WorldWideScience

Sample records for classical strongly coupled

  1. Strong Coupling and Classicalization

    CERN Document Server

    Dvali, Gia

    2016-01-01

    Classicalization is a phenomenon in which a theory prevents itself from entering into a strong-coupling regime, by redistributing the energy among many weakly-interacting soft quanta. In this way, the scattering process of some initial hard quanta splits into a large number of soft elementary processes. In short, the theory trades the strong coupling for a high-multiplicity of quanta. At very high energies, the outcome of such a scattering experiment is a production of soft states of high occupation number that are approximately classical. It is evident that black hole creation in particle collision at super-Planckian energies is a result of classicalization, but there is no a priory reason why this phenomenon must be limited to gravity. If the hierarchy problem is solved by classicalization, the LHC has a chance of detecting a tower of new resonances. The lowest-lying resonances must appear right at the strong coupling scale in form of short-lived elementary particles. The heavier members of the tower must b...

  2. Classical Integrability for Three-point Functions: Cognate Structure at Weak and Strong Couplings

    CERN Document Server

    Kazama, Y; Nishimura, T

    2016-01-01

    In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the $\\mathcal{N}=4$ super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical...

  3. Kinetic theory of the shear viscosity of a strongly coupled classical one-component plasma

    International Nuclear Information System (INIS)

    We present an approximation to the linearized collision operator or memory function of the exact kinetic equation obeyed by the correlation function of the phase-space density of a classical one-component plasma. This approximate collision operator generalizes the well known Balescu-Guernsey-Lenard (BGL) operator to finite wavelengths, finite frequencies, and finite coupling constants. It, moreover, satisfies the necessary symmetry relations, leads to appropriate conservation laws, and fulfills its first sum rule exactly. Next we use this operator to compute the shear viscosity eta for a series of coupling constants spanning the whole fluid phase. For weak coupling we make contact with the BGL theory, while for strong coupling we confirm, at least qualitatively, the results of Vieillefosse and Hansen, who predicted a minimum in eta as a function of temperature. We also demonstrate the important role played by the sum rules in the quantitative evaluation of a transport coefficient such as eta

  4. Approximation scheme for classical surface plasmas at strong coupling: Progress in the formulation of a dynamical theory

    International Nuclear Information System (INIS)

    A self-consistent approximation scheme is formulated for the calculation of the dynamical linear polarizability of classical electron monolayers. The derivation is carried out in two stages. In the first stage, the authors formulate a simple response function relation linking linear and quadratic polarizabilities; the dynamical coupling function is expressed entirely in terms of the latter. The basic elements in the derivation are the first BBGKY kinetic equation (prepared in the velocity average approximation) and the non-linear fluctuation-dissipation theorem. The new response function relation is exact at zero frequency and exactly satisfies the third frequency moment sum rule. In the second stage, self-consistency is guaranteed by approximating the quadratic polarizability in terms of linear ones. The theory is examined in the weak coupling limit where it is found that a dominant γ-independent non-RPA contribution to the damping is missing. The structure of the missing term is identified at arbitrary coupling strengths. Work is in progress to see how it can be incorporated into the approximation scheme. (author)

  5. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  6. Eikonal Scattering at Strong Coupling

    Science.gov (United States)

    Irizarry-Gelpi, Melvin Eloy

    The scattering of subatomic particles is a source of important physical phenomena. Decades of work have yielded many techniques for the computation of scattering amplitudes. Most of these techniques involve perturbative quantum field theory and thus apply only at weak coupling. Complementary to scattering is the formation of bound states, which are intrinsically nonperturbative. Regge theory arose in the late 1950s as an attempt to describe, with a single framework, both scattering and the formation of bound states. In Regge theory one obtains an amplitude with bound state poles after analytic continuation of a nonperturbative scattering amplitude, corresponding to a sum of an infinite number of Feynman diagrams at large energy and fixed momentum transfer (but with crossed kinematics). Thus, in order to obtain bound states at fixed energy, one computes an amplitude at large momentum transfer. In this dissertation we calculate amplitudes with bound states in the regime of fixed energy and small momentum transfer. We formulate the elastic scattering problem in terms of many-body path integrals, familiar from quantum mechanics. Then we invoke the semiclassical JWKB approximation, where the path integral is dominated by classical paths. The dynamics in the semiclassical regime are strongly coupled, as found by Halpern and Siegel. When the momentum transfer is small, the classical paths are simple straight lines and the resulting semiclassical amplitudes display a spectrum of bound states that agrees with the spectrum found by solving wave equations with potentials. In this work we study the bound states of matter particles with various types of interactions, including electromagnetic and gravitational interactions. Our work has many analogies with the work started by Alday and Maldacena, who computed scattering amplitudes of gluons at strong coupling with semiclassical quantum mechanics of strings in anti de-Sitter spacetime. We hope that in the future we can apply our

  7. Driven classical diffusion with strong correlated disorder

    OpenAIRE

    Pryadko, Leonid P.; Lin, Jing-Xian

    2004-01-01

    We analyze one-dimensional motion of an overdamped classical particle in the presence of external disorder potential and an arbitrary driving force F. In thermodynamical limit the effective force-dependent mobility mu(F) is self-averaging, although the required system size may be exponentially large for strong disorder. We calculate the mobility mu(F) exactly, generalizing the known results in linear response (weak driving force) and the perturbation theory in powers of the disorder amplitude...

  8. Gluon scattering amplitudes at strong coupling

    CERN Document Server

    Alday, Luis F

    2007-01-01

    We describe how to compute planar gluon scattering amplitudes at strong coupling in N=4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  9. Circuit electromechanics with single photon strong coupling

    International Nuclear Information System (INIS)

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics

  10. Circuit electromechanics with single photon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  11. Kinetic Mixing at Strong Coupling

    CERN Document Server

    Del Zotto, Michele; Kumar, Piyush; Malekian, Arada; Wecht, Brian

    2016-01-01

    A common feature of many string-motivated particle physics models is additional strongly coupled U(1)'s. In such sectors, electric and magnetic states have comparable mass, and integrating out modes also charged under U(1) hypercharge generically yields CP preserving electric kinetic mixing and CP violating magnetic kinetic mixing terms. Even though these extra sectors are strongly coupled, we show that in the limit where the extra sector has approximate N = 2 supersymmetry, we can use formal methods from Seiberg-Witten theory to compute these couplings. We also calculate various quantities of phenomenological interest such as the cross section for scattering between visible sector states and heavy extra sector states, as well as the effects of supersymmetry breaking induced from coupling to the MSSM.

  12. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  13. Nonperturbative enhancement of superloop at strong coupling

    CERN Document Server

    Belitsky, A V

    2015-01-01

    We address the near-collinear expansion of NMHV six-particle scattering amplitudes at strong value of 't Hooft coupling in planar maximally supersymmetric Yang-Mills theory. We complement recent studies of this observable within the context of the pentagon operator product expansion, via the dual super Wilson loop description, by studying effects of multiple scalar exchanges that accompany (or not) massive flux-tube excitations. Due to the fact that holes have a very small, nonperturbatively generated mass which is exponentially suppressed in 't Hooft coupling, their exchanges must be resummed in the ultraviolet limit. This procedure yields a contribution to the expectation value of the superloop which enters on equal footing with the classical area, --- a phenomenon which was earlier observed for MHV amplitudes. In all components, the near-massless scalar exchanges factorize from the ones of massive particles, at leading order in strong coupling.

  14. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    Science.gov (United States)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas

  15. PREFACE: Strongly Coupled Coulomb Systems

    Science.gov (United States)

    Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.

    2006-04-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within

  16. Fluctuations in strongly coupled cosmologies

    CERN Document Server

    Bonometto, Silvio A

    2013-01-01

    In the early Universe, a dual component made of coupled CDM and a scalar field $\\Phi$, if their coupling $\\beta > \\sqrt{3}/2$, owns an attractor solution, making them a stationary fraction of cosmic energy during the radiation dominated era. Along the attractor, both such components expand $\\propto a^{-4}$ and have early density parameters $\\Omega_{d} = 1/ (4\\beta^2)$ and $\\Omega_c= 2, \\Omega_d$ (field and CDM, respectively). In a previous paper it was shown that, if a further component, expanding $\\propto a^{-3}$, breaks such stationary expansion at $z \\sim 3$--$5 \\times 10^3$, cosmic components gradually acquire densities consistent with observations. This paper, first of all, considers the case that this component is warm. However, its main topic is the analysis of fluctuation evolution: out of horizon modes are then determined; their entry into horizon is numerically evaluated as well as the dependence of Meszaros effect on the coupling $\\beta$; finally, we compute: (i) transfer function and linear spectr...

  17. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  18. Thermal conductivity of a strongly coupled hydrogen plasma

    International Nuclear Information System (INIS)

    ''Molecular Dynamics'' simulations has been used to compute the thermal conductivity of the strongly coupled, nearly classical hydrogen plasma. The relaxation of a suitably defined heat current is significantly faster than the decay of the microscopic electric current. Electrical and thermal conductivities are not related by a simple Wiedemann-Franz law in the dense plasma

  19. Strongly-coupled nanotube electromechanical resonators

    OpenAIRE

    Deng, Guang-Wei; ZHU Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-01-01

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel micro-transfer technique, we fabricate two strongly-coupled and electrically-tunable mechanical resonators on a single carbon nanotube for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and strong coupling is observed between the electron charge and phonon m...

  20. Stopping Power for Strong Beam-Plasma Coupling

    Science.gov (United States)

    Gericke, Dirk O.

    2001-10-01

    The slowing down process of charged particles in plasma targets is investigated for the case of strong beam-plasma coupling. Strong beam-plasma correlations can be considered using the collision operator of the quantum Boltzmann equation. As a first step, dynamic screening is included in the first Born approximation. This approach gives good results for moderate beam-plasma coupling (Zb Γ^3/2 Bethe-formula, the standard model of the stopping power (Bethe plus Bloch corrections and Barkas terms), the Li & Petrasso formula and simulation data (MD and PIC), is given. This comparison clearly shows the advantage of the proposed model: it smoothly interpolates between the classical low velocity regime, where strong coupling effects occur, and the high velocity quantum regime, where collective modes are important. In the latter case, the experimentally proven Bethe-formula is obtained. Furthermore, it matches the simulation data for moderate as well as strong beam-plasma coupling.

  1. From individual to strongly coupled metallic nanocavities

    CERN Document Server

    Salomon, Adi; Kolkowski, Radoslaw; Zyss, Joseph

    2013-01-01

    Localized plasmonic modes of metallic nanoparticles may hybridize like those of atoms forming a molecule. However, the rapid decay of the plasmonic fields outside the metal severely limits the range of these interactions to tens of nanometers. Herein, we demonstrate very strong coupling of nanocavities in metal films, sparked by propagating surface plasmons and evident even at much larger distances of hundreds of nanometers for the properly selected metal/wavelength combination. Such strong coupling drastically changes the symmetry of the charge distribution around the nanocavities making it amenable to probing by the nonlinear optical response of the medium. We show that when strongly coupled, equilateral triangular nanocavities lose their individual three-fold symmetry to adopt the lower symmetry of the coupled system and then respond like a single dipolar entity. A quantitative model is suggested for the transition from individual to strongly coupled nanocavities.

  2. Classical Coupled Mode Theory of Optomechanical Crystals

    CERN Document Server

    Khorasani, Sina

    2016-01-01

    Acousto-optic interaction in optomechanical crystals allows unidirectional control of elastic waves over optical waves. However, as a result of this nonlinear interaction, infinitely many optical modes are born. This article presents an exact formulaion of coupled mode theory for interaction between elastic Bloch wave waves and photonic Bloch waves moving in a phonotonic waveguide. In general, an optical wavefront is strongly diffracted by an elastic wave in frequency and wavevector, and thus infinite modes with different frequencies and wavevectors appear. We discuss resonance and mode conversion conditions, and present a rigorous method to derive coupling rates and mode profiles. We also find a conservation law which rules over total optical power from interacting individual modes. Modifications of the theory to phonotonic cavities are also discussed. We present application examples including switch, frequency shifter, and reflector.

  3. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  4. Holographic equilibration at strong and intermediate coupling

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, Aleksi [Helsinki Institute of Physics and Department of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland)

    2016-01-22

    In these conference proceedings, I will descibe recent developments in the study of thermalization dynamics in strongly, but not infinitely strongly coupled field theories using holography. After reviewing the main tools required in these calculations, I will introduce a set of central results, discuss their physical implications, and finally outline a number of challenges to be tackled in the future.

  5. Strong Coupling Gauge Theories in LHC ERA

    Science.gov (United States)

    Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.

    2011-01-01

    Higgs, or techni-dilaton - composite Higgs near conformality / Koichi Yamawaki -- Phase diagram of strongly interacting theories / Francesco Sannino -- Resizing conformal windows / O. Antipin and K. Tuominen -- Nearly conformal gauge theories on the lattice / Zoltan Fodor ... [et al.] -- Going beyond QCD in lattice gauge theory / G. T. Fleming -- Phases of QCD from small to large N[symbol]: (some) lattice results / A. Deuzeman, E. Pallante and M. P. Lombardo -- Lattice gauge theory and (quasi)-conformal technicolor / D. K. Sinclair and J. B. Kogut -- Study of the running coupling constant in 10-flavor QCD with the Schrodinger functional method / N. Yamada ... [et al.] -- Study of the running coupling in twisted Polyakov scheme / T. Aoyama ... [et al.].Running coupling in strong gauge theories via the lattice / Zoltan Fodor ... [et al.] -- Higgsinoless supersymmetry and hidden gravity / Michael L. Graesser, Ryuichiro Kitano and Masafumi Kurachi -- The latest status of LHC and the EWSB physics / S. Asai -- Continuum superpartners from supersymmetric unparticles / Hsin-Chia Cheng -- Review of minimal flavor constraints for technicolor / Hidenori S. Fukano and Francesco Sannino -- Standard model and high energy Lorentz violation / Damiano Anselmi -- Dynamical electroweak symmetry breaking and fourth family / Michio Hashimoto -- Holmorphic supersymmetric Nambu-Jona-Lasino model and dynamical electroweak symmetry breaking / Dong-Won Jung, Otto C. W. Kong and Jae Sik Lee -- Ratchet model of Baryogenesis / Tatsu Takeuchi, Azusa Minamizaki and Akio Sugamoto -- Classical solutions of field equations in Einstein Gauss-Bonnet gravity / P. Suranyi, C. Vaz and L. C. R. Wijewardhana -- Black holes constitute all dark matter / Paul H. Frampton -- Electroweak precision test and Z [symbol] in the three site Higgsless model / Tomohiro Abe -- Chiral symmetry and BRST symmetry breaking, quaternion reality and the lattice simulation / Sadataka Furui -- Holographic techni-dilaton, or

  6. Probing attosecond kinetic physics in strongly coupled plasmas

    International Nuclear Information System (INIS)

    The interaction of intense laser pulses with noble gas clusters is investigated by a molecular dynamics analysis. We find that the strength of electron-ion coupling in the created nanoplasmas (Γei), and thus the collisional properties, can be controlled by a single parameter: the laser intensity. Varying the intensity from 1016 to 2 x 1014 W cm-2 results in nanoplasmas with Γei between 0.1 and 1. This spans the range of classical kinetic physics, from weakly coupled plasmas dominated by collective behaviour, to strongly coupled plasmas dominated by collisions. In combination with recent advances in ultrafast technology, this opens novel avenues for a systematic investigation of collective and collision processes in strongly coupled plasmas, taking place on sub-femtosecond time scales

  7. Theoretical Properties of the Entanglement in a Strong Coupling Region

    CERN Document Server

    Ma, Chen-Te

    2016-01-01

    Entanglement entropy is expected to do a suitable order parameter to classify phase structures at zero temperature. Thus, it is interesting to understand theoretical properties of the entanglement entropy in a strong coupling region. We compute entropy in a non-relativistic model with four fermion interactions and spin imbalance in four dimensional lattice with an infinite fermion mass limit from an exact effective potential to obtain the behavior of the entropy in infinite strong coupling limit. The result is zero in infinite strong coupling and finite lattice spacing. The result supports non-trivial topology needs to be considered in the entanglement entropy. We consider two dimensions to know the lattice artifact, and quantum gravity problems. The entanglement entropy in two dimensional gravity theory is the sum of the classical Shannon entropy and usual expectation values of area term. We also use area law to do the necessary condition in quantum gravity theory to argue translational invariance should be ...

  8. Strong coupling between surface plasmon polaritons and emitters: a review

    Science.gov (United States)

    Törmä, P.; Barnes, W. L.

    2015-01-01

    In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the historical background and a detailed discussion of more recent relevant experimental advances concerning strong coupling between surface plasmon polaritons and quantum emitters is then presented. Three conceptual frameworks are then discussed and compared in depth: classical, semi-classical and fully quantum mechanical; these theoretical frameworks will have relevance to strong coupling beyond that involving surface plasmon polaritons. We conclude our review with a perspective on the future of this rapidly emerging field, one we are sure will grow to encompass more intriguing physics and will develop in scope to be of relevance to other areas of science.

