Nuclear Information System (INIS)

    Rotationally and vibrationally inelastic collisions between Li+-ions and N2-molecules have been investigated in a classical trajectory study. Cross sections for energies E = 1-7 eV as a function of final molecular angular momentum and scattering angle have been calculated using an ab initio SCF-potential hypersurface from Staemmler. Basic properties of the scattering process for a potential with a large attractive part and a strong anisotropy are discussed. The results are compared with experimental data from Boettner et al. In general the agreement is good. Minor differences can be attributed to small inaccuracies in the potential. (Auth.)

  8. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    Energy Technology Data Exchange (ETDEWEB)

    Zamstein, Noa; Tannor, David J. [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2012-12-14

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  9. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    International Nuclear Information System (INIS)

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  10. An approximate method for classical scattering problems

    International Nuclear Information System (INIS)

    An approximate method of calculating scattering cross sections is presented. Newton's second law and the conservation of energy are used to relate the scattering angle to the impulse delivered to the projectile by the scatterer. In order to calculate the impulse, it is necessary to know the time dependence of the trajectory. We assume that the projectile travels the two asymptotes to the actual trajectory with constant velocity

  11. Classical and semiclassical aspects of chemical dynamics

    International Nuclear Information System (INIS)

    Tunneling in the unimolecular reactions H2C2 → HC2H, HNC → HCN, and H2CO → H2 + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I → Na + + I- is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features

  12. PANTHER. Trajectory Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Wilson, Andrew T. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Valicka, Christopher G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kegelmeyer, W. Philip [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Shead, Timothy M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Newton, Benjamin D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Czuchlewski, Kristina Rodriguez [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We want to organize a body of trajectories in order to identify, search for, classify and predict behavior among objects such as aircraft and ships. Existing compari- son functions such as the Fr'echet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as total distance traveled and distance be- tween start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to behaviors of interest to humans that are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to iden- tify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories, predict destination and apply unsupervised machine learning algorithms.

  13. Symmetry Properties of Optimal Relative Orbit Trajectories

    OpenAIRE

    Mauro Pontani

    2015-01-01

    The determination of minimum-fuel or minimum-time relative orbit trajectories represents a classical topic in astrodynamics. This work illustrates some symmetry properties that hold for optimal relative paths and can considerably simplify their determination. The existence of symmetry properties is demonstrated in the presence of certain boundary conditions for the problems of interest, described by the linear Euler-Hill-Clohessy-Wiltshire equations of relative motion. With regard to minimum-...

  14. The Envelope of Projectile Trajectories in Midair

    CERN Document Server

    Chudinov, P

    2005-01-01

    A classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. Analytic approach is used for investigation. Simple analytical formulas are used for the constructing the envelope of the family of the point mass trajectories. The equation of envelope is applied for determination of maximum range of flight. The motion of a baseball is presented as an example.

  15. Teaching Classical Mechanics using Smartphones

    CERN Document Server

    Chevrier, Joel; Ledenmat, Simon; Bsiesy, Ahmad

    2012-01-01

    Using a personal computer and a smartphone, iMecaProf is a software that provides a complete teaching environment for practicals associated to a Classical Mechanics course. iMecaProf proposes a visual, real time and interactive representation of data transmitted by a smartphone using the formalism of Classical Mechanics. Using smartphones is more than using a set of sensors. iMecaProf shows students that important concepts of physics they here learn, are necessary to control daily life smartphone operations. This is practical introduction to mechanical microsensors that are nowadays a key technology in advanced trajectory control. First version of iMecaProf can be freely downloaded. It will be tested this academic year in Universit\\'e Joseph Fourier (Grenoble, France)

  16. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković

    2011-04-01

    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  17. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  18. Trajectory Browser Website

    Science.gov (United States)

    Foster, Cyrus; Jaroux, Belgacem A.

    2012-01-01

    The Trajectory Browser is a web-based tool developed at the NASA Ames Research Center to be used for the preliminary assessment of trajectories to small-bodies and planets and for providing relevant launch date, time-of-flight and V requirements. The site hosts a database of transfer trajectories from Earth to asteroids and planets for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and delta V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies. The educational potential of the website is also recognized for academia and the public with regards to trajectory design, a field that has generally been poorly understood by the public. The website is currently hosted on NASA-internal URL http://trajbrowser.arc.nasa.gov/ with plans for a public release as soon as development is complete.

  19. Trajectory tracking control for underactuated stratospheric airship

    Science.gov (United States)

    Zheng, Zewei; Huo, Wei; Wu, Zhe

    2012-10-01

    Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.

  20. Trajectory phases of a quantum dot model

    International Nuclear Information System (INIS)

    We present a thermodynamic formalism to study the trajectories of charge transport through a quantum dot coupled to two leads in the resonant-level model. We show that a close analogue of equilibrium phase transitions exists for the statistics of transferred charge; by tuning an appropriate ‘counting field’, crossovers to different trajectory phases are possible. Our description reveals a mapping between the statistics of a given device and current measurements over a range of devices with different dot–lead coupling strengths. Furthermore insight into features of the trajectory phases are found by studying the occupation of the dot conditioned on the transported charge between the leads; this is calculated from first principles using a trajectory biased two-point projective measurement scheme. (paper)

  1. Trajectory attractors of equations of mathematical physics

    International Nuclear Information System (INIS)

    In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier-Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier-Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics. Bibliography: 96 titles.

  2. Applications of classical detonation theory

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.C.

    1994-09-01

    Classical detonation theory is the basis for almost all calculations of explosive systems. One common type of calculation is of the detailed behavior of inert parts driven by explosive, predicting pressures, velocities, positions, densities, energies, etc as functions of time. Another common application of the theory is predicting the detonation state and expansion isentrope of a new explosive or mixtures, perhaps an explosive that has not yet been made. Both types of calculations are discussed.

  3. Trajectory versus probability density entropy

    Science.gov (United States)

    Bologna, Mauro; Grigolini, Paolo; Karagiorgis, Markos; Rosa, Angelo

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy.

  4. Comparisons of classical and quantum dynamics for initially localized states

    International Nuclear Information System (INIS)

    We compare the dynamics of quantum wave packets with the dynamics of classical trajectory ensembles. The wave packets are Gaussian with expectation values of position and momenta which centers them in phase space. The classical trajectory ensembles are generated directly from the quantum wave packets via the Wigner transform. Quantum and classical dynamics are then compared using several quantum measures and the analogous classical ones derived from the Wigner equivalent formalism. Comparisons are made for several model potentials and it is found that there is generally excellent classical--quantum correspondence except for certain specific cases of tunneling and interference. In general, this correspondence is also very good in regions of phase space where there is classical chaos

  5. Some Characterizations of Optimal Trajectories in Control Theory

    OpenAIRE

    Cannarsa, P.; Frankowska, H.

    1989-01-01

    The authors provide several characterizations of optimal trajectories for the classical Meyer problem arising in optimal control. For this purpose they study the regularity of directional derivatives of the value function: for instance it is shown that for smooth control systems the value function V is continuously differentiable along an optimal trajectory x. Then they deduce the upper semicontinuity of the optimal feedback map and address the problem of optimal design, obtaining sufficient ...

  6. Optimum Inter terminal Transfer Trajectories

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1968-01-01

    Full Text Available Rocket trajectories in a gravitational field between two terminals with specified velocities at each terminal are investigated with a view to total velocity increment required in initiating the rocket along the transfer path at the first terminal and in the attainment of the given final velocity at the final terminal. The equations are transformed for transfer between circular orbits and numerical results for Earth-Mars transfer are calculated. Finally particular cases of the above problem are discussed and Stark's results is drived therefrom.

  7. Periodic trajectories in TDHF

    International Nuclear Information System (INIS)

    A condition for the existence of a periodic TDHF trajectory of period T is derived. It takes a from very similar to the static H.F. equation and shows that associated to a periodic trajectory there is a static single particle hamiltonian which is a complicated functional of the time dependent density matrix. An explicit expansion for this functional is derived. It is shown that many properties of the static H.F. rest point are shared by periodic solutions. (Author)

  8. Extending UML for trajectory data warehouses conceptual modelling

    Directory of Open Access Journals (Sweden)

    Wided Oueslati

    2012-12-01

    Full Text Available The new positioning and information capture technologies are able to treat data related to moving objects taking place in targeted phenomena. This gave birth to a new data source type called trajectory data (TD which handle information related to moving objects. Trajectory Data must be integrated in a new data warehouse type called trajectory data warehouse (TDW that is essential to model and to implement in order to analyze and understand the nature and the behavior of movements of objects in various contexts. However, classical conceptual modeling does not incorporate the specificity of trajectory data due to the complexity of their components that are spatial, temporal and thematic (semantic. For this reason, we focus in this paper on presenting the conceptual modeling of the trajectory data warehouse by defining a new profile using the StarUML extensibility mechanism

  9. Above-threshold ionization photoelectron spectrum from quantum trajectory

    CERN Document Server

    Lai, X Y; Zhan, M S

    2009-01-01

    Many nonlinear quantum phenomena of intense laser-atom physics can be intuitively explained with the concept of trajectory. In this paper, Bohmian mechanics (BM) is introduced to study a multiphoton process of atoms interacting with the intense laser field: above-threshold ionization (ATI). Quantum trajectory of an atomic electron in intense laser field is obtained from the Bohm-Newton equation first and then the energy of the photoelectron is gained from its trajectory. With energies of an ensemble of photoelectrons, we obtain the ATI spectrum which is consistent with the previous theoretical and experimental results. Comparing BM with the classical trajectory Monte-Carlo method, we conclude that quantum potential may play a key role to reproduce the spectrum of ATI. Our work may present a new approach to understanding quantum phenomena in intense laser-atom physics with the image of trajectory.

  10. Direct trajectory method for semiclassical wave functions

    International Nuclear Information System (INIS)

    This paper reports a method to build a semiclassical wave function corresponding to an invariant torus satisfying Einstein-Brillouin-Keller quantization conditions. Instead of calculating the stability matrix of the trajectory at each step, as in the standard method of Keller [Ann. Phys. (N.Y.) 4, 180 (1958)] or the modification of Maslov and Fedoriuk [Semiclassical Approximations in Quantum Mechanics (Reidel, Dordrecht, 1981)], we use the actual density of the trajectory, calculated by running the trajectory and counting passages through cells in coordinate space. The method is tested for a system of coupled Morse oscillators, and found to be comparable in accuracy to the standard method. It may be more useful than the standard method for testing ideas for semiclassical quantization in the chaotic regime. (c) 2000 The American Physical Society

  11. Quantum tunneling dynamics using hydrodynamic trajectories

    Science.gov (United States)

    Bittner, Eric R.

    2000-06-01

    In this paper we compute quantum trajectories arising from Bohm's causal description of quantum mechanics. Our computational methodology is based upon a finite-element moving least-squares method (MWLS) presented recently by Wyatt and co-workers [Lopreore and Wyatt, Phys. Rev. Lett. 82, 5190 (1999)]. This method treats the "particles" in the quantum Hamilton-Jacobi equation as Lagrangian fluid elements that carry the phase, S, and density, ρ, required to reconstruct the quantum wave function. Here, we compare results obtained via the MWLS procedure to exact results obtained either analytically or by numerical solution of the time-dependent Schrödinger equation. Two systems are considered: first, dynamics in a harmonic well and second, tunneling dynamics in a double well potential. In the case of tunneling in the double well potential, the quantum potential acts to lower the barrier, separating the right- and left-hand sides of the well, permitting trajectories to pass from one side to another. However, as probability density passes from one side to the other, the effective barrier begins to rise and eventually will segregate trajectories in one side from the other. We note that the MWLS trajectories exhibited long time stability in the purely harmonic cases. However, this stability was not evident in the barrier crossing dynamics. Comparisons to exact trajectories obtained via wave packet calculations indicate that the MWLS trajectories tend to underestimate the effects of constructive and destructive interference effects.

  12. Compressing spatio-temporal trajectories

    DEFF Research Database (Denmark)

    Gudmundsson, Joachim; Katajainen, Jyrki; Merrick, Damian;

    2009-01-01

    A trajectory is a sequence of locations, each associated with a timestamp, describing the movement of a point. Trajectory data is becoming increasingly available and the size of recorded trajectories is getting larger. In this paper we study the problem of compressing planar trajectories such tha...

  13. Calculating Clearances for Manipulators

    Science.gov (United States)

    Copeland, E. L.; Peticolas, J. D.; Ray, L. D.

    1983-01-01

    Set of algorithms rapidly calculates minimum safe clearances for remote manipulators. Such calculations are used in design of trajectories for manipulators to ensure they do not accidentally strike surrounding objects. Structural parts are considered as cylindrical shells having circular plane areas for ends. Clearance calculation method offers special benefits in industrial robotics, particularly in automated machining.

  14. Emergence of classical theories from quantum mechanics

    International Nuclear Information System (INIS)

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's 'first kind of dynamics', and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.

  15. Emergence of classical theories from quantum mechanics

    Science.gov (United States)

    Hájíček, P.

    2012-05-01

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's "first kind of dynamics", and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.

  16. Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William H., E-mail: millerwh@berkeley.edu; Cotton, Stephen J., E-mail: StephenJCotton47@gmail.com [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-04-07

    It is noted that the recently developed symmetrical quasi-classical (SQC) treatment of the Meyer-Miller (MM) model for the simulation of electronically non-adiabatic dynamics provides a good description of detailed balance, even though the dynamics which results from the classical MM Hamiltonian is “Ehrenfest dynamics” (i.e., the force on the nuclei is an instantaneous coherent average over all electronic states). This is seen to be a consequence of the SQC windowing methodology for “processing” the results of the trajectory calculation. For a particularly simple model discussed here, this is shown to be true regardless of the choice of windowing function employed in the SQC model, and for a more realistic full classical molecular dynamics simulation, it is seen to be maintained correctly for very long time.

  17. Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics

    International Nuclear Information System (INIS)

    It is noted that the recently developed symmetrical quasi-classical (SQC) treatment of the Meyer-Miller (MM) model for the simulation of electronically non-adiabatic dynamics provides a good description of detailed balance, even though the dynamics which results from the classical MM Hamiltonian is “Ehrenfest dynamics” (i.e., the force on the nuclei is an instantaneous coherent average over all electronic states). This is seen to be a consequence of the SQC windowing methodology for “processing” the results of the trajectory calculation. For a particularly simple model discussed here, this is shown to be true regardless of the choice of windowing function employed in the SQC model, and for a more realistic full classical molecular dynamics simulation, it is seen to be maintained correctly for very long time

  18. Geometric phase of a classical Aharonov–Bohm Hamiltonian

    International Nuclear Information System (INIS)

    We present a gauge-invariant approach for associating a geometric phase with the phase space trajectory of a classical dynamical system. As an application, we consider the classical analog of the quantum Aharonov–Bohm (AB) Hamiltonian for a charged particle orbiting around a current carrying long thin solenoid. We compute the classical geometric phase of a closed phase space trajectory, and also determine its dependence on the magnetic flux enclosed by the orbit. We study the similarities and differences between this classical geometric phase and the AB phase acquired by the wave function of the quantum AB Hamiltonian. We suggest an experiment to measure the geometric phase for the classical AB system, by using an appropriate optical fiber ring interferometer.

  19. Geometric phase of a classical Aharonov–Bohm Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Radha, E-mail: radha@imsc.res.in [The Institute of Mathematical Sciences, Chennai 600 113 (India); Satija, Indubala I. [Department of Physics, George Mason University, Fairfax, VA 22030 (United States)

    2013-06-17

    We present a gauge-invariant approach for associating a geometric phase with the phase space trajectory of a classical dynamical system. As an application, we consider the classical analog of the quantum Aharonov–Bohm (AB) Hamiltonian for a charged particle orbiting around a current carrying long thin solenoid. We compute the classical geometric phase of a closed phase space trajectory, and also determine its dependence on the magnetic flux enclosed by the orbit. We study the similarities and differences between this classical geometric phase and the AB phase acquired by the wave function of the quantum AB Hamiltonian. We suggest an experiment to measure the geometric phase for the classical AB system, by using an appropriate optical fiber ring interferometer.

  20. Particle trajectory entanglement in microfluidic channels

    Science.gov (United States)

    Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian

    2015-11-01

    Suspensions in motion can show very complex and counterintuitive behavior, particularly at high concentrations. In this talk we show an overlooked phenomenon occurring when a dilute particle solution is forced to travel in a narrow channel (only a few times the particle size). At critical interparticle distances, particles tend to interlace their trajectories forming a sort of hydroclusters only bonded by hydrodynamic interactions. While classical studies on non-Brownian self-diffusivity report average particle displacements of fractions of the particle diameter, the trajectories observed in our system show displacements of several particle diameters. Indeed, such a behavior resemble the deterministic trajectories found by Uspal et al. (Nat. Comm. 4, 2013) with engineered particle doublets. Trajectory statistics are obtained for different shear rates and particle sizes. The results are compared with particle dynamics simulations and analyzed under the light of recent studies on the irreversibility of non-Brownian suspensions (Metzger et al., Phys. Rev. E, 2013) to elucidate the nature of the hydrodynamic interactions entering into play. The reported phenomenon could be applied to promote advective mixing in micro-channels or particle/droplet self-assembly.

  1. Mixed Quantum-Classical Study of Nonadiabatic Curve Crossing in Condensed Phases.

    Science.gov (United States)

    Xie, Weiwei; Xu, Meng; Bai, Shuming; Shi, Qiang

    2016-05-19

    We apply the mixed quantum-classical Liouville (MQCL) equation to investigate the nonadiabatic curve crossing in condensed phases. More specifically, electron transfer rate constants of the spin-Boson model are calculated by employing a rate constant expression using the collective solvent polarization as the reaction coordinate. In the calculation, classical nuclear degrees of freedom are initially sampled at the transition state configuration, and the initial state for the electronic degree of freedom is obtained from a mixed quantum-classical Boltzmann distribution. Different contributions to the electron transfer rate from the diagonal and off-diagonal elements of the initial density matrix, and contributions from trajectories with positive and negative initial velocities are analyzed. It is shown that the off-diagonal elements of the initial density matrix play an important role in the total electron transfer rate. The MQCL results are also compared with those calculated using Ehrenfest dynamics. It is found that, although the Ehrenfest dynamics is inaccurate when the reactive flux rate expression is used directly, it can give reasonably accurate results when individual contributions from the diagonal and off-diagonal elements of the initial density matrix are calculated. PMID:26840040

  2. What classicality? Decoherence and Bohr's classical concepts

    CERN Document Server

    Schlosshauer, Maximilian

    2010-01-01

    Niels Bohr famously insisted on the indispensability of what he termed "classical concepts." In the context of the decoherence program, on the other hand, it has become fashionable to talk about the "dynamical emergence of classicality" from the quantum formalism alone. Does this mean that decoherence challenges Bohr's dictum and signifies a break with the Copenhagen interpretation-for example, that classical concepts do not need to be assumed but can be derived? In this paper we'll try to shine some light down the murky waters where formalism and philosophy cohabitate. To begin, we'll clarify the notion of classicality in the decoherence description. We'll then discuss Bohr's and Heisenberg's take on the quantum-classical problem and reflect on different meanings of the terms "classicality" and "classical concepts" in the writings of Bohr and his followers. This analysis will allow us to put forward some tentative suggestions for how we may better understand the relation between decoherence-induced classical...

  3. Patched Conic Trajectory Code

    Science.gov (United States)

    Park, Brooke Anderson; Wright, Henry

    2012-01-01

    PatCon code was developed to help mission designers run trade studies on launch and arrival times for any given planet. Initially developed in Fortran, the required inputs included launch date, arrival date, and other orbital parameters of the launch planet and arrival planets at the given dates. These parameters include the position of the planets, the eccentricity, semi-major axes, argument of periapsis, ascending node, and inclination of the planets. With these inputs, a patched conic approximation is used to determine the trajectory. The patched conic approximation divides the planetary mission into three parts: (1) the departure phase, in which the two relevant bodies are Earth and the spacecraft, and where the trajectory is a departure hyperbola with Earth at the focus; (2) the cruise phase, in which the two bodies are the Sun and the spacecraft, and where the trajectory is a transfer ellipse with the Sun at the focus; and (3) the arrival phase, in which the two bodies are the target planet and the spacecraft, where the trajectory is an arrival hyperbola with the planet as the focus.

  4. Periodic orbits for classical particles having complex energy

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Alexander G., E-mail: aganders@wustl.edu [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Bender, Carl M., E-mail: cmb@wustl.edu [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Morone, Uriel I., E-mail: uimorone@wustl.edu [Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2011-09-12

    This Letter revisits earlier work on complex classical mechanics in which it was argued that when the energy of a classical particle in an analytic potential is real, the particle trajectories are closed and periodic, but that when the energy is complex, the classical trajectories are open. Here it is shown that there is a discrete set of eigencurves in the complex-energy plane for which the particle trajectories are closed and periodic. -- Highlights: → This Letter presents new previously unknown periodic complex-energy solutions. → Until this work it was thought that all complex-energy solutions were nonperiodic. → The new periodic solutions are a set of measure 0 of all complex-energy solutions. → However, they are crucial because they are dense in the set of all solutions.

