Generalizability Theory and Classical Test Theory
Brennan, Robert L.
2011-01-01
Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over…
Raykov, Tenko; Marcoulides, George A.
2016-01-01
The frequently neglected and often misunderstood relationship between classical test theory and item response theory is discussed for the unidimensional case with binary measures and no guessing. It is pointed out that popular item response models can be directly obtained from classical test theory-based models by accounting for the discrete…
Reese, Lynda M.
This study extended prior Law School Admission Council (LSAC) research related to the item response theory (IRT) local item independence assumption into the realm of classical test theory. Initially, results from the Law School Admission Test (LSAT) and two other tests were investigated to determine the approximate state of local item independence…
Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.
Lei, Wenwen; McKenzie, David R
2016-07-21
Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks. PMID:27336652
Sussman, Joshua; Beaujean, A. Alexander; Worrell, Frank C.; Watson, Stevie
2013-01-01
Item response models (IRMs) were used to analyze Cross Racial Identity Scale (CRIS) scores. Rasch analysis scores were compared with classical test theory (CTT) scores. The partial credit model demonstrated a high goodness of fit and correlations between Rasch and CTT scores ranged from 0.91 to 0.99. CRIS scores are supported by both methods.…
Sharkness, Jessica; DeAngelo, Linda
2011-01-01
This study compares the psychometric utility of Classical Test Theory (CTT) and Item Response Theory (IRT) for scale construction with data from higher education student surveys. Using 2008 Your First College Year (YFCY) survey data from the Cooperative Institutional Research Program at the Higher Education Research Institute at UCLA, two scales…
Classical and quantum effective theories
Polonyi, Janos
2014-01-01
A generalization of the action principle of classical mechanics, motivated by the Closed Time Path (CTP) scheme of quantum field theory, is presented to deal with initial condition problems and dissipative forces. The similarities of the classical and the quantum cases are underlined. In particular, effective interactions which describe classical dissipative forces represent the system-environment entanglement. The relation between the traditional effective theories and their CTP extension is briefly discussed and few qualitative examples are mentioned.
Institute of Scientific and Technical Information of China (English)
WU Ning; ZHANG Da-Hua
2007-01-01
A systematic method is developed to study the classical motion of a mass point in gravitational gauge field.First,by using Mathematica,a spherical symmetric solution of the field equation of gravitational gauge field is obtained,which is just the traditional Schwarzschild solution.Combining the principle of gauge covariance and Newton's second law of motion,the equation of motion of a mass point in gravitational field is deduced.Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field,we can discuss classical tests of gauge theory of gravity,including the deflection of light by the sun,the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun.It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
Classical theory of algebraic numbers
Ribenboim, Paulo
2001-01-01
Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...
Suhov, Y.
We begin with the definition of information gained by knowing that an event A has occurred: iota (A) = -log_2 {{P}}(A). (A dual point of view is also useful (although more evasive), where iota (A) is the amount of information needed to specify event A.) Here and below {{P}} stands for the underlying probability distribution. So the rarer an event A, the more information we gain if we know it has occurred. (More broadly, the rarer an event A, the more impact it will have. For example, the unlikely event that occurred in 1938 when fishermen caught a coelacanth - a prehistoric fish believed to be extinct - required a significant change to beliefs about evolution and biology. On the other hand, the likely event of catching a herring or a tuna would hardly imply any change in theories.)
Classical theory of radiating strings
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Advances In Classical Field Theory
Yahalom, Asher
2011-01-01
Classical field theory is employed by physicists to describe a wide variety of physical phenomena. These include electromagnetism, fluid dynamics, gravitation and quantum mechanics. The central entity of field theory is the field which is usually a multi component function of space and time. Those multi component functions are usually grouped together as vector fields as in the case in electromagnetic theory and fluid dynamics, in other cases they are grouped as tensors as in theories of gravitation and yet in other cases they are grouped as complex functions as in the case of quantum mechanic
Smith, Moya Meredith; Riley, Alex; Fraser, Gareth J; Underwood, Charlie; Welten, Monique; Kriwet, Jürgen; Pfaff, Cathrin; Johanson, Zerina
2015-10-01
In classical theory, teeth of vertebrate dentitions evolved from co-option of external skin denticles into the oral cavity. This hypothesis predicts that ordered tooth arrangement and regulated replacement in the oral dentition were also derived from skin denticles. The fossil batoid ray Schizorhiza stromeri (Chondrichthyes; Cretaceous) provides a test of this theory. Schizorhiza preserves an extended cartilaginous rostrum with closely spaced, alternating saw-teeth, different from sawfish and sawsharks today. Multiple replacement teeth reveal unique new data from micro-CT scanning, showing how the 'cone-in-cone' series of ordered saw-teeth sets arrange themselves developmentally, to become enclosed by the roots of pre-existing saw-teeth. At the rostrum tip, newly developing saw-teeth are present, as mineralized crown tips within a vascular, cartilaginous furrow; these reorient via two 90° rotations then relocate laterally between previously formed roots. Saw-tooth replacement slows mid-rostrum where fewer saw-teeth are regenerated. These exceptional developmental data reveal regulated order for serial self-renewal, maintaining the saw edge with ever-increasing saw-tooth size. This mimics tooth replacement in chondrichthyans, but differs in the crown reorientation and their enclosure directly between roots of predecessor saw-teeth. Schizorhiza saw-tooth development is decoupled from the jaw teeth and their replacement, dependent on a dental lamina. This highly specialized rostral saw, derived from diversification of skin denticles, is distinct from the dentition and demonstrates the potential developmental plasticity of skin denticles.
Mason, Brandon; Smithey, Martha
2012-03-01
This study examines Merton's Classical Strain Theory (1938) as a causative factor in intimate partner violence among college students. We theorize that college students experience general life strain and cumulative strain as they pursue the goal of a college degree. We test this strain on the likelihood of using intimate partner violence. Strain due to unrealistic expectations of intimate partnership and economic strain are also examined. The analysis examines the following causative factors representing strain: 1) the College Undergraduate Stress Scale (Renner & Mackin, 1998); 2) cumulative academic strain measured by college classification; 3) cumulative intimate partner strain measured as the length of time in the relationship; 4) academic strain measured by number of hours studied weekly, and 5) economic strain measured by number of hours worked weekly. Additionally, we examine the extent to which gender and race/ethnicity differentially affect intimate partner in the context of these measures of strain. The Conflict Tactics Scales II (Straus et al, 1996) are used to measure dating violence and include indicators for sexual coercion, physical aggression, injury, and psychological aggression. Data were collected from 142 students in lower-division classes from Texas Tech University. Results show that general strain and cumulative intimate partner strain increase the use of dating violence among college students. The longer dating partners are in a relationship, the higher the chances of psychological aggression, physical assault, and sexual coercion. Converse to our expectations, time spent working reduces psychological aggression due to reducing time spent together rather than reflecting economic strain.
Classical Electron Theory and Conservation Laws
Kiessling, Michael K. -H.
1999-01-01
It is shown that the traditional conservation laws for total charge, energy, linear and angular momentum, hold jointly in classical electron theory if and only if classical electron spin is included as dynamical degree of freedom.
Three Approaches to Classical Thermal Field Theory
Gozzi, E.; Penco, R.
2010-01-01
In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the Closed-Time Path (CTP) formalism, the Thermofield Dynamics (TFD) and the Matsubara approach.
Three approaches to classical thermal field theory
Gozzi, E.; Penco, R.
2011-04-01
In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the closed-time path (CTP) formalism, the thermofield dynamics (TFD) and the Matsubara approach.
Classical-field theory of thermal radiation
Rashkovskiy, Sergey A
2016-01-01
In this paper, using the viewpoint that quantum mechanics can be constructed as a classical field theory without any quantization I build a fully classical theory of thermal radiation. Planck's law for the spectral energy density of thermal radiation and the Einstein A-coefficient for spontaneous emission are derived in the framework of classical field theory without using the concept of "photon". It is shown that the spectral energy density of thermal radiation is apparently not a universal function of frequency, as follows from the Planck's law, but depends weakly on the nature of atoms, while Planck's law is valid only as an approximation in the limit of weak excitation of atoms.
Chen, Xuelian; Schröder, Jan; Hauschild, Stephan; Rosenfeldt, Sabine; Dulle, Martin; Förster, Stephan
2015-10-27
Despite the increasing interest in the applications of functional nanoparticles, a comprehensive understanding of the formation mechanism starting from the precursor reaction with subsequent nucleation and growth is still a challenge. We for the first time investigated the kinetics of gold nanoparticle formation systematically by means of a lab-based in situ small-angle X-ray scattering (SAXS)/wide-angle X-ray scattering (WAXS)/UV-vis absorption spectroscopy experiment using a stopped-flow apparatus. We thus could systematically investigate the influence of all major factors such as precursor concentration, temperature, the presence of stabilizing ligands and cosolvents on the temporal evolution of particle size, size distribution, and optical properties from the early prenucleation state to the late growth phase. We for first time formulated and numerically solved a closed nucleation and growth model including the precursor reaction. We observe that the results can be well described within the framework of classical nucleation and growth theory, including also results of previous studies by other research groups. From the analysis, we can quantitatively derive values for the rate constants of precursor reaction and growth together with their activation free enthalpies. We find the growth process to be surface-reaction limited with negligible influence of Ostwald ripening yielding narrow disperse gold nanoparticles. PMID:26393805
Equilibration properties of classical integrable field theories
De Luca, Andrea; Mussardo, Giuseppe
2016-06-01
We study the equilibration properties of classical integrable field theories at a finite energy density, with a time evolution that starts from initial conditions far from equilibrium. These classical field theories may be regarded as quantum field theories in the regime of high occupation numbers. This observation permits to recover the classical quantities from the quantum ones by taking a proper \\hslash \\to 0 limit. In particular, the time averages of the classical theories can be expressed in terms of a suitable version of the LeClair-Mussardo formula relative to the generalized Gibbs ensemble. For the purposes of handling time averages, our approach provides a solution of the problem of the infinite gap solutions of the inverse scattering method.
Classical theory of electric and magnetic fields
Good, Roland H
1971-01-01
Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma
Classical Electrodynamics in a Unified Theory
Ghose, Partha
2016-01-01
Some consequences of a fully classical unified theory of gravity and electromagnetism are worked out for the electromagnetic sector such as the occurrence of classical light beams with spin and orbital angular momenta that are topologically quantized in units of $q_e q_m=\\sigma$, independent of the beam size. Empirical fits require $\\sigma = \\hbar$. The theory also predicts a generalized coherency matrix whose consequences are testable.
A Classical Introduction to Galois Theory
Newman, Stephen C
2012-01-01
This book provides an introduction to Galois theory and focuses on one central theme - the solvability of polynomials by radicals. Both classical and modern approaches to the subject are described in turn in order to have the former (which is relatively concrete and computational) provide motivation for the latter (which can be quite abstract). The theme of the book is historically the reason that Galois theory was created, and it continues to provide a platform for exploring both classical and modern concepts. This book examines a number of problems arising in the area of classical mathematic
Wan, Chonghua; Li, Hezhan; Fan, Xuejin; Yang, Ruixue; Pan, Jiahua; Chen, Wenru; Zhao, Rong
2014-01-01
Background Quality of life (QOL) for patients with coronary heart disease (CHD) is now concerned worldwide with the specific instruments being seldom and no one developed by the modular approach. Objectives This paper is aimed to develop the CHD scale of the system of Quality of Life Instruments for Chronic Diseases (QLICD-CHD) by the modular approach and validate it by both classical test theory and Generalizability Theory. Methods The QLICD-CHD was developed based on programmed decision pro...
FROM CLASSICAL TO EPISTEMIC GAME THEORY
ANDRÉS PEREA
2014-01-01
In this paper, we give a historical overview of the transition from classical game theory to epistemic game theory. To that purpose we will discuss how important notions such as reasoning about the opponents, belief hierarchies, common belief, and the concept of common belief in rationality arose, and gradually entered the game theoretic picture, thereby giving birth to the field of epistemic game theory. We will also address the question why it took game theory so long before it finally inco...
Beam structures classical and advanced theories
Carrera, Erasmo; Petrolo, Marco
2011-01-01
Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc. Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for be
Thibodeau, Michel A; Leonard, Rachel C; Abramowitz, Jonathan S; Riemann, Bradley C
2015-12-01
The Dimensional Obsessive-Compulsive Scale (DOCS) is a promising measure of obsessive-compulsive disorder (OCD) symptoms but has received minimal psychometric attention. We evaluated the utility and reliability of DOCS scores. The study included 832 students and 300 patients with OCD. Confirmatory factor analysis supported the originally proposed four-factor structure. DOCS total and subscale scores exhibited good to excellent internal consistency in both samples (α = .82 to α = .96). Patient DOCS total scores reduced substantially during treatment (t = 16.01, d = 1.02). DOCS total scores discriminated between students and patients (sensitivity = 0.76, 1 - specificity = 0.23). The measure did not exhibit gender-based differential item functioning as tested by Mantel-Haenszel chi-square tests. Expected response options for each item were plotted as a function of item response theory and demonstrated that DOCS scores incrementally discriminate OCD symptoms ranging from low to extremely high severity. Incremental differences in DOCS scores appear to represent unbiased and reliable differences in true OCD symptom severity. PMID:25422521
Prototype Theory and Classical Theory:An Explanation and Comparison
Institute of Scientific and Technical Information of China (English)
刘莹
2014-01-01
This paper discusses two different ways to understand categorization, which are classical theory and prototype theory. There is a deep exploration on how to understand categories, and different theoretical backgrounds of the two categorization the⁃ories. Furthermore, it reviews the limitations and advantages of both theories. And the comparison of the theories gives a clearer angle to understand their similarities and differences.
Emergence of classical theories from quantum mechanics
Hajicek, Petr
2012-01-01
Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is ...
Classical Ergodicity and Modern Portfolio Theory
Directory of Open Access Journals (Sweden)
Geoffrey Poitras
2015-01-01
Full Text Available What role have theoretical methods initially developed in mathematics and physics played in the progress of financial economics? What is the relationship between financial economics and econophysics? What is the relevance of the “classical ergodicity hypothesis” to modern portfolio theory? This paper addresses these questions by reviewing the etymology and history of the classical ergodicity hypothesis in 19th century statistical mechanics. An explanation of classical ergodicity is provided that establishes a connection to the fundamental empirical problem of using nonexperimental data to verify theoretical propositions in modern portfolio theory. The role of the ergodicity assumption in the ex post/ex ante quandary confronting modern portfolio theory is also examined.
Experimental assessment of unvalidated assumptions in classical plasticity theory.
Energy Technology Data Exchange (ETDEWEB)
Brannon, Rebecca Moss (University of Utah, Salt Lake City, UT); Burghardt, Jeffrey A. (University of Utah, Salt Lake City, UT); Bauer, Stephen J.; Bronowski, David R.
2009-01-01
This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data, thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.
Classical theory of the hydrogen atom
Rashkovskiy, Sergey
2016-01-01
It is shown that all of the basic properties of the hydrogen atom can be consistently described in terms of classical electrodynamics instead of taking the electron to be a particle; we consider an electrically charged classical wave field, an "electron wave", which is held in a limited region of space by the electrostatic field of the proton. It is shown that quantum mechanics must be considered to be not a theory of particles but a classical field theory in the spirit of classical electrodynamics. In this case, we are not faced with difficulties in interpreting the results of the theory. In the framework of classical electrodynamics, all of the well-known regularities of the spontaneous emission of the hydrogen atom are obtained, which is usually derived in the framework of quantum electrodynamics. It is shown that there are no discrete states and discrete energy levels of the atom: the energy of the atom and its states change continuously. An explanation of the conventional corpuscular-statistical interpre...
Classical geometry from the quantum Liouville theory
Hadasz, L; Piatek, M; Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin
2005-01-01
Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.
Classical geometry from the quantum Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl
2005-09-26
Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.
"Scars" connect classical and quantum theory
Monteiro, T
1990-01-01
Chaotic systems are unstable and extremely sensitive to initial condititions. So far, scientists have been unable to demonstrate that the same kind of behaviour exists in quantum or microscopic systems. New connections have been discovered though between classical and quantum theory. One is the phenomena of 'scars' which cut through the wave function of a particle (1 page).
The classical theory of fields electromagnetism
Helrich, Carl S
2012-01-01
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...
Quantum field theory from classical statistics
Wetterich, C
2011-01-01
An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...
Classical Loop Actions of Gauge Theories
Armand-Ugon, D; Griego, J R; Setaro, L; Armand-Ugon, Daniel; Gambini, Rodolfo; Griego, Jorge; Setaro, Leonardo
1994-01-01
Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.
HCI Theory Classical, Modern, and Contemporary
Rogers, Yvonne
2012-01-01
Theory is the bedrock of many sciences, providing a rigorous method toadvance knowledge through testing and falsifying hypotheses aboutobservable phenomena. To begin with, the nascent field of HCI followedsuit, borrowing theories from cognitive science to test theories aboutuser performance at the interface.But HCI has emerged as an eclectic interdiscipline rather than a welldefinedscience. It now covers all aspects of human life, from birth tobereavement, through all manner of computing, from device ecologiesto nanotechnology. It comes as no surprise that the role of theory in HCIhas also gre
Differential formalism aspects of the gauge classical theories
International Nuclear Information System (INIS)
The classical aspects of the gauge theories are shown using differential geometry as fundamental tool. Somme comments are done about Maxwell Electro-dynamics, classical Yang-Mills and gravitation theories. (L.C.)
Polynomial Invariant Theory of the Classical Groups
Westrich, Quinton
2011-01-01
The goal of invariant theory is to find all the generators for the algebra of representations of a group that leave the group invariant. Such generators will be called \\emph{basic invariants}. In particular, we set out to find the set of basic invariants for the classical groups GL$(V)$, O$(n)$, and Sp$(n)$ for $n$ even. In the first half of the paper we set up relevant definitions and theorems for our search for the set of basic invariants, starting with linear algebraic groups and then discussing associative algebras. We then state and prove a monumental theorem that will allow us to proceed with hope: it says that the set of basic invariants is finite if $G$ is reductive. Finally we state without proof the First Fundamental Theorems, which aim to list explicitly the relevant sets of basic invariants, for the classical groups above. We end by commenting on some applications of invariant theory, on the history of its development, and stating a useful theorem in the appendix whose proof lies beyond the scope ...
Robust topological degeneracy of classical theories
Vaezi, Mohammad-Sadegh; Ortiz, Gerardo; Nussinov, Zohar
2016-05-01
We challenge the hypothesis that the ground states of a physical system whose degeneracy depends on topology must necessarily realize topological quantum order and display nonlocal entanglement. To this end, we introduce and study a classical rendition of the Toric Code model embedded on Riemann surfaces of different genus numbers. We find that the minimal ground state degeneracy (and those of all levels) depends on the topology of the embedding surface alone. As the ground states of this classical system may be distinguished by local measurements, a characteristic of Landau orders, this example illustrates that topological degeneracy is not a sufficient condition for topological quantum order. This conclusion is generic and, as shown, it applies to many other models. We also demonstrate that certain lattice realizations of these models, and other theories, display a ground state entropy (and those of all levels) that is "holographic", i.e., extensive in the system boundary. We find that clock and U (1 ) gauge theories display topological (in addition to gauge) degeneracies.
Extending classical molecular theory with polarization.
Keyes, Tom; Napoleon, Raeanne L
2011-01-27
A classical, polarizable, electrostatic theory of short-ranged atom-atom interactions, incorporating the smeared nature of atomic partial charges, is presented. Detailed models are constructed for CO monomer and for CO interacting with an iron atom, as a first step toward heme proteins. A good representation is obtained of the bond-length-dependent dipole of CO monomer from fitting at the equilibrium distance only. Essential features of the binding of CO to myoglobin (Mb) and model heme compounds, including the binding energy, the position of the minimum in the Fe-C potential, the Fe-C frequency, the bending energy, the linear geometry of FeCO, and the increase of the Stark tuning rate and IR intensity, are obtained, suggesting that a substantial part of the Fe-CO interaction consists of a classical, noncovalent, "electrostatic bond ". The binding energy is primarily polarization energy, and the polarization energy of an OH pair in water is shown to be comparable to the experimental hydrogen bond energy.
An approximate classical unimolecular reaction rate theory
Zhao, Meishan; Rice, Stuart A.
1992-05-01
We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.
Hilbert space theory of classical electrodynamics
Indian Academy of Sciences (India)
RAJAGOPAL A K; GHOSE PARTHA
2016-06-01
Classical electrodynamics is reformulated in terms of wave functions in the classical phase space of electrodynamics, following the Koopman–von Neumann–Sudarshan prescription for classical mechanics on Hilbert spaces sans the superselection rule which prohibits interference effects in classical mechanics. This is accomplished by transforming from a set of commutingobservables in one Hilbert space to another set of commuting observables in a larger Hilbert space. This is necessary to clarify the theoretical basis of the much recent work on quantum-like features exhibited by classical optics. Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.
Directory of Open Access Journals (Sweden)
Boyer François
2010-03-01
Full Text Available Abstract Background Patients-Reported Outcomes (PRO are increasingly used in clinical and epidemiological research. Two main types of analytical strategies can be found for these data: classical test theory (CTT based on the observed scores and models coming from Item Response Theory (IRT. However, whether IRT or CTT would be the most appropriate method to analyse PRO data remains unknown. The statistical properties of CTT and IRT, regarding power and corresponding effect sizes, were compared. Methods Two-group cross-sectional studies were simulated for the comparison of PRO data using IRT or CTT-based analysis. For IRT, different scenarios were investigated according to whether items or person parameters were assumed to be known, to a certain extent for item parameters, from good to poor precision, or unknown and therefore had to be estimated. The powers obtained with IRT or CTT were compared and parameters having the strongest impact on them were identified. Results When person parameters were assumed to be unknown and items parameters to be either known or not, the power achieved using IRT or CTT were similar and always lower than the expected power using the well-known sample size formula for normally distributed endpoints. The number of items had a substantial impact on power for both methods. Conclusion Without any missing data, IRT and CTT seem to provide comparable power. The classical sample size formula for CTT seems to be adequate under some conditions but is not appropriate for IRT. In IRT, it seems important to take account of the number of items to obtain an accurate formula.
The Possibility of Reconciling Quantum Mechanics with Classical Probability Theory
Slavnov, D. A.
2007-01-01
We describe a scheme for constructing quantum mechanics in which a quantum system is considered as a collection of open classical subsystems. This allows using the formal classical logic and classical probability theory in quantum mechanics. Our approach nevertheless allows completely reproducing the standard mathematical formalism of quantum mechanics and identifying its applicability limits. We especially attend to the quantum state reduction problem.
Introducing quantum effects in classical theories
Fabris, J C; Rodrigues, D C; Daouda, M H
2015-01-01
In this paper, we explore two different ways of implementing quantum effects in a classical structure. The first one is through an external field. The other one is modifying the classical conservation laws. In both cases, the consequences for the description of the evolution of the universe are discussed.
Energy Technology Data Exchange (ETDEWEB)
Mills, R.L. [BlackLight Power, Inc., Cranbury, NJ (United States)
2001-10-01
addressed. It is time for the physical rather than the mathematical nature of the wave function to be determined. A theory of classical quantum mechanics (CQM) was derived from first principles by Mills (The grand unified theory of classical quantum mechanics. January 2000 ed; Cranbury, NJ, 2000, BlackLight Power, Inc., (Distributed by Amazon.com; Posted at www.blacklightpower.com)) that successfully applies physical laws on all scales. Using the classical wave equation with the constraint of nonradiation based on Maxwell's equations, CQM gives closed form physical solutions for the electron in atoms, the free electron, and the free electron in superfluid helium. The prediction of fractional principal quantum energy states of the electron in liquid helium match the photoconductivity and mobility observations without requiring that the electron is divisible. (author)
Gauge-fields and integrated quantum-classical theory
International Nuclear Information System (INIS)
Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs
On the classical theory of molecular optical activity
Frolov, Alexei M
2010-01-01
The basic principles of classical and semi-classical theories of molecular optical activity are discussed. These theories are valid for dilute solutions of optically active organic molecules. It is shown that all phenomena known in the classical theory of molecular optical activity can be described with the use of one pseudo-scalar which is a uniform function of the incident light frequency $\\omega$. The relation between optical rotation and circular dichroism is derived from the basic Kramers-Kronig relations. In our discussion of the general theory of molecular optical activity we introduce the tensor of molecular optical activity. It is shown that to evaluate the optical rotation and circular dichroism at arbitrary frequencies one needs to know only nine (3 + 6) molecular tensors. The quantum (or semi-classical) theory of molecular optical activity is also briefly discussed. We also raise the possibility of measuring the optical rotation and circular dichroism at wavelengths which correspond to the vacuum ...
Dense matter theory a simple classical approach
Savic, P
1998-01-01
In the sixties,the first author and R.Kasanin have started developing a mean field theory of dense matter.This paper presents a short review of the basic ideas of the theory,and discusses some examples of its applications,which range from DAC experiments to modelling of planetary interiors.
Functional Approach to Classical Yang-Mills Theories
Carta, P
2002-01-01
Sometime ago it was shown that the operatorial approach to classical mechanics, pioneered in the 30's by Koopman and von Neumann, can have a functional version. In this talk we will extend this functional approach to the case of classical field theories and in particular to the Yang-Mills ones. We shall show that the issues of gauge-fixing and Faddeev-Popov determinant arise also in this classical formalism.
Classical conformality in the Standard Model from Coleman's theory
Kawana, Kiyoharu
2016-01-01
The classical conformality is one of the possible candidates for explaining the gauge hierarchy of the Standard Model. We show that it is naturally obtained from the Coleman's theory on baby universe.
Conformal Invariance in Classical Field Theory
Grigore, D. R.
1993-01-01
A geometric generalization of first-order Lagrangian formalism is used to analyse a conformal field theory for an arbitrary primary field. We require that global conformal transformations are Noetherian symmetries and we prove that the action functional can be taken strictly invariant with respect to these transformations. In other words, there does not exists a "Chern-Simons" type Lagrangian for a conformally invariant Lagrangian theory.
From Classical to Quantum Shannon Theory
Wilde, Mark M
2011-01-01
The aim of this book is to develop "from the ground up" all of the major, exciting, pre- and post-millenium developments in the general area of study known as quantum Shannon theory. As such, we spend a significant amount of time on quantum mechanics for quantum information theory (Part II), we give a careful study of the important unit protocols of teleportation, super-dense coding, and entanglement distribution (Part III), and we develop many of the tools necessary for understanding information transmission or compression (Part IV). Parts V and VI are the culmination of this book, where all of the tools developed come into play for understanding many of the important results in quantum Shannon theory.
[The establishment, contributions, and final results of classical medical theories].
Wang, Tai
2013-01-01
In countries with ancient civilization of both Eastern world and Western world, after the accumulation of clinical experiences of "empirical medicine" to a sufficient amount; in accordance of their primitive philosophical thoughts, classical medical theories were established to play an important role in guiding the clinical practice of "empirical medicine". Because of the similarity of philosophical thoughts all over the ancient world, their medical theories were also very similar to each other. After the scientific evaluation and improvement, Greek classical medical theories were inherited, refined or abandoned, and then eventually finished their historical mission. Chinese classical medical theories also need the similar scientific identification and improvement for flowing into the authorized main stream of modern medical theory systems to continuously apply their guiding roles in clinical practice. Scholars would better consider the developmental principles of cultures and sciences with a historical viewpoint and an open mind to avoid making mistakes from haughty and prejudice. PMID:23596779
Testing single-parameter classical standpoint cosmology
Chew, Geoffrey Foucar
1995-01-01
Experimental tests of homogeneous-universe classical standpoint cosmology are proposed after presentation of conceptual considerations that encourage this radical departure from the standard model. Among predictions of the new model are standpoint age equal to Hubble time, energy-density parameter \\Omega_0 = 2 - \\sqrt{2} =.586, and relations between redshift, Hubble-scale distribution of matter and galaxy luminosity and angular diameter. These latter relations coincide with those of the standard model for zero deceleration. With eye to further tests, geodesics of the non-Riemannian standpoint metric are explicitly given. Although a detailed thermodynamic ``youthful-standpoint'' approximation remains to be developed (for particle mean free path small on standpoint scale), standpoint temperature depending only on standpoint age is a natural concept, paralleling energy density and redshift that perpetuates thermal spectrum for cosmic background radiation. Prospects for primordial nucleosynthesis are promising.
Classical Coupled Mode Theory of Optomechanical Crystals
Khorasani, Sina
2016-01-01
Acousto-optic interaction in optomechanical crystals allows unidirectional control of elastic waves over optical waves. However, as a result of this nonlinear interaction, infinitely many optical modes are born. This article presents an exact formulaion of coupled mode theory for interaction between elastic Bloch wave waves and photonic Bloch waves moving in a phonotonic waveguide. In general, an optical wavefront is strongly diffracted by an elastic wave in frequency and wavevector, and thus infinite modes with different frequencies and wavevectors appear. We discuss resonance and mode conversion conditions, and present a rigorous method to derive coupling rates and mode profiles. We also find a conservation law which rules over total optical power from interacting individual modes. Modifications of the theory to phonotonic cavities are also discussed. We present application examples including switch, frequency shifter, and reflector.
Introduction to Classical Density Functional Theory by Computational Experiment
Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We present here an introductory practical course to classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely largely on nonintuitive abstract concepts and applied mathematics. They are nevertheless a powerful tool and an active field of research in physics and chemistry that led to the 1998 Nobel prize in chemistry. We here illustrate the DFT in its most mathematically simple and yet physically relevant form: the classical density functional theory of an ideal fluid in an external field, as applied to the prediction of the structure of liquid neon at the molecular scale. This introductory course is built around the production of a cDFT code written by students using the Mathematica language. In this way, they are brought to deal with (i) the cDFT theory itself, (ii) some basic concepts around the statistical mechanics of simple fluids, (iii) the underlying mathematical and numerical problem of functional minimization, and (iv) a functional programming languag...
Evolving Planck Mass in Classically Scale-Invariant Theories
Kannike, K; Spethmann, C; Veermäe, H
2016-01-01
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg po- tential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories....
Lectures on classical and quantum theory of fields
Energy Technology Data Exchange (ETDEWEB)
Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics
2010-07-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Lectures on Classical and Quantum Theory of Fields
Arodź, Henryk
2010-01-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course.
Lectures on classical and quantum theory of fields
International Nuclear Information System (INIS)
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
International Nuclear Information System (INIS)
In this paper, a detailed numerical comparison of the high-harmonic generation (HHG) from free electrons in intense laser fields in both classical and semi-classical frameworks has been presented. These two frameworks have been widely used in the literature. It has been found that the HHG spectra display distinct quantitative differences for high-energy electrons. In some special situations, qualitative differences appear. Even if the radiation reaction is included in the electron classical dynamics, no consistent result can be obtained. Hence it should be of critical importance to submit the present HHG theory for high-precision experimental tests, which can help us not only to justify the present theories, but also to check the QED predictions in the high-intensity regime. (paper)
Quantum Mind from a Classical Field Theory of the Brain
Zizzi, Paola
2011-01-01
We suggest that, with regard to a theory of quantum mind, brain processes can be described by a classical, dissipative, non-abelian gauge theory. In fact, such a theory has a hidden quantum nature due to its non-abelian character, which is revealed through dissipation, when the theory reduces to a quantum vacuum, where temperatures are of the order of absolute zero, and coherence of quantum states is preserved. We consider in particular the case of pure SU(2) gauge theory with a special anzat...
A classical theory of continuous spin and hidden gauge invariance
International Nuclear Information System (INIS)
We present a classical higher derivative point particle theory whose quantization gives Wigner's continuous spin representation of the Poincare group. Although the theory is not reparameterization invariant in the usual sense, it does possess a hidden gauge invariance that provides a non-local representation of the reparameterization group. The Hamiltonian of the theory does not vanish and its value is the continuous spin parameter. The theory presented here represents the simplest example of a wide class of higher derivative theories possessing a hidden gauge invariance
A classical theory of continuous spin and hidden gauge invariance
Energy Technology Data Exchange (ETDEWEB)
Zoller, D.
1991-01-01
We present a classical higher derivative point particle theory whose quantization gives Wigner's continuous spin representation of the Poincare group. Although the theory is not reparameterization invariant in the usual sense, it does possess a hidden gauge invariance that provides a non-local representation of the reparameterization group. The Hamiltonian of the theory does not vanish and its value is the continuous spin parameter. The theory presented here represents the simplest example of a wide class of higher derivative theories possessing a hidden gauge invariance.
A classical theory of continuous spin and hidden gauge invariance
Energy Technology Data Exchange (ETDEWEB)
Zoller, D.
1991-12-31
We present a classical higher derivative point particle theory whose quantization gives Wigner`s continuous spin representation of the Poincare group. Although the theory is not reparameterization invariant in the usual sense, it does possess a hidden gauge invariance that provides a non-local representation of the reparameterization group. The Hamiltonian of the theory does not vanish and its value is the continuous spin parameter. The theory presented here represents the simplest example of a wide class of higher derivative theories possessing a hidden gauge invariance.
Quantum fermions and quantum field theory from classical statistics
Wetterich, C.
2012-01-01
An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schr\\"odinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.
Plasmon mass scale in classical nonequilibrium gauge theory
Lappi, Tuomas
2016-01-01
Classical lattice Yang-Mills calculations provide a good way to understand different nonequilibrium phenomena in nonperturbatively overoccupied systems. Above the Debye scale the classical theory can be matched smoothly to kinetic theory. The aim of this work is to study the limits of this quasiparticle picture by determining the plasmon mass in classical real time Yang-Mills theory on a lattice in 3 spatial dimensions. We compare three methods to determine the plasmon mass: a hard thermal loop expression in terms of the particle distribution, an effective dispersion relation constructed from fields and their time derivatives, and by measuring oscillations between electric and magnetic field modes after artificially introducing a homogeneous color electric field. We find that a version of the dispersion relation that uses electric fields and their time derivatives agrees with the other methods within 50%.
Non-classical Measurement Theory: a Framework for Behavioral Sciences
Danilov, V I
2006-01-01
Instances of non-commutativity are pervasive in human behavior. In this paper, we suggest that psychological properties such as attitudes, values, preferences and beliefs may be suitably described in terms of the mathematical formalism of quantum mechanics. We expose the foundations of non-classical measurement theory building on a simple notion of orthospace and ortholattice (logic). Two axioms are formulated and the characteristic state-property duality is derived. A last axiom concerned with the impact of measurements on the state takes us with a leap toward the Hilbert space model of Quantum Mechanics. An application to behavioral sciences is proposed. First, we suggest an interpretation of the axioms and basic properties for human behavior. Then we explore an application to decision theory in an example of preference reversal. We conclude by formulating basic ingredients of a theory of actualized preferences based in non-classical measurement theory.
Classical Electromagnetic Field Theory in the Presence of Magnetic Sources
Institute of Scientific and Technical Information of China (English)
LI Kang(李康); CHEN Wen-Jun(陈文俊); NAON Carlos M.
2003-01-01
Using two new well-defined four-dimensional potential vectors, we formulate the classical Maxwell field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources.We set up a consistent Lagrangian for the theory. Then from the action principle we obtain both Maxwell's equation and the equation of motion of a dyon moving in the electromagnetic field.
Classical electromagnetic field theory in the presence of magnetic sources
Chen, W J; Naón, C M; Chen, Wen-Jun; Li, Kang
2001-01-01
Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.
Institute of Scientific and Technical Information of China (English)
WU Li-Li; WU Ning; HU Juan-Mei; WU Feng-Min
2008-01-01
For a long time, it has been generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnetic field will interact with the spin of another particle, which will cause spin-spin interactions. So, spin-spin interactions are transmitted by gravitational field. The form of spin-spin interactions in post Newtonian approximations is deduced. This result can also be deduced from the Papapetrou equation. This kind of interaction will not affect the renormalizability of the theory. The spin-spin interactions will violate the weak equivalence principle, and the violation effects are detectable. An experiment is proposed to detect the effects of the violation of the weak equivalence principle.
Revision of the classical nucleation theory for supersaturated solutions
Borisenko, Alexander
2015-01-01
During the processes of nucleation and growth of a precipitate cluster from a supersaturated solution, the diffusion flux between the cluster and the solution changes the solute concentration near the cluster-solution interface from its average bulk value. This feature affects the rates of attachment and detachment of solute atoms at the interface and, therefore, alters the entire nucleation kinetics. Unless quite obvious, this effect has been ignored in the classical nucleation theory. To illustrate the results of this new approach, for the case of homogeneous nucleation, we calculate the total solubility (including the contribution from heterophase fluctuations) and the nucleation rate as functions of two parameters of the model and compare these results to the classical ones. One can conclude that discrepancies with the classical nucleation theory are great in the diffusion-limited regime, when the bulk diffusion mobility of solute atoms is small compared to the interfacial one, while in the opposite inter...
Representational Realism, Closed Theories and the Quantum to Classical Limit
de Ronde, Christian
2016-01-01
In this paper we discuss the representational realist stance as a pluralist ontic approach to inter-theoretic relationships. Our stance stresses the fact that physical theories require the necessary consideration of a conceptual level of discourse which determines and configures the specific field of phenomena discussed by each particular theory. We will criticize the orthodox line of research which has grounded the analysis about QM in two (Bohrian) metaphysical presuppositions -accepted in the present as dogmas that all interpretations must follow. We will also examine how the orthodox project of "bridging the gap" between the quantum and the classical domains has constrained the possibilities of research, producing only a limited set of interpretational problems which only focus in the justification of "classical reality" and exclude the possibility of analyzing the possibilities of non-classical conceptual representations of QM. The representational realist stance introduces two new problems, namely, the ...
Aesthetic Creativity: Insights from Classical Literary Theory on Creative Learning
Hellstrom, Tomas Georg
2011-01-01
This paper addresses the subject of textual creativity by drawing on work done in classical literary theory and criticism, specifically new criticism, structuralism and early poststructuralism. The question of how readers and writers engage creatively with the text is closely related to educational concerns, though they are often thought of as…
On the variational formulation of classical Abelian gauge field theories
International Nuclear Information System (INIS)
It is shown how one can formulate an action principle for classical Abelian gauge theories not by means of gauge potentials and currents but in terms of the gauge invariant field strengths and gauge variant stream potentias. The discussion is on a general formal level in n=s+t space-time dimensions and uses, for brevity, the language of differential forms
Theory of Optimal Currency Zones: from Classics until Today
Directory of Open Access Journals (Sweden)
Pinchuk Anastasiya K.
2013-12-01
Full Text Available The article analyses evolution of the theory of optimal currency zones (OCZ, starting from its classical provisions until moder developments. Based on the critical analysis of classical criteria of OCZ, the article develops a scheme of selection of the currency mode by the Robert Mundell theory. It considers achievements of the alternative OCZ theory, the main provisions of which are shown schematically in the form of illustrations of evolution of the theory of optimal currency zones. In the result of analysis of classical criteria of optimal currency zones and generalisation of developments of the new OCZ theory, the article develops a universal algorithm of identification of optimal conditions for an efficient currency zone. Using this algorithm allows identification of a system of quantitative indicators of expediency of regional joining the OCZ, on the basis of which one can build an economic model of an optimal currency zone, which reflects the degree of readiness of any country to join or develop the OCZ. Development of this model is necessary for many countries that face the need to select the currency integration. This model is of special importance for Ukraine, for which it is important to select the course of external integration, since various directions of foreign policy significantly influence efficiency of the domestic economic policy in the country.
THE NEW CLASSICAL THEORY AND THE REAL BUSINESS CYCLE MODEL
Directory of Open Access Journals (Sweden)
Oana Simona HUDEA (CARAMAN
2014-11-01
Full Text Available The present paper aims at describing some key elements of the new classical theory-related model, namely the Real Business Cycle, mainly describing the economy from the perspective of a perfectly competitive market, characterised by price, wage and interest rate flexibility. The rendered impulse-response functions, that help us in revealing the capacity of the model variables to return to their steady state under the impact of a structural shock, be it technology or monetary policy oriented, give points to the neutrality of the monetary entity decisions, therefore confirming the well-known classical dichotomy existing between the nominal and the real factors of the economy.
Classic Grounded Theory to Analyse Secondary Data: Reality and Reflections
Directory of Open Access Journals (Sweden)
Lorraine Andrews
2012-06-01
Full Text Available This paper draws on the experiences of two researchers and discusses how they conducted a secondary data analysis using classic grounded theory. The aim of the primary study was to explore first-time parents’ postnatal educational needs. A subset of the data from the primary study (eight transcripts from interviews with fathers was used for the secondary data analysis. The objectives of the secondary data analysis were to identify the challenges of using classic grounded theory with secondary data and to explore whether the re-analysis of primary data using a different methodology would yield a different outcome. Through the process of re-analysis a tentative theory emerged on ‘developing competency as a father’. Challenges encountered during this re-analysis included the small dataset, the pre-framed data, and limited ability for theoretical sampling. This re-analysis proved to be a very useful learning tool for author 1(LA, who was a novice with classic grounded theory.
Quantum Mind from a Classical Field Theory of the Brain
Zizzi, Paola
2011-01-01
We suggest that, with regard to a theory of quantum mind, brain processes can be described by a classical, dissipative, non-abelian gauge theory. In fact, such a theory has a hidden quantum nature due to its non-abelian character, which is revealed through dissipation, when the theory reduces to a quantum vacuum, where temperatures are of the order of absolute zero, and coherence of quantum states is preserved. We consider in particular the case of pure SU(2) gauge theory with a special anzatz for the gauge field, which breaks Lorentz invariance. In the ansatz, a contraction mapping plays the role of dissipation. In the limit of maximal dissipation, which corresponds to the attractive fixed point of the contraction mapping, the gauge fields reduce, up to constant factors, to the Pauli quantum gates for one-qubit states. Then tubuline-qubits can be processed in the quantum vacuum of the classical field theory of the brain, where decoherence is avoided due to the extremely low temperature. Finally, we interpret...
Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation
Scheck, Florian
2012-01-01
The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...
DEFF Research Database (Denmark)
Hansen, Tina; Lambert, Heather C; Faber, Jens
2012-01-01
consistency (Chronbach's alpha). External construct validity (convergent and known-groups validity) was evaluated against theoretical constructs assessing the complex concept of ingestive skills. Internal construct validity was tested using Rasch analysis. Results: High internal consistency reliability......Purpose: The study aimed to validate the Danish version of the Canadian the "McGill Ingestive Skills Assessment" (MISA-DK) for measuring dysphagia in frail elders. Method: One-hundred and ten consecutive older medical patients were recruited to the study. Reliability was assessed by internal...... with Chronbach's alpha of 0.77-0.95 was evident. External construct validity was supported by expected high correlations with most of the constructs related to ingestive skills (r(s)¿=¿0.53 to r(s)¿=¿0.66). The MISA-DK discriminated significantly between known-groups. Fit to the Rasch model (x(2) (df)¿=¿12 (12...
Zatloukal, Václav
2016-04-01
Classical field theory is considered as a theory of unparametrized surfaces embedded in a configuration space, which accommodates, in a symmetric way, spacetime positions and field values. Dynamics is defined by a (Hamiltonian) constraint between multivector-valued generalized momenta, and points in the configuration space. Starting from a variational principle, we derive local equations of motion, that is, differential equations that determine classical surfaces and momenta. A local Hamilton-Jacobi equation applicable in the field theory then follows readily. The general method is illustrated with three examples: non-relativistic Hamiltonian mechanics, De Donder-Weyl scalar field theory, and string theory.
Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits
Hanany, Amihay
2016-01-01
We approach the topic of Classical group nilpotent orbits from the perspective of their moduli spaces, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKahler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for ...
Quantum to classical transition in quantum field theory
Lombardo, F C
1998-01-01
We study the quatum to classical transition process in the context of quantum field theory. Extending the influence functional formalism of Feynman and Vernon, we study the decoherence process for self-interacting quantum fields in flat space. We also use this formalism for arbitrary geometries to analyze the quantum to classical transition in quantum gravity. After summarizing the main results known for the quantum Brownian motion, we consider a self-interacting field theory in Minkowski spacetime. We compute a coarse grained effective action by integrating out the field modes with wavelength shorter than a critical value. From this effective action we obtain the evolution equation for the reduced density matrix (master equation). We compute the diffusion coefficients for this equation and analyze the decoherence induced on the long-wavelength modes. We generalize the results to the case of a conformally coupled scalar field in de Sitter spacetime. We show that the decoherence is effective as long as the cri...
THE NEW CLASSICAL THEORY AND THE REAL BUSINESS CYCLE MODEL
Oana Simona HUDEA (CARAMAN); Sorin George TOMA; Marin BURCEA
2014-01-01
The present paper aims at describing some key elements of the new classical theory-related model, namely the Real Business Cycle, mainly describing the economy from the perspective of a perfectly competitive market, characterised by price, wage and interest rate flexibility. The rendered impulse-response functions, that help us in revealing the capacity of the model variables to return to their steady state under the impact of a structural shock, be it technology or monetary policy oriented, ...
A magnetic condensate solution of the classical electroweak theory
International Nuclear Information System (INIS)
According to the electroweak theory a large homogeneous magnetic field exceeding m2w/e is unstable. We present a different solution of the classical electroweak field equations which is a condensate of magnetic fluxes induced by an anti-Lenz current of the charged vector bosons. The anti-Lenz mechanism is a consequence of asymptotic freedom. The range of validity of this solution depends on the Weinberg angle θ. (orig.)
Conformal Field Theory Correlators from Classical Scalar Field Theory on $AdS_{d+1}$
Mück, W; Mueck, Wolfgang
1998-01-01
We use the correspondence between scalar field theory on $AdS_{d+1}$ and a conformal field theory on $R^d$ to calculate the 3- and 4-point functions of the latter. The classical scalar field theory action is evaluated at tree level.
A New Fuzzy Set Theory Satisfying All Classical Set Formulas
Institute of Scientific and Technical Information of China (English)
Qing-Shi Gao; Xiao-Yu Gao; Yue Hu
2009-01-01
A new fuzzy set theory, C-fuzzy set theory, is introduced in this paper. It is a particular case of the classical set theory and satisfies all formulas of the classical set theory. To add a limitation to C-fuzzy set system, in which all fuzzy sets must be "non-uniform inclusive" to each other, then it forms a family of sub-systems, the Z-fuzzy set family. It can be proved that the Z0-fuzzy set system, one of Z-fuzzy set systems, is equivalent to Zadeh's fuzzy set system. Analysis shows that 1) Zadeh's fuzzy set system defines the relations A = B and A ∈B between two fuzzy sets A and B as "Vu e U,(u A E (u)=μB(U))" and "Au ∈ U, (μA(U) ≤μB(μ))" respectively is inappropriate, because it makes all fuzzy sets be "non-uniformly inclusive"; 2) it is also inappropriate to define two fuzzy sets' union and intersection operations as the max and rain of their grades of membership, because this prevents fuzzy set's ability to correctly reflect different kinds of fuzzy phenomenon in the natural world. Then it has to work around the problem by invent unnatural functions that are hard to understand, such as augmenting max and min for union and intersection to min{a + b, 1} and max{a + b - 1, 0}, but these functions are incorrect on inclusive case. If both pairs of definitions are used together, not only are they unnatural, but also they are still unable to cover all possible set relationships in the natural world; and 3) it is incorrect to define the set complement as 1 -μA(μ), because it can be proved that set complement cannot exist in Zadeh's fuzzy set, and it causes confusion in logic and thinking. And it is seriously mistaken to believe that logics of fuzzy sets necessarily go against classical and normal thinking, logic, and conception. The C-fuzzy set theory proposed in this paper overcomes all of the above errors and shortcomings, and more reasonably reflects fuzzy phenomenon in the natural world. It satisfies all relations, formulas, and operations of the
Statistical test theory for the behavioral sciences
de Gruijter, Dato N M
2007-01-01
Since the development of the first intelligence test in the early 20th century, educational and psychological tests have become important measurement techniques to quantify human behavior. Focusing on this ubiquitous yet fruitful area of research, Statistical Test Theory for the Behavioral Sciences provides both a broad overview and a critical survey of assorted testing theories and models used in psychology, education, and other behavioral science fields. Following a logical progression from basic concepts to more advanced topics, the book first explains classical test theory, covering true score, measurement error, and reliability. It then presents generalizability theory, which provides a framework to deal with various aspects of test scores. In addition, the authors discuss the concept of validity in testing, offering a strategy for evidence-based validity. In the two chapters devoted to item response theory (IRT), the book explores item response models, such as the Rasch model, and applications, incl...
On the consistency of classical and quantum supergravity theories
Energy Technology Data Exchange (ETDEWEB)
Hack, Thomas-Paul [II. Institute for Theoretical Physics, University of Hamburg (Germany); Makedonski, Mathias [Department of Mathematical Sciences, University of Copenhagen (Denmark); Schenkel, Alexander [Department of Stochastics, University of Wuppertal (Germany)
2012-07-01
It is known that pure N=1 supergravity in d=4 spacetime dimensions is consistent at a classical and quantum level, i.e. that in a particular gauge the field equations assume a hyperbolic form - ensuring causal propagation of the degrees of freedom - and that the associated canonical quantum field theory satisfies unitarity. It seems, however, that it is yet unclear whether these properties persist if one considers the more general and realistic case of N=1, d=4 supergravity theories including arbitrary matter fields. We partially clarify the issue by introducing novel hyperbolic gauges for the gravitino field and proving that they commute with the resulting equations of motion. Moreover, we review recent partial results on the unitarity of these general supergravity theories and suggest first steps towards a comprehensive unitarity proof.
Common Axioms for Inferring Classical Ensemble Dynamics and Quantum Theory
Parwani, R R
2005-01-01
Within a hamiltonian framework, the same set of physically motivated axioms is used to construct both the classical ensemble Hamilton-Jacobi equation and Schrodingers equation. Crucial roles are played by the assumptions of universality and simplicity (Occam's Razor) which restrict the number and type of of arbitrary constants that appear in the hamiltonian. In this approach, non-relativistic quantum theory is seen as the unique single parameter extension of the classical ensemble dynamics. The method is contrasted with other related constructions in the literature. Possible generalisation to the relativistic case, and some consequences of relaxing the axioms, are also discussed: for example, simple extensions of the linear Schrodinger equation lead to higher-derivative nonlinear corrections that are possibly related to gravity.
The theory of variational hybrid quantum-classical algorithms
McClean, Jarrod R; Babbush, Ryan; Aspuru-Guzik, Alán
2015-01-01
Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as "the quantum variational eigensolver" was developed with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through relaxation of exponential splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this proced...
Fluctuations, temperature, and detailed balance in classical nucleation theory
Energy Technology Data Exchange (ETDEWEB)
McGraw, R. [Environmental Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973 (United States); LaViolette, R.A. [Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415 (United States)
1995-06-08
The role of temperature in classical nucleation theory is examined. It is shown that while even small clusters are assigned a temperature in the classical theory, this must be a fluctuating quantity. Stochastic simulations of cluster evaporation and growth are presented to track the temperature fluctuations in time. The relation {l_angle}{vert_bar}{delta}{ital T}{vert_bar}{sup 2}{r_angle}={ital kT}{sup @2}{ital d}0/{ital C}{sub {nu}} for the mean square temperature fluctuation is confirmed, where {ital k} is the Boltzmann constant, {ital C}{sub {nu}} is the cluster heat capacity, and {ital T}{sub 0} is the bath temperature. For small capillary drops (50--100 molecules), the resulting rms temperature fluctuations of 10{degree}--20{degree} might be expected to have a significant effect on the nucleation rate. However, the simulations reveal a cluster temperature distribution that is centered several degrees below {ital T}{sub 0}. A theory is presented to explain this effect. To first order, which includes Gaussian fluctuations of the cluster temperature {ital T}, we find that the effective temperature for cluster evaporation is {ital T}{minus}{ital h}/2{ital C}{sub {nu}}, where {ital h} is the latent heat. This temperature correction is precisely that required by detailed balance and results both in a centering of the cluster temperature distribution on {ital T}{sub 0} and a cancellation of any significant effect of temperature fluctuations on the nucleation rate.
BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory
Mann, Robert
2013-02-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is
Lie Groupoids in Classical Field Theory I: Noether's Theorem
Costa, Bruno T; Pêgas, Luiz Henrique P
2015-01-01
In the two papers of this series, we initiate the development of a new approach to implementing the concept of symmetry in classical field theory, based on replacing Lie groups/algebras by Lie groupoids/algebroids, which are the appropriate mathematical tools to describe local symmetries when gauge transformations are combined with space-time transformations. Here, we outline the basis of the program and, as a first step, show how to (re)formulate Noether's theorem about the connection between symmetries and conservation laws in this approach.
Local gauge invariant Lagrangeans in classical field theories
International Nuclear Information System (INIS)
We investigate the most general local gauge invariant Lagrangean in the framework of classical field theory. We rederive esentially Utiyama's result with a slight generalization. Our proof makes clear the importance of the so called current conditions, i.e. the requirement that the Noether currents are different from zero. This condition is of importance both in the general motivation for the introduction of the Yang-Mills fields and for the actual proof. Some comments are made about the basic mathematical structure of the problem - the gauge group. (author)
Emergence Of A Classical World From Within Quantum Theory
Poulin, D
2005-01-01
The starting point of this dissertation is that a quantum state represents the observer's knowledge about the system of interest. As it has been pointed out several times by the opponents of this epistemic interpretation, it is difficult to reconcile this point of view with our common notion of “physical reality”, which exists independently of our monitoring, and can be discovered without disturbance. Indeed, if quantum theory is correct, it should apply to classical systems—including measurement devices—as well as to any other system. In this dissertation, we will study the quantum mechanisms responsible for our perception of the world and demonstrate how they lead to the emergence of an operational objective reality from within quantum theory: several observers gathering information through these mechanisms will arrive at a common consensus about the properties of the world. The two mechanisms we study in great detail are the redundant proliferation of information in ...
Marshaling Resources: A Classic Grounded Theory Study of Online Learners
Directory of Open Access Journals (Sweden)
Barbara Yalof
2014-06-01
Full Text Available Classic grounded theory (CGT was used to identify a main concern of online students in higher education. One of the main impediments to studying online is a sense of isolation and lack of access to support systems as students navigate through complex requirements of their online programs. Hypothetical probability statements illustrate the imbalance between heightened needs of virtual learners and perceived inadequate support provided by educational institutions. The core variable, marshaling resources, explains how peer supports sustain motivation toward successful program completion. Understanding the critical contribution virtual interpersonal networks make towards maximizing resources by group problem solving is a significant aspect of this theory. Keywords: Online learning, e-learning, personal learning networks, peer networks
Light-cone Wilson loop in classical lattice gauge theory
Laine, M
2013-01-01
The transverse broadening of an energetic jet passing through a non-Abelian plasma is believed to be described by the thermal expectation value of a light-cone Wilson loop. In this exploratory study, we measure the light-cone Wilson loop with classical lattice gauge theory simulations. We observe, as suggested by previous studies, that there are strong interactions already at short transverse distances, which may lead to more efficient jet quenching than in leading-order perturbation theory. We also verify that the asymptotics of the Wilson loop do not change qualitatively when crossing the light cone, which supports arguments in the literature that infrared contributions to jet quenching can be studied with dimensionally reduced simulations in the space-like domain. Finally we speculate on possibilities for full four-dimensional lattice studies of the same observable, perhaps by employing shifted boundary conditions in order to simulate ensembles boosted by an imaginary velocity.
Quiver theories for moduli spaces of classical group nilpotent orbits
Hanany, Amihay; Kalveks, Rudolph
2016-06-01
We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3 d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.
Emergence of a classical world from within quantum theory
Poulin, David
The starting point of this dissertation is that a quantum state represents the observer's knowledge about the system of interest. As it has been pointed out several times by the opponents of this epistemic interpretation, it is difficult to reconcile this point of view with our common notion of "physical reality", which exists independently of our monitoring, and can be discovered without disturbance. Indeed, if quantum theory is correct, it should apply to classical systems---including measurement devices---as well as to any other system. In this dissertation, we will study the quantum mechanisms responsible for our perception of the world and demonstrate how they lead to the emergence of an operational objective reality from within quantum theory: several observers gathering information through these mechanisms will arrive at a common consensus about the properties of the world. The two mechanisms we study in great detail are the redundant proliferation of information in the environment and the direct measurement of a macroscopic observable. An example of the first mechanism is the photon environment which provides us with our visual data about the world. Several independent observers learning about their surroundings in this indirect fashion will agree on their findings. An example of the second mechanism is our tactile information: when the tip of our finger touches an object, it interacts collectively with a very large number of molecules. Again, under realistic assumptions, this type of information acquisition will lead to a classical perception of the world.
Institute of Scientific and Technical Information of China (English)
冯艳宾; 马洪超
2012-01-01
Difficulty and discrimination are the important concepts in psychometrics and testing. There are different characteristics in CTT and IRT. This paper explores the meaning of difficulty and discrimination under the framework of two theories. The true meaning of difficulty and discrimination in crI~ can be well understood basing on the parameters＇ concept in IRT. In fact, the Function can be founded between difficulty in IRT and CTY.%难度和区分度是心理测量或测验中的重要概念，它们在CTT和IRT框架中分别具有不同的特征。本研究在两种理论框架下，探讨难度和区分度的意义，指出基于IRT模型中的参数概念，可以更好地解释CTT中的难度和区分度的意义，两种理论中的难度值具有内在的函数关系。
Non-linear coupling of quantum theory and classical gravity
International Nuclear Information System (INIS)
The possibility that the non-linear evolution proposed earlier for a relativistic quantum field theory may be related to its coupling to a classical gravitational field is discussed. Formally, in the Schroedinger picture, it is shown how both the Schroedinger equation and Einstein's equations (with the expectation value of the energy-momentum tensor on the right) can be derived from a variational principle. This yields a non-linear quantum evolution. Other terms can be added to the action integral to incorporate explicit non-linearities of the type discussed previously. The possibility of giving a meaning to the resulting equation in a Heisenberg or interaction-like picture, is briefly discussed. (author)
Complex analysis fundamentals of the classical theory of functions
Stalker, John
1998-01-01
This clear, concise introduction to the classical theory of one complex variable is based on the premise that "anything worth doing is worth doing with interesting examples." The content is driven by techniques and examples rather than definitions and theorems. This self-contained monograph is an excellent resource for a self-study guide and should appeal to a broad audience. The only prerequisite is a standard calculus course. The first chapter deals with a beautiful presentation of special functions. . . . The third chapter covers elliptic and modular functions. . . in much more detail, and from a different point of view, than one can find in standard introductory books. . . . For [the] subjects that are omitted, the author has suggested some excellent references for the reader who wants to go through these topics. The book is read easily and with great interest. It can be recommended to both students as a textbook and to mathematicians and physicists as a useful reference. ---Mathematical Reviews Mainly or...
Latfield2: A c++ library for classical lattice field theory
David, Daverio; Bevis, Neil
2015-01-01
latfield2 is a C++ library designed to simplify writing parallel codes for solving partial differen- tial equations, developed for application to classical field theories in particle physics and cosmology. It is a significant rewrite of the latfield framework, moving from a slab domain decomposition to a rod decomposition, where the last two dimension of the lattice are scattered into a two dimensional process grid. Parallelism is implemented using the Message Passing Interface (MPI) standard, and hidden in the basic objects of grid-based simulations: Lattice, Site and Field. It comes with an integrated parallel fast Fourier transform, and I/O server class permitting computation to continue during the writing of large files to disk. latfield2 has been used for production runs on tens of thousands of processor elements, and is expected to be scalable to hundreds of thousands.
Deformation Quantization of Principal Fibre Bundles and Classical Gauge Theories
Wei\\ss, Stefan
2010-01-01
In this dissertation the notion of deformation quantization of principal fibre bundles is established and investigated in order to find a geometric formulation of classical gauge theories on noncommutative space-times. As a generalization, the notion of deformation quantization of surjective submersions is also discussed. It is shown that deformation quantizations of surjective submersions and principal fibre bundles always exist and are unique up to equivalence. These statements concerning complex-valued functions are moreover formulated and proved for sections of arbitrary vector bundles over the total space, in particular equivariant vector bundles. The commutants of the deformed right module structures within the differential operators, playing an inportant role with regard to the infinitesimal gauge transformations, are computed explicitly in each case. Depending on the choice of specific covariant derivatives and connections the commutants are isomorphic to the formal power series of the respective vert...
Geometry of Lagrangian first-order classical field theories
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Enriquez, A. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Munoz-Lecanda, M.C. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Roman-Roy, N. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica
1996-10-01
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether`s theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)
Fundamental Elements and Interactions of Nature: A Classical Unification Theory
Directory of Open Access Journals (Sweden)
Tianxi Zhang
2010-04-01
Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are considered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interaction between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation-color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deepens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a
Fundamental Elements and Interactions of Nature: A Classical Unification Theory
Directory of Open Access Journals (Sweden)
Zhang T. X.
2010-04-01
Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are con- sidered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interac- tion between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation- color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deep- ens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a
On the Classical String Solutions and String/Field Theory Duality
Aleksandrova, D.; Bozhilov, P.
2003-01-01
We classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.
A course in mathematical physics 2 classical field theory
Thirring, Walter
1978-01-01
In the past decade the language and methods ofmodern differential geometry have been increasingly used in theoretical physics. What seemed extravagant when this book first appeared 12 years ago, as lecture notes, is now a commonplace. This fact has strengthened my belief that today students of theoretical physics have to learn that language-and the sooner the better. Afterall, they willbe the professors ofthe twenty-first century and it would be absurd if they were to teach then the mathematics of the nineteenth century. Thus for this new edition I did not change the mathematical language. Apart from correcting some mistakes I have only added a section on gauge theories. In the last decade it has become evident that these theories describe fundamental interactions, and on the classical level their structure is suffi cientlyclear to qualify them for the minimum amount ofknowledge required by a theoretician. It is with much regret that I had to refrain from in corporating the interesting developments in Kal...
Semi-classical theory of quiet lasers. I: Principles
Arnaud, J; Philippe, F; Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2006-01-01
When light originating from a laser diode driven by non-fluctuating electrical currents is incident on a photo-detector, the photo-current does not fluctuate much. Precisely, this means that the variance of the number of photo-electrons counted over a large time interval is much smaller that the average number of photo-electrons. At non-zero Fourier frequency $\\Omega$ the photo-current power spectrum is of the form $\\Omega^2/(1+\\Omega^2)$ and thus vanishes as $\\Omega\\to 0$, a conclusion equivalent to the one given above. The purpose of this paper is to show that results such as the one just cited may be derived from a (semi-classical) theory in which neither the optical field nor the electron wave-function are quantized. We first observe that almost any medium may be described by a circuit and distinguish (possibly non-linear) conservative elements such as pure capacitances, and conductances that represent the atom-field coupling. The theory rests on the non-relativistic approximation. Nyquist noise sources (...
Classical Nonminimal Lagrangians and Kinematic Tests of Special Relativity
Schreck, M
2016-01-01
This article gives a brief summary on recently obtained classical lagrangians for the nonminimal fermion sector of the Standard-Model Extension (SME). Such lagrangians are adequate descriptions of classical particles that are subject to a Lorentz-violating background field based on the SME. Explicitly, lagrangians were obtained for the leading nonminimal contributions of the m, a, c, e, and f coefficients. These results were then used to interpret classical, kinematic tests of Special Relativity in the framework of the nonminimal SME. This led to new constraints on certain nonminimal controlling coefficients. Although the experiments were very sophisticated in the era when they were carried out, their sensitivities for detecting Lorentz violation were still far away from the Planck scale. Obtaining the novel constraints can be considered as a proof-of-principle demonstrating the applicability of the classical lagrangians computed.
Energy Technology Data Exchange (ETDEWEB)
Sahoo, Tapas; Pollak, Eli [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel)
2015-08-14
A second order classical perturbation theory is developed to calculate the sticking probability of a particle scattered from an uncorrugated thermal surface. An analytic expression for the temperature dependent energy loss of the particle to the surface is derived by employing a one-dimensional generalized Langevin equation. The surface temperature reduces the energy loss, since the thermal surface transfers energy to the particle. Using a Gaussian energy loss kernel and the multiple collision theory of Fan and Manson [J. Chem. Phys. 130, 064703 (2009)], enables the determination of the fraction of particles trapped on the surface after subsequent momentum reversals of the colliding particle. This then leads to an estimate of the trapping probability. The theory is tested for the model scattering of Ar on a LiF(100) surface. Comparison with numerical simulations shows excellent agreement of the analytical theory with simulations, provided that the energy loss is determined by the second order perturbation theory.
Universality principle and the development of classical density functional theory
Institute of Scientific and Technical Information of China (English)
周世琦; 张晓琪
2002-01-01
The universality principle of the free energy density functional and the ‘test particle' trick by Percus are combined to construct the approximate free energy density functional or its functional derivative. Information about the bulk fluid ralial distribution function is integrated into the density functional approximation directly for the first time in the present methodology. The physical foundation of the present methodology also applies to the quantum density functional theory.
Statistical Decision Theory Estimation, Testing, and Selection
Liese, Friedrich
2008-01-01
Suitable for advanced graduate students and researchers in mathematical statistics and decision theory, this title presents an account of the concepts and a treatment of the major results of classical finite sample size decision theory and modern asymptotic decision theory
On Classical de Sitter Vacua in String Theory
Wrase, Timm
2010-01-01
We review the prospect of obtaining tree-level de Sitter (dS) vacua and slow-roll inflation models in string compactifications. Restricting ourselves to the closed string sector and assuming the absence of NSNS-sources, we classify the minimal classical ingredients that evade the simplest no-go theorems against dS vacua and inflation. Spaces with negative integrated curvature together with certain combinations of low-dimensional orientifold planes and low-rank RR-fluxes emerge as the most promising setups of this analysis. We focus on two well-controlled classes that lead to an effective 4D, N=1 supergravity description: Type IIA theory on group or coset manifolds with SU(3)-structure and O6-planes, as well as type IIB compactifications on SU(2)-structure manifolds with O5- and O7-planes. While fully stabilized AdS vacua are generically possible, a number of problems encountered in the search for dS vacua are discussed.
On covariant Poisson brackets in classical field theory
Energy Technology Data Exchange (ETDEWEB)
Forger, Michael [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Salles, Mário O. [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN (Brazil)
2015-10-15
How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.
Theory of Test Translation Error
Solano-Flores, Guillermo; Backhoff, Eduardo; Contreras-Nino, Luis Angel
2009-01-01
In this article, we present a theory of test translation whose intent is to provide the conceptual foundation for effective, systematic work in the process of test translation and test translation review. According to the theory, translation error is multidimensional; it is not simply the consequence of defective translation but an inevitable fact…
Probability Spaces, Hilbert Spaces, and The Axioms of Test Theory
Zimmerman, Donald W.
1975-01-01
Classical test theory findings can be derived from the concepts of conditional expectation, conditional independence, and related notions. It is shown that these concepts provide precisely the formalism needed to obtain the classical results with minimal assumptions and with greatest economy in the methods of proof. (RC)
Qian, Xiao-Feng; Howell, John C; Eberly, J H
2015-01-01
The growing recognition that entanglement is not exclusively a quantum property, and does not even originate with Schr\\"odinger's famous remark about it [Proc. Camb. Phil. Soc. {\\bf 31}, 555 (1935)], prompts examination of its role in marking the quantum-classical boundary. We have done this by subjecting correlations of classical optical fields to new Bell-analysis experiments, and report here values of the Bell parameter greater than ${\\cal B} = 2.54$. This is many standard deviations outside the limit ${\\cal B} = 2$ established by the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [Phys. Rev. Lett. {\\bf 23}, 880 (1969)], in agreement with our theoretical classical prediction, and not far from the Tsirelson limit ${\\cal B} = 2.828...$. These results cast a new light on the standard quantum-classical boundary description, and suggest a reinterpretation of it.
A reappraisal of classical archetype theory and its implications for theory and practice.
Merchant, John
2009-06-01
This paper begins with an overview of contemporary approaches to archetype theory and notes the radical nature of certain deductions. Some argue that there is no 'archetype-as-such' as a pre-existing entity at the core of a complex driving its formation whilst the findings of current neuroscience are calling into question one very thing on which the classical theory is built--innatism. Knox's argument for image schemas raises the question as to the extent to which archetypes can be conceived in any preformationist sense. The question is then posed--to what extent can Jung's classical theory of archetypes be read in light of these current models? The case examples Jung uses to evidence the existence of archetypes, his explications of synchronicity and his own Philemon experience are then reappraised. The conclusion is drawn that it is difficult to evidence the existence of autonomous archetypes unrelated to personal affective experience. Not only would this be expected by emergent/developmental models of archetype but it can explain many of Jung's disjunctive statements about archetype constellation; the difficulties in separating personal and collective psychic content and Jung's apparent Lamarckianism. The implications of these models for theory, clinical practice and analyst training are then offered for discussion.
A reappraisal of classical archetype theory and its implications for theory and practice.
Merchant, John
2009-06-01
This paper begins with an overview of contemporary approaches to archetype theory and notes the radical nature of certain deductions. Some argue that there is no 'archetype-as-such' as a pre-existing entity at the core of a complex driving its formation whilst the findings of current neuroscience are calling into question one very thing on which the classical theory is built--innatism. Knox's argument for image schemas raises the question as to the extent to which archetypes can be conceived in any preformationist sense. The question is then posed--to what extent can Jung's classical theory of archetypes be read in light of these current models? The case examples Jung uses to evidence the existence of archetypes, his explications of synchronicity and his own Philemon experience are then reappraised. The conclusion is drawn that it is difficult to evidence the existence of autonomous archetypes unrelated to personal affective experience. Not only would this be expected by emergent/developmental models of archetype but it can explain many of Jung's disjunctive statements about archetype constellation; the difficulties in separating personal and collective psychic content and Jung's apparent Lamarckianism. The implications of these models for theory, clinical practice and analyst training are then offered for discussion. PMID:19531124
Theory testing using case studies
DEFF Research Database (Denmark)
Dissing Sørensen, Pernille; Løkke Nielsen, Ann-Kristina
Case studies may have different research goals. One such goal is the testing of small-scale and middle-range theories. Theory testing refers to the critical examination, observation, and evaluation of the 'why' and 'how' of a specified phenomenon in a particular setting. In this paper, we focus...... on the strengths of theory-testing case studies. We specify research paths associated with theory testing in case studies and present a coherent argument for the logic of theoretical development and refinement using case studies. We emphasize different uses of rival explanations and their implications for research...... design. Finally, we discuss the epistemological logic, i.e., the value to larger research programmes, of such studies and, following Lakatos, conclude that the value of theory-testing case studies lies beyond naïve falsification and in their contribution to developing research programmes in a progressive...
Motion in classical field theories and the foundations of the self-force problem
Harte, Abraham I
2014-01-01
This article serves as a pedagogical introduction to the problem of motion in classical field theories. The primary focus is on self-interaction: How does an object's own field affect its motion? General laws governing the self-force and self-torque are derived using simple, non-perturbative arguments. The relevant concepts are developed gradually by considering motion in a series of increasingly complicated theories. Newtonian gravity is discussed first, then Klein-Gordon theory, electromagnetism, and finally general relativity. Linear and angular momenta as well as centers of mass are defined in each of these cases. Multipole expansions for the force and torque are then derived to all orders for arbitrarily self-interacting extended objects. These expansions are found to be structurally identical to the laws of motion satisfied by extended test bodies, except that all relevant fields are replaced by effective versions which exclude the self-fields in a particular sense. Regularization methods traditionally ...
Classical tests of General Relativity in thick branes
Dahia, F.; de Albuquerque Silva, Alex
2015-02-01
Classical tests of General Relativity in braneworld scenarios have been investigated recently with the purpose of posing observational constraints on the parameters of some models of infinitely thin brane. Here we consider the motion of test particles in a thick brane scenario that corresponds to a regularized version of the Garriga-Tanaka solution, which describes a black hole solution in RSII model, in the weak field regime. By adapting a mechanism previously formulated in order to describe the confinement of massive tests particles in a domain wall (which simulates classically the trapping of the Dirac field in a domain wall), we study the influence of the brane thickness on the four-dimensional (4D) path of massless particles. Although the geometry is not warped and, therefore, the bound motion in the transverse direction is not decoupled from the movement in the 4D-world, we can find an explicit solution for the light deflection and the time delay, if the motion in the fifth direction is a high frequency oscillation. We verify that, owing to the transverse motion, the light deflection and the time delay depend on the energy of the light rays. This feature may lead to the phenomenon of gravitational rainbow. We also consider the problem from a semi-classical perspective, investigating the effects of the brane thickness on the motion of the zero-mode in the 4D-world.
Classical tests of General Relativity in thick branes
International Nuclear Information System (INIS)
Classical tests of General Relativity in braneworld scenarios have been investigated recently with the purpose of posing observational constraints on the parameters of some models of infinitely thin brane. Here we consider the motion of test particles in a thick brane scenario that corresponds to a regularized version of the Garriga-Tanaka solution, which describes a black hole solution in RSII model, in the weak field regime. By adapting a mechanism previously formulated in order to describe the confinement of massive tests particles in a domain wall (which simulates classically the trapping of the Dirac field in a domain wall), we study the influence of the brane thickness on the four-dimensional (4D) path of massless particles. Although the geometry is not warped and, therefore, the bound motion in the transverse direction is not decoupled from the movement in the 4D-world, we can find an explicit solution for the light deflection and the time delay, if the motion in the fifth direction is a high frequency oscillation. We verify that, owing to the transverse motion, the light deflection and the time delay depend on the energy of the light rays. This feature may lead to the phenomenon of gravitational rainbow. We also consider the problem from a semi-classical perspective, investigating the effects of the brane thickness on the motion of the zero-mode in the 4D-world. (orig.)
Classical tests of General Relativity in thick branes
Energy Technology Data Exchange (ETDEWEB)
Dahia, F. [Univ. Fed. da Paraiba, Department of Physics, Joao Pessoa, Paraiba (Brazil); Albuquerque Silva, Alex de [Univ. Fed. de Campina Grande, Department of Physics, Sume, Paraiba (Brazil)
2015-02-01
Classical tests of General Relativity in braneworld scenarios have been investigated recently with the purpose of posing observational constraints on the parameters of some models of infinitely thin brane. Here we consider the motion of test particles in a thick brane scenario that corresponds to a regularized version of the Garriga-Tanaka solution, which describes a black hole solution in RSII model, in the weak field regime. By adapting a mechanism previously formulated in order to describe the confinement of massive tests particles in a domain wall (which simulates classically the trapping of the Dirac field in a domain wall), we study the influence of the brane thickness on the four-dimensional (4D) path of massless particles. Although the geometry is not warped and, therefore, the bound motion in the transverse direction is not decoupled from the movement in the 4D-world, we can find an explicit solution for the light deflection and the time delay, if the motion in the fifth direction is a high frequency oscillation. We verify that, owing to the transverse motion, the light deflection and the time delay depend on the energy of the light rays. This feature may lead to the phenomenon of gravitational rainbow. We also consider the problem from a semi-classical perspective, investigating the effects of the brane thickness on the motion of the zero-mode in the 4D-world. (orig.)
Force-Field Functor Theory: Classical Force-Fields which Reproduce Equilibrium Quantum Distributions
Directory of Open Access Journals (Sweden)
Ryan eBabbush
2013-10-01
Full Text Available Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.
Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic
International Nuclear Information System (INIS)
Physical reasons for a crucial difference between the results of a three-phase theory developed recently (Kerner 2011 Phys. Rev. E 84 045102(R); 2013 Europhys. Lett. 102 28010; 2014 Physica A 397 76) and the classical theory are explained. Microscopic characteristics of traffic passing a traffic signal during the green signal phase and their dependence on the duration of the green phase have been found. It turns out that a moving synchronized flow pattern (MSP), which occurs in under-saturated traffic at the signal, causes ‘compression’ of traffic flow: the rate of MSP discharge can be considerably larger than the saturation flow rate of the classical traffic theory of city traffic. This leads to a considerably larger rate of traffic passing the signal in comparison with the saturation flow rate. This effect together with traffic behavior at the upstream queue front explains the metastability of under-saturated traffic with respect to a random time-delayed traffic breakdown. (paper)
Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic
Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael
2014-03-01
Physical reasons for a crucial difference between the results of a three-phase theory developed recently (Kerner 2011 Phys. Rev. E 84 045102(R); 2013 Europhys. Lett. 102 28010; 2014 Physica A 397 76) and the classical theory are explained. Microscopic characteristics of traffic passing a traffic signal during the green signal phase and their dependence on the duration of the green phase have been found. It turns out that a moving synchronized flow pattern (MSP), which occurs in under-saturated traffic at the signal, causes ‘compression’ of traffic flow: the rate of MSP discharge can be considerably larger than the saturation flow rate of the classical traffic theory of city traffic. This leads to a considerably larger rate of traffic passing the signal in comparison with the saturation flow rate. This effect together with traffic behavior at the upstream queue front explains the metastability of under-saturated traffic with respect to a random time-delayed traffic breakdown.
Dressing the Post-Newtonian two-body problem and Classical Effective Field Theory
Kol, Barak
2009-01-01
We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling Post-Newtonian gravitating binary. We use the effective field theory approach with the non-relativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a non-linear classical field theory coupled to point-like sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain non-linear world-line vertices, and we classify all the possible topologies of irreducible ...
Theory Testing Using Case Studies
DEFF Research Database (Denmark)
Møller, Ann-Kristina Løkke; Dissing Sørensen, Pernille
2014-01-01
testing using case studies, including the associated research goal, analysis, and generalisability. We argue that research designs for theory testing using case studies differ from theorybuilding case study research designs because different research projects serve different purposes and follow different......The appropriateness of case studies as a tool for theory testing is still a controversial issue, and discussions about the weaknesses of such research designs have previously taken precedence over those about its strengths. The purpose of the paper is to examine and revive the approach of theory...... research paths....
Classical tests of general relativity in brane world models
Boehmer, Christian G; Harko, Tiberiu; Lobo, Francisco S N
2009-01-01
The classical tests of general relativity (perihelion precession, deflection of light, and the radar echo delay) are considered for several spherically symmetric static vacuum solutions in brane world models. Generally, the spherically symmetric vacuum solutions of the brane gravitational field equations have properties quite distinct as compared to the standard black hole solutions of general relativity. As a first step a general formalism that facilitates the analysis of general relativistic Solar System tests for any given spherically symmetric metric is developed. It is shown that the existing observational Solar System data on the perihelion shift of Mercury, on the light bending around the Sun (obtained using long-baseline radio interferometry), and ranging to Mars using the Viking lander, constrain the numerical values of the parameters of the specific models. Hence Solar System tests represent very convenient and efficient tools to test the viability of the different black hole solutions in brane worl...
How some infinities cause problems in classical physical theories
Atkinson, David; Peijnenburg, Jeanne; Allo, P.; van Kerhove, B.
2014-01-01
In this paper we review a 1992 excursion of Jean Paul Van Bendegem into physics, ‘How Infinities Cause Problems in Classical Physical Theories’, in the light of two later models concerning colliding balls, of Pérez Laraudogoitia and of Alper and Bridger, respectively. We show that Van Bendegem antic
On the concept of Bell’s local causality in local classical and quantum theory
International Nuclear Information System (INIS)
The aim of this paper is to implement Bell’s notion of local causality into a framework, called local physical theory. This framework, based on the axioms of algebraic field theory, is broad enough to integrate both probabilistic and spatiotemporal concepts and also classical and quantum theories. Bell’s original idea of local causality will arise as the classical case of our definition. Classifying local physical theories by whether they obey local primitive causality, a property rendering the dynamics of the theory causal, we then investigate what is needed for a local physical theory to be locally causal. Finally, comparing local causality with the common cause principles and relating both to the Bell inequalities we find a nice parallelism: Bell inequalities cannot be derived neither from local causality nor from a common cause unless the local physical theory is classical or the common cause is commuting, respectively
On the concept of Bell’s local causality in local classical and quantum theory
Energy Technology Data Exchange (ETDEWEB)
Hofer-Szabó, Gábor, E-mail: szabo.gabor@btk.mta.hu [Research Center for the Humanities, Budapest (Hungary); Vecsernyés, Péter, E-mail: vecsernyes.peter@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary)
2015-03-15
The aim of this paper is to implement Bell’s notion of local causality into a framework, called local physical theory. This framework, based on the axioms of algebraic field theory, is broad enough to integrate both probabilistic and spatiotemporal concepts and also classical and quantum theories. Bell’s original idea of local causality will arise as the classical case of our definition. Classifying local physical theories by whether they obey local primitive causality, a property rendering the dynamics of the theory causal, we then investigate what is needed for a local physical theory to be locally causal. Finally, comparing local causality with the common cause principles and relating both to the Bell inequalities we find a nice parallelism: Bell inequalities cannot be derived neither from local causality nor from a common cause unless the local physical theory is classical or the common cause is commuting, respectively.
Classical tests of General Relativity in thick branes
Dahia, F
2014-01-01
Classical tests of General Relativity in braneworld scenarios have been investigated recently with the purpose of posing observational constraints on parameters of some models of infinitely thin brane. Here we consider the motion of test particles in a thick brane scenario that corresponds to a regularized version of the Garriga-Tanaka solution, which describes a black hole solution in RSII model, in the weak field regime. By adapting a mechanism previously formulated in order to describe the confinement of massive tests particles in a domain wall (that simulates classically the trapping of the Dirac field in a domain wall), we study the influence of the brane thickness on the four-dimensional (4D) path of massless particles. Although the geometry is not warped and, therefore, the bound motion in the transverse direction is not decoupled from the movement in the 4D-world, we can find an explicit solution for the light deflection and the time delay, if the motion in the fifth direction is a high frequency osci...
Turesson, Martin; Szparaga, Ryan; Ma, Ke; Woodward, Clifford E; Forsman, Jan
2014-05-14
A new classical density functional approach is developed to accurately treat a coarse-grained model of room temperature aromatic ionic liquids. Our major innovation is the introduction of charge-charge correlations, which are treated in a simple phenomenological way. We test this theory on a generic coarse-grained model for aromatic RTILs with oligomeric forms for both cations and anions, approximating 1-alkyl-3-methyl imidazoliums and BF₄⁻, respectively. We find that predictions by the new density functional theory for fluid structures at charged surfaces are very accurate, as compared with molecular dynamics simulations, across a range of surface charge densities and lengths of the alkyl chain. Predictions of interactions between charged surfaces are also presented. PMID:24718295
Antigravity and classical solutions of five-dimensional Kaluza-Klein theory
Energy Technology Data Exchange (ETDEWEB)
Pollard, D. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)
1983-02-21
Classical solutions are exhibited of a graviton-graviphoton-graviscalar field theory which are antigravitating in the weak-field approximation. The theory itself is obtained by a Kaluza-Klein type reduction from five to four dimensions. The solutions are dyonic black holes with scalar charge. They share some similarities with the extreme Reissner-Nordstrom black holes of Einstein-Maxwell theory.