  9. Strongly Coupled Quark Gluon Plasma (SCQGP)

    OpenAIRE

    Bannur, Vishnu M.

    2005-01-01

    We propose that the reason for the non-ideal behavior seen in lattice simulation of quark gluon plasma (QGP) and relativistic heavy ion collisions (URHICs) experiments is that the QGP near T_c and above is strongly coupled plasma (SCP), i.e., strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state (EoS) of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include color degrees of ...

  10. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    Georg Wolschin

    2003-05-01

    Different from the early universe, heavy-ion collisions at very high energies do not reach statistical equilibrium, although thermal models explain many of their features. To account for nonequilibrium strong-coupling effects, a Fokker–Planck equation with time-dependent diffusion coefficient is proposed. A schematic model for rapidity distributions of participant baryons is set up and solved analytically. The evolution from SIS via AGS and SPS to RHIC energies is discussed. Strong-coupling diffusion produces double-peaked spectra in central collisions at the higher SPS momentum of 158 A$\\cdot$GeV/c and beyond.

  11. Nonlinear Super Integrable Couplings of Super Classical-Boussinesq Hierarchy

    Directory of Open Access Journals (Sweden)

    Xiuzhi Xing

    2014-01-01

    Full Text Available Nonlinear integrable couplings of super classical-Boussinesq hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then, its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of the classical integrable hierarchy were obtained.

  12. Dielectric tensor of strongly coupled plasmas

    International Nuclear Information System (INIS)

    Complex conductivity and dielectric permeability tensors of strongly coupled plasmas are studied and constructed on the basis of exact relations and sum rules. Both Coulomb and magnetic correlation are taken into account. The electromagnetic mode dispersion law is studied. The magnetostatic properties of a system of charged particles are investigated in detail. 26 refs

  13. Collective excitations in strongly coupled ultra-relativistic plasmas

    International Nuclear Information System (INIS)

    In the collective mode spectrum of a relativistic, strongly coupled plasma, novel physical effects emerge, which are absent both in the weakly coupled relativistic and in the strongly coupled non-relativistic plasmas. Inspired by the pseudo-relativistic behavior of the electron gas in two-dimensional graphene layers, we address the problem of a classical two-dimensional, ultra-relativistic system of charged particles. We investigate the mode dispersion and damping both through molecular dynamics simulations and analytically via the quasi-localized charge approximation and develop modifications of the theory appropriate for this system. The new aspect introduced in the simulation is the decoupling of particle velocities from the particle momenta. As for new physical features, their origin is to be sought in the constancy of particle speeds and in the broad distribution of 'plasma frequencies', mimicking the similar distribution of momenta is causing the system to emulate the behavior of a collection of an infinite number of oscillators. Of particular interest is the strongly reduced damping at weak coupling, brought about by the disappearance of the Landau damping and the greatly enhanced damping at strong coupling, caused by the phase mixing of the coupled plasma oscillators. We suggest the possible experimental detection of these effects in graphene

  14. Strongly Coupled Quark Gluon Plasma (SCQGP)

    CERN Document Server

    Bannur, V M

    2006-01-01

    We propose that the reason for the non-ideal behavior seen in lattice simulation of quark gluon plasma (QGP) and relativistic heavy ion collisions (URHICs) experiments is that the QGP near T_c and above is strongly coupled plasma (SCP), i.e., strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state (EoS) of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include color degrees of freedom and running coupling constant. Results on pressure in pure gauge, 2-flavors and 3-flavors QGP, are all can be explained by treating QGP as SCQGP as demonstated here.Energy density and speed of sound are also presented for all three systems.

  15. Patterns of Strong Coupling for LHC Searches

    CERN Document Server

    Liu, Da; Rattazzi, Riccardo; Riva, Francesco

    2016-01-01

    Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. Our construction provides the so far unique structurally robust context where to motivate several searches in Higgs physics, d...

  16. Linearly Coupled Directed Percolation in the Strong Coupling Regime

    OpenAIRE

    DENGLER, R.

    2004-01-01

    We consider directed percolation processes for particle types A and B coupled unidirectionally by a transmutation reaction A -> B. It is shown that the strong coupling regime of this recently introduced problem defines a universality class with upper critical dimension d=6. Exact expressions are derived for the scaling dimensions in the inactive phase above d=4. Below d=4 the interactions of the normal directed percolation also get relevant.

  17. Holographic gauge mediation via strongly coupled messengers

    International Nuclear Information System (INIS)

    We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.

  18. Strongly coupled models at the LHC

    International Nuclear Information System (INIS)

    In this thesis strongly coupled models where the Higgs boson is composite are discussed. These models provide an explanation for the origin of electroweak symmetry breaking including a solution for the hierarchy problem. Strongly coupled models provide an alternative to the weakly coupled supersymmetric extensions of the Standard Model and lead to different and interesting phenomenology at the Large Hadron Collider (LHC). This thesis discusses two particular strongly coupled models, a composite Higgs model with partial compositeness and the Littlest Higgs model with T-parity - a composite model with collective symmetry breaking. The phenomenology relevant for the LHC is covered and the applicability of effective operators for these types of strongly coupled models is explored. First, a composite Higgs model with partial compositeness is discussed. In this model right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, which are motivated by flavour physics, large cross sections for the production of new resonances coupling to light quarks are expected. Experimental signatures of right-handed compositeness at the LHC are studied, and constraints on the parameter space of these models are derived using recent results by ATLAS and CMS. Furthermore, dedicated searches for multi-jet signals at the LHC are proposed which could significantly improve the sensitivity to signatures of right-handed compositeness. The Littlest Higgs model with T-parity, providing an attractive solution to the fine-tuning problem, is discussed next. This solution is only natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. The constraints from the latest results of the 8 TeV run at the LHC are examined. The model's parameter space is being excluded based on a combination of electroweak precision observables, Higgs precision

  19. Quantized Brans Dicke Theory: Phase Transition and Strong Coupling Limit

    CERN Document Server

    Pal, Sridip

    2016-01-01

    We show that Friedmann-Robertson-Walker (FRW) geometry with flat spatial section in quantized (Wheeler deWitt quantization) Brans Dicke (BD) theory reveals a rich phase structure owing to anomalous breaking of a classical symmetry, which maps the scale factor $a\\mapsto\\lambda a$ for some constant $\\lambda$. In the weak coupling ($\\omega$) limit, the theory goes from a symmetry preserving phase to a broken phase. The existence of phase boundary is an obstruction to another classical symmetry [arXiv:gr-qc/9902083] (which relates two BD theory with different coupling) admitted by BD theory with scale invariant matter content i.e $T^{\\mu}{}_{\\mu}=0$. Classically, this prohibits the BD theory to reduce to General Relativity (GR) for scale invariant matter content. We show that strong coupling limit of BD and GR both preserves the symmetry involving scale factor. We also show that with a scale invariant matter content (radiation i.e $P=\\frac{1}{3}\\rho$), the quantized BD theory does reduce to GR as $\\omega\\rightarr...

  20. Strongly coupled quark gluon plasma (SCQGP)

    International Nuclear Information System (INIS)

    We propose that the reason for the non-ideal behaviour seen in lattice simulation of quark gluon plasma (QGP) and ultrarelativistic heavy ion collision experiments is that the QGP near Tc and above is a strongly coupled plasma (SCP), i.e., a strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include colour degrees of freedom and the running coupling constant. Results on pressure in pure gauge, 2-flavours and 3-flavours QGP can all be explained by treating QGP as SCQGP, as demonstrated here. Energy density and speed of sound are also presented for all three systems. We further extend the model to systems with finite quark mass and reasonably good fits to lattice results are obtained for (2+1)-flavours and 4-flavours QGP. Hence it is a unified model, namely SCQGP, to explain the non-ideal QGP seen in lattice simulations with just two system dependent parameters

  1. A strongly coupled Λ-type micromechanical system

    Science.gov (United States)

    Okamoto, Hajime; Schilling, Ryan; Schütz, Hendrik; Sudhir, Vivishek; Wilson, Dalziel J.; Yamaguchi, Hiroshi; Kippenberg, Tobias J.

    2016-04-01

    We study a classical Λ-type three-level system based on three high-Q micromechanical beam resonators embedded in a gradient electric field. By modulating the strength of the field at the difference frequency between adjacent beam modes, we realize strong dynamic two-mode coupling, via the dielectric force. Driving adjacent pairs simultaneously, we observe the formation of a purely mechanical "dark" state and an all-phononic analog of coherent population trapping—signatures of strong three-mode coupling. The Λ-type micromechanical system is a natural extension of previously demonstrated "two-level" micromechanical systems and adds to the toolbox for engineering of all-phononic micromechanical circuits and arrays.

  2. The Bohm sheath criterion in strongly coupled complex plasmas

    International Nuclear Information System (INIS)

    A modification of the classical Bohm sheath criterion is investigated in complex plasmas containing Boltzmann electrons, cold fluid ions and strongly coupled microparticles. Equilibrium is provided by an effective 'temperature' associated with electrostatic interactions between charged grains. Using the small-potential expansion approach of the Sagdeev potential, a significant reduction of the ion Bohm velocity is obtained for complex plasma parameters relevant for experiments. The result is of consequence for all problems involving ion drag on microparticles, including parametric instability, structure formation, wave propagation, etc.

  3. Strong coupling of single emitters interacting with phononic infrared antennae

    International Nuclear Information System (INIS)

    A single emitter can couple with electromagnetic modes of dielectric cavities or metallic particles. In a similar manner, it can couple with a phononic mode supported by a nearby infrared antenna. We consider an emitter with a sufficiently large dipole moment coupled to a SiC bowtie structure supporting strongly localized phononic modes. We show that vacuum Rabi oscillations and large spectral anticrossing are possible, indicating that the emitter–phononic system is in the strong coupling regime. Pure dephasing degrades the response remarkably little. As expected for a quantum but not for a classical formalism, the frequency of the vacuum Rabi oscillations depends on the initial state. We also discuss the possibility of exciting hybrid modes with contributions from the emitter and from more than one of the phononic modes supported by the antenna. Phononic structures appear attractive to study such complex hybridization, as they can support several strongly confined modes with quality factors larger than one hundred in a relatively small spectral window. (paper)

  4. Jet quenching in strongly coupled plasma

    CERN Document Server

    Chesler, Paul M

    2014-01-01

    We present calculations in which an energetic light quark shoots through a finite slab of strongly coupled ${\\cal N}=4$ supersymmetric Yang-Mills (SYM) plasma, with thickness $L$, focussing on what comes out on the other side. We find that even when the "jets" that emerge from the plasma have lost a substantial fraction of their energy they look in almost all respects like "jets" in vacuum with the same reduced energy. The one possible exception is that the opening angle of the "jet" is larger after passage through the slab of plasma than before. Along the way, we obtain a fully geometric characterization of energy loss in the strongly coupled plasma and show that $dE_{\\rm out}/dL \\propto L^2/\\sqrt{x^2_{\\rm stop}-L^2}$, where $E_{\\rm out}$ is the energy of the "jet" that emerges from the slab of plasma and $x_{\\rm stop}$ is the (previously known) stopping distance for the light quark in an infinite volume of plasma.

  5. Classical gravity coupled to Liouville theory

    International Nuclear Information System (INIS)

    We consider the two dimensional Jackiw-Teitelboim model of gravity. We first couple the model to the Liouville action and c scalar fields and show, treating the combined system as a non linear sigma model, that the resulting theory can be interpreted as a critical string moving in a target space of dimension D = c + 2. We then analyse perturbatively a generalized model containing a kinetic term and an arbitrary potential for the auxiliary field. We use the background field method and work covariant gauges. We show that the renormalizability of the theory depends on the form of the potential. For a general potential, the theory can be renormalized as a non linear sigma model. In the particular case of a Liouville-like potential, the theory is renormalized in the usual sense. (author). 31 refs

  6. Classical gravity coupled to Liouville theory

    International Nuclear Information System (INIS)

    We consider the two dimensional Jackiw-Teitelboim model of gravity. We first couple the model to the Liouville action and c scalar fields and show, treating the combined system as a non linear sigma model, that the resulting theory can be interpreted as a critical string moving in a target space of dimension D=c+2. We then analyze the model from a perturbative point of view. We show in particular that the results of conformal field theory are exactly reproduced at the one-loop level. We also show that the theory is one loop finite if the cosmological constant Λ is equal to zero. When Λ is different from zero the one loop divergences are gauge-fixing dependent even on-shell. However, the theory can be renormalized as a non linear sigma model if a kinetic term is included for the auxiliary field. (author). 27 refs

  7. Proton radiography of strongly coupled plasma

    International Nuclear Information System (INIS)

    Complete text of publication follows. Experimental investigations of strongly coupled plasma produced by shock and detonation waves have been conducted at proton radiography facility developed at the ITEP Terawatt Accelerator (TWAC-ITEP). The 800 MeV proton beam intensity in these experiments is about 1010 particles per pulse. A single beam bunch consists of four consequent 70 ns long micro bunches with 250 ns intervals between them. The spatial resolution of the facility that was measured in static experiments is about 50 am. For the generation of shock waves the energy of high explosives (HE) is used, therefore experimental targets are placed within the explosive containment chamber that is certified for the use of up to 100 g of HE in TNT equivalent. The results of latest experiments are presented, including results on propagation of the shock and detonation waves and measurements of the equation of state of strongly coupled shock-induced plasma of argon and xenon. Detonation waves in condensed HE were studied as a dynamic test object at the facility. Series of radiographic images of areal density (i.e. density along the proton beam) of detonating HE charges were obtained in those experiments. On the basis of these images calculations of detonation wave velocities were performed and volume density profiles along the axes of charges were reconstructed. The analysis of these profiles shows that in the vicinity of Chapman - Jouget point, as well as in the following region of unloading, they give not only qualitative but also good quantitative agreement with the known experimental data obtained by other measurement techniques. The experimental investigation of shock-induced strongly coupled plasma of argon and xenon is being conducted at the TWAC-ITEP proton radiography facility now. The shock pressure P in recent argon tests was from 100 to 1000 bars, temperature T was 8-20 kK with non-ideality parameter Γ of about 1. In similar tests with xenon the values of P=4

  8. A True Equation to Couple Classical and Quantum Dynamics

    OpenAIRE

    Diosi, Lajos

    1995-01-01

    Starting from the Schr\\"odinger-equation of a composite system, we derive unified dynamics of a classical harmonic system coupled to an arbitrary quantized system. The classical subsystem is described by random phase-space coordinates entangled with the quantized variables of the complementary subsystem. Our semiclassical equation is {\\it true} in a sense that its predictions are identical to those of the fully quantized composite dynamics. This exact method applies to a broad class of theori...

  9. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  10. Stochastic properties of strongly coupled plasmas.

    Science.gov (United States)

    Morozov, I V; Norman, G E; Valuev, A A

    2001-03-01

    Stochastic properties of equilibrium strongly coupled plasmas are investigated by a molecular dynamics method. The Krylov-Kolmogorov entropy K and the dynamical memory time t(m) are calculated both for electrons and ions with mass ratios 10-10(5). Two values of K entropy for ions are discovered corresponding to electron and ion time scales. The dependence of the K entropy on the number of particles, the nonideality parameter, and the form of the interaction potential is investigated. The problem of the accuracy of molecular dynamics simulations is discussed. A universal relation between Kt(m) and the fluctuation of the total energy of the system is obtained. The relation does not depend on the numerical integration scheme, temperature, density, and the interparticle interaction potential, so that it may be applied to arbitrary dynamic systems. Transition from dynamic to stochastic correlation is treated for both electron and ion velocity autocorrelation functions, for Langmuir and ion-sound plasma wave dynamic structure factors. We point to quantum uncertainty as a physical reason which limits dynamic (Newton) correlation for times greater than t(m). PMID:11308773

  11. Strongly coupled dusty plasmas: crystals, liquids, clusters and waves

    International Nuclear Information System (INIS)

    The dusty plasma is a system that consists of many strongly-charged fine dust particles suspended in a plasma background. The slow dynamics and strong coupling due to the large mass and charges lead to the formation of highly-ordered dust crystal structures suspended in the plasma background, which can be directly observed. The dusty plasma forms a link to the area of condensed matter physics for the study of many interesting microscopic phenomena from order to disorder. In this paper, we introduce the special properties of this system from the viewpoint of conventional plasma physics, then we briefly review past works on the structure and dynamical behaviour from the highly-ordered state, through the melting and liquid states with associated vortex-type excitation and anomalous diffusion, to the state with self-organized macroscopic dust waves after losing microscopic order. The first observation of strongly-coupled dust Coulomb clusters with small numbers of particles from a few to a few hundred, which resemble classical atoms, is also demonstrated. (author)

  12. Classical and quantum models of strong cosmic censorship

    International Nuclear Information System (INIS)

    The cosmic censorship conjecture states that naked singularities should not evolve from regular initial conditions in general relativity. In its strong form the conjecture asserts that space-times with Cauchy horizons must always be unstable and thus that the generic solution of Einstein's equations must be inextendible beyond its maximal Cauchy development. In this paper it is shown that one can construct an infinite-dimensional family of extendible cosmological solutions similar to Taub-NUT space-time; however, each of these solutions is unstable in precisely the way demanded by strong cosmic censorship. Finally it is shown that quantum fluctuations in the metric always provide (though in an unexpectedly subtle way) the ''generic perturbations'' which destroy the Cauchy horizons in these models. (author)

  13. Damped driven coupled oscillators: entanglement, decoherence and the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Mancilla, R D Guerrero; Rey-Gonzalez, R R; Fonseca-Romero, K M [Grupo de Optica e Informacion Cuantica, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)], E-mail: rdguerrerom@unal.edu.co, E-mail: rrreyg@unal.edu.co, E-mail: kmfonsecar@unal.edu.co

    2009-03-13

    We investigate the quantum-classical border, the entanglement and decoherence of an analytically solvable model, comprising a first subsystem (a harmonic oscillator) coupled to a driven and damped second subsystem (another harmonic oscillator). We choose initial states whose dynamics is confined to a couple of two-level systems, and show that the maximum value of entanglement between the two subsystems, as measured by concurrence, depends on the dissipation rate to the coupling-constant ratio and the initial state. While in a related model the entropy of the first subsystem (a two-level system) never grows appreciably (for large dissipation rates), in our model it reaches a maximum before decreasing. Although both models predict small values of entanglement and dissipation, for fixed times of the order of the inverse of the coupling constant and large dissipation rates, these quantities decrease faster, as a function of the ratio of the dissipation rate to the coupling constant, in our model.