  5. Ab initio calculation of the gas phase ion mobility of CO+ ions in He

    International Nuclear Information System (INIS)

    The HeCO+ potential energy surface was calculated at the MP4SDTQ/6-311++G(3df, 3pd) level of theory. Classical trajectory calculations were then made of the transport cross sections for CO+ ions in He gas. These cross sections were used in a kinetic theory determination of the mobility and diffusion coefficients parallel and perpendicular to an external electric field. Comparison of the calculated mobilities with experimental data showed that theory and experiment agree within their mutual uncertainties. (author)

  6. Two-Dimensional Vibrational Spectroscopy of a Dissipative System with the Optimized Mean-Trajectory Approximation

    OpenAIRE

    Alemi, Mallory; Loring, Roger F

    2014-01-01

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions representing radiation–matter interactions. Here we apply this method to an anharmonic chromophore coupled to a harmonic bath. A forward–backward trajectory implementation of the OMT method is described that addresses the numerical challenges of applying the OMT to large systems with disparate fr...

  7. Scout trajectory error propagation computer program

    Science.gov (United States)

    Myler, T. R.

    1982-01-01

    Since 1969, flight experience has been used as the basis for predicting Scout orbital accuracy. The data used for calculating the accuracy consists of errors in the trajectory parameters (altitude, velocity, etc.) at stage burnout as observed on Scout flights. Approximately 50 sets of errors are used in Monte Carlo analysis to generate error statistics in the trajectory parameters. A covariance matrix is formed which may be propagated in time. The mechanization of this process resulted in computer program Scout Trajectory Error Propagation (STEP) and is described herein. Computer program STEP may be used in conjunction with the Statistical Orbital Analysis Routine to generate accuracy in the orbit parameters (apogee, perigee, inclination, etc.) based upon flight experience.

  8. Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Domenico, E-mail: domenico.bruno@cnr.it [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche– Via G. Amendola 122, 70125 Bari (Italy); Frezzotti, Aldo, E-mail: aldo.frezzotti@polimi.it; Ghiroldi, Gian Pietro, E-mail: gpghiro@gmail.com [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano–Via La Masa 34, 20156 Milano (Italy)

    2015-05-15

    Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300–900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.

  9. Observation of nondispersing classical-like molecular rotation

    CERN Document Server

    Korobenko, Aleksey; Milner, Valery

    2014-01-01

    Using the technique of an optical centrifuge, we produce rotational wave packets which evolve in time along either classical-like or non-classical trajectories. After releasing O2 and D2 molecules from the centrifuge, we track their field-free rotation by monitoring the molecular angular distribution with velocity map imaging. Due to the dispersion of the created rotational wave packets in oxygen, we observe a gradual transition between "dumbbell"-shaped and "cross"-shaped distributions, both rotating with a classical rotation frequency. In deuterium, a much narrower rotational wave packet is produced and shown to evolve in a truly classical non-dispersing fashion.

  10. Gaussian Weighted Trajectory Method IV: No Rainbow Effect in Practice

    Institute of Scientific and Technical Information of China (English)

    L. Bonnet

    2009-01-01

    The Gaussian weighted trajectory method (GWTM) is a practical implementation of classical S matrix theory (CSMT) in the random phase approximation, CSMT being the first and simplest semi-classical approach of molecular collisions, developped in the early seventies.Though very close in spirit to the purely classical description, GWTM accounts to some extent for the quantization of the different degrees-of-freedom involved in the processes.While CSMT may give diverging final state distributions, in relation to the rainbow effect of elastic scattering theory, GWTM has never led to such a mathematical catastrophe. The goal of the present note is to explain this finding.

  11. Semiclassical propagation of coherent states using complex and real trajectories

    CERN Document Server

    Novaes, M

    2005-01-01

    We study the semiclassical propagation of coherent states in $d$ dimensions, which in general involves complex classical dynamics. Several simple approximations are derived that depend only on real classical trajectories, among them the thawed Gaussian approximation (TGA). Apart from the TGA, all other possibilities are able to reproduce interference and tunnelling effects, and involve propagating a set of classical initial conditions compatible with the quantum uncertainties. The accuracy of the results is verified in two dimensions for the scattering by an attractive potential, for a bound nonlinear system, for motion inside a circular billiard and for a system involving tunnelling.

  12. Aerosol impaction and critical trajectories in oscillating bubbles

    International Nuclear Information System (INIS)

    When gas containing aerosol is subject to rapid acceleration, the failure of the aerosol to follow the gas motion can lead to impaction into walls. This problem arises in oscillating bubbles which could be formed under sodium during a hypothetical core disruptive accident in a liquid-metal-cooled fast breeder reactor, and the calculation of aerosol trajectories and wall impaction has been considered by previous authors. Here, we introduce a powerful technique to perform such calculations based on critical trajectories. (author)

  13. Dispersions in Semi-Classical Dynamics

    International Nuclear Information System (INIS)

    Dispersions around mean values of one-body observables are obtained by restoring classical many-body correlations in Vlasov and Landau-Vlasov dynamics. The method is applied to the calculation of fluctuations in mass, charge and linear momentum in heavy-ion collisions. Results are compared to those obtained by the Balian-Veneroni variational principle in semi-classical approximation

  14. Sensitivity in the trajectory of long-range -particle

    Indian Academy of Sciences (India)

    P V Kunhikrishnan; A Rajan Nambiar; K P Santhosh

    2012-09-01

    The factors influencing the trajectory of long-range -particle in the cold ternary fission of 252Cf are discussed. The trajectory of the -particle is studied by considering the influence of the force on the -particle due to Coulomb and proximity potentials and is found to have sensitive dependence on the initial position and initial energy of the -particle. The sensitivity to initial conditions signifies the presence of deterministic chaos which is characterized by Lyapunov exponent (LE). The LE is calculated using Wolf’s algorithm and found positive which implies that the objectives of trajectory calculations are restricted.

  15. Quark Regge trajectory in two loops from unitarity relations

    International Nuclear Information System (INIS)

    The two-loop quark Regge trajectory is obtained at arbitrary space-time dimension D using the s-channel unitarity conditions. Although explicit calculations are performed for massless quarks, the method used allows to find the trajectory for massive quarks as well. At D → 4 the trajectory turns into one derived earlier from the high-energy limit of the two-loop amplitude for the quark-gluon scattering. The comparison of two expressions, obtained by quite different methods, serves as a strict cross check of many intermediate results used in the calculations, and their agreement give's a strong evidence of accuracy of these results

  16. Analysis of Controlled Trajectory Optimization for Canard Trajectory Correction Fuze

    Institute of Scientific and Technical Information of China (English)

    郭泽荣; 李世义; 申强

    2004-01-01

    The optimization method of the canard trajectory correction fuze's controlled trajectory phase is researched by using the aerodynamics of aerocraft and the optimal control theory, the trajectory parameters of the controlled trajectory phase based on the least energy cost are determined. On the basis of determining the control starting point and the target point, the optimal trajectory and the variation rule of the normal overload with the least energy cost are provided, when there is no time restriction in the simulation process. The results provide a theoretical basis for the structure design of the canard mechanism.

  17. Au pair trajectories

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2015-01-01

    workers from the global South, the first article demonstrates how Facebook can be a fruitful methodological tool in the aspiration to open up the research to new themes of inquiry. However, rather than disregarding the au pairs’ economic problems, the dissertation shows how their family participation and......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...... pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...

  18. Working poor trajectories

    OpenAIRE

    Joël Hellier

    2012-01-01

    To analyse in-work poverty, we build a model in which human capital and productivity varies over time with experience, time-related obsolescence and poverty. The model reveals four possible trajectories: poverty to exclusion; permanent poverty; the emergence from poverty; poverty to non-poor worker and back to poverty. It also generates the main traits of in-work poverty in terms of skill, age, duration, and family characteristics. Both skill-biased technical change and globalisation boost in...

  19. Quantum flesh on classical bones: Semiclassical bridges across the quantum-classical divide

    Energy Technology Data Exchange (ETDEWEB)

    Bokulich, Alisa [Center for Philosophy and History of Science, Boston University, Boston, MA (United States)

    2014-07-01

    Traditionally quantum mechanics is viewed as having made a sharp break from classical mechanics, and the concepts and methods of these two theories are viewed as incommensurable with one another. A closer examination of the history of quantum mechanics, however, reveals that there is a strong sense in which quantum mechanics was built on the backbone of classical mechanics. As a result, there is a considerable structural continuity between these two theories, despite their important differences. These structural continuities provide a ground for semiclassical methods in which classical structures, such as trajectories, are used to investigate and model quantum phenomena. After briefly tracing the history of semiclassical approaches, I show how current research in semiclassical mechanics is revealing new bridges across the quantum-classical divide.

  20. Quantum flesh on classical bones: Semiclassical bridges across the quantum-classical divide

    International Nuclear Information System (INIS)

    Traditionally quantum mechanics is viewed as having made a sharp break from classical mechanics, and the concepts and methods of these two theories are viewed as incommensurable with one another. A closer examination of the history of quantum mechanics, however, reveals that there is a strong sense in which quantum mechanics was built on the backbone of classical mechanics. As a result, there is a considerable structural continuity between these two theories, despite their important differences. These structural continuities provide a ground for semiclassical methods in which classical structures, such as trajectories, are used to investigate and model quantum phenomena. After briefly tracing the history of semiclassical approaches, I show how current research in semiclassical mechanics is revealing new bridges across the quantum-classical divide.

  1. Classical and quantum pumping in closed systems

    OpenAIRE

    Cohen, Doron

    2002-01-01

    Pumping of charge (Q) in a closed ring geometry is not quantized even in the strict adiabatic limit. The deviation form exact quantization can be related to the Thouless conductance. We use Kubo formalism as a starting point for the calculation of both the dissipative and the adiabatic contributions to Q. As an application we bring examples for classical dissipative pumping, classical adiabatic pumping, and in particular we make an explicit calculation for quantum pumping in case of the simpl...

  2. Quantum cosmology of a classically constrained nonsingular Universe

    OpenAIRE

    Sanyal, Abhik Kumar

    2009-01-01

    The quantum cosmological version of a nonsingular Universe presented by Mukhanov and Brandenberger in the early nineties has been developed and the Hamilton Jacobi equation has been found under semiclassical (WKB) approximation. It has been pointed out that, parameterization of classical trajectories with semiclassical time parameter, for such a classically constrained system, is a nontrivial task and requires Lagrangian formulation rather than the Hamiltonian formalism.

  3. Symmetry Properties of Optimal Relative Orbit Trajectories

    Directory of Open Access Journals (Sweden)

    Mauro Pontani

    2015-01-01

    Full Text Available The determination of minimum-fuel or minimum-time relative orbit trajectories represents a classical topic in astrodynamics. This work illustrates some symmetry properties that hold for optimal relative paths and can considerably simplify their determination. The existence of symmetry properties is demonstrated in the presence of certain boundary conditions for the problems of interest, described by the linear Euler-Hill-Clohessy-Wiltshire equations of relative motion. With regard to minimum-fuel paths, the primer vector theory predicts the existence of several powered phases, divided by coast arcs. In general, the optimal thrust sequence and duration depend on the time evolution of the switching function. In contrast, a minimum-time trajectory is composed of a single continuous-thrust phase. The first symmetry property concerns minimum-fuel and minimum-time orbit paths, both in two and in three dimensions. The second symmetry property regards minimum-fuel relative trajectories. Several examples illustrate the usefulness of these properties in determining minimum-time and minimum-fuel relative paths.

  4. Gauge Invariance in Classical Electrodynamics

    CERN Document Server

    Engelhardt, W

    2005-01-01

    The concept of gauge invariance in classical electrodynamics assumes tacitly that Maxwell's equations have unique solutions. By calculating the electromagnetic field of a moving particle both in Lorenz and in Coulomb gauge and directly from the field equations we obtain, however, contradicting solutions. We conclude that the tacit assumption of uniqueness is not justified. The reason for this failure is traced back to the inhomogeneous wave equations which connect the propagating fields and their sources at the same time.

  5. Harmonic oscillator in Snyder space: The classical case and the quantum case

    Indian Academy of Sciences (India)

    Carlos Leiva

    2010-02-01

    The harmonic oscillator in Snyder space is investigated in its classical and quantum versions. The classical trajectory is obtained and the semiclassical quantization from the phase space trajectories is discussed. An effective cut-off to high frequencies is found. The quantum version is developed and an equivalent usual harmonic oscillator is obtained through an effective mass and an effective frequency introduced in the model. This modified parameters give us a modified energy spectrum also.

  6. Some Observations upon "Realistic" Trajectories in Bohmian Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    María C. Boscá

    2013-02-01

    Full Text Available Experimental situations in which we observe quantum effects that deviate from the intuitive expectations of the classical world call for an interdisciplinary discussion, and one fundamental issue to be considered is the compatibility between the description of phenomena and the assumption of an objective reality. This paper discusses the ontological interpretation of Bohmian quantum mechanics, focusing on the use of the term “trajectory” and the difficulties associated with its connection to a “real” (objective trajectory. My conclusion is that the intended realistic interpretation of Bohmian trajectories is highly doubtful.

  7. Bidirectional coherent classical communication

    OpenAIRE

    Harrow, Aram W.; Leung, Debbie W.

    2005-01-01

    A unitary interaction coupling two parties enables quantum or classical communication in both the forward and backward directions. Each communication capacity can be thought of as a tradeoff between the achievable rates of specific types of forward and backward communication. Our first result shows that for any bipartite unitary gate, bidirectional coherent classical communication is no more difficult than bidirectional classical communication — they have the same achievable rate regions. ...

  8. Entanglement in Classical Optics

    OpenAIRE

    Ghose, Partha; Mukherjee, Anirban

    2013-01-01

    The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate betw...

  9. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  10. Teleportation via classical entanglement

    CERN Document Server

    Rafsanjani, Seyed Mohammad Hashemi; Magaña-Loaiza, Omar S; Boyd, Robert W

    2015-01-01

    We present a classical counterpart to quantum teleportation that uses classical entanglement instead of quantum entanglement. In our implementation we take advantage of classical entanglement among three parties: orbital angular momentum (OAM), polarization, and the radial degrees of freedom of a beam of light. We demonstrate the teleportation of arbitrary OAM states, in the subspace spanned by any two OAM states, to the polarization of the same beam. Our letter presents the first classical demonstration of a commonly-perceived--quantum phenomenon that requires entanglement among more than two parties.

  11. Differentially Private Trajectory Data Publication

    CERN Document Server

    Chen, Rui; Desai, Bipin C

    2011-01-01

    With the increasing prevalence of location-aware devices, trajectory data has been generated and collected in various application domains. Trajectory data carries rich information that is useful for many data analysis tasks. Yet, improper publishing and use of trajectory data could jeopardize individual privacy. However, it has been shown that existing privacy-preserving trajectory data publishing methods derived from partition-based privacy models, for example k-anonymity, are unable to provide sufficient privacy protection. In this paper, motivated by the data publishing scenario at the Societe de transport de Montreal (STM), the public transit agency in Montreal area, we study the problem of publishing trajectory data under the rigorous differential privacy model. We propose an efficient data-dependent yet differentially private sanitization algorithm, which is applicable to different types of trajectory data. The efficiency of our approach comes from adaptively narrowing down the output domain by building...

  12. Trajectory probability hypothesis density filter

    OpenAIRE

    García-Fernández, Ángel F.; Svensson, Lennart

    2016-01-01

    This paper presents the probability hypothesis density (PHD) filter for sets of trajectories. The resulting filter, which is referred to as trajectory probability density filter (TPHD), is capable of estimating trajectories in a principled way without requiring to evaluate all measurement-to-target association hypotheses. As the PHD filter, the TPHD filter is based on recursively obtaining the best Poisson approximation to the multitrajectory filtering density in the sense of minimising the K...

  13. Motion Planning and Irreducible Trajectories

    OpenAIRE

    Orthey, Andreas; Stasse, Olivier; Lamiraux, Florent

    2015-01-01

    — We introduce a novel notion for lowering the dimensionality of motion planning problems: Irreducibility. Irreducibility of a configuration space trajectory τ means: We cannot find another configuration space trajectory τ , such that the swept volume of τ is included in the swept volume of τ. The main contribution of our work is twofold: First, we show that motion planning in the space of irreducible trajectories is complete. Second, we show that we can construct reducible subspaces by reaso...

  14. Trajectory Following for Legged Robots

    OpenAIRE

    Moulard, Thomas; Lamiraux, Florent; Stasse, Olivier

    2012-01-01

    While robust trajectory following is a well-studied problem on mobile robots, the question of how to track accurately a trajectory on a humanoid robot remains open. This paper suggests a closed-loop trajectory tracking strategy aimed at humanoid robots. Compared to approaches from mobile robotics, this control scheme takes into account footsteps alteration, equilibrium constraints and singularities avoidance for humanoids. It provides a robust way to execute long and/or precise motion with th...

  15. Visual Trajectory Based SLAM

    OpenAIRE

    Esteban, I.

    2008-01-01

    SLAMstands for Simultaneous Localization AndMapping. It is a fundamental topic in Autonomous Systems and Robotics as it represents one of the most basic skills that any robot requires in order to be truly autonomous. This skill will allow a robot placed in an unknown environment at an unknown location to simultaneously build a consistent spatial representation (a map) and determine its location within this map. The classical approach to solve the SLAM problem was presented long ago [21] and m...

  16. High-Precision Motorcycle Trajectory Measurements Using GPS

    Science.gov (United States)

    Koyama, Yuichiro; Tanaka, Toshiyuki

    A method for measuring motorcycle trajectory using GPS is needed for simulating motorcycle dynamics. In GPS measurements of a motorcycle, both the declination of the motorcycle and obstacles near the course can cause problems. Therefore, we propose a new algorithm for GPS measurement of motorcycle trajectory. We interpolate the missing observation data within a few seconds using polynomial curves, and use a Kalman filter to smoothen position calculations. This results in obtaining trajectory with high accuracy and with sufficient continuity. The precision is equal to that of fixed point positioning, given a sufficient number of available satellites.

  17. Adaptive Trajectory Design (ATD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mission design within unstable/stable regions needs unification of individual trajectories from different dynamical regimes. NASA needs an automated process to...

  18. Classical reactive scattering in a quantum spirit: Improving the shape of rotational state distributions in the quantum regime

    CERN Document Server

    Bonnet, L; Halvick, Ph; Rayez, J -C

    2014-01-01

    For triatomic chemical reactions under single-collision conditions, we propose a new quasi-classical trajectory (QCT) approach to rotational-state distributions of particular interest in the quantum regime where only a few rotational states are available to the products. Our method is directly inspired from the amendments to be introduced in classical phase space theory (PST) in order to make it in exact agreement with quantum PST. The method is applied to the D$^+$ + H$_2$ and H$^+$ + D$_2$ reactions and the population of the rotational ground state is found to be in much closer agreement with the exact quantum one than the same population obtained by means of standard QCT calculations. The impact on the whole distribution is all the stronger as the number of available states is small. Last but not least, the shape of the distribution appears to be controlled to a large extent by three factors, respectively called parity, edge and rotational shift factors.

  19. Trajectory Based Traffic Analysis

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin;

    2013-01-01

    We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point-and-click a......We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point......-and-click analysis, due to a novel and efficient indexing structure. With the web-site daisy.aau.dk/its/spqdemo/we will demonstrate several analyses, using a very large real-world data set consisting of 1.9 billion GPS records (1.5 million trajectories) recorded from more than 13000 vehicles, and touching most of...

  20. Jettison Engineering Trajectory Tool

    Science.gov (United States)

    Zaczek, Mariusz; Walter, Patrick; Pascucci, Joseph; Armstrong, Phyllis; Hallbick, Patricia; Morgan, Randal; Cooney, James

    2013-01-01

    The Jettison Engineering Trajectory Tool (JETT) performs the jettison analysis function for any orbiting asset. It provides a method to compute the relative trajectories between an orbiting asset and any jettisoned item (intentional or unintentional) or sublimating particles generated by fluid dumps to assess whether an object is safe to jettison, or if there is a risk with an item that was inadvertently lost overboard. The main concern is the interaction and possible recontact of the jettisoned object with an asset. This supports the analysis that jettisoned items will safely clear the vehicle, ensuring no collisions. The software will reduce the jettison analysis task from one that could take days to complete to one that can be completed in hours, with an analysis that is more comprehensive than the previous method. It provides the ability to define the jettison operation relative to International Space Station (ISS) structure, and provides 2D and 3D plotting capability to allow an analyst to perform a subjective clearance assessment with ISS structures. The developers followed the SMP to create the code and all supporting documentation. The code makes extensive use of the object-oriented format of Java and, in addition, the Model-View-Controller architecture was used in the organization of the code, allowing each piece to be independent of updates to the other pieces. The model category is for maintaining data entered by the user and generated by the analysis. The view category provides capabilities for data entry and displaying all or a portion of the analysis data in tabular, 2D, and 3D representation. The controller category allows for handling events that affect the model or view(s). The JETT utilizes orbital mechanics with complex algorithms. Since JETT is written in JAVA, it is essentially platform-independent.