Instanton Representation of Plebanski Gravity. The Classical Theory
Ita, Eyo
2015-10-01
This paper is a self-contained introduction to the instanton representation of Plebanski gravity (IRPG), a formulation of General Relativity (GR) where the basic variables are a spacetime gauge connection and a three by three matrix valued in the Lie algebra of so(3,C). We present a classical analysis of the IRPG from various perspectives, noting some of its interesting features and motivations.
Quantization, Classical and Quantum Field Theory and Theta - Functions
Tyurin, Andrey N.
2002-01-01
In the abelian case (the subject of several beautiful books) fixing some combinatorial structure (so called theta structure of level k) one obtains a special basis in the space of sections of canonical polarization powers over the jacobians. These sections can be presented as holomorphic functions on the "abelian Schottky space". This fact provides various applications of these concrete analytic formulas to the integrable systems, classical mechanics and PDE's. Our practical goal is to do the...
On inert properties of particles in classical theory
Kosyakov, B. P.
2002-01-01
This is a critical review of inert properties of classical relativistic point objects. The objects are classified as Galilean and non-Galilean. Three types of non-Galilean objects are considered: spinning, rigid, and dressed particles. In the absence of external forces, such particles are capable of executing not only uniform motions along straight lines but also Zitterbewegungs, self-accelerations, self-decelerations, and uniformly accelerated motions. A free non-Galilean object possesses th...
Lange, Elizabeth
2015-01-01
This article argues that sociology has been a foundational discipline for the field of adult education, but it has been largely implicit, until recently. This article contextualizes classical theories of sociology within contemporary critiques, reviews the historical roots of sociology and then briefly introduces the classical theories…
Quantum Electrodynamics Basis of Classical-Field High-Harmonic Generation Theory
Institute of Scientific and Technical Information of China (English)
王兵兵; 高靓辉; 傅盘铭; 郭东升; R. R. Freeman
2001-01-01
From the nonperturbative quantum electrodynamics theory, we derive the Landau-Dykhne formula which represents the quantum-mechanical formulation of the three-step model. These studies provide a basis for the classical-field approaches to high-order harmonic generation and justify some assumptions used in classical-field modelling.
Hyperdense coding and superadditivity of classical capacities in hypersphere theories
Massar, Serge; Pironio, Stefano; Pitalúa-García, Damián
2015-01-01
In quantum superdense coding, two parties previously sharing entanglement can communicate a two bit message by sending a single qubit. We study this feature in the broader framework of general probabilistic theories. We consider a particular class of theories in which the local state space of the communicating parties corresponds to Euclidean hyperballs of dimension n (the case n = 3 corresponds to the Bloch ball of quantum theory). We show that a single n-ball can encode at most one bit of i...
Classical conformality in the Standard Model from Coleman’s theory
Kawana, Kiyoharu
2016-09-01
The classical conformality (CC) is one of the possible candidates for explaining the gauge hierarchy of the Standard Model (SM). We show that it is naturally obtained from the Coleman’s theory on baby universe.
Introduction of a Classical Level in Quantum Theory
Prosperi, G. M.
2016-11-01
In an old paper of our group in Milano a formalism was introduced for the continuous monitoring of a system during a certain interval of time in the framework of a somewhat generalized approach to quantum mechanics (QM). The outcome was a distribution of probability on the space of all the possible continuous histories of a set of quantities to be considered as a kind of coarse grained approximation to some ordinary quantum observables commuting or not. In fact the main aim was the introduction of a classical level in the context of QM, treating formally a set of basic quantities, to be considered as beables in the sense of Bell, as continuously taken under observation. However the effect of such assumption was a permanent modification of the Liouville-von Neumann equation for the statistical operator by the introduction of a dissipative term which is in conflict with basic conservation rules in all reasonable models we had considered. Difficulties were even encountered for a relativistic extension of the formalism. In this paper I propose a modified version of the original formalism which seems to overcome both difficulties. First I study the simple models of an harmonic oscillator and a free scalar field in which a coarse grain position and a coarse grained field respectively are treated as beables. Then I consider the more realistic case of spinor electrodynamics in which only certain coarse grained electric and magnetic fields are introduced as classical variables and no matter related quantities.
A course in mathematical physics 1 and 2 classical dynamical systems and classical field theory
Thirring, Walter
1992-01-01
The last decade has seen a considerable renaissance in the realm of classical dynamical systems, and many things that may have appeared mathematically overly sophisticated at the time of the first appearance of this textbook have since become the everyday tools of working physicists. This new edition is intended to take this development into account. I have also tried to make the book more readable and to eradicate errors. Since the first edition already contained plenty of material for a one semester course, new material was added only when some of the original could be dropped or simplified. Even so, it was necessary to expand the chap ter with the proof of the K-A-M Theorem to make allowances for the cur rent trend in physics. This involved not only the use of more refined mathe matical tools, but also a reevaluation of the word "fundamental. " What was earlier dismissed as a grubby calculation is now seen as the consequence of a deep principle. Even Kepler's laws, which determine the radii of the ...
Directory of Open Access Journals (Sweden)
Sargsyan S.H.
2014-03-01
Full Text Available In the present paper, the system of equations of three-dimensional micropolar theory of elasticity, written down for thin shell as singularly perturbed with small geometric parameter system, is analyzed asymptotically: the internal iteration process and boundary layers are constructed, their interaction is studied, boundary conditions are obtained for each of them. Then, the main specific properties of the asymptotic solution accepting as hypotheses, general applied theory of micropolar elastic thin shells is constructed and it is shown that the constructed theory is asymptotically correct. Passing from the micropolar theory of thin shells to the classical theory, it is shown, that this applied classical theory of thin shells, when transverse shifts are taken into account, is asymptotically correct theory in relation to the other corrected theories of thin shells.
Quantization of light energy directly from classical electromagnetic theory in vacuum
Institute of Scientific and Technical Information of China (English)
She Wei-Long
2005-01-01
It is currently believed that light quantum or the quantization of light energy is beyond classical physics, and the picture of wave-particle duality, which was criticized by Einstein but has attracted a number of experimental researches, is necessary for the description of light. It is shown in this paper, however, that the quantization of light energy in vacuum, which is the same as that in quantum electrodynamics, can be derived directly from the classical electromagnetic theory through the consideration of statistics based on classical physics. Therefore, the quantization of energy is an intrinsic property of light as a classical electromagnetic wave and has no need of being related to particles.
Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in $\\phi^4$-Theory
Finster, Felix
2012-01-01
Solutions of the classical $\\phi^4$-theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a "classical measurement process" in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.
k-Cosymplectic Classical Field Theories: Tulczyjew and Skinner-Rusk Formulations
Rey, Angel M.; Román-Roy, Narciso; Salgado, Modesto; Vilariño, Silvia
2012-06-01
The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order classical field theories are reviewed and completed. In particular, they are stated for singular and almost-regular systems. Subsequently, several alternative formulations for k-cosymplectic first-order field theories are developed: First, generalizing the construction of Tulczyjew for mechanics, we give a new interpretation of the classical field equations. Second, the Lagrangian and Hamiltonian formalisms are unified by giving an extension of the Skinner-Rusk formulation on classical mechanics.
Topics in the theory of quantum and classical networks
Almaas, Eivind
We study both quantum and classical networks. The quantum networks consist of 1D and 2D arrays of Josephson junctions coupled to a resonant cavity. We derive dynamical equations for these arrays by applying the Heisenberg equations of motion to a model Hamiltonian. By means of a canonical transformation, we also show that, in the absence of an applied current and dissipation, our model reduces to one used to describe coupled qubits, and that the cavity-junction coupling corresponds to a capacitive coupling between the array and the cavity mode. From extensive numerical solutions of the model in both 1D and 2D, we find that the array locks into a coherent, periodic state above a critical number of active junctions, that the current-voltage characteristics of the array have self-induced resonant steps (SIRS's), that when N a active junctions are synchronized on a SIRS, the energy emitted into the resonant cavity is quadratic in Na, and that when a fixed number of junctions is biased on a SIRS, the energy is linear in the input power. All these results are in agreement with recent experiments. We conclude that most of the experimental data can be understood from classical equations of motion. Our study of classical networks is divided into two parts. In the first, we study the structural properties of 'small-world' networks (SWN)---networks that display properties of both regular and random graphs. We generalize the model for generating such networks that was first introduced by Watts and Strogatz. For this model, we study the distribution function for minimal paths, derive its general form and also discuss its scaling properties. Using this distribution function, we derive exact expressions for several network properties, like the average minimal distance, ℓ¯ and its variance, sigma2. These exact relations are independent of the 'degree distribution', i.e. the distribution of nearest-neighbor connections. In the second, we study how the structure of the network
Classical versus Keynesian theory of unemployment : an approach to the Spanish labor market
Alonso Rodríguez, Rubén
2015-01-01
In the last decade the unemployment skyrocketed defining a dramatic landscape for the Spanish economy. In order to understand the root causes, I have revisited two theories widely extended in labor economics: The Classical Theory of Unemployment and the Keynesian Theory of Unemployment. Despite both conceptions are well known and supported by academic literature, in the Spanish case as in many other countries is still unclear what theory better adjust to reality. To solve this lack of clearne...
3D gravity with dust: classical and quantum theory
Husain, Viqar
2015-01-01
We study the Einstein gravity and dust system in three spacetime dimensions as an example of a non-perturbative quantum gravity model with local degrees of freedom. We derive the Hamiltonian theory in the dust time gauge and show that it has a rich class of exact solutions. These include the Ba\\~nados-Teitelboim-Zanelli black hole, static solutions with naked singularities and travelling wave solutions with dynamical horizons. We give a complete quantization of the wave sector of the theory, including a definition of a self-adjoint spacetime metric operator. This operator is used to demonstrate the quantization of deficit angle and the fluctuation of dynamical horizons.
A class of exact classical solutions to string theory.
Coley, A A
2002-12-31
We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.
THE CONCEPT OF INTERNATIONAL TRADE AND MAIN CLASSIC THEORIES
Directory of Open Access Journals (Sweden)
Elena Ramona TERZEA
2016-07-01
Full Text Available Taking into account the major impact that international trade has on the economy and on the people’s lives, and considering its effects on the economic growth, the foreign commerce has to be well understood so that the commercial policies have to be well elaborated, implemented and followed. The theories of international trade are extremely important in order to determine the flows, but especially in the anticipation of the evolution of the forces that influences its dymanic. The theories regarding the foreign trade are used also by the big companies, by their managers, in their attempt to identify the most advantageous strategies of internationalizations, on the most promising markets.
Classical theory of thermal radiation from a solid.
Guo, Wei
2016-06-01
In this work, a solid at a finite temperature is modeled as an ensemble of identical atoms, each of which moves around a lattice site inside an isotropic harmonic potential. The motion of one such atom is studied first. It is found that the atom moves like a time-dependent current density and, thus, can emit electromagnetic radiation. Since all the atoms are identical, they can radiate, too. The resultant radiation from the atoms is the familiar thermal radiation from the solid. After its general expression is obtained, the intensity of the thermal radiation is discussed for its properties, and specifically calculated in the low-temperature limit. Both atomic motion and radiation are formulated in the classical domain. PMID:27409442
Foundations of the classical theory of partial differential equations
Egorov, Yu V
1998-01-01
From the reviews of the first printing, published as volume 30 of the Encyclopaedia of Mathematical Sciences: "... I think the volume is a great success and an excellent preparation for future volumes in the series. ... the introductory style of Egorov and Shubin is .. attractive. ... a welcome addition to the literature and I am looking forward to the appearance of more volumes of the Encyclopedia in the near future. ..." The Mathematical Intelligencer, 1993 "... According to the authors ... the work was written for nonspecialists and physicists but in my opinion almost every specialist will find something new ... in the text. The style is clear, the notations are chosen luckily. The most characteristic feature of the work is the accurate emphasis on the fundamental notions ..." Acta Scientiarum Mathematicarum, 1993 "... On the whole, a thorough overview on the classical aspects of the topic may be gained from that volume." Monatshefte für Mathematik, 1993 "... It is comparable in scope with the great Coura...
Classical instanton and wormhole solutions of Type IIB string theory
Kim, Jin Young; Lee, H. W.; Myung, Y. S.
1996-01-01
We study $p=-1$ D-brane in type IIB superstring theory. In addition to RR instanton, we obtain the RR charged wormhole solution in the Einstein frame. This corresponds to the ten-dimensional singular wormhole solution with infinite euclidean action.
Opportunizing: A classic grounded theory study on business and management
Directory of Open Access Journals (Sweden)
Ólavur Christiansen
2006-11-01
Full Text Available Opportunizing emerged as the core variable of this classic GT study on business and management. Opportunizing is the recurrent main concern that businesses have to continually resolve, and it explains how companies recurrently create, identify, seize or exploit situations to maintain their growth or survival. Opportunizing is the recurrent creation and re-creation of opportunities in business. Opportunizing is basically what business managers do and do all the time. The problematic nature of opportunizing is resolved by a core social process ofopportunizing and its attached sub-processes that account for change over time and for the variations of the problematic nature of its resolution.Opportunizing has five main facets. These are conditional befriending (confidence building & modifying behavior,prospecting (e.g. information gaining, weighing up (information appraisal & decision-making, moment capturing (quick intervention for seizing strategic opportunities, andconfiguration matching (adjusting the business organization to abet the other activities of opportunizing.On a more abstract level, opportunizing has three more organizational facets: the physically boundary-less, the valuehierarchical, and the physically bounded. The first of these called perpetual opportunizing. This emerges from the conjunction of conditional befriending and prospecting. The second facet is called triggering opportunizing. It arises from the coming together of weighing up and moment capturing. The final facet is called spasmodic opportunizing. This happens when moment capturing and configuration matching unite.
A modification of Amiet's classical trailing edge noise theory for strictly two dimensional flows
Sandberg, Richard D.; Sandham, Neil D.
2007-01-01
The aim of this report is to derive theoretical expressions for the far-field pressure generated by disturbances convecting over a trailing edge. First, a general calculation of the far-field pressure is discussed. Then the classical theory of Amiet (1976b) is reviewed, listing the most relevant assumptions. Amiet's theory is then revised for two-dimensional flows.
The classical tests in Kaluza-Klein gravity
Kalligas, D.; Wesson, P. S.; Everitt, C. W. F.
1995-01-01
The possible existence of extra dimensions to spacetime can be tested astrophysically using Kaluza-Klein theory, which is a natural extension of Einsteins's general relativity. In the simplest version of the theory, there is a standard class of five-dimensional solutions that are analogous to the four-dimensional Schwarzschild solution. However, even a small departure of the extra dimension from flatness affects the first or dominant part of the potential, making it possible to test for the existence of an extra dimension. Data from the solar system indicate that in our region of space the terms due to the fifth dimension are small (less than or equal to 0.1%) compared to those due to the usual for dimensions of spacetime. However, the parameters of Kaluza-Klein theory are not universal constants and can vary from place to place depending on local physics. Hence other astrophysical systems may serve as better laboratories for investigating the possible existence of extra dimensions.
Matrix Analogues to Some Classical Problems in Number Theory
Niwa, Masahiko
1996-01-01
The aim of this paper is to give a few results on some problems in the matrix ring Mn(R) over a commutative ring R analogous to some classical problems in number theory, which are handled in L. N. Vaserstein[4]. As for Matrix Goldbach Problem we can easily give an affirmative solution in Mn(R)(any n≧2), contrary to the difficulty of the original conjecture. As for Matrix Fermat Problem we will explain the connection of this problem with elements of finite order of the group GLn(R) of uni...
Perturbative quantization of Yang-Mills theory with classical double as gauge algebra
Energy Technology Data Exchange (ETDEWEB)
Ruiz Ruiz, F. [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)
2016-02-15
Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary. (orig.)
On the Foundational Equations of the Classical Theory of Electrodynamics
Mansuripur, Masud
2014-01-01
A close examination of the Maxwell-Lorentz theory of electrodynamics reveals that polarization and magnetization of material media need not be treated as local averages over small volumes - volumes that nevertheless contain a large number of electric and/or magnetic dipoles. Indeed, Maxwell's macroscopic equations are exact and self-consistent mathematical relations between electromagnetic fields and their sources, which consist of free charge, free current, polarization, and magnetization. When necessary, the discrete nature of the constituents of matter and the granularity of material media can be handled with the aid of special functions, such as Dirac's delta-function. The energy of the electromagnetic field and the exchange of this energy with material media are treated with a single postulate that establishes the Poynting vector S = ExH as the rate of flow of electromagnetic energy under all circumstances. Similarly, the linear and angular momentum densities of the fields are simple functions of the Poy...
Testing Gravity Theories Using Stars
Sakstein, Jeremy; Vikram, Vinu
2014-01-01
Modified theories of gravity have received a renewed interest due to their ability to account for the cosmic acceleration. In order to satisfy the solar system tests of gravity, these theories need to include a screening mechanism that hides the modifications on small scales. One popular and well-studied theory is chameleon gravity. Our own galaxy is necessarily screened, but less dense dwarf galaxies may be unscreened and their constituent stars can exhibit novel features. In particular, unscreened stars are brighter, hotter and more ephemeral than screened stars in our own galaxy. They also pulsate with a shorter period. In this essay, we exploit these new features to constrain chameleon gravity to levels three orders of magnitude lower the previous measurements. These constraints are currently the strongest in the literature.
Quasi-classical theory of electronic flux density in electronically adiabatic molecular processes.
Diestler, D J
2012-11-26
The standard Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (EFD). A previously proposed "coupled-channels" theory permits the extraction of the EFD from the BO wave function for one-electron diatomic systems, but attempts at generalization to many-electron polyatomic systems are frustrated by technical barriers. An alternative "quasi-classical" approach, which eliminates the explicit quantum dynamics of the electrons within a classical framework, yet retains the quantum character of the nuclear motion, appears capable of yielding EFDs for arbitrarily complex systems. Quasi-classical formulas for the EFD in simple systems agree with corresponding coupled-channels formulas. Results of the application of the new quasi-classical formula for the EFD to a model triatomic system indicate the potential of the quasi-classical scheme to elucidate the dynamical role of electrons in electronically adiabatic processes in more complex multiparticle systems.
Treatise on classical elasticity theory and related problems
Teodorescu, Petre P
2013-01-01
Deformable solids have a particularly complex character; mathematical modeling is not always simple and often leads to inextricable difficulties of computation. One of the simplest mathematical models and, at the same time, the most used model, is that of the elastic body – especially the linear one. But, notwithstanding its simplicity, even this model of a real body may lead to great difficulties of computation. The practical importance of a work about the theory of elasticity, which is also an introduction to the mechanics of deformable solids, consists of the use of scientific methods of computation in a domain in which simplified methods are still used. This treatise takes into account the consideration made above, with special attention to the theoretical study of the state of strain and stress of a deformable solid. The book draws on the known specialized literature, as well as the original results of the author and his 50+ years experience as Professor of Mechanics and Elasticity at the University o...
Momentum relation and classical limit in the future-not-included complex action theory
Nagao, Keiichi
2013-01-01
Studying the time development of the expectation value in the future-not-included complex action theory we point out that the momentum relation (relation analogous to $p=\\frac{\\partial L}{\\partial \\dot{q}}$), which was derived via Feynman path integral and was shown to be right in the future-included theory in our previous papers, is not valid in the future-not-included theory. We provide the correct momentum relation in the future-not-included theory, and argue that the future-not-included classical theory is described by a certain real action. In addition we provide another way to understand the time development of the future-not-included theory by utilizing the future-included theory. Furthermore, applying the method used in our previous paper to the future-not-included theory properly by introducing a formal Lagrangian, we derive the correct momentum relation in the future-not-included theory.
Dressing the post-Newtonian two-body problem and classical effective field theory
Kol, Barak; Smolkin, Michael
2009-12-01
We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling post-Newtonian (PN) gravitating binary. We use the effective field theory approach with the nonrelativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a nonlinear classical field theory coupled to pointlike sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain nonlinear worldline vertices, and we classify all the possible topologies of irreducible diagrams for low loop numbers. We apply the dressing program to our post-Newtonian case of interest. The dressed charges consist of the dressed energy-momentum tensor after a nonrelativistic decomposition, and we compute all dressed charges (in the harmonic gauge) appearing up to 2PN in the 2-body effective action (and more). We determine the irreducible skeleton diagrams up to 3PN and we employ the dressed charges to compute several terms beyond 2PN.
A Test of Objectification Theory in Adolescent Girls.
Slater, Amy; Tiggemann, Marika
2002-01-01
Tested the components of a model proposed by Objectification Theory in a sample of adolescent girls who did and did not study classical ballet. Participant surveys examined self-objectification, body shame, appearance anxiety, and disordered eating. There was no difference between groups on self-objectification or any of its proposed consequences.…
Development of a unified viscoplasticity constitutive model based on classical plasticity theory
Institute of Scientific and Technical Information of China (English)
GUAN Ping; LIU ChangChun; L(U) HeXiang
2009-01-01
The traditional unified viscoplasticity constitutive model can be only applied to metal materials. The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model, thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model. Moreover, this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method, which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials. The numerical simulation indicates that the construction should be both reasonable and practical.
Development of a unified viscoplasticity constitutive model based on classical plasticity theory
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The traditional unified viscoplasticity constitutive model can be only applied to metal materials.The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model,thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model.Moreover,this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method,which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials.The numerical simulation indicates that the construction should be both reasonable and practical.
Classical and quantum contents of solvable game theory on Hilbert space
International Nuclear Information System (INIS)
A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation
a Classical Isodual Theory of Antimatter and its Prediction of Antigravity
Santilli, Ruggero Maria
An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatment of matter and antimatter in due time, and as the classical foundations of an axiomatically consistent inclusion of gravitation in unified gauge theories recently appeared elsewhere, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with corresponding formulations at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also antiautomorphic (and more generally, antiisomorphic), yet it is applicable beginning at the classical level and then persists at the quantum level where it becomes equivalent to charge conjugation. We therefore present, apparently for the first time, the classical isodual theory of antimatter, we identify the physical foundations of the theory as being the novel isodual Galilean, special and general relativities, and we show the compatibility of the theory with all available classical experimental data on antimatter. We identify the classical foundations of the prediction of antigravity for antimatter in the field of matter (or vice-versa) without any claim on its validity, and defer its resolution to specifically identified experiments. We identify the novel, classical, isodual electromagnetic waves which are predicted to be emitted by antimatter, the so-called space-time machine based on a novel non-Newtonian geometric propulsion, and other implications of the theory. We also introduce, apparently for the first time, the isodual space and time inversions and show that they are nontrivially different than the conventional ones, thus
Neo-classical theory of competition or Adam Smith's hand as mathematized ideology
McCauley, Joseph L.
2001-10-01
Orthodox economic theory (utility maximization, rational agents, efficient markets in equilibrium) is based on arbitrarily postulated, nonempiric notions. The disagreement between economic reality and a key feature of neo-classical economic theory was criticized empirically by Osborne. I show that the orthodox theory is internally self-inconsistent for the very reason suggested by Osborne: lack of invertibility of demand and supply as functions of price to obtain price as functions of supply and demand. The reason for the noninvertibililty arises from nonintegrable excess demand dynamics, a feature of their theory completely ignored by economists.
Comparison of Classic Sweat Test and Crystallization Test in Diagnosis of Cystic Fibrosis
Fatemeh Farahmand; Nooshin Sadjadei; Mohammad-Taghi Haghi-Ashtiani; Vajiheh Modaresi; Nima Rezaei; Bahar Pakseresht
2012-01-01
Objective: Sweat chloride measurement is considered a standard diagnostic tool for cystic fibrosis (CF). This study was performed to compare sweat chloride values obtained by quantitative pilocarpine iontophoresis (classic test) with sweat crystallization detected by direct observation of a drop of perspiration under light microscopy in patients with and without CF.Methods: The tests using both techniques were performed simultaneously in patients with and without CF. Cutoff values of ≥60 mmol...
Guillemin, Ernst A
2013-01-01
An eminent electrical engineer and authority on linear system theory presents this advanced treatise, which approaches the subject from the viewpoint of classical dynamics and covers Fourier methods. This volume will assist upper-level undergraduates and graduate students in moving from introductory courses toward an understanding of advanced network synthesis. 1963 edition.
Uniting the Spheres: Modern Feminist Theory and Classic Texts in AP English
Drew, Simao J. A.; Bosnic, Brenda G.
2008-01-01
High school teachers Simao J. A. Drew and Brenda G. Bosnic help familiarize students with gender role analysis and feminist theory. Students examine classic literature and contemporary texts, considering characters' historical, literary, and social contexts while expanding their understanding of how patterns of identity and gender norms exist and…
Anisotropic cosmology in S\\'aez-Ballester theory: classical and quantum solutions
Socorro, J; G., M A Sánchez; Palos, M G Frías
2010-01-01
We use the S\\'aez-Ballester theory on anisotropic Bianchi I cosmological model, with barotropic fluid and cosmological constant. We obtain the classical solution by using the Hamilton-Jacobi approach. Also the quantum regime is constructed and exact solutions to the Wheeler-DeWitt equation are found.
Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment
Marcus, R. A.
1964-01-01
In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.
A Developmental Test of Mertonian Anomie Theory.
Menard, Scott
1995-01-01
Carefully reviewed Merton's writings on anomie theory to construct a more complete and rigorous test of the theory for respondents in early, middle, and late adolescence. Concluded that misspecified models of strain theory have underestimated the predictive power of strain theory in general and of anomie theory in particular. (JBJ)
A comparison of three classical analytical theories for the motion of artificial satellites
Gordon, R. A.; Mistreets, G. D.; Watson, J. S.
1978-01-01
Motivated by the heavy reliance upon the analytic orbit theory in orbit determination operations at the Goddard Space Flight Center (GSFC), a comparison study is performed for three classical analytical theories of artificial satellite motion about an oblate earth. The three analytical theories are: (1) Brouwer, (2) a modified Brouwer, i.e., Brouwer-Lyddane and Cohen, and (3) Vinti. Comparison results for each theory are produced for a number of representative satellites of current or past interest which proved amenable to analytic theory application. The uniformity of these results has significant implications for current and future mission operations and planning activities. Subsidiary topics arising from the results of this study which relate to the optimum usage of the individual theories are also discussed
Ice Nucleation on Carbon Surface Supports the Classical Theory for Heterogeneous Nucleation
Cabriolu, Raffaela
2015-01-01
The prevalence of heterogeneous nucleation in nature was explained qualitatively by the classical theory for heterogeneous nucleation established over more than 60 years ago, but the quantitative validity and the key conclusions of the theory have remained unconfirmed. Employing the forward flux sampling method and the coarse-grained water model mW, we explicitly computed the heterogeneous ice nucleation rates in the supercooled water on a graphitic surface at various temperatures. The independently calculated ice nucleation rates were found to fit well according to the classical theory for heterogeneous nucleation. The fitting procedure further yields the estimate of the potency factor which measures the ratio of the heterogeneous nucleation barrier to the homogeneous nucleation barrier. Remarkably, the estimated potency factor agrees quantitatively with the volumetric ratio of the critical nuclei between the heterogeneous and homogeneous nucleation. Our numerical study thus provides a strong support to the ...
A New Conformal Theory of Semi-Classical Quantum General Relativity
Directory of Open Access Journals (Sweden)
Suhendro I.
2007-10-01
Full Text Available We consider a new four-dimensional formulation of semi-classical quantum general relativity in which the classical space-time manifold, whose intrinsic geometric properties give rise to the effects of gravitation, is allowed to evolve microscopically by means of a conformal function which is assumed to depend on some quantum mechanical wave function. As a result, the theory presented here produces a unified field theory of gravitation and (microscopic electromagnetism in a somewhat simple, effective manner. In the process, it is seen that electromagnetism is actually an emergent quantum field originating in some kind of stochastic smooth extension (evolution of the gravitational field in the general theory of relativity.
Effective model hierarchies for dynamic and static classical density functional theories
Energy Technology Data Exchange (ETDEWEB)
Majaniemi, S [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11100, FI-00076 Aalto (Finland); Provatas, N [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S-4L7 (Canada); Nonomura, M, E-mail: maj@fyslab.hut.f [Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)
2010-09-15
The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.
Studying thin film damping in a micro-beam resonator based on non-classical theories
Institute of Scientific and Technical Information of China (English)
Mina Ghanbari; Siamak Hossainpour; Ghader Rezazadeh
2016-01-01
In this paper, a mathematical model is presented for studying thin film damping of the surrounding fluid in an in-plane oscillating micro-beam resonator. The proposed model for this study is made up of a clamped-clamped micro-beam bound between two fixed layers. The micro-gap between the micro-beam and fixed layers is filled with air. As classical theories are not properly capable of pre-dicting the size dependence behaviors of the micro-beam, and also behavior of micro-scale fluid media, hence in the presented model, equation of motion governing longitudinal displacement of the micro-beam has been extracted based on non-local elasticity theory. Furthermore, the fluid field has been modeled based on micro-polar theory. These coupled equations have been simplified using Newton-Laplace and continuity equations. After transforming to non-dimensional form and linearizing, the equations have been discretized and solved simultaneously using a Galerkin-based reduced order model. Considering slip boundary conditions and applying a complex frequency approach, the equivalent damping ratio and quality factor of the micro-beam resonator have been obtained. The obtained values for the quality factor have been compared to those based on classical theories. We have shown that applying non-classical theories underestimate the values of the quality factor obtained based on classical theo-ries. The effects of geometrical parameters of the micro-beam and micro-scale fluid field on the quality factor of the res-onator have also been investigated.
International Nuclear Information System (INIS)
We have computed the surface self-diffusion constants on four different crystal faces [fcc(111), fcc(100), bcc(110), and bcc(211)] using classical transition state theory methods. These results can be compared directly with previous classical-trajectory results which used the same Lennard-Jones 6-12 potential and template model; the agreement is good, though dynamical effects are evident for the fcc(111) and bcc(110) surfaces. Implications are discussed for low-temperature diffusion studies, which are inaccessible to direct molecular dynamics, and the use of ab initio potentials rather than approximate pairwise potentials
Sokolov, Igor V
2015-01-01
A theory of Symplectic Manifold with Contact Degeneracies (SMCD) was developed in [Zot'ev,2007]. The symplectic geometry uses an anti-symmetric tensor (closed differential form) such as a field tensor used in the classical field theory. The SMCD theory studies degeneracies of such form. In [Zot'ev,2011] the SMCD theory was applied to study a front of an electromagnetic pulsed field propagating into a region with no field. Here, the result of [Zot'ev,2011] is compared with the problem solution obtained using the well-known method presented in Witham, G.B., Linear and nonlinear waves, 1974. It is shown that the SMCD theory prediction is not supported by the result obtained with the Witham method.
Zarei, Mohammad Hossein
2016-01-01
Although creating a unified theory in Elementary Particles Physics is still an open problem, there are a lot of attempts for unifying other fields of physics. Following such unifications, we regard a two dimensional (2D) classical $\\Phi^{4}$ field theory model to study several field theories with different symmetries in various dimensions. While the completeness of this model has been already proved by a mapping between statistical mechanics and quantum information theory, here, we take into account a fundamental systematic approach with purely mathematical basis to re-derive such completeness in a general manner. Due to simplicity and generality, we believe that our method leads to a general approach which can be understood by other physical communities as well as quantum information theorists. Furthermore, our proof of the completeness is not only a proof-of-principle, but also an interesting algorithmic proof. We consider a discrete version of a general field theory as an arbitrary polynomial function of f...
Pseudo-classical transport in a sheared magnetic field: Theory and simulation
Energy Technology Data Exchange (ETDEWEB)
Nevins, W.M.; Harte, J.; Gell, Y.
1979-11-01
The cross-field transport due to the trapping of electrons in a finite amplitude wave (pseudo-classical transport) is investigated. Both finite wave frequencies and magnetic shear are included. The single particle orbit equations are solved to obtain the trapping criterion as well as the trapped particle orbit width and bounce frequency. Using a random walk model, the scaling of the pseudo-classical transport coefficients with the parameters of the plasma and wave are deduced. This scaling is employed to extend a previous calculation of the transport coefficients to include magnetic shear which is found to reduce these transport coefficients. Computer simulations of this transport process are presented. The measured transport rates are in very good agreement with the previous kinetic calculation in the absence of magnetic shear and with this extension of pseudo-classical transport theory which includes magnetic shear.
PE Metrics: Background, Testing Theory, and Methods
Zhu, Weimo; Rink, Judy; Placek, Judith H.; Graber, Kim C.; Fox, Connie; Fisette, Jennifer L.; Dyson, Ben; Park, Youngsik; Avery, Marybell; Franck, Marian; Raynes, De
2011-01-01
New testing theories, concepts, and psychometric methods (e.g., item response theory, test equating, and item bank) developed during the past several decades have many advantages over previous theories and methods. In spite of their introduction to the field, they have not been fully accepted by physical educators. Further, the manner in which…
Kuwahara, Y; Nakamura, Y; Yamanaka, Y
2013-01-01
The $2 \\times 2$-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [Phys. Rev. Lett. 110, 174301 (2013)]. We show that the Galley's Hamilto...
Energy Technology Data Exchange (ETDEWEB)
Lakhno, V. D., E-mail: lak@impb.psn.ru [Russian Academy of Sciences, Institute of Mathematical Problems of Biology (Russian Federation)
2013-06-15
A physical interpretation of translation-invariant polarons and bipolarons is presented, some results of their existence are discussed. Consideration is given to the problem of quantization in the vicinity of the classical solution in the quantum field theory. The lowest variational estimate is obtained for the bipolaron energy E({eta}) with E(0) = -0.440636{alpha}{sup 2}, where {alpha} is a constant of electron-phonon coupling, {eta} is a parameter of ion binding.
Charged free fermions, vertex operators and the classical theory of conjugate nets
International Nuclear Information System (INIS)
We show that the quantum field theoretical formulation of the τ-function theory has a geometrical interpretation within the classical transformation theory of conjugate nets. In particular, we prove that (i) the partial charge transformations preserving the neutral sector are Laplace transformations, (ii) the basic vertex operators are Levy and adjoint Levy transformations and (iii) the diagonal soliton vertex operators generate fundamental transformations. We also show that the bilinear identity for the multicomponent Kadomtsev-Petviashvili hierarchy becomes, through a generalized Miwa map, a bilinear identity for the multidimensional quadrilateral lattice equations. (author)
Charged free fermions, vertex operators and the classical theory of conjugate nets
Energy Technology Data Exchange (ETDEWEB)
Doliwa, Adam [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Warsaw (Poland); Manas, Manuel [Departamento de Matematica Aplicada y Estadistica, EUIT Aeronautica, Universidad Politecnica de Madrid, Madrid (Spain); Departamento de Fisica Teorica, Universidad Complutense, Madrid (Spain); Martinez Alonso, Luis; Medina, Elena [Departamento de Matematicas, Universidad de Cadiz, Cadiz (Spain); Santini, Paolo Maria [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Dipartimento di Fisica, Universita di Catania, Catania (Italy)
1999-02-19
We show that the quantum field theoretical formulation of the {tau}-function theory has a geometrical interpretation within the classical transformation theory of conjugate nets. In particular, we prove that (i) the partial charge transformations preserving the neutral sector are Laplace transformations, (ii) the basic vertex operators are Levy and adjoint Levy transformations and (iii) the diagonal soliton vertex operators generate fundamental transformations. We also show that the bilinear identity for the multicomponent Kadomtsev-Petviashvili hierarchy becomes, through a generalized Miwa map, a bilinear identity for the multidimensional quadrilateral lattice equations. (author)
Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.
2013-12-01
The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [1]. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.
Energy Technology Data Exchange (ETDEWEB)
Kuwahara, Y., E-mail: a.kuwahara1224@asagi.waseda.jp; Nakamura, Y., E-mail: nakamura@aoni.waseda.jp; Yamanaka, Y., E-mail: yamanaka@waseda.jp
2013-12-09
The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.
Relativistic semi-classical theory of atom ionization in ultra-intense laser
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A relativistic semi-classical theory (RSCT) of H-atom ionizationin ultra-intense laser (UIL) is proposed. A relativistic analytical expression for ionization probability of H-atom in its ground state is given. This expression, compared with non-relativistic expression, clearly shows the effects of the magnet vector in the laser, the non-dipole approximation and the relativistic mass-energy relation on the ionization processes. At the same time, we show that under some conditions the relativistic expression reduces to the non-relativistic expression of non-dipole approximation. At last, some possible applications of the relativistic theory are briefly stated.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)
2014-01-14
A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.
Homotopy Theory of Probability Spaces I: Classical independence and homotopy Lie algebras
Park, Jae-Suk
2015-01-01
This is the first installment of a series of papers whose aim is to lay a foundation for homotopy probability theory by establishing its basic principles and practices. The notion of a homotopy probability space is an enrichment of the notion of an algebraic probability space with ideas from algebraic homotopy theory. This enrichment uses a characterization of the laws of random variables in a probability space in terms of symmetries of the expectation. The laws of random variables are reinterpreted as invariants of the homotopy types of infinity morphisms between certain homotopy algebras. The relevant category of homotopy algebras is determined by the appropriate notion of independence for the underlying probability theory. This theory will be both a natural generalization and an effective computational tool for the study of classical algebraic probability spaces, while keeping the same central limit. This article is focused on the commutative case, where the laws of random variables are also described in t...
Energetics of high-speed running: integrating classical theory and contemporary observations.
Weyand, Peter G; Bundle, Matthew W
2005-04-01
We hypothesized that the anaerobic power and aerobic power outputs during all-out runs of any common duration between 10 and 150 s would be proportional to the maximum anaerobic (E(an-max)) and aerobic powers (E(aer-max)) available to the individual runner. Seventeen runners who differed in E(an-max) and E(aer-max) (5 sprinters, 5 middle-distance runners, and 7 long distance runners) were tested during treadmill running on a 4.6 degrees incline. E(an-max) was estimated from the fastest treadmill speed subjects could attain for eight steps. E(aer-max) was determined from a progressive, discontinuous, treadmill test to failure. Oxygen deficits and rates of uptake were measured to assess the respective anaerobic and aerobic power outputs during 11-16 all-out treadmill runs that elicited failure between 10 and 220 s. We found that, during all-out runs of any common duration, the relative anaerobic and aerobic powers utilized were largely the same for sprint, middle-distance, and long-distance subjects. The similar fractional utilization of the E(an-max) and E(aer-max) available during high-speed running 1) provides empirical values that modify and advance classic theory, 2) allows rates of anaerobic and aerobic energy release to be quantified from individual maxima and run durations, and 3) explains why the high-speed running performances of different event specialists can be accurately predicted (R(2) = 0.97; n = 254) from two direct measurements and the same exponential time constant.
A High Order Theory for Linear Thermoelastic Shells: Comparison with Classical Theories
Directory of Open Access Journals (Sweden)
V. V. Zozulya
2013-01-01
Full Text Available A high order theory for linear thermoelasticity and heat conductivity of shells has been developed. The proposed theory is based on expansion of the 3-D equations of theory of thermoelasticity and heat conductivity into Fourier series in terms of Legendre polynomials. The first physical quantities that describe thermodynamic state have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby all equations of elasticity and heat conductivity including generalized Hooke's and Fourier's laws have been transformed to the corresponding equations for coefficients of the polynomial expansion. Then in the same way as in the 3D theories system of differential equations in terms of displacements and boundary conditions for Fourier coefficients has been obtained. First approximation theory is considered in more detail. The obtained equations for the first approximation theory are compared with the corresponding equations for Timoshenko's and Kirchhoff-Love's theories. Special case of plates and cylindrical shell is also considered, and corresponding equations in displacements are presented.
CERN. Geneva
2002-01-01
A theory with such mathematical beauty cannot be wrong: this is one of the main arguments in favour of string theory, which unifies all known physical theories of fundamental interactions in a single coherent description of the universe. But no one has ever observed strings, not even indirectly, nor the space of extra dimensions where they live. However there are good reasons to believe that the 'hidden' dimensions of string theory may be much larger than what we thought in the past and that they may be within experimental reach in the near future - together with the strings themselves. In my talk, I will give an elementary introduction of string theory and describe the main experimental predictions.Organiser(s): Jasper Kirkby / EP DivisionNote: Tea & coffee will be served at 16.00 hrs.
Is That a Real Theory or Did You Just Make It Up? Teaching Classic Grounded Theory
Directory of Open Access Journals (Sweden)
Odis E. Simmons, Ph.D.
2010-06-01
Full Text Available The title of this paper was derived from an incident I observed some years ago while accompanying a highly talented musician-songwriter friend to a performance. During a break, an audience member approached him to compliment the last song he had performed. He had written both the music and the lyrics to the song, one of many he had written. The audience member queried, “Is that a real song, or did you just make it up?” A touch amused, and not knowing whether he should be flattered or insulted, he politely replied, “It is a real song and I made it up.”This episode puts in mind a similar attitude in the social sciences that Glaser and Strauss (1967 noted, in which a small number of ’theoretical capitalists’ originate what are considered to be “real” theories and others are relegated to the role of “proletariat” testers. The means by which these theorists derived their theories remained largely mysterious. Unleashing proletariat testers was one of the chief rationales behind Glaser and Strauss’ development of grounded theory. It brought a democratic option into the social sciences that enabled anyone who learned the methodology to generate theory. The democratic ethos of the methodology may also have inadvertently unleashed an abundance of aspiring remodelers of the methodology, who unfortunately have eroded its primary purpose—to generate theories that are fully grounded in data rather than speculation or ideology.
[A non-classical approach to medical practices: Michel Foucault and Actor-Network Theory].