  14. Ultrafast polariton-phonon dynamics of strongly coupled quantum dot-nanocavity systems

    OpenAIRE

    Müller, Kai; Fischer, Kevin A.; Rundquist, Armand; Dory, Constantin; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Kelaita, Yousif A.; Borish, Victoria; Vučković, Jelena

    2015-01-01

    We investigate the influence of exciton-phonon coupling on the dynamics of a strongly coupled quantum dot-photonic crystal cavity system and explore the effects of this interaction on different schemes for non-classical light generation. By performing time-resolved measurements, we map out the detuning-dependent polariton lifetime and extract the spectrum of the polariton-to-phonon coupling with unprecedented precision. Photon-blockade experiments for different pulse-length and detuning condi...

  15. Time-dependent coupled harmonic oscillators: classical and quantum solutions

    International Nuclear Information System (INIS)

    In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne–Pinney (MP) equation for each system. We obtain the solutions for the system with m1 = m2 = m0eγt, ω1 = ω01e-γt/2, ω2 = ω02e-γt/2 and k = k0. (author)

  16. Supersymmetric QCD: Exact Results and Strong Coupling

    CERN Document Server

    Dine, Michael; Pack, Lawrence; Park, Chang-Soon; Ubaldi, Lorenzo; Wu, Weitao

    2011-01-01

    We revisit two longstanding puzzles in supersymmetric gauge theories. The first concerns the question of the holomorphy of the coupling, and related to this the possible definition of an exact (NSVZ) beta function. The second concerns instantons in pure gluodynamics, which appear to give sensible, exact results for certain correlation functions, which nonetheless differ from those obtained using systematic weak coupling expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their regulated action is written suitably, the holomorphy of the couplings is manifest, and it is easy to determine the renormalization scheme for which the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not selected by any compelling physical consideration. For the second question, we explain why the instanton computation in the pure supersymmetric gauge theory is...

  17. On the Heterotic Dipole at Strong Coupling

    OpenAIRE

    Mukherji, Sudipta

    1999-01-01

    We analyse the dipole solution of heterotic string theory in four dimensions. It has the structure of monopole and anti-monopole connected by flux line (string). Due to growing coupling near the poles, the length of the string diverges. However, exploiting the self-duality of heterotic string theory in four dimension, we argue that this string is correctly described in terms of dual variables.

  18. Fluorescence measurements of expanding strongly-coupled neutral plasmas

    CERN Document Server

    Cummings, E A; Durfee, D S; Bergeson, S D

    2005-01-01

    We report new detailed density profile measurements in expanding strongly-coupled neutral plasmas. Using laser-induced fluorescence techniques, we determine plasma densities in the range of 10^5 to 10^9/cm^3 with a time resolution limit as small as 7 ns. Strong-coupling in the plasma ions is inferred directly from the fluorescence signals. Evidence for strong-coupling at late times is presented, confirming a recent theoretical result.

  19. The gauge structure of strong coupling gravity

    International Nuclear Information System (INIS)

    In the limit of infinite Newton constant the 1+d dimensional Einstein–Hilbert action reduces to that of a SL(d,R)/SO(d)×R+ nonlinear sigma-model where spatial points are coupled merely by shift terms giving rise to a diffeomorphism constraint. The full group of 1+d diffeomorphisms is shown to act non-tensorially as a gauge group on the action and the field equations. This is used to establish the admissibility as a gauge condition of the combined constant mean curvature (CMC) and zero shift conditions for spatially closed hypersurfaces. This ‘CMC gauge’ eventually allows for a concise isolation of the gauge invariant and physical degrees of freedoms. Here we utilize the CMC gauge to obtain a complete set of dynamical fields which are invariant under all gauge transformations but time independent spatial diffeomorphisms. (paper)

  20. A strongly coupled zig-zag transition

    CERN Document Server

    Balasubramanian, Vijay; Ross, Simon F; Simon, Joan

    2013-01-01

    The zig-zag symmetry transition is a phase transition in 1D quantum wires, in which a Wigner lattice of electrons transitions to two staggered lattices. Previous studies model this transition as a Luttinger liquid coupled to a Majorana fermion. The model exhibits interesting RG flows, involving quenching of velocities in subsectors of the theory. We suggest an extension of the model which replaces the Majorana fermion by a more general CFT; this includes an experimentally realizable case with two Majorana fermions. We analyse the RG flow both in field theory and using AdS/CFT techniques in the large central charge limit of the CFT. The model has a rich phase structure with new qualitative features, already in the two Majorana fermion case. The AdS/CFT calculation involves considering back reaction in space-time to capture subleading effects.

  1. Classical nuclear motion coupled to electronic non-adiabatic transitions

    CERN Document Server

    Agostini, Federica; Gross, E K U

    2014-01-01

    We present a detailed derivation and numerical tests of a new mixed quantum-classical scheme to deal with non-adiabatic processes. The method is presented as the zero-th order approximation to the exact coupled dynamics of electrons and nuclei offered by the factorization of the electron-nuclear wave function [A. Abedi, N. T. Maitra and E. K. U. Gross, Phys. Rev. Lett., 105 (2010)]. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.

  2. Integrable Couplings of Classical-Boussinesq Hierarchy and Its Hamiltonian Structure

    International Nuclear Information System (INIS)

    By using a Lie algebra, an integrable couplings of the classical-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity. (general)

  3. Infrared Limit of Gluon Amplitudes at Strong Coupling

    OpenAIRE

    Buchbinder, Evgeny I.

    2007-01-01

    In this note, we propose that the infrared structure of gluon amplitudes at strong coupling can be fully extracted from a local consideration near cusps. This is consistent with field theory and correctly reproduces the infrared divergences of the four-gluon amplitude at strong coupling calculated recently by Alday and Maldacena.

  4. Strong Couplings of Three Mesons with Charm(ing) Involvement

    CERN Document Server

    Lucha, Wolfgang; Sazdjian, Hagop; Simula, Silvano

    2016-01-01

    We determine the strong couplings of three mesons that involve, at least, one $\\eta_c$ or $J/\\psi$ meson, within the framework of a constituent-quark model by means of relativistic dispersion formulations. For strong couplings of $J/\\psi$ mesons to two charmed mesons, our approach leads to predictions roughly twice as large as those arising from QCD sum rules.

  5. Shear viscosities of photons in strongly coupled plasmas

    Science.gov (United States)

    Yang, Di-Lun; Müller, Berndt

    2016-09-01

    We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N = 4 super Yang-Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon-parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  6. Resurgence and Holomorphy: From Weak to Strong Coupling

    CERN Document Server

    Cherman, Aleksey; Ünsal, Mithat

    2014-01-01

    We analyze the resurgence properties of finite-dimensional exponential integrals which are prototypes for partition functions in quantum field theories. In these simple examples, we demonstrate that perturbation theory, even at arbitrarily weak coupling, fails as the argument of the coupling constant is varied. It is well-known that perturbation theory also fails at stronger coupling. We show that these two failures are actually intimately related. The formalism of resurgent transseries, which takes into account global analytic continuation properties, fixes both problems, and provides an arbitrarily accurate description of exact result for any value of coupling. This means that strong coupling results can be deduced by using merely weak coupling data. Finally, we give another perspective on resurgence theory by showing that the monodromy properties of the weak coupling results are in precise agreement with the monodromy properties of the strong-coupling expansions, obtained using analysis of the holomorphy s...

  7. Resurgence and holomorphy: From weak to strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Cherman, Aleksey, E-mail: acherman@umn.edu [Fine Theoretical Physics Institute, Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Koroteev, Peter, E-mail: pkoroteev@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L2Y5 (Canada); Ünsal, Mithat, E-mail: unsal.mithat@gmail.com [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-05-15

    We analyze the resurgence properties of finite-dimensional exponential integrals which are prototypes for partition functions in quantum field theories. In these simple examples, we demonstrate that perturbation theory, even at arbitrarily weak coupling, fails as the argument of the coupling constant is varied. It is well-known that perturbation theory also fails at stronger coupling. We show that these two failures are actually intimately related. The formalism of resurgent transseries, which takes into account global analytic continuation properties, fixes both problems and provides an arbitrarily accurate description of exact result for any value of coupling. This means that strong coupling results can be deduced by using merely weak coupling data. Finally, we give another perspective on resurgence theory by showing that the monodromy properties of the weak coupling results are in precise agreement with the monodromy properties of the strong-coupling expansions, obtained using analysis of the holomorphy structure of Picard-Fuchs equations.

  8. Critical and strong-coupling phases in one- and two-bath spin-boson models.

    Science.gov (United States)

    Guo, Cheng; Weichselbaum, Andreas; von Delft, Jan; Vojta, Matthias

    2012-04-20

    For phase transitions in dissipative quantum impurity models, the existence of a quantum-to-classical correspondence has been discussed extensively. We introduce a variational matrix product state approach involving an optimized boson basis, rendering possible high-accuracy numerical studies across the entire phase diagram. For the sub-Ohmic spin-boson model with a power-law bath spectrum ∝ω(s), we confirm classical mean-field behavior for s<1/2, correcting earlier numerical renormalization-group results. We also provide the first results for an XY-symmetric model of a spin coupled to two competing bosonic baths, where we find a rich phase diagram, including both critical and strong-coupling phases for s<1, different from that of classical spin chains. This illustrates that symmetries are decisive for whether or not a quantum-to-classical correspondence exists. PMID:22680701

  9. Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling

    CERN Document Server

    Liu, Jie

    2014-01-01

    The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...

  10. Fluctuation effects on QCD phase diagram at strong coupling

    CERN Document Server

    Ichihara, Terukazu

    2015-01-01

    We study the QCD phase diagram away from the strong coupling limit (SCL) with fluctuation effects in the auxiliary field Monte-Carlo (AFMC) method. First, we give an effective action which contains next-to-leading order (NLO) finite coupling effects of the strong coupling expansion as well as fluctuation effects. Second, we examine NLO effects of the strong coupling expansion in AFMC at zero quark density. We find that the chiral condensate is reduced by both NLO terms from temporal plaquettes and fluctuation effects, and almost no dependence on NLO terms from spatial plaquettes in the current analysis. These behaviors can be understood from the modification of the mass and the wave function renormalization factor by auxiliary fields as in the mean field analysis and the fluctuation effects in the strong coupling limit.

  11. On the strong coupling scale in Higgs G-inflation

    International Nuclear Information System (INIS)

    Higgs G-inflation is an inflation model that takes advantage of a Galileon-like derivative coupling. It is a non-renormalizable operator and is strongly coupled at high energy scales. Perturbative analysis does not have a predictive power any longer there. In general, when the Lagrangian is expanded around the vacuum, the strong coupling scale is identified as the mass scale that appears in non-renormalizable operators. In inflationary models, however, the identification of the strong coupling scale is subtle, since the structures of the kinetic term as well as the interaction itself can be modified by the background inflationary dynamics. Therefore, the strong coupling scale depends on the background. In this letter, we evaluate the strong coupling scale of the fluctuations around the background in the Higgs G-inflation including the Nambu–Goldstone modes associated with the symmetry breaking. We find that the system is sufficiently weakly coupled when the scales which we now observe exit the horizon during inflation and the observational predictions with the semiclassical treatment are valid. However, we also find that the inflaton field value at which the strong coupling scale and the Hubble scale meet is less than the Planck scale. Therefore, we cannot describe the model from the Planck scale, or the chaotic initial condition

  12. On the strong coupling scale in Higgs G-inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei, E-mail: kohei.kamada@epfl.ch

    2015-05-11

    Higgs G-inflation is an inflation model that takes advantage of a Galileon-like derivative coupling. It is a non-renormalizable operator and is strongly coupled at high energy scales. Perturbative analysis does not have a predictive power any longer there. In general, when the Lagrangian is expanded around the vacuum, the strong coupling scale is identified as the mass scale that appears in non-renormalizable operators. In inflationary models, however, the identification of the strong coupling scale is subtle, since the structures of the kinetic term as well as the interaction itself can be modified by the background inflationary dynamics. Therefore, the strong coupling scale depends on the background. In this letter, we evaluate the strong coupling scale of the fluctuations around the background in the Higgs G-inflation including the Nambu–Goldstone modes associated with the symmetry breaking. We find that the system is sufficiently weakly coupled when the scales which we now observe exit the horizon during inflation and the observational predictions with the semiclassical treatment are valid. However, we also find that the inflaton field value at which the strong coupling scale and the Hubble scale meet is less than the Planck scale. Therefore, we cannot describe the model from the Planck scale, or the chaotic initial condition.

  13. On the strong coupling scale in Higgs G-inflation

    Directory of Open Access Journals (Sweden)

    Kohei Kamada

    2015-05-01

    Full Text Available Higgs G-inflation is an inflation model that takes advantage of a Galileon-like derivative coupling. It is a non-renormalizable operator and is strongly coupled at high energy scales. Perturbative analysis does not have a predictive power any longer there. In general, when the Lagrangian is expanded around the vacuum, the strong coupling scale is identified as the mass scale that appears in non-renormalizable operators. In inflationary models, however, the identification of the strong coupling scale is subtle, since the structures of the kinetic term as well as the interaction itself can be modified by the background inflationary dynamics. Therefore, the strong coupling scale depends on the background. In this letter, we evaluate the strong coupling scale of the fluctuations around the background in the Higgs G-inflation including the Nambu–Goldstone modes associated with the symmetry breaking. We find that the system is sufficiently weakly coupled when the scales which we now observe exit the horizon during inflation and the observational predictions with the semiclassical treatment are valid. However, we also find that the inflaton field value at which the strong coupling scale and the Hubble scale meet is less than the Planck scale. Therefore, we cannot describe the model from the Planck scale, or the chaotic initial condition.

  14. Classical trajectory perspective of atomic ionization in strong laser fields. Semiclassical modeling

    International Nuclear Information System (INIS)

    Dealing with timely and interesting issues in strong laser physics. Illustrates complex strong field atomic ionization with the simple semiclassical model of classical trajectory perspective for the first time. Provides a theoretical model that can be used to account for recent experiments. The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.

  15. One-link integral in the lattice QCD: Strong coupling

    International Nuclear Information System (INIS)

    We review different calculation methods of the one-link integral, appearing in the strong coupling approximation in the lattice QCD. Some new formulae useful in the case of lattice QCD with Susskind fermions are also presented. (orig.)

  16. One-link integral in the lattice QCD: Strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Azakov, S.I.; Aliev, E.S.

    1988-12-01

    We review different calculation methods of the one-link integral, appearing in the strong coupling approximation in the lattice QCD. Some new formulae useful in the case of lattice QCD with Susskind fermions are also presented.

  17. One-link integral in the lattice QCD: Strong coupling

    International Nuclear Information System (INIS)

    We review different calculation methods of the one-link integral, appearing in the strong coupling approximation in the lattice QCD. Some new formulae useful in the case of lattice QCD with Susskind fermions are also presented. (author). 18 refs

  18. Non-linear coupling of quantum theory and classical gravity

    International Nuclear Information System (INIS)

    The possibility that the non-linear evolution proposed earlier for a relativistic quantum field theory may be related to its coupling to a classical gravitational field is discussed. Formally, in the Schroedinger picture, it is shown how both the Schroedinger equation and Einstein's equations (with the expectation value of the energy-momentum tensor on the right) can be derived from a variational principle. This yields a non-linear quantum evolution. Other terms can be added to the action integral to incorporate explicit non-linearities of the type discussed previously. The possibility of giving a meaning to the resulting equation in a Heisenberg or interaction-like picture, is briefly discussed. (author)

  19. Parametric strong mode-coupling in carbon nanotube mechanical resonators

    Science.gov (United States)

    Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-08-01

    Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes.Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. Electronic supplementary information (ESI) available: Fit of the quality factor and similar results in more devices. See DOI: 10.1039/c6nr02853e

  20. Jet quenching within a hybrid strong/weak coupling approach

    International Nuclear Information System (INIS)

    We propose a novel hybrid model for jet quenching, including both strong and weak coupling physics where each seems appropriate. Branching in the parton shower is assumed to be perturbative and described by DGLAP evolution, while interactions with the medium result in each parton in the shower losing energy as at strong coupling, as realized holographically. The medium-modified parton shower is embedded into a hydrodynamic evolution of hot QCD plasma and confronted with LHC jet data

  1. Strong coupling between surface plasmon polaritons and emitters

    OpenAIRE

    Törmä, P.; Barnes, W.L.