  1. Lectures on Classical Integrability

    CERN Document Server

    Torrielli, Alessandro

    2016-01-01

    We review some essential aspects of classically integrable systems. The detailed outline of the lectures consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schroedinger model, principal chiral field); 4. Features of classical r-matrices: Belavin-Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel'fand-Levitan-Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.

  2. Principles of maximally classical and maximally realistic quantum mechanics

    Indian Academy of Sciences (India)

    S M Roy

    2002-08-01

    Recently Auberson, Mahoux, Roy and Singh have proved a long standing conjecture of Roy and Singh: In 2-dimensional phase space, a maximally realistic quantum mechanics can have quantum probabilities of no more than + 1 complete commuting cets (CCS) of observables coexisting as marginals of one positive phase space density. Here I formulate a stationary principle which gives a nonperturbative definition of a maximally classical as well as maximally realistic phase space density. I show that the maximally classical trajectories are in fact exactly classical in the simple examples of coherent states and bound states of an oscillator and Gaussian free particle states. In contrast, it is known that the de Broglie–Bohm realistic theory gives highly nonclassical trajectories.

  3. Bohmian trajectories and Klein's paradox

    CERN Document Server

    Gruebl, G; Rheinberger, K; Gruebl, Gebhard; Moser, Raimund; Rheinberger, Klaus

    2001-01-01

    We compute the Bohmian trajectories of the incoming scattering plane waves for Klein's potential step in explicit form. For finite norm incoming scattering solutions we derive their asymptotic space-time localization and we compute some Bohmian trajectories numerically. The paradox, which appears in the traditional treatments of the problem based on the outgoing scattering asymptotics, is absent.

  4. Effective dynamics of a classical point charges

    CERN Document Server

    Polonyi, Janos

    2013-01-01

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham-Lorentz force is recovered and its similarity to anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out.

  5. Persistent quantum interfering electron trajectories

    International Nuclear Information System (INIS)

    The emission of above-ionization-threshold harmonics results from the recombination of two-electron wave packets moving along a ''short'' and a ''long'' trajectory in the atomic continuum. Attosecond pulse train generation has, so far, been attributed to the short trajectory, attempted to be isolated through targeted trajectory-selective phase-matching conditions. Here, we provide experimental evidence for the contribution of both trajectories to the harmonic emission, even under phase-matching conditions unfavorable for the long trajectory. This is finger printed in the interference modulation of the harmonic yield as a function of the driving laser intensity. The effect is also observable in the sidebands, which arise from the frequency mixing of the harmonics and the driving laser field, an effect with consequences in cross-correlation pulse metrology approaches.

  6. Noncommutative corrections to classical black holes

    International Nuclear Information System (INIS)

    We calculate leading long-distance noncommutative corrections to the classical Schwarzschild black hole sourced by a massive noncommutative scalar field. The energy-momentum tensor is taken O(l4) in the noncommutative parameter l and is treated in the semiclassical (tree-level) approximation. These noncommutative corrections dominate classical post-post-Newtonian corrections if l>1/MP. However, they are still very small to be observable in present-day experiments.

  7. Noncommutative corrections to classical black holes

    OpenAIRE

    Kobakhidze, Archil(ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Sydney, NSW, 2006, Australia)

    2007-01-01

    We calculate leading long-distance noncommutative corrections to the classical Schwarzschild black hole which is sourced by a massive noncommutative scalar field. The energy-momentum tensor is taken up to ${\\cal O}(\\ell^4)$ in noncommutative parameter, and is treated in semiclassical (tree level) approximation. These noncommutative corrections can dominate classical post-post-Newtonian corrections providing $\\ell > 1/M_P$, however, they are still too small to be observable in present-day expe...

  8. Phase Space Cell in Nonextensive Classical Systems

    OpenAIRE

    Piero Quarati; Francesco Quarati

    2003-01-01

    We calculate the phase space volume $\\Omega$ occupied by a nonextensive system of $N$ classical particles described by an equilibrium (or steady-state, or long-term stationary state of a nonequilibrium system) distribution function, which slightly deviates from Maxwell-Boltzmann (MB) distribution in the high energy tail. We explicitly require that the number of accessible microstates does not change respect to the extensive MB case. We also derive, within a classical scheme, an analytical exp...

  9. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  10. Missile trajectory shaping using sampling-based path planning

    OpenAIRE

    Pharpatara, Pawit; Pepy, Romain; Hérissé, Bruno; Bestaoui, Yasmina

    2013-01-01

    This paper presents missile guidance as a complex robotic problem: a hybrid non-linear system moving in a heterogeneous environment. The proposed solution to this problem combines a sampling-based path planner, Dubins' curves and a locally-optimal guidance law. This algorithm aims to find feasible trajectories that anticipate future flight conditions, especially the loss of manoeuverability at high altitude. Simulated results demonstrate the substantial performance improvements over classical...

  11. Fluctuations of wavefunctions about their classical average

    International Nuclear Information System (INIS)

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics

  12. Failure of classical elasticity in auxetic foams

    Directory of Open Access Journals (Sweden)

    J. H. Roh

    2013-04-01

    Full Text Available Poisson's ratio, ν, was measured for four materials, a rubbery polymer, a conventional soft foam, and two auxetic foams. We find that for the first two materials, having ν ≥ 0.2, the experimental determinations of Poisson's ratio are in good agreement with values calculated from the shear and tensile moduli using the equations of classical elasticity. However, for the two auxetic materials (ν < 0, the equations of classical elasticity give values significantly different from the measured ν. We offer an interpretation of these results based on a recently published analysis of the bounds on Poisson's ratio for classical elasticity to be applicable.

  13. Construction of exact complex dynamical invariant of a two-dimensional classical system

    Indian Academy of Sciences (India)

    Fakir Chand; S C Mishra

    2006-12-01

    We present the construction of exact complex dynamical invariant of a two-dimensional classical dynamical system on an extended complex space utilizing Lie algebraic approach. These invariants are expected to play a vital role in understanding the complex trajectories of both classical and quantum systems.

  14. Grassmannians of classical buildings

    CERN Document Server

    Pankov, Mark

    2010-01-01

    Buildings are combinatorial constructions successfully exploited to study groups of various types. The vertex set of a building can be naturally decomposed into subsets called Grassmannians. The book contains both classical and more recent results on Grassmannians of buildings of classical types. It gives a modern interpretation of some classical results from the geometry of linear groups. The presented methods are applied to some geometric constructions non-related to buildings - Grassmannians of infinite-dimensional vector spaces and the sets of conjugate linear involutions. The book is self

  15. Davidson and classical pragmatism

    Directory of Open Access Journals (Sweden)

    Paula Rossi

    2007-06-01

    Full Text Available In this paper I wish to trace some connections between Donald Davidson's work (1917-2003 and two major representatives of the classical pragmatist movement: Charles S. Peirce (1839-1914 and William James (1842-1910. I will start with a basic characterization of classical pragmatism; then, I shall examine certain conceptions in Peirce's and James' pragmatism, in order to establish affinities with Davidson´s thought. Finally, and bearing in mind the previous con-nections, I will reflect briefly on the relevance –often unrecognized- of classical pragmatist ideas in the context of contemporary philosophi-cal discussions.

  16. Physics of classical electromagnetism

    CERN Document Server

    Fujimoto, Minoru

    2007-01-01

    The classical electromagnetism described by the Maxwell equations constitutes a fundamental law in contemporary physics. Even with the advent of sophisticated new materials, the principles of classical electromagnetism are still active in various applied areas in today’s advanced communication techniques. Physics of Classical Electromagnetism, by Minoru Fujimoto, is written with concise introductory arguments emphasizing the original field concept, with an aim at understanding objectives in modern information technology. Following basic discussions of electromagnetism with a modernized approach, this book will provide readers with an overview of current problems in high-frequency physics. To further the reader’s understanding of the concepts and applications discussed, each illustration within the book shows the location of all active charges, and the author has provided many worked-out examples throughout the book. Physics of Classical Electromagnetism is intended for students in physics and engineering ...

  17. Injuries in classical ballet.

    Science.gov (United States)

    Quirk, R

    1984-11-01

    The specialised medical knowledge about dancers' injuries is negligible compared with that which surrounds sports medicine. The author discusses his experience in the management of more than 2000 injuries sustained by dancers of classical ballet. PMID:6151832

  18. Classical and Quantum Intertwine

    OpenAIRE

    Blanchard, Ph.; Jadczyk, A.

    1993-01-01

    Model interactions between classical and quantum systems are briefly discussed. These include: general measurement-like couplings, Stern-Gerlach experiment, model of a counter, quantum Zeno effect, SQUID-tank model.

  19. Davidson and classical pragmatism

    OpenAIRE

    Paula Rossi

    2007-01-01

    In this paper I wish to trace some connections between Donald Davidson's work (1917-2003) and two major representatives of the classical pragmatist movement: Charles S. Peirce (1839-1914) and William James (1842-1910). I will start with a basic characterization of classical pragmatism; then, I shall examine certain conceptions in Peirce's and James' pragmatism, in order to establish affinities with Davidson´s thought. Finally, and bearing in mind the previous con-nections, I will reflect brie...

  20. Limits of validity of trajectory simulation: Correlation of the error with density of scatterers and particle wavelength

    International Nuclear Information System (INIS)

    To a first approximation, the elastic scattering of long wavelength particles in amorphous matter may be modelled as scattering in a volume filled with a density n of N point scatterers in random positions. For not too large N (up to about 2x103), the error in trajectory simulation (classical transport theory) due to the neglect of interference effects can then be determined in detail by means of a comparison with an exact quantum calculation of the plural or multiple scattering process. A relative error RE is defined and calculated for the scattering in different directions as well as for the distribution of scattering events inside the volume. A very strong correlation is found between the relative error and the ratio λ/dnn, where λ is the wavelength of the incident particle and dnn=n-1/3 is an average distance between nearest neighbour scatterers. For scattering in a volume of dimensions large compared to the particle wavelength, present calculations suggest that the correlation can be described as RE∼a.(λ/dnn)b, where the parameters a0 in the scattering process. The condition for validity of trajectory simulation, defined in terms of a limit of validity L (maximum acceptable relative error), may thus be written λ/dnn1/b∼1. For λ/dnn0, randomly localized peaks due to proximity resonance.

  1. I. The indicatrix of composite crystals. II. Calculation of the indicatrix of silicate minerals with the classical point-dipole model. III. The structure of two sodium-uranyl fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, J.R.

    1977-04-01

    The results of three distinct studies are discussed. The first two chapters describe calculations of the geometric optical properties of crystals; the third chapter is concerned with the crystal structure analysis of two new double salts.

  2. Aircraft Trajectory Optimization Using Parametric Optimization Theory

    OpenAIRE

    Valenzuela Romero, Alfonso

    2012-01-01

    In this thesis, a study of the optimization of aircraft trajectories using parametric optimization theory is presented. To that end, an approach based on the use of predefined trajectory patterns and parametric optimization is proposed. The trajectory pat

  3. Constraint Trajectory Surface-Hopping Molecular Dynamics Simulation of the Photoisomerization of Stilbene

    Directory of Open Access Journals (Sweden)

    Yibo Lei

    2014-01-01

    Full Text Available Combining trajectory surface hopping (TSH method with constraint molecular dynamics, we have extended TSH method from full to flexible dimensional potential energy surfaces. Classical trajectories are carried out in Cartesian coordinates with constraints in internal coordinates, while nonadiabatic switching probabilities are calculated separately in free internal coordinates by Landau-Zener and Zhu-Nakamura formulas along the seam. Two-dimensional potential energy surfaces of ground S0 and excited S1 states are constructed analytically in terms of torsion angle and one dihedral angle around the central ethylenic C=C bond, and the other internal coordinates are all fixed at configuration of the conical intersection. At this conical intersection, the branching ratio from the present simulation is 48 : 52 (33 : 67 initially starting from trans(cis-Stilbene in comparison with experimental value 50 : 50. Quantum yield for trans-to-cis isomerization is estimated as 49% in very good agreement with experimental value of 55%, while quantum yield for cis-to-trans isomerization is estimated as 47% in comparison with experimental value of 35%.

  4. Trajectory Design to Benefit Trajectory-Based Surface Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trajectory-based operations constitute a key mechanism considered by the Joint Planning and Development Office (JPDO) for managing traffic in high-density or...

  5. Specific features of definition of charged particle trajectories in edge fields

    International Nuclear Information System (INIS)

    A method of calculation of charged particle trajectories in edge fields is described taking into account that the field maximum value will increase with the growth of the field expansion coefficient order. THe method permits to estimate the necessary and enough quantity of the edge field expansion members simply enough according to the trajectory approximation order. The method is illustrated on example of charged particle trajectories calculation in a magnetic analyzer with a homogeneous field and in a cylindrical capacitor. The described method can be also successfully used while integrating a differential equation of trajectory in the region of scattered field

  6. Quantifying ataxia: ideal trajectory analysis--a technical note

    Science.gov (United States)

    McPartland, M. D.; Krebs, D. E.; Wall, C. 3rd

    2000-01-01

    We describe a quantitative method to assess repeated stair stepping stability. In both the mediolateral (ML) and anterioposterior (AP) directions, the trajectory of the subject's center of mass (COM) was compared to an ideal sinusoid. The two identified sinusoids were unique in each direction but coupled. Two dimensionless numbers-the mediolateral instability index (IML) and AP instability index (IAP)-were calculated using the COM trajectory and ideal sinusoids for each subject with larger index values resulting from less stable performance. The COM trajectories of nine nonimpaired controls and six patients diagnosed with unilateral or bilateral vestibular labyrinth hypofunction were analyzed. The average IML and IAP values of labyrinth disorder patients were respectively 127% and 119% greater than those of controls (panalysis distinguishes persons with labyrinth disorder from those without. The COM trajectories also identify movement inefficiencies attributable to vestibulopathy.

  7. Parametric Approach to Trajectory Tracking Control of Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Shijie Zhang

    2013-01-01

    Full Text Available The mathematic description of the trajectory of robot manipulators with the optimal trajectory tracking problem is formulated as an optimal control problem, and a parametric approach is proposed for the optimal trajectory tracking control problem. The optimal control problem is first solved as an open loop optimal control problem by using a time scaling transform and the control parameterization method. Then, by virtue of the relationship between the optimal open loop control and the optimal closed loop control along the optimal trajectory, a practical method is presented to calculate an approximate optimal feedback gain matrix, without having to solve an optimal control problem involving the complex Riccati-like matrix differential equation coupled with the original system dynamics. Simulation results of 2-link robot manipulator are presented to show the effectiveness of the proposed method.

  8. Classical and quantum cosmology with York time

    International Nuclear Information System (INIS)

    We consider a solution to the problem of time in quantum gravity by deparameterization of the ADM action in terms of York time, a parameter proportional to the extrinsic curvature of a spatial hypersurface. We study a minisuperspace model together with a homogeneous scalar field, for which we can solve the Hamiltonian constraint exactly and arrive at an explicit expression for the physical (non-vanishing) Hamiltonian. The scale factor and associated momentum cease to be dynamical variables, leaving the scalar field as the only physical degree of freedom. We investigate the resulting classical theory, showing how the dynamics of the scale factor can be recovered via an appropriate interpretation of the Hamiltonian as a volume. We then quantize the system in the Schrödinger picture. In the quantum theory we recover the dynamics of the scale factor by interpreting the spectrum and expectation value of the Hamiltonian as being associated with volume rather than energy. If trajectories in the sense of de Broglie–Bohm are introduced in the quantum theory, these are found to match those of the classical theory. We suggest that these trajectories may provide the basis for a perturbation theory in which both background and perturbations are quantized. (paper)

  9. Born's Rule as Signature of a Super-Classical Current Algebra

    CERN Document Server

    Fussy, Siegfried; Schwabl, Herbert; Groessing, Gerhard

    2013-01-01

    We present a new tool for calculating the interference patterns and particle trajectories of a double-, three- and N-slit system on the basis of an emergent sub-quantum theory developed by our group throughout the last years. The quantum itself is considered as an emergent system representing an off-equilibrium steady state oscillation maintained by a constant throughput of energy provided by a classical zero-point energy field. We introduce the concept of a "relational causality" which allows for evaluating structural interdependences of different systems levels, i.e. in our case of the relations between partial and total probability density currents, respectively. Combined with the application of 21st century classical physics like, e.g., modern nonequilibrium thermodynamics, we thus arrive at a "super-classical" theory. Within this framework, the proposed current algebra directly leads to a new formulation of the guiding equation which is equivalent to the original one of the de Broglie-Bohm theory. By pro...

  10. Radarsat observations and forecasting of oil slick trajectory movements

    Institute of Scientific and Technical Information of China (English)

    Maged Marghany

    2004-01-01

    RADARSAT data have a potential role for coastal pollution monitoring. This study presents a new approach to detect and forecast oil slick trajectory movements. The oil slick trajectory movements is based on the tidal current effects and Fay's algorithm for oil slick spreading mechanisms. The oil spill trajectory model contains the integration between Doppler frequency shift model and Lagrangian model. Doppler frequency shift model implemented to simulate tidal current pattern from RADARSAT data while the Lagrangian model used to predict oil spill spreading pattern. The classical Fay's algorithm was implemented with the two models to simulate the oil spill trajectory movements.The study shows that the slick lengths are effected by tidal current V component with maximum velocity of 1.4 m/s. This indicates thatoil slick trajectory path is moved towards the north direction. The oil slick parcels are accumulated along the coastline after 48 h. Theanalysis indicated that tidal current V components were the dominant forcing for oil slick spreading.

  11. Fractional trajectories: Decorrelation versus friction

    Science.gov (United States)

    Svenkeson, A.; Beig, M. T.; Turalska, M.; West, B. J.; Grigolini, P.

    2013-11-01

    The fundamental connection between fractional calculus and subordination processes is explored and affords a physical interpretation of a fractional trajectory, that being an average over an ensemble of stochastic trajectories. Heretofore what has been interpreted as intrinsic friction, a form of non-Markovian dissipation that automatically arises from adopting the fractional calculus, is shown to be a manifestation of decorrelations between trajectories. We apply the general theory developed herein to the Lotka-Volterra ecological model, providing new insight into the final equilibrium state. The relaxation time to achieve this state is also considered.

  12. Roaming Under the Microscope: Trajectory Study of Formaldehyde Dissociation.

    Science.gov (United States)

    Houston, Paul L; Conte, Riccardo; Bowman, Joel M

    2016-07-14

    The photodissociation of formaldehyde was studied using quasi-classical trajectories to investigate "roaming," or events involving trajectories that proceed far from the minimum energy pathway. Statistical analysis of trajectories performed over a range of nine excitation energies from 34 500 to 41 010 cm(-1) (including zero-point energy) provides characterization of the roaming phenomenon and insight into the mechanism. The trajectories are described as projections onto three coordinates: the distance from the CO center of mass to the furthest H atom and the azimuthal and polar coordinates of that H atom with respect to the CO axis. The trajectories are used to construct a "minimum energy" potential energy surface showing the potential for any binary combination of these three coordinates that is at a minimum energy with respect to values of the other coordinates encountered during the trajectories. We also construct flux diagrams for roaming, transition-state, and radical pathways, as well as "reaction configuration" plots that show the distribution of reaction geometries for roaming and transition-state pathways. These constructs allow characterization of roaming in formaldehyde as, principally, internal rotation of the roaming H atom around the CO axis at a slowly varying and elongated distance from the CO center of mass. The rotation is nearly uniform, and is sometimes accompanied by rotation in the polar coordinate. The roaming state of formaldehyde can be treated as a separate kinetic entity, much as one might treat an isomer. Rate constants for the formation of and reaction from this roaming state are derived from the trajectory data as a function of excitation energy. PMID:26885745

  13. Communication: Classical threshold law for ion-neutral-neutral three-body recombination

    International Nuclear Information System (INIS)

    A very recently method for classical trajectory calculations for three-body collision [Pérez-Ríos et al., J. Chem. Phys. 140, 044307 (2014)] has been applied to describe ion-neutral-neutral ternary processes for low energy collisions: 0.1 mK–10 mK. As a result, a threshold law for the three-body recombination cross section is obtained and corroborated numerically. The derived threshold law predicts the formation of weakly bound dimers, with binding energies comparable to the collision energy of the collisional partners. In this low energy range, this analysis predicts that molecular ions should dominate over molecular neutrals as the most products formed

  14. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  15. Classically-Controlled Quantum Computation

    OpenAIRE

    Perdrix, Simon; Jorrand, Philippe

    2004-01-01

    Quantum computations usually take place under the control of the classical world. We introduce a Classically-controlled Quantum Turing Machine (CQTM) which is a Turing Machine (TM) with a quantum tape for acting on quantum data, and a classical transition function for a formalized classical control. In CQTM, unitary transformations and measurements are allowed. We show that any classical TM is simulated by a CQTM without loss of efficiency. The gap between classical and quantum computations, ...