Bińczyk, E
2001-01-01
The text presents an analysis of medical practices stemming from two sources: Michel Foucault's conception and the research of Annemarie Mol and John Law, representatives of a trend known as Actor-Network Theory. Both approaches reveal significant theoretical kinship: they can be successfully consigned to the framework of non-classical sociology of science. I initially refer to the cited conceptions as a version of non-classical sociology of medicine. The identity of non-classical sociology of medicine hinges on the fact that it undermines the possibility of objective definitions of disease, health and body. These are rather approached as variable social and historical phenomena, co-constituted by medical practices. To both Foucault and Mol the main object of interest was not medicine as such, but rather the network of medical practices. Mol and Law sketch a new theoretical perspective for the analysis of medical practices. They attempt to go beyond the dichotomous scheme of thinking about the human body as an object of medical research and the subject of private experience. Research on patients suffering blood-sugar deficiency provide the empirical background for the thesis of Actor-Network Theory representatives. Michel Foucault's conceptions are extremely critical of medical practices. The French researcher describes the processes of 'medicalising' Western society as the emergence of a new type of power. He attempts to sensitise the reader to the ethical dimension of the processes of medicalising society.
Borisenko, Alexander
2016-05-01
During the processes of nucleation and growth of a precipitate cluster from a supersaturated solution, the diffusion flux between the cluster and the solution changes the solute concentration near the cluster-solution interface from its average bulk value. This feature affects the rates of attachment and detachment of solute atoms at the interface, and, therefore, the entire nucleation-growth kinetics is altered. Unless quite obvious, this effect has been ignored in classical nucleation theory. To illustrate the results of this approach, for the case of homogeneous nucleation, we calculate the total solubility and the nucleation rate as functions of two parameters of the model (the reduced interface energy and the inverse second Damköhler number), and we compare these results to the classical ones. One can conclude that discrepancies with classical nucleation theory are great in the diffusion-limited regime, when the rate of bulk diffusion is small compared to the rate of interface reactions, while in the opposite interface-limited case they vanish.
Múnera, Héctor A.
2016-07-01
It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger's first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich's unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.
The quench map in an integrable classical field theory: nonlinear Schrödinger equation
Caudrelier, Vincent; Doyon, Benjamin
2016-11-01
We study the non-equilibrium dynamics obtained by an abrupt change (a quench) in the parameters of an integrable classical field theory, the nonlinear Schrödinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the quench map which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux–Bäcklund transformations, Gelfand–Levitan–Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the quantization of our classical approach to the quantum quench problem.
Testing gauge-invariant perturbation theory
Törek, Pascal
2016-01-01
Gauge-invariant perturbation theory for theories with a Brout-Englert-Higgs effect, as developed by Fr\\"ohlich, Morchio and Strocchi, starts out from physical, exactly gauge-invariant quantities as initial and final states. These are composite operators, and can thus be considered as bound states. In case of the standard model, this reduces almost entirely to conventional perturbation theory. This explains the success of conventional perturbation theory for the standard model. However, this is due to the special structure of the standard model, and it is not guaranteed to be the case for other theories. Here, we review gauge-invariant perturbation theory. Especially, we show how it can be applied and that it is little more complicated than conventional perturbation theory, and that it is often possible to utilize existing results of conventional perturbation theory. Finally, we present tests of the predictions of gauge-invariant perturbation theory, using lattice gauge theory, in three different settings. In ...
Thermal flucatuations in a classical theory with shape degrees of freedom for heavy ion collisions
Samaddar, S. K.; Sperber, D.; Zielińska-Pfabe, M.; Sobel, M. I.; Garpman, S. I.
1981-02-01
We use a classical dynamical theory with shape degrees of freedom to describe deep inelastic scattering of heavy ions, and include thermal fluctuations by means of the Fokker-Planck equation. The degrees of freedom allow for neck formation, mass transfer, and stretching of the two-nucleus system. Inertias are calculated for these degrees of freedom, and dissipative and conservative forces are used. Fluctuations are calculated by considering the second moments of the distribution and determining a temperature from the excitation energy at each time. We calculate distributions in final energy, angle, charge, and mass, including some double differential cross sections. Results are in good agreement with data. NUCLEAR REACTIONS Classical dynamical model, shape degrees of freedom, Fokker-Planck equation, thermal fluctuations; angular, energy, mass, and charge distributions are calculated for the reactions 209Bi + 84Kr, 209Bi + 136Xe, and 197Au + 63Cu.
Khrennikov, Andrei
2016-01-01
The scientific methodology based on two descriptive levels, ontic (reality as it is ) and epistemic (observational), is briefly presented. Following Schr\\"odinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be inaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity - the quantum state ("wave function"). The correspondence PCSFT to QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and th...
The Postmodern Turn: Shall Classic Grounded Theory Take That Detour? A Review Essay
Directory of Open Access Journals (Sweden)
Vivian B. Martin, PhD
2006-06-01
Full Text Available Adherents to classic grounded theory have gotten used to spotting the pretenders working under the grounded theory banner. Some of these faux-GT researchers have worked in a fog, misunderstanding fundamentals of the method; these are the studies that leave us shaking our heads and wondering about the doctoral committee and peer reviewers who did not bother to find out more about the method they were evaluating. More infuriating are the authors who are claiming to improve on grounded theory, to reground it, to quote one notable British author who, lack of handson grounded theory experience aside, manages a booklength critique of the method. Two recent books in the“remaking grounded theory” genre are from sociologists with some years of grounded theory projects behind them. Adele E. Clarke, author of Situational Analysis, was a student and colleague of Anselm L. Strauss at the University of California San Francisco. Kathy Charmaz, author of Constructing Grounded Theory, is among the few grounded theorists who studied with Barney G. Glaser and Strauss at UCSF.
Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving
Kerner, Boris S
2016-01-01
In a mini-review [Physica A {\\bf 392} (2013) 5261--5282] it has been shown that classical traffic flow theories and models failed to explain empirical traffic breakdown -- a phase transition from metastable free flow to synchronized flow at highway bottlenecks. The main objective of this mini-review is to study the consequence of this failure of classical traffic-flow theories for an analysis of empirical stochastic highway capacity as well as for the effect of automatic driving vehicles and cooperative driving on traffic flow. To reach this goal, we show a deep connection between the understanding of empirical stochastic highway capacity and a reliable analysis of automatic driving vehicles in traffic flow. With the use of simulations in the framework of three-phase traffic theory, a probabilistic analysis of the effect of automatic driving vehicles on a mixture traffic flow consisting of a random distribution of automatic driving and manual driving vehicles has been made. We have found that the parameters o...
Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving
Kerner, Boris S.
2016-05-01
In a mini-review Kerner (2013) it has been shown that classical traffic flow theories and models failed to explain empirical traffic breakdown - a phase transition from metastable free flow to synchronized flow at highway bottlenecks. The main objective of this mini-review is to study the consequence of this failure of classical traffic-flow theories for an analysis of empirical stochastic highway capacity as well as for the effect of automatic driving vehicles and cooperative driving on traffic flow. To reach this goal, we show a deep connection between the understanding of empirical stochastic highway capacity and a reliable analysis of automatic driving vehicles in traffic flow. With the use of simulations in the framework of three-phase traffic theory, a probabilistic analysis of the effect of automatic driving vehicles on a mixture traffic flow consisting of a random distribution of automatic driving and manual driving vehicles has been made. We have found that the parameters of automatic driving vehicles can either decrease or increase the probability of the breakdown. The increase in the probability of traffic breakdown, i.e., the deterioration of the performance of the traffic system can occur already at a small percentage (about 5%) of automatic driving vehicles. The increase in the probability of traffic breakdown through automatic driving vehicles can be realized, even if any platoon of automatic driving vehicles satisfies condition for string stability.
SLAC physicists develop test for string theory
Yajnik, Juhi
2006-01-01
"Under certain conditions, string theory solves many of the questions wracking the minds of physicists, but until recently it had one major flaw - it could not be tested. SLAC (Stanford Linear Accelerator Center) scientists have found a way to test this revolutionary theory, which posits that there are 10 or 11 dimensions in our universe" (1 page)
AMMARI, Zied; Falconi, Marco
2016-01-01
In the mid Sixties Edward Nelson proved the existence of a consistent quantum field theory that describes the Yukawa-like interaction of a non-relativistic nucleon field with a relativistic meson field. Since then it is thought, despite the renormalization procedure involved in the construction, that the quantum dynamics should be governed in the classical limit by a Schr\\"odinger-Klein-Gordon system with Yukawa coupling. In the present paper we prove this fact in the form of a Bohr correspon...
Eu, Byung Chan
2010-01-01
In the kinetic theory of dense fluids the many-particle collision bracket integral is given in terms of a classical collision operator defined in the phase space. To find an algorithm to compute the collision bracket integrals, we revisit the eigenvalue problem of the Liouville operator and re-examine the method previously reported[Chem. Phys. 20, 93(1977)]. Then we apply the notion and concept of the eigenfunctions of the Liouville operator and knowledge acquired in the study of the eigenfun...
The Energy-Momentum Tensor(s) in Classical Gauge Theories
Blaschke, Daniel N; Reboud, Meril; Schweda, Manfred
2016-01-01
We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. The relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.
Redundancy of constraints in the classical and quantum theories of gravitation.
Moncrief, V.
1972-01-01
It is shown that in Dirac's version of the quantum theory of gravitation, the Hamiltonian constraints are greatly redundant. If the Hamiltonian constraint condition is satisfied at one point on the underlying, closed three-dimensional manifold, then it is automatically satisfied at every point, provided only that the momentum constraints are everywhere satisfied. This permits one to replace the usual infinity of Hamiltonian constraints by a single condition which may be taken in the form of an integral over the manifold. Analogous theorems are given for the classical Einstein Hamilton-Jacobi equations.
Two-Component Theory of Classical Proca Fields in Curved Spacetimes with Torsionless Affinities
Santos Júnior, S. I.; Cardoso, J. G.
2016-04-01
The world formulation of the full theory of classical Proca fields in generally relativistic spacetimes is reviewed. Subsequently the entire set of field equations is transcribed in a straightforward way into the framework of one of the Infeld-van der Waerden formalisms. Some well-known calculational techniques are then utilized for deriving the wave equations that control the propagation of the fields allowed for. It appears that no interaction couplings between such fields and electromagnetic curvatures are ultimately carried by the wave equations at issue. What results is, in effect, that the only interactions which occur in the theoretical context under consideration involve strictly Proca fields and wave functions for gravitons.
Terrestrial vs. spaceborne, quantum vs. classical tests of the equivalence principle
Hohensee, Michael
2013-01-01
The equivalence principle can be tested by precision experiments based on classical and quantum systems, on the ground as well as in space. In many models, these tests are mostly equivalent in their ability to constrain physics beyond the Standard Model. We mention differences that nevertheless exist between spaceborne and quantum mechanical tests and their conventional competitors.
Peridynamic theory of solids from the perspective of classical statistical mechanics
Rahman, R.; Foster, J. T.
2015-11-01
In this paper the classical statistical mechanics has been explored in order to develop statistical mechanical framework for peridynamics. Peridynamic equation of motion is known as upscaled Newton's equation. The peridynamic system consists of finite number of nonlocally interacting particles at nano and meso scales. This particle representation of peridynamics can be treated in terms of classical statistical mechanics. Hence, in this work the phase space is constructed based on the PD particle from their evolving momentum pi and positions xi. The statistical ensembles are derived by defining appropriate partition functions. The algorithms for NVE and NPH implemented in the classical molecular dynamics are revisited for equilibrium peridynamic models. The current work introduces Langevin dynamics to the peridynamic theory through fluctuation-dissipation principle. This introduces a heat bath to the peridynamic system which eliminates the ambiguity with the role of temperature in a peridynamic system. Finally, it was seen that the homogenization of a peridynamic model with finite number of particles approaches to a conventional continuum model. The upscaled non-equilibrium peridynamics has potential applications in modeling wide variety of multiscale-multiphysics problems from nano to macro scale or vice versa.
Giordano, Peter J
2014-06-01
An important objective of personality psychology is to provide compelling descriptions and explanations of intraindividual personality dynamics that capture the unique qualities of persons. Among contemporary Western personality theories, the Five-Factor Model enjoys prominence in describing individual differences in personality traits. It falls short, however, in its ability to work with intraindividual personality function. This article argues that classical Confucianism, originating 2500 years ago in mainland China, offers Western personality psychologists important theoretical resources for capturing the complex and dynamic processes inherent in human personality. The Confucian perspective emphasizes a behaviorally anchored, continuous, stochastic, process-oriented understanding of the self as relationally constructed and proposes an elegant description of the relational virtuosity of exemplary persons. The article concludes with five characteristics of a Confucian inspired model of personality and questions the viability of a universal theory of personality. PMID:24101234
A semi-classical theory of multi-step nuclear reaction processes
International Nuclear Information System (INIS)
The master equation theory of precompound and compound nuclear reaction has been generalized to the inclusion of the conservation of angular momentum and parity. This improved semi-classical theory has been extended for application as an evaluation tool of the calculations of nucleon induced reaction cross sections and double differential cross sections. For structural materials at incident neutron energies below 20 MeV, it is demonstrated that the constructed model contains the Hauser-Feshbach, Weisskopf-Ewing as well as the exciton models as limiting cases. The unified treatment of pre-equilibrium processes includes a number of interesting features, such as the exciton state densities with the exact Pauli exclusion correction which are renormalized to the back-shifted Fermi-gas formula; the introduction of formation factors of composite particle in calculations of pick-up type composite particle emission and the double differential cross sections for all kinds of particles in terms of the leading particle model
Mahajan, Gaurang
2007-01-01
The quantum theory of a harmonic oscillator with a time dependent frequency arises in several important physical problems, especially in the study of quantum field theory in an external background. While the mathematics of this system is straightforward, several conceptual issues arise in such a study. We present a general formalism to address some of the conceptual issues like the emergence of classicality, definition of particle content, back reaction etc. In particular, we parametrize the wave function in terms of a complex number (which we call excitation parameter) and express all physically relevant quantities in terms it. Many of the notions -- like those of particle number density, effective Lagrangian etc., which are usually defined using asymptotic in-out states -- are generalized as time-dependent concepts and we show that these generalized definitions lead to useful and reasonable results. Having developed the general formalism we apply it to several examples. Exact analytic expressions are found ...
Vacuum-to-vacuum transition probability and the classic radiation theory
International Nuclear Information System (INIS)
Using the fact that the vacuum-to-vacuum transition probability for the interaction of the Maxwell field Aμ(x) with a given current Jμ(x) represents the probability of no photons emitted by the current of a Poisson distribution, the average number of photons emitted of given energies for the underlying distribution is readily derived. From this the classical power of radiation of Schwinger of a relativistic charged particle follows. - Highlights: • Quantum viewpoint of radiation theory based on the vacuum-to-transition probabilities. • Mathematical method in handling radiation for extended and point sources. • Radiated energy and power for arbitrary source distribution obtained from the above. • Explicit power of radiation for point relativistic sources from the general theory
Axiomatics of classical electrodynamics and its relation to gauge field theory
Gronwald, F; Nitsch, J; Gronwald, Frank; Hehl, Friedrich W.
2005-01-01
We give a concise axiomatic introduction into the fundamental structure of classical electrodynamics: It is based on electric charge conservation, the Lorentz force, magnetic flux conservation, and the existence of local and linear constitutive relations. The {\\it inhomogeneous} Maxwell equations, expressed in terms of $D^i$ and $H_i$, turn out to be a consequence of electric charge conservation, whereas the {\\it homogeneous} Maxwell equations, expressed in terms of $E_i$ and $B^i$, are derived from magnetic flux conservation and special relativity theory. The excitations $D^i$ and $H_i$, by means of constitutive relations, are linked to the field strengths $E_i$ and $B^i$. Eventually, we point out how this axiomatic approach is related to the framework of gauge field theory.
Directory of Open Access Journals (Sweden)
Jesús García-de-Madariaga
2011-10-01
Full Text Available There has been a lot of discussion about corporate social responsibility (CSR during these last decades. Neoclassical authors support the idea that CSR is not compatible with the objective of profit maximization, and defenders of CSR argue that, in these times of globalization and network economies, the idea of a company managed just to meet shareholders’ interests does not support itself. However, beyond this discussion, how can CSR affect firms’ market value? If we found a positive relationship between these variables, we could conclude that the two theories are reconcilable and the objective of profit maximization, perhaps, should satisfy not only shareholders’ interests, but also stakeholders’. We review previous literature and propose a model to analyze how CSR affects firms’ market value.
The Newell Test for a theory of cognition.
Anderson, John R; Lebiere, Christian
2003-10-01
Newell (1980; 1990) proposed that cognitive theories be developed in an effort to satisfy multiple criteria and to avoid theoretical myopia. He provided two overlapping lists of 13 criteria that the human cognitive architecture would have to satisfy in order to be functional. We have distilled these into 12 criteria: flexible behavior, real-time performance, adaptive behavior, vast knowledge base, dynamic behavior, knowledge integration, natural language, learning, development, evolution, and brain realization. There would be greater theoretical progress if we evaluated theories by a broad set of criteria such as these and attended to the weaknesses such evaluations revealed. To illustrate how theories can be evaluated we apply these criteria to both classical connectionism (McClelland & Rumelhart 1986; Rumelhart & McClelland 1986b) and the ACT-R theory (Anderson & Lebiere 1998). The strengths of classical connectionism on this test derive from its intense effort in addressing empirical phenomena in such domains as language and cognitive development. Its weaknesses derive from its failure to acknowledge a symbolic level to thought. In contrast, ACT-R includes both symbolic and sub-symbolic components. The strengths of the ACT-R theory derive from its tight integration of the symbolic component with the sub-symbolic component. Its weaknesses largely derive from its failure, as yet, to adequately engage in intensive analyses of issues related to certain criteria on Newell's list.
The Quench Map in an Integrable Classical Field Theory: Nonlinear Schr\\"odinger Equation
Caudrelier, Vincent
2016-01-01
We study the non-equilibrium dynamics obtained by an abrupt change (a {\\em quench}) in the parameters of an integrable classical field theory, the nonlinear Schr\\"odinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the {\\em quench map} which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux-B\\"acklund transformations, Gelfand-Levitan-Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the ...
International Nuclear Information System (INIS)
Scaling relations are developed for the number g* of molecules in the critical nucleus and the nucleation barrier height W*. Density functional (DF) calculations for vapor-liquid nucleation confirm these relations and show systematic departure of the ratio W*/g*Δμ from its classical value of 1/2 with increasing difference Δμ in the chemical potential between the supersaturated vapor and bulk condensed phase. Discrepancies between classical and DF nucleation theories and between the classical theory and experiment are interpreted using these results. copyright 1996 The American Physical Society
Plimak, L. I.; Ivanov, Misha; Aiello, A.; Stenholm, S.
2015-01-01
Quantum electrodynamics under conditions of distinguishability of interacting matter entities, and of controlled actions and back-actions between them, is considered. Such "mesoscopic quantum electrodynamics" is shown to share its dynamical structure with the classical stochastic electrodynamics. In formal terms, we demonstrate that all general relations of the mesoscopic quantum electrodynamics may be recast in a form lacking Planck's constant. Mesoscopic quantum electrodynamics is therefore...
Relativistic and nonrelativistic classical field theory on fivedimensional space-time
International Nuclear Information System (INIS)
This paper is a sequel to earlier ones in which, on the one hand, classical field theories were described on a curved Newtonian space-time, and on the other hand, the Newtonian gravitation theory was formulated on a fivedimensional space-time with a metric of signature and a covariantly constant vector field. Here we show that Lagrangians for matter fields are easily formulated on this extended space-time from simple invariance arguments and that stress-energy tensors can be derived from them in the usual manner so that four-dimensional space-time expressions are obtained that are consistent in the relativistic as well as in the Newtonian case. In the former the theory is equivalent to General Relativity. When the magnitude of the distinguished vector field vanishes equations for the (covariant) Newtonian limit follow. We demonstrate this here explicity in the case of the Klein-Gordon/Schroedinger and the Dirac field and its covariant nonrelativistic analogue, the Levy-Leblond field. Especially in the latter example the covariant Newtonian theory simplifies dramatically in this fivedimensional form
Schmajuk, Nestor A; Larrauri, José A
2006-01-01
Several studies have recently challenged the accuracy of traditional models of classical conditioning that account for some experimental data in terms of a storage deficit. Among other results, it has been reported that extinction of the blocking or overshadowing stimulus results in the recovery of the response to the blocked or overshadowed stimulus, backward blocking shows spontaneous recovery, extinction of the training context results in the recovery from latent inhibition, interposing a delay between conditioning and testing in latent inhibition increases latent inhibition, and latent inhibition antagonizes overshadowing. An existing neural network model of classical conditioning (N. A. Schmajuk, Y. Lam, & J. A. Gray, 1996), which includes an attentional mechanism controlling both storage and retrieval of associations, is able to quantitatively describe these results.
Dumas, H Scott
2014-01-01
This is a semi-popular mathematics book aimed at a broad readership of mathematically literate scientists, especially mathematicians and physicists who are not experts in classical mechanics or KAM theory, and scientific-minded readers. Parts of the book should also appeal to less mathematically trained readers with an interest in the history or philosophy of science. The scope of the book is broad: it not only describes KAM theory in some detail, but also presents its historical context (thus showing why it was a 'breakthrough'). Also discussed are applications of KAM theory (especially to celestial mechanics and statistical mechanics) and the parts of mathematics and physics in which KAM theory resides (dynamical systems, classical mechanics, and Hamiltonian perturbation theory). Although a number of sources on KAM theory are now available for experts, this book attempts to fill a long-standing gap at a more descriptive level. It stands out very clearly from existing publications on KAM theory because it ...
Institute of Scientific and Technical Information of China (English)
ZHANG Jia-Lin; YU Hong-Wei
2005-01-01
@@ We show that the velocity and position dispersions of a test particle with a nonzero constant classical velocity undergoing Brownian motion caused by electromagnetic vacuum fluctuations in a space with plane boundaries can be obtained from those of the static case by Lorentz transformation. We explicitly derive the Lorentz transformations relating the dispersions of the two cases and then apply them to the case of the Brownian motion of a test particle with a constant classical velocity parallel to the boundary between two conducting planes. Our results show that the influence of a nonzero initial velocity is negligible for nonrelativistic test particles.
Haataja, Mikko; Gránásy, László; Löwen, Hartmut
2010-08-01
Herein we provide a brief summary of the background, events and results/outcome of the CECAM workshop 'Classical density functional theory methods in soft and hard matter held in Lausanne between October 21 and October 23 2009, which brought together two largely separately working communities, both of whom employ classical density functional techniques: the soft-matter community and the theoretical materials science community with interests in phase transformations and evolving microstructures in engineering materials. After outlining the motivation for the workshop, we first provide a brief overview of the articles submitted by the invited speakers for this special issue of Journal of Physics: Condensed Matter, followed by a collection of outstanding problems identified and discussed during the workshop. 1. Introduction Classical density functional theory (DFT) is a theoretical framework, which has been extensively employed in the past to study inhomogeneous complex fluids (CF) [1-4] and freezing transitions for simple fluids, amongst other things. Furthermore, classical DFT has been extended to include dynamics of the density field, thereby opening a new avenue to study phase transformation kinetics in colloidal systems via dynamical DFT (DDFT) [5]. While DDFT is highly accurate, the computations are numerically rather demanding, and cannot easily access the mesoscopic temporal and spatial scales where diffusional instabilities lead to complex solidification morphologies. Adaptation of more efficient numerical methods would extend the domain of DDFT towards this regime of particular interest to materials scientists. In recent years, DFT has re-emerged in the form of the so-called 'phase-field crystal' (PFC) method for solid-state systems [6, 7], and it has been successfully employed to study a broad variety of interesting materials phenomena in both atomic and colloidal systems, including elastic and plastic deformations, grain growth, thin film growth, solid
Directory of Open Access Journals (Sweden)
N.K.Chhapkhane
2013-07-01
Full Text Available The laminate is a two or more lamina bonded together to act as an integral structural element. The laminae are combined to create a laminate. Classical lamination theory consists of a collection of mechanics of materials type of stress and deformation hypothesis. By use of classical lamination theory we can consistently proceed directly from the basic building block, the lamina, to the end result, a structural laminate. The classical lamination theory is very important in analysis of laminate because it will predict the stresses, strains, forces and moments relationships with reasonable accuracy. The composite materials are widely used in military aircraft, civil aircraft, space and automobile applications. ANSYS 11software is used for analysis of composite laminate. First order shear stress deformation theory is used for the analysis of laminate in finite element technique.
Self psychology as a shift away from the paranoid strain in classical analytic theory.
Terman, David M
2014-12-01
Classical psychoanalytic theory has a paranoid strain. There is, in effect, an "evil other"--the id--within each individual that must be tamed in development and confronted and worked through as resistance in treatment. This last has historically endgendered an adversarial relationship between patient and analyst. This paranoid strain came from a paranoid element in Freud's personality that affected his worldview, his relationships, and his theory. Self psychology offers a different view of development and conflict. It stresses the child's need for responsiveness from and admiration of caretakers in order to develop a well-functioning self. Though severe behavioral and character problems may result from faults in the process of self-construction, the essential need is not instinctual discharge but connection. Hence the long-assumed opposition between individual needs and social institutions or between patient and analyst is no longer inevitable or universal. Rather, an understanding of the primary need for connection creates both a different interpretive stance and a more cooperative ambience. These changes in theory and technique are traced to Kohut's personal struggles to emancipate himself from his paranoid mother. PMID:25339303
Numerical study of chiral plasma instability within the classical statistical field theory approach
Buividovich, P. V.; Ulybyshev, M. V.
2016-07-01
We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.
Power functional theory for the dynamic test particle limit
International Nuclear Information System (INIS)
For classical Brownian systems both in and out of equilibrium we extend the power functional formalism of Schmidt and Brader (2013 J. Chem. Phys. 138 214101) to mixtures of different types of particles. We apply the framework to develop an exact dynamical test particle theory for the self and distinct parts of the van Hove function, which characterize tagged and collective particle motion. The memory functions that induce non-Markovian dynamics are related to functional derivatives of the excess (over ideal) free power dissipation functional. The method offers an alternative to the recently found nonequilibrium Ornstein–Zernike relation for dynamic pair correlation functions. (paper)
Jeanmairet, Guillaume; Levesque, Maximilien; Rotenberg, Benjamin; Borgis, Daniel
2014-01-01
We report here how the hydration of complex surfaces can be efficiently studied thanks to recent advances in classical molecular density functional theory. This is illustrated on the example of the pyrophylite clay. After presenting the most recent advances, we show that the strength of this implicit method is that (i) it is in quantitative or semi-quantitative agreement with reference all-atoms simulations (molecular dynamics here) for both the solvation structure and energetics, and that (ii) the computational cost is two to three orders of magnitude less than in explicit methods. The method remains imperfect, in that it locally overestimates the polarization of water close to hydrophylic sites of the clay. The high numerical efficiency of the method is illustrated and exploited to carry a systematic study of the electrostatic and van der Waals components of the surface-solvant interactions within the most popular force field for clays, CLAYFF. Hydration structure and energetics are found to weakly depend u...
Kinetic theory of the shear viscosity of a strongly coupled classical one-component plasma
International Nuclear Information System (INIS)
We present an approximation to the linearized collision operator or memory function of the exact kinetic equation obeyed by the correlation function of the phase-space density of a classical one-component plasma. This approximate collision operator generalizes the well known Balescu-Guernsey-Lenard (BGL) operator to finite wavelengths, finite frequencies, and finite coupling constants. It, moreover, satisfies the necessary symmetry relations, leads to appropriate conservation laws, and fulfills its first sum rule exactly. Next we use this operator to compute the shear viscosity eta for a series of coupling constants spanning the whole fluid phase. For weak coupling we make contact with the BGL theory, while for strong coupling we confirm, at least qualitatively, the results of Vieillefosse and Hansen, who predicted a minimum in eta as a function of temperature. We also demonstrate the important role played by the sum rules in the quantitative evaluation of a transport coefficient such as eta
Classical solutions in quantum field theory solitons and instantons in high energy physics
Weinberg, Erick J
2012-01-01
Classical solutions play an important role in quantum field theory, high energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on ...
Classical and quantum theory of the massive spin-two field
Koenigstein, Adrian; Giacosa, Francesco; Rischke, Dirk H.
2016-05-01
In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz-Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincaré group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark-antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers JPC =2-+ is, to our knowledge, given here for the first time.
Classical and quantum theory of the massive spin-two field
Koenigstein, Adrian; Rischke, Dirk H
2015-01-01
In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz-Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincar\\'{e} group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark-antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers $J^{PC}=2^{-+}$ is, to our knowledge, given here for the first time.
Gauge bridges in classical field theory; Eichbruecken in der klassischen Feldtheorie
Energy Technology Data Exchange (ETDEWEB)
Jakobs, S.
2009-03-15
In this thesis Poisson structures of two classical gauge field theories (Maxwell-Klein-Gordon- and Maxwell-Dirac-system) are constructed using the parametrix construction of Green's functions. Parametrices for the Maxwell-Klein-Gordon- and Maxwell-Dirac-system are constructed in Minkowski space and this construction is later generalized to curved space times for the Maxwell-Klein-Gordon-system. With these Green's functions Poisson brackets will be defined as Peierls brackets. Finally non-local, gauge invariant observables, the so-called 'gauge bridges'are constructed. Gauge bridges are the matrix elements of holonomy operators. It is shown, that these emerge from Poisson brackets of local, gauge invariant observables. (orig.)
Kalinin, A. V.; Grigor'ev, E. E.; Zhidkov, A. A.; Terent'ev, A. M.
2014-04-01
We study a one-dimensional stationary system of equations comprising the continuity equation for the ion concentration with the recombination effects taken into account and the Gauss law for the electric field. This system gives a simplified description of various phenomena in ionized medium theory and is used, in particular, for modeling of the electrode effect in the atmospheric surface layers with the turbulent diffusion effects neglected. Using the integral of the system and a phase portrait in the ion concentration plane, we offer a complete classification of types of solutions of the system, examine their properties, and deduce some analytical relations between the ion concentration and the electric field. The basic equations of classical electrode effect theory are obtained for some classes of solutions within the framework of this approach. Correct formulations of the problems are discussed. New classes of solutions, for which there are layers with infinitely increasing conductivity and charge density are described. The Appendix illustrates, in both analytical and graphical form, the results obtained in the main part of this paper on the basis of qualitative reasoning for parameters close to real. Analytical expressions for the fields and ion concentrations are given for all types of solutions. Relations for the distances between electrodes and analytical relations describing the properties of the spatially localized solutions are presented.
Field theory and weak Euler-Lagrange equation for classical particle-field systems.
Qin, Hong; Burby, Joshua W; Davidson, Ronald C
2014-10-01
It is commonly believed as a fundamental principle that energy-momentum conservation of a physical system is the result of space-time symmetry. However, for classical particle-field systems, e.g., charged particles interacting through self-consistent electromagnetic or electrostatic fields, such a connection has only been cautiously suggested. It has not been formally established. The difficulty is due to the fact that the dynamics of particles and the electromagnetic fields reside on different manifolds. We show how to overcome this difficulty and establish the connection by generalizing the Euler-Lagrange equation, the central component of a field theory, to a so-called weak form. The weak Euler-Lagrange equation induces a new type of flux, called the weak Euler-Lagrange current, which enters conservation laws. Using field theory together with the weak Euler-Lagrange equation developed here, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived from the underlying space-time symmetry.
Charmaine Scrimnger-Christian; S. Wedzerai Musvoto
2011-01-01
The purpose of this study is to discuss a possible way forward in accounting measurement. It also highlights the importance of understanding the lack of appreciation given by the accounting researchers to the distinction between representation measurement theory and the axioms of quantity on which the classical theory of measurement is based. For long, research in measurement theory has classified representational measurement as nothing but applications of the axioms of quantity. It was belie...
Powell, Stephen; Chalker, J. T.
2008-10-01
We derive a continuum theory for the phase transition in a classical dimer model on the cubic lattice, observed in recent Monte Carlo simulations. Our derivation relies on the mapping from a three-dimensional classical problem to a two-dimensional quantum problem, by which the dimer model is related to a model of hard-core bosons on the kagome lattice. The dimer-ordering transition becomes a superfluid Mott insulator quantum phase transition at fractional filling, described by an SU(2)-invariant continuum theory.
Paquette, John A.; Nuth, Joseph A., III
2011-01-01
Classical nucleation theory has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of classical nucleation theory (CNT) to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of condensable species. A model of silicate grain nucleation and growth was modified to evaluate the effect of a nucleation flux orders of magnitUde below the equilibrium value. The results show that a lack of chemical equilibrium has only a small effect on the ultimate grain distribution.
Structure Theory for Extended Kepler-Coulomb 3D Classical Superintegrable Systems
Directory of Open Access Journals (Sweden)
Ernie G. Kalnins
2012-06-01
Full Text Available The classical Kepler-Coulomb system in 3 dimensions is well known to be 2nd order superintegrable, with a symmetry algebra that closes polynomially under Poisson brackets. This polynomial closure is typical for 2nd order superintegrable systems in 2D and for 2nd order systems in 3D with nondegenerate (4-parameter potentials. However the degenerate 3-parameter potential for the 3D extended Kepler-Coulomb system (also 2nd order superintegrable is an exception, as its quadratic symmetry algebra doesn't close polynomially. The 3D 4-parameter potential for the extended Kepler-Coulomb system is not even 2nd order superintegrable. However, Verrier and Evans (2008 showed it was 4th order superintegrable, and Tanoudis and Daskaloyannis (2011 showed that in the quantum case, if a second 4th order symmetry is added to the generators, the double commutators in the symmetry algebra close polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider an infinite class of classical extended Kepler-Coulomb 3- and 4-parameter systems indexed by a pair of rational numbers (k_1,k_2 and reducing to the usual systems when k_1=k_2=1. We show these systems to be superintegrable of arbitrarily high order and work out explicitly the structure of the symmetry algebras determined by the 5 basis generators we have constructed. We demonstrate that the symmetry algebras close rationally; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering constants of the motion, not themselves polynomials in the momenta, that can be employed to construct the polynomial symmetries and their structure relations.
Current-carrying plasma and the magnetic field ambiguity in classical MHD theory
International Nuclear Information System (INIS)
An ambiguity in the classical theoretical framework used for computing magnetohydrostatic equilibrium is pointed out and analyzed. This inconsistency implies that some proposed solutions of the magnetohydrodynamic (MHD) equations may not represent actual magnetic fields of plasma currents in the geometry considered. The root of the inconsistency is that the magnetostatic field equation and the magnetohydrostatic equations are not invariant under the same transformations. There are two types of problems where inconsistencies have arisen in the literature: (a) unphysical magnetic fields are postulated inside a plasma current; and (b) vacuum magnetic fields are postulated that are not gradient fields. In both cases, magnetic fields are obtained which cannot be created in the laboratory. This inconsistency is traced back to a mishandling of the mathematical structure of the magnetic field equation. The magnetic field rvec B is a vector potential for the current density distribution rvec j, just as rvec A is a vector potential for rvec B. Nevertheless, whereas a gauge transformation on rvec A is unobservable (gauge invariant), the analogous gauge transformation in the rvec B vector (gradient field transformation) is indeed observable and changes the Lorentz force. Following Alfven, the authors characterize plasmas mathematically through the field lines of the current density distribution vector. Classical MHD theory, by contrast, is concerned strictly with magnetic field lines. They show here how this magnetic field approach can lead to inconsistencies when applied to plasmas. A resolution of entrenched ambiguities is made possible by using the current fiber description to derive a corrected Grad-Shafranov plasma equilibrium equation
Rosini, Massimiliano Daniele
2013-01-01
This monograph presents a systematic treatment of the theory for hyperbolic conservation laws and their applications to vehicular traffics and crowd dynamics. In the first part of the book, the author presents very basic considerations and gradually introduces the mathematical tools necessary to describe and understand the mathematical models developed in the following parts focusing on vehicular and pedestrian traffic. The book is a self-contained valuable resource for advanced courses in mathematical modeling, physics and civil engineering. A number of examples and figures facilitate a better understanding of the underlying concepts and motivations for the students. Important new techniques are presented, in particular the wave front tracking algorithm, the operator splitting approach, the non-classical theory of conservation laws and the constrained problems. This book is the first to present a comprehensive account of these fundamental new mathematical advances.
Institute of Scientific and Technical Information of China (English)
Chen Wen-Xue; Zhang Shu-Lian; Zhang Peng; Zeng Zhao-Li
2012-01-01
In this paper,we propose a semi-classical theory to successfully explain the polarization flipping in a single frequency laser. An experimental setup is built to verify this theory. The observed experimental phenomena are consistent with the theoretical analysis.We perform phase retardation measurements of birefringent components using this experimental system.The results show that the measurement repeatability is 0.12° and the measurement accuracy is 0.22°.
Foundations of a New Test Theory.
Mislevy, Robert J.
It is only a slight exaggeration to describe the test theory that dominates educational measurement today as the application of twentieth-century statistics to nineteenth-century psychology. Sophisticated estimation procedures, new techniques for missing-data problems, and theoretical advances into latent-variable modeling have appeared--all…
Cremaschini, Claudio; 10.1140/epjp/i2011-11063-3
2012-01-01
A notorious difficulty in the covariant dynamics of classical charged particles subject to non-local electromagnetic (EM) interactions arising in the EM radiation-reaction (RR) phenomena is due to the definition of the related non-local Lagrangian and Hamiltonian systems. The lack of a standard Lagrangian/Hamiltonian formulation in the customary asymptotic approximation for the RR equation may inhibit the construction of consistent kinetic and fluid theories. In this paper the issue is investigated in the framework of Special Relativity. It is shown that, for finite-size spherically-symmetric classical charged particles, non-perturbative Lagrangian and Hamiltonian formulations in standard form can be obtained, which describe particle dynamics in the presence of the exact EM RR self-force. As a remarkable consequence, based on axiomatic formulation of classical statistical mechanics, the covariant kinetic theory for systems of charged particles subject to the EM RR self-force is formulated in Hamiltonian form....
Thermoelectric properties of fully hydrogenated graphene: Semi-classical Boltzmann theory
Energy Technology Data Exchange (ETDEWEB)
Reshak, A. H., E-mail: maalidph@yahoo.co.uk [New Technologies-Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)
2015-06-14
Based on the calculated band structure, the electronic transport coefficients of chair-/boat-like graphane were evaluated by using the semi-classical Boltzmann theory and rigid band model. The maximum value of electrical conductivity for chair (boat)-like graphane of about 1.4 (0.6) × 10{sup 19} (Ωms){sup −1} is achieved at 600 K. The charge carrier concentration and the electrical conductivity linearly increase with increasing the temperature in agreement with the experimental work for graphene. The investigated materials exhibit the highest value of Seebeck coefficient at 300 K. We should emphasize that in the chemical potential between ∓0.125 μ(eV) the investigated materials exhibit minimum value of electronic thermal conductivity, therefore, maximum efficiency. As the temperature increases, the electronic thermal conductivity increases exponentially, in agreement with the experimental data of graphene. We also calculated the power factor of chair-/boat-like graphane at 300 and 600 K as a function of chemical potential between ∓0.25 μ(eV)
Unification of classical nucleation theories via a unified Itô-Stratonovich stochastic equation.
Durán-Olivencia, Miguel A; Lutsko, James F
2015-09-01
Classical nucleation theory (CNT) is the most widely used framework to describe the early stage of first-order phase transitions. Unfortunately, the different points of view adopted to derive it yield different kinetic equations for the probability density function, e.g., Zeldovich-Frenkel or Becker-Döring-Tunitskii equations. Starting from a phenomenological stochastic differential equation, a unified equation is obtained in this work. In other words, CNT expressions are recovered by selecting one or another stochastic calculus. Moreover, it is shown that the unified CNT thus obtained produces the same Fokker-Planck equation as that from a recent update of CNT [J. F. Lutsko and M. A. Durán-Olivencia, J. Chem. Phys. 138, 244908 (2013)10.1063/1.4811490] when mass transport is governed by diffusion. Finally, we derive a general induction-time expression along with specific approximations of it to be used under different scenarios, in particular, when the mass-transport mechanism is governed by direct impingement, volume diffusion, surface diffusion, or interface transfer.
Fan, Peifeng; Liu, Jian; Xiang, Nong; Yu, Zhi
2016-01-01
A manifestly covariant, or geometric, field theory for relativistic classical particle-field system is developed. The connection between space-time symmetry and energy-momentum conservation laws for the system is established geometrically without splitting the space and time coordinates, i.e., space-time is treated as one identity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that particles and field reside on different manifold. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of electromagnetic fields and also a functional of particles' world-lines. The other difficulty associated with the geometric setting is due to the mass-shell condition. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell condition is imposed. For the particle-field system, the geometric EL equation is further generalized into a w...
Unification of classical nucleation theories via a unified Itô-Stratonovich stochastic equation.