    2014-01-01

    In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the ...

  2. Strongly Coupled Models with a Higgs-like Boson

    OpenAIRE

    Pich Antonio; Rosell Ignasi; Sanz-Cillero Juan José

    2013-01-01

    Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are...

  3. Instability of Longitudinal Wave in Magnetized Strongly Coupled Dusty Plasma

    Institute of Scientific and Technical Information of China (English)

    谢柏松

    2003-01-01

    Instability of longitudinal wave in magnetized strongly coupled dusty plasmas is investigated. The dust charging relaxation is taken into account. It is found that there exists threshold of interdust distance for the instability of wave, which is determined significantly by the dust charging relaxation, the coupling parameter of high correlation of dust as well the strength of magnetic field.

  4. Experimental determination of the effective strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2005-09-15

    We extract an effective strong coupling constant from low Q2 data on the Bjorken sum. Using sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  5. Single particle motion in the strongly coupled one-component plasma in a uniform magnetic filed

    International Nuclear Information System (INIS)

    The sustained interest in the strongly coupled one component classical plasma (OCP) over the several years have yielded much insight into its static and dynamical properties. However until the recent molecular dynamics (MD) simulation of Bernu, little was known about the effects of an external magnetic field on the dynamical properties of the strongly coupled OCP in three dimensions. Since, Bernu's results for the velocity autocorrelation functions and the self-diffusion coefficients are not well understood, it is proposed to develop more sophisticated theoretical models for single particle motion in the OCP with an applied magnetic field. (author)

  6. Real-time quantum trajectories for classically allowed dynamics in strong laser fields

    CERN Document Server

    Plimak, L I

    2015-01-01

    Both the physical picture of the dynamics of atoms and molecules in intense infrared fields and its theoretical description use the concept of electron trajectories. Here we address a key question which arises in this context: Are distinctly quantum features of these trajectories, such as the complex-valued coordinates, physically relevant in the classically allowed region of phase space, and what is their origin? First, we argue that solutions of classical equations of motion can account for quantum effects. To this end, we construct an exact solution to the classical Hamilton-Jacobi equation which accounts for dynamics of the wave packet, and show that this solution is physically correct in the limit $\\hbar \\to 0$. Second, we show that imaginary components of classical trajectories are directly linked to the finite size of the initial wavepacket in momentum space. This way, if the electronic wavepacket produced by optical tunneling in strong infrared fiels is localised both in coordinate and momentum, its m...

  7. Driven transverse shear waves in a strongly coupled dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: banerjee_pintu2002@yahoo.com; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2008-08-11

    The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied in a DC discharge device by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1<{gamma}<<{gamma}{sub c}) where {gamma} is the Coulomb coupling parameter and {gamma}{sub c} is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results.

  8. Strong Single-Photon Coupling in Superconducting Quantum Magnetomechanics

    Science.gov (United States)

    Via, Guillem; Kirchmair, Gerhard; Romero-Isart, Oriol

    2015-04-01

    We show that the inductive coupling between the quantum mechanical motion of a superconducting microcantilever and a flux-dependent microwave quantum circuit can attain the strong single-photon nanomechanical coupling regime with feasible experimental parameters. We propose to use a superconducting strip, which is in the Meissner state, at the tip of a cantilever. A pickup coil collects the flux generated by the sheet currents induced by an external quadrupole magnetic field centered at the strip location. The position-dependent magnetic response of the superconducting strip, enhanced by both diamagnetism and demagnetizing effects, leads to a strong magnetomechanical coupling to quantum circuits.

  9. Dynamic compression of strongly coupled plasmas at megabars

    International Nuclear Information System (INIS)

    Complete text of publication follows. New experimental results on thermodynamics and electrical conductivity of shock and isoentropically compressed hydrogen and deuterium are presented. Strongly coupled plasmas at pressures achieved 18 Mbar, Coulomb coupling parameter exceeded 450, electron degeneracy parameter came up to 290 were obtained with semi-spherical explosive-driven generators. Theoretical models for description of thermodynamics of strongly coupled hydrogen are discussed, comparison of the experimental and theoretical data for strongly non-ideal hydrogen plasmas under high energy density are presented. Experimental and theoretical problems in studying of warm dense hydrogen are discussed. Problems of accurate description of weakly coupled solar plasma on basis of astrophysical observations are discussed as well.

  10. Dust acoustic instability in a strongly coupled dusty plasma

    Science.gov (United States)

    Rosenberg, M.; Kalman, G. J.; Hartmann, P.; Goree, J.

    2013-10-01

    Dusty plasmas are plasmas containing charged micron to sub-micron size dust grains (solid particulates). Because the grains can be multiply charged and are much more massive than the ions, the presence of dust can lead to novel waves such as the dust acoustic wave, which is a compressional wave that can be excited by a flow of ions that is driven by an electric field. Moreover, the large dust charge can result in strong Coulomb coupling between the dust grains, where the electrostatic energy between neighboring grains is larger than their thermal (kinetic) energy. When the coupling between dust grains is strong, but not large enough for crystallization, the dust is in the strongly coupled liquid phase. This poster theoretically investigates the dust acoustic instability, which is driven by sub-thermal ion flow, in a three-dimensional dusty plasma in the strongly coupled liquid phase. It is found that strong coupling enhances the instability. The application is to microgravity experiments with dusty plasma planned for the PK-4 and PlasmaLab instruments, which are in development for the International Space Station. Microgravity conditions enable the preparation of dust clouds under these sub-thermal ion flow conditions by avoiding the need for strong electric fields to levitate the dust grains.

  11. Mixed Quantum-Classical Dynamics Methods for Strong-Field Processes: Multiple-trajectory Ehrenfest dynamics + decoherence terms

    Science.gov (United States)

    Suzuki, Yasumitsu; Watanabe, Kazuyuki; Abedi, Ali; Agostini, Federica; Min, Seung Kyu; Maitra, Neepa; Gross, E. K. U.

    The exact factorization of the electron-nuclear wave function allows to define the time-dependent potential energy surfaces (TDPESs) responsible for the nuclear dynamics and electron dynamics. Recently a novel coupled-trajectory mixed quantum-classical (CT-MQC) approach based on this TDPES has been developed, which accurately reproduces both nuclear and electron dynamics. Here we study the TDPES for laser-induced electron localization with a view to developing a MQC method for strong-field processes. We show our recent progress in applying the CT-MQC approach to the systems with many degrees of freedom.

  12. Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields

    CERN Document Server

    Finazzo, Stefano Ivo; Rougemont, Romulo; Noronha, Jorge

    2016-01-01

    We present a holographic perspective on momentum transport in strongly coupled, anisotropic non-Abelian plasmas in the presence of strong magnetic fields. We compute the anisotropic heavy quark drag forces and Langevin diffusion coefficients and also the anisotropic shear viscosities for two different holographic models, namely, a top-down deformation of strongly coupled $\\mathcal{N} = 4$ Super-Yang-Mills (SYM) theory triggered by an external Abelian magnetic field, and a bottom-up Einstein-Maxwell-dilaton (EMD) model which is able to provide a quantitative description of lattice QCD thermodynamics with $(2+1)$-flavors at both zero and nonzero magnetic fields. We find that, in general, energy loss and momentum diffusion through strongly coupled anisotropic plasmas are enhanced by a magnetic field being larger in transverse directions than in the direction parallel to the magnetic field. Moreover, the anisotropic shear viscosity coefficient is smaller in the direction of the magnetic field than in the plane pe...

  13. Strong coupling of light with one-dimensional quantum dot chain: from Rabi oscillations to Rabi waves

    OpenAIRE

    Slepyan, G. Ya.; Yerchak, Y. D.; Maksimenko, S. A.; Hoffmann, A

    2008-01-01

    Interaction of traveling wave of classic light with 1D-chain of coupled quantum dots (QDs) in strong coupling regime has been theoretically considered. The effect of space propagation of Rabi oscillations in the form of traveling waves and wave packets has been predicted. Physical interpretation of the effect has been given, principles of its experimental observation are discussed.

  14. A Hybrid Strong/Weak Coupling Approach to Jet Quenching

    CERN Document Server

    Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2014-01-01

    We propose and explore a new hybrid approach to jet quenching in a strongly coupled medium. The basis of this phenomenological approach is to treat physics processes at different energy scales differently. The high-$Q^2$ processes associated with the QCD evolution of the jet from production as a single hard parton through its fragmentation, up to but not including hadronization, are treated perturbatively. The interactions between the partons in the shower and the deconfined matter within which they find themselves lead to energy loss. The momentum scales associated with the medium (of the order of the temperature) and with typical interactions between partons in the shower and the medium are sufficiently soft that strongly coupled physics plays an important role in energy loss. We model these interactions using qualitative insights from holographic calculations of the energy loss of energetic light quarks and gluons in a strongly coupled plasma, obtained via gauge/gravity duality. We embed this hybrid model ...

  15. Hydrodynamic transport in strongly coupled disordered quantum field theories

    CERN Document Server

    Lucas, Andrew

    2015-01-01

    We compute direct current (dc) thermoelectric transport coefficients in strongly coupled quantum field theories without long lived quasiparticles, at finite temperature and charge density, and disordered on long wavelengths compared to the length scale of local thermalization. Many previous transport computations in strongly coupled systems are interpretable hydrodynamically, despite formally going beyond the hydrodynamic regime. This includes momentum relaxation times previously derived by the memory matrix formalism, and non-perturbative holographic results; in the latter case, this is subject to some important subtleties. Our formalism may extend some memory matrix computations to higher orders in the perturbative disorder strength, as well as give valuable insight into non-perturbative regimes. Strongly coupled metals with quantum critical contributions to transport generically transition between coherent and incoherent metals as disorder strength is increased at fixed temperature, analogous to mean field...

  16. Two and three-point correlators of operators dual to folded string solutions at strong coupling

    OpenAIRE

    Georgiou, George

    2010-01-01

    A particular analytic continuation of classical string solutions having a single AdS_5 spin is considered. These solutions describe strings tunnelling from the boundary to the boundary of AdS_5. We use the Legendre transform of the dimensionally regularised action of these solutions to evaluate the 2-point functions of the dual operators, holographically. Subsequently, we evaluate the structure coefficient of correlators involving two operators with spin S and a BPS state, at strong coupling....

  17. Very strong coupling in GaAs based optical microcavities

    OpenAIRE

    Zhang, H.; Kim, N.Y.; Yamamoto, Y.; Na, N.

    2012-01-01

    We show that when following a simple cavity design metric, a quantum well exciton-microcavity photon coupling constant can be larger than the exciton binding energy in GaAs based optical microcavities. Such a very strong coupling significantly reduces the relative electron-hole motion and makes the polaritons robust against phonon collisions. The corresponding polariton dissociation and saturation boundaries on the phase diagram are much improved, and our calculations suggest the possibility ...

  18. Polyakov Loops in Strongly-Coupled Plasmas with Gravity Duals

    OpenAIRE

    Noronha, Jorge

    2010-01-01

    We study the properties of the Polyakov loop in strongly-coupled gauge plasmas that are conjectured to be dual to five dimensional theories of gravity coupled to a nontrivial single scalar field. We find a gravity dual that can describe the thermodynamic properties and also the expectation value of the Polyakov loop in the deconfined phase of quenched SU(3) QCD up to $3T_c$.

  19. Improving entanglement of two atoms in strong coupling regime

    Science.gov (United States)

    Liu, Hui; Yang, Qing; Yang, Ming; Cao, Zhuoliang

    2016-03-01

    We consider a model of two identical atoms coupled to a single-mode cavity. When in atom-field strong coupling regime, the entanglement of the two atoms with spontaneous emission should be investigated beyond rotating-wave approximation (RWA). In order to improve the entanglement of the two atoms, some typical feedback based on quantum-jump are attempted to impose on the atoms. The result of numerical simulations shows that an appropriate feedback control can improve the entanglement.

  20. Automatic differentiation based solution of strongly coupled problems in engineering

    OpenAIRE

    Hudobivnik, Blaž

    2016-01-01

    The doctoral thesis presents an approach for the formulation and solution of strongly coupled engineering problems with the finite element method using the automatic differentiation technique that the software tools AceGen and AceFEM enables. It has been shown that it is possible to transform arbitrarily weak form of differential equation of coupled problems into scalar function pseudo-potential. By using the automatic differentiation and appropriate exceptions in the differentiation pr...

  1. Raman scattering with strongly coupled vibron-polaritons

    CERN Document Server

    Strashko, Artem

    2016-01-01

    Strong coupling between cavity photons and molecular vibrations can lead to the formation of vibron-polaritons. In a recent experiment with PVAc molecules in a metal-metal microcavity [A.Shalabney et al., Ang.Chem.Int.Ed. 54 7971 (2015)], such a coupling was observed to enhance the Raman scattering probability by several orders of magnitude. Inspired by this, we theoretically analyze the effect of strong photon-vibron coupling on the Raman scattering amplitude of organic molecules. This problem has recently been addressed in [J.del Pino, J.Feist and F.J.Garcia-Vidal; J.Phys.Chem.C 119 29132 (2015)] using exact numerics for a small number of molecules. In this paper we derive compact analytic results for any number of molecules, also including the ultra-strong coupling regime. Our calculations predict a division of the Raman signal into upper and lower polariton modes,with some enhancement to the lower polariton Raman amplitude due to the mode softening under strong coupling.

  2. Hamilton-Jacobi solutions for strongly coupled gravity and matter

    Science.gov (United States)

    Salopek, D. S.

    1998-05-01

    A Green function method is developed for solving strongly coupled gravity and matter in the semiclassical limit. In the strong-coupling limit, one assumes that Newton's constant approaches infinity, 0264-9381/15/5/009/img1. As a result, one may neglect second-order spatial gradients, and each spatial point evolves like a homogeneous universe. After constructing the Green function solution to the Hamiltonian constraint, the momentum constraint is solved using functional methods in conjunction with the superposition principle for Hamilton-Jacobi theory. Exact and approximate solutions are given for a dust field or a scalar field interacting with gravity.

  3. On the collinear limit of scattering amplitudes at strong coupling

    CERN Document Server

    Basso, Benjamin; Vieira, Pedro

    2015-01-01

    In this letter we consider the collinear limit of gluon scattering amplitudes in planar N=4 SYM theory at strong coupling. We argue that in this limit scattering amplitudes map into correlators of twist fields in the two dimensional non-linear O(6) sigma model, similar to those appearing in recent studies of entanglement entropy. We provide evidence for this assertion by combining the intuition springing from the string worldsheet picture and the predictions coming from the OPE series. One of the main implications of these considerations is that scattering amplitudes receive equally important contributions at strong coupling from both the minimal string area and its fluctuations in the sphere.

  4. The strong coupling from tau decays without prejudice

    Energy Technology Data Exchange (ETDEWEB)

    Boito, Diogo [Physik Department T31, Technische Universität München, James-Franck-Straße 1, D-85748 Garching (Germany); Golterman, Maarten [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Jamin, Matthias [Institució Catalana de Recerca i Estudis Avançats (ICREA), IFAE, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Maltman, Kim [Department of Mathematics and Statistics, York University, Toronto, ON Canada M3J 1P3 (Canada); CSSM, University of Adelaide, Adelaide, SA 5005 Australia (Australia); Osborne, James [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Peris, Santiago [Department of Physics, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)

    2014-08-15

    We review our recent determination of the strong coupling α{sub s} from the OPAL data for non-strange hadronic tau decays. We find that α{sub s}(m{sub τ}{sup 2})=0.325±0.018 using fixed-order perturbation theory, and α{sub s}(m{sub τ}{sup 2})=0.347±0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data.

  5. The strong coupling from tau decays without prejudice

    International Nuclear Information System (INIS)

    We review our recent determination of the strong coupling αs from the OPAL data for non-strange hadronic tau decays. We find that αs(mτ2)=0.325±0.018 using fixed-order perturbation theory, and αs(mτ2)=0.347±0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data

  6. Tunable metamaterials based on voltage controlled strong coupling

    International Nuclear Information System (INIS)

    We present the design, fabrication, and realization of an electrically tunable metamaterial operating in the mid-infrared spectral range. Our devices combine intersubband transitions in semiconductor quantum-wells with planar metamaterials and operate in the strong light-matter coupling regime. The resonance frequency of the intersubband transition can be controlled by an external bias relative to the fixed metamaterial resonance. This allows us to switch dynamically from an uncoupled to a strongly coupled system and thereby to shift the eigenfrequency of the upper polariton branch by 2.5 THz (corresponding to 8% of the center frequency or one full linewidth) with a bias of 5 V

  7. Experimental determination of the effective strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  8. A scenario for inflationary magnetogenesis without strong coupling problem

    Energy Technology Data Exchange (ETDEWEB)

    Tasinato, Gianmassimo [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom); Institute of Cosmology and Gravitation, University of Portsmouth,Portsmouth, PO1 3FX (United Kingdom)

    2015-03-23

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.