  16. Quasiclassical trajectory study of collisional excitation in Li++CO2

    International Nuclear Information System (INIS)

    We present quasiclassical trajectory calculations of the state-to-state differential cross sections for vibrational excitation in Li++CO2 collisions and compare our results with analogous results of molecular beam experiments. In the trajectory calculations, the initial and final semiclassical eigenstates of CO2 are numerically determined before and after each collision by using a classical perturbation theory calculation of the good action-angle variables associated with molecular vibrational motion. Two approximations are used to simplify this action-angle analysis. First, an angular motion sudden approximation is introduced into the dynamics to separate angular from vibrational motion in solving the molecular Hamilton--Jacobi equation. Second, the off-diagonal parts of the intramolecular potential are neglected to eliminate Fermi resonant coupling between the bending and symmetric stretch modes. This latter approximation precludes the accurate determination of state-to-state cross sections to certain nearly degenerate states such as (020) and (100), but should still enable the accurate determination of the sums of the cross sections to those states (which is all that is available from experiment). The intramolecular potential is approximated in two different ways, both using pairwise additive potentials. In Surface I, the usual ion-induced dipole long range interaction is added to a sum of He--Ne pair potentials which simulate the short range Li+--C and Li+--O potentials. In Surface II, the sizes of the radius parameters in the short range part of Surface I are changed to correctly reproduce the anisotropy present in the experimentally derived He--CO2 interaction potential. The resulting ratios of inelastic to elastic differential cross sections (for the states (010), (020)+(100) and (030)+(110)) are in reasonable quantitative agreement with the experimental measurements

  17. Zero-Point Energy Constraint for Unimolecular Dissociation Reactions. Giving Trajectories Multiple Chances To Dissociate Correctly.

    Science.gov (United States)

    Paul, Amit K; Hase, William L

    2016-01-28

    A zero-point energy (ZPE) constraint model is proposed for classical trajectory simulations of unimolecular decomposition and applied to CH4* → H + CH3 decomposition. With this model trajectories are not allowed to dissociate unless they have ZPE in the CH3 product. If not, they are returned to the CH4* region of phase space and, if necessary, given additional opportunities to dissociate with ZPE. The lifetime for dissociation of an individual trajectory is the time it takes to dissociate with ZPE in CH3, including multiple possible returns to CH4*. With this ZPE constraint the dissociation of CH4* is exponential in time as expected for intrinsic RRKM dynamics and the resulting rate constant is in good agreement with the harmonic quantum value of RRKM theory. In contrast, a model that discards trajectories without ZPE in the reaction products gives a CH4* → H + CH3 rate constant that agrees with the classical and not quantum RRKM value. The rate constant for the purely classical simulation indicates that anharmonicity may be important and the rate constant from the ZPE constrained classical trajectory simulation may not represent the complete anharmonicity of the RRKM quantum dynamics. The ZPE constraint model proposed here is compared with previous models for restricting ZPE flow in intramolecular dynamics, and connecting product and reactant/product quantum energy levels in chemical dynamics simulations. PMID:26738691

  18. Learning Classical Music Club

    CERN Multimedia

    Learning Classical Music Club

    2010-01-01

    There is a new CERN Club called “Learning Classical Music at CERN”. We are aiming to give classical music lessons for different instruments (see link) for students from 5 to 100 years old. We are now ready to start our activities in the CERN barracks. We are now in the enrollment phase and hope to start lessons very soon ! Club info can be found in the list of CERN Club: http://user.web.cern.ch/user/Communication/SocialLifeActivities/Clubs/Clubs.html Salvatore Buontempo Club President

  19. A Single Classical Quark

    CERN Document Server

    Dzhunushaliev, V D

    1997-01-01

    The spherically symmetric solution in classical SU(3) Yang - Mills theory is found. It is supposed that such solution describes a classical quark. It is regular in origin and hence the interaction between two quarks is small on the small distance. The obtained solution has the singularity on infinity. It is possible that is the reason why the free quark cannot exist. Evidently, nonlocality of this object leads to the fact that in quantum chromodynamic the difficulties arise connected with investigation of quarks interaction on large distance.

  20. Classical Holographic Codes

    CERN Document Server

    Brehm, Enrico M

    2016-01-01

    In this work, we introduce classical holographic codes. These can be understood as concatenated probabilistic codes and can be represented as networks uniformly covering hyperbolic space. In particular, classical holographic codes can be interpreted as maps from bulk degrees of freedom to boundary degrees of freedom. Interestingly, they are shown to exhibit features similar to those expected from the AdS/CFT correspondence. Among these are a version of the Ryu-Takayanagi formula and intriguing properties regarding bulk reconstruction and boundary representations of bulk operations. We discuss the relation of our findings with expectations from AdS/CFT and, in particular, with recent results from quantum error correction.

  1. Classical mechanics with Maxima

    CERN Document Server

    Timberlake, Todd Keene

    2016-01-01

    This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.

  2. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  3. Classic Problems of Probability

    CERN Document Server

    Gorroochurn, Prakash

    2012-01-01

    "A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin

  4. The classical nova outburst

    International Nuclear Information System (INIS)

    The classical nova outburst occurs on the white dwarf component in a close binary system. Nova systems are members of the general class of cataclysmic variables and other members of the class are the Dwarf Novae, AM Her variables, Intermediate Polars, Recurrent Novae, and some of the Symbiotic variables. Although multiwavelength observations have already provided important information about all of these systems, in this review I will concentrate on the outbursts of the classical and recurrent novae and refer to other members of the class only when necessary. 140 refs., 1 tab

  5. A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system

    International Nuclear Information System (INIS)

    Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Regularities in hadron systematics, Regge trajectories and a string quark model

    International Nuclear Information System (INIS)

    An empirical principle for the construction of a linear relationship between the total angular momentum and squared-mass of baryons is proposed. In order to examine linearity of the trajectories, a rigorous least-squares regression analysis was performed. Unlike the standard Regge-Chew-Frautschi approach, the constructed trajectories do not have non-linear behaviour. A similar regularity may exist for lowest-mass mesons. The linear baryonic trajectories are well described by a semi-classical picture based on a spinning relativistic string with tension. The obtained numerical solution of this model was used to extract the (di)quark masses. (orig.)

  7. Non-gaussian signatures of general inflationary trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Horner, Jonathan S.; Contaldi, Carlo R., E-mail: j.horner11@imperial.ac.uk, E-mail: c.contaldi@imperial.ac.uk [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom)

    2014-09-01

    We carry out a numerical calculation of the bispectrum in generalised trajectories of canonical, single-field inflation. The trajectories are generated in the Hamilton-Jacobi (HJ) formalism based on Hubble Slow Roll (HSR) parameters. The calculation allows generally shape and scale dependent bispectra, or dimensionless f{sub NL}, in the out-of-slow-roll regime. The distributions of f{sub NL} for various shapes and HSR proposals are shown as an example of how this procedure can be used within the context of Monte Carlo exploration of inflationary trajectories. We also show how allowing out-of-slow-roll behaviour can lead to a bispectrum that is relatively large for equilateral shapes.

  8. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  9. Research on Cutting Trajectory of Electroplated Diamond Wire Saw

    Institute of Scientific and Technical Information of China (English)

    张辽远; 王超; 王建光; 杨勇

    2012-01-01

    The cutting process of electroplated diamond wire saw was researched on the basis of impulse and vibration machining theories. The different contact states in the cutting process were analyzed by using the finite element method. It shows that the cutting stress is uniformly distributed along the direction of the workpiece width in the steady state. A mathematical equation of sawing trajectory was established by using the superposition principle and the cutting experiment of wire saw to calculate the cutting trajectory. The comparison of the theoretical trajectory with the calculated one indicates that the error is less than 15%. The research results provide a theoretic basis for optimization of the saw' s cutting process parameters.

  10. Simulation of electron trajectory in bulk HTSC staggered array undulator

    International Nuclear Information System (INIS)

    To realize short-period high-magnetic-field undulator, we have proposed an undulator using bulk high temperature superconductor in a staggered array structure. To investigate the effect of the longitudinal solenoid field on the electron beam trajectory and find out the optimum value of the solenoid field, the magnetic field near the center of this undulator was modeled and the trajectory of the single electron was calculated. As a result, we found that the stronger solenoid field worked as a stronger convergence force. However, the optimum value was not able to be determined by the result of trajectory calculation because the stronger field changes the spectrum of the radiation from the beam. (author)

  11. Nuclear motion is classical

    CERN Document Server

    Frank, Irmgard

    2016-01-01

    The notion from ab-initio molecular dynamics simulations that nuclear motion is best described by classical Newton dynamics instead of the time-dependent Schr{\\"o}dinger equation is substantiated. In principle a single experiment should bring clarity. Caution is however necessary, as temperature dependent effects must be eliminated when trying to determine the existence of a zero-point energy.

  12. Strong Coupling and Classicalization

    CERN Document Server

    Dvali, Gia

    2016-01-01

    Classicalization is a phenomenon in which a theory prevents itself from entering into a strong-coupling regime, by redistributing the energy among many weakly-interacting soft quanta. In this way, the scattering process of some initial hard quanta splits into a large number of soft elementary processes. In short, the theory trades the strong coupling for a high-multiplicity of quanta. At very high energies, the outcome of such a scattering experiment is a production of soft states of high occupation number that are approximately classical. It is evident that black hole creation in particle collision at super-Planckian energies is a result of classicalization, but there is no a priory reason why this phenomenon must be limited to gravity. If the hierarchy problem is solved by classicalization, the LHC has a chance of detecting a tower of new resonances. The lowest-lying resonances must appear right at the strong coupling scale in form of short-lived elementary particles. The heavier members of the tower must b...

  13. Classical Iterative Methods

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe

    1. Berlin, Heidelberg: Springer-Verlag, 2013 - (Björm, E.), s. 205-224 ISBN 978-3-540-70528-4 Institutional support: RVO:68145535 Keywords : classical iterative methods * applied computational mathematics * encyclopedia Subject RIV: BA - General Mathematics http://www.springerreference.com/docs/ navigation .do?m=Encyclopedia+of+Applied+and+Computational+Mathematics+%28Mathematics+and+Statistics%29-book224

  14. Classical and quantum satisfiability

    CERN Document Server

    de Araújo, Anderson; 10.4204/EPTCS.81.6

    2012-01-01

    We present the linear algebraic definition of QSAT and propose a direct logical characterization of such a definition. We then prove that this logical version of QSAT is not an extension of classical satisfiability problem (SAT). This shows that QSAT does not allow a direct comparison between the complexity classes NP and QMA, for which SAT and QSAT are respectively complete.

  15. Why Study Classical Languages?

    Science.gov (United States)

    Lieberman, Samuel

    This speech emphasizes the significance of living literatures and living cultures which owe a direct debt to the Romans and the Greeks from whom they can trace their origins. After commenting on typical rejoinders to the question "Why study classical languages?" and poking fun at those who advance jaded, esoteric responses, the author dispels the…

  16. Classics in What Sense?

    Science.gov (United States)

    Camic, Charles

    2008-01-01

    They seem the perfect bookends for the social psychologist's collection of "classics" of the field. Two volumes, nearly identical in shape and weight and exactly a century old in 2008--each professing to usher "social psychology" into the world as they both place the hybrid expression square in their titles but then proceed to stake out the field…

  17. Mecanica Clasica (Classical Mechanics)

    OpenAIRE

    Rosu, H. C.

    1999-01-01

    First Internet graduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031

  18. Classical galactosaemia revisited

    NARCIS (Netherlands)

    A.M. Bosch

    2006-01-01

    Classical galactosaemia (McKusick 230400) is an: autosomal recessive disorder of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712). Most patients present in the neonatal period, after ingestion of galactose, with jaundice, hepatospl

  19. Classical Mythology. Fourth Edition.

    Science.gov (United States)

    Morford, Mark P. O.; Lenardon, Robert J.

    Designed for students with little or no background in classical literature, this book introduces the Greek and Roman myths of creation, myths of the gods, Greek sagas and local legends, and presents contemporary theories about the myths. Drawing on Homer, Hesiod, Pindar, Vergil, and others, the book provides many translations and paraphrases of…

  20. Classicism and Romanticism.

    Science.gov (United States)

    Huddleston, Gregory H.

    1993-01-01

    Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)

  1. Mecanica Clasica (Classical Mechanics)

    CERN Document Server

    Rosu, H C

    1999-01-01

    First Internet undergraduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031

  2. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  3. The Classical Cake Problem

    Science.gov (United States)

    Nelson, Norman N.; Fisch, Forest N.

    1973-01-01

    Discussed are techniques of presentation and solution of the Classical Cake Problem. A frosted cake with a square base is to be cut into n pieces with the volume of cake and frosting the same for each piece. Needed are minimal geometric concepts and the formula for the volume of a prism. (JP)

  4. Designing Complex Interplanetary Trajectories for the Global Trajectory Optimization Competitions

    CERN Document Server

    Izzo, Dario; Simões, Luís F; Märtens, Marcus

    2015-01-01

    The design of interplanetary trajectories often involves a preliminary search for options that are later refined into one final selected trajectory. It is this broad search that, often being intractable, inspires the international event called Global Trajectory Optimization Competition. In the first part of this chapter, we introduce some fundamental problems of space flight mechanics, building blocks of any attempt to participate successfully in these competitions and we describe the use of the open source software PyKEP to assemble them into a final global solution strategy. In the second part, we formulate an instance of a multiple asteroid rendezvous problem, related to the 7th edition of the competition, and we show step by step how to build a possible solution strategy. We introduce two new techniques useful in the design of this particular mission type: the use of an asteroid phasing value and its surrogates and the efficient computation of asteroid clusters. We show how basic building blocks, sided to...

  5. Surface-hopping trajectories for OH(A{sup 2}Σ{sup +}) + Kr: Extension to the 1A″ state

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, T.; McCrudden, G.; Brouard, M., E-mail: mark.brouard@chem.ox.ac.uk [The Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Herráez-Aguilar, D.; Aoiz, F.J., E-mail: aoiz@quim.ucm.es [Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid (Spain); Kłos, J., E-mail: jklos@umd.edu [Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 (United States)

    2015-04-14

    We present a new trajectory surface hopping study of the rotational energy transfer and collisional quenching of electronically excited OH(A) radicals by Kr. The trajectory surface hopping calculations include both electronic coupling between the excited 2{sup 2}A′ and ground 1{sup 2}A′ electronic states, as well as Renner-Teller and Coriolis roto-electronic couplings between the 1{sup 2}A′ and 1{sup 2}A″, and the 2{sup 2}A′ and 1{sup 2}A″ electronic states, respectively. The new calculations are shown to lead to a noticeable improvement in the agreement between theory and experiment in this system, particularly with respect to the OH(X) rotational and Λ-doublet quantum state populations, compared with a simpler two-state treatment, which only included the electronic coupling between the 2{sup 2}A′ and 1{sup 2}A′ states. Discrepancies between the predictions of theory and experiment do however remain, and could arise either due to errors in the potential energy surfaces and couplings employed, or due to the limitations in the classical treatment of non-adiabatic effects.

  6. Comparison of Fixed and Variable Time Step Trajectory Integration Methods for Cislunar Trajectories

    Science.gov (United States)

    Weeks, ichael W.; Thrasher, Stephen W.

    2007-01-01

    Due to the nonlinear nature of the Earth-Moon-Sun three-body problem and non-spherical gravity, CEV cislunar targeting algorithms will require many propagations in their search for a desired trajectory. For on-board targeting especially, the algorithm must have a simple, fast, and accurate propagator to calculate a trajectory with reasonable computation time, and still be robust enough to remain stable in the various flight regimes that the CEV will experience. This paper compares Cowell s method with a fourth-order Runge- Kutta integrator (RK4), Encke s method with a fourth-order Runge-Kutta- Nystr m integrator (RKN4), and a method known as Multi-Conic. Additionally, the study includes the Bond-Gottlieb 14-element method (BG14) and extends the investigation of Encke-Nystrom methods to integrators of higher order and with variable step size.

  7. Crack trajectory near a weld: Modeling and simulation

    DEFF Research Database (Denmark)

    Rashid, M.M.; Tvergaard, Viggo

    2008-01-01

    A 2D computational model of ductile fracture, in which arbitrary crack extension through the mesh is accommodated without mesh bias, is used to study ductile fracture near the weld line in welded aluminum plates. Comparisons of the calculated toughness behavior and crack trajectory are made with...

  8. Photoionization Microscopy : a classical, semiclassical and quantum study

    OpenAIRE

    Ollagnier, Antoine

    2007-01-01

    Photoionization microscopy is a technique that allows obtaining a macroscopic image of an electronic wave function which is usually confined into an atom. The experiment consists in ionizing an atom just above the threshold in a static electric field. The classical study of the movement of an electron in a combined coulombian and electric field shows that a infinite number of trajectories lead to a single point. In a quantum point of view, the partial wave functions which follow these traject...

  9. Quantum emulation of classical dynamics

    OpenAIRE

    Margolus, Norman

    2011-01-01

    In statistical mechanics, it is well known that finite-state classical lattice models can be recast as quantum models, with distinct classical configurations identified with orthogonal basis states. This mapping makes classical statistical mechanics on a lattice a special case of quantum statistical mechanics, and classical combinatorial entropy a special case of quantum entropy. In a similar manner, finite-state classical dynamics can be recast as finite-energy quantum dynamics. This mapping...

  10. Trajectory Indexing Using Movement Constraints

    DEFF Research Database (Denmark)

    Pfoser, D.; Jensen, Christian Søndergaard

    2005-01-01

    -the-shelf database management systems typically do not offer higher-dimensional indexing, this reduction in dimensionality allows us to use existing DBMSes to store and index trajectories. Moreover, we argue that, given the right circumstances, indexing these dimensionality-reduced trajectories can be more efficient......With the proliferation of mobile computing, the ability to index efficiently the movements of mobile objects becomes important. Objects are typically seen as moving in two-dimensional (x,y) space, which means that their movements across time may be embedded in the three-dimensional (x,y,t) space...... than using a three-dimensional index. A decisive factor here is the fractal dimension of the network.the lower, the more efficient is the proposed approach. This hypothesis is verified by an experimental study that incorporates trajectories stemming from real and synthetic road networks....

  11. Randomness: quantum versus classical

    CERN Document Server

    Khrennikov, Andrei

    2015-01-01

    Recent tremendous development of quantum information theory led to a number of quantum technological projects, e.g., quantum random generators. This development stimulates a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is elaboration of a consistent and commonly accepted interpretation of quantum state. Closely related problem is clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. The second part of this review is devoted to the information interpretation of quantum mechanics (QM) in the spirit of Zeilinger and Brukner (and QBism of Fuchs et al.) and physics in general (e.g., Wheeler's "it from bit") as well as digital philosophy of Chaitin (with historical coupling to ideas of Leibnitz). Finally, w...

  12. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  13. Computation in Classical Mechanics

    CERN Document Server

    Timberlake, Todd

    2007-01-01

    There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss the ways we have used computation in our classical mechanics courses, focusing on how computational work can improve students' understanding of physics as well as their computational skills. We present examples of computational problems that serve these two purposes. In addition, we provide information about resources for instructors who would like to include computation in their courses.

  14. The classic project

    International Nuclear Information System (INIS)

    Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Class Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator design. It includes modules for building accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty

  15. Injuries in classical ballet

    Directory of Open Access Journals (Sweden)

    Adriana Coutinho de Azevedo Guimarães

    2008-06-01

    Full Text Available This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external rotation at hip level and to undue use of point ballet slippers. The commonest lesions are in feet and ankles, followed by knees and hips. The rarest ones are in the upper limbs. These injuries are caused by exercise excess, by repetitions always in the same side and by wrong and early use of point slippers. The study reached the conclusion that incorrect application of classical ballet technique predisposes the dancers to characteristic injuries.

  16. Classical Diophantine equations

    CERN Document Server

    1993-01-01

    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  17. Dynamic trajectory control of gliders

    CERN Document Server

    Dilão, Rui

    2013-01-01

    We propose a new dynamic control algorithm in order to direct the trajectory of a glider to a pre-assigned target point. The algorithms runs iteratively and the approach to the target point is self-correcting. The algorithm is applicable to any non-powered lift-enabled vehicle (glider) travelling in planetary atmospheres. As a proof of concept, we have applied the new algorithm to the command and control of the trajectory of the Space Shuttle during the Terminal Area Energy Management (TAEM) phase.

  18. Injuries in classical ballet

    OpenAIRE

    Adriana Coutinho de Azevedo Guimarães; Joseani Paulini Neves Simas

    2008-01-01

    This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external ...

  19. A Classic's New Charm

    Institute of Scientific and Technical Information of China (English)

    WANG HAIRONG

    2010-01-01

    @@ North Korea's Phibada Opera Troupe arrived in Beijing on May3,bringing with it a Korean opera adapted from China's classic novel A Dream of Red Mansions written by Cao Xueqin(around 1715-63),a great novelist of the Qing Dynasty(1644-1911).The troupe,invited by the Chinese Ministry of Culture,is one of the largest performing groups having visited China in recent years.