Durán-Olivencia, Miguel A; Lutsko, James F
2015-09-01
Classical nucleation theory (CNT) is the most widely used framework to describe the early stage of first-order phase transitions. Unfortunately, the different points of view adopted to derive it yield different kinetic equations for the probability density function, e.g., Zeldovich-Frenkel or Becker-Döring-Tunitskii equations. Starting from a phenomenological stochastic differential equation, a unified equation is obtained in this work. In other words, CNT expressions are recovered by selecting one or another stochastic calculus. Moreover, it is shown that the unified CNT thus obtained produces the same Fokker-Planck equation as that from a recent update of CNT [J. F. Lutsko and M. A. Durán-Olivencia, J. Chem. Phys. 138, 244908 (2013)10.1063/1.4811490] when mass transport is governed by diffusion. Finally, we derive a general induction-time expression along with specific approximations of it to be used under different scenarios, in particular, when the mass-transport mechanism is governed by direct impingement, volume diffusion, surface diffusion, or interface transfer. PMID:26465482
Directory of Open Access Journals (Sweden)
Igor V. Uporov
2015-09-01
Full Text Available The dipole interaction model is a classical electromagnetic theory for calculating circular dichroism (CD resulting from the π-π* transitions of amides. The theoretical model, pioneered by J. Applequist, is assembled into a package, DInaMo, written in Fortran allowing for treatment of proteins. DInaMo reads Protein Data Bank formatted files of structures generated by molecular mechanics or reconstructed secondary structures. Crystal structures cannot be used directly with DInaMo; they either need to be rebuilt with idealized bond angles and lengths, or they need to be energy minimized to adjust bond lengths and bond angles because it is common for crystal structure geometries to have slightly short bond lengths, and DInaMo is sensitive to this. DInaMo reduces all the amide chromophores to points with anisotropic polarizability and all nonchromophoric aliphatic atoms including hydrogens to points with isotropic polarizability; all other atoms are ignored. By determining the interactions among the chromophoric and nonchromophoric parts of the molecule using empirically derived polarizabilities, the rotational and dipole strengths are determined leading to the calculation of CD. Furthermore, ignoring hydrogens bound to methyl groups is initially explored and proves to be a good approximation. Theoretical calculations on 24 proteins agree with experiment showing bands with similar morphology and maxima.
Diemand, Jürg; Angélil, Raymond; Tanaka, Kyoko K; Tanaka, Hidekazu
2014-11-01
We present results from direct, large-scale molecular dynamics simulations of homogeneous bubble (liquid-to-vapor) nucleation. The simulations contain half a billion Lennard-Jones atoms and cover up to 56 million time steps. The unprecedented size of the simulated volumes allows us to resolve the nucleation and growth of many bubbles per run in simple direct micro-canonical simulations while the ambient pressure and temperature remain almost perfectly constant. We find bubble nucleation rates which are lower than in most of the previous, smaller simulations. It is widely believed that classical nucleation theory (CNT) generally underestimates bubble nucleation rates by very large factors. However, our measured rates are within two orders of magnitude of CNT predictions; only at very low temperatures does CNT underestimate the nucleation rate significantly. Introducing a small, positive Tolman length leads to very good agreement at all temperatures, as found in our recent vapor-to-liquid nucleation simulations. The critical bubbles sizes derived with the nucleation theorem agree well with the CNT predictions at all temperatures. Local hot spots reported in the literature are not seen: Regions where a bubble nucleation event will occur are not above the average temperature, and no correlation of temperature fluctuations with subsequent bubble formation is seen.
Anderson, Edward
2013-01-01
I already showed that Kendall's shape geometry work was the geometrical description of Barbour's relational mechanics' reduced configuration spaces (alias shape spaces). I now describe the extent to which Kendall's subsequent statistical application to such as the `standing stones problem' realizes further ideas along the lines of Barbour-type timeless records theories, albeit just at the classical level.
Anderson, Edward
2013-01-01
I previously showed that Kendall's work on shape geometry is in fact also the geometrical description of Barbour's relational mechanics' reduced configuration spaces (alias shape spaces). I now describe the extent to which Kendall's subsequent statistical application to e.g. the `standing stones problem' realizes further ideas along the lines of Barbour-type timeless records theories, albeit just at the classical level.
Local and omnibus goodness-of-fit tests in classical measurement error models
Ma, Yanyuan
2010-09-14
We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal series-based, omnibus goodness-of-fit test in this context, where no likelihood function is available or calculated-i.e. all the tests are proposed in the semiparametric model framework. We demonstrate that our tests have optimality properties and computational advantages that are similar to those of the classical score tests in the parametric model framework. The test procedures are applicable to several semiparametric extensions of measurement error models, including when the measurement error distribution is estimated non-parametrically as well as for generalized partially linear models. The performance of the local score-type and omnibus goodness-of-fit tests is demonstrated through simulation studies and analysis of a nutrition data set.
Institute of Scientific and Technical Information of China (English)
FU Xiang-Yun; YU Hong-Wei
2007-01-01
We study the random motion of a charged test particle with a normal classical constant velocity in a spacetime with a perfectly reflecting plane boundary and calculate both the velocity and position dispersions of the test particle. Our results show that the dispersions in the normal direction are weakened while those in the parallel directions are strengthened as compared to the classical static case when the test particle classically moves away from the boundary.However, if the classical motion reverses its direction, then the dispersions in the normal direction are reinforced while those in the parallel directions get weakened.
Semenov, Alexander; Babikov, Dmitri
2015-12-17
The mixed quantum classical theory, MQCT, for inelastic scattering of two molecules is developed, in which the internal (rotational, vibrational) motion of both collision partners is treated with quantum mechanics, and the molecule-molecule scattering (translational motion) is described by classical trajectories. The resultant MQCT formalism includes a system of coupled differential equations for quantum probability amplitudes, and the classical equations of motion in the mean-field potential. Numerical tests of this theory are carried out for several most important rotational state-to-state transitions in the N2 + H2 system, in a broad range of collision energies. Besides scattering resonances (at low collision energies) excellent agreement with full-quantum results is obtained, including the excitation thresholds, the maxima of cross sections, and even some smaller features, such as slight oscillations of energy dependencies. Most importantly, at higher energies the results of MQCT are nearly identical to the full quantum results, which makes this approach a good alternative to the full-quantum calculations that become computationally expensive at higher collision energies and for heavier collision partners. Extensions of this theory to include vibrational transitions or general asymmetric-top rotor (polyatomic) molecules are relatively straightforward.
Tests of Chiral Perturbation Theory with COMPASS
Friedrich, Jan
2010-01-01
The COMPASS experiment at the CERN SPS studies with high precision pion-photon induced reactions via the Primakoff effect on nuclear targets. This offers the test of chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the long-standing question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.
Tests of Chiral Perturbation Theory with COMPASS
International Nuclear Information System (INIS)
The COMPASS experiment at CERN studies with high precision pion-photon induced reactions on nuclear targets via the Primakoff effect. This offers the possibility to test chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the longstanding question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.
Sihvola, Ari
2005-03-01
' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly\\endcolumn defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in todayÂ's materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and experimental optics scientists, radiophysics
Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications
International Nuclear Information System (INIS)
' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in today?s materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and experimental optics scientists, radiophysics experts
Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications
Energy Technology Data Exchange (ETDEWEB)
Sihvola, Ari [Helsinki University of Technology (Finland)
2005-03-11
everything seems to work well with the 'old' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in today?s materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and
Classic tests of General Relativity described by brane-based spherically symmetric solutions
Cuzinatto, R R; de Montigny, M; Khanna, F C; da Silva, J M Hoff
2014-01-01
We discuss a way to obtain information about higher dimensions from observations by studying a brane-based spherically symmetric solution. The three classic tests of General Relativity are analyzed in details: the perihelion shift of the planet Mercury, the deflection of light by the Sun, and the gravitational redshift of atomic spectral lines. The braneworld version of these tests exhibits an additional parameter $b$ related to the fifth-coordinate. This constant $b$ can be constrained by comparison with observational data for massive and massless particles.
Classic tests of General Relativity described by brane-based spherically symmetric solutions
Energy Technology Data Exchange (ETDEWEB)
Cuzinatto, R.R. [Universidade Federal de Alfenas, Instituto de Ciencia e Tecnologia, Pocos de Caldas, MG (Brazil); Pompeia, P.J. [Departamento de Ciencia e Tecnologia Aeroespacial, Instituto de Fomento e Coordenacao Industrial, Sao Jose dos Campos, SP (Brazil); Departamento de Ciencia e Tecnologia Aeroespacial, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil); De Montigny, M. [University of Alberta, Theoretical Physics Institute, Edmonton, AB (Canada); University of Alberta, Campus Saint-Jean, Edmonton, AB (Canada); Khanna, F.C. [University of Alberta, Theoretical Physics Institute, Edmonton, AB (Canada); TRIUMF, Vancouver, BC (Canada); University of Victoria, Department of Physics and Astronomy, PO box 1700, Victoria, BC (Canada); Silva, J.M.H. da [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2014-08-15
We discuss a way to obtain information about higher dimensions from observations by studying a brane-based spherically symmetric solution. The three classic tests of General Relativity are analyzed in detail: the perihelion shift of the planet Mercury, the deflection of light by the Sun, and the gravitational redshift of atomic spectral lines. The braneworld version of these tests exhibits an additional parameter b related to the fifth-coordinate. This constant b can be constrained by comparison with observational data for massive and massless particles. (orig.)
International Nuclear Information System (INIS)
A method for numerically simulating quantum systems is proposed and applied to the two-dimensional electron fluid at T = 0. This method maps quantum systems onto classical ones in the spirit of the classical-map hypernetted-chain theory and performs simulations on the latter. The results of the simulations are free from the assumption of the hypernetted-chain approximation and the neglect of the bridge diagrams. A merit of this method is the applicability to systems with geometrical complexity and finite sizes including the cases at finite temperatures. Monte Carlo and molecular dynamics simulations are performed corresponding to two previous proposals for the 'quantum' temperature and an improvement in the description of the diffraction effect. It is shown that one of these two proposals with the improved diffraction effect gives significantly better agreement with quantum Monte Carlo results reported previously for the range of 5≤rs≤40. These results may serve as the basis for the application of this method to finite non-periodic systems like quantum dots and systems at finite temperatures.
Improving LLR Tests of Gravitational Theory
Williams, J G; Williams, James G.; Turyshev, Slava G.; Jr, Thomas W. Murphy
2003-01-01
Accurate analysis of precision ranges to the Moon has provided several tests of gravitational theory including the Equivalence Principle, geodetic precession, parameterized post-Newtonian (PPN) parameters $\\gamma$ and $\\beta$, and the constancy of the gravitational constant {\\it G}. Since the beginning of the experiment in 1969, the uncertainties of these tests have decreased considerably as data accuracies have improved and data time span has lengthened. We are exploring the modeling improvements necessary to proceed from cm to mm range accuracies enabled by the new Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) currently under development in New Mexico. This facility will be able to make a significant contribution to the solar system tests of fundamental and gravitational physics. In particular, the Weak and Strong Equivalence Principle tests would have a sensitivity approaching 10$^{-14}$, yielding sensitivity for the SEP violation parameter $\\eta$ of $\\sim 3\\times 10^{-5}$, $v^2/c^2$ gene...
Sahyoun, Maher; Wex, Heike; Gosewinkel, Ulrich; Šantl-Temkiv, Tina; Nielsen, Niels W.; Finster, Kai; Sørensen, Jens H.; Stratmann, Frank; Korsholm, Ulrik S.
2016-08-01
Bacterial ice-nucleating particles (INP) are present in the atmosphere and efficient in heterogeneous ice-nucleation at temperatures up to -2 °C in mixed-phase clouds. However, due to their low emission rates, their climatic impact was considered insignificant in previous modeling studies. In view of uncertainties about the actual atmospheric emission rates and concentrations of bacterial INP, it is important to re-investigate the threshold fraction of cloud droplets containing bacterial INP for a pronounced effect on ice-nucleation, by using a suitable parameterization that describes the ice-nucleation process by bacterial INP properly. Therefore, we compared two heterogeneous ice-nucleation rate parameterizations, denoted CH08 and HOO10 herein, both of which are based on classical-nucleation-theory and measurements, and use similar equations, but different parameters, to an empirical parameterization, denoted HAR13 herein, which considers implicitly the number of bacterial INP. All parameterizations were used to calculate the ice-nucleation probability offline. HAR13 and HOO10 were implemented and tested in a one-dimensional version of a weather-forecast-model in two meteorological cases. Ice-nucleation-probabilities based on HAR13 and CH08 were similar, in spite of their different derivation, and were higher than those based on HOO10. This study shows the importance of the method of parameterization and of the input variable, number of bacterial INP, for accurately assessing their role in meteorological and climatic processes.
"今枝, 国之助"; "イマエダ, クニノスケ"; Kuninosuke", "Imaeda
1985-01-01
"Quaternionic formulation of classical electrodynamics by using ""biq""(real part of a complex-quaternions) has been presented. Also, the solutions of Maxwell's equations have been given using regular functions of a biq variable."
Gauge fixing and classical dynamical r-matrices in ISO(2,1)-Chern-Simons theory
Meusburger, Catherine
2012-01-01
We apply Dirac's gauge fixing procedure to Chern-Simons theory with gauge group ISO(2,1) on manifolds RxS, where S is a punctured oriented surface of general genus. For all gauge fixing conditions that satisfy certain structural requirements, this yields an explicit description of the Poisson structure on the moduli space of flat ISO(2,1)-connections on S via the resulting Dirac bracket. The Dirac bracket is determined by classical dynamical r-matrices for ISO(2,1). We show that the Poisson structures and classical dynamical r-matrices arising from different gauge fixing conditions are related by dynamical ISO(2,1)-valued transformations that generalise the usual gauge transformations of classical dynamical r-matrices. By means of these transformations, it is possible to classify all Poisson structures and classical dynamical r-matrices obtained from such gauge fixings. Generically these Poisson structures combine classical dynamical r-matrices for non-conjugate Cartan subalgebras of ISO(2,1).
Open and Closed String field theory interpreted in classical Algebraic Topology
Sullivan, Dennis
2003-01-01
There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.
Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
Ickes, Luisa; Welti, André; Hoose, Corinna; Lohmann, Ulrike
2015-02-28
The probability of homogeneous ice nucleation under a set of ambient conditions can be described by nucleation rates using the theoretical framework of Classical Nucleation Theory (CNT). This framework consists of kinetic and thermodynamic parameters, of which three are not well-defined (namely the interfacial tension between ice and water, the activation energy and the prefactor), so that any CNT-based parameterization of homogeneous ice formation is less well-constrained than desired for modeling applications. Different approaches to estimate the thermodynamic and kinetic parameters of CNT are reviewed in this paper and the sensitivity of the calculated nucleation rate to the choice of parameters is investigated. We show that nucleation rates are very sensitive to this choice. The sensitivity is governed by one parameter - the interfacial tension between ice and water, which determines the energetic barrier of the nucleation process. The calculated nucleation rate can differ by more than 25 orders of magnitude depending on the choice of parameterization for this parameter. The second most important parameter is the activation energy of the nucleation process. It can lead to a variation of 16 orders of magnitude. By estimating the nucleation rate from a collection of droplet freezing experiments from the literature, the dependence of these two parameters on temperature is narrowed down. It can be seen that the temperature behavior of these two parameters assumed in the literature does not match with the predicted nucleation rates from the fit in most cases. Moreover a comparison of all possible combinations of theoretical parameterizations of the dominant two free parameters shows that one combination fits the fitted nucleation rates best, which is a description of the interfacial tension coming from a molecular model [Reinhardt and Doye, J. Chem. Phys., 2013, 139, 096102] in combination with the activation energy derived from self-diffusion measurements [Zobrist
Kerner, Boris S
2016-01-01
We show that the minimization of travel times in a network as generally accepted in classical traffic and transportation theories deteriorates the traffic system through a considerable increase in the probability of traffic breakdown in the network. We introduce a network characteristic {\\it minimum network capacity} that shows that rather than the minimization of travel times in the network, the minimization of the probability of traffic breakdown in the network maximizes the network throughput at which free flow persists in the whole network.
Monnet, Grégoire O.
2015-01-01
Approved for public release; distribution is unlimited Since 1991, a long list of scholars has sought to write off Clausewitz as outdated and no longer worth study. In light of the past fifteen years and the absence of a strategic victory in the wars in Iraq and Afghanistan, however, Clausewitz’s early retirement is misguided, to say the least. Are the classical theories of Clausewitz on the nature of war—particularly concerning small wars and insurgencies—relevant to contemporary conflict...
A Time-Dependent Classical Solution of C=1 String Field Theory and Non-Perturbative Effects
Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.
1993-01-01
We describe a real-time classical solution of $c=1$ string field theory written in terms of the phase space density, $u(p,q,t)$, of the equivalent fermion theory. The solution corresponds to tunnelling of a single fermion above the filled fermi sea and leads to amplitudes that go as $\\exp(- C/ \\gst)$. We discuss how one can use this technique to describe non-perturbative effects in the Marinari-Parisi model. We also discuss implications of this type of solution for the two-dimensional black hole.
A New Semi-Symmetric Uniﬁed Field Theory of the Classical Fields of Gravity and Electromagnetism
Directory of Open Access Journals (Sweden)
Suhendro I.
2007-10-01
Full Text Available We attempt to present a classical theoretical framework in which the gravitational and electromagnetic fields are unified as intrinsic geometric objects in the space-time manifold. For this purpose, we first present the preliminary geometric considerations dealing with the metric differential geometry of Cartan connections. The unified field theory is then developed as an extension of the general theory of relativity based on a semi- symmetric Cartan connection which is meant to be as close as possible structurally to the symmetric connection of the Einstein-Riemann space-time.
Field-testing of the ICHD-3 beta diagnostic criteria for classical trigeminal neuralgia
DEFF Research Database (Denmark)
Maarbjerg, Stine; Sørensen, Morten Togo; Gozalov, Aydin;
2015-01-01
INTRODUCTION: We aimed to field-test the beta version of the third edition of the International Classification of Headache Disorders (ICHD-3 beta) diagnostic criteria for classical trigeminal neuralgia (TN). The proposed beta draft of the 11th version of the International Classification of Diseases...... (ICD-11 beta) is almost exclusively based on the ICHD-3 beta classification structure although slightly abbreviated. We compared sensitivity and specificity to ICHD-2 criteria, and evaluated the needs for revision. METHODS: Clinical characteristics were systematically and prospectively collected from...
la Camera, M
2008-01-01
We transform the classical confinement conditions of test particles to a brane universe in the absence of non-gravitational forces using the Hamilton-Jacobi formalism. The transformed conditions provide a direct criterion for selecting, in a cosmological scenario, 5D bulk manifolds wherein it is possible to obtain confinement purely due to classical gravitational effects of trajectories to 4D hypersurfaces.
La Camera, M.
The classical confinement condition of test particles to a brane universe in the absence of non-gravitational forces is transformed using the Hamilton-Jacobi formalism. The transformed condition provides a direct criterion for selecting in a cosmological scenario 5D bulk manifolds wherein it is possible to obtain confinement of trajectories to 4D hypersurfaces purely due to classical gravitational effects.
Testing Transport Theories with Solar Energetic Particles
Dröge, W.; Kartavykh, Y. Y.
2009-03-01
The detailed modeling of solar particle events offers the possibility of deriving coefficients describing the propagation of energetic particles in the inner heliosphere such as scattering mean free paths and thus to test the validity of different theories for the interaction of the particles with magnetic field fluctuations. In addition, information about the three-dimensional structure and the dynamical properties of the fluctuations can be obtained and compared with results from direct magnetic field observations. We apply different methods to numerically solve the focused transport equation for pitch angle diffusion coefficients calculated from standard and dynamical quasi-linear theory, and investigate the resulting pitch angle distributions for 100 keV electrons and for MeV protons. We find that pitch angle distributions predicted for electrons from a model comprising dynamical quasi-linear theory and the assumption that the fluctuations are composed of a 20% slab and an 80% two-dimensional component differ significantly from those predicted for protons. A comparison with particle observations from the solar event of 2000 February 18 reveals that these predictions are also in strong disagreement with the observed electron pitch angle distributions. Our findings indicate that the above model, inspite of its recent success in making quantitatively correct predictions for the particle's scattering mean free path parallel to the average magnetic field from observations of solar wind turbulence, is still not complete.
Camilleri, Kristian
2015-01-01
Niels Bohr's doctrine of the primacy of "classical concepts" is arguably his most criticized and misunderstood view. We present a new, careful historical analysis that makes clear that Bohr's doctrine was primarily an epistemological thesis, derived from his understanding of the functional role of experiment. A hitherto largely overlooked disagreement between Bohr and Heisenberg about the movability of the "cut" between measuring apparatus and observed quantum system supports the view that, for Bohr, such a cut did not originate in dynamical (ontological) considerations, but rather in functional (epistemological) considerations. As such, both the motivation and the target of Bohr's doctrine of classical concepts are of a fundamentally different nature than what is understood as the dynamical problem of the quantum-to-classical transition. Our analysis suggests that, contrary to claims often found in the literature, Bohr's doctrine is not, and cannot be, at odds with proposed solutions to the dynamical problem...
Kinetic theory of the eigenmodes of classical fluids and neutron scattering
Cohen, E.G.D.; Schepper, I.M. de; Zuilhof, M.J.
1984-01-01
The lowest lying eigenmodes of a classical fluid have been approximately determined for a wide range of densities and wavenumbers. The most important eigenmodes are direct extensions of the three hydrodynamic heat and sound modes to much larger wavenumbers. A new and consistent interpretation of neu
Directory of Open Access Journals (Sweden)
Vera Barton-Caro Ph.D.,
2015-12-01
Full Text Available The purpose of this classic grounded theory study was to explain the complex decision making process of heart failure (HF patients considering primary prevention implantable cardioverter defibrillator (ICD therapy. Sudden cardiac death (SCD is the leading cause of death for people with HF as well as the primary cause of death in the United States (US. ICDs represent the standard of care as the only effective therapy for primary prevention of SCD. However, a significant proportion of qualifying HF patients declines this invasive, yet life-saving device. The grounded theory is of Embodied revelation. The threat of SCD for ICD candidates consists of four stages: living in conscious denial, heightening of awareness, sanctioning ICD therapy, and living in new assurance. The first stage ends abruptly with the critical juncture of grasping the threat of SCD. This grounded theory has implications for research, nursing and medical practice, as well as bioethical considerations.
Basic Theory and Theory System of Medical Classic of Yellow Emperor%《黄帝内经》的基础理论与理论体系
Institute of Scientific and Technical Information of China (English)
马卫东
2012-01-01
《黄帝内经》作为中国古代医学的奠基之作,内容十分丰富,并已形成了较为完备的基础理论和理论体系.《内经》的基础理论可以概括为:以阴阳五行学说为理论基础,天地人一体而人为自然界一部分；人体是一个有机整体而五脏为六腑、五体、五官、九窍、四肢、百骸中心的医学理论.而《内经》的理论体系,依其内容可概括为三大组成部分,共九个主要学说.即:生理卫生部分的藏象学说、经络学说、养生运气学说；病因病理部分的病因学说、病机学说、病证学说；辨证施治部分的诊法学说、治则学说、针刺学说.《内经》理论体系的博大精深,在于上述三大组成部分的九个主要学说有其严密的内在逻辑关系.%As the foundation's work of the medical science in ancient China, the Medical Classic of Yellow Emperor had rich content and formed a set of relatively complete basic theory and theory system. The basic theory of Medical Classic of Yellow Emperor can be summarized as: taking the Yin-Yang and five elements philosophy as the basic theory; believing that the Sky, the Ground and the Human being forming a whole and the Human being was one of the parts of the nature; regarding the human body as an organic whole and claiming that the five internal organs were the rulers of the six hollow organs, the five body constituents, the five sense organs, the nine orifices, the four limbs and the hundred human bones. According to its content, the theory system of Medical Classic of Yellow Emperor can be summed up in three major parts and nine main theories: the part of the physiological health consists of the viscera-state doctrine, the Meridian theory and the wellness and breathing exercising theory; the part of the etiology and pathology consists of the cause of disease theory, the pathogenesis theory and the sickness syndrome theory; the part of the differentiation treatment consists of the
Further tests of belief-importance theory.
Directory of Open Access Journals (Sweden)
K V Petrides
Full Text Available Belief-importance (belimp theory hypothesizes that personality traits confer a propensity to perceive convergences or divergences between the belief that we can attain certain goals and the importance that we place on these goals. Belief and importance are conceptualized as two coordinates, together defining the belimp plane. We tested fundamental aspects of the theory using four different planes based on the life domains of appearance, family, financial security, and friendship as well as a global plane combining these four domains. The criteria were from the areas of personality (Big Five and trait emotional intelligence and learning styles. Two hundred and fifty eight participants were allocated into the four quadrants of the belimp plane (Hubris, Motivation, Depression, and Apathy according to their scores on four reliable instruments. Most hypotheses were supported by the data. Results are discussed with reference to the stability of the belimp classifications under different life domains and the relationship of the quadrants with the personality traits that are hypothesized to underpin them.
a Test to Prove Cloud Whitening THEORY!
Buttram, J. W.
2011-12-01
Climate science researchers believe our planet can possibly tolerate twice the present carbon dioxide levels with no upwards temperature change, IF we could increase the amount of energy reflected back out into space by about 2.0%. (c)Cloudtec basically alters a blend of seawater and applies heat derived from magma to it at a temperature exceeding 2,000 degrees F. The interaction of seawater and magma displaces the oxygen, causing the volume of water to vaporize and expand over 4,000 times - transforming billions of tons of seawater into thousands of cubic miles of white, maritime, stratocumulus clouds to reflect the incident Sun's rays back out into space. A 6 month test to prove Cloud Whitening Theory will cost 6 million dollars. (No profit added.) This study will enable everyone on the planet with a computer the transparency to use satellite imagery and check out for themselves - if and when Cloud Whitening is occurring. If Cloud Whitening Theory is validated, (c)Cloudtec's innovation can strategically create the clouds we need to reflect the Sun's rays back out into space and help neutralize the projected 3.6 degrees F rise in temperature. Based on reasonable calculations of anthropogenic global warming: this one move alone would be comparable to slashing global carbon dioxide emissions by over 60% over the next 40 years.
General Relativity Theory: Tests through Time
Yatskiv, Ya. S.; Alexandrov, A. N.; Vavilova, I. B.; Zhdanov, V. I.; Kudrya, Yu. N.; Parnovsky, S. L.; Fedorova, E.V .; Khmil, S. V.
2006-08-01
Theoretical basis of the General Relativity theory (GR), its experimental tests as well as GR applications were briefly summarized in the new textbook devoted to the World Year of Physics-2005 (authors - Yatskiv Ya.S., Alexandrov A.N., Vavilova I.B., Zhdanov V.I., Kudrya Yu.N., Parnovsky S.L., Fedorova E.V., Khmil S.V., Kyiv:Akademperiodika, 2005, 288 p.). The monograph addresses scientists, post-graduate students, and students specialized in the natural sciences as well as everyone who takes a great interest in GR. Special attention is paid on Relativistic Reference Systems, as an attachment to this book, including attachment to this book where the Resolution of the XXIV IAU General Assembly is given (in Ukrainian).
Critical Test Of Gamma Ray Burst Theories
Dado, Shlomo
2016-01-01
Long and precise follow-up measurements of the X-ray afterglow (AG) of very intense gamma ray bursts (GRBs) provide a critical test of GRB afterglow theories. Here we show that the power-law decline with time of X-ray AG of GRB 130427A, the longest measured X-ray AG of an intense GRB with the Swift, Chandra and XMM Newton satellites, and of all other well measured late-time X-ray afterglow of intense GRBs, is that predicted by the cannonball (CB) model of GRBs from their measured spectral index, while it disagrees with that predicted by the widely accepted fireball (FB) models of GRBs.
Institute of Scientific and Technical Information of China (English)
LI Pei-jun; YIN Pei-jie; ZHOU Qi-xing; SHI Xing-qun; XIONG Xian-zhe
2005-01-01
The phytotoxicity of chlorobenzoic acids(CBAs) was studied and the biochemical endpoints' suitability and sensibility was evaluated. Two terrestrial plant species in the same family were exposed to different concentrations of CBAS and tested their germination according to the guideline of Organization for Economic Cooperation and Development(OECP, 1984). The results showed that CBA doseinhibition rate of classical endpoint had the distinct linear relationship in the range of 10%-50% inhibition rate for root elongation( p ＜0.01), and the dose variances of CBAs had the greater influence on the inhibition rate of germination than on inhibition rate of root elongation. The CBA dose half effect concentration-inhibition rate of two antioxidant enzyme activity superoxide dismutase(SOD) and catalase (CAT) had the quadratic relationship, and CBA dose-inhibition rate of the peroxides(POD) activity had the linear relationship( p＜0.05). Comparing the half effect concentration (EC50 ) of two kinds of endpoints, the POD activity was more sensitive than classical endpoint, however, SOD and CAT activity were not sensitive in the experiment.
A concise course on the theory of classical liquids basics and selected topics
Santos, Andrés
2016-01-01
This short primer offers non-specialist readers a concise, yet comprehensive introduction to the field of classical fluids – providing both fundamental information and a number of selected topics to bridge the gap between the basics and ongoing research. In particular, hard-sphere systems represent a favorite playground in statistical mechanics, both in and out of equilibrium, as they represent the simplest models of many-body systems of interacting particles, and at higher temperature and densities they have proven to be very useful as reference systems for real fluids. Moreover, their usefulness in the realm of soft condensed matter has become increasingly recognized – for instance, the effective interaction among (sterically stabilized) colloidal particles can be tuned to almost perfectly match the hard-sphere model. These lecture notes present a brief, self-contained overview of equilibrium statistical mechanics of classical fluids, with special applications to both the structural and thermodynamic pr...
Theory of hybrid systems; 1, The operator formulation of classical mechanics and semiclassical limit
Prvanovic, S
2001-01-01
The algebra of polynomials in operators that represent generalized coordinate and momentum and depend on the Planck constant is defined. The Planck constant is treated as the parameter taking values between zero and some nonvanishing $h_0$. For the second of these two extreme values, introduced operatorial algebra becomes equivalent to the algebra of observables of quantum mechanical system defined in the standard manner by operators in the Hilbert space. For the vanishing Planck constant, the generalized algebra gives the operator formulation of classical mechanics since it is equivalent to the algebra of variables of classical mechanical system defined, as usually, by functions over the phase space. In this way, the semiclassical limit of kinematical part of quantum mechanics is established through the generalized operatorial framework.
THE CLASSICAL BALLET METHODOLOGY AND THEIR POSSIBLE DIALOGUE WITH LABANIANAS THEORIES
Lanusse Sousa Jaime
2015-01-01
Establish a dialogue between a codified technique with other body techniques becomes a challenge when it comes to a tradition. Moths new avenues for the ballet teaching may move several problems found with respect to a hierarchy of knowledge. Ballet with its tradition and its stroked paths can be reorganized to build thinking and conscious bodies? The traditional classical technique transits other body language? Often there are more complex issues to think today in teaching and learning balle...
A Hamiltonian theory of adaptive resolution simulations of classical and quantum models of nuclei
Kreis, Karsten; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello
2015-03-01
Quantum delocalization of atomic nuclei strongly affects the physical properties of low temperature systems, such as superfluid helium. However, also at room temperature nuclear quantum effects can play an important role for molecules composed by light atoms. An accurate modeling of these effects is possible making use of the Path Integral formulation of Quantum Mechanics. In simulations, this numerically expensive description can be restricted to a small region of space, while modeling the remaining atoms as classical particles. In this way the computational resources required can be significantly reduced. In the present talk we demonstrate the derivation of a Hamiltonian formulation for a bottom-up, theoretically solid coupling between a classical model and a Path Integral description of the same system. The coupling between the two models is established with the so-called Hamiltonian Adaptive Resolution Scheme, resulting in a fully adaptive setup in which molecules can freely diffuse across the classical and the Path Integral regions by smoothly switching their description on the fly. Finally, we show the validation of the approach by means of adaptive resolution simulations of low temperature parahydrogen. Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
Mechanics and analysis of beams, columns and cables. A modern introduction to the classic theories
DEFF Research Database (Denmark)
Krenk, Steen
The book illustrates the use of simple mathematical analysis techniques within the area of basic structural mechanics, in particular the elementary theories of beams, columns and cables. The focus is on: i) Identification of the physical background of the theories and their particular mathematical...
Pratt, Cornelius B.
1994-01-01
Links ethical theories to the management of the product recall of the Perrier Group of America. Argues for a nonsituational theory-based eclectic approach to ethics in public relations to enable public relations practitioners, as strategic communication managers, to respond effectively to potentially unethical organizational actions. (SR)
Lebon, G.; Jou, D.
2015-03-01
This paper gives a historical account of the early years (1953-1983) of extended irreversible thermodynamics (EIT). The salient features of this formalism are to upgrade the thermodynamic fluxes of mass, momentum, energy, and others, to the status of independent variables, and to explore the consistency between generalized transport equations and a generalized version of the second law of thermodynamics. This requires going beyond classical irreversible thermodynamics by redefining entropy and entropy flux. EIT provides deeper foundations, closer relations with microscopic formalisms, a wider spectrum of applications, and a more exciting conceptual appeal to non-equilibrium thermodynamics. We first recall the historical contributions by Maxwell, Cattaneo, and Grad on generalized transport equations. A thermodynamic theory wide enough to cope with such transport equations was independently proposed between 1953 and 1983 by several authors, each emphasizing different kinds of problems. In 1983, the first international meeting on this theory took place in Bellaterra (Barcelona). It provided the opportunity for the various authors to meet together for the first time and to discuss the common points and the specific differences of their previous formulations. From then on, a large amount of applications and theoretical confirmations have emerged. From the historical point of view, the emergence of EIT has been an opportunity to revisit the foundations and to open new avenues in thermodynamics, one of the most classical and well consolidated physical theories.
Solar-System Tests of Gravitational Theories
Shapiro, Irwin
1997-01-01
We are engaged in testing gravitational theory by means of observations of objects in the solar system. These tests include an examination of the Principle Of Equivalence (POE), the Shapiro delay, the advances of planetary perihelia, the possibility of a secular variation G in the "gravitational constant" G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. These results are consistent with our preliminary results focusing on the contribution of Lunar Laser Ranging (LLR), which were presented at the seventh Marcel Grossmann meeting on general relativity. The largest improvement over previous results comes in the uncertainty for (eta): a factor of five better than our previous value. This improvement reflects the increasing strength of the LLR data. A similar analysis presented at the same meeting by a group at the Jet Propulsion Laboratory gave a similar result for (eta). Our value for (beta) represents our first such result determined simultaneously with the solar quadrupole moment from the dynamical data set. These results are being prepared for publication. We have shown how positions determined from different planetary ephemerides can be compared and how the combination of VLBI and pulse timing information can yield a direct tie between planetary and radio frames. We have continued to include new data in our analysis as they became available. Finally, we have made improvement in our analysis software (PEP) and ported it to a network of modern workstations from its former home on a "mainframe" computer.
AN OPEN LABEL PILOT STUDY TESTING THE ROLE OF CLASSICAL HOMEOPATHY IN CHRONIC ALLERGIC RHINITIS
Directory of Open Access Journals (Sweden)
S. Ghosh*, S. Das, M. Mundle Dishari Sengupta, Sk. Intaj Hossain, M. Koley and S. Saha
2013-04-01
Full Text Available ABSTRACT: Purpose: The prevalence of allergic rhinitis (AR is increasing at an alarming rate throughout the world. India has an estimated number of 15-20 million patients with allergic bronchial asthma and 30-80% of these suffer from AR. So, AR is considered as a major chronic respiratory disease due to its prevalence, impact on quality of life (QoL, work/school performance and productivity, economic burden and links with asthma. This research aims at testing the role of classical homeopathy in bringing changes in serum immunoglobulin E (IgE level and absolute eosinophil count (primary outcome measures and symptoms score and WHOQOL-BREF score related to AR (secondary outcome measures by comparing the pre-trial and post-trial data.
Marsalek, Ondrej; Markland, Thomas E
2016-02-01
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost. PMID:26851913
International Nuclear Information System (INIS)
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost
Energy Technology Data Exchange (ETDEWEB)
Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States)
2016-02-07
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.
Negative screening tests in classical galactosaemia caused by S135L homozygosity.
LENUS (Irish Health Repository)
Crushell, E
2009-06-01
Classical galactosaemia is relatively common in Ireland due to a high carrier rate of the Q188R GALT mutation. It is screened for using a bacterial inhibition assay (BIA) for free galactose. A Beutler assay on day one of life is performed only in high risk cases (infants of the Traveller community and relatives of known cases). A 16-month-old Irish-born boy of Nigerian origin was referred for investigation of developmental delay, and failure to thrive. He had oral aversion to solids and his diet consisted of cow\\'s milk and milk-based cereal mixes. He was found to have microcephaly, weight <2nd percentile, hepatomegaly and bilateral cataracts. Coagulation screen was normal and transaminases were slightly elevated. His original newborn screen was reviewed and confirmed to have been negative; urinary reducing substances on three separate occasions were negative. Beutler assay demonstrated "absent" red cell galactose-1-phosphate uridyltransferase (GALT) activity. GALT enzyme activity was <0.5 gsubs\\/h per gHb confirming classical galactosaemia. Gal-1-P was elevated at 1.88 micromol\\/gHb. Mutation analysis of the GALT gene revealed S135L homozygosity. S135L\\/S135L galactosaemia is associated with absent red cell GALT activity but with approximately 10% activity in other tissues such as the liver and intestines, probably explaining the negative screening tests and the somewhat milder phenotype associated with this genotype. The patient was commenced on galactose-restricted diet; on follow-up at 2 years of age, growth had normalized but there was global developmental delay. In conclusion, galactosaemia must be considered in children who present with poor growth, hepatomegaly, developmental delay and cataracts and GALT enzyme analysis should be a first line test in such cases. Non-enzymatic screening methods such as urinary reducing substances and BIA for free galactose are not reliable in S135L homozygous galactosaemia.
Selected topics in the classical theory of functions of a complex variable
Heins, Maurice
2014-01-01
Elegant and concise, this text is geared toward advanced undergraduate students acquainted with the theory of functions of a complex variable. The treatment presents such students with a number of important topics from the theory of analytic functions that may be addressed without erecting an elaborate superstructure. These include some of the theory's most celebrated results, which seldom find their way into a first course. After a series of preliminaries, the text discusses properties of meromorphic functions, the Picard theorem, and harmonic and subharmonic functions. Subsequent topics incl
Masliukivska, A.
2013-01-01
The paper studies the evolution of the appearance of the term “innovation” and its classical definition. The study exposes the main provisions of innovation theory of Joseph Schumpeter and their modern understanding.
Directory of Open Access Journals (Sweden)
A. Masliukivska
2013-03-01
Full Text Available The paper studies the evolution of the appearance of the term “innovation” and its classical definition. The study exposes the main provisions of innovation theory of Joseph Schumpeter and their modern understanding.
Experimentally Testing the Mulitverse/Many-Worlds Theory
Tipler, Frank
2014-06-01
Many-Worlds quantum mechanics is NOT experimentally equivalent to standard quantum mechanics. I shall demonstrate this fact and investigate its consequences. I first show the Schrödinger equation is a special case of the classical Hamilton-Jacobi equation, with |Ψ|2 being most naturally interpreted as a quantity proportional to the density of universes in the multiverse. I then show that with this interpretation for |Ψ|2, we can test the multiverse theory, because in the multiverse theory, the Born Interpretation is derived from this assumption, not merely assumed as in standard quantum theory, and the derivation gives us a means of computing how fast |Ψ|2 will build up from individual particles in an experiment, a computation I shall show cannot be done in standard quantum mechanics. In some types of experiments, the observed pattern will approach the final Born pattern as 1/N1/2, and in other types of experiments, the approach will be as 1/N, where N is the number of observed “particles.” The multiverse meaning of has other advantages over the standard probability amplitude meaning, because if is a universe density amplitude, need not be restricted to being a Hilbert space function. In particular, delta functions and plane waves are NOT functions in any Hilbert space, but they are both used extensively in quantum mechanics, though disallowed by the axioms of standard quantum mechanics. Finally, I shall show that multiverse experiments have important implications for cosmology. The Wheeler-DeWitt equation for quantum gravity, applied to a spatially closed Friedman radiation universe in conformal time, is mathematically the Schrödinger equation for a simple harmonic oscillator. I show that if the wave function of the universe were a delta function at the initial singularity — I show that the universes being exactly classical now implies such a universal wave function — then we are overwhelmingly likely to find ourselves in a closed universe that is
Classical Electron Model with Negative Energy Density in Einstein-Cartan Theory of Gravitation
Ray, S; Ray, Saibal; Bhadra, Sumana
2002-01-01
Experimental result regarding the maximum limit of the radius of the electron \\sim 10^{-16} cm and a few of the theoretical works suggest that the gravitational mass which is a priori a positive quantity in Newtonian mechanics may become negative in general theory of relativity. It is argued that such a negative gravitational mass and hence negative energy density also can be obtained with a better physical interpretation in the framework of Einstein-Cartan theory.
Popa, Alexandru
2013-01-01
Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamic Systems is intended for scientists and graduate students interested in the foundations of quantum mechanics and applied scientists interested in accurate atomic and molecular models. This is a reference to those working in the new field of relativistic optics, in topics related to relativistic interactions between very intense laser beams and particles, and is based on 30 years of research. The novelty of this work consists of accurate connections between the properties of quantum equations and correspon
Field theory and weak Euler-Lagrange equation for classical particle-field systems
Energy Technology Data Exchange (ETDEWEB)
Qin, Hong [PPPL; Burby, Joshua W [PPPL; Davidson, Ronald C [PPPL
2014-10-01
It is commonly believed that energy-momentum conservation is the result of space-time symmetry. However, for classical particle-field systems, e.g., Klimontovich-Maxwell and Klimontovich- Poisson systems, such a connection hasn't been formally established. The difficulty is due to the fact that particles and the electromagnetic fields reside on different manifolds. To establish the connection, the standard Euler-Lagrange equation needs to be generalized to a weak form. Using this technique, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived.