  9. From strong to ultrastrong coupling in circuit QED architectures

    International Nuclear Information System (INIS)

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  10. Real-time quantum trajectories for classically allowed dynamics in strong laser fields

    Science.gov (United States)

    Plimak, L. I.; Ivanov, Misha Yu.

    2015-10-01

    Both the physical picture of the dynamics of atoms and molecules in intense infrared fields and its theoretical description use the concept of electron trajectories. Here, we address a key question which arises in this context: Are distinctly quantum features of these trajectories, such as the complex-valued coordinates, physically relevant in the classically allowed region of phase space, and what is their origin? First, we argue that solutions of classical equations of motion can account for quantum effects. To this end, we construct an exact solution to the classical Hamilton-Jacobi equation which accounts for dynamics of the wave packet, and show that this solution is physically correct in the limit ?. Second, we show that imaginary components of classical trajectories are directly linked to the finite size of the initial wave packet in momentum space. This way, if the electronic wave packet produced by optical tunnelling in strong infrared fields is localised both in coordinate and momentum, its motion after tunnelling ipso facto cannot be described with purely classical trajectories - in contrast to popular models in the literature.

  11. From strong to weak coupling in holographic models of thermalization

    Science.gov (United States)

    Grozdanov, Sašo; Kaplis, Nikolaos; Starinets, Andrei O.

    2016-07-01

    We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R 2 and R 4 terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ /4π k B . In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.

  12. A broadened classical master equation approach for nonadiabatic dynamics at metal surfaces: Beyond the weak molecule-metal coupling limit.

    Science.gov (United States)

    Dou, Wenjie; Subotnik, Joseph E

    2016-01-14

    A broadened classical master equation (BCME) is proposed for modeling nonadiabatic dynamics for molecules near metal surfaces over a wide range of parameter values and with arbitrary initial conditions. Compared with a standard classical master equation-which is valid in the limit of weak molecule-metal couplings-this BCME should be valid for both weak and strong molecule-metal couplings. (The BCME can be mapped to a Fokker-Planck equation that captures level broadening correctly.) Finally, our BCME can be solved with a simple surface hopping algorithm; numerical tests of equilibrium and dynamical observables look very promising. PMID:26772563

  13. SOLITONS: Dynamics of strong coupling formation between laser solitons

    Science.gov (United States)

    Rosanov, Nikolai N.; Fedorov, S. V.; Shatsev, A. N.

    2005-03-01

    The dynamics of the strong coupling formation between two solitons with the unit topological charge is studied in detail for a wide-aperture class A laser. The sequence of bifurcations of the vector field of energy fluxes in the transverse plane was demonstrated during the formation of a soliton complex.

  14. Practical thermodynamics of Yukawa systems at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Khrapak, Sergey A. [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20 (France); Kryuchkov, Nikita P.; Yurchenko, Stanislav O. [Bauman Moscow State Technical University, 2-nd Baumanskaya St. 5, Moscow 105005 (Russian Federation); Thomas, Hubertus M. [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (Germany)

    2015-05-21

    Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed.

  15. Practical thermodynamics of Yukawa systems at strong coupling

    International Nuclear Information System (INIS)

    Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed

  16. Numerical investigation of quantumfield model of strong-coupling binucleon

    International Nuclear Information System (INIS)

    The quantumfield binucleon model for the case of the nucleon spot interaction with the scalar and pseudoscalar mesons fields is considered. For the strong coupling limit the nonlinear equations describing two nucleons in the meson field are developed. Methods of numerical investigation and obtained results are discussed. 10 refs., 3 figs., 3 tabs

  17. Strong coupling QCD and the (π+,π-) reaction

    International Nuclear Information System (INIS)

    Previous six-quark bag model calculations are in disagreement with new (π+, π-) data, but conventional nucleonic calculations are generally successful. Six-quark bag models are related to perturbative QCD. I argue that the strong coupling limit of QCD (SCQCD) is a more appropriate starting point for nuclear physics. 15 refs., 3 figs

  18. Visco-elastic effects in strongly coupled dusty plasmas

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2016-01-01

    We report on experimental evidence of visco-elastic effects in a strongly coupled dusty plasma through investigations of the propagation characteristics of low frequency dust acoustic waves and by excitations of transverse shear waves in a DC discharge Argon plasma.

  19. Coupled Cluster Theories for Strongly Correlated Molecular Systems

    Czech Academy of Sciences Publication Activity Database

    Kowalski, K.; Bhaskaran-Nair, K.; Brabec, Jiří; Pittner, Jiří

    Heidelberg: Springer-Verlag Berlin, 2013 - (Avella, A.; Mancini, F.), s. 237-271 ISBN 978-3-642-35106-8 R&D Projects: GA ČR GAP208/11/2222 Institutional support: RVO:61388955 Keywords : coupled cluster theories * strongly correlated molecular systems * computational chemistry Subject RIV: CF - Physical ; Theoretical Chemistry

  20. Quantum field model of strong-coupling binucleon

    International Nuclear Information System (INIS)

    The quantum field binucleon model for the case of the nucleon spot interaction with the scalar and pseudoscalar meson fields is considered. It is shown that the nonrelativistic problem of the two nucleon interaction reduces to the one-particle problem. For the strong coupling limit the nonlinear equations describing two nucleons in the meson field are developed

  1. Linear and electronic transport in strongly coupled binary ionic mixtures

    International Nuclear Information System (INIS)

    A systematic investigation of linear transport properties in strongly coupled binary ionic mixtures of pointlike ions interacting solely through Coulomb interactions is presented. The basic formalism rests upon suitable extensions of the Boltzmann-Ziman equation explained in this work. Validity conditions for the Lorentzian approximation are thoroughly discussed as well as entropy arguments. High temperature inelastic contributions are emphasized out. (author)

  2. Short-Pulse Amplification by Strongly-Coupled Brillouin Scattering

    CERN Document Server

    Edwards, Matthew R; Mikhailova, Julia M; Fisch, Nathaniel J

    2016-01-01

    We examine the feasibility of strongly-coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.

  3. Weak and strong coupling equilibration in nonabelian gauge theories

    CERN Document Server

    Keegan, Liam; Romatschke, Paul; van der Schee, Wilke; Zhu, Yan

    2016-01-01

    We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.

  4. Weak and strong coupling equilibration in nonabelian gauge theories

    Science.gov (United States)

    Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul; van der Schee, Wilke; Zhu, Yan

    2016-04-01

    We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.

  5. Strong coupling of paramagnetic spins to a superconducting microwave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Greifenstein, Moritz; Zollitsch, Christoph; Lotze, Johannes; Hocke, Fredrik; Goennenwein, Sebastian T.B.; Huebl, Hans [Walther-Meissner-Institut (WMI), Garching (Germany); Gross, Rudolf [Walther-Meissner-Institut (WMI), Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)

    2012-07-01

    Under application of an external magnetic field, non-interacting electron spins behave as an ensemble of identical two-level-systems with tuneable transition frequency. When such an ensemble collectively interacts with a single mode of an electromagnetic resonator, the entire system can be described as two coupled quantum harmonic oscillators. The criterion for the observation of the so-called strong coupling regime is that the collective coupling strength g exceeds both the loss rate of the resonator {kappa} and of the spin ensemble {gamma}. In our experiment we realize a coupled spin-photon-system by introducing the spin marker DPPH (2,2-diphenyl-1-picrylhydrazyl) into the mode volume of a superconducting coplanar microwave resonator and investigate the interaction at 2.5, 5.0 and 7.5 GHz. For tuning the resonance, we apply an in-plane magnetic field and observe interaction at around {+-}90, {+-}180 and {+-}270 mT. While the coupling with the fundamental mode and the first harmonic mode of the resonator is identified as weak, the second harmonic shows g=21 MHz, {kappa} = 6 MHz and {gamma} = 5 MHz, i.e. the strong coupling regime. We further investigate the dependence of g on temperature and on microwave input power.

  6. Energy loss of heavy ions in strongly coupled plasmas

    International Nuclear Information System (INIS)

    We investigate the energy loss of heavy ions in strongly coupled plasmas, by performing molecular dynamics (MD) computer simulations. These studies are of interest in heavy-ion-driven inertial confinement fusion, as well as for electron cooling. We consider the non-linear behavior for strong target-ion coupling parameters, i.e. ZΓ3/2>or∼1, in non-ideal plasmas with Γ>or∼0.1 (Z is the charge number of the ion and Γ is the plasma parameter of the target). The new features that we found from our simulation results can be summarized as follows. (1) For strong ion-target coupling, the energy loss of the ions at low velocities scales with Z as Z1.5, in agreement with recent experimental and other theoretical results. This clearly deviates from the Z2 ln(const./Z) scaling of the conventional weak coupling theories. (2) The change in the Z scaling has its origin in a non-linear screening that occurs for strong coupling and is associated with an increase in the (static) screening length above the Debye-Hueckel result of the linear theory. (3) The non-linear screening is accompanied by electrons trapped by the ion into high Rydberg states, through multi-particle collisions. Compared with the case of linear coupling, this trapping causes an enhanced electron density around the ion. (4) The transient time dependence of the stopping power after switching on the ion-target interaction has characteristic time-scales that are a fraction of the plasma period. (orig.)

  7. Energy Exchange in Driven Open Quantum Systems at Strong Coupling

    Science.gov (United States)

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-01

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .

  8. Neutron Limit on the Strongly-Coupled Chameleon Field

    CERN Document Server

    Li, K; Cory, D G; Haun, R; Heacock, B; Huber, M G; Nsofini, J; Pushin, D A; Saggu, P; Sarenac, D; Shahi, C B; Skavysh, V; Snow, W M; Young, A R

    2016-01-01

    The physical origin of the dark energy that causes the accelerated expansion rate of the universe is one of the major open questions of cosmology. One set of theories postulates the existence of a self-interacting scalar field for dark energy coupling to matter. In the chameleon dark energy theory, this coupling induces a screening mechanism such that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. However measurements performed under appropriate vacuum conditions can enable the chameleon field to appear in the apparatus, where it can be subjected to laboratory experiments. Here we report the most stringent upper bound on the free neutron-chameleon coupling in the strongly-coupled limit of the chameleon theory using neutron interferometric techniques. Our experiment sought the chameleon field through the relative phase shift it would induce along one of the neutron paths inside a perfect crystal neutron interferometer. The amplitude of the cham...

  9. A scenario for inflationary magnetogenesis without strong coupling problem

    CERN Document Server

    Tasinato, Gianmassimo

    2014-01-01

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coup...

  10. Strongly coupled radiation from moving mirrors and holography in the Karch-Randall model

    International Nuclear Information System (INIS)

    Motivated by the puzzles in understanding how Black Holes evaporate into a strongly coupled Conformal Field Theory, we study particle creation by an accelerating mirror. We model the mirror as a gravitating Domain Wall and consider a CFT coupled to it through gravity, in asymptotically Anti de Sitter space. This problem (backreaction included) can be solved exactly at one loop. At strong coupling, this is dual to a Domain Wall localized on the brane in the Karch-Randall model, which can be fully solved as well. Hence, in this case one can see how the particle production is affected by A) strong coupling and B) its own backreaction. We find that A) the amount of CFT radiation at strong coupling is not suppressed relative to the weak coupling result; and B) once the boundary conditions in the AdS5 bulk are appropriately mapped to the conditions for the CFT on the boundary of AdS4, the Karch-Randall model and the CFT side agree to leading order in the backreaction. This agreement holds even for a new class of self-consistent solutions (the 'Bootstrap' Domain Wall spacetimes) that have no classical limit. This provides a quite precise check of the holographic interpretation of the Karch-Randall model. We also comment on the massive gravity interpretation. As a byproduct, we show that relativistic Cosmic Strings (pure tension codimension 2 branes) in Anti de Sitter are repulsive and generate long-range tidal forces even at classical level. This is the phenomenon dual to particle production by Domain Walls.

  11. Strong and Coherent Coupling between Localized and Propagating Phonon Polaritons

    Science.gov (United States)

    Gubbin, Christopher R.; Martini, Francesco; Politi, Alberto; Maier, Stefan A.; De Liberato, Simone

    2016-06-01

    Following the recent observation of localized phonon polaritons in user-defined silicon carbide nanoresonators, here we demonstrate strong and coherent coupling between those localized modes and propagating phonon polaritons bound to the surface of the nanoresonator's substrate. In order to obtain phase matching, the nanoresonators have been fabricated to serve the double function of hosting the localized modes, while also acting as a grating for the propagating ones. The coherent coupling between long lived, optically accessible localized modes, and low-loss propagative ones, opens the way to the design and realization of phonon-polariton based coherent circuits.

  12. Very strong coupling in GaAs based optical microcavities

    CERN Document Server

    Zhang, H; Yamamoto, Y; Na, N

    2012-01-01

    We show that when following a simple cavity design metric, a quantum well exciton-microcavity photon coupling constant can be larger than the exciton binding energy in GaAs based optical microcavities. Such a very strong coupling significantly reduces the relative electron-hole motion and makes the polaritons robust against phonon collisions. The corresponding polariton dissociation and saturation boundaries on the phase diagram are much improved, and our calculations suggest the possibility of constructing a room temperature, high power exciton-polariton laser without resorting to wide bandgap semiconductors.

  13. Strong Exciton-photon Coupling in Semiconductor Microcavities

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Hvam, Jørn Märcher; Langbein, Wolfgang

    1999-01-01

    directionality of the spontaneous emission in the diodes.At low temperatures, a strong coupling between the excitons in the quantum well and the electromagnetic field in the cavity may be achieved. This coupling leads to new quantum mechanical states, so-called polaritons, the properties of which are still not...... place. Due to the steep dispersion, the amount of phase space available for polariton scattering is reduced, yielding longer dephasing times and hence narrower lines. The possibility of tailoring the polariton dispersion in order to reduce the line width is very interesting, for instance for all...

  14. Strong Coupling between On Chip Notched Ring Resonator and Nanoparticle

    CERN Document Server

    Wang, S; Smith, H; Yi, Y

    2010-01-01

    We have demonstrated a new photonic structure to achieve strong optical coupling between nanoparticle and photonic molecule by utilizing a notched micro ring resonators. By creating a notch in the ring resonator and putting a nanoparticle inside the notch, large spectral shifts and splittings at nm scale can be achieved, compared to only pm scale observed by fiber tip evanescently coupled to the surface of microsphere, thereby significantly lowered the quality factor requirement for single nanoparticle detection. The ability for sorting the type of nanoparticles due to very different mode shift and splitting behavior of dielectric and metallic nanoparticles is also emphasized.

  15. Nuclear physics from lattice QCD at strong coupling

    International Nuclear Information System (INIS)

    Understanding the properties of nuclear matter from first principles, starting from the QCD Lagrangian via lattice simulations, is one of the main goals of lattice QCD. Unfortunately this task is turned out to be too ambitious. However, in the limiting case of an infinite bare gauge coupling, this goal can be reached: the full phase diagram as a function of temperature and baryon chemical potential can be determined and also the nuclear potential can be obtained. I present new results obtained from lattice QCD at strong coupling and explain in what respect this model describes some of the properties of nuclear matter, such as the origin of nuclear interactions.