  20. Computation in Classical Mechanics

    OpenAIRE

    Timberlake, Todd; Hasbun, Javier E.

    2007-01-01

    There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss th...

  1. Sociology and Classical Liberalism

    OpenAIRE

    KLEIN, Daniel; Stern, Lotta

    2005-01-01

    We advocate the development of a classical-liberal character within professional sociology. The American Sociological Association (ASA) is taken as representative of professional sociology in the United States. We review the ASA’s activities and organizational statements, to show the association’s leftist character. Internal criticism is often very uneasy about leftist domination of the field. We present survey results establishing that, in voting and in policy views, the ASA membership is mo...

  2. Revisiting a Classic

    Science.gov (United States)

    Rogers, Ibram

    2008-01-01

    As a 26-year-old English teacher in 1958, Chinua Achebe had no idea that the book he was writing would become a literary classic, not only in Africa but also throughout the world. He could only try to articulate the feelings he had for his countrymen and women. Achebe had a burning desire to tell the true story of Africa and African humanity. The…

  3. Concepts of classical optics

    CERN Document Server

    Strong, John

    2004-01-01

    An intermediate course in optics, this volume explores both experimental and theoretical concepts, offering practical knowledge of geometrical optics that will enhance students' comprehension of any relevant applied science. Its exposition of the concepts of classical optics is presented with a minimum of mathematical detail but presumes some knowledge of calculus, vectors, and complex numbers.Subjects include light as wave motion; superposition of wave motions; electromagnetic waves; interaction of light and matter; velocities and scattering of light; polarized light and dielectric boundarie

  4. Diffusion of Classical Solitons

    OpenAIRE

    Dziarmaga, J.; Zakrzewski, W.

    1998-01-01

    We study the diffusion and deformation of classical solitons coupled to thermal noise. The diffusion coefficient for kinks in the $\\phi^4$ theory is predicted up to the second order in $kT$. The prediction is verified by numerical simulations. Multiskyrmions in the vector O(3) sigma model are studied within the same formalism. Thermal noise results in a diffusion on the multisoliton collective coordinate space (moduli space). There are entropic forces which tend, for example, to bind pairs of...

  5. Accelerating the calculation of time-resolved electronic spectra with the cellular dephasing representation

    Science.gov (United States)

    Šulc, Miroslav; Vaníček, Jiří

    2012-05-01

    Dephasing representation of fidelity, also known as the phase averaging method, can be considered as a special case of Miller's linearized semiclassical initial value representation and belongs among the most efficient approximate semiclassical approaches for the calculation of ultrafast time-resolved electronic spectra. Recently it has been shown that the number of trajectories required for convergence of this method is independent of the system's dimensionality. Here we propose a further accelerated version of the dephasing representation in the spirit of Heller's cellular dynamics. The basic idea of the 'cellular dephasing representation' is to decompose the Wigner transform of the initial state into a phase space Gaussian basis and then evaluate the contribution of each Gaussian to the relevant correlation function approximately analytically, using numerically acquired information only along the trajectory of the Gaussian's centre. The approximate nature of the DR classifies it among semiclassical perturbation approximations proposed by Miller and Smith, and suggests its limited accuracy. Yet, the proposed method turns out to be sufficiently accurate whenever the interaction with the environment diminishes the importance of recurrences in the correlation functions of interest. Numerical tests on a collinear NCO molecule indicate that even results based on a single classical trajectory are in a remarkable agreement with the fully converged DR requiring approximately 104 trajectories.

  6. What was classical genetics?

    Science.gov (United States)

    Waters, C Kenneth

    2004-12-01

    I present an account of classical genetics to challenge theory-biased approaches in the philosophy of science. Philosophers typically assume that scientific knowledge is ultimately structured by explanatory reasoning and that research programs in well-established sciences are organized around efforts to fill out a central theory and extend its explanatory range. In the case of classical genetics, philosophers assume that the knowledge was structured by T. H. Morgan's theory of transmission and that research throughout the later 1920s, 30s, and 40s was organized around efforts to further validate, develop, and extend this theory, I show that classical genetics was structured by an integration of explanatory reasoning (associated with the transmission theory) and investigative strategies (such as the 'genetic approach'). The investigative strategies, which have been overlooked in historical and philosophical accounts, were as important as the so-called laws of Mendelian genetics. By the later 1920s, geneticists of the Morgan school were no longer organizing research around the goal of explaining inheritance patterns; rather, they were using genetics to investigate a range of biological phenomena that extended well beyond the explanatory domain of transmission theories. Theory-biased approaches in history and philosophy of science fail to reveal the overall structure of scientific knowledge and obscure the way it functions. PMID:15682554

  7. DOE Fundamentals Handbook: Classical Physics

    International Nuclear Information System (INIS)

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment

  8. Classical oscillator with position-dependent mass in a complex domain

    OpenAIRE

    Ghosh, Subir; Modak, Sujoy Kumar

    2008-01-01

    We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [19,11]. The role of PT -symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [10, 32].

  9. Control and instanton trajectories for random transitions in turbulent flows

    International Nuclear Information System (INIS)

    Many turbulent systems exhibit random switches between qualitatively different attractors. The transition between these bistable states is often an extremely rare event, that can not be computed through DNS, due to complexity limitations. We present results for the calculation of instanton trajectories (a control problem) between non-equilibrium stationary states (attractors) in the 2D stochastic Navier-Stokes equations. By representing the transition probability between two states using a path integral formulation, we can compute the most probable trajectory (instanton) joining two non-equilibrium stationary states. Technically, this is equivalent to the minimization of an action, which can be related to a fluid mechanics control problem.

  10. Biomimetic walking trajectory generation of humanoid robot on an inclined surface using Fourier series.

    Science.gov (United States)

    Park, Ill-Woo; Kim, Jung-Yup

    2014-10-01

    This article describes a novel method to generate a biomimetic walking trajectory for a biped humanoid robot on an inclined surface. We assume that the configuration of the inclined surface is known, and we solve the human-like walking trajectory generation problem by obtaining the solution from the desired zero moment point (ZMP) trajectory to the center of gravity (CoG) trajectory. We present an analytic solution for the walking trajectory generation by using Fourier series. From the given ZMP trajectory biomimetically represented by the Fourier series, we focus on how to find the CoG trajectory in an analytical way. A time-segmentation based approach is adopted for generating the trajectories. The trajectory functions need to be continuous between the segments; thus, the solution is found by calculating the coefficients under these connectivity conditions. We derive a general form of the ZMP equation using a simple inverted pendulum model (SIPM), which includes the ZMP and the CoG trajectories in the horizontal and vertical directions to quantify the walking parameters on the inclined surface. The performance of the proposed approach is verified by conducting walking simulations using a full-body dynamic simulator on three different inclined surfaces and comparing them to the authors' previous approach. PMID:25942821

  11. Trajectory-Based Unveiling of Angular Momentum of Photons

    CERN Document Server

    Li, Yongnan; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2015-01-01

    The Heisenberg uncertainty principle suggests that it is impossible to determine the trajectory of a quantum particle in the same way as a classical particle. However, we may still yield insight into novel behavior of photons based on the average photon trajectories (APTs). Here we explore the APTs of photons carrying spin angular momentum (SAM) and/or orbital angular momentum (OAM) under the paraxial condition. We define the helicity and differential helicity for unveiling the three-dimensional spiral structures of the APTs of photons. We clarify the novel behaviors of the APTs caused by the SAM and OAM as well as the SAM-OAM coupling. The APT concept is very helpful for profoundly understanding the motion of trapped particles and for elucidating other physical systems. Due to the presence of the helical path caused by the SAM and/or the OAM, the actual traveling distance of the photons might be much longer than the geometric distance.

  12. Numerical Simulation of Single Microparticle Trajectory in an Electrodynamic Balance

    Institute of Scientific and Technical Information of China (English)

    冯昭华; 朱家骅; 杨雪峰; 夏素兰; 关国强; DavisE.J.

    2004-01-01

    By introducing Oseen's formula to describe the viscous drag force, a more complete motion equation for a charged microparticle levitated in an electrodynamic balance (EDB) has been put forward and solved numerically by the classic Runge-Kutta method in this paper. The theoretical results have firstly demonstrated the existence of the particle oscillations and their characteristics, especially of the springpoint oscillation at large amplitude .And through the comparisons of theoretical and experimental trajectories, the adopted motion equation has proved to be able to rigorously describe the particle motion in non-Stokes region--the shape of trajectory and frequencycharacteristics are fairlv consistent and the deviations of amnliturla c~n n~llzll~r ho lo~ th~n 1cIfr/~

  13. Mean motion and trajectories of heavy particles falling through a boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Stout, J.E.; Arya, S.P. [North Carolina State Univ., Raleigh, NC (United States)

    1994-12-31

    As particles fall through a turbulent boundary layer they experience a rather complex and unique time series of aerodynamic forces and, thus, each individual particle follows a rather complex and unique trajectory to the surface. For sufficiently large and heavy particles, the turbulence induced particle motion can be thought of as a small perturbation superimposed on the mean trajectory. By ignoring the turbulent contribution to particle motion it is possible to calculate the trajectory of a particle due to the mean flow alone. The mean trajectory provides an estimate of the ensemble-averaged path of a set of particles released from a given point in the atmosphere. The effect of turbulence on individual particle trajectories, the distribution of particle displacements from the mean trajectory, and their deposition patterns on the surface will be investigated in a separate study, using a random walk model.

  14. Complementarity between Quantum and Classical Mechanics in Chemical Modeling. The H + HeH+ → H2 + + He Reaction: A Rigourous Test for Reaction Dynamics Methods.

    Science.gov (United States)

    Esposito, Fabrizio; Coppola, Carla Maria; De Fazio, Dario

    2015-12-24

    In this work we present a dynamical study of the H + HeH+ → H2+ + He reaction in a collision energy range from 0.1 meV to 10 eV, suitable to be used in applicative models. The paper extends and complements a recent work [ Phys. Chem. Chem. Phys. 2014, 16, 11662] devoted to the characterization of the reactivity from the ultracold regime up to the three-body dissociation breakup. In particular, the accuracy of the quasi-classical trajectory method below the three-body dissociation threshold has been assessed by a detailed comparison with previous calculations performed with different reaction dynamics methods, whereas the reliability of the results in the high energy range has been checked by a direct comparison with the available experimental data. Integral cross sections for several HeH+ roto-vibrational states have been analyzed and used to understand the extent of quantum effects in the reaction dynamics. By using the quasi-classical trajectory method and quantum mechanical close coupling data, respectively, in the high and low collision energy ranges, we obtain highly accurate thermal rate costants until 15 000 K including all (178) the roto-vibrational bound and quasi-bound states of HeH+. The role of the collision-induced dissociation is also discussed and explicitly calculated for the ground roto-vibrational state of HeH+. PMID:26583384

  15. Complex quantum trajectories for barrier scattering

    Science.gov (United States)

    Rowland, Bradley Allen

    We have directed much attention towards developing quantum trajectory methods which can accurately predict the transmission probabilities for a variety of quantum mechanical barrier scattering processes. One promising method involves solving the complex quantum Hamilton-Jacobi equation with the Derivative Propagation Method (DPM). We present this method, termed complex valued DPM (CVDPM(n)). CVDPM(n) has been successfully employed in the Lagrangian frame to accurately compute transmission probabilities on 'thick' one dimensional Eckart and Gaussian potential surfaces. CVDPM(n) is able to reproduce accurate results with a much lower order of approximation than is required by real valued quantum trajectory methods, from initial wave packet energies ranging from the tunneling case (Eo = 0) to high energy cases (twice the barrier height). We successfully extended CVDPM(n) to two-dimensional problems (one translational degree of freedom representing an Eckart or Gaussian barrier coupled to a vibrational degree of freedom) in the Lagrangian framework with great success. CVDPM helps to explain why barrier scattering from "thick" barriers is a much more well posed problem than barrier scattering from "thin" barriers. Though results in these two cases are in very good agreement with grid methods, the search for an appropriate set of initial conditions (termed an 'isochrone) from which to launch the trajectories leads to a time-consuming search problem that is reminiscent of the root-searching problem from semi-classical dynamics. In order to circumvent the isochrone problem, we present CVDPM(n) equations of motion which are derived and implemented in the arbitrary Lagrangian-Eulerian frame for a metastable potential as well as the Eckart and Gaussian surfaces. In this way, the isochrone problem can be circumvented but at the cost of introducing other computational difficulties. In order to understand why CVDPM may give better transmission probabilities than real valued

  16. Communication: Proper treatment of classically forbidden electronic transitions significantly improves detailed balance in surface hopping.

    Science.gov (United States)

    Sifain, Andrew E; Wang, Linjun; Prezhdo, Oleg V

    2016-06-01

    Surface hopping is the most popular method for nonadiabatic molecular dynamics. Many have reported that it does not rigorously attain detailed balance at thermal equilibrium, but does so approximately. We show that convergence to the Boltzmann populations is significantly improved when the nuclear velocity is reversed after a classically forbidden hop. The proposed prescription significantly reduces the total number of classically forbidden hops encountered along a trajectory, suggesting that some randomization in nuclear velocity is needed when classically forbidden hops constitute a large fraction of attempted hops. Our results are verified computationally using two- and three-level quantum subsystems, coupled to a classical bath undergoing Langevin dynamics. PMID:27276938

  17. Distance Education: Educational Trajectory Control

    Science.gov (United States)

    Isaev, Andrey; Kravets, Alla; Isaeva, Ludmila; Fomenkov, Sergey

    2013-01-01

    Distance education has become a rather popular form of education recently. The advantages of this form are obvious and well-known. They include asynchronous learning, individualized learning trajectories and convenient case technologies. However, the distance form of education is not able to form the trainee's hands-on experience, especially…

  18. Back-trajectory Analyses of Water Vapor in Northern Mongolia

    Science.gov (United States)

    Koike, Y.; Asanuma, J.

    2012-12-01

    Knowledge of precipitation sources is indispensable for prediction of extreme events as droughts and flood [Dirmeyer and Brubaker, 1999]. In this paper, the transport pathways of water vapor that precipitates in northern Mongolia were identified using back-trajectory analyses in order to find out factors causing such events in arid/semi-arid area. First, a back-trajectory model of atmospheric water vapor was developed. An air parcel is placed on an isentropic plane over the target site at each time of precipitation. Then, back trajectories was calculated with a kinematic method following the implicit technique [Merrill et al., 1986; Merrill, 1989]. Each of the air parcels was tagged with the precipitation time and the altitude, and then tracked back in time for 5 days on the isentropic surface. Japanese 25-year Reanalysis/JMA Climate Data Assimilation System (JRA-25/JCDAS) of Japan Meteorological Agency [Onogi et al., 2007] was used for 3D field of meteorological variables for the calculation. As a validation, the model was compared with two others, namely, Meteorological Data Explorer of the Center for Global Environmental Reserch (METEX/CGER) [Zeng et al., 2003], and the trajectory model of the National Institute of Polar Research (NIPR) [Tomikawa and Sato, 2005]. The comparison found that model results are fairly robust within 5 days from the computational start, i.e., the end of the trajectory, regardless of different datasets and different schemes employed in these models. Then, the back-trajectory model was applied to the observed precipitation at the target site, a surface station in northern Mongolia called Kherlenbayan-Ulaan(KBU), where highly accurate and temporarily dense precipitation measurements are available. Back trajectory lines were calculated for each of the observed precipitation during the warm season of the years 2003 to 2009, on the isentropic surfaces of 300K, 310K and 320K where the highest value of water vapor is observed. The results show

  19. Experimental nonlocal and surreal Bohmian trajectories

    Science.gov (United States)

    Mahler, Dylan H.; Rozema, Lee; Fisher, Kent; Vermeyden, Lydia; Resch, Kevin J.; Wiseman, Howard M.; Steinberg, Aephraim

    2016-01-01

    Weak measurement allows one to empirically determine a set of average trajectories for an ensemble of quantum particles. However, when two particles are entangled, the trajectories of the first particle can depend nonlocally on the position of the second particle. Moreover, the theory describing these trajectories, called Bohmian mechanics, predicts trajectories that were at first deemed “surreal” when the second particle is used to probe the position of the first particle. We entangle two photons and determine a set of Bohmian trajectories for one of them using weak measurements and postselection. We show that the trajectories seem surreal only if one ignores their manifest nonlocality. PMID:26989784

  20. On the classical confinement of test particles to a thin 3-brane in the absence of non-gravitational forces

    CERN Document Server

    la Camera, M

    2008-01-01

    We transform the classical confinement conditions of test particles to a brane universe in the absence of non-gravitational forces using the Hamilton-Jacobi formalism. The transformed conditions provide a direct criterion for selecting, in a cosmological scenario, 5D bulk manifolds wherein it is possible to obtain confinement purely due to classical gravitational effects of trajectories to 4D hypersurfaces.

  1. On the Classical Confinement of Test Particles to a Thin 3-BRANE in the Absence of Non-Gravitational Forces

    Science.gov (United States)

    La Camera, M.

    The classical confinement condition of test particles to a brane universe in the absence of non-gravitational forces is transformed using the Hamilton-Jacobi formalism. The transformed condition provides a direct criterion for selecting in a cosmological scenario 5D bulk manifolds wherein it is possible to obtain confinement of trajectories to 4D hypersurfaces purely due to classical gravitational effects.

  2. Combination of the final element and quantum trajectory methods for numerical solution of the wave equation

    International Nuclear Information System (INIS)

    For description of ion-atom collisions the final elements approach is applied in regions close to the nuclei and in the quantum trajectory method is applied in the outer region. Applicability of the quasi-classics at the boundary provide a possibility to join two solutions. The method is computationally efficient and also provides detailed insight into the phenomenon.

  3. Radiation from perfect mirrors following prescribed relativistic trajectories

    CERN Document Server

    Calogeracos, A

    2002-01-01

    The question is examined of a mirror which starts from rest and either (i) accelerates for some time and eventually reverts to motion at constant velocity, or (ii) continues accelerating forever. A sharp distinction is made between cases (i) and (ii) concerning the spectrum of the emitted radiation, and the qualitative difference between the two cases is pointed out. The Bogolubov coefficients are calculated for a trajectory of type (i). A type (ii) trajectory is entirely unphysical as far as any realistic mirror is concerned, however it is of interest in that it has been used as a simple analog of black hole collapse. The spectrum emitted for the type (ii) trajectory z=-ln(cosht) is examined and it is shown that it is indeed that of a black body. Inconsistencies in previous derivations of the above result are pointed out.

  4. Particle trajectories in relativistic Newtonian gravity

    International Nuclear Information System (INIS)

    In the light of a recent Lorentz covariant theory of gravitation, the radial and circular trajectories of test objects have been studied in a static spherically symmetric situation. It has been found that the gravitational field is characterised by a characteristic radius rc (≅) 1.58 rs (rs = Schwarzschild radius) which defines the surface of infinite red-shift. For a radial free fall it has been shown that a particle coming from a large distance first gets accelerated towards the source. However, as the velocity increases and the particle penetrates deep into the field, the non-Newtonian features of gravity begin to show up. From some point along the radial trajectory, depending on the initial energy, the particle starts getting retarded and finally stops at rc. It is, therefore, observed that the radial fall in general is characterised by a terminal velocity in the velocity field. Another non-Newtonian character of the present flat-space-time gravity concerns the question of existence of circular orbits. Calculations revealed that circular orbits cannot exist below a limiting radius which is approximately equal to 2.23 rs. (author). 14 refs., 3 figs., 1 tab

  5. On Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Laurent Chusseau

    2013-02-01

    Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.

  6. Mechanics classical and quantum

    CERN Document Server

    Taylor, T T

    2015-01-01

    Mechanics: Classical and Quantum explains the principles of quantum mechanics via the medium of analytical mechanics. The book describes Schrodinger's formulation, the Hamilton-Jacobi equation, and the Lagrangian formulation. The author discusses the Harmonic Oscillator, the generalized coordinates, velocities, as well as the application of the Lagrangian formulation to systems that are partially or entirely electromagnetic in character under certain conditions. The book examines waves on a string under tension, the isothermal cavity radiation, and the Rayleigh-Jeans result pertaining to the e

  7. A Classic Through Eternity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    FIVE years ago, an ancient Chinese air was beamed to outer space as a PR exercise. To humankind, music is a universal language, so the tune seemed an ideal medium for communication with extraterrestrial intelligence. So far there has been no response, but it is believed that the tune will play for a billion years, and eventually be heard and understood. The melody is called High Mountain and Flowing Stream, and it is played on the guqin, a seven-stringed classical musical instrument similar to the zither.

  8. Autonomous quantum to classical transitions and the generalized imaging theorem

    Science.gov (United States)

    Briggs, John S.; Feagin, James M.

    2016-03-01

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.