Semi-classical periodic-orbit theory for chaotic Hamiltonians with discrete symmetries
Energy Technology Data Exchange (ETDEWEB)
Seligman, T.H.; Weidenmuller, H.A
1994-12-07
We generalize an idea applied recently to the case of identical particles and present a group-theoretical analysis of the periodic-orbit structure of a chaotic dynamical system with a discrete symmetry. The class structure of the group provides the key for the classification of periodic orbits. This structure perfectly fits the quantum-mechanical trace formula which is the starting point for the Balian-Bloch-Gutzwiller semi-classical approximation. For a specific irreducible representation of the symmetry group, we derive a modified form of the periodic-orbit sum. (author)
THE CLASSICAL BALLET METHODOLOGY AND THEIR POSSIBLE DIALOGUE WITH LABANIANAS THEORIES
Directory of Open Access Journals (Sweden)
Lanusse Sousa Jaime
2015-12-01
Full Text Available Establish a dialogue between a codified technique with other body techniques becomes a challenge when it comes to a tradition. Moths new avenues for the ballet teaching may move several problems found with respect to a hierarchy of knowledge. Ballet with its tradition and its stroked paths can be reorganized to build thinking and conscious bodies? The traditional classical technique transits other body language? Often there are more complex issues to think today in teaching and learning ballet . These issues translate my need to research and experiment with new ways to teach this technique.
Classical and Quantum Theory of Photothermal Cavity Cooling of a Mechanical Oscillator
Restrepo, Juan; Ciuti, Cristiano; Favero, Ivan
2010-01-01
Photothermal effects allow very efficient optomechanical coupling between mechanical degrees of freedom and photons. In the context of cavity cooling of a mechanical oscillator, the question of if the quantum ground state of the oscillator can be reached using photothermal back-action has been debated and remains an open question. Here we address this problem by complementary classical and quantum calculations. Both lead us to conclude that: first, the ground-state can indeed be reached using photothermal cavity cooling, second, it can be reached in a regime where the cavity detuning is small allowing a large amount of photons to enter the cavity.
Directory of Open Access Journals (Sweden)
Paredes J.C.M.
1999-01-01
Full Text Available Serum neutralization tests (SN were performed against classical swine fever virus (CSFV, bovine viral diarrhea virus (BVDV and border disease virus (BDV on samples of swine serum collected for screening of antibodies to CSFV, in order to determine the SN value as a differential serological test. Ninety-nine sera out of a sample of 16,664 were positive for antibodies to pestiviruses in an ELISA test which did not distinguish antibodies to different pestiviruses. When submitted to SN, 81 sera were positive for CSFV antibodies only. In 17 sera, crossreactive antibodies to either CSFV, BVDV or BDV were detected. In most of these sera (13 out of 17 the differences between SN titres against the three viruses were not sufficient to estimate which was the most likely antibody-inducing virus. It was concluded that, for the SN to be useful in such differentiation, it is essential to examine a sample which must include a representative number of sera from the same farm where suspect animals were detected. When isolated serum samples are examined, such as those obtained with the sampling strategy adopted here, the SN may give rise to inconclusive results.
Marsalek, Ondrej
2015-01-01
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ab initio ring polymer contraction (AI-RPC) scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive pro...
Žižek, Suzana; Zidar, Primož
2013-07-01
Lasalocid is a veterinary ionophore antibiotic used for prevention and treatment of coccidiosis in poultry. It enters the environment with the use of contaminated manure on agricultural land. Despite its extensive use, the effects of lasalocid on non-target soil organisms are poorly explored. We used classical subleathal ecotoxicity tests to assess the effects of lasalocid on earthworms (Eisenia andrei) and isopods (Porcellio scaber) and compared the results with tests using avoidance behaviour as the endpoint. The results showed that avoidance is a much more sensitive endpoint. For earthworms, EC50 for avoidance (12.3 mg kg(-1) dry soil) was more than five times lower than EC50 for reproduction (69.6 mg kg(-1) dry soil). In isopods the sensitivity of the behavioural response test was even higher. While the highest lasalocid concentration 202 mg kg(-1) had no significant effects on isopod growth or survival, already the lowest used concentration in the behavioural assay (4.51 mg kg(-1)) caused significant impact on isopod behaviour. Using the avoidance test results for calculating the predicted no-effect concentration (PNEC) of lasalocid to soil invertebrates, the value is close to the predicted environmental concentration (PEC). This indicates that the use of lasalocid-contaminated manure could potentially impair the habitat function of agricultural soils. PMID:23635534
Sexual selection and hermaphroditic organisms: Testing theory
Directory of Open Access Journals (Sweden)
Janet L. LEONARD
2013-08-01
Full Text Available Sexual selection is widespread if not ubiquitous in hermaphroditic organisms. Although many phenomena that have been described as sexual selection in gonochores, (e.g. harem polygamy, multiple mating, elaborate courtship, even secondary sexual characters can be found in some hermaphrodites, what is more interesting is the ways in which sexual selection in hermaphrodites may differ from dioecious taxa. In hermaphrodites, an individual’s mating success includes its success from both sexual roles. Secondly, in many simultaneously hermaphroditic taxa there is strong evidence of sexual selection and yet the operational sex ratio is 1:1, by definition. Many simultaneous hermaphrodites have elaborate courtship and genital anatomy, suggesting sexual selection plays an important role in reproductive success. Sperm competition and cryptic female choice mean that the number of mates acquired is not necessarily a predictor of reproductive success. Even in simultaneous hermaphrodites with reciprocal mating, variance in reproductive success through the male role and through the female role may differ in a population. Moreover hermaphrodites may choose to emphasize one sexual role over the other. Data suggest that the preferred role varies in hermaphrodites, which creates an opportunity to test fundamental predictions and assumptions of sexual selection theory. Hermaphrodites may vary their emphasis on one sexual role over the other either developmentally or behaviorally in response to environmental or social parameters. How they use this capability in acquiring more or higher quality mates still requires study [Current Zoology 59 (4: 579–588, 2013].
Sexual selection and hermaphroditic organisms: Testing theory
Institute of Scientific and Technical Information of China (English)
Janet L.LEONARD
2013-01-01
Sexual selection is widespread if not ubiquitous in hermaphroditic organisms.Although many phenomena that have been described as sexual selection in gonochores,(e.g.harem polygamy,multiple mating,elaborate courtship,even secondary sexual characters) can be found in some hermaphrodites,what is more interesting is the ways in which sexual selection in hermaphrodites may differ from dioecious taxa.In hermaphrodites,an individual's mating success includes its success from both sexual roles.Secondly,in many simultaneously hermaphroditic taxa there is strong evidence of sexual selection and yet the operational sex ratio is 1:1,by definition.Many simultaneous hermaphrodites have elaborate courtship and genital anatomy,suggesting sexual selection plays an important role in reproductive success.Sperm competition and cryptic female choice mean that the number of mates acquired is not necessarily a predictor of reproductive success.Even in simultaneous hermaphrodites with reciprocal mating,variance in reproductive success through the male role and through the female role may differ in a population.Moreover hermaphrodites may choose to emphasize one sexual role over the other.Data suggest that the preferred role varies in hermaphrodites,which creates an opportunity to test fundamental predictions and assumptions of sexual selection theory.Hermaphrodites may vary their emphasis on one sexual role over the other either developmentally or behaviorally in response to environmental or social parameters.How they use this capability in acquiring more or higher quality mates still requires study.
Institute of Scientific and Technical Information of China (English)
李世荣; 万泽青; 张静华
2014-01-01
The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma-tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen-cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.
Energy-momentum tensors in classical field theories — A modern perspective
Voicu, Nicoleta
2016-04-01
The paper presents a general geometric approach to energy-momentum tensors in Lagrangian field theories, based on a global Hilbert-type definition. The approach is consistent with the ones defining energy-momentum tensors in terms of hypermomentum maps given by the diffeomorphism invariance of the Lagrangian — and, in a sense, complementary to these, with the advantage of an increased simplicity of proofs and also, opening up new insights on the topic. A special attention is paid to the particular cases of metric and metric-affine theories.
Luban, Marshall; Modler, Robert; Axenovich, Maria; Canfield, Paul; Bud'Ko, Sergey; Schröder, Christian; Schnack, Jürgen; Müller, Achim; Kögerler, Paul; Harrison, Neil
2001-03-01
The Keplerate species Mo_72Fe_30 containing 30 high-spin Fe^3+ ions, is by far the largest paramagnetic molecule synthesized to date, and it serves as an effective building block and prototype for a new class of diverse molybdenum-oxygen based compounds. These substances are of importance for identifying the most pertinent criteria for the passage from microscopic to macroscopic magnetism, and for their potential as molecular-based electronic and magnetic devices. We report excellent agreement, from room temperature down to 0.1 K, and for magnetic fields up to 60 Tesla between our theoretical results based on the classical Heisenberg model and our measurements of its magnetic properties.
Testing General Free Functions in Preferred Scale Theories
Mozaffari, Ali
2016-01-01
Building on previous work, we explore the parameter space of general free functions in non-relativistic modified gravity theories motivated by k-essence and other scalar-tensor theories. Using a few proposed tests, we aim to update Solar System based constraints on these ideas in line with previous theories and suggest their utility in constraining modification to GR, potentially even being able to test k-essence type theories.
Comparison of 3D Classical Trajectory and Transition-State Theory Reaction Cross Sections
Koeppl, G. W.; Karplus, Martin
1970-10-01
Although there is excellent agreement for a system such as H+H{sub 2} --> H{sub 2}+H, in which both the potential and the particle masses are symmetric, significant deviations occur for more asymmetric reactions. A detailed analysis show that the calculated differences are from the violation of two assumptions of transition-state theory.
Philosophical Roots of Classical Grounded Theory: Its Foundations in Symbolic Interactionism
Aldiabat, Khaldoun M.; Le Navenec, Carole-Lynne
2011-01-01
Although many researchers have discussed the historical relationship between the Grounded Theory methodology and Symbolic Interactionism, they have not clearly articulated the congruency of their salient concepts and assumptions. The purpose of this paper is to provide a thorough discussion of this congruency. A hypothetical example about smoking…
FEATURES OF INVESTMENT PROCESS UNDERSTANDING BY A. SMITH AS THE FOUNDER OF CLASSICAL THEORY
Directory of Open Access Journals (Sweden)
T. Ovcharenko
2013-03-01
Full Text Available The paper examines the essence and the nature of the concept of “investment”. The main conceptual elements of a scientific theory of Adam Smith are defined. The features of the investment process by Adam Smith as the driving mechanism for social and economic development of a society are revealed.
Hamiltonian approach to GR - Part 1: covariant theory of classical gravity
Cremaschini, Claudio
2016-01-01
A challenging issue in General Relativity concerns the determination of the manifestly-covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor $\\hat{g}(r)\\equiv \\left\\{ \\hat{g}_{\\mu \
On the limits of quantum theory: Contextuality and the quantum–classical cut
International Nuclear Information System (INIS)
This paper is based on four assumptions: 1. Physical reality is made of linearly behaving components combined in non-linear ways. 2. Higher level behaviour emerges from this lower level structure. 3. The way the lower level elements behaves depends on the context in which they are embedded. 4. Quantum theory applies to the lower level entities. An implication is that higher level effective laws, based on the outcomes of non-linear combinations of lower level linear interactions, will generically not be unitary; hence the applicability of quantum theory at higher levels is strictly limited. This leads to the view that both state vector preparation and the quantum measurement process are crucially based on top-down causal effects, and helps provide criteria for the Heisenberg cut that challenge some views on Schrödinger’s cat. - Highlights: ► Gives a framework for looking at emergence based on quantum theory. ► Considers how the linearity of quantum theory relates to complex systems. ► Emphasizes the interaction of bottom-up and top-down causation. ► Uses this to discuss the classical–quantum cut. ► Applies this to Schrödinger’s cat.
Energy Technology Data Exchange (ETDEWEB)
Benhassine, B. [Nantes Univ., 44 (France)
1994-01-14
At intermediate energies the heavy ion collisions can be studied within the framework of a semi-classical approach based on the Vlasov-Uehling-Uhlenbeck (VUU) equation. Such an approach reduces the N-body problem to its description in terms of the one-body distribution function and constitutes the basis of several successful simulation models. Our aim in this work is to extend these average approaches to treat fluctuations. Within the framework of a linear approximation, we derived a Fokker-Planck transport equation in the one-body phase space. When it is reduced to its first moments, one recovers the VUU equation for the average dynamics together with the time evolution equation for the correlations. The collective transport coefficients are then obtained by projection on the one-body collective space. Independently, using a projection method introduced by Van Kampen, based on the constants of motion, we deduce the stationary expressions for the covariance matrix in phase space. We extract then, the equilibrium dispersions of one-body observables in a homogeneous case and in a spherical symmetric one. These results are compared with two types of simulation models in a relaxation time approximation. In the first one which is of Lagrangian type, the collective transport coefficients are directly extracted from the simulation and consequently the numerical fluctuations are washed out. The second model, due to its Eulerian character, allows us to make a microscopical comparison. (author) 58 refs.
Young, Matthew B
2016-01-01
We introduce a new class of representations of the cohomological Hall algebras of Kontsevich and Soibelman which we call cohomological Hall modules, or CoHM for short. These representations are constructed from self-dual representations of a quiver with contravariant involution $\\sigma$ and provide a mathematical model for the space of BPS states in orientifold string theory. We use the CoHM to define a generalization of cohomological Donaldson-Thomas theory of quivers which allows the quiver representations to have orthogonal and symplectic structure groups. The associated invariants are called orientifold Donaldson-Thomas invariants. We prove the integrality conjecture for orientifold Donaldson-Thomas invariants of $\\sigma$-symmetric quivers. We also formulate precise conjectures regarding the geometric meaning of these invariants and the freeness of the CoHM of a $\\sigma$-symmetric quiver. We prove the freeness conjecture for disjoint union quivers, loop quivers and the affine Dynkin quiver of type $\\widet...
Equations of motion in Double Field Theory: from classical particles to quantum cosmology
Kan, Nahomi; Shiraishi, Kiyoshi
2012-01-01
The equation of motion for a point particle in the background field of double field theory is considered. We find that the motion is described by a geodesic flow in the doubled geometry. Inspired by analysis on the particle motion, we propose a modified model of quantum string cosmology, which includes two scale factors. The report is based on Phys. Rev. D84 (2011) 124049 [arXiv:1108.5795].
Dahms, Rainer N.
2016-04-01
A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing
Wiesendanger, C.
2011-01-01
Viewing gravitational energy-momentum $p_G^\\mu$ as equal by observation, but different in essence from inertial energy-momentum $p_I^\\mu$ naturally leads to the gauge theory of volume-preserving diffeormorphisms of an inner Minkowski space ${\\bf M}^{\\sl 4}$. To extract its physical content the full gauge group is reduced to its Poincar\\'e subgroup. The respective Poincar\\'e gauge fields, field strengths and Poincar\\'e-covariant field equations are obtained and point-particle source currents a...
Interpreting nowhere dense graph classes as a classical notion of model theory
Adler, H; Adler, I
2014-01-01
A class of graphs is nowhere dense if for every integer r there is a finite upper bound on the size of complete graphs that occur as r-minors. We observe that this recent tameness notion from (algorithmic) graph theory is essentially the earlier stability theoretic notion of superflatness. For subgraph-closed classes of graphs we prove equivalence to stability and to not having the independence property. Expressed in terms of PAC learning, the concept classes definable in first-order logic in...
The Super-Natural Supersymmetry and Its Classic Example: M-Theory Inspired NMSSM
Li, Tianjun; Wang, Xiao-Chuan
2015-01-01
We briefly review the super-natural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the Minimal Supersymmetric Standard model (MSSM), the Next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for super-natural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on $S^1/Z_2$. In these scenarios, SUSY is broken by one and only one $F$-term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the K\\"ahler potential and superpotential from Calabi-Yau compactification of M-theory on $S^1/Z_2$. Thus, as predicted by super-natural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are r...
Revisiting Classical Theories on Quality Management%质量管理经典理论再启示
Institute of Scientific and Technical Information of China (English)
牟慈
2015-01-01
质量是企业的立身之本。重温质量管理经典理论，为增强企业整体质量管理意识，创新管理理念，提升全员质量管理水平夯实理论基础，让中国石化“质量永远领先一步”。%Quality is fundamental to the development of companies. Revisiting classical theories on quality management can facilitate a more solid theoretical basis for the company’s efforts to improve its overall quality management awareness, innovate management philosophies and elevate total quality management level, thereby always keeping SINOPEC“a step ahead in quality”.
Wrochna, Michał
2014-01-01
We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove it is isomorphic to the phase space in the subsidiary condition approach of Hack and Schenkel in the case of Maxwell, Yang-Mills, and Rarita-Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang-Mills case is concluded from known results in the subsidiary condition (or Gupta-Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang-Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.
Durt, Thomas
2010-01-01
According to the so-called Quantum Darwinist approach, the emergence of "classical islands" from a quantum background is assumed to obey a (selection) principle of maximal information. We illustrate this idea by considering the coupling of two oscillators (modes). As our approach suggests that the classical limit could have emerged throughout a long and progressive Evolution mechanism, it is likely that primitive living organisms behave in a "more quantum", "less classical" way than more evolved ones. This brings us to seriously consider the possibility to measure departures from classicality exhibited by biological systems. We describe an experimental proposal the aimed at revealing the presence of entanglement in the biophotonic radiation emitted by biological sources.
On the limits of quantum theory: contextuality and the quantum-classical cut
Ellis, George F R
2011-01-01
This paper is based on four assumptions: 1. Physical reality is made of linearly behaving components combined in non-linear ways. 2. Higher level behaviour emerges from this lower level structure. 3. The way the lower level elements behaves depends on the context in which they are imbedded. 4. Quantum theory applies to the lower level entities. An implication is that higher level effective laws, based in the outcomes of non-linear combinations of lower level linear interactions, will generically not be unitary. This leads to the view that both state vector preparation and the quantum measurement process are crucially based in top-down causal effects, supports the contention that the flow of time is real, and helps provide criteria for the Heisenberg cut that challenge some views on Schroedinger's cat and the existence of the wave function of the universe.
Supernatural supersymmetry and its classic example: M-theory inspired NMSSM
Li, Tianjun; Raza, Shabbar; Wang, Xiao-Chuan
2016-06-01
We briefly review the supernatural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the minimal supersymmetric standard model (MSSM), the next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for supernatural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on S1/Z2. In these scenarios, SUSY is broken by one and only one F term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the Kähler potential and superpotential from Calabi-Yau compactification of M-theory on S1/Z2. Thus, as predicted by supernatural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are relatively light around 1 TeV, stau can even be as light as 580 GeV and degenerate with the lightest neutralino, chargino masses are larger than 1 TeV, the light stop masses are around 2 TeV or larger, the first two-generation squark masses are about 3 TeV or larger, and gluinos are heavier tha.n squarks. In the dilaton dominant SUSY breaking scenario, the qualitative picture remains the same but we have heavier spectra as compared to the moduli dominant SUSY breaking scenario. In addition to it, we have Higgs H2/A1-resonance solutions for dark matter (DM). In both scenarios, the minimal value of DM relic density is about 0.2. To obtain the observed DM relic density, we can consider the dilution effect from supercritical string cosmology or introduce the axino as the lightest supersymmetric particle.
Gravitational interaction for light-like motion in classical and quantum theory
Mitskievich, Nikolai V
2010-01-01
On the basis of an exact vacuum solution of Einstein's equations, {\\it vis}. the pencil-of-light field, we study the light-like motion of test and non-test objects. We also consider the quantum theoretical interaction of massless scalar particles through virtual gravitons. The dragging phenomenon is manifested and its agreement with astronomical observations established. This paper submitted to {\\bf arXiv} is a somewhat reedited copy of my article dedicated to Dr. Ivar Piir in a volume published on the occasion of his 60th birthday in 1989 in Tartu by the Estonian Academy of Sciences.
Quantum Gravity Testing Time for Theories
Ahluwalia, D V
1999-01-01
The extreme smallness of both the Planck length, on the one side, and the ratio of the gravitational to the electrical forces between, say, two electrons, on the other side has led to a widespread belief that the realm of quantum gravity is beyond terrestrial experiments. A series of classical and quantum arguments are put forward to dispel this view. It is concluded that whereas the smallness of the Planck length and the ratio of gravitational to electrical forces, does play its own essential role in nature, it does not make quantum gravity a science where humans cannot venture to probe her secrets. In particular attention is drawn to the latest neutron and atomic interferometry experiments, and to gravity wave interferometers. The latter, as Giovanni Amelino-Camelia argues [Nature 398, 216 (1999)], can be treated as probes of space-time fuzziness down to Planck length for certain quantum-gravity models.
Testing Alternative Theories of Gravity using LISA
Will, Clifford M
2004-01-01
We investigate the possible bounds which could be placed on alternative theories of gravity using gravitational wave detection from inspiralling compact binaries with the proposed LISA space interferometer. Specifically, we estimate lower bounds on the coupling parameter \\omega of scalar-tensor theories of the Brans-Dicke type and on the Compton wavelength of the graviton \\lambda_g in hypothetical massive graviton theories. In these theories, modifications of the gravitational radiation damping formulae or of the propagation of the waves translate into a change in the phase evolution of the observed gravitational waveform. We obtain the bounds through the technique of matched filtering, employing the LISA Sensitivity Curve Generator (SCG), available online. For a neutron star inspiralling into a 10^3 M_sun black hole in the Virgo Cluster, in a two-year integration, we find a lower bound \\omega > 3 * 10^5. For lower-mass black holes, the bound could be as large as 2 * 10^6. The bound is independent of LISA arm...
Testing theory in practice: a simple experiment
Terpstra, R.; Ferreira Pires, L.; Heerink, A.W.; Tretmans, G.J.; Brezocnik, Z.; Kapus, T.
1996-01-01
In this paper we discuss the experiences gained in conducting a simple testing experiment. The goal of this experiment is to apply the abstract, formal testing framework [8] in a practical setting, and to indicate the critical aspects in its application to realistic testing situations. For that purp
Theory-Based University Admissions Testing for a New Millennium
Sternberg, Robert J.
2004-01-01
This article describes two projects based on Robert J. Sternberg's theory of successful intelligence and designed to provide theory-based testing for university admissions. The first, Rainbow Project, provided a supplementary test of analytical, practical, and creative skills to augment the SAT in predicting college performance. The Rainbow…
Precision Study of Positronium: Testing Bound State QED Theory
Karshenboim, Savely G.
2003-01-01
As an unstable light pure leptonic system, positronium is a very specific probe atom to test bound state QED. In contrast to ordinary QED for free leptons, the bound state QED theory is not so well understood and bound state approaches deserve highly accurate tests. We present a brief overview of precision studies of positronium paying special attention to uncertainties of theory as well as comparison of theory and experiment. We also consider in detail advantages and disadvantages of positro...
Lischner, Johannes; Arias, T A
2010-02-11
We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response of water in the nonlinear regime, finding excellent agreement with known data.
Statistical tests of galactic dynamo theory
Chamandy, Luke; Taylor, A Russ
2016-01-01
Mean-field galactic dynamo theory is the leading theory to explain the prevalence of regular magnetic fields in spiral galaxies, but its systematic comparison with observations is still incomplete and fragmentary. Here we compare predictions of mean-field dynamo models to observational data on magnetic pitch angle and the strength of the mean magnetic field. We demonstrate that a standard $\\alpha^2\\Omega$ dynamo model produces pitch angles of the regular magnetic fields of nearby galaxies that are reasonably consistent with available data. The dynamo estimates of the magnetic field strength are generally within a factor of a few of the observational values. Reasonable agreement between theoretical and observed pitch angles generally requires the turbulent correlation time $\\tau$ to be in the range 10-20 Myr, in agreement with standard estimates. Moreover, good agreement also requires that the ratio of the ionized gas scale height to root-mean-square turbulent velocity increases with radius. Our results thus w...
Testing planet formation theories with Giant stars
Pasquini, Luca; Doellinger, M. P.; Hatzes, A.; Setiawan, J.; Girardi, L.; Da Silva, L.; de Medeiros, J. R.
2008-01-01
Planet searches around evolved giant stars are bringing new insights to planet formation theories by virtue of the broader stellar mass range of the host stars compared to the solar-type stars that have been the subject of most current planet searches programs. These searches among giant stars are producing extremely interesting results. Contrary to main sequence stars planet-hosting giants do not show a tendency of being more metal rich. Even if limited, the statistics also suggest a higher ...
Tests and present status of gauge theories
International Nuclear Information System (INIS)
The author discusses the predictions of the standard model for strong, weak and electromagnetic interactions. The Abelian Model is presented to represent gauge theories at work. Hadronic structure functions are explained which describe the distribution of quarks and gluons within the initial state hadrons. Hadronic fragmentation functions are defined and illustrated. A set of exercises is presented which may be helpful toward understanding the material presented
Economic contract theory tests models of mutualism.
Weyl, E Glen; Frederickson, Megan E; Yu, Douglas W; Pierce, Naomi E
2010-09-01
Although mutualisms are common in all ecological communities and have played key roles in the diversification of life, our current understanding of the evolution of cooperation applies mostly to social behavior within a species. A central question is whether mutualisms persist because hosts have evolved costly punishment of cheaters. Here, we use the economic theory of employment contracts to formulate and distinguish between two mechanisms that have been proposed to prevent cheating in host-symbiont mutualisms, partner fidelity feedback (PFF) and host sanctions (HS). Under PFF, positive feedback between host fitness and symbiont fitness is sufficient to prevent cheating; in contrast, HS posits the necessity of costly punishment to maintain mutualism. A coevolutionary model of mutualism finds that HS are unlikely to evolve de novo, and published data on legume-rhizobia and yucca-moth mutualisms are consistent with PFF and not with HS. Thus, in systems considered to be textbook cases of HS, we find poor support for the theory that hosts have evolved to punish cheating symbionts; instead, we show that even horizontally transmitted mutualisms can be stabilized via PFF. PFF theory may place previously underappreciated constraints on the evolution of mutualism and explain why punishment is far from ubiquitous in nature.
Henderson, R. L.
1974-01-01
The partial structure factors of classical simple liquid mixtures near phase separation are dicussed. The theory is developed for particles interacting through pair potentials, and is thus appropriate both to insulating fluids, and also to metallic systems if these may be described by an effective ion-ion pair interaction. The motivation arose from consideration of metallic liquid mixtures, in which resistive anomalies have been observed near phase separation. A mean field theory correction appropriate to 3 pair potential for the effects of correlated motions in the reference fluid is studied. The work is cast in terms of functions which are closely related to the direct correlation functions of Ornstein and Zernike. The results are qualitatively in accord with physical expectations. Quantitative agreement with experiment seems to turn on the selection of the hard core reference potential in terms of the metallic effective pair potential. It is suggested that the present effective pair potentials are perhaps not properly used to calculate the metallic structure factors at long wavelength.
Institute of Scientific and Technical Information of China (English)
ZHANG Jia-Lin; YU Hong-Wei
2005-01-01
@@ We examine the random motion of a charged test particle with a nonzero classical velocity driven by quantum electromagnetic vacuum fluctuations in a cylindrical spacetime and calculate both the velocity and position dispersions of the test particle. It is found that the dispersions display different behaviour in different directions.These differences can be understood as a result of the topology of the configuration and initial physical conditions.
Relativistic semi-classical theory of atom ionization in ultra-intense laser
Institute of Scientific and Technical Information of China (English)
CHEN; Baozhen
2001-01-01
［1］Schoch, A., Seitliche Versetzung eines total reflektierten strahles bei Utraschallwellen, Acustica, 1952, 2: 17.［2］Neubauer, W. G., Ultrasonic reflection of a bounded beam at Rayleigh and critical angles for a plane liquid-solid interface, J. Appl. Phys., 1973, 44: 48.［3］Ngoc, T. D. K., Mayer, W. G., Numerical integration method for reflected beam profiles near Rayleigh angle, J. Acoust. Soc. Am., 1980, 67, 1149.［4］Nagy, P. B., Cho, K., Focal shift of convergent ultrasonic beams reflected from a liquid-solid interface, J. Acoust. Soc. Am., 1987, 81(4): 835.［5］Bertoni, H. L., Hsue, C. W., Tamir, T., Non-specular reflection of convergent beams from liquid-solid interface, Traitement du Signal, 1985, 2: 201.［6］Zhu Guozhen, Liu Liang, Fu Deyong, Reflected beam displacements of a slightly divergent ultrasonic Gaussian beam on a water-glass interface near Rayleigh angle incidence, Chinese Physics Letters, 1999, 16(11): 819.［7］Bertoni, H. L., Tamir, T., Unified theory of Rayleigh-angle phenomena for acoustic beams onto liquid-solid interface, Appl. Phys., 1973, 2: 157.［8］Zeroug, S., Felsen, L. B., Nonspecular reflection of two- and three-dimensional acoustic beams from fluid-immersed plane-layered elastic structures, J. Acoust. Soc. Am., 1994, 95: 3075.［9］Chimenti, D. E., Zeroug, S. et al., Interaction of acoustic beams with fluid-loaded elastic structures, J. Acoust. Soc. Am., 1994, 95(1): 45.［10］Breazeale, M. A. L., Adler, L., Scott, G. W., Interaction of ultrasonic waves incident at the Rayleigh angle onto a liquid-solid interface, J. Appl. Phys., 1977, 48(2): 530.［11］Ngoc, T. D. K., Mayer, W. G., General description of ultrasonic nonspecular reflection and transmission effects for layered media, IEEE Trans. Sonics Ultrason., 1980, SU-27: 229.［12］Martin, F. D., Breazeale, M. A., J. Acoust. Soc. Am., 1971, 49: 1668.［13］Gunarathne, G. P. P., Szilard, J., A new stroboscope for Schlieren and photoelastic visualization
Quantitative penetration testing with item response theory
Arnold, Florian; Pieters, Wolter; Stoelinga, Mariëlle
2014-01-01
Existing penetration testing approaches assess the vulnerability of a system by determining whether certain attack paths are possible in practice. Thus, penetration testing has so far been used as a qualitative research method. To enable quantitative approaches to security risk management, including
Quantitative penetration testing with item response theory
Pieters, W.; Arnold, F.; Stoelinga, M.I.A.
2013-01-01
Existing penetration testing approaches assess the vulnerability of a system by determining whether certain attack paths are possible in practice. Therefore, penetration testing has thus far been used as a qualitative research method. To enable quantitative approaches to security risk management, in
Asymptotic theory of integrated conditional moment tests
Bierens, H.J.; Ploberger, W.
1995-01-01
In this paper we derive the asymptotic distribution of the test statistic of a generalized version of the integrated conditional moment (ICM) test of Bierens (1982, 1984), under a class of Vn-local alternatives, where n is the sample size. The generalized version involved includes neural network tes
Directory of Open Access Journals (Sweden)
Cavallaro Roberto
2006-01-01
Full Text Available Abstract Background A number of reports showed en encouraging remediation in some patients' executive deficits thanks to the use of 'information processing strategies'. Moreover the impact of antipsychotics on cognitive functions of the schizophrenics is an important issue, especially if an integrated psychosocial treatment is needed. The aim of this paper is to evaluate different executive performance and response to verbalization, a strategy of the Wisconsin Card Sorting Test (WCST remediation, in subjects on classical vs atypical antipsychotic (AP treatment. Methods Sixty-three schizophrenic subjects undertook the WCST under standard and modified (verbalization administration. Subjects were stratified by the kind of WCST response (i.e. good, poor and remediable and AP treatment (i.e. atypical vs. classical. Results Subjects on atypical APs showed a better performance than those on classical ones. More poor performers who did not remediate were seen in the sample with classical Aps while subjects who remediated the performance were seen in the subgroup with atypical APs only. An increase of perseverative and total errors was seen in poor performers subjects on classical APs. Conclusion Subjects on atypicals showed a better cognitive pattern in terms of WCST performance. Since the naturalistic assignment of medication we cannot draw conclusions about its effect on cognitive performance and its interaction with cognitive remediation potential. However the data lead us to hypothesize that subjects with potential room for remediation did so with the atypical APs.
International Nuclear Information System (INIS)
A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author)
Sternberg, Robert J.
1984-01-01
Argues that IQ tests work only for some people some of the time. Offers a theory that emphasizes the roles in intelligence of information-processing, the environmental context, and coping with novelty and automatization of task performance, as a possibility for improving levels of prediction. (CMG)
The Impact of Technology and Distance Education: A Classical Learning Theory Viewpoint
Directory of Open Access Journals (Sweden)
Herb Thompson
1999-01-01
Full Text Available For the past two years the author has been teaching economics (History of Economic Thought and Economic Development at the tertiary level via the Internet and computer-mediation. This is done primarily for students who are unable or who do not wish to attend classes on campus, but desire an education as good, if not better, as the campus based enterprise. This paper provides a reflective analysis of the theoretical content of that practice. Teaching online is a vastly different enterprise than face-to-face exercises, thereby demanding a revaluation of ones pedagogical theory and praxis. In The German Ideology, Marx and Engels articulated their claim that historically dominant classes embody their ideas in essential forms, representing them as universally valid. It is within this framework that we begin to examine what it means to "know" in economics. How knowledge is legitimated in universities continues to be under-theorised, particularly with regard to electronic transmission. The mechanism of transmission of particular concern here is that which is computer-mediated. Landow represents hypertext as the latest flowering in a long march of democratic processes originating in the displacement of Platonic authority by the lesser authority of the written word. It is argued here that the determinism of the "progressive narrative" within and around the "hypertext revolution" deserves careful scrutiny, particularly in its application to pedagogy. Pedagogical artefacts, such as computers, mediate the transmission of ideas. The question "how does this happen?" relates to the complexity of theorizing the relationship between the educational process and the social relations of capitalist social formations. Over two decades ago, Bowles and Gintis attempted a Marxist understanding of the nature of this relationship. In their conception, pedagogical mechanisms were seen to operate in a fairly deterministic way to mirror and model the norms and values
Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C
2012-09-27
Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS.
Tests of Chiral perturbation theory with COMPASS
Directory of Open Access Journals (Sweden)
Friedrich Jan M.
2014-06-01
Full Text Available The COMPASS experiment at CERN accesses pion-photon reactions via the Primakoff effect., where high-energetic pions react with the quasi-real photon field surrounding the target nuclei. When a single real photon is produced, pion Compton scattering is accessed and from the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from ChPT. In the same experimental data taking, reactions with neutral and charged pions in the final state are measured and analyzed in the context of chiral perturbation theory.
Testing four competing theories of health-protective behavior.
Weinstein, N D
1993-07-01
Four competing theories of health-protective behavior are reviewed: the health belief model, the theory of reasoned action, protection motivation theory, and subjective expected utility theory. In spite of their commonalities, these models are seldom tested against one another. The review points out the similarities and differences among these theories and the data and analyses needed to compare them. In addition to describing the content of the models, their conceptualization of key variables, and the combinatorial rules used to make predictions, some general problems in theory development and testing for health behaviors are examined. The article's goal is to help investigators design studies that will clarify the strengths and weaknesses of these models, leading toward a better understanding of health behavior. PMID:8404807
The Theory of Clinical Medicine of Huangdi's Classic of Internal Medicine%《黄帝内经》的临床医学理论
Institute of Scientific and Technical Information of China (English)
周安方
2011-01-01
The rich theory of clinical medicine of Huangdi 's Classic of Internal Medicine includes the clinical guiding ideology, theory of pathogenic factor and pathogenesis, theory of clinical diagnosis and examination, theory of clinical differentiation of syndrome, theory of clinical treatment. And the clinical guiding ideology includes the ideology of people o-riented, prevention foremost and harmony premium. And the theory of clinical treatment includes theory of root treatment, theory of yin - yang balance, theory of harmony of Qi and blood, theory of harmony of healthy Qi and pathogenic factor, theory of naturopathy, theory of five elements restraint, theory of opposition treatment, theory of correspondence between flavors and viscera. The theories and methods of Huangdis Classic of Internal Medicine have significant guiding effects on TCM clinic.%的临床医学理论非常丰富,它包括临床指导思想、病因病机理论、临床诊察理论、临床辩证理论、临床论治理论等,其临床指导思想包括以人为本思想、以防为主思想、以和为贵思想;其临床论治理论包括治病求本理论、阴阳求衡理论、气血求和理论、正邪求谐理论、时势求顺理论、五行制胜理论、以此治彼理论、各有所宜理论等.的这些理论及其方法,对中医临床具有重要的指导作用.
Dual-Process Theories of Reasoning: The Test of Development
Barrouillet, Pierre
2011-01-01
Dual-process theories have become increasingly influential in the psychology of reasoning. Though the distinction they introduced between intuitive and reflective thinking should have strong developmental implications, the developmental approach has rarely been used to refine or test these theories. In this article, I review several contemporary…
Proposed experimental test of the theory of hole superconductivity
Hirsch, J. E.
2016-06-01
The theory of hole superconductivity predicts that in the reversible transition between normal and superconducting phases in the presence of a magnetic field there is charge flow in direction perpendicular to the normal-superconductor phase boundary. In contrast, the conventional BCS-London theory of superconductivity predicts no such charge flow. Here we discuss an experiment to test these predictions.
Sociocultural theory and blind taste-tests
Directory of Open Access Journals (Sweden)
James Paul Gee
2010-05-01
Full Text Available In his entertaining 1986 book, The Real Coke, the Real Story, Thomas Oliver tells the story of the now infamous “New Coke”, a story retold in Malcolm Gladwell’s (2005 best-seller Blink. In the early 1980s, Pepsi began running commercials in which people took a sip from two glasses, not knowing which was Coke and which Pepsi. The majority preferred Pepsi. The Coca-Cola Company replicated these blind taste-tests and found the same result. Losing market share, Coke—long the dominant brand—changed its old formula and came out with “New Coke”, a soda made to a new formula, one that in a new round of blind taste-tests came out above Pepsi. But New Coke was a disaster.Consumers hated it. Coke not only returned to its old formula, but Pepsi never did overtake Coke, which remains today the dominant brand world-wide.
Testing prospect theory in students’ performance
Pérez Galdón, Patricia; Nicolau, Juan Luis
2013-01-01
This paper tests the existence of ‘reference dependence’ and ‘loss aversion’ in students’ academic performance. Accordingly, achieving a worse than expected academic performance would have a much stronger effect on students’ (dis)satisfaction than obtaining a better than expected grade. Although loss aversion is a well-established finding, some authors have demonstrated that it can be moderated – diminished, to be precise–. Within this line of research, we also examine whether the students’ e...
The testing of ambivalent sexism theory
Sezer Yudulmaz Ayan; Veda Bilican Gökkaya
2016-01-01
Objective: The aim of this study is to test ambivalent sexism inventory (ASI) and ambivalence towards men inventory (AMI), which were developed on the basis of the Ambivalent Sexism approach. Method: The sampling was formed by 422 students (252 women and 169 men) from University of Cumhuriyet. The data of the study were obtained from the questionnaire determining their socio-demographic characteristics of the students and AMI and ASI in order to determine their tendencies of sexism. After...
Testing gravity theories using tensor perturbations
Lin, Weikang
2016-01-01
Primordial gravitational waves constitute a promising probe of the very-early universe and the laws of gravity. We study changes to tensor mode perturbations that can arise in various proposed modified gravity (MG) theories. These include additional friction effects, non-standard dispersion relations involving a massive graviton, a modified speed, and a small-scale modification. We introduce a physically-motivated parameterization of these effects and use current available data to obtain exclusion regions in the parameter spaces. Taking into account the foreground subtraction, we then perform a forecast analysis focusing on the tensor mode MG parameters as constrained by the future experiments COrE, Stage-IV and PIXIE. For a fiducial value of the tensor-to-scalar ratio r=0.01, we find that an additional friction of 3.5-4.5% compared to GR will be detected at $3\\sigma$ by these experiments while a decrease in friction will be more difficult to detect. The speed of gravitational waves needs to be 5-15% differen...
Testing planet formation theories with Giant stars
Pasquini, Luca; Hatzes, A; Setiawan, J; Girardi, L; da Silva, L; De Medeiros, J R
2008-01-01
Planet searches around evolved giant stars are bringing new insights to planet formation theories by virtue of the broader stellar mass range of the host stars compared to the solar-type stars that have been the subject of most current planet searches programs. These searches among giant stars are producing extremely interesting results. Contrary to main sequence stars planet-hosting giants do not show a tendency of being more metal rich. Even if limited, the statistics also suggest a higher frequency of giant planets (at least 10 %) that are more massive compared to solar-type main sequence stars. The interpretation of these results is not straightforward. We propose that the lack of a metallicity-planet connection among giant stars is due to pollution of the star while on the main sequence, followed by dilution during the giant phase. We also suggest that the higher mass and frequency of the planets are due to the higher stellar mass. Even if these results do not favor a specific formation scenario, they su...
Medina-Elizalde, Martín; Polanco-Martínez, Josué Moises; Lases-Hernández, Fernanda; Bradley, Raymond; Burns, Stephen
2016-09-01
We examine the "tropical storm" hypothesis that precipitation variability in the Yucatan Peninsula (YP) was linked to the frequency of tropical cyclones during the demise of the Classic Maya civilization, in the Terminal Classic Period (TCP, AD 750-950). Evidence that supports the hypothesis includes: (1) a positive relationship between tropical storm frequency and precipitation amount over the YP today (proof of feasibility), (2) a statistically significant correlation between a stalagmite (Chaac) quantitative precipitation record from the YP and the number of named tropical cyclones affecting this region today (1852-2004) (calibration sensu lato), and, (3) correlations between the stalagmite Chaac precipitation record and an Atlantic basin tropical cyclone count record and two proxy records of shifts in macro-scale climate and ocean states that influence Atlantic tropical cyclongenesis. At face value, regional paleotempestology proxy records suggest that tropical storm activity in the YP was either similar or significantly lower than today during the TCP. The "tropical storm" hypothesis has implications for our understanding of the role the hydrological cycle played in the collapse of Classic Maya polities and the role of tropical storms in possibly ameliorating future drought in the YP and other tropical regions.