  16. From strong to ultrastrong coupling in circuit QED architectures

    Energy Technology Data Exchange (ETDEWEB)

    Niemczyk, Thomas

    2011-08-10

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  17. QCD and strongly coupled gauge theories: challenges and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, N.; Vairo, A. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Eidelman, S. [SB RAS, Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Foka, P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Gardner, S. [University of Kentucky, Department of Physics and Astronomy, Lexington, KY (United States); Kronfeld, A.S. [Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States); Alford, M.G.; Schwenzer, K. [Washington University, Department of Physics, St Louis, MO (United States); Alkofer, R. [University of Graz, Graz (Austria); Butenschoen, M. [University of Vienna, Faculty of Physics, Wien (Austria); Cohen, T.D. [University of Maryland, Maryland Center for Fundamental Physics and Department of Physics, College Park, MD (United States); Erdmenger, J. [Max-Planck-Institute for Physics, Munich (Germany); Fabbietti, L. [Technische Universitaet Muenchen, Excellence Cluster ' ' Origin and Structure of the Universe' ' , Garching (Germany); Faber, M.; Hoellwieser, R. [Technische Universitaet Wien, Atominstitut, Vienna (Austria); Goity, J.L. [Hampton University, Hampton, VA (United States); Jefferson Laboratory, Newport News, VA (United States); Ketzer, B. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Lin, H.W. [University of Washington, Department of Physics, Seattle, WA (United States); Llanes-Estrada, F.J. [Universidad Complutense de Madrid, Department Fisica Teorica I, Madrid (Spain); Meyer, H.B.; Wittig, H.; Hippel, G.M. von [Johannes Gutenberg-Universitaet Mainz, PRISMA Cluster of Excellence, Institut fuer Kernphysik and Helmholtz Institut Mainz, Mainz (Germany); Pakhlov, P.; Polikarpov, M.I. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Moscow Institute for Physics and Technology, Dolgoprudny (Russian Federation); Pallante, E.; Papadodimas, K. [University of Groningen, Centre for Theoretical Physics, Groningen (Netherlands); Sazdjian, H. [Universite Paris-Sud, Institut de Physique Nucleaire CNRS/IN2P3, Orsay (France); Schmitt, A. [Technische Universitaet Wien, Institut fuer Theoretische Physik, Vienna (Austria); Snow, W.M. [Indiana University, Center for Exploration of Energy and Matter and Department of Physics, Bloomington, IN (United States); Vogt, R. [Lawrence Livermore National Laboratory, Physics Division, Livermore, CA (United States); University of California, Physics Department, Davis, CA (United States); Vuorinen, A. [University of Helsinki, Department of Physics and Helsinki Institute of Physics, Helsinki (Finland); Arnold, P. [University of Virginia, Department of Physics, Charlottesville, VA (United States); Christakoglou, P. [NIKHEF, Amsterdam (Netherlands); Di Nezza, P. [Istituto Nazionale di Fisica Nucleare (INFN), Frascati (Italy); Fodor, Z. [Wuppertal University, Wuppertal (Germany); Eoetvoes University, Budapest (Hungary); Forschungszentrum Juelich, Juelich (Germany); Garcia i Tormo, X. [Universitaet Bern, Albert Einstein Center for Fundamental Physics, Institut fuer Theoretische Physik, Bern (Switzerland); Janik, M.A. [Warsaw University of Technology, Faculty of Physics, Warsaw (Poland); Kalweit, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Keane, D. [Kent State University, Department of Physics, Kent, OH (United States); Kiritsis, E. [University of Crete, Crete Center for Theoretical Physics, Department of Physics, Heraklion (Greece); Universite Paris Diderot, Laboratoire APC, Sorbonne Paris-Cite (France); CERN, Theory Group, Physics Department, Geneva 23 (Switzerland); Mischke, A. [Utrecht University, Faculty of Science, Utrecht (Netherlands); Mizuk, R. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Moscow Physical Engineering Institute, Moscow (Russian Federation); Odyniec, G. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2014-10-15

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments. (orig.)

  18. Strong coupling between localized and propagating plasmon polaritons.

    Science.gov (United States)

    Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun

    2015-07-01

    We investigate plasmon-plasmon (PP) coupling in the strongly interacting regimes by using a tunable plasmonic platform consisting of triangular Ag nanoprisms placed nanometers away from Ag thin films. The nanoprisms are colloidally synthesized using a seed-mediated growth method and having size-tunable localized surface plasmon polariton (SPP) resonances immobilized on Si(3)N(4) films. The PP coupling between the localized SPPs of metal nanoprisms and the propagating SPPs of the metal film is controlled by the nanoprism concentration and the plasmon damping in the metal film. Results reveal that Rabi splitting energy determining the strength of the coupling can reach up to several hundreds meV, thus demonstrating the ultrastrong coupling occurring between localized and propagating SPPs. The metal nanoparticle-metal thin film hybrid system over the square-centimeter areas presented here provides a unique configuration to study PP coupling all the way from the weak to ultrastrong coupling regimes in a broad range of wavelengths. PMID:26125396

  19. Four lectures on strongly coupled Quark Gluon Plasma

    International Nuclear Information System (INIS)

    The four lectures are divided evenly between phenomenology and theory. Lecture 1 describes the hydrodynamical treatment of the high energy heavy ion collisions: we discuss in it the appearance of the notion of the 'strongly coupled' QGP. Another phenomenological lecture is about perturbations of this expansion, by fluctuations of different types. We will in particularly argue that matter in a near-Tc situation is quite special, with an electric field imbedded in it for a long time: this situation should be described by dual-magnetohydrodynamics (DMHD). Two theoretical lectures focus on two dualities. The electric-magnetic duality, describing gradual transition from electric plasma at high-T to a magnetic-dominated plasma in the near-Tc domain. The last lecture is about applications of AdS/CFT duality, between strongly coupled N=4SYM gauge theory in 4 dimensions and string theory in the AdS5*S5 background.

  20. Strongly coupled gauge theories: What can lattice calculations teach us?

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Electroweak symmetry breaking and the dynamical origin of the Higgs boson are central questions today. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction are candidates to describe beyond Standard Model physics. The phenomenologically viable models are strongly coupled, near the conformal boundary, requiring non-perturbative studies to reveal their properties. Lattice studies show that many of the beyond-Standard Model candidates have a relatively light isosinglet scalar state that is well separated from the rest of the spectrum. When the scale is set via the vev of electroweak symmetry breaking, a 2 TeV vector resonance appears to be a general feature of many of these models with several other resonances that are not much heavier.

  1. Measurement of the strong coupling constant using τ decays

    International Nuclear Information System (INIS)

    The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton,, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs(m2τ) = 0.330 ± 0.046, evolved to the Z mass, yields αs(M2Z) = 0.118 ± 0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3 ± 0.5%

  2. Measurement of the strong coupling constant using τ decays

    Science.gov (United States)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-06-01

    The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.

  3. Collinear Limit of Scattering Amplitudes at Strong Coupling

    Science.gov (United States)

    Basso, Benjamin; Sever, Amit; Vieira, Pedro

    2014-12-01

    In this Letter, we consider the collinear limit of gluon scattering amplitudes in planar N =4 super-Yang-Mills theory at strong coupling. We argue that in this limit scattering amplitudes map into correlators of twist fields in the two dimensional nonlinear O (6 ) sigma model, similar to those appearing in recent studies of entanglement entropy. We provide evidence for this assertion by combining the intuition springing from the string world-sheet picture and the predictions coming from the operator product expansion series. One of the main implications of these considerations is that scattering amplitudes receive equally important contributions at strong coupling from both the minimal string area and its fluctuations in the sphere.

  4. Strong Coupling Isotropization of Non-Abelian Plasmas Simplified

    OpenAIRE

    Heller, M.P.; Mateos, D.; van der Schee, W.; Trancanelli, D.

    2012-01-01

    We study the isotropization of a homogeneous, strongly coupled, non-Abelian plasma by means of its gravity dual. We compare the time evolution of a large number of initially anisotropic states as determined, on the one hand, by the full non-linear Einstein's equations and, on the other, by the Einstein's equations linearized around the final equilibrium state. The linear approximation works remarkably well even for states that exhibit large anisotropies. For example, it predicts with a 20% ac...

  5. Many-body correlations in strongly-coupled plasmas

    International Nuclear Information System (INIS)

    Two aspects of many-particle correlations of ions in strongly-coupled plasmas are analysed on the basis of numerical experiments. First, the pair correlation function and the structure factor in the polarizing background of electrons are obtained and electric and thermal conductivities are calculated. Then the triplet correlation of ions in the uniform background is discussed in comparison with simple closure approximations. (author)

  6. Probing strongly coupled anisotropic plasmas from higher curvature gravity

    CERN Document Server

    Misobuchi, Anderson Seigo

    2015-01-01

    We consider five-dimensional AdS-axion-dilaton gravity with a Gauss-Bonnet term and use a black brane solution displaying spatial anisotropy as the gravity dual of a strongly coupled anisotropic plasma. We compute several observables relevant to the study of the plasma, namely, the drag force, the jet quenching parameter, the quarkonium potential and the thermal photon production. The effects of higher derivative corrections and of the anisotropy are discussed and compared with previous results.

  7. Probing strongly coupled anisotropic plasmas from higher curvature gravity

    Science.gov (United States)

    Jahnke, Viktor; Misobuchi, Anderson Seigo

    2016-06-01

    We consider five-dimensional AdS-axion-dilaton gravity with a Gauss-Bonnet term and use a black brane solution displaying spatial anisotropy as the gravity dual of a strongly coupled anisotropic plasma. We compute several observables relevant to the study of the plasma, namely, the drag force, the jet quenching parameter, the quarkonium potential, and the thermal photon production. The effects of higher derivative corrections and of the anisotropy are discussed and compared with previous results.

  8. Self-diffusion in strongly coupled Yukawa systems (complex plasmas)

    CERN Document Server

    Khrapak, Sergey A; Morfill, Gregor E

    2012-01-01

    We show that the idea of mapping between the Newtonian and Brownian diffusivities proposed and tested on a class of particle systems interacting via soft and ultra-soft potentials (IPL, Gaussian core, Hertzian, and effective star-polymer) by Pond {\\it et al}., [Soft Matter {\\bf 7}, 9859 (2011)] is also applicable to the Yukawa (screened Coulomb) interaction. Some of the implications of this result with respect to self-diffusion in strongly coupled complex (dusty) plasmas are discussed.

  9. Analytic Solution of Strongly Coupling Schr(o)dinger Equations

    Institute of Scientific and Technical Information of China (English)

    LIAO Jin-Feng; ZHUANG Peng-Fei

    2004-01-01

    A recently developed expansion method for analytically solving the ground states of strongly coupling Schrodinger equations by Friedberg,Lee,and Zhao is extended to excited states and applied to power-law central forces for which scaling properties are proposed.As examples for application of the extended method,the Hydrogen atom problem is resolved and the low-lying states of Yukawa potential are approximately obtained.

  10. Circuit cavity electromechanics in the strong coupling regime

    CERN Document Server

    Teufel, J D; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Simmonds, R W

    2010-01-01

    Demonstrating and exploiting the quantum nature of larger, more macroscopic mechanical objects would help us to directly investigate the limitations of quantum-based measurements and quantum information protocols, as well as test long standing questions about macroscopic quantum coherence. The field of cavity opto- and electro-mechanics, in which a mechanical oscillator is parametrically coupled to an electromagnetic resonance, provides a practical architecture for the manipulation and detection of motion at the quantum level. Reaching this quantum level requires strong coupling, interaction timescales between the two systems that are faster than the time it takes for energy to be dissipated. By incorporating a free-standing, flexible aluminum membrane into a lumped-element superconducting resonant cavity, we have increased the single photon coupling strength between radio-frequency mechanical motion and resonant microwave photons by more than two orders of magnitude beyond the current state-of-the-art. A par...

  11. Multimode Strong Coupling in Superconducting Cavity Piezo-electromechanics

    CERN Document Server

    Han, Xu; Tang, Hong X

    2016-01-01

    High frequency mechanical resonators subjected to low thermal phonon occupancy are easier to be prepared to the ground state by direct cryogenic cooling. Their extreme stiffness, however, poses a significant challenge for external interrogations. Here we demonstrate a superconducting cavity piezo-electromechanical system in which multiple modes of a bulk acoustic resonator oscillating at $10\\,\\textrm{GHz}$ are coupled to a planar microwave superconducting resonator with a cooperativity exceeding $2\\times10^{3}$, deep in the strong coupling regime. By implementation of the non-contact coupling scheme to reduce mechanical dissipation, the system exhibits excellent coherence characterized by a frequency-quality factor product of $7.5\\times10^{15}\\,\\textrm{Hz}$. Interesting dynamics of temporal oscillations of the microwave energy is observed, implying the coherent conversion between phonons and photons. The demonstrated high frequency cavity piezo-electromechanics is compatible with superconducting qubits, repre...

  12. Ultra-strong coupling in a transmon circuit architecture

    Science.gov (United States)

    Bosman, Sal; Gely, Mario; Singh, Vibhor; Bruno, Alessandro; Steele, Gary

    New unexplored phenomena are predicted in cQED for the ultra-strong coupling (USC) regime and beyond. Here, we explore two strategies to increase the coupling between a transmon qubit and a microwave resonator. In the first approach, we increase the impedance of the resonator, enhancing it's voltage zero-point fluctuations, and measure a vacuum Rabi splitting of 916 MHz. In a second approach, we create a transmon qubit by making a superconducting island suspended above the center conductor of the resonator and which is shorted to ground by two Josephson junctions. Doing so, we maximize the dipole moment of the qubit and observe a vacuum Rabi splitting of 1.2 GHz with a qubit linewidth of 1 MHz. This first transmon qubit in the USC regime improves the coherence time by a factor of 100 compared to other systems in the USC limit. Finally we predict that by combining both approaches, a coupling of ~ 3 . 6 GHz is possible, reaching close to the deep strong coupling limit. The work was supported by the Dutch science foundation NWO/FOM.

  13. A modification of classical conjugate gradient method using strong Wolfe line search

    Science.gov (United States)

    Shoid, Syazni; Rivaie, Mohd.; Mamat, Mustafa

    2016-06-01

    Recently many researches try to develop and improve the Conjugate Gradient (CG) methods because of its convergence properties and low computation costing. In this paper, another CG coefficient (βk) will be proposed which is categorized as modification in such a way to improve the performance of the classical CG methods. This paper is focused on generating βk with several desirable properties: (1) generate descent search direction at each iterations; and (2) converge globally by using strong Wolfe line search. Numerical comparisons of three CG methods show the robustness and the efficiency of the new method in solving all given problems.

  14. Neutron Limit on the Strongly-Coupled Chameleon Field

    Science.gov (United States)

    Pushin, Dmitry

    2016-03-01

    One of the major open questions of cosmology is the physical origin of the dark energy. There are a few sets of theories which might explain this origin that could be tested experimentally. The chameleon dark energy theory postulates self-interacting scalar field that couples to matter. This coupling induces a screening mechanism chosen so that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. On behalf of the INDEX collaboration, I will report the most stringent upper bound on the free neutron-chameleon coupling in the strongly-coupled limit of the chameleon theory using neutron interferometric techniques. In our experiment we measure neutron phase induced by chameleon field. We report a 95 % confidence level upper bound on the neutron-chameleon coupling ranging from β < 4 . 7 ×106 for a Ratra-Peebles index of n = 1 in the nonlinear scalar field potential to β < 2 . 4 ×107 for n = 6 , one order of magnitude more sensitive than the most recent free neutron limit for intermediate n. This work was supported by NIST; NSF Grants: PHY-1205342, PHY-1068712, PHY-1307426; DOE award DE-FG02-97ER41042; NSERC CREATE and DISCOVERY programs; CERC; IUCSS and IU FRS program.

  15. Paradoxical probabilistic behavior for strongly correlated many-body classical systems

    Science.gov (United States)

    Jauregui, Max; Tsallis, Constantino

    2015-09-01

    Using a simple probabilistic model, we illustrate that a small part of a strongly correlated many-body classical system can show a paradoxical behavior, namely asymptotic stochastic independence. We consider a triangular array such that each row is a list of n strongly correlated random variables. The correlations are preserved even when n → ∞, since the standard central limit theorem does not hold for this array. We show that, if we choose a fixed number m < n of random variables of the nth row and trace over the other n - m variables, and then consider n → ∞, the m chosen ones can, paradoxically, turn out to be independent. However, the scenario can be different if m increases with n. Finally, we suggest a possible experimental verification of our results near criticality of a second-order phase transition.

  16. Quantum and classical resonant escapes of a strongly driven Josephson junction

    Science.gov (United States)

    Yu, H. F.; Zhu, X. B.; Peng, Z. H.; Cao, W. H.; Cui, D. J.; Tian, Ye; Chen, G. H.; Zheng, D. N.; Jing, X. N.; Lu, Li; Zhao, S. P.; Han, Siyuan

    2010-04-01

    The properties of phase escape in a dc superconducting quantum interference device (SQUID) at 25 mK, which is well below quantum-to-classical crossover temperature Tcr , in the presence of strong resonant ac driving have been investigated. The SQUID contains two Nb/Al-AlOx/Nb tunnel junctions with Josephson inductance much larger than the loop inductance so it can be viewed as a single junction having adjustable critical current. We find that with increasing microwave power W and at certain frequencies ν and ν/2 , the single primary peak in the switching current distribution, which is the result of macroscopic quantum tunneling of the phase across the junction, first shifts toward lower bias current I and then a resonant peak develops. These results are explained by quantum resonant phase escape involving single and two photons with microwave-suppressed potential barrier. As W further increases, the primary peak gradually disappears and the resonant peak grows into a single one while shifting further to lower I . At certain W , a second resonant peak appears, which can locate at very low I depending on the value of ν . Analysis based on the classical equation of motion shows that such resonant peak can arise from the resonant escape of the phase particle with extremely large oscillation amplitude resulting from bifurcation of the nonlinear system. Our experimental result and theoretical analysis demonstrate that at T≪Tcr , escape of the phase particle could be dominated by classical process, such as dynamical bifurcation of nonlinear systems under strong ac driving.

  17. Strongly Coupled Models with a Higgs-like Boson*

    Directory of Open Access Journals (Sweden)

    Pich Antonio

    2013-11-01

    Full Text Available Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale, the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule.