  9. Phase Space Cell in Nonextensive Classical Systems

    CERN Document Server

    Quarati, F

    2003-01-01

    We calculate the phase space volume $Omega$ occupied by a nonextensive system of $N$ classical particles described by an equilibrium (or steady-state, or long-term stationary state of a nonequilibrium system) distribution function, which slightly deviates from Maxwell-Boltzmann (MB) distribution in the high energy tail. We explicitly require that the number of accessible microstates does not change respect to the extensive MB case. We also derive, within a classical scheme, an analytical expression of the elementary cell that can be seen as a macrocell, different from the third power of Planck constant. Thermodynamic quantities like entropy, chemical potential and free energy of a classical ideal gas, depending on elementary cell, are evaluated. Considering the fractional deviation from MB distribution we can deduce a physical meaning of the nonextensive parameter $q$ of the Tsallis nonextensive thermostatistics in terms of particle correlation functions (valid at least in the case, discussed in this work, of...

  10. The ESA's Space Trajectory Analysis software suite

    Science.gov (United States)

    Ortega, Guillermo

    The European Space Agency (ESA) initiated in 2005 an internal activity to develop an open source software suite involving university science departments and research institutions all over the world. This project is called the "Space Trajectory Analysis" or STA. This article describes the birth of STA and its present configuration. One of the STA aims is to promote the exchange of technical ideas, and raise knowledge and competence in the areas of applied mathematics, space engineering, and informatics at University level. Conceived as a research and education tool to support the analysis phase of a space mission, STA is able to visualize a wide range of space trajectories. These include among others ascent, re-entry, descent and landing trajectories, orbits around planets and moons, interplanetary trajectories, rendezvous trajectories, etc. The article explains that STA project is an original idea of the Technical Directorate of ESA. It was born in August 2005 to provide a framework in astrodynamics research at University level. As research and education software applicable to Academia, a number of Universities support this development by joining ESA in leading the development. ESA and Universities partnership are expressed in the STA Steering Board. Together with ESA, each University has a chair in the board whose tasks are develop, control, promote, maintain, and expand the software suite. The article describes that STA provides calculations in the fields of spacecraft tracking, attitude analysis, coverage and visibility analysis, orbit determination, position and velocity of solar system bodies, etc. STA implements the concept of "space scenario" composed of Solar system bodies, spacecraft, ground stations, pads, etc. It is able to propagate the orbit of a spacecraft where orbital propagators are included. STA is able to compute communication links between objects of a scenario (coverage, line of sight), and to represent the trajectory computations and

  11. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units—Radial Distribution Function Histogramming

    OpenAIRE

    Levine, Benjamin G.; Stone, John E.; Kohlmeyer, Axel

    2011-01-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of th...

  12. Trajectories of delinquency and parenting styles

    NARCIS (Netherlands)

    Hoeve, M.; Blokland, A.; Dubas, J.S.; Loeber, R.; Gerris, J.R.M.; Laan, P.H. van der

    2008-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering

  13. Trajectories of Delinquency and Parenting Styles

    NARCIS (Netherlands)

    Hoeve, M.; Blokland, A.; Dubas, J.S.; Loeber, R.; Gerris, J.R.M.; Laan, P.H. van der

    2008-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering

  14. Fano Interference in Classical Oscillators

    Science.gov (United States)

    Satpathy, S.; Roy, A.; Mohapatra, A.

    2012-01-01

    We seek to illustrate Fano interference in a classical coupled oscillator by using classical analogues of the atom-laser interaction. We present an analogy between the dressed state picture of coherent atom-laser interaction and a classical coupled oscillator. The Autler-Townes splitting due to the atom-laser interaction is analogous to the…

  15. Alternative interpretation of high-order harmonic generation using Bohmian trajectories

    CERN Document Server

    Sanz, A S; Wu, J; Faria, C Figueira de Morisson

    2012-01-01

    A full quantum model of high-order harmonic generation is presented from a Bohmian-mechanical perspective. According to the three-step model, this phenomenon occurs due to the laser-induced recombination of an electron ejected by tunnel ionization with its parent ion. However, when revisited within the Bohmian scenario, we find that the high-harmonic spectrum is generated by those trajectories that reside well inside the core rather than by those that undergo excursions out of it. This agrees with the outcome of quantum mechanical studies, in which the spectrum is obtained through the dipole acceleration. Nevertheless, one may relate time-frequency maps from these central Bohmian trajectories to classical electrons behaving according to the three-step model. This happens because the quantum phase carried by each Bohmian trajectory is influenced by the whole wavefunction and, therefore, also by those trajectories that leave the core.

  16. Successful Aging: Multiple Trajectories and Population Heterogeneity

    OpenAIRE

    2014-01-01

    Following Rowe and Kahn¡¯s successful aging model, this study identified successful aging as a distinctive aging trajectory and examined gender differences in the aging process. Using the Health and Retirement Study data (2000-2008), this study applied group-based trajectory analysis to identify multiple aging trajectories in a sample of older Americans aged 65 and over (N=9,226). Six dimensions were analyzed in the multi-trajectory model: chronic disease, physical functional limitation, disa...

  17. Transition from quantum to quasi-classical behaviour of the binary encounter peak in collisions of 0.6 to 3.6 MeV amu-1 I23+ and Xe21+ with He and Ar

    International Nuclear Information System (INIS)

    Double differential cross sections are reported for the production of binary encounter electrons in collisions of 0.6 MeV amu-1 I23+ and 1.4, 2.4, and 3.6 MeV amu-1 Xe21+ projectiles incident on He and Ar targets. Electron energy spectra were measured between Oo and 45o in the case of the two lower projectile energies, and between 17.5o and 60o for the two higher projectile energies. The data are compared with quantum mechanical impulse approximation and classical trajectory Monte Carlo calculations. (author)

  18. Wigner's dynamical transition state theory in phase space: classical and quantum

    International Nuclear Information System (INIS)

    We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs the evolution from reactants to products in high dimensional systems. In the classical case this is the standard Poincaré–Birkhoff normal form. In the quantum case we develop a normal form based on the Weyl calculus and an explicit algorithm for computing this quantum normal form. The classical normal form allows us to discover and compute the phase space structures that govern classical reaction dynamics. From this knowledge we are able to provide a direct construction of an energy dependent dividing surface in phase space having the properties that trajectories do not locally 're-cross' the surface and the directional flux across the surface is minimal. Using this, we are able to give a formula for the directional flux through the dividing surface that goes beyond the harmonic approximation. We relate this construction to the flux–flux autocorrelation function which is a standard ingredient in the expression for the reaction rate in the chemistry community. We also give a classical mechanical interpretation of the activated complex as a normally hyperbolic invariant manifold (NHIM), and further describe the structure of the NHIM. The quantum normal form provides us with an efficient algorithm to compute quantum reaction rates and we relate this algorithm to the quantum version of the flux–flux autocorrelation function formalism. The significance of the classical phase space structures for the quantum mechanics of reactions is elucidated by studying the phase space distribution of scattering states. The quantum normal form also provides an efficient way of computing Gamov–Siegert resonances. We relate these resonances to the lifetimes of the quantum activated

  19. 14 CFR 417.207 - Trajectory analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Trajectory analysis. 417.207 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.207 Trajectory analysis. (a) General. A flight safety analysis must include a trajectory analysis that establishes: (1) For any...

  20. Trajectories of Autism Severity in Early Childhood

    Science.gov (United States)

    Venker, Courtney E.; Ray-Subramanian, Corey E.; Bolt, Daniel M.; Weismer, Susan Ellis

    2014-01-01

    Relatively little is known about trajectories of autism severity using calibrated severity scores (CSS) from the Autism Diagnostic Observation Schedule, but characterizing these trajectories has important theoretical and clinical implications. This study examined CSS trajectories during early childhood. Participants were 129 children with autism…

  1. Minimal Exit Trajectories with Optimum Correctional Manoeuvres

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1980-10-01

    Full Text Available Minimal exit trajectories with optimum correctional manoeuvers to a rocket between two coplaner, noncoaxial elliptic orbits in an inverse square gravitational field have been investigated. Case of trajectories with no correctional manoeuvres has been analysed. In the end minimal exit trajectories through specified orbital terminals are discussed and problem of ref. (2 is derived as a particular case.

  2. The classical limit of non-integrable quantum systems

    CERN Document Server

    Castagnino, M; Castagnino, Mario; Lombardi, Olimpia

    2005-01-01

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those which have, as their classical limit, a non-integrable classical system. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. The decoherence times computed with this approach coincide with those of the literature. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.

  3. Quantum frictionless trajectories versus geodesics

    Science.gov (United States)

    Barbado, Luis C.; Barceló, Carlos; Garay, Luis J.

    2015-10-01

    Moving particles outside a star will generally experience quantum friction caused by the Unruh radiation reaction. There exist however radial trajectories that lack this effect (in the outgoing radiation sector, and ignoring backscattering). Along these trajectories, observers perceive just stellar emission, without further contribution from the Unruh effect. They turn out to have the property that the variations of the Doppler and the gravitational shifts compensate each other. They are not geodesics, and their proper acceleration obeys an inverse square law, which means that it could in principle be generated by outgoing stellar radiation. In the case of a black hole emitting Hawking radiation, this may lead to a buoyancy scenario. The ingoing radiation sector has little effect and seems to slow down the fall even further.

  4. Trajectories of low back pain

    DEFF Research Database (Denmark)

    Axén, Iben; Leboeuf-Yde, Charlotte

    2013-01-01

    Low back pain is not a self-limiting problem, but rather a recurrent and sometimes persistent disorder. To understand the course over time, detailed investigation, preferably using repeated measurements over extended periods of time, is needed. New knowledge concerning short-term trajectories...... indicates that the low back pain 'episode' is short lived, at least in the primary care setting, with most patients improving. Nevertheless, in the long term, low back pain often runs a persistent course with around two-thirds of patients estimated to be in pain after 12 months. Some individuals never have...... low back pain, but most have it on and off or persistently. Thus, the low back pain 'condition' is usually a lifelong experience. However, subgroups of patients with different back pain trajectories have been identified and linked to clinical parameters. Further investigation is warranted to...

  5. New Search Space Reduction Algorithm for Vertical Reference Trajectory Optimization

    Directory of Open Access Journals (Sweden)

    Alejandro MURRIETA-MENDOZA

    2016-06-01

    Full Text Available Burning the fuel required to sustain a given flight releases pollution such as carbon dioxide and nitrogen oxides, and the amount of fuel consumed is also a significant expense for airlines. It is desirable to reduce fuel consumption to reduce both pollution and flight costs. To increase fuel savings in a given flight, one option is to compute the most economical vertical reference trajectory (or flight plan. A deterministic algorithm was developed using a numerical aircraft performance model to determine the most economical vertical flight profile considering take-off weight, flight distance, step climb and weather conditions. This algorithm is based on linear interpolations of the performance model using the Lagrange interpolation method. The algorithm downloads the latest available forecast from Environment Canada according to the departure date and flight coordinates, and calculates the optimal trajectory taking into account the effects of wind and temperature. Techniques to avoid unnecessary calculations are implemented to reduce the computation time. The costs of the reference trajectories proposed by the algorithm are compared with the costs of the reference trajectories proposed by a commercial flight management system using the fuel consumption estimated by the FlightSim® simulator made by Presagis®.

  6. Mechanical Systems, Classical Models

    CERN Document Server

    Teodorescu, Petre P

    2009-01-01

    This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...

  7. Grassmannization of classical models

    CERN Document Server

    Pollet, Lode; Prokof'ev, Nikolay V; Svistunov, Boris V

    2016-01-01

    Applying Feynman diagrammatics to non-fermionic strongly correlated models with local constraints might seem generically impossible for two separate reasons: (i) the necessity to have a Gaussian (non-interacting) limit on top of which the perturbative diagrammatic expansion is generated by Wick's theorem, and (ii) the Dyson's collapse argument implying that the expansion in powers of coupling constant is divergent. We show that for arbitrary classical lattice models both problems can be solved/circumvented by reformulating the high-temperature expansion (more generally, any discrete representation of the model) in terms of Grassmann integrals. Discrete variables residing on either links, plaquettes, or sites of the lattice are associated with the Grassmann variables in such a way that the partition function (and correlations) of the original system and its Grassmann-field counterpart are identical. The expansion of the latter around its Gaussian point generates Feynman diagrams. A proof-of-principle implement...

  8. Classical theory of atomic collisions - The first hundred years

    Science.gov (United States)

    Grujić, Petar V.

    2012-05-01

    Classical calculations of the atomic processes started in 1911 with famous Rutherford's evaluation of the differential cross section for α particles scattered on foil atoms [1]. The success of these calculations was soon overshadowed by the rise of Quantum Mechanics in 1925 and its triumphal success in describing processes at the atomic and subatomic levels. It was generally recognized that the classical approach should be inadequate and it was neglected until 1953, when the famous paper by Gregory Wannier appeared, in which the threshold law for the single ionization cross section behaviour by electron impact was derived. All later calculations and experimental studies confirmed the law derived by purely classical theory. The next step was taken by Ian Percival and collaborators in 60s, who developed a general classical three-body computer code, which was used by many researchers in evaluating various atomic processes like ionization, excitation, detachment, dissociation, etc. Another approach was pursued by Michal Gryzinski from Warsaw, who started a far reaching programme for treating atomic particles and processes as purely classical objects [2]. Though often criticized for overestimating the domain of the classical theory, results of his group were able to match many experimental data. Belgrade group was pursuing the classical approach using both analytical and numerical calculations, studying a number of atomic collisions, in particular near-threshold processes. Riga group, lead by Modris Gailitis [3], contributed considerably to the field, as it was done by Valentin Ostrovsky and coworkers from Sanct Petersbourg, who developed powerful analytical methods within purely classical mechanics [4]. We shall make an overview of these approaches and show some of the remarkable results, which were subsequently confirmed by semiclassical and quantum mechanical calculations, as well as by the experimental evidence. Finally we discuss the theoretical and

  9. Citation classics in epilepsy

    Directory of Open Access Journals (Sweden)

    Maryann Wilson

    2013-01-01

    Full Text Available BACKGROUND: The impact of a scientific article is proportional to the citations it has received. In this study, we set out to identify the most cited works in epileptology in order to evaluate research trends in this field. METHODS: According to the Web of Science database, articles with more than 400 citations qualify as "citation classics". We conducted a literature search on the ISI Web of Science bibliometric database for scientific articles relevant to epilepsy. RESULTS: We retrieved 67 highly cited articles (400 or more citations, which were published in 31 journals: 17 clinical studies, 42 laboratory studies, 5 reviews and 3 classification articles. Clinical studies consisted of epidemiological analyses (n=3, studies on the clinical phenomenology of epilepsy (n=5 – including behavioral and prognostic aspects – and articles focusing on pharmacological (n=6 and non-pharmacological (n=3 treatment. The laboratory studies dealt with genetics (n=6, animal models (n=27, and neurobiology (n=9 – including both neurophysiology and neuropathology studies. The majority (61% of citation classics on epilepsy were published after 1986, possibly reflecting the expansion of research interest in laboratory studies driven by the development of new methodologies, specifically in the fields of genetics and animal models. Consequently, clinical studies were highly cited both before and after the mid 80s, whilst laboratory researches became widely cited after 1990. CONCLUSIONS: Our study indicates that the main drivers of scientific impact in the field of epileptology have increasingly become genetic and neurobiological studies, along with research on animal models of epilepsy. These articles are able to gain the highest numbers of citations in the time span of a few years and suggest potential directions for future research.

  10. Airmass Trajectories and Long Range Transport of Pollutants: Review of Wet Deposition Scenario in South Asia

    Directory of Open Access Journals (Sweden)

    Umesh Kulshrestha

    2014-01-01

    Full Text Available This paper presents a review of airmass trajectories and their role in air pollution transport. It describes the concept, history, and basic calculation of air trajectories citing various trajectory models used worldwide. It highlights various areas of trajectory applications and errors associated with trajectory calculations. South Asian region receives airmasses from Europe, Middle East, Africa, and Indian Ocean, and so forth, depending upon the season. These airmasses are responsible for export and import of pollutants depositing in nearby states. Trajectory analysis revealed that soil is contributed by the dust storms coming from Oman through Gulf and Iran, while most of black carbon (BC sources are located in India. A detailed review of trajectories associated with wet deposition events indicated that airmasses coming from Europe and Middle East carry high concentration of acidic pollutants which are deposited in Himalayan ranges. Similarly, trajectory analysis revealed that acidic pollutants from continental anthropogenic sources are transported to an ecosensitive site in Western Ghats in India and the outward fluxes of anthropogenic activities of Indo-Gangetic region are transported towards Bay of Bengal. Hence, transboundary and long range transport of pollutants are very important issues in South Asia which need immediate attention of scientists and policy makers.

  11. The shape of the renormalized trajectory in the two-dimensional O(n) non-linear sigma model

    CERN Document Server

    Kuti, Julius; Kuti, Julius; Bock, Wolfgang

    1995-01-01

    The renormalized trajectory in the multi-dimensional coupling parameter space of the two-dimensional O(3) non-linear sigma model is determined numerically under delta-function block spin transformations using two different Monte Carlo renormalization group techniques. The renormalized trajectory is compared with the straight line of the fixed point trajectory (fixed point action) which leaves the asymptotically free ultraviolet fixed point of the critical surface in the orthogonal direction. Our results show that the renormalized trajectory breaks away from the fixed point trajectory at a correlation length of approximately 3-5, flowing into the high temperature fixed point at zero correlation length. The analytic large N calculation of the renormalized trajectory is also presented in the coupling parameter space of the most general bilinear Hamiltonians. The renormalized trajectory in the large N approximation exhibits a similar shape as in the N=3 case, with the sharp break occurring at a somewhat smaller c...

  12. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    International Nuclear Information System (INIS)

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes

  13. Driven classical diffusion with strong correlated disorder

    OpenAIRE

    Pryadko, Leonid P.; Lin, Jing-Xian

    2004-01-01

    We analyze one-dimensional motion of an overdamped classical particle in the presence of external disorder potential and an arbitrary driving force F. In thermodynamical limit the effective force-dependent mobility mu(F) is self-averaging, although the required system size may be exponentially large for strong disorder. We calculate the mobility mu(F) exactly, generalizing the known results in linear response (weak driving force) and the perturbation theory in powers of the disorder amplitude...

  14. Designing Asteroid Impact Scenario Trajectories

    Science.gov (United States)

    Chodas, Paul

    2016-05-01

    In order to study some of the technical and geopolitical issues of dealing with an asteroid on impact trajectory, a number of hypothetical impact scenarios have been presented over the last ten years or so. These have been used, for example, at several of the Planetary Defense Conferences (PDCs), as well as in tabletop exercises with the Federal Emergency Management Agency (FEMA), along with other government agencies. The exercise at the 2015 PDC involved most of the attendees, consisted of seven distinct steps (“injects”), and with all the presentations and discussions, took up nearly 10 hours of conference time. The trajectory for the PDC15 scenario was entirely realistic, and was posted ahead of the meeting. It was made available in the NEO Program’s Horizons ephemeris service so that users could , for example, design their own deflection missions. The simulated asteroid and trajectory had to meet numerous very exacting requirements: becoming observable on the very first day of the conference, yet remaining very difficult to observe for the following 7 years, and far enough away from Earth that it was out of reach of radar until just before impact. It had to be undetectable in the past, and yet provide multiple perihelion opportunities for deflection in the future. It had to impact in a very specific region of the Earth, a specific number of years after discovery. When observations of the asteroid are simulated to generate an uncertainty region, that entire region must impact the Earth along an axis that cuts across specific regions of the Earth, the “risk corridor”. This is important because asteroid deflections generally move an asteroid impact point along this corridor. One scenario had a requirement that the asteroid pass through a keyhole several years before impact. The PDC15 scenario had an additional constraint that multiple simulated kinetic impactor missions altered the trajectory at a deflection point midway between discovery and impact

  15. Classical mechanics on noncommutative space with Lie-algebraic structure

    International Nuclear Information System (INIS)

    Highlights: → Suggest a useful method to look for new Lie-algebraic noncommutative spaces. → Find out two new Lie-algebraic noncommutative spaces. → Derive Newton and Hamilton equations that present unimaginable extra forces. → Analyse the source of unimaginable extra forces from space noncummutativity. → Provide various intriguing classical trajectories. - Abstract: We investigate the kinetics of a nonrelativistic particle interacting with a constant external force on a Lie-algebraic noncommutative space. The structure constants of a Lie algebra, also called noncommutative parameters, are constrained in general due to some algebraic properties, such as the antisymmetry and Jacobi identity. Through solving the constraint equations the structure constants satisfy, we obtain two new sorts of algebraic structures, each of which corresponds to one type of noncommutative spaces. Based on such types of noncommutative spaces as the starting point, we analyze the classical motion of the particle interacting with a constant external force by means of the Hamiltonian formalism on a Poisson manifold. Our results not only include that of a recent work as our special cases, but also provide new trajectories of motion governed mainly by marvelous extra forces. The extra forces with the unimaginable tx-dot-,(xx-dot)-, and (xx-double dot)-dependence besides with the usual t-, x-, and x-dot-dependence, originating from a variety of noncommutativity between different spatial coordinates and between spatial coordinates and momenta as well, deform greatly the particle's ordinary trajectories we are quite familiar with on the Euclidean (commutative) space.