Energy Technology Data Exchange (ETDEWEB)
Bottcher, C.; Strayer, M.R. [Oak Ridge National Lab., TN (United States); Werby, M.F. [Naval Research Lab. Detachment, Stennis Space Center, MS (United States)
1993-10-01
The Helmholtz-Poincare Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWE`s. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can by obtained in matrix form be expanding all relevant terms in partial wave expansions, including a biorthogonal expansion of the Green function. However some freedom of choice in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways to long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermition operator. The methodology will be explained in detail and examples will be presented.
Härtel, Andreas; Samin, Sela; van Roij, René
2016-06-22
The ongoing scientific interest in the properties and structure of electric double layers (EDLs) stems from their pivotal role in (super)capacitive energy storage, energy harvesting, and water treatment technologies. Classical density functional theory (DFT) is a promising framework for the study of the in- and out-of-plane structural properties of double layers. Supported by molecular dynamics simulations, we demonstrate the adequate performance of DFT for analyzing charge layering in the EDL perpendicular to the electrodes. We discuss charge storage and capacitance of the EDL and the impact of screening due to dielectric solvents. We further calculate, for the first time, the in-plane structure of the EDL within the framework of DFT. While our out-of-plane results already hint at structural in-plane transitions inside the EDL, which have been observed recently in simulations and experiments, our DFT approach performs poorly in predicting in-plane structure in comparison to simulations. However, our findings isolate fundamental issues in the theoretical description of the EDL within the primitive model and point towards limitations in the performance of DFT in describing the out-of-plane structure of the EDL at high concentrations and potentials. PMID:27116552
Witharana, S; Strobel, S; Kim, H D; McKrell, T; Chang, J -B; Buongiorno, J; Berggren, K K; Chen, L; Ding, Y
2012-01-01
Recently-reported data suggest that bubble nucleation on surfaces with nano-sized features (cavities and posts) may occur close to the thermodynamic saturation temperature. However, according to the traditional theory of heterogeneous bubble nucleation, such low nucleation temperatures are possible only for surfaces with micro-scale cavities. Motivated by this apparent contradiction, we have used infrared thermometry to measure the nucleation temperature of water on custom-fabricated nano- to micro-scale cavities (from 90 nm to 4.5 um in diameter) and posts (from 60 nm to 5 um in diameter), machined on ultra-smooth and clean silicon wafers using electron beam lithography. Our cavity data are in agreement with the predictions of the Young-Laplace equation, thus re-affirming the correctness of the classic view of heterogeneous bubble nucleation, at least for the water-silicon system investigated here. The data also suggest that individual posts of any size have an insignificant effect on bubble nucleation, as e...
Härtel, Andreas; Samin, Sela; van Roij, René
2016-06-01
The ongoing scientific interest in the properties and structure of electric double layers (EDLs) stems from their pivotal role in (super)capacitive energy storage, energy harvesting, and water treatment technologies. Classical density functional theory (DFT) is a promising framework for the study of the in- and out-of-plane structural properties of double layers. Supported by molecular dynamics simulations, we demonstrate the adequate performance of DFT for analyzing charge layering in the EDL perpendicular to the electrodes. We discuss charge storage and capacitance of the EDL and the impact of screening due to dielectric solvents. We further calculate, for the first time, the in-plane structure of the EDL within the framework of DFT. While our out-of-plane results already hint at structural in-plane transitions inside the EDL, which have been observed recently in simulations and experiments, our DFT approach performs poorly in predicting in-plane structure in comparison to simulations. However, our findings isolate fundamental issues in the theoretical description of the EDL within the primitive model and point towards limitations in the performance of DFT in describing the out-of-plane structure of the EDL at high concentrations and potentials.
International Nuclear Information System (INIS)
A self-consistent approximation scheme is formulated for the calculation of the dynamical linear polarizability of classical electron monolayers. The derivation is carried out in two stages. In the first stage, the authors formulate a simple response function relation linking linear and quadratic polarizabilities; the dynamical coupling function is expressed entirely in terms of the latter. The basic elements in the derivation are the first BBGKY kinetic equation (prepared in the velocity average approximation) and the non-linear fluctuation-dissipation theorem. The new response function relation is exact at zero frequency and exactly satisfies the third frequency moment sum rule. In the second stage, self-consistency is guaranteed by approximating the quadratic polarizability in terms of linear ones. The theory is examined in the weak coupling limit where it is found that a dominant γ-independent non-RPA contribution to the damping is missing. The structure of the missing term is identified at arbitrary coupling strengths. Work is in progress to see how it can be incorporated into the approximation scheme. (author)
Directory of Open Access Journals (Sweden)
M. J. Wheeler
2011-07-01
Full Text Available Deposition freezing on two mineral species, kaolinite and illite, was studied using a flow cell coupled to an optical microscope at ∼240 K. The results show that the onset S_{ice} (defined as the S_{ice} conditions when ice first nucleated is a strong function of the surface area available for nucleation, varying from 100 % to 125 %. The surface area dependent data could not be described accurately using classical nucleation theory and the assumption of a single contact angle (defined here as the single-α model. These results suggest that caution should be applied when using contact angles determined from onset S_{ice} data and the single-α model. In contrast to the single-α model, the active site model, the deterministic model, and a model with a normal distribution of contact angles fit the data within experimental uncertainties. Parameters from the fits to the data are presented.
Directory of Open Access Journals (Sweden)
M. J. Wheeler
2012-01-01
Full Text Available Deposition nucleation on two mineral species, kaolinite and illite, was studied using a flow cell coupled to an optical microscope. The results show that the S_{ice} conditions when ice first nucleated, defined as the onset S_{ice} (S_{ice,onset}, is a strong function of the surface area available for nucleation, varying from 100% to 125% at temperatures between 242 and 239 K. The surface area dependent data could not be described accurately using classical nucleation theory and the assumption of a single contact angle (defined here as the single-α model. These results suggest that caution should be applied when using contact angles determined from S_{ice,onset} data and the single-α model. In contrast to the single-α model, the active site model, the deterministic model, and a model with a distribution of contact angles fit the data within experimental uncertainties. Parameters from the fits to the data are presented.
Experimental testing of constructivism and related theories.
Fidelman, U
1991-10-01
The purpose of this article is to show that experimental scientific methods can be applied to explain how the analytic mechanism of the left cerebral hemisphere and the synthetic mechanism of the right one create complex cognitive constructions like ontology and mathematics. Nominalism and ordinal mathematical concepts are related to the analytic left hemisphere while Platonism and cardinal mathematical concepts are related to the synthetic right one. Thus persons with a dominant left hemisphere tend to prefer nominalist ontology and have more aptitude for ordinal mathematics than for cardinal mathematics, while persons with a dominant right hemisphere tend to prefer platonist ontology and have more aptitude for cardinal mathematics than for ordinal mathematics. It is further explained how the Kantism temporal mode of perceiving experience can be related to the left hemisphere while the Kantian spatial mode of perceiving experience can be related to the right hemisphere. This relation can be tested experimentally, thus the Kantian source of constructivism, and through it constructivism itself, can be tested experimentally.
Testing rank-dependent utility theory for health outcomes.
Oliver, Adam
2003-10-01
Systematic violations of expected utility theory (EU) have been reported in the context of both money and health outcomes. Rank-dependent utility theory (RDU) is currently the most popular and influential alternative theory of choice under circumstances of risk. This paper reports a test of the descriptive performance of RDU compared to EU in the context of health. When one of the options is certain, violations of EU that can be explained by RDU are found. When both options are risky, no evidence that RDU is a descriptive improvement over EU is found, though this finding may be due to the low power of the tests. PMID:14508870
经方象数规律刍议%Discuss on Image-number Theory of Classical Prescription
Institute of Scientific and Technical Information of China (English)
王位庆
2012-01-01
The incorporation of mathematics is vital for the development of any streams of science whereas that of pattern-recognition is a key for in-depth investigation of mankind and its relationship between physics, chemistry, biology, ecology and social sciences. Every classic Chinese medicine formula represents a unique set of mathematics and pattern. The pattern of the formulae refer to the corresponding pathology and the mathematics refers to the dosage of prescription. In this article, we proved that the dosage of the classic formulae was coherent to the pattern stated in the Luo-shu Match of Zangfu Organs and illustrated the relationship between the dosage and pattern of the formulae. We firstly consolidated the Treatise on Cold Damage and Miscellaneous Diseases, Auxiliary Verse on Drugs and Methods for Zangfu Organs and the Luo- shu Match of Zangfu Organs. Then, we examined the engendering and restraining properties of the basic formulae in the Treatise on Cold Damage and Miscellaneous Diseases with five phase theory and examined the dosage suggested in 16 basic formulae. We believe these are critical in both clinical practice and Chinese medicine research.%没有数,任何一门学问都成不了科学.没有象,任何一门医学都不能穷究物理,不能贯通人的物理、化学、生物、生态和社会属性等.每首经方,都有自己的象和数.象为经方的病机及病位脏腑；数为剂量,方中药物的重量.文章结合《伤寒论》《辅行诀脏腑用药法要》、《洛书》配脏腑法,通过阐发经方药对配伍五行生克的补泻、互补、化生三大原则,加减计算小大二旦和六神共16首《伤寒论》基础方的剂量,揭示经方符合洛书九宫图的象数规律,从而破解经方剂量与病机关系的千古之谜,对临床遣方用药及理解中医的科学性具有一定的指导意义.
Part 1: Theory, analysis, and testing. Introduction
Energy Technology Data Exchange (ETDEWEB)
Mok, G.C. [Lawrence Livermore National Lab., CA (United States). Fission Energy and Systems Safety Program; Chung, H.H. [Argonne National Lab., IL (United States). Reactor Engineering Division
1995-12-01
Two basic engineering strategies for the protection of equipment and structures from damages caused by seismic, shock and vibration loadings are, namely, strengthening and isolation. They work on almost totally different principles; the strengthening strategy aims primarily at increasing the ``capacity`` or the ability of the structure to withstand the dynamic loading by incorporating additional structural materials and components, while the isolation strategy focuses on reducing the ``demand`` or the transmitted loading on the structure by adding an isolator or isolation system between the structure and the source of the loading. The isolation strategy is also often used for filtering out unwanted vibrations and noises. In practice, the isolation strategy has the advantage of not depending on alterations to the isolated structure and is often the preferred method for applications in equipment and in some structures. The authors give a preview of the papers to be presented on the following topics: Technical background; Ground motions and structural loading; Vibration control and isolation; Isolation design, analysis, and testing; and Isolation system development and characterization.
The evolution of genomic imprinting: theories, predictions and empirical tests.
Patten, M M; Ross, L; Curley, J P; Queller, D C; Bonduriansky, R; Wolf, J B
2014-08-01
The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal-offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal-offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted.
Brassey, Charlotte A; Margetts, Lee; Kitchener, Andrew C; Withers, Philip J; Manning, Phillip L; Sellers, William I
2013-02-01
Classic beam theory is frequently used in biomechanics to model the stress behaviour of vertebrate long bones, particularly when creating intraspecific scaling models. Although methodologically straightforward, classic beam theory requires complex irregular bones to be approximated as slender beams, and the errors associated with simplifying complex organic structures to such an extent are unknown. Alternative approaches, such as finite element analysis (FEA), while much more time-consuming to perform, require no such assumptions. This study compares the results obtained using classic beam theory with those from FEA to quantify the beam theory errors and to provide recommendations about when a full FEA is essential for reasonable biomechanical predictions. High-resolution computed tomographic scans of eight vertebrate long bones were used to calculate diaphyseal stress owing to various loading regimes. Under compression, FEA values of minimum principal stress (σ(min)) were on average 142 per cent (±28% s.e.) larger than those predicted by beam theory, with deviation between the two models correlated to shaft curvature (two-tailed p = 0.03, r(2) = 0.56). Under bending, FEA values of maximum principal stress (σ(max)) and beam theory values differed on average by 12 per cent (±4% s.e.), with deviation between the models significantly correlated to cross-sectional asymmetry at midshaft (two-tailed p = 0.02, r(2) = 0.62). In torsion, assuming maximum stress values occurred at the location of minimum cortical thickness brought beam theory and FEA values closest in line, and in this case FEA values of τ(torsion) were on average 14 per cent (±5% s.e.) higher than beam theory. Therefore, FEA is the preferred modelling solution when estimates of absolute diaphyseal stress are required, although values calculated by beam theory for bending may be acceptable in some situations.
Institute of Scientific and Technical Information of China (English)
TAN Mei-Hua; YU Hong-Wei
2005-01-01
@@ We study the random motion of a charged test particle coupled to electromagnetic vacuum fluctuations near a perfectly reflecting plane boundary with a nonzero classical constant velocity in a direction parallel to the plane.We calculate the mean squared fluctuations in the velocity and position of the test particle taking into account both fluctuating electric and magnetic forces. Our results showy that the influence of fluctuating magnetic fields is, in general, of the higher order than that caused by fluctuating electric fields and is thus negligible.
The testing of ambivalent sexism theory
Directory of Open Access Journals (Sweden)
Sezer Yudulmaz Ayan
2016-06-01
Full Text Available Objective: The aim of this study is to test ambivalent sexism inventory (ASI and ambivalence towards men inventory (AMI, which were developed on the basis of the Ambivalent Sexism approach. Method: The sampling was formed by 422 students (252 women and 169 men from University of Cumhuriyet. The data of the study were obtained from the questionnaire determining their socio-demographic characteristics of the students and AMI and ASI in order to determine their tendencies of sexism. After obtaining the permission from the Rectorate of Cumhuriyet University, the application was carried out with the help of academic staff at relevant faculties and vocational schools between 01.02.2012 and 30.04.2012. Results: When the overall average of the scores obtained from ASI and AMI were considered, it was found out that the ambivalence of the participants against each other (with ASI x=4,12; AMI x=4,22 was above the average; and men (with x= 4,23 had more ambivalence compared to women (x=4,05 in ASI, and women (x=4,38 had more ambivalence compared to men (x=3,99 in AMI. The data obtained from the variance analysis suggested that there were significant differences among the participants by gender, which were Hostile sexism (HS for men (t(421=-7,99 p<0,05, Benevolent sexism (BS for women (t(421=4,28 p<0,05 in ASI; and Hostility attitudes towards men (HM for women (t(421=-15,33 p<0,05, Benevolence towards men (BMfor men (t(421= -5,18 p<0,05. In other words, male participants had more hostile attitudes towards women in ASI and female participants had more hostile attitudes towards men in AMI. When the correlations among the sub-factors of AMI and ASI are considered, the correlations between HM and BS (0.47, BM and HS (0.47, and BM and BS (0.40 are statistically important. These findings suggest that the benevolent attitudes towards men are in a positive relationship with both benevolent and hostile sexism against women. Conclusions: The obtained data suggest that
Validity Theory: Reform Policies, Accountability Testing, and Consequences
Chalhoub-Deville, Micheline
2016-01-01
Educational policies such as Race to the Top in the USA affirm a central role for testing systems in government-driven reform efforts. Such reform policies are often referred to as the global education reform movement (GERM). Changes observed with the GERM style of testing demand socially engaged validity theories that include consequential…
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
Alpert, P. A.; Knopf, D. A.
2014-12-01
Ice nucleation is the initial step in forming mixed-phase and cirrus clouds, and is well established as an important influence on global climate. Laboratory studies investigate at which cloud relevant conditions of temperature (T) and relative humidity (RH) ice nucleation occurs and as a result, numerous fundamentally different ice nucleation descriptions have been proposed for implementation in cloud and climate models. We introduce a new immersion freezing model based on first principles of statistics to simulate individual droplet freezing requiring only three experimental parameters, which are the total number of droplets, the uncertainty of applied surface area per droplet, and the heterogeneous ice nucleation rate coefficient, Jhet, as a function as a function of T and water activity (aw), where in equilibrium RH=aw. Previous studies reporting frozen fractions (f) or Jhet for a droplet population are described by our model for mineral, inorganic, organic, and biological ice nuclei and different techniques including cold stage, oil-immersion, continuous flow diffusion chamber, flow tube, cloud chamber, acoustic levitation and wind levitation experiments. Taking advantage of the physically based parameterization of Jhet by Knopf and Alpert (Faraday Discuss., 165, 513-534, 2013), our model can predict immersion freezing for the entire atmospherically relevant range of T, RH, particle surface area, and time scales, even for conditions unattainable in a laboratory setting. Lastly, we present a rigorous experimental uncertainty analysis using a Monte Carlo method of laboratory derived Jhet and f. These results imply that classical nucleation theory is universal for immersion freezing. In combination with a aw based description of Jhet, this approach allows for a physically based and computational little demanding implementation in climate and cloud models.
A Study of the English Oral Tests in Light of the Communicative Language Testing Theory
Institute of Scientific and Technical Information of China (English)
张鑫
2013-01-01
Speaking, as a productive skill, is a priority for many foreign-language learners. They often evaluate their success in language learning on the basis of how much they feel they have improved in their spoken language proficiency. Consequently, testing of oral skills has hardly been neglected in college English examination. The communicative testing theory in 1970s greatly influenced language testing, especially the oral tests. This essay briefly explores the theory of communicative language testing and discusses the methods of TOEFL oral test and college English oral test and proposes ways to the latter one for further improve⁃ment.
Institute of Scientific and Technical Information of China (English)
欧阳乐
2013-01-01
There are many ways of interpreting a literary work, and in the context of the merging of different disciplines nowa⁃days, it is undoubtedly feasible to do it within a stylistic perspective. Can The Notebook, representative of American bestselling writer Nicholas Sparks, which has been adapted to a movie, and also a bestseller on the ranking list of New York Times, be called world classic? The main reflection of the Romantic Movement which sprang up in the 18th century on the stylistic theories is writer determinism theory. The popularness as well as some shortcomings of The Notebook can be revealed after careful analysis of it under the frame work of writer determinism theory. It can be concluded that it is indeed a non-classic classic.% 评价一部文学作品有很多种方法，在当今各学科相互融合的背景下，从文体学的角度来阐释无疑是可行的。《恋恋笔记本》，这部被改编成电影、《纽约时报》排行榜上的畅销书，美国畅销小说作家尼古拉斯·斯帕克思的代表作，是否能被称为世界文学名著呢？18世纪兴起的浪漫主义运动在文体学理论上主要反映为作家决定论。通过在作家决定论的理论框架下对其进行分析，可以得出其令人称道之处，同时指出其不足。它的确是一部不是名著的名著。
Institute of Scientific and Technical Information of China (English)
汪大白
2001-01-01
ZHU Xi's theory of and his deeds in commenting on Classic Poetry through Classic Poetry is a negation and criticism on the idea of illustrating Classic Poetry with history expressed in “the Preface to Classic Poetry" and the Confucianists' concept of illustrating Classic Poetry with “the Preface to Classic Poetry". It also shows a deep understanding on the literature nature of Classic Poetry and the rules in composing poems. To carry out the principle of commenting on classic Poetry through Classic Poetry and to implement a great reform on traditional studies on classic Poetry is a great mission for scholars in Song Dynasty from the need of historical development and the time. Being a famous literaturist as well as a master in the studies on Classic Poetry and integrating literature of past dynasties with the studies on “Classic Poetry" of past dynasties are the main condition and the objective foundation for ZHU Xi to implement his reform on the studies on classic Poetry.%朱熹首倡并躬行的“以《诗》言《诗》”说是对《诗序》“以史证《诗》”以及后儒“以《序》解《诗》”的否定与批判，同时又体现了对《诗经》文学本质与诗歌创作规律的深刻认识。贯彻“以《诗》言《诗》”的原则，实现传统《诗经》学的重大变革，是历史的发展与时代的需求赋予宋代学者的重大使命；而文学名家与经学大师的一身兼任，历代文学与历代经学的双轨集成，是朱熹实现《诗经》学变革的主体条件与客观基础。
A Testing Theory for a Higher-Order Cryptographic Language
Koutavas, Vasileios; Hennessy, Matthew
We study a higher-order concurrent language with cryptographic primitives, for which we develop a sound and complete, first-order testing theory for the preservation of safety properties. Our theory is based on co-inductive set simulations over transitions in a first-order Labelled Transition System. This keeps track of the knowledge of the observer, and treats transmitted higher-order values in a symbolic manner, thus obviating the quantification over functional contexts. Our characterisation provides an attractive proof technique, and we illustrate its usefulness in proofs of equivalence, including cases where bisimulation theory does not apply.
A catastrophe theory model of the conflict helix, with tests.
Rummel, R J
1987-10-01
Macro social field theory has undergone extensive development and testing since the 1960s. One of these has been the articulation of an appropriate conceptual micro model--called the conflict helix--for understanding the process from conflict to cooperation and vice versa. Conflict and cooperation are viewed as distinct equilibria of forces in a social field; the movement between these equilibria is a jump, energized by a gap between social expectations and power, and triggered by some minor event. Quite independently, there also has been much recent application of catastrophe theory to social behavior, but usually without a clear substantive theory and lacking empirical testing. This paper uses catastrophe theory--namely, the butterfly model--mathematically to structure the conflict helix. The social field framework and helix provide the substantive interpretation for the catastrophe theory; and catastrophe theory provides a suitable mathematical model for the conflict helix. The model is tested on the annual conflict and cooperation between India and Pakistan, 1948 to 1973. The results are generally positive and encouraging.
Proposed experimental test of an alternative electrodynamic theory of superconductors
Energy Technology Data Exchange (ETDEWEB)
Hirsch, J.E., E-mail: jhirsch@ucsd.edu
2015-01-15
Highlights: • A new experimental test of electric screening in superconductors is proposed. • The electric screening length is predicted to be much larger than in normal metals. • The reason this was not seen in earlier experiments is explained. • This is not predicted by the conventional BCS theory of superconductivity. - Abstract: An alternative form of London’s electrodynamic theory of superconductors predicts that the electrostatic screening length is the same as the magnetic penetration depth. We argue that experiments performed to date do not rule out this alternative formulation and propose an experiment to test it. Experimental evidence in its favor would have fundamental implications for the understanding of superconductivity.
Directory of Open Access Journals (Sweden)
Trentini Clarissa M
2008-01-01
Full Text Available Abstract Background Aging has determined a demographic shift in the world, which is considered a major societal achievement, and a challenge. Aging is primarily a subjective experience, shaped by factors such as gender and culture. There is a lack of instruments to assess attitudes to aging adequately. In addition, there is no instrument developed or validated in developing region contexts, so that the particularities of ageing in these areas are not included in the measures available. This paper aims to develop and validate a reliable attitude to aging instrument by combining classical psychometric approach and Rasch analysis. Methods Pilot study and field trial are described in details. Statistical analysis included classic psychometric theory (EFA and CFA and Rasch measurement model. The latter was applied to examine unidimensionality, response scale and item fit. Results Sample was composed of 424 Brazilian old adults, which was compared to an international sample (n = 5238. The final instrument shows excellent psychometric performance (discriminant validity, confirmatory factor analysis and Rasch fit statistics. Rasch analysis indicated that modifications in the response scale and item deletions improved the initial solution derived from the classic approach. Conclusion The combination of classic and modern psychometric theories in a complementary way is fruitful for development and validation of instruments. The construction of a reliable Brazilian Attitudes to Aging Questionnaire is important for assessing cultural specificities of aging in a transcultural perspective and can be applied in international cross-cultural investigations running less risk of cultural bias.
Analysis of North Korea's Nuclear Tests under Prospect Theory
International Nuclear Information System (INIS)
North Korea has chosen nuclear weapons as the means to protect its sovereignty. Despite international society's endeavors and sanctions to encourage North Korea to abandon its nuclear ambition, North Korea has repeatedly conducted nuclear testing. In this paper, the reason for North Korea's addiction to a nuclear arsenal is addressed within the framework of cognitive psychology. The prospect theory addresses an epistemological approach usually overlooked in rational choice theories. It provides useful implications why North Korea, being under a crisis situation has thrown out a stable choice but taken on a risky one such as nuclear testing. Under the viewpoint of prospect theory, nuclear tests by North Korea can be understood as follows: The first nuclear test in 2006 is seen as a trial to escape from loss areas such as financial sanctions and regime threats; the second test in 2009 was interpreted as a consequence of the strategy to recover losses by making a direct confrontation against the United States; and the third test in 2013 was understood as an attempt to strengthen internal solidarity after Kim Jong-eun inherited the dynasty, as well as to enhance bargaining power against the United States. Thus, it can be summarized that Pyongyang repeated its nuclear tests to escape from a negative domain and to settle into a positive one. In addition, in the future, North Korea may not be willing to readily give up its nuclear capabilities to ensure the survival of its own regime
Kläy, Andreas; Vasco Mutimucuio, Inocente
2007-01-01
Mainstreaming the LforS approach is a challenge due to dive rging institutional priorities, customs, and expectations of classically traine d staff. A workshop to test LforS theory and practice, and explore how to mainstream it, took place in a concrete context in a rural district of Mozambique, focusing on agricultural, forest and water resources. The evaluation showed that the principles of interaction applied pe rmitted to link rational know ledge with practical experience through mutual l...
Lischner, Johannes; Arias, T. A.
2008-01-01
The Gordian knot of density-functional theories for classical molecular liquids remains finding an accurate free-energy functional in terms of the densities of the atomic sites of the molecules. Following Kohn and Sham, we show how to solve this problem by considering noninteracting molecules in a set of effective potentials. This shift in perspective leads to an accurate and computationally tractable description in terms of simple three-dimensional functions. We also treat both the linear- a...
Blázquez, J.S.; Conde, C. F.; Conde, A.
2014-01-01
The classical theory of Johnson–Mehl–Avrami–Kolmogorov (JMAK) is widely used to describe the kinetics of crystallization even when the premises required for its application are not strictly fulfilled. In this paper we propose a procedure to obtain the JMAK parameters of the independent transformations that simultaneously occur during a crystallization process (e.g. leading to the formation of several crystalline phases). The predictions of the analysis have been used to describe the crystalli...
Testing Alternative Theories of Dark Matter with the CMB
Li, Baojiu; Mota, David F; Zhao, HongSheng
2008-01-01
We propose a method to study and constrain modified gravity theories for dark matter using CMB temperature anisotropies and polarization. We assume that the theories considered here have already passed the matter power-spectrum test of large-scale structure. With this requirement met, we show that a modified gravity theory can be specified by parametrizing the time evolution of its dark-matter density contrast, which is completely controlled by the dark matter stress history. We calculate how the stress history with a given parametrization affects the CMB observables, and a qualitative discussion of the physical effects involved is supplemented with numerical examples. It is found that, in general, alternative gravity theories can be efficiently constrained by the CMB temperature and polarization spectra. There exist, however, special cases where modified gravity cannot be distinguished from the CDM model even by using both CMB and matter power spectrum observations, nor can they be efficiently restricted by ...
Testing Theories of Learning: Effects on High School Achievement.
Keith, Timothy Z.; Cool, Valerie A.
Theories of school learning consistently point to variables such as ability, time (e.g., homework), quality of instruction, motivation, and academic coursework as important influences on learning. In this study, path analysis was used to test the direct and indirect effects of these variables on high school learning, with learning measured by both…
Testing Belbin's Team Role Theory of Effective Groups.
Prichard, Jane S.; Stanton, Neville A.
1999-01-01
Belbin's theory that teams with a wide range of roles are more effective than those with role imbalance was tested with six teams composed of individuals with homogenous roles and six with mixed roles. Mixed teams performed better on team tasks. (SK)
Methodological issues in testing the marginal productivity theory
P.T. Gottschalk (Peter); J. Tinbergen (Jan)
1982-01-01
textabstractPrevious tests of the marginal productivity theory have been criticized on several grounds reviewed by the authors. One important deficiency has been the small number of factor inputs entered in the production functions. In 1978 Gottschalk suggested a method to estimate production functi
Item Response Theory Modeling of the Philadelphia Naming Test
Fergadiotis, Gerasimos; Kellough, Stacey; Hula, William D.
2015-01-01
Purpose: In this study, we investigated the fit of the Philadelphia Naming Test (PNT; Roach, Schwartz, Martin, Grewal, & Brecher, 1996) to an item-response-theory measurement model, estimated the precision of the resulting scores and item parameters, and provided a theoretical rationale for the interpretation of PNT overall scores by relating…
Testing Self-Determination Theory via Nigerian and Indian Adolescents
Sheldon, Kennon M.; Abad, Neetu; Omoile, Jessica
2009-01-01
We tested the generalizability of five propositions derived from Self-Determination Theory (SDT; Deci & Ryan, 2000) using school-aged adolescents living in India (N = 926) and Nigeria (N = 363). Consistent with past U.S. research, perceived teacher autonomy-support predicted students' basic need-satisfaction in the classroom and also predicted…
Applications of Bayesian Decision Theory to Sequential Mastery Testing.
Vos, Hans J.
1999-01-01
Formulates optimal sequential rules for mastery testing using an approach derived from Bayesian sequential decision theory to consider both threshold and linear loss structures. Adopts the binomial probability distribution as the psychometric model. Provides an empirical example for concept-learning in medicine. (SLD)
van de Schoot, Rens; Strohmeier, Dagmar
2011-01-01
In the present paper, the application of a parametric bootstrap procedure, as described by van de Schoot, Hoijtink, and Dekovic (2010), will be applied to demonstrate that a direct test of an informative hypothesis offers more informative results compared to testing traditional null hypotheses against catch-all rivals. Also, more power can be…
Modern challenges for flow investigations in model hydraulic turbines on classical test rig
International Nuclear Information System (INIS)
The BulbT project involved several investigations of flow phenomena in different parts of a model bulb turbine installed on the test rig of Laval University Laboratory. The aim is to create a comprehensive data base in order to increase the knowledge of the flow phenomena in this type of turbines and to validate or improve numerical flow simulation strategies. This validation being based on a kinematic comparison between experimental and numerical data, the project had to overcome challenges to facilitate the use of the experimental data for that purpose. Many parameters were checked, such as the test bench repeatability, the intrusiveness of a priori non-intrusive methods, the geometry of the runner and draft tube. This paper illustrates how some of those problematic were solved
Perkins, William; Tygert, Mark; Ward, Rachel
2011-01-01
If a discrete probability distribution in a model being tested for goodness-of-fit is not close to uniform, then forming the Pearson chi-square statistic can involve division by nearly zero. This often leads to serious trouble in practice -- even in the absence of round-off errors -- as the present article illustrates via numerous examples. Fortunately, with the now widespread availability of computers, avoiding all the trouble is simple and easy: without the problematic division by nearly ze...
Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Zou, Xu-Bo; Guo, Guang-Can
2012-01-01
We experimentally generate a non-classical correlated two-color photon pair at 780 and 1529.4 nm in a ladder-type configuration using a hot 85Rb atomic vapor with the production rate of ~107/s. The non-classical correlation between these two photons is demonstrated by strong violation of Cauchy-Schwarz inequality by the factor R=48+-12. Besides, we experimentally investigate the relations between the correlation and some important experimental parameters such as the single-photon detuning, th...
Perkins, William; Ward, Rachel
2011-01-01
If a discrete probability distribution in a model being tested for goodness-of-fit is not close to uniform, then forming the Pearson chi-square statistic can involve division by nearly zero. This often leads to serious trouble in practice -- even in the absence of round-off errors -- as the present article illustrates via numerous examples. Fortunately, with the now widespread availability of computers, avoiding all the trouble is simple and easy: without the problematic division by nearly zero, the actual values taken by goodness-of-fit statistics are not humanly interpretable, but black-box computer programs can rapidly calculate their precise significance.
The Contemporary Implication and Social Justice Theory of Classical Writers%经典作家社会公平理论及其当代启示
Institute of Scientific and Technical Information of China (English)
胡芳
2011-01-01
马克思恩格斯科学的社会公平理论为社会发展提供了愿景，经典作家的社会实践和社会公平理论丰富并发展了这一理论。针对我国社会不公平现象突显，其危机令人堪忧问题，根据马克思主义经典作家的社会公平理论提出“转变经济发展方式是解决社会公平的基本前提、还富于民是解决社会公平问题的根本”的思路。%Marx and Engels put forward the scientific theory on social justice, which provides a vision for social development. The social practice and the theory on social justice by classical writers have greatly enriched and developed the theory. Based on the worrying problem embodied in social inequities in China, and on the theories on social justice by the classical writers specialized in Marxism, the present paper puts forward the view that ＂ the transformation of economic development pattern is the basic premise to achieve social equity ; while dividend to the community is the fundamental issue to achieve this goal. ＂
Testing THEMIS wave measurements against the cold plasma theory
Taubenschuss, Ulrich; Santolik, Ondrej; Le Contel, Olivier; Bonnell, John
2016-04-01
The THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission records a multitude of electromagnetic waves inside Earth's magnetosphere and provides data in the form of high-resolution electric and magnetic waveforms. We use multi-component measurements of whistler mode waves and test them against the theory of wave propagation in a cold plasma. The measured ratio cB/E (c is speed of light in vacuum, B is magnetic wave amplitude, E is electric wave amplitude) is compared to the same quantity calculated from cold plasma theory over linearized Faraday's law. The aim of this study is to get estimates for measurement uncertainties, especially with regard to the electric field and the cold plasma density, as well as evaluating the validity of cold plasma theory inside Earth's radiation belts.
Carlert, Sara; Lennernäs, Hans; Abrahamsson, Bertil
2014-03-12
The aim of this work was to evaluate an in vitro-in silico approach for prediction of small intestinal crystalline precipitation and drug absorption of two weakly basic model BCS class II drugs, AZD0865 and mebendazole. The crystallization rates were investigated in an in vitro method using simulated gastric and intestinal media, and the result was modeled by using Classical Nucleation Theory (CNT). The effect of varying in vitro parameters (initial drug concentration, rate of mixing gastric and intestinal fluid, stirring and filtration) on the interfacial tension γ, being a key parameter in CNT, was investigated. The initial drug concentration had the most significant effect on γ for both substances tested, although γ is a fundamental parameter independent of concentration according to CNT. In the subsequent in silico prediction of drug absorption, by use of a Compartmental and Transit intestinal model, an empirical approach was used where γ was allowed to vary with simulated small intestinal concentrations. The in silico predictions were compared to published human in vivo plasma drug concentration data for different doses of AZD0865 and dog intestinal drug concentrations, amount precipitated in intestine and plasma concentrations for mebendazole. The results showed that lack of significant crystallization effects on absorption in man of the model drug AZD0865 up to doses of 4 mg/kg could be predicted which was in accordance with in vivo data. Mebendazole intestinal precipitation in canines was also well described by the model, where mean predicted amount precipitated was 136% (range 111-164%) of measured solid amount, and mean predicted intestinal concentration was 94% (range 59-147%) of measured concentration. In conclusion, the in vitro-in silico approach can be used for predictions of absorption effects of crystallization, but the model could benefit from further development work on the theoretical crystallization model and in vitro experimental design.
Testing the Neutral Theory of Biodiversity with Human Microbiome Datasets.
Li, Lianwei; Ma, Zhanshan Sam
2016-08-16
The human microbiome project (HMP) has made it possible to test important ecological theories for arguably the most important ecosystem to human health-the human microbiome. Existing limited number of studies have reported conflicting evidence in the case of the neutral theory; the present study aims to comprehensively test the neutral theory with extensive HMP datasets covering all five major body sites inhabited by the human microbiome. Utilizing 7437 datasets of bacterial community samples, we discovered that only 49 communities (less than 1%) satisfied the neutral theory, and concluded that human microbial communities are not neutral in general. The 49 positive cases, although only a tiny minority, do demonstrate the existence of neutral processes. We realize that the traditional doctrine of microbial biogeography "Everything is everywhere, but the environment selects" first proposed by Baas-Becking resolves the apparent contradiction. The first part of Baas-Becking doctrine states that microbes are not dispersal-limited and therefore are neutral prone, and the second part reiterates that the freely dispersed microbes must endure selection by the environment. Therefore, in most cases, it is the host environment that ultimately shapes the community assembly and tip the human microbiome to niche regime.
da Rocha, Roldao
2014-01-01
The perihelion precession, the deflection of light, and the radar echo delay are classical tests of General Relativity here used to probe brane world topologically charged black holes in a f(R) bulk and to constrain the parameter that arises from the Shiromizu-Maeda-Sasaki procedure applied to a f(R) bulk as well. The existing Solar system observational data constrain the possible values of the tidal charge parameter and the effective cosmological constant including f(R) brane world effects. We show that the observational/experimental data for both perihelion precession and radar echo delay make the black hole space of parameters to be more strict than the ones for the Dadhich, Maartens, Papadopoulos and Rezania (DMPR) black hole geometry. Furthermore, the deflection of light constrains the tidal charge parameter similarly as the DMPR black holes due to a peculiarity in the equation of motion.
Directory of Open Access Journals (Sweden)
Kateryna S. Pantiukh
2016-04-01
Full Text Available Concerns of traditional prenatal aneuploidy testing methods, such as low accuracy of noninvasive and health risks associated with invasive procedures, were overcome with the introduction of novel noninvasive methods based on genetics (NIPT. These were rapidly adopted into clinical practice in many countries after a series of successful trials of various independent submethods. Here we present results of own NIPT trial carried out in Moscow, Russia. 1012 samples were subjected to the method aimed at measuring chromosome coverage by massive parallel sequencing. Two alternative approaches are ascertained: one based on maternal/fetal differential methylation and another based on allelic difference. While the former failed to provide stable results, the latter was found to be promising and worthy of conducting a large-scale trial. One critical point in any NIPT approach is the determination of fetal cell-free DNA fraction, which dictates the reliability of obtained results for a given sample. We show that two different chromosome Y representation measures—by real-time PCR and by whole-genome massive parallel sequencing—are practically interchangeable (r=0.94. We also propose a novel method based on maternal/fetal allelic difference which is applicable in pregnancies with fetuses of either sex. Even in its pilot form it correlates well with chromosome Y coverage estimates (r=0.74 and can be further improved by increasing the number of polymorphisms.
Psychodynamic theory and counseling in predictive testing for Huntington's disease.
Tassicker, Roslyn J
2005-04-01
This paper revisits psychodynamic theory, which can be applied in predictive testing counseling for Huntington's Disease (HD). Psychodynamic theory has developed from the work of Freud and places importance on early parent-child experiences. The nature of these relationships, or attachments are reflected in adult expectations and relationships. Two significant concepts, identification and fear of abandonment, have been developed and expounded by the psychodynamic theorist, Melanie Klein. The processes of identification and fear of abandonment can become evident in predictive testing counseling and are colored by the client's experience of growing up with a parent affected by Huntington's Disease. In reflecting on family-of-origin experiences, clients can also express implied expectations of the future, and future relationships. Case examples are given to illustrate the dynamic processes of identification and fear of abandonment which may present in the clinical setting. Counselor recognition of these processes can illuminate and inform counseling practice.
An Empirical Test of the Information Processing Theory
Honggeng Zhou
2011-01-01
According to the propositions in the information processing theory, this study tests the relationship between task uncertainty and three organizational design strategies, i.e., creation of lateral relationships, investment in information systems, and creation of self-contained tasks. Data from 125 North American manufacturing firms are used and business environment uncertainty is employed to measure task uncertainty. Sourcing practice and delivery practice measure the creation of lateral rela...
How to make allocation decisions: a theory and test questions.
2005-01-01
Hospital administrators are regularly faced with having to cut patient services. Such decisions are essentially questions of distributive justice, and administrators may welcome some guidance. We begin with a key idea from the most influential theory of justice of our times, that of John Rawls, and generate from it a series of test questions against which the ethical dimensions of allocation decisions can be judged.
Chantler, C. T.; Bourke, J. D.
2015-11-01
We present new constraints for the transportation behaviour of low-momentum electronic excitations in condensed matter systems, and demonstrate that these have both a fundamental physical interpretation and a significant impact on the description of low-energy inelastic electron scattering. The dispersion behaviour and characteristic lifetime properties of plasmon and single-electron excitations are investigated using popular classical, semi-classical and quantum dielectric models. We find that, irrespective of constrained agreement to the well known high-momentum and high-energy Bethe ridge limit, standard descriptions of low-momentum electron excitations are inconsistent and unphysical. These observations have direct impact on calculations of transport properties such as inelastic mean free paths, stopping powers and escape depths of charged particles in condensed matter systems.
International Nuclear Information System (INIS)
We present new constraints for the transportation behaviour of low-momentum electronic excitations in condensed matter systems, and demonstrate that these have both a fundamental physical interpretation and a significant impact on the description of low-energy inelastic electron scattering. The dispersion behaviour and characteristic lifetime properties of plasmon and single-electron excitations are investigated using popular classical, semi-classical and quantum dielectric models. We find that, irrespective of constrained agreement to the well known high-momentum and high-energy Bethe ridge limit, standard descriptions of low-momentum electron excitations are inconsistent and unphysical. These observations have direct impact on calculations of transport properties such as inelastic mean free paths, stopping powers and escape depths of charged particles in condensed matter systems. (paper)
Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Zou, Xu-Bo; Guo, Guang-Can
2012-05-01
We experimentally generate a non-classical correlated two-color photon pair at 780 and 1529.4 nm in a ladder-type configuration using a hot 85Rb atomic vapor with the production rate of ~10(7)/s. The non-classical correlation between these two photons is demonstrated by strong violation of Cauchy-Schwarz inequality by the factor R = 48 ± 12. Besides, we experimentally investigate the relations between the correlation and some important experimental parameters such as the single-photon detuning, the powers of pumps. We also make a theoretical analysis in detail and the theoretical predictions are in reasonable agreement with our experimental results. PMID:22565763
Jogenfors, Jonathan; Elhassan, Ashraf Mohamed; Ahrens, Johan; Bourennane, Mohamed; Larsson, Jan-Åke
2015-12-01
Photonic systems based on energy-time entanglement have been proposed to test local realism using the Bell inequality. A violation of this inequality normally also certifies security of device-independent quantum key distribution (QKD) so that an attacker cannot eavesdrop or control the system. We show how this security test can be circumvented in energy-time entangled systems when using standard avalanche photodetectors, allowing an attacker to compromise the system without leaving a trace. We reach Bell values up to 3.63 at 97.6% faked detector efficiency using tailored pulses of classical light, which exceeds even the quantum prediction. This is the first demonstration of a violation-faking source that gives both tunable violation and high faked detector efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt inequality cannot be used to show device-independent security for energy-time entanglement setups based on Franson's configuration. However, device-independent security can be reestablished, and we conclude by listing a number of improved tests and experimental setups that would protect against all current and future attacks of this type.