  18. Collective modes in a strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    It is widely recognized that in a typical dusty plasma encountered in the laboratory or outer space, the dust component is in a strongly coupled state because the interaction energy of neighboring dust particles due to shielded Coulomb ('Yukawa') forces is much larger than their thermal energy. Low frequency collective modes involving the motion of dust particles are therefore greatly influenced by the strong correlation effects in the dust component. In this paper a dispersion relation for low-frequency collective modes using a generalized hydrodynamics model for the dust component has been derived. Strong correlation effects are described in terms of viscoelastic transport coefficients and a finite relaxation time for the memory kernel. Novel collective effects such as new corrections to dispersion terms for longitudinal dust acoustic waves and the existence of transverse shear waves supported by strong correlations have been identified. New physical processes involving nonuniform charge number equilibria and delayed charging effects which could drive the shear wave instability have also been studied. A report on some new experiments where self-excited transverse shear modes are seen when the dust component of the plasma is in a strongly correlated fluid-like state is also presented

  19. Charge transport in strongly coupled quantum dot solids

    Science.gov (United States)

    Kagan, Cherie R.; Murray, Christopher B.

    2015-12-01

    The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.

  20. Nonlinear wave propagation in strongly coupled dusty plasmas.

    Science.gov (United States)

    Veeresha, B M; Tiwari, S K; Sen, A; Kaw, P K; Das, A

    2010-03-01

    The nonlinear propagation of low-frequency waves in a strongly coupled dusty plasma medium is studied theoretically in the framework of the phenomenological generalized hydrodynamic (GH) model. A set of simplified model nonlinear equations are derived from the original nonlinear integrodifferential form of the GH model by employing an appropriate physical ansatz. Using standard perturbation techniques characteristic evolution equations for finite small amplitude waves are then obtained in various propagation regimes. The influence of viscoelastic properties arising from dust correlation contributions on the nature of nonlinear solutions is discussed. The modulational stability of dust acoustic waves to parallel perturbation is also examined and it is shown that dust compressibility contributions influenced by the Coulomb coupling effects introduce significant modification in the threshold and range of the instability domain. PMID:20365882

  1. On the Classical Coupling between Gravity and Electromagnetism

    Directory of Open Access Journals (Sweden)

    Maria Becker

    2015-06-01

    Full Text Available Coupling between electromagnetism and gravity, manifested as the distorted Coulomb field of a charge distribution in a gravitational field, has never been observed. A physical system consisting of an electron in a charged shell provides a coupling that is orders of magnitude stronger than for any previously-considered system. A shell voltage of one megavolt is required to establish a gravitationally-induced electromagnetic force equal in magnitude to the force of gravity on an electron. The experimental feasibility of detecting these forces on an electron is discussed. The effect establishes a relation between Einstein’s energy-mass equivalence and the coupling between electromagnetism and gravity.

  2. Experiment on dust acoustic solitons in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)

  3. A new constraint on strongly coupled field theories

    International Nuclear Information System (INIS)

    We propose a new constraint on the structure of strongly coupled, asymptotically free field theories. The constraint takes the form of an inequality limiting the number of degrees of freedom in the infrared description of a theory relative to the number of underlying, ultraviolet degrees of freedom. We apply the inequality to a variety of theories (both supersymmetric and nonsupersymmetric), where it agrees with all known results and leads to interesting new constraints on low energy spectra. We discuss the relation of this constraint to renormalization group c theorems. copyright 1999 The American Physical Society

  4. Heat conduction in 2D strongly-coupled dusty plasmas

    CERN Document Server

    Hou, Lu-Jing

    2008-01-01

    We perform non-equilibrium simulations to study heat conduction in two-dimensional strongly coupled dusty plasmas. Temperature gradients are established by heating one part of the otherwise equilibrium system to a higher temperature. Heat conductivity is measured directly from the stationary temperature profile and heat flux. Particular attention is paid to the influence of damping effect on the heat conduction. It is found that the heat conductivity increases with the decrease of the damping rate, while its magnitude confirms previous experimental measurement.

  5. Black hole thermodynamics from calculations in strongly coupled gauge theory.

    Science.gov (United States)

    Kabat, D; Lifschytz, G; Lowe, D A

    2001-02-19

    We develop an approximation scheme for the quantum mechanics of N D0-branes at finite temperature in the 't Hooft large- N limit. The entropy of the quantum mechanics calculated using this approximation agrees well with the Bekenstein-Hawking entropy of a ten-dimensional nonextremal black hole with 0-brane charge. This result is in accordance with the duality conjectured by Itzhaki, Maldacena, Sonnenschein, and Yankielowicz [Phys. Rev. D 58, 046004 (1998)]. Our approximation scheme provides a model for the density matrix which describes a black hole in the strongly coupled quantum mechanics. PMID:11290159

  6. Mobility in a strongly coupled dusty plasma with gas

    OpenAIRE

    Liu, Bin; Goree, J.

    2014-01-01

    The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force $F$, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity $u_p$. The mobility $\\mu_p=u_p/F$ of the projectile's motion is obtained. Two regimes depending on $F$ are identified. In the high force regime, $\\mu_p \\propto F^{0.23}$, and the scattering cross section $\\sigma_s$ diminishes as $u_p^{-6/5}$. Results for $\\sigma_s$ ...

  7. Hydraulic jumps in inhomogeneous strongly coupled toroidal dust flows

    Science.gov (United States)

    Piel, Alexander; Wilms, Jochen

    2016-07-01

    The inhomogeneous flow of strongly coupled dust particles in a toroidal particle trap with harmonic radial confinement is analyzed in the incompressible fluid limit. It is shown that the flow can spontaneously generate shock-like events, which are similar to the hydraulic jump in open channel flows. A definition of the Froude number for this model is given and the critical speed is recovered as the group velocity of surface waves. This hydraulic model is compared with molecular-dynamics simulations, which show that a sudden bifurcation of the flow lines and a localized temperature peak appear just at the point where the critical condition for the hydraulic jump is located.

  8. Two universal results for Wilson loops at strong coupling

    OpenAIRE

    Hartnoll, Sean A.

    2006-01-01

    We present results for Wilson loops in strongly coupled gauge theories. The loops may be taken around an arbitrarily shaped contour and in any field theory with a dual IIB geometry of the form M x S^5. No assumptions about supersymmetry are made. The first result uses D5 branes to show how the loop in any antisymmetric representation is computed in terms of the loop in the fundamental representation. The second result uses D3 branes to observe that each loop defines a rich sequence of operato...

  9. Laser enhanced transports in strongly coupled dusty plasmas

    International Nuclear Information System (INIS)

    The stress induced microscopic responses of dust particles in strongly coupled dusty plasma liquids suspended in plasma traps are investigated experimentally. Narrow laser beams are used to generate stress on dust particles through optical pressure. Assisted by background thermal fluctuations, chaotic micro-vortices with decaying intensities from the laser beam are generated. The forward transport and transverse diffusion rate are enhanced and show nonlinear reponse to the external stress. Visco-elastic response is observed for an elongated liquid cluster driven by a periodically chopped laser beam. The shear wave is damped. (orig.)

  10. Laser enhanced transports in strongly coupled dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Juan Wentau; Chang Minghua; Lai Yingju; Chen Mingheng; I Lin [National Central Univ., Chung-li (Taiwan). Physics Dept.

    2001-07-01

    The stress induced microscopic responses of dust particles in strongly coupled dusty plasma liquids suspended in plasma traps are investigated experimentally. Narrow laser beams are used to generate stress on dust particles through optical pressure. Assisted by background thermal fluctuations, chaotic micro-vortices with decaying intensities from the laser beam are generated. The forward transport and transverse diffusion rate are enhanced and show nonlinear reponse to the external stress. Visco-elastic response is observed for an elongated liquid cluster driven by a periodically chopped laser beam. The shear wave is damped. (orig.)

  11. First and Second Law of Thermodynamics at Strong Coupling

    Science.gov (United States)

    Seifert, Udo

    2016-01-01

    For a small driven system coupled strongly to a heat bath, internal energy and exchanged heat are identified such that they obey the usual additive form of the first law. By identifying this exchanged heat with the entropy change of the bath, the total entropy production is shown to obey an integral fluctuation theorem on the trajectory level implying the second law in the form of a Clausius inequalilty on the ensemble level. In this Hamiltonian approach, the assumption of an initially uncorrelated state is not required. The conditions under which the proposed identification of heat is unique and experimentally accessible are clarified.

  12. On the Classical Coupling between Gravity and Electromagnetism

    OpenAIRE

    Maria Becker; Adam Caprez; Herman Batelaan

    2015-01-01

    Coupling between electromagnetism and gravity, manifested as the distorted Coulomb field of a charge distribution in a gravitational field, has never been observed. A physical system consisting of an electron in a charged shell provides a coupling that is orders of magnitude stronger than for any previously-considered system. A shell voltage of one megavolt is required to establish a gravitationally-induced electromagnetic force equal in magnitude to the force of gravity on an electron. The ...

  13. Thermalization and confinement in strongly coupled gauge theories

    CERN Document Server

    Ishii, Takaaki; Rosen, Christopher

    2016-01-01

    Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance ...

  14. Heavy Quark Diffusion in Strongly Coupled Anisotropic Plasmas

    CERN Document Server

    Giataganas, Dimitrios

    2013-01-01

    We study the Langevin diffusion of a relativistic heavy quark in anisotropic strongly coupled theories in the local limit. Firstly, we use the axion space-dependent deformed anisotropic N=4 sYM, where the geometry anisotropy is always prolate, while the pressure anisotropy may be prolate or oblate. For motion along the anisotropic direction we find that the effective temperature for the quark can be larger than the heat bath temperature, in contrast to what happens in the isotropic theory. The longitudinal and transverse Langevin diffusion coefficients depend strongly on the anisotropy, the direction of motion and the transverse direction considered. We analyze the anisotropy effects to the coefficients and compare them to each other and to them of the isotropic theory. To examine the dependence of the coefficients on the type of the geometry, we consider another bottom-up anisotropic model. Changing the geometry from prolate to oblate, certain diffusion coefficients interchange their behaviors. In both aniso...

  15. Strong-coupling approach to nematicity in the cuprates

    Science.gov (United States)

    Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael

    The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.

  16. Nonthermal fixed points: effective weak coupling for strongly correlated systems far from equilibrium.

    Science.gov (United States)

    Berges, Jürgen; Rothkopf, Alexander; Schmidt, Jonas

    2008-07-25

    Strongly correlated systems far from equilibrium can exhibit scaling solutions with a dynamically generated weak coupling. We show this by investigating isolated systems described by relativistic quantum field theories for initial conditions leading to nonequilibrium instabilities, such as parametric resonance or spinodal decomposition. The nonthermal fixed points prevent fast thermalization if classical-statistical fluctuations dominate over quantum fluctuations. We comment on the possible significance of these results for the heating of the early Universe after inflation and the question of fast thermalization in heavy-ion collision experiments. PMID:18764319

  17. Nonlinear Temporal Dynamics of Strongly Coupled Quantum Dot-Cavity System

    CERN Document Server

    Majumdar, Arka; Bajcsy, Michal; Vuckovic, Jelena

    2011-01-01

    We theoretically analyze and simulate the temporal dynamics of strongly coupled quantum dot-cavity system driven by a resonant laser pulse. We observe the signature of Rabi oscillation in the time resolved response of the system (i.e., in the numerically calculated cavity output), derive simplified linear and non-linear semi-classical models that approximate well the system's behavior in the limits of high and low power drive pulse, and describe the role of quantum coherence in the exact dynamics of the system. Finally, we also present experimental data showing the signature of the Rabi oscillation in time domain.

  18. Neutron limit on the strongly-coupled chameleon field

    Science.gov (United States)

    Li, K.; Arif, M.; Cory, D. G.; Haun, R.; Heacock, B.; Huber, M. G.; Nsofini, J.; Pushin, D. A.; Saggu, P.; Sarenac, D.; Shahi, C. B.; Skavysh, V.; Snow, W. M.; Young, A. R.; Index Collaboration

    2016-03-01

    The physical origin of the dark energy that causes the accelerated expansion rate of the Universe is one of the major open questions of cosmology. One set of theories postulates the existence of a self-interacting scalar field for dark energy coupling to matter. In the chameleon dark energy theory, this coupling induces a screening mechanism such that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. However measurements performed under appropriate vacuum conditions can enable the chameleon field to appear in the apparatus, where it can be subjected to laboratory experiments. Here we report the most stringent upper bound on the free neutron-chameleon coupling in the strongly coupled limit of the chameleon theory using neutron interferometric techniques. Our experiment sought the chameleon field through the relative phase shift it would induce along one of the neutron paths inside a perfect crystal neutron interferometer. The amplitude of the chameleon field was actively modulated by varying the millibar pressures inside a dual-chamber aluminum cell. We report a 95% confidence level upper bound on the neutron-chameleon coupling β ranging from β <4.7 ×106 for a Ratra-Peebles index of n =1 in the nonlinear scalar field potential to β <2.4 ×107 for n =6 , one order of magnitude more sensitive than the most recent free neutron limit for intermediate n . Similar experiments can explore the full parameter range for chameleon dark energy in the foreseeable future.

  19. Classical nuclear motion coupled to electronic non-adiabatic transitions

    Science.gov (United States)

    Agostini, Federica; Abedi, Ali; Gross, E. K. U.

    2014-12-01

    Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.

  20. Classical nuclear motion coupled to electronic non-adiabatic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Federica; Abedi, Ali; Gross, E. K. U. [Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)

    2014-12-07

    Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.

  1. Classical nuclear motion coupled to electronic non-adiabatic transitions

    International Nuclear Information System (INIS)

    Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations

  2. Classical Kolmogorov scaling is inconsistent with local coupling

    CERN Document Server

    Uhlig, C

    1996-01-01

    We consider cascade models of turbulence which are obtained by restricting the Navier-Stokes equation to local interactions. By combining the results of the method of extended self-similarity and a novel subgrid model, we investigate the inertial range fluctuations of the cascade. Significant corrections to the classical scaling exponents are found. The dynamics of our local Navier-Stokes models is described accurately by a simple set of Langevin equations proposed earlier as a model of turbulence [Phys. Rev. E {\\bf 50}, 285 (1994)]. This allows for a prediction of the intermittency exponents without adjustable parameters. Excellent agreement with numerical simulations is found.

  3. Quantum to Classical Transition in a System of Two Coupled Kicked Rotors

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wen-Lei; JIE Quan-Lin

    2009-01-01

    We investigate the quantum-classical transition in a system of two coupled kicked rotors. We find that when the mass of one kicked rotor is much smaller than the other's, the influence of the light kicked rotor is still able to make decoherence of the heavy one. This leads to the quantum-classical transition of the heavy kicked rotor. We demonstrate this by two different coupling potentials.

  4. Classical Monte-Carlo simulation for Rydberg states ionization in strong field

    Science.gov (United States)

    Carrat, Vincent; Magnuson, Eric; Gallagher, Thomas

    2016-05-01

    The resilience of Rydberg states against ionization has fascinated physicists for a long time. One might expect that the loosely bound electron would be ionized by modest electromagnetic field. However, experiments show that a notable fraction of neutral atoms survive in Rydberg states when exposed to strong microwave or laser fields. Energy transfer between the field and the photoelectron occurs when the electron is close to the ionic core and depends on the phase of the field. Since those states have orbital times that can be larger than the field pulse duration, these energy exchanges will only occur a few times. While we can experimentally control the initial time when we create the Rydberg states and as a consequence the initial energy transfer from the field, our classical calculation suggests that the phase when the electron is returning to the ionic core on the next orbit is chaotic. Statistically the electron only has a 50% chance to gain energy which may lead to ionization. Additionally the population tends to accumulate in very high n states where ionization is less likely due to fewer rescattering events. Though incomplete, this classical Monte­-Carlo simulation provides useful insights for understanding the experimental observations. This work has been entirely performed at University of Virginia and is supported by the U. S. Department of Energy, Office of Basic energy Sciences.

  5. The strong coupling regime of twelve flavors QCD

    CERN Document Server

    da Silva, Tiago Nunes

    2012-01-01

    We summarize the results recently reported in Ref.[1] [A. Deuzeman, M.P. Lombardo, T. Nunes da Silva and E. Pallante,"The bulk transition of QCD with twelve flavors and the role of improvement"] for the SU(3) gauge theory with Nf=12 fundamental flavors, and we add some numerical evidence and theoretical discussion. In particular, we study the nature of the bulk transition that separates a chirally broken phase at strong coupling from a chirally restored phase at weak coupling. When a non-improved action is used, a rapid crossover is observed at small bare quark masses. Our results confirm a first order nature for this transition, in agreement with previous results we obtained using an improved action. As shown in Ref.[1], when improvement of the action is used, the transition is preceded by a second rapid crossover at weaker coupling and an exotic phase emerges, where chiral symmetry is not yet broken. This can be explained [1] by the non hermiticity of the improved lattice Transfer matrix, arising from the c...