  16. Classicalization of quantum variables and quantum–classical hybrids

    International Nuclear Information System (INIS)

    The extraction of classical degrees of freedom in quantum mechanics is studied in the stochastic variational method. By using this classicalization, a hybrid model constructed from quantum and classical variables (quantum–classical hybrids) is derived. In this procedure, conservation laws such as energy are maintained, and Ehrenfest's theorem is still satisfied with modification. The criterion for the applicability of quantum–classical hybrids is also discussed. - Highlights: • The new derivation of a quantum–classical hybrid (QCH) model is discussed based on a variational principle. • Any conserved quantities are automatically defined as the invariant transforms of a stochastic action. • The quantitative criterion to determine the validity of QCH is proposed. • Ehrenfest's theorem is satisfied in a modified way

  17. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    International Nuclear Information System (INIS)

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well

  18. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    Energy Technology Data Exchange (ETDEWEB)

    Albaugh, Alex [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Demerdash, Omar [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Head-Gordon, Teresa, E-mail: thg@berkeley.edu [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Bioengineering, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2015-11-07

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.

  19. Classical competing risks

    CERN Document Server

    Crowder, Martin J

    2001-01-01

    If something can fail, it can often fail in one of several ways and sometimes in more than one way at a time. There is always some cause of failure, and almost always, more than one possible cause. In one sense, then, survival analysis is a lost cause. The methods of Competing Risks have often been neglected in the survival analysis literature. Written by a leading statistician, Classical Competing Risks thoroughly examines the probability framework and statistical analysis of data of Competing Risks. The author explores both the theory of the subject and the practicalities of fitting the models to data. In a coherent, self-contained, and sequential account, the treatment moves from the bare bones of the Competing Risks setup and the associated likelihood functions through survival analysis using hazard functions. It examines discrete failure times and the difficulties of identifiability, and concludes with an introduction to the counting-process approach and the associated martingale theory.With a dearth of ...

  20. Classical Fourier analysis

    CERN Document Server

    Grafakos, Loukas

    2014-01-01

    The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition.  Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...

  1. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner

    1982-01-01

    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  2. Classical and quantum effective theories

    CERN Document Server

    Polonyi, Janos

    2014-01-01

    A generalization of the action principle of classical mechanics, motivated by the Closed Time Path (CTP) scheme of quantum field theory, is presented to deal with initial condition problems and dissipative forces. The similarities of the classical and the quantum cases are underlined. In particular, effective interactions which describe classical dissipative forces represent the system-environment entanglement. The relation between the traditional effective theories and their CTP extension is briefly discussed and few qualitative examples are mentioned.

  3. Population in the classic economics

    OpenAIRE

    Adnan Doğruyol

    2013-01-01

    Growth subject in economics is an important factor of development. Classic economics ecole indicates the population as main variable which tender of growth. On the other hand T. R. Malthus is known as economist who regards population as a problem and brings up it among the classical economists. However, Adam Smith is an intellectual who discussed population problem earlier on the classic economics theory. According to Adam Smith one of the main factors that realise the growth is labour. In ad...

  4. Coherent Communication of Classical Messages

    OpenAIRE

    Harrow, Aram W.

    2003-01-01

    We define "coherent communication" in terms of a simple primitive, show it is equivalent to the ability to send a classical message with a unitary or isometric operation, and use it to relate other resources in quantum information theory. Using coherent communication, we are able to generalize super-dense coding to prepare arbitrary quantum states instead of only classical messages. We also derive single-letter formulae for the classical and quantum capacities of a bipartite unitary gate assi...

  5. EGUN, Charged Particle Trajectories in Electromagnetic Focusing System

    International Nuclear Information System (INIS)

    1 - Description of problem or function: EGUN computes trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes, user-specified conditions input for each ray, and a combination of Child's Law conditions and user specifications. Either rectangular or cylindrically symmetric geometry may be used. Magnetic fields may be specified using an arbitrary configuration of coils, or the output of a magnet program, such as Poisson, or by an externally calculated array of the axial fields. 2 - Method of solution: The program first solves Laplace's equation. Next, the first iteration of electron trajectories is started using one of the four starting options. On the first iteration cycle, space charge forces are calculated from the assumption of paraxial flow. As the rays are traced, space charge is computed and stored. After all the electron trajectories have been calculated, the program begins the second cycle by solving the Poisson equation with the space charge from the first iteration. Subsequent iteration cycles follow this pattern. The Poisson equation is solved by an alternate column relaxation technique known as the semi-iterative Chebyshev method. A fourth-order Runge-Kutta method is used to solve the relativistic differential equations of the trajectory calculations. 3 - Restrictions on the complexity of the problem - Maxima of: 9001 mesh points in a square mesh, 300 mesh points in the axial direction, 100 mesh points in the radial direction, 101 potentials, 51 rays. In the cylindrical coordinates, the magnetic fields are axially symmetric. In rectangular coordinates, the external field is assumed to be normal to the plane of the problem, which is assumed to be the median plane

  6. Spin two glueball mass and glueball regge trajectory from supergravity

    International Nuclear Information System (INIS)

    We calculate the mass of the lowest lying spin two glueball in SU(M) N=1 super Yang-Mills from the dual Klebanov-Strassler background. We show that the glueball Regge trajectory obtained is linear; the 2++, 1-- and 0++ states lie on a line of slope 0.23 (gs2M2α2/ε4/3). We also compare mass ratios with lattice data and find agreement within one standard deviation. (author)

  7. Decoherence and quantum-classical master equation dynamics

    Science.gov (United States)

    Grunwald, Robbie; Kapral, Raymond

    2007-03-01

    The conditions under which quantum-classical Liouville dynamics may be reduced to a master equation are investigated. Systems that can be partitioned into a quantum-classical subsystem interacting with a classical bath are considered. Starting with an exact non-Markovian equation for the diagonal elements of the density matrix, an evolution equation for the subsystem density matrix is derived. One contribution to this equation contains the bath average of a memory kernel that accounts for all coherences in the system. It is shown to be a rapidly decaying function, motivating a Markovian approximation on this term in the evolution equation. The resulting subsystem density matrix equation is still non-Markovian due to the fact that bath degrees of freedom have been projected out of the dynamics. Provided the computation of nonequilibrium average values or correlation functions is considered, the non-Markovian character of this equation can be removed by lifting the equation into the full phase space of the system. This leads to a trajectory description of the dynamics where each fictitious trajectory accounts for decoherence due to the bath degrees of freedom. The results are illustrated by computations of the rate constant of a model nonadiabatic chemical reaction.

  8. Quantum-classical correspondence of a field induced KAM-type transition: A QTM approach

    Indian Academy of Sciences (India)

    P K Chattaraj; S Sengupta; S Giri

    2008-01-01

    A transition from regular to chaotic behaviour in the dynamics of a classical Henon-Heiles oscillator in the presence of an external field is shown to have a similar quantum signature when studied using the pertaining phase portraits and the associated Kolmogorov-Sinai-Lyapunov entropies obtained through the corresponding Bohmian trajectories.

  9. Modular neural network and classical reinforcement learning for autonomous robot navigation: inhibiting undesirable behaviors

    OpenAIRE

    Antonelo, Eric; Baerveldt, Albert-Jan; Rögnvaldsson, Thorsteinn; Figueiredo, Mauricio

    2006-01-01

    Classical reinforcement learning mechanisms and a modular neural network are unified for conceiving an intelligent autonomous system for mobile robot navigation. The conception aims at inhibiting two common navigation deficiencies: generation of unsuitable cyclic trajectories and ineffectiveness in risky configurations. Distinct design apparatuses are considered for tackling these navigation difficulties, for instance: 1) neuron parameter for memorizing neuron activities (also functioning as ...

  10. Quantum frictionless trajectories versus geodesics

    CERN Document Server

    Barbado, Luis C; Garay, Luis J

    2015-01-01

    Moving particles outside a star will generally experience quantum friction caused by Unruh radiation reaction. There exist however radial trajectories that lack this effect (in the outgoing radiation sector, and ignoring back-scattering). They turn out to have the property that the variations of the Doppler and the gravitational shifts compensate each other. They are not geodesics, and their proper acceleration obeys an inverse square law, which means that could in principle be generated by outgoing stellar radiation. In the case of a black hole emitting Hawking radiation, this may lead to a buoyancy scenario. The ingoing radiation sector has little effect and seems to slow down the fall even further.

  11. Privacy-Preserving Trajectory Collection

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Xuegang, Huang; Pedersen, Torben Bach

    2008-01-01

    In order to provide context--aware Location--Based Services, real location data of mobile users must be collected and analyzed by spatio--temporal data mining methods. However, the data mining methods need precise location data, while the mobile users want to protect their location privacy. To...... remedy this situation, this paper first formally defines novel location privacy requirements. Then, it briefly presents a system for privacy--preserving trajectory collection that meets these requirements. The system is composed of an untrusted server and clients communicating in a P2P network. Location...

  12. The classic: Bone morphogenetic protein.

    Science.gov (United States)

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406. PMID:19727989

  13. Classical Kepler-Coulomb problem on SO(2, 2) hyperboloid

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, D., E-mail: petrosyan@theor.jinr.ru; Pogosyan, G. S., E-mail: pogosyan@ysu.am [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics (Russian Federation)

    2013-10-15

    In the present work, the problem of the motion of the classical particle in the Kepler-Coulomb field in three-dimensional hyperbolic space H{sub 2}{sup 2}: z{sub 2}{sup 0} + z{sub 2}{sup 1} - z{sub 2}{sup 2} - z{sub 2}{sup 3} = R{sup 2} is solved in the framework of Hamilton-Jacobi equation. The requirements for the existence of bounded motion of particle are formulated. The equation of the trajectory of particle is obtained, and it is shown that all the finite trajectories are closed. It is also demonstrated that under the certain values (zero or negative) of the separation constant A the fall of the particle onto the center takes place.

  14. Fisher Information of Wavefunctions: Classical and Quantum

    Institute of Scientific and Technical Information of China (English)

    LUO Shun-Long

    2006-01-01

    A parametric quantum mechanical wavefunction naturally induces parametric probability distributions by taking absolute square, and we can consider its classical Fisher information. On the other hand, it also induces parametric rank-one projections which may be viewed as density operators, and we can talk about its quantum Fisher information. Among many versions of quantum Fisher information, there are two prominent ones. The first,deiined via a quantum score function, was introduced by Helstrom in 1967 and is well known. The second,defined via the square root of the density operator, has its origin in the skew information introduced by Wigner and Yanase in 1963 and remains relatively unnoticed. This study is devoted to investigating the relationships between the classical Fisher information and these two versions of quantum Fisher information for wavefunctions.It is shown that the two versions of quantum Fisher information differ by a factor 2 and that they dominate the classical Fisher information. The non-coincidence of these two versions of quantum Fisher information may be interpreted as a manifestation of quantum discord. We further calculate the difference between the Helstrom quantum Fisher information and the classical Fisher information, and show that it is precisely the instantaneous phase fluctuation of the wavefunctions.

  15. A Classic Beauty

    Science.gov (United States)

    2007-01-01

    M51, whose name comes from being the 51st entry in Charles Messier's catalog, is considered to be one of the classic examples of a spiral galaxy. At a distance of about 30 million light-years from Earth, it is also one of the brightest spirals in the night sky. A composite image of M51, also known as the Whirlpool Galaxy, shows the majesty of its structure in a dramatic new way through several of NASA's orbiting observatories. X-ray data from NASA's Chandra X-ray Observatory reveals point-like sources (purple) that are black holes and neutron stars in binary star systems. Chandra also detects a diffuse glow of hot gas that permeates the space between the stars. Optical data from the Hubble Space Telescope (green) and infrared emission from the Spitzer Space Telescope (red) both highlight long lanes in the spiral arms that consist of stars and gas laced with dust. A view of M51 with the Galaxy Evolution Explorer telescope shows hot, young stars that produce lots of ultraviolet energy (blue). The textbook spiral structure is thought be the result of an interaction M51 is experiencing with its close galactic neighbor, NGC 5195, which is seen just above. Some simulations suggest M51's sharp spiral shape was partially caused when NGC 5195 passed through its main disk about 500 million years ago. This gravitational tug of war may also have triggered an increased level of star formation in M51. The companion galaxy's pull would be inducing extra starbirth by compressing gas, jump-starting the process by which stars form.

  16. Rate calculation with colored noise

    CERN Document Server

    Bartsch, Thomas; Benito, R M; Borondo, F

    2016-01-01

    The usual identification of reactive trajectories for the calculation of reaction rates requires very time-consuming simulations, particularly if the environment presents memory effects. In this paper, we develop a new method that permits the identification of reactive trajectories in a system under the action of a stochastic colored driving. This method is based on the perturbative computation of the invariant structures that act as separatrices for reactivity. Furthermore, using this perturbative scheme, we have obtained a formally exact expression for the reaction rate in multidimensional systems coupled to colored noisy environments.

  17. A new circulation type classification based upon Lagrangian air trajectories

    Science.gov (United States)

    Ramos, Alexandre; Sprenger, Michael; Wernli, Heini; Durán-Quesada, Ana María; Lorenzo, Maria Nieves; Gimeno, Luis

    2014-10-01

    A new classification method of the large-scale circulation characteristic for a specific target area (NW Iberian Peninsula) is presented, based on the analysis of 90-h backward trajectories arriving in this area calculated with the 3-D Lagrangian particle dispersion model FLEXPART. A cluster analysis is applied to separate the backward trajectories in up to five representative air streams for each day. Specific measures are then used to characterise the distinct air streams (e.g., curvature of the trajectories, cyclonic or anticyclonic flow, moisture evolution, origin and length of the trajectories). The robustness of the presented method is demonstrated in comparison with the Eulerian Lamb weather type classification. A case study of the 2003 heatwave is discussed in terms of the new Lagrangian circulation and the Lamb weather type classifications. It is shown that the new classification method adds valuable information about the pertinent meteorological conditions, which are missing in an Eulerian approach. The new method is climatologically evaluated for the five-year time period from December 1999 to November 2004. The ability of the method to capture the inter-seasonal circulation variability in the target region is shown. Furthermore, the multi-dimensional character of the classification is shortly discussed, in particular with respect to inter-seasonal differences. Finally, the relationship between the new Lagrangian classification and the precipitation in the target area is studied.

  18. A new circulation type classification based upon Lagrangian air trajectories

    Directory of Open Access Journals (Sweden)

    Alexandre M. Ramos

    2014-10-01

    Full Text Available A new classification method of the large-scale circulation characteristic for a specific target area (NW Iberian Peninsula is presented, based on the analysis of 90-h backward trajectories arriving in this area calculated with the 3-D Lagrangian particle dispersion model FLEXPART. A cluster analysis is applied to separate the backward trajectories in up to five representative air streams for each day. Specific measures are then used to characterise the distinct air streams (e.g., curvature of the trajectories, cyclonic or anticyclonic flow, moisture evolution, origin and length of the trajectories. The robustness of the presented method is demonstrated in comparison with the Eulerian Lamb weather type classification.A case study of the 2003 heatwave is discussed in terms of the new Lagrangian circulation and the Lamb weather type classifications. It is shown that the new classification method adds valuable information about the pertinent meteorological conditions, which are missing in an Eulerian approach. The new method is climatologically evaluated for the five-year time period from December 1999 to November 2004. The ability of the method to capture the inter-seasonal circulation variability in the target region is shown. Furthermore, the multi-dimensional character of the classification is shortly discussed, in particular with respect to inter-seasonal differences. Finally, the relationship between the new Lagrangian classification and the precipitation in the target area is studied.

  19. Wind field and trajectory models for tornado-propelled objects

    International Nuclear Information System (INIS)

    This report contains the results of the second phase of a research program which has as its objective the development of a mathematical model to predict the trajectory of tornado-borne objects postulated to be in the vicinity of nuclear power plants. An improved tornado wind field model satisfies the no-slip ground boundary condition of fluid mechanics and includes the functional dependence of eddy viscosity with altitude. Sub-scale wind tunnel data are obtained for all of the missiles currently specified for nuclear plant design. Confirmatory full-scale data are obtained for a 12-inch pipe and automobile. The original six-degree-of-freedom trajectory model is modified to include the improved wind field and increased capability as to body shapes and inertial characteristics that can be handled. The improved trajectory model is used to calculate maximum credible speeds, which for all of the heavy missiles are considerably less than those currently specified for design. Equivalent coefficients for use in three-degree-of-freedom models are developed and the sensitivity of range and speed to various trajectory parameters for the 12-inch diameter pipe is examined

  20. The trajectory prediction of spacecraft by grey method

    Science.gov (United States)

    Wang, Qiyue; Zhang, Zili; Wang, Zhongyu; Wang, Yanqing; Zhou, Weihu

    2016-08-01

    The real-time and high-precision trajectory prediction of a moving object is a core technology in the field of aerospace engineering. The real-time monitoring and tracking technology are also significant guarantees of aerospace equipment. A dynamic trajectory prediction method called grey dynamic filter (GDF) which combines the dynamic measurement theory and grey system theory is proposed. GDF can use coordinates of the current period to extrapolate coordinates of the following period. At meantime, GDF can also keep the instantaneity of measured coordinates by the metabolism model. In this paper the optimal model length of GDF is firstly selected to improve the prediction accuracy. Then the simulation for uniformly accelerated motion and variably accelerated motion is conducted. The simulation results indicate that the mean composite position error of GDF prediction is one-fifth to that of Kalman filter (KF). By using a spacecraft landing experiment, the prediction accuracy of GDF is compared with the KF method and the primitive grey method (GM). The results show that the motion trajectory of spacecraft predicted by GDF is much closer to actual trajectory than the other two methods. The mean composite position error calculated by GDF is one-eighth to KF and one-fifth to GM respectively.

  1. Classical ladder operators, polynomial Poisson algebras, and classification of superintegrable systems

    International Nuclear Information System (INIS)

    We recall results concerning one-dimensional classical and quantum systems with ladder operators. We obtain the most general one-dimensional classical systems, respectively, with a third and a fourth-order ladder operators satisfying polynomial Heisenberg algebras. These systems are written in terms of the solutions of quartic and quintic equations. They are the classical equivalent of quantum systems involving the fourth and fifth Painleve transcendents. We use these results to present two new families of superintegrable systems and examples of trajectories that are deformation of Lissajous's figures.

  2. Camera Trajectory fromWide Baseline Images

    Science.gov (United States)

    Havlena, M.; Torii, A.; Pajdla, T.

    2008-09-01

    Camera trajectory estimation, which is closely related to the structure from motion computation, is one of the fundamental tasks in computer vision. Reliable camera trajectory estimation plays an important role in 3D reconstruction, self localization, and object recognition. There are essential issues for a reliable camera trajectory estimation, for instance, choice of the camera and its geometric projection model, camera calibration, image feature detection and description, and robust 3D structure computation. Most of approaches rely on classical perspective cameras because of the simplicity of their projection models and ease of their calibration. However, classical perspective cameras offer only a limited field of view, and thus occlusions and sharp camera turns may cause that consecutive frames look completely different when the baseline becomes longer. This makes the image feature matching very difficult (or impossible) and the camera trajectory estimation fails under such conditions. These problems can be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor, are used. The hardware which we are using in practice is a combination of Nikon FC-E9 mounted via a mechanical adaptor onto a Kyocera Finecam M410R digital camera. Nikon FC-E9 is a megapixel omnidirectional addon convertor with 180° view angle which provides images of photographic quality. Kyocera Finecam M410R delivers 2272×1704 images at 3 frames per second. The resulting combination yields a circular view of diameter 1600 pixels in the image. Since consecutive frames of the omnidirectional camera often share a common region in 3D space, the image feature matching is often feasible. On the other hand, the calibration of these cameras is non-trivial and is crucial for the accuracy of the resulting 3D reconstruction. We calibrate omnidirectional cameras off-line using the state-of-the-art technique and Mičušík's two-parameter model, that links the radius of the image point r to the

  3. Winding light beams along elliptical helical trajectories

    CERN Document Server

    Wen, Yuanhui; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-01-01

    Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We develop a superposition caustic method capable of winding light beams along non-convex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implement the method with a compact and robust integrated optics approach by fabricating micro-optical structures on quartz glass plates to perform the spatial phase and amplitude modulation to the incident light, generating beam trajectories highly consistent with prediction. The theoretical and implementation methods can in principle be extended to the construction of accelerating beams with a wide variety of non-convex trajectories, thereby opening up a new route of manipulating light beams for fundamental research and practical ap...

  4. Winding light beams along elliptical helical trajectories

    Science.gov (United States)

    Wen, Yuanhui; Chen, Yujie; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-07-01

    Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We developed a superposition caustic method capable of winding light beams along nonconvex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implemented the method with a compact and robust integrated optics approach by fabricating micro-optical structures on quartz glass plates to perform the spatial phase and amplitude modulation to the incident light, generating beam trajectories highly consistent with prediction. The theoretical and implementation methods can in principle be extended to the construction of accelerating beams with a wide variety of nonconvex trajectories, thereby opening up a route of manipulating light beams for fundamental research and practical applications.