Jogenfors, Jonathan; Elhassan, Ashraf Mohamed; Ahrens, Johan; Bourennane, Mohamed; Larsson, Jan-Åke
2015-01-01
Photonic systems based on energy-time entanglement have been proposed to test local realism using the Bell inequality. A violation of this inequality normally also certifies security of device-independent quantum key distribution (QKD) so that an attacker cannot eavesdrop or control the system. We show how this security test can be circumvented in energy-time entangled systems when using standard avalanche photodetectors, allowing an attacker to compromise the system without leaving a trace. We reach Bell values up to 3.63 at 97.6% faked detector efficiency using tailored pulses of classical light, which exceeds even the quantum prediction. This is the first demonstration of a violation-faking source that gives both tunable violation and high faked detector efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt inequality cannot be used to show device-independent security for energy-time entanglement setups based on Franson’s configuration. However, device-independent security can be reestablished, and we conclude by listing a number of improved tests and experimental setups that would protect against all current and future attacks of this type. PMID:26824059
Jogenfors, Jonathan; Elhassan, Ashraf Mohamed; Ahrens, Johan; Bourennane, Mohamed; Larsson, Jan-Åke
2015-12-01
Photonic systems based on energy-time entanglement have been proposed to test local realism using the Bell inequality. A violation of this inequality normally also certifies security of device-independent quantum key distribution (QKD) so that an attacker cannot eavesdrop or control the system. We show how this security test can be circumvented in energy-time entangled systems when using standard avalanche photodetectors, allowing an attacker to compromise the system without leaving a trace. We reach Bell values up to 3.63 at 97.6% faked detector efficiency using tailored pulses of classical light, which exceeds even the quantum prediction. This is the first demonstration of a violation-faking source that gives both tunable violation and high faked detector efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt inequality cannot be used to show device-independent security for energy-time entanglement setups based on Franson's configuration. However, device-independent security can be reestablished, and we conclude by listing a number of improved tests and experimental setups that would protect against all current and future attacks of this type. PMID:26824059
Energy Technology Data Exchange (ETDEWEB)
Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.
1997-03-01
We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors). 13 refs., 1 tab.
Development and validation of the conceptions of scientific theories test
Cotham, Joseph C.; Smith, Edward L.
The purpose of this study was to develop a reliable and valid instrument for use with elementary and secondary teachers of science that would have the following characteristics: 1) sensitivity to alternative conceptions of particular philosophic aspects of scientific theories, and 2) applicability in inferring understanding of the tentative and revisionary conception of the nature of science. This conception, which has educational and social importance, may be a significant influence in the teaching of science as inquiry. Thus, concern with teachers' conceptions of the nature of science and their teaching served as justification for this study. The instrument, which was applied to samples of preservice elementary teachers, college philosophy of science students, and college chemistry students, consisted of items that were adapted to the contexts of particular scientific theories by prefacing them with a brief description of a theory and episodes drawn from its history. Items were written to discriminate between alternative conceptions of the following philosophic aspects of scientific theories: testing, generation, ontological implications, and choice. Evidence in support of the validity of the instrument constructs was obtained using two approaches: discrimination between contrasting groups and the multi-trait and multi-method matrix of Campbell and Fiske. Cronbach alpha reliability coefficients and standard errors of measurement were computed for the instrument and its subtests. Reliability data indicates that an adequate degree of accuracy may be attributed to instrument scores.
Indirect scaling methods for testing quantitative emotion theories.
Junge, Martin; Reisenzein, Rainer
2013-01-01
Two studies investigated the utility of indirect scaling methods, based on graded pair comparisons, for the testing of quantitative emotion theories. In Study 1, we measured the intensity of relief and disappointment caused by lottery outcomes, and in Study 2, the intensity of disgust evoked by pictures, using both direct intensity ratings and graded pair comparisons. The stimuli were systematically constructed to reflect variables expected to influence the intensity of the emotions according to theoretical models of relief/disappointment and disgust, respectively. Two probabilistic scaling methods were used to estimate scale values from the pair comparison judgements: Additive functional measurement (AFM) and maximum likelihood difference scaling (MLDS). The emotion models were fitted to the direct and indirect intensity measurements using nonlinear regression (Study 1) and analysis of variance (Study 2). Both studies found substantially improved fits of the emotion models for the indirectly determined emotion intensities, with their advantage being evident particularly at the level of individual participants. The results suggest that indirect scaling methods yield more precise measurements of emotion intensity than rating scales and thereby provide stronger tests of emotion theories in general and quantitative emotion theories in particular. PMID:23650936
C~0 and C~1 theories and test functions for FEM patch test in microstructures
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Among many theories and categories in microstructures,rotation-displacement used as "independent" or "dependent" variables,is a noticeable topic. In FEM,it is called C0 and C1 theory. The convergence criteria of finite elements for microstructures are less mature than those for the conventional thin plate bending problem. In this paper,the patch test functions for assessing convergence of the C0 and C1 finite elements in microstructures is established based on the enhanced patch test theory. The author has further explored the C0 and C1 finite element theories and investigated the difference and correlation between their finite element formulations. Newly proposed finite element theories for microstructures are as follows:(1) the displacement-rotation dependent C1 element that requires the element function satisfying both C0 and C1 continuity;(2) the displacement-rotation independent C0 element which requires new convergence criteria,such as non-zero constant shear stress patch test and zero constant shear stress patch test for approximating C1 element.
Directory of Open Access Journals (Sweden)
Rybicki M.
2016-01-01
Full Text Available The goal of this paper is drawing attention to a mistake confusing discussion upon the alternatives to special theory of relativity (STR. In the Mansouri-Sexl test theory uti- lized as a mathematical framework for testing the preferred frame theories, the Lorentz transformation of time has an erroneous form. This generate s a false conclusion, namely that a theory based on Tangherlini transformation is empirically equivalent to STR.
Adler-Gelfand-Dickey approach to classical W-algebras within the theory of Poisson vertex algebras
Sole, A.; Kac, V. G.; Valeri, D.
2014-01-01
We put the Adler-Gelfand-Dickey approach to classical W-algebras in the framework of Poisson vertex algebras. We show how to recover the bi-Poisson structure of the KP hierarchy, together with its generalizations and reduction to the N-th KdV hierarchy, using the formal distribution calculus and the lambda-bracket formalism. We apply the Lenard-Magri scheme to prove integrability of the corresponding hierarchies. We also give a simple proof of a theorem of Kupershmidt and Wilson in this frame...
Quantitative test of general theories of the intrinsic laser linewidth
Cerjan, Alexander; Chong, Yidong; Johnson, Steven G; Stone, A Douglas
2015-01-01
We perform a first-principles calculation of the quantum-limited laser linewidth, testing the predictions of recently developed theories of the laser linewidth based on fluctuations about the known steady-state laser solutions against traditional forms of the Schawlow-Townes linewidth. The numerical study is based on finite-difference time-domain simulations of the semiclassical Maxwell-Bloch lasing equations, augmented with Langevin force terms, and thus includes the effects of dispersion, losses due to the open boundary of the laser cavity, and non-linear coupling between the amplitude and phase fluctuations ($\\alpha$ factor). We find quantitative agreement between the numerical results and the predictions of the noisy steady-state ab initio laser theory (N-SALT), both in the variation of the linewidth with output power, as well as the emergence of side-peaks due to relaxation oscillations.
Green, John T
2003-01-01
Exposure of the developing brain to alcohol produces profound Purkinje cell loss in the cerebellum, and deficits in tests of motor coordination. However, the precise relationship between these two sets of findings has been difficult to determine. Eyeblink classical conditioning is known to engage a discrete brainstem-cerebellar circuit, making it an ideal test of cerebellar functional integrity after developmental alcohol exposure. In eyeblink conditioning, one of the deep cerebellar nuclei, the interpositus nucleus, as well as specific Purkinje cell populations, are sites of convergence for CS and US information. A series of studies have shown that eyeblink conditioning is impaired in both weanling and adult rats given binge-like exposure to alcohol as neonates, and that these deficits can be traced, at least in part, to impaired activation of cerebellar interpositus nucleus neurons and to an overall reduction in the deep cerebellar nuclear cell population. Because particular cerebellar cell populations are utilized in well-defined ways during eyeblink conditioning, conclusions regarding specific changes in the mediation of behavior by these cell populations are greatly strengthened. Further studies will be directed towards the impact of early exposure to alcohol on the functionality of specific Purkinje cell populations, as well as towards brainstem areas that process the tone CS and the somatosensory US.
Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia
2014-01-01
We use the non-equlibrium statistical field theory for classical particles, recently developed by Mazenko and Das and Mazenko, together with the free generating functional we have previously derived for point sets initially correlated in phase space, to calculate the time evolution of power spectra in the free theory, i.e. neglecting particle interactions. We provide expressions taking linear and quadratic momentum correlations into account. Up to this point, the expressions are general with respect to the free propagator of the microscopic degrees of freedom. We then specialise the propagator to that expected for particles in cosmology treated within the Zel'dovich approximation and show that, to linear order in the momentum correlations, the linear growth of the cosmological power spectrum is reproduced. Quadratic momentum correlations return a first contribution to the non-linear evolution of the power spectrum, for which we derive a simple closed expression valid for arbitrary wave numbers. This expressio...
古典医学理论的建立、贡献和归宿%The Establishment, Contributions, and Final Results of Classical Medical Theories
Institute of Scientific and Technical Information of China (English)
王台
2013-01-01
In countries with ancient civilization of both Eastern world and Western world, after the accumulation of clinical experiences of "empirical medicine" to a sufficient amount; in accordance of their primitive philosophical thoughts, classical medical theories were established to play an important role in guiding the clinical practice of "empirical medicine". Because of the similarity of philosophical thoughts all over the ancient world, their medical theories were also very similar to each other. After the scientific evaluation and improvement, Greek classical medical theories were inherited, refined or abandoned, and then eventually finished their historical mission. Chinese classical medical theories also need the similar scientific identification and improvement for flowing into the authorized main stream of modern medical theory systems to continuously apply their guiding roles in clinical practice. Scholars would better consider the developmental principles of cultures and sciences with a historical viewpoint and an open mind to avoid making mistakes from haughty and prejudice.%东西方文明古国的"经验医学"发展到一定阶段后,分别吸取各自朴素的哲学思想建立了不同于现代医学理论的古典医学理论,发挥着指导"经验医学"医疗实践的重要作用.由于古代各国的哲学都具有类似的内涵,因而它们的医学理论也极其相似.古希腊医学的理论接受了科学实验的检验而被继承、改进或抛弃,从而完成了它的历史使命.中医学的古典理论同样需要接受这种科学实验的检验,验明正身,得到提升,继续发挥其指导医疗实践的作用.学者们需要用历史的观点和开阔的眼界考察文化和科学的发展规律,避免坐井观天和固步自封.
Testing gravity with $E_G$: mapping theory onto observations
Leonard, C Danielle; Heymans, Catherine
2015-01-01
We present a complete derivation of the observationally motivated definition of the modified gravity statistic $E_G$. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of $E_G$. We forecast errors on $E_G$ for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of $E_G$ under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using $E_G$ to test gravity with future surveys.
Testing gravity with EG: mapping theory onto observations
Leonard, C. Danielle; Ferreira, Pedro G.; Heymans, Catherine
2015-12-01
We present a complete derivation of the observationally motivated definition of the modified gravity statistic EG. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of EG. We forecast errors on EG for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of EG under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using EG to test gravity with future surveys.
Energy Technology Data Exchange (ETDEWEB)
Landry, Brian R., E-mail: landrybr@gmail.com; Subotnik, Joseph E. [Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104 (United States)
2015-03-14
We evaluate the accuracy of Tully’s surface hopping algorithm for the spin-boson model in the limit of small to moderate reorganization energy. We calculate transition rates between diabatic surfaces in the exciton basis and compare against exact results from the hierarchical equations of motion; we also compare against approximate rates from the secular Redfield equation and Ehrenfest dynamics. We show that decoherence-corrected surface hopping performs very well in this regime, agreeing with secular Redfield theory for very weak system-bath coupling and outperforming secular Redfield theory for moderate system-bath coupling. Surface hopping can also be extended beyond the Markovian limits of standard Redfield theory. Given previous work [B. R. Landry and J. E. Subotnik, J. Chem. Phys. 137, 22A513 (2012)] that establishes the accuracy of decoherence-corrected surface-hopping in the Marcus regime, this work suggests that surface hopping may well have a very wide range of applicability.
International Nuclear Information System (INIS)
Accurate quantum total reaction probabilities for the collinear reaction X + F2 (upsilon = 0.1) → XF + F (X = Mu, H, D, T) have been used to calculate collinear rate constants and activation energies. Comparison is made with collinear quasi-classical trajectory calculations and transition state theory assuming classical motion along a separable reaction coordinate and vibrational adiabaticity. Considerable differences between the quantum and quasi-classical and transition state theory results are found only for the Mu reaction at low temperatures. 5 figures, 35 references, 6 tables
New tests of cumulative prospect theory and the priority heuristic
Directory of Open Access Journals (Sweden)
Michael H. Birnbaum
2008-04-01
Full Text Available Previous tests of cumulative prospect theory (CPT and of the priority heuristic (PH found evidence contradicting these two models of risky decision making. However, those tests were criticized because they had characteristics that might ``trigger'' use of other heuristics. This paper presents new tests that avoid those characteristics. Expected values of the gambles are nearly equal in each choice. In addition, if a person followed expected value (EV, expected utility (EU, CPT, or PH in these tests, she would shift her preferences in the same direction as shifts in EV or EU. In contrast, the transfer of attention exchange model (TAX and a similarity model predict that people will reverse preferences in the opposite direction. Results contradict the PH, even when PH is modified to include a preliminary similarity evaluation using the PH parameters. New tests of probability-consequence interaction were also conducted. Strong interactions were observed, contrary to PH. These results add to the growing bodies of evidence showing that neither CPT nor PH is an accurate description of risky decision making.
Thomas, Jan E.; Kukulan, Annis
2004-01-01
In recent years, early women sociologists such as Harriet Martineau, Ida B. Wells, and Jane Addams have begun to appear in some introductory textbooks and theory books. Usually, they appear in a box, as a sidebar, or as selected "others." So why do we not know more about these women? Our research seeks to answer this question. Given the…
Seo, Jihye
2012-01-01
N=2 Seiberg-Witten theories allow an interesting interplay between the Argyres-Douglas loci, singularity structures and wall-crossing formulae. In this paper we investigate this connection by first studying the singularity structures of hyper-elliptic Seiberg-Witten curves for pure N=2 gauge theories with SU(r+1) and Sp(2r) gauge groups, and propose new methods to locate the Argyres-Douglas loci in the moduli space, where multiple mutually non-local BPS states become massless. In a region of the moduli space, we compute dyon charges for all 2r+2 and 2r+1 massless dyons for SU(r+1) and Sp(2r) gauge groups respectively for rank r>1. From here we elucidate the connection to the wall-crossing phenomena for pure Sp(4) Seiberg-Witten theory near the Argyres-Douglas loci, despite our emphasis being only at the massless sector of the BPS spectra. We also present 2r-1 candidates for the maximal Argyres-Douglas points for pure SO(2r+1) Seiberg-Witten theory.
Meijboom, Bert; Voordijk, Hans; Akkermans, Henk
2007-01-01
Purpose – The relevance of “industry clockspeed” to supply chain co-ordination (SCC) has recently been stressed but hardly been researched. Taking an information-processing perspective, the purpose of this paper is to examine the development of SCC theory under varying clockspeed circumstances. De
DEFF Research Database (Denmark)
Álvarez-Asencio, R.; Thormann, Esben; Rutland, M.W.
2013-01-01
A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power...
Younis, Samaira; Maarbjerg, Stine; Reimer, Maren; Wolfram, Frauke; Olesen, Jes; Baron, Ralf; Bendtsen, Lars
2016-07-01
The diagnostic criteria of the third International Classification of Headache Disorders state that there should be no neurological deficits in patients with classical trigeminal neuralgia (TN) at clinical examination. However, studies demonstrating sensory abnormalities at bedside examination in TN patients have questioned this. Our aim was to examine whether TN patients without sensory abnormalities at neurological examination have sensory abnormalities at quantitative sensory testing (QST) and whether there were any QST differences between TN with and without concomitant persistent pain. Thirty-six TN patients were investigated with the standardized QST protocol by the German Research Network on Neuropathic Pain. The investigators were blinded to presence of concomitant persistent pain and symptomatic side. Based on comparison to the German Research Network on Neuropathic Pain controls, z scores were calculated to process frequency analyses and Z-profiles. We found increased mechanical detection threshold on the symptomatic side (47.2% vs 0%, P = 0.008), asymptomatic side (33.3% vs 0%, P = 0.011), and hand (36% vs 0%, P Trigeminal neuralgia patients with concomitant persistent pain tended to have higher mean z score values compared to TN with purely paroxysmal pain indicative of decreased detection thresholds. Trigeminal neuralgia patients with no sensory abnormalities at neurological examination had generalized subclinical hypoesthesia, which was more pronounced on the symptomatic side, and thermal and mechanical hyperalgesia. This could indicate pain-induced hypoesthesia and sensitization induced by central mechanisms. PMID:26894914
Moen Dyrnes, I.K.
2012-01-01
This paper argues that the concept of socio-economic development needs to be redefined for the purpose of effective democracy promotion. By including aspects from human development theory, advocates of revised modernisation theory state that mass values in a society shift towards a preferance for democracy as higher levels socio-economic development provide existential security. This implies that a democratic culture shapes its institutions and not the other way around. If donor countries are...
Directory of Open Access Journals (Sweden)
Agustini Hamid
2016-05-01
Full Text Available The research aimed to measure the accuracy and combination of Classic and Modern Technical Analysis. PT Wijaya Karya Tbk (WIKA’s stock in two periods is the sample of research. Technical analysis was used to predict stock prices by observing changes in historical share price. Practically, technical analysis is divided into Classic Technical and Modern. Research was conducted by library study and using a computer software. Microsft Excel was used for the simulation and Chart Nexus for analyzing Modern Technical Analysis. The research period started in January 1, 2013 until December 31, 2013 and January 1, 2014 until December 31, 2014. The Classic Technical Analysis used Support, Resistance, Trendline, and Flag Patern. Meanwhile for Modern Technical Analysis used Moving Average, Stochastic, Moving Average Convergence Divergence (MACD indicator. The Classical Technical Analysis gave less result than Modern Technical Analysis. The classical give 14 investment decisions in two periods. The average return of Classical Technical is 15,50%. Meanwhile the Modern Technical Analysis gave 18 investment decisions in two periods. The average return of Modern Technical is 18,14%. Combining Classic Technical Analysis and Modern Technical Analysis gave 20 investment decisions with the average rate of return 20,41%.
Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold
1984-02-01
In two recent papers, the general form of the laws of motion for point particles which are multipole sources of the classical coupled Yang-Mills-Higgs fields was determined by Havas, and for the special case of monopole singularities of a Yang-Mills field an iteration procedure was developed by Drechsler and Rosenblum to obtain the equations of motion of mass points, i.e., the laws of motion including the explicit form of the fields of all interacting particles. In this paper we give a detailed derivation of the laws of motion of monopole-dipole singularities of the coupled Yang-Mills-Higgs fields for point particles with mass and spin, following a procedure first applied by Mathisson and developed by Havas. To obtain the equations of motion, a systematic approximation method is developed in the following paper for the solution of the nonlinear field equations and determination of the fields entering the laws of motion found here to any given order in the coupling constant g.
The classical geometrization of the electromagnetism
de Araujo Duarte, Celso
2015-08-01
Following the line of the history, if by one side the electromagnetic theory was consolidated on the 19th century, the emergence of the special and the general relativity theories on the 20th century opened possibilities of further developments, with the search for the unification of the gravitation and the electromagnetism on a single unified theory. Some attempts to the geometrization of the electromagnetism emerged in this context, where these first models resided strictly on a classical basis. Posteriorly, they were followed by more complete and embracing quantum field theories. The present work reconsiders the classical viewpoint, with the purpose of showing that at first-order of approximation the electromagnetism constitutes a geometric structure aside other phenomena as gravitation, and that magnetic monopoles do not exist at least up to this order of approximation. Even though being limited, the model is consistent and offers the possibility of an experimental test of validity.
A modified Lorentz theory as a test theory of special relativity
Chang, T.; Torr, D. G.; Gagnon, D. R.
1988-01-01
Attention has been given recently to a modified Lorentz theory (MLT) that is based on the generalized Galilean transformation. Some explicit formulas within the framework of MLT, dealing with the one-way velocity of light, slow-clock transport, and the Doppler effect are derived. A number of typical experiments are analyzed on this basis. Results indicate that the empirical equivalence between MLT and special relativity is still maintained to second order terms. The results of previous works that predict that the MLT might be distinguished from special relativity at the third order by Doppler centrifuge tests capable of a fractional frequency detection threshold of 10 to the -15th are confirmed.
论卢曼法律悖论理论的隐秘源头%On the Classical Source of Luhmann’s Theory of Paradox
Institute of Scientific and Technical Information of China (English)
宾凯
2014-01-01
从康德到卢曼近两百年的德国思想史，贯穿了对于悖论问题的思考这一条红线。经过费希特对“自我与非我”的论述以及黑格尔对费希特思想的扬弃，德国古典哲学家们在悖论问题上呈现出了连贯的思考脉络。二十世纪后期，德国古典哲学中的“主体”虽然已经转换为卢曼社会理论中的“系统”，但是德国先贤们的智力资源却潜入到了卢曼的社会理论中，并成为其法律悖论思想的一个隐秘源头。文章通过在费希特、黑格尔关于悖论的思想与卢曼法律社会学中的悖论理论之间的对比研究，展示了卢曼在其法律悖论思想中对于德国古典哲学传统的反思性继承和创造性超越。%In the history of German philosophy from Kant to Luhmann,the thinking around the problem of paradox is definitely a strand going through almost two hundred years.Fichte’s discussion on “self and non-self”and Hegel’s relevant theory demonstrate that there was some consistent and successive research on the problem of paradox in German classical thought.In the latter half of the twentieth century,though the key word “subject”in German classical philosophy were replaced by“system”in Luhmann’s social theory,the resources provided by German antecessors became the necessary premise of the theory of legal paradox contributed by Luhmann,who inherited but at same time went beyond classical thoughts.
Clayman, Dee L.
1995-01-01
Appraises several databases devoted to classical literature. Thesaurus Linguae Graecae (TLG) contains the entire extant corpus of ancient Greek literature, including works on lexicography and historiography, extending into the 15th century. Other works awaiting completion are the Database of Classical Bibliography and a CD-ROM pictorial dictionary…
Torrielli, Alessandro
2016-08-01
We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin–Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand–Levitan–Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.
A test of stress theory: relief workers in refugee camps.
Soliman, Hussein H; Gillespie, David F
2011-10-01
The purpose of this paper is to apply a stress model drawn from the literature to the relief and social service workers who have been active in refugee camps for a prolonged period of time. Working in difficult environments, social service workers deliver essential services to refugee populations around the world. A model of four work-stress determinants--tasks, management, appreciation and collaboration--was tested on 274 social workers in five regions of the Middle East (Jordan, Lebanon and Syria, as well as the occupied Palestinian territories of the Gaza Strip and the West Bank). Statistical fit indices were adequate but two relationships were statistically insignificant. The collaboration variable was dropped to create a modified model with tasks indirectly and management and appreciation directly affecting work-related stress. The five direct relationships and two indirect relationships of this modified model are consistent with stress theory, and all relationships--direct and indirect--are statistically significant.
Testing Punctuated Equilibrium Theory Using Evolutionary Activity Statistics
Woodberry, O. G.; Korb, K. B.; Nicholson, A. E.
The Punctuated Equilibrium hypothesis (Eldredge and Gould,1972) asserts that most evolutionary change occurs during geologically rapid speciation events, with species exhibiting stasis most of the time. Punctuated Equilibrium is a natural extension of Mayr's theories on peripatric speciation via the founder effect, (Mayr, 1963; Eldredge and Gould, 1972) which associates changes in diversity to a population bottleneck. That is, while the formation of a foundation bottleneck brings an initial loss of genetic variation, it may subsequently result in the emergence of a child species distinctly different from its parent species. In this paper we adapt Bedau's evolutionary activity statistics (Bedau and Packard, 1991) to test these effects in an ALife simulation of speciation. We find a relative increase in evolutionary activity during speciations events, indicating that punctuation is occurring.
Possible Experiments to test Einstein's Special Relativity Theory
de Haan, Victor Otto
2011-01-01
All of the experiments supporting Einstein's Special Relativity Theory are also supportive of the Lorentz ether theory, or many other ether theories. However, a growing number of experiments show deviations from Einstein's Special Relativity Theory, but are supporting more extended theories. Some of these experiments are reviewed and analyzed. Unfortunately, many experiments are not of high quality, never repeated and mostly both. It is proposed that the most promising experiments should be r...
Energy Technology Data Exchange (ETDEWEB)
Scheck, Florian [Mainz Univ. (Germany). Fachbereich Physik
2010-07-01
Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [German] Stringente Darstellung der Feldtheorie, vermittelt den Zusammenhang von der klassischen Elektrodynamik bis zu modernen Eichtheorien. Die kompakte Darstellung ist ideal fuer das Bachelor-Studium. Neues Kapitel zur Allgemeinen Relativitaetstheorie. Vertieft das Erlernte durch zahlreiche Anwendungsbeispiele aus Laserphysik, Metamaterialien uvm. Theoretische Physik 3. Klassische Feldtheorie. Von Elektrodynamik, nicht-Abelschen Eichtheorien und Gravitation ist der dritte von fuenf Baenden zur Theoretischen Physik von Professor Scheck. Der Zyklus Theoretische Physik umfasst: Band 1: Mechanik. Von den Newtonschen Gesetzen zum deterministischen Chaos. Band 2: Nichtrelativistische Quantentheorie. Vom Wasserstoffatom zu den Vielteilchensystemen. Band 3: Klassische Feldtheorie
Shiau, Lie-Ding
2016-09-01
The pre-exponential factor and interfacial energy obtained from the metastable zone width (MSZW) data using the integral method proposed by Shiau and Lu [1] are compared in this study with those obtained from the induction time data using the conventional method (ti ∝J-1) for three crystallization systems, including potassium sulfate in water in a 200 mL vessel, borax decahydrate in water in a 100 mL vessel and butyl paraben in ethanol in a 5 mL tube. The results indicate that the pre-exponential factor and interfacial energy calculated from the induction time data based on classical nucleation theory are consistent with those calculated from the MSZW data using the same detection technique for the studied systems.
The Relation between Classical and Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Mario Bacelar Valente
2011-01-01
Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.
Agglomeration Economies in Classical Music
DEFF Research Database (Denmark)
Borowiecki, Karol Jan
2015-01-01
This study investigates agglomeration effects for classical music production in a wide range of cities for a global sample of composers born between 1750 and 1899. Theory suggests a trade-off between agglomeration economies (peer effects) and diseconomies (peer crowding). I test this hypothesis...... using historical data on composers and employ a unique instrumental variable – a measure of birth centrality, calculated as the average distance between a composer’s birthplace and the birthplace of his peers. I find a strong causal impact of peer group size on the number of important compositions...
Testing the tenets of minority stress theory in workplace contexts.
Velez, Brandon L; Moradi, Bonnie; Brewster, Melanie E
2013-10-01
The links of minority stressors (workplace discrimination, expectations of stigma, internalized heterosexism, and identity management strategies) with psychological distress and job satisfaction were examined in a sample of 326 sexual minority employees. Drawing from minority stress theory and the literature on the vocational experiences of sexual minority people, patterns of mediation and moderation were tested. Minority stressors were associated with greater distress and lower job satisfaction. A mediation model was supported in which the links of discrimination and internalized heterosexism with psychological distress were mediated by a concealment-focused identity management strategy (i.e., avoiding), and the links of discrimination, expectations of stigma, and internalized heterosexism with job satisfaction were mediated by a disclosure-focused identity management strategy (i.e., integrating). Tests of moderation indicated that for sexual minority women (but not men), the positive association of discrimination with distress was stronger at higher levels of internalized heterosexism than at lower levels. In addition, lower levels of internalized heterosexism and concealment strategies (i.e., counterfeiting and avoiding) and higher levels of a disclosure strategy (i.e., integrating) were associated with higher job satisfaction in the context of low discrimination, but this buffering effect disappeared as level of discrimination increased. The implications of these findings for minority stress research are discussed, and clinical recommendations are made.
Wide binaries as a critical test for Gravity theories
International Nuclear Information System (INIS)
Assuming Newton's gravity and GR to be valid at all scales leads to the dark matter hypothesis as a requirement demanded by the observed dynamics and measured baryonic content at galactic and extragalactic scales. Alternatively, modified gravity scenarios where a change of regime appears at acceleration scales a 0 have been proposed. This modified regime at a 0 will generically be characterised by equilibrium velocities which become independent of distance. Here we identify a critical test in this debate and we propose its application to samples of wide binary stars. Since for 1Msun systems the acceleration drops below a0 at scales of around 7000 AU, a statistical survey of wide binaries with relative velocities and separations reaching 104 AU and beyond should prove useful to the above debate. We apply the proposed test to the best currently available data. Results show a constant upper limit to the relative velocities in wide binaries which is independent of separation for over three orders of magnitude, in analogy with galactic flat rotation curves in the same a 0 acceleration regime. Our results are suggestive of a breakdown of Kepler's third law beyond a ≈ a0 scales, in accordance with generic predictions of modified gravity theories designed not to require any dark matter at galactic scales and beyond.
Classical, Semi-classical and Quantum Noise
Poor, H; Scully, Marlan
2012-01-01
David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...
On the absence of black hole event horizons: a test of De Sitter Yang-Mills Theory
Andersen, Timothy D
2014-01-01
De Sitter Quantum Gravity is a Yang-Mills theory based on the de Sitter or SO(4,1) group and a promising candidate for a quantum theory of gravity. In this paper, an exact, static, spherically symmetric solution of the classical equations is derived. I show that when the Schwarzchild radius to distance ratio is at post-Newtonian order the theory agrees with general relativity for all parameters but that, once the ratio becomes closer to unity, they differ. At the Schwarzchild radius from a black hole singularity, general relativity predicts an event horizon, which has become a controversial topic in quantum gravity because of information preservation issues. In the De Sitter theory I show, however, that time-like escape paths exist for any mass black hole until the singularity itself is reached. Since an event horizon has never been directly observed and there is currently no observation on which the two theories disagree, this provides a powerful test of the De Sitter theory.
Ainiyah, Nur; Deliar, Albertus; Virtriana, Riantini
2016-06-01
Land cover changes continuously change by the time. Many kind of phenomena is a simple of important factors that affect the environment change, both locally and also globally. To determine the existence of the phenomenon of land cover change in a region, it is necessary to identify the driving factors that can cause land cover change. The relation between driving factors and response variables can be evaluated by using regression analysis techniques. In this case, land cover change is a dichotomous phenomenon (binary). The BLR's model (Binary Logistic Regression) is the one of kind regression analysis which can be used to describe the nature of dichotomy. Before performing regression analysis, correlation analysis is carried it the first. Both correlation test and regression tests are part of a statistical test or known classical assumption test. From result of classical assumption test, then can be seen that the data used to perform analysis from driving factors of the land cover changes is proper with used by BLR's method. Therefore, the objective of this research is to evaluate the effectiveness of methods in assessing the relation between driving factors of land cover change that assumed can affect to land cover change phenomena. This research will use the classical assumed test of multiple regression linear analysis, showing that BLR method is efficiency and effectiveness solution for researching or studying in phenomenon of land cover changes. So it will to provide certainty that the regression equation obtained has accuracy in estimation, unbiased and consistent.
Test theory of special relativity: What it is and why we need it
International Nuclear Information System (INIS)
After a critical overview on the traditional way of expressing the accuracy of experiments testing the postulates of the special theory of relativity, the four-parameter test theory is briefly introduced. The existing experiments are then classified and their accuracies are expressed in terms of the parameter of the test theory. By changing the convention of synchronization of distant clocks, it is shown how different equivalent theories can be formulated. (author). 23 refs
Testing the Rastall's theory using matter power spectrum
Batista, C. E. M.; Fabris, J. C.; Daouda, M. Hamani
2010-01-01
The Rastall's theory is a modification of the General Relativity theory leading to a different expression for the conservation law in the matter sector compared with the usual one. It has been argued recently that such a theory may have applications to the dark energy problem, since a pressureless fluid may lead to an accelerated universe. In the present work we confront the Rastall's theory with the power spectrum data. The results indicate a configuration that essentially reduces the Rastal...
Test of Information Theory on the Boltzmann Equation
Hyeon-Deuk, Kim; Hayakawa, Hisao
2002-01-01
We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.
Test of Information Theory on the Boltzmann Equation
Kim, Hyeon-Deuk; Hayakawa, Hisao
2003-01-01
We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.
Mould, Richard A
2003-01-01
Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previous...
An empirical test of reference price theories using a semiparametric approach
DEFF Research Database (Denmark)
Boztug, Yasemin; Hildebrandt, Lutz
In this paper we estimate and empirically test different behavioral theories of consumer reference price formation. Two major theories are proposed to model the reference price reaction: assimilation contrast theory and prospect theory. We assume that different consumer segments will use...
Testing the Rentier State Theory: The Case of Azerbaijan
Alper Almaz
2015-01-01
This article shall focus on the political aspects of the resource curse theory, in particular the rentier state theory as a sub-theory of the resource curse. The rentier state is a political economy theory that seeks to account for state society relations in states that get most of their revenues, in the form of rents, from resource sector. Besides, the theory asserts that these rents have an effect on democracy, economic growth and security matters of the resource rich countries. Applying th...
Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold
1984-02-01
In the preceding paper, the laws of motion were established for classical particles with spin which are monopole-dipole singularities of Yang-Mills-Higgs fields. In this paper, a systematic approximation scheme is developed for solving the coupled nonlinear field equations in any order and for determining the corresponding equations of motion. In zeroth order the potentials are taken as the usual Liénard-Wiechert and Bhabha-Harish-Chandra potentials (generalized to isospace); in this order the solutions are necessarily Abelian, since the isovector describing the charge is constant. The regularization necessary to obtain expressions finite on the world lines of the particles is achieved by the method of Riesz potentials. All fields are taken as retarded and are expressed in integral form. Omitting dipole interactions, the integrals for the various terms are carried out as far as possible for general motions, including radiation-reaction terms. In first order, the charge isovectors are no longer necessarily constant; thus the solutions are not necessarily Abelian, and it is possible for charge to be radiated away. The cases of time-symmetric field theory and of an action-at-a-distance formulation of the theory are discussed in an appendix.
DEFF Research Database (Denmark)
Koenen, K.; Uttenthal, Åse; Meindl-Böhmer, A.
2007-01-01
In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning...
Testing neoclassical competitive market theory in the field.
List, John A
2002-11-26
This study presents results from a pilot field experiment that tests predictions of competitive market theory. A major advantage of this particular field experimental design is that my laboratory is the marketplace: subjects are engaged in buying, selling, and trading activities whether I run an exchange experiment or am a passive observer. In this sense, I am gathering data in a natural environment while still maintaining the necessary control to execute a clean comparison between treatments. The main results of the study fall into two categories. First, the competitive model predicts reasonably well in some market treatments: the expected price and quantity levels are approximated in many market rounds. Second, the data suggest that market composition is important: buyer and seller experience levels impact not only the distribution of rents but also the overall level of rents captured. An unexpected result in this regard is that average market efficiency is lowest in markets that match experienced buyers and experienced sellers and highest when experienced buyers engage in bargaining with inexperienced sellers. Together, these results suggest that both market experience and market composition play an important role in the equilibrium discovery process.
Testing the cultural theory of risk in France
Energy Technology Data Exchange (ETDEWEB)
Brenot, J.; Bonnefous, S. [Inst. de Protection et de Surete Nuclaire, Fontenay-aux-Roses (France); Marris, C. [Economie-Humanisme, Lyon (France)
1998-12-01
Cultural Theory, as developed by Mary Douglas, argues that differing risk perceptions can be explained by reference to four distinct cultural biases: hierarchy, egalitarianism, individualism, and fatalism. This paper presents empirical results from a quantitative survey based on a questionnaire devised by Karl Dake to measure these cultural biases. A large representative sample was used to test this instrument in the French social context. Correlations between cultural biases and perceptions of 20 social and environmental risks were examined. These correlations were very weak, but were statistically significant: cultural biases explained 6%, at most, of the variance in risk perceptions. Standard socio-demographic variables were also weakly related to risk perceptions (especially gender, social class, and education), and cultural biases and socio-demographic variables were themselves intercorrelated (especially with age, social class, and political outlook). The authors compare these results with surveys conducted in other countries using the same instrument and conclude that new methods, more qualitative and contextual, still need to be developed to investigate the cultural dimensions of risk perceptions. The paper also discusses relationships between perceptions of personal and residual risk, and between perceived risk and demand for additional safety measures. These three dimensions were generally closely related, but interesting differences were observed for some risk issues. Included in the list of risk perceptions were pollution, hazardous materials, and radioactive wastes.
Testing the cultural theory of risk in France
International Nuclear Information System (INIS)
Cultural Theory, as developed by Mary Douglas, argues that differing risk perceptions can be explained by reference to four distinct cultural biases: hierarchy, egalitarianism, individualism, and fatalism. This paper presents empirical results from a quantitative survey based on a questionnaire devised by Karl Dake to measure these cultural biases. A large representative sample was used to test this instrument in the French social context. Correlations between cultural biases and perceptions of 20 social and environmental risks were examined. These correlations were very weak, but were statistically significant: cultural biases explained 6%, at most, of the variance in risk perceptions. Standard socio-demographic variables were also weakly related to risk perceptions (especially gender, social class, and education), and cultural biases and socio-demographic variables were themselves intercorrelated (especially with age, social class, and political outlook). The authors compare these results with surveys conducted in other countries using the same instrument and conclude that new methods, more qualitative and contextual, still need to be developed to investigate the cultural dimensions of risk perceptions. The paper also discusses relationships between perceptions of personal and residual risk, and between perceived risk and demand for additional safety measures. These three dimensions were generally closely related, but interesting differences were observed for some risk issues. Included in the list of risk perceptions were pollution, hazardous materials, and radioactive wastes
Rigorously testing multialternative decision field theory against random utility models.
Berkowitsch, Nicolas A J; Scheibehenne, Benjamin; Rieskamp, Jörg
2014-06-01
Cognitive models of decision making aim to explain the process underlying observed choices. Here, we test a sequential sampling model of decision making, multialternative decision field theory (MDFT; Roe, Busemeyer, & Townsend, 2001), on empirical grounds and compare it against 2 established random utility models of choice: the probit and the logit model. Using a within-subject experimental design, participants in 2 studies repeatedly choose among sets of options (consumer products) described on several attributes. The results of Study 1 showed that all models predicted participants' choices equally well. In Study 2, in which the choice sets were explicitly designed to distinguish the models, MDFT had an advantage in predicting the observed choices. Study 2 further revealed the occurrence of multiple context effects within single participants, indicating an interdependent evaluation of choice options and correlations between different context effects. In sum, the results indicate that sequential sampling models can provide relevant insights into the cognitive process underlying preferential choices and thus can lead to better choice predictions.
Testing assumptions and predictions of star-formation theories
González-Samaniego, Alejandro; González, Ricardo F; Kim, Jongsoo
2013-01-01
We present numerical simulations of isothermal, MHD, supersonic turbulence, designed to test various hypotheses frequently assumed in star formation(SF) theories. We consider three simulations, each with a different combination of physical size, rms sonic Mach number, and Jeans parameter, but chosen as to give the same value of the virial parameter and to conform with Larson's scaling relations. As in the non-magnetic case: we find no simultaneously subsonic and super-Jeans structures in our MHD simulations. We find that the fraction of small-scale super-Jeans structures increases when self gravity is turned on, and that the production of gravitationally unstable dense cores by turbulence alone is very low. This implies that self-gravity is in general necessary not only to induce the collapse of Jeans-unstable cores, but also to form them. We find that denser regions tend to have more negative values of the velocity divergence, implying a net inwards flow towards the regions' centers. We compare the results f...
Classical Mythology. Fourth Edition.
Morford, Mark P. O.; Lenardon, Robert J.
Designed for students with little or no background in classical literature, this book introduces the Greek and Roman myths of creation, myths of the gods, Greek sagas and local legends, and presents contemporary theories about the myths. Drawing on Homer, Hesiod, Pindar, Vergil, and others, the book provides many translations and paraphrases of…