  6. Mesoscopic Anderson Box: Connecting Weak to Strong Coupling

    Science.gov (United States)

    Liu, Dong E.; Burdin, Sebastien; Baranger, Harold U.; Ullmo, Denis

    2011-03-01

    Both the weakly coupled and strong coupling Anderson impurity problem are characterized by a Fermi-liquid theory with weakly interacting quasiparticles. In an Anderson box, mesoscopic fluctuations of the effective single particle properties will be large. We study how the statistical fluctuations in these two problems are connected. We use random matrix theory and the slave boson mean field approximation (SBMF, at low temperature) to address this question, obtaining the following results. First, for a resonant level model such as results from the SBMF approximation, we find the joint distribution of energy levels with and without the resonant level present. Second, if only energy levels within the Kondo resonance are considered, the distribution of perturbed levels collapse to one universal form for both GOE and GUE for all values of the coupling V. Finally, a purely Fermi liquid method is developed for calculating the perturbed levels within the Kondo resonance. Comparing the levels that result to those of the SBMF, we find remarkable agreement.

  7. The strong coupling constant of QCD with four flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Fatih

    2010-11-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  8. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.

    Science.gov (United States)

    Liang, Yongye; Li, Yanguang; Wang, Hailiang; Dai, Hongjie

    2013-02-13

    Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic nanoparticles and nanocarbon, leading to nonprecious metal-based electrocatalysts with improved activity and durability for the oxygen reduction reaction for fuel cells and chlor-alkali catalysis, oxygen evolution reaction, and hydrogen evolution reaction. X-ray absorption near-edge structure and scanning transmission electron microscopy are employed to characterize the hybrids materials and reveal the coupling effects between inorganic nanomaterials and nanocarbon substrates. Z-contrast imaging and electron energy loss spectroscopy at single atom level are performed to investigate the nature of catalytic sites on ultrathin graphene sheets. Nanocarbon-based hybrid materials may present new opportunities for the development of electrocatalysts meeting the requirements of activity, durability, and cost for large-scale electrochemical applications. PMID:23339685

  9. Properties of electrons scattered on a strong plane electromagnetic wave with a linear polarization: classical treatment

    CERN Document Server

    Bogdanov, O V

    2014-01-01

    The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part l...

  10. A ''geometric'' derivation of the strong coupling constant

    International Nuclear Information System (INIS)

    Since more than a decade, a bi-scale, unified approach to strong and gravitational interactions has been proposed, that uses the geometrical methods of general relativity, and yielded results similar to ''strong gravity'' theory's. We fix our attention, in this note, on hadron structure, and show that also the strong interaction strength αS, ordinarily called the ''(perturbative) coupling-constant square'', can be evaluated within our theory, and found to decrease (increase) as the ''distance'' r decreases (increases). This yields both the confinement of the hadron constituents (for large values of r), and their asymptotic freedom (for small values of r inside the hadron): in qualitative agreement with the experimental evidence. In other words, our approach leads us, on a purely theoretical ground, to a dependence of αS on r which had been previously found only on phenomenological and heuristic grounds. We expect the above agreement to be also quantitative, on the basis of a few checks performed in this paper, and of further work of ours about calculating meson mass-spectra. (author). 10 refs

  11. Classical and quantum modes of coupled Mathieu equations

    DEFF Research Database (Denmark)

    Landa, H.; Reznik, B.; Drewsen, M.;

    2012-01-01

    We expand the solutions of linearly coupled Mathieu equations in terms of infinite-continued matrix inversions, and use it to find the modes which diagonalize the dynamical problem. This allows obtaining explicitly the (Floquet–Lyapunov) transformation to coordinates in which the motion is that o...... general linear systems with periodic coefficients (coupled Hill equations, periodically driven parametric oscillators), and to nonlinear systems as a starting point for convenient perturbative treatment of the nonlinearity....... decoupled linear oscillators. We use this transformation to solve the Heisenberg equations of the corresponding quantum-mechanical problem, and find the quantum wavefunctions for stable oscillations, expressed in configuration space. The obtained transformation and quantum solutions can be applied to more......We expand the solutions of linearly coupled Mathieu equations in terms of infinite-continued matrix inversions, and use it to find the modes which diagonalize the dynamical problem. This allows obtaining explicitly the (Floquet–Lyapunov) transformation to coordinates in which the motion is that of...

  12. Mode imaging and selection in strongly coupled nanoantennas

    CERN Document Server

    Huang, Jer-Shing; Geisler, Peter; Weinmann, Pia; Kamp, Martin; Forchel, Alfred; Biagioni, Paolo; Hecht, Bert

    2010-01-01

    The number of eigenmodes in plasmonic nanostructures increases with complexity due to mode hybridization, raising the need for efficient mode characterization and selection. Here we experimentally demonstrate direct imaging and selective excitation of the bonding and antibonding plasmon mode in symmetric dipole nanoantennas using confocal two-photon photoluminescence mapping. Excitation of a high-quality-factor antibonding resonance manifests itself as a two-lobed pattern instead of the single spot observed for the broad bonding resonance, in accordance with numerical simulations. The two-lobed pattern is observed due to the fact that excitation of the antibonding mode is forbidden for symmetric excitation at the feedgap, while concomitantly the mode energy splitting is large enough to suppress excitation of the bonding mode. The controlled excitation of modes in strongly coupled plasmonic nanostructures is mandatory for efficient sensors, in coherent control as well as for implementing well-defined functiona...

  13. Thermodynamics of the BMN matrix model at strong coupling

    Science.gov (United States)

    Costa, Miguel S.; Greenspan, Lauren; Penedones, João; Santos, Jorge E.

    2015-03-01

    We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical S 8 horizon. This geometry preserves the SO(9) symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the SO(9) to the SO(6) × SO(3) symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.

  14. Thermodynamics of the BMN matrix model at strong coupling

    CERN Document Server

    Costa, Miguel S; Penedones, Joao; Santos, Jorge

    2014-01-01

    We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical $S^8$ horizon. This geometry preserves the $SO(9)$ symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the $SO(9)$ to the $SO(6)\\times SO(3)$ symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.

  15. Anomaly induced transport coefficients, from weak to strong coupling

    CERN Document Server

    Pena-Benitez, Francisco

    2013-01-01

    The existence of new transport phenomena associated to the presence of quantum anomalies has atracted very recently the attention of theorist. These transport coefficient have very interesting properties, for example, they do not renormalize. The most famous case of anomaly induced transport phenomena is the Chiral Magnetic Effect, in which an electric current is produced by a magnetic field if the system has a different number of right handed fermions respect the left handed one. In this thesis we have studied those transport coefficients from Kubo formulas at weak and strong coupling. To finish a fluid/gravity approach is used to compute all the second order anomalous coefficients in an anomalous conformal fluid.

  16. Supernova neutrinos: Strong coupling effects of weak interactions

    CERN Document Server

    Fogli, G L; Marrone, A; Mirizzi, A

    2008-01-01

    In core-collapse supernovae, neutrinos and antineutrinos are initially subject to significant self-interactions induced by weak neutral currents, which may induce strong-coupling effects on the flavor evolution (collective transitions). The interpretation of the effects is simplified when self-induced collective transitions are decoupled from ordinary matter oscillations, as for the matter density profile that we discuss. In this case, approximate analytical tools can be used (pendulum analogy, swap of energy spectra). For inverted neutrino mass hierarchy, the sequence of effects involves: synchronization, bipolar oscillations, and spectral split. Our simulations shows that the main features of these regimes are not altered when passing from simplified (angle-averaged) treatments to full, multi-angle numerical experiments.

  17. On the flavor problem in strongly coupled theories

    International Nuclear Information System (INIS)

    This thesis is on the flavor problem of Randall Sundrum models and their strongly coupled dual theories. These models are particularly well motivated extensions of the Standard Model, because they simultaneously address the gauge hierarchy problem and the hierarchies in the quark masses and mixings. In order to put this into context, special attention is given to concepts underlying the theories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). The AdS/CFT duality is introduced and its implications for the Randall Sundrum model with fermions in the bulk and general bulk gauge groups is investigated. It is shown that the different terms in the general 5D propagator of a bulk gauge field can be related to the corresponding diagrams of the strongly coupled dual, which allows for a deeper understanding of the origin of flavor changing neutral currents generated by the exchange of the Kaluza Klein excitations of these bulk fields. In the numerical analysis, different observables which are sensitive to corrections from the tree-level exchange of these resonances will be presented on the basis of updated experimental data from the Tevatron and LHC experiments. This includes electroweak precision observables, namely corrections to the S and T parameters followed by corrections to the Zb anti b vertex, flavor changing observables with flavor changes at one vertex, viz. B(Bd→μ+μ-) and B(Bs→μ+μ-), and two vertices, viz. Sψφ and vertical stroke εK vertical stroke, as well as bounds from direct detection experiments. The analysis will show that all of these bounds can be brought in agreement with a new physics scale ΛNP in the TeV range, except for the CP violating quantity vertical stroke εK vertical stroke, which requires ΛNP=O(10) TeV in the absence of fine-tuning. The numerous modifications of the Randall Sundrum model in the literature, which try to attenuate this bound are reviewed and categorized. Subsequently, a

  18. On the flavor problem in strongly coupled theories

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Martin

    2012-11-28

    This thesis is on the flavor problem of Randall Sundrum models and their strongly coupled dual theories. These models are particularly well motivated extensions of the Standard Model, because they simultaneously address the gauge hierarchy problem and the hierarchies in the quark masses and mixings. In order to put this into context, special attention is given to concepts underlying the theories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). The AdS/CFT duality is introduced and its implications for the Randall Sundrum model with fermions in the bulk and general bulk gauge groups is investigated. It is shown that the different terms in the general 5D propagator of a bulk gauge field can be related to the corresponding diagrams of the strongly coupled dual, which allows for a deeper understanding of the origin of flavor changing neutral currents generated by the exchange of the Kaluza Klein excitations of these bulk fields. In the numerical analysis, different observables which are sensitive to corrections from the tree-level exchange of these resonances will be presented on the basis of updated experimental data from the Tevatron and LHC experiments. This includes electroweak precision observables, namely corrections to the S and T parameters followed by corrections to the Zb anti b vertex, flavor changing observables with flavor changes at one vertex, viz. B(B{sub d}{yields}{mu}{sup +}{mu}{sup -}) and B(B{sub s}{yields}{mu}{sup +}{mu}{sup -}), and two vertices, viz. S{sub {psi}{phi}} and vertical stroke {epsilon}{sub K} vertical stroke, as well as bounds from direct detection experiments. The analysis will show that all of these bounds can be brought in agreement with a new physics scale {Lambda}{sub NP} in the TeV range, except for the CP violating quantity vertical stroke {epsilon}{sub K} vertical stroke, which requires {Lambda}{sub NP}=O(10) TeV in the absence of fine-tuning. The numerous modifications of the

  19. The properties of strong couple bound polaron in monolayer graphene

    Science.gov (United States)

    Ding, Zhao-Hua; Zhao, Ying; Xiao, Jing-Lin

    2016-09-01

    Based on the Hamiltonian of the interaction energy between electron on the surface of the graphene and longitudinal acoustic phonon on the surface of the substrate, the paper studies the properties of strong couple polaron in monolayer graphene considering the coulomb doping problem. The conventional Lee-Low-Pine unitary transformation method and linear combination operator method are used to calculate the ground state energy of the polaron. The results show that the ground state energy of the system has a linear relationship with the magnetic field strength, the cut-off wave number, the coulomb bound parameter, the distance between the graphene and the substrates, meanwhile, the ground state energy will split into two branches near the Dirac point.

  20. Mathematical structure of Rabi oscillations in the strong coupling regime

    International Nuclear Information System (INIS)

    In this paper, we generalize the Jaynes-Cummings Hamiltonian by making use of some operators based on Lie algebras su(1, 1) and su(2), and study a mathematical structure of Rabi floppings of these models in the strong coupling regime. We show that Rabi frequencies are given by matrix elements of generalized coherent operators (Fujii K 2002 Preprint quant-ph/0202081) under the rotating-wave approximation. In the first half, we make a general review of coherent operators and generalized coherent ones based on Lie algebras su(1, 1) and su(2). In the latter half, we carry out a detailed examination of Frasca (Frasca M 2001 Preprint quant-ph/0111134) and generalize his method, and moreover present some related problems. We also apply our results to the construction of controlled unitary gates in quantum computation. Lastly, we make a brief comment on application to holonomic quantum computation

  1. Strongly coupled copper plasma generated by underwater electrical wire explosion

    International Nuclear Information System (INIS)

    A number of theoretical approaches to the analysis of the parameters of a discharge channel consisting of strongly coupled plasma generated in the process of underwater electrical wire explosion are presented. The analysis is based on experimental results obtained from discharges employing Cu wire. The obtained experimental data included electrical measurements and optical observations from which information about the dynamics of the water flow was extrapolated. Numerical calculation based on a 1D magnetohydrodynamic model was used to simulate the process of underwater wire explosion. A wide range conductivity model was applied in this calculation and good agreement with a set of experimental data was obtained. A method of determining the average temperature of the discharge channel based on this model and experimental results is proposed, and the limits of this method's applicability are discussed

  2. Strongly coupled gauge theories: What can lattice calculations teach us?

    CERN Document Server

    Hasenfratz, A; Rebbi, C; Weinberg, E; Witzel, O

    2015-01-01

    The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it is important to understand the general properties and specific features of the different competing models. In this work we discuss many-flavor gauge-fermion systems that contain both massless (light) and massive fermions. The former provide Goldstone bosons and trigger electroweak symmetry breaking, while the latter indirectly influence the infrared dynamics. Numerical results reveal that such systems can exhibit a light $0^{++}$ isosinglet scalar, well separated from the rest of the spectrum. Further, when we set the scale via the $vev$ of electroweak symmetry breaking, we predict a 2 TeV vector resonance which could...

  3. Strong-coupling effects in a plasma of confining gluons

    CERN Document Server

    Florkowski, Wojciech; Su, Nan; Tywoniuk, Konrad

    2015-01-01

    The plasma consisting of confining gluons resulting from the Gribov quantization of the SU(3) Yang-Mills theory is studied using non-equilibrium fluid dynamical framework. Exploiting the Bjorken symmetry and using linear response theory a general analytic expressions for the bulk and shear viscosity coefficients are derived. It is found that the considered system exhibits a number of properties similar to the strongly-coupled theories, where the conformality is explicitly broken. In particular, it is shown that, in the large temperature limit, bulk to shear viscosity ratio, scales linearly with the difference $1/3 - c_s^2$, where $c_s$ is the speed of sound. Results obtained from the analysis are in line with the interpretation of the quark-gluon plasma as an almost perfect fluid.

  4. Strongly coupled semiclassical plasma: interaction model and some properties

    International Nuclear Information System (INIS)

    In the report a fully ionized strongly coupled hydrogen plasma is considered. The density number is considered within range n=ne=ni≅(1021-2·1025)sm-3, and the temperature domian is T≅(5·104-106) K. The coupling parameter Γ is defined by Γ=e2/αkBT, where kB is the Boltzmann constant and e is electrical charge, α=(3/4πn)1/3 is the average distance between the particles (Wigner-Seitz radius). The dimensionless density parameter rs=α/αB is given in terms of the Bohr radius αB=ℎ2/me2∼0.529·10-8 sm. The degeneracy parameter for the electron was defined by the ratio between the thermal energy kBT and the Fermi energy EF:Θ=kBT/EF∼0.54·rs/Γ. The intermediate temperature-density region, where Γ≥1; Θ≅1; T>13.6 eV is examined. A semiclassical effective potential which account for the short-range, quantum diffraction and symmetry effects of charge carriers screening

  5. Coupling of strongly localized graphene plasmons to molecular vibrations

    Science.gov (United States)

    Farmer, Damon; Li, Yilei; Yan, Hugen; Meng, Xiang; Zhu, Wenjuan; Osgood, Richard; Heinz, Tony; Avouris, Phaedon

    2015-03-01

    In this paper, we first present a determination of the out-of-plane confinement of the plasmons in graphene nanoribbons. Using light with a free-space wavelength of ~ 6 μ m, we excite plasmons in graphene nanoribbons that are ~ 100 nm wide. A red-shift in the plasmon frequency is induced by a thin layer of Poly (methyl methacrylate) (PMMA) adsorbed onto the nanoribbons surface due to dielectric screening effect. With increasing thickness of the PMMA layer, we observe a saturation of the frequency shift, from which we deduce an out-of-plane field plasmon field decay length of ~ 10 nm. The strongly confined plasmons in graphene produce significant enhancement of the field intensity. We show that this enhancement strengthens the coupling of graphene plasmon to vibrations in the PMMA molecules. The enhanced interaction is manifested through induced transparency in the graphene plasmon optical response when the plasmon and the vibrational frequencies are matched. We also show that this coupling is of an electromagnetic nature by comparing the evolution of the line shape as a function of the detuning of the two frequencies to simulations using the finite-difference time-domain method.

  6. Coevolution of inverse cascade and nonlinear heat front in shear flows of strongly coupled Yukawa liquids

    International Nuclear Information System (INIS)

    Using classical molecular dynamics (MD) simulations, we report on the development and propagation of a nonlinear heat front in parallel shear flows of a strongly coupled Yukawa liquid. At a given coupling strength, a subsonic shear profile is superposed on