  5. Classical Music Fan Chen Li

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The heyday of Beijing’s classical music beganin 1993, when top-quality sound equipment andrecords were imported. Also in that year, BeijingMusic Radio presented a classical music programtitled "Fan’s Club" and founded the "Music and

  6. Dynamical Symmetries in Classical Mechanics

    Science.gov (United States)

    Boozer, A. D.

    2012-01-01

    We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…

  7. Trajectories of Delinquency and Parenting Styles

    OpenAIRE

    Hoeve, Machteld; BLOKLAND, Arjan; Dubas, Judith Semon; Loeber, Rolf; Gerris, Jan R. M.; van der Laan, Peter H.

    2007-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10–19, we identified five distinct delinquency trajectories differing in both level and change in seriousness over time: a nondelinquent, minor persisting, moderate desisting, serious persist...

  8. Spectrum and Regge-trajectories in QCD

    OpenAIRE

    Simonov, Yu. A.

    2002-01-01

    Starting in sixties an active group of physicists under the guidance of Prof. K.A.Ter-Martirosyan was creating the theory of high-energy processes in QCD. From the beginning the key element of this theory is the notion of Regge trajectories and in particular of the pomeron trajectory, which have been introduced phenomenologically. In this talk I review the problem of spectrum and Regge trajectories as it can be derived from the nonperturbative QCD dynamics.

  9. Spectrum and Regge trajectories in QCD

    International Nuclear Information System (INIS)

    Starting in sixties, an active group of physicists under the guidance of Prof. K.A. Ter-Martirosyan was creating the theory of high-energy processes in QCD. From the beginning, the key element of this theory is the notion of Regge trajectories and, of the pomeron trajectory, which have been introduced phenomenologically. The problem of spectrum and Regge trajectories as it can be derived from the nonperturbative QCD dynamics, is discussed in the paper

  10. Spectrum and Regge-trajectories in QCD

    CERN Document Server

    Simonov, Yu A

    2003-01-01

    Starting in sixties an active group of physicists under the guidance of Prof. K.A.Ter-Martirosyan was creating the theory of high-energy processes in QCD. From the beginning the key element of this theory is the notion of Regge trajectories and in particular of the pomeron trajectory, which have been introduced phenomenologically. In this talk I review the problem of spectrum and Regge trajectories as it can be derived from the nonperturbative QCD dynamics.

  11. Trajectories of CBCL Attention Problems in childhood

    OpenAIRE

    Robbers, Sylvana; Van Oort, Floor; Polderman, T. J. C.; Bartels, Meike; Boomsma, Dorret; Verhulst, Frank; Lubke, Gitta; Huizink, Anja

    2011-01-01

    Abstract The first aim of this study was to identify developmental trajectories of Attention Problems in twins followed from age 6 to 12 years. Second, we investigated whether singletons follow similar trajectories. Maternal longitudinal ratings on the Attention Problems (AP) subscale of the Child Behavior Checklist were obtained for a sample of 12,486 twins from the Netherlands Twin Register and for a general population sample of 1,346 singletons. Trajectories were analyzed by gro...

  12. The Entropy of Conditional Markov Trajectories

    OpenAIRE

    Kafsi, Mohamed; Grossglauser, Matthias; Thiran, Patrick

    2012-01-01

    To quantify the randomness of Markov trajectories with fixed initial and final states, Ekroot and Cover proposed a closed-form expression for the entropy of trajectories of an irreducible finite state Markov chain. Numerous applications, including the study of random walks on graphs, require the computation of the entropy of Markov trajectories conditioned on a set of intermediate states. However, the expression of Ekroot and Cover does not allow for computing this quantity. In this paper, we...

  13. Rotorcraft trajectory tracking by supervised NLI control

    OpenAIRE

    A. Drouin; O. Lengerke; A.B. Ramos; F Mora-Camino

    2012-01-01

    The purpose of this communication is to present a new nonlinear control structure for trajectory tracking taking explicitly into account actuators saturation. Here trajectory tracking by a four rotor aircraft is considered. After introducing the flight dynamics equations for the four rotor aircraft, a trajectory tracking control structure based on a two layer non linear inverse approach is adopted and a supervision layer is introduced to take into account the possible actuators saturation.

  14. Dynamical features extracted from the solids circulation trajectories in gas-liquid-solid fluidized bed

    International Nuclear Information System (INIS)

    Qualitative Dynamic Tools (QDTs) are implemented to infer, from Radioactive Particle Tracking (RPT) experiments, dynamical features of the solid trajectories in a 3-D three-phase fluidized bed. The discrete bubble and coalesced bubble flow regimes are examined for large heavy as well as light particles.The spatial distributions of the solid trajectory interconnectivity, related to the local information loss rates (ILR), are evaluated and compared with the Kolmogoroff entropies estimated from time series of characteristic variables. The point-wise information loss rates calculated from the local divergence of particle trajectories are related to the local values of the turbulence intensities. The relationship among the local ILR and turbulence intensities in the discrete bubble flow regime differs from that calculated for the bubble coalesced flow regime. Some features of the circulating bubbles are inferred from the tracer particle trajectory. (author)

  15. Classical dynamics a modern perspective

    CERN Document Server

    Sudarshan, Ennackal Chandy George

    2016-01-01

    Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of ...

  16. Linewidth calculations and simulations

    CERN Document Server

    Strandberg, Ingrid

    2016-01-01

    We are currently developing a new technique to further enhance the sensitivity of collinear laser spectroscopy in order to study the most exotic nuclides available at radioactive ion beam facilities, such as ISOLDE at CERN. The overall goal is to evaluate the feasibility of the new method. This report will focus on the determination of the expected linewidth (hence resolution) of this approach. Different effects which could lead to a broadening of the linewidth, e.g. the ions' energy spread and their trajectories inside the trap, are studied with theoretical calculations as well as simulations.

  17. Three-dimensional classical-ensemble modeling of non-sequential double ionization

    International Nuclear Information System (INIS)

    Full text: We have been using 1d ensembles of classical two-electron atoms to simulate helium atoms that are exposed to pulses of intense laser radiation. In this talk we discuss the challenges in setting up a 3d classical ensemble that can mimic the quantum ground state of helium. We then report studies in which each one of 500,000 two-electron trajectories is followed in 3d through a ten-cycle (25 fs) 780 nm laser pulse. We examine double-ionization yield for various intensities, finding the familiar knee structure. We consider the momentum spread of outcoming electrons in directions both parallel and perpendicular to the direction of laser polarization, and find results that are consistent with experiment. We examine individual trajectories and recollision processes that lead to double ionization, considering the best phases of the laser cycle for recollision events and looking at the possible time delay between recollision and emergence. We consider also the number of recollision events, and find that multiple recollisions are common in the classical ensemble. We investigate which collisional processes lead to various final electron momenta. We conclude with comments regarding the ability of classical mechanics to describe non-sequential double ionization, and a quick summary of similarities and differences between 1d and 3d classical double ionization using energy-trajectory comparisons. Refs. 3 (author)

  18. Simulation of planar channeling-radiation spectra of relativistic electrons and positrons channeled in a diamond-structure or tungsten single crystal (classical approach)

    Science.gov (United States)

    Azadegan, B.; Wagner, W.

    2015-01-01

    We present a Mathematica package for simulation of spectral-angular distributions and energy spectra of planar channeling radiation of relativistic electrons and positrons channeled along major crystallographic planes of a diamond-structure or tungsten single crystal. The program is based on the classical theory of channeling radiation which has been successfully applied to study planar channeling of light charged particles at energies higher than 100 MeV. Continuous potentials for different planes of diamond, Si, Ge and W single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the classical one-dimensional equation of motion. The code is designed to calculate the trajectories, velocities and accelerations of electrons (positrons) channeled by the planar continuous potential. In the framework of classical electrodynamics, these data allow realistic simulations of spectral-angular distributions and energy spectra of planar channeling radiation. Since the generated output is quantitative, the results of calculation may be useful, e.g., for setup configuration and crystal alignment in channeling experiments, for the study of the dependence of channeling radiation on the input parameters of particle beams with respect to the crystal orientation, but also for the simulation of positron production by means of pair creation what is mandatory for the design of efficient positron sources necessary in high-energy and collider physics. Although the classical theory of channeling is well established for long time, there is no adequate library program for simulation of channeling radiation up to now, which is commonly available, sufficiently simple and effective to employ and, therefore, of benefit as for special investigations as for a quick overview of basic features of this type of radiation.

  19. Towards Efficient Search for Activity Trajectories

    DEFF Research Database (Denmark)

    Zheng, Kai; Shang, Shuo; Yuan, Jing;

    2013-01-01

    , recent proliferation in location-based web applications (e.g., Foursquare, Facebook) has given rise to large amounts of trajectories associated with activity information, called activity trajectory. In this paper, we study the problem of efficient similarity search on activity trajectory database. Given...... also proposed to take into account the order of the query locations. To process the queries efficiently, we firstly develop a novel hybrid grid index, GAT, to organize the trajectory segments and activities hierarchically, which enables us to prune the search space by location proximity and activity...

  20. Global aspects of classical integrable systems

    CERN Document Server

    Cushman, Richard H

    2015-01-01

    This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.

  1. Quantum versus classical descriptions of sub-Poissonian light generation in three-wave mixing

    CERN Document Server

    Bajer, J; Bajer, Jiri; Miranowicz, Adam

    2001-01-01

    Sub-Poissonian light generation in the non-degenerate three-wave mixing is studied numerically and analytically within quantum and classical approaches. Husimi Q-functions and their classical trajectory simulations are analysed to reveal a special regime corresponding to the time-stable sub-Poissonian photocount statistics of the sum-frequency mode. Conditions for observation of this regime are discussed. Theoretical predictions of the Fano factor and explanation of the extraordinary stabilization of the sub-Poissonian photocount behavior are obtained analytically by applying the classical trajectories. Scaling laws for the maximum sub-Poissonian behavior are found. Noise suppression levels in the non-degenerate vs degenerate three-wave mixing are discussed on different time scales compared to the revival times. It is shown that the non-degenerate conversion offers much better stabilization of the suppressed noise in comparison to that of degenerate process.

  2. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    OpenAIRE

    Liu, G; Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; J. J. Jin; O. Moeni; Liu, X.; C. E. Sioris

    2013-01-01

    A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1962 are used. The small number of stations causes the set of ozone soundings to be sparse in geographical spacing. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other loc...

  3. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    OpenAIRE

    Liu, G; Liu, J; Tarasick, D. W.; Fioletov, V. E.; J. J. Jin; Moeini, O.; Liu, X.; C. E. Sioris; Osman, M

    2013-01-01

    A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1965 are used. The small number of stations results in a sparse geographical distribution. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations,...

  4. A global ozone climatology from ozone soundings via trajectory mapping: a stratospheric perspective

    OpenAIRE

    Liu, J.; D. W. Tarasick; V. E. Fioletov; Mclinden, C.; Zhao, T.; Gong, S.; C. Sioris; J. J. Jin; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from relatively sparse ozonesonde data. Global ozone soundings comprising 51 898 profiles at 116 stations over 44 yr (1965–2008) are used, from which forward and backward trajectories are calculated from meteorological reanalysis data, to map ozone measurements to other locations and so fill in the spatial domain. The resulting global ozone climatology is archived monthly for five decades fr...

  5. A global ozone climatology from ozone soundings via trajectory mapping: a stratospheric perspective

    OpenAIRE

    Liu, J.; D. W. Tarasick; V. E. Fioletov; Mclinden, C.; Zhao, T.; Gong, S.; C. Sioris; J. J. Jin; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from relatively sparse ozonesonde data. Global ozone soundings comprising 51 898 profiles at 116 stations over 44 yr (1965–2008) are used, from which forward and backward trajectories are calculated from meteorological reanalysis data to map ozone measurements to other locations and so fill in the spatial domain. The resulting global ozone climatology is archived monthly for five ...

  6. Electron trajectories in free electron laser with realizable helical wiggler and ion channel guiding

    Directory of Open Access Journals (Sweden)

    S. Ebrahimi

    2004-12-01

    Full Text Available   A detailed analysis of electron trajectories in a realizable helical wiggler free electron laser with ion channel guiding using electron (single particle dynamics is presented. Conditions for stability of electron orbit have been investigated, calculations are made to illustrate. Conclusion shows that there are differences stable (unstable condition(s electron trajectories between ideal helical wiggler(2D and realizable helical wiggler (3D.

  7. Simulations of vibrational spectra from classical trajectories: Calibration with ab initio force fields

    Czech Academy of Sciences Publication Activity Database

    Horníček, Jan; Kaprálová, Petra; Bouř, Petr

    2007-01-01

    Roč. 127, č. 8 (2007), 084502-1. ISSN 0021-9606 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : infrared absorption * vibrational circular dichroism * Raman optical activity * Raman Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.044, year: 2007

  8. The classical limit of Bohmian mechanics. Semiclassical wave packets and an application to many particle scattering theory

    International Nuclear Information System (INIS)

    Bohmian mechanics is a quantum theory about particles in motion (i.e. about particle trajectories) that is empirically equivalent to orthodox quantum mechanics. Since also Newtonian mechanics is about particle trajectories, in Bohmian mechanics the question of the classical limit is as simple as it can possibly be: When do Bohmian trajectories look like Newtonian trajectories? As a first step towards an answer to this question we show, that the Bohmian trajectories belonging to a particular class of semiclassical wave packets become classical in an appropriate scaling limit. Furthermore, also the Bohmian trajectories of particles scattered on a short range potential become free in the classical sense: For large times their velocities tend to constants. We use this result to deduce the scattering cross section (the probability of detecting particles in a given solid angle) from first principles. In particular we show that, in the case of many particles, the collapse of the wave function due to the detection of one particle does not alter the remaining particles' detection statistics. (orig.)

  9. Classical Mechanics in Hilbert Space: Path Integral Formulation, and a Quantum Correction

    CERN Document Server

    Shee, James

    2015-01-01

    While it is well-known that quantum mechanics can be reformulated in terms of a path integral representation, it will be shown that such a formulation is also possible in the case of classical mechanics. From Koopman-von Neumann theory, which recasts classical mechanics in terms of a Hilbert space wherein the Liouville operator acts as the generator of motion, we derive a path integral representation of the classical propagator and suggest an efficient numerical implementation using fast fourier transform techniques. We then include a first quantum correction to derive a revealing expression for the semi-classical path integral, which augments the classical picture of a single trajectory through phase space with additional wave-like spreading.

  10. Particle trajectory tracing for electrostatic and magnetostatic fields

    International Nuclear Information System (INIS)

    This work reports a numerical method for single charged particle trajectories computation in 2D electrostatic and magnetostatic stationary fields, in other words, fields that do not change in time. This is approached by the finite element method domain discretization, and numerical computation of particle trajectory, calculated by the two step centred in time method, which calculates the particle position on the next step using a dummy step in order to increase the accuracy for the same step size. Given particle's coordinates, the finite element that contains that particle is found based on Lohner's algorithm. The examples used to test the method are a electric deflector for the electric case and cyclotron for the magnetic case. Both are very important devices to science and technology, being used in a variety of domestic and industrial appliances and in several scientific and technologic researches. Other particle optics devices can benefit of the method proposed in this paper, as beam bending devices and spectrometers, among others. This method can be easily extended for particle trajectories computation in 3D domains, can be extended also for dynamic fields and for the relativistic case, which is ideal for the typical speed involved when working with particles near the atomic level. (author)

  11. Entanglement assisted classical communication simulates "classical communication" without causal order

    OpenAIRE

    Akibue, Seiseki; Owari, Masaki; Kato, Go; Murao, Mio

    2016-01-01

    Phenomena induced by the existence of entanglement, such as nonlocal correlations, exhibit characteristic properties of quantum mechanics distinguishing from classical theories. When entanglement is accompanied by classical communication, it enhances the power of quantum operations jointly performed by two spatially separated parties. Such a power has been analyzed by the gap between the performances of joint quantum operations implementable by local operations at each party connected by clas...

  12. Analysing a complementarity experiment on the quantum-classical boundary

    OpenAIRE

    Cunha, M. O. Terra; Nemes, M. C.

    2002-01-01

    The complementarity experiment reported in Bertet [{\\it{et al.}} (2001), {\\it{Nature}} {\\bf{411}}, 166.] is discussed. The role played by entanglement in reaching the classical limit is pointed out. Dissipative and thermal effects of the cavity are calculated and a simple modification of the experiment is proposed in order to observe the progressive loss of the capacity of ``quantum erasing''as a manifestation of the classical limit of quantum mechanics.

  13. Analysing a complementarity experiment on the quantum-classical boundary

    International Nuclear Information System (INIS)

    The complementarity experiment reported in [Bertet et al., Nature 411 (2001) 166] is discussed. The role played by entanglement in reaching the classical limit is pointed out. Dissipative and thermal effects of the cavity are calculated and a simple modification of the experiment is proposed in order to observe the progressive loss of the capacity of 'quantum erasing' as a manifestation of the classical limit of quantum mechanics

  14. Quantum localization of Classical Mechanics

    CERN Document Server

    Batalin, Igor A

    2016-01-01

    Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.

  15. Quantum localization of classical mechanics

    Science.gov (United States)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-07-01

    Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.

  16. The Wigner representation of classical mechanics, quantization and classical limit

    International Nuclear Information System (INIS)

    Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2π → 0. (author)

  17. Indeterminism in Classical Dynamics of Particle Motion

    Science.gov (United States)

    Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Burns, Randal; Meneveau, Charles; Szalay, Alex

    2013-03-01

    We show that ``God plays dice'' not only in quantum mechanics but also in the classical dynamics of particles advected by turbulent fluids. With a fixed deterministic flow velocity and an exactly known initial position, the particle motion is nevertheless completely unpredictable! In analogy with spontaneous magnetization in ferromagnets which persists as external field is taken to zero, the particle trajectories in turbulent flow remain random as external noise vanishes. The necessary ingredient is a rough advecting field with a power-law energy spectrum extending to smaller scales as noise is taken to zero. The physical mechanism of ``spontaneous stochasticity'' is the explosive dispersion of particle pairs proposed by L. F. Richardson in 1926, so the phenomenon should be observable in laboratory and natural turbulent flows. We present here the first empirical corroboration of these effects in high Reynolds-number numerical simulations of hydrodynamic and magnetohydrodynamic fluid turbulence. Since power-law spectra are seen in many other systems in condensed matter, geophysics and astrophysics, the phenomenon should occur rather widely. Fast reconnection in solar flares and other astrophysical systems can be explained by spontaneous stochasticity of magnetic field-line motion

  18. Wilson loop, Regge trajectory and hadron masses in a Yang-Mills theory from semiclassical strings

    International Nuclear Information System (INIS)

    We compute the one-loop string corrections to the Wilson loop, glueball Regge trajectory and stringy hadron masses in the Witten model of non supersymmetric, large-N Yang-Mills theory. The classical string configurations corresponding to the above field theory objects are respectively: open straight strings, folded closed spinning strings, and strings orbiting in the internal part of the supergravity background. For the rectangular Wilson loop we show that besides the standard Luscher term, string corrections provide a rescaling of the field theory string tension. The one-loop corrections to the linear glueball Regge trajectories render them nonlinear with a positive intercept, as in the experimental soft Pomeron trajectory. Strings orbiting in the internal space predict a spectrum of hadronic-like states charged under global flavor symmetries which falls in the same universality class of other confining models. (author)

  19. Uncertainty Relations in Self-Similar Convergent Trajectories

    CERN Document Server

    Ceceña-Álvarez., Héctor; Gómez-González, Raúl W

    2009-01-01

    The Koch curve is a self-similar object whose length grows unboundedly when the measuring unit by which is calculated diminishes. If this curve is considered to be the trajectory of a point corpuscle of mass m (a particle) rendering it in a time t, while the measuring unit in the kth scale is associated with the indetermination in the position of the corpuscle, then it is possible to demonstrate that when the indetermination of the corpuscle position diminishes, the indetermination in its linear momentum grows unboundedly. Based on the concept of similarity dimension of a corpuscle trajectory, from the before stated line of reasoning an alternative deduction of Heisenberg's uncertainty relation (Delta)x(Delta)p(sub)x (aprox)h is developed and discussed.

  20. Plastic anisotropy and dislocation trajectory in BCC metals.

    Science.gov (United States)

    Dezerald, Lucile; Rodney, David; Clouet, Emmanuel; Ventelon, Lisa; Willaime, François

    2016-01-01

    Plasticity in body-centred cubic (BCC) metals at low temperatures is atypical, marked in particular by an anisotropic elastic limit in clear violation of the famous Schmid law applicable to most other metals. This effect is known to originate from the behaviour of the screw dislocations; however, the underlying physics has so far remained insufficiently understood to predict plastic anisotropy without adjustable parameters. Here we show that deviations from the Schmid law can be quantified from the deviations of the screw dislocation trajectory away from a straight path between equilibrium configurations, a consequence of the asymmetrical and metal-dependent potential energy landscape of the dislocation. We propose a modified parameter-free Schmid law, based on a projection of the applied stress on the curved trajectory, which compares well with experimental variations and first-principles calculations of the dislocation Peierls stress as a function of crystal orientation. PMID:27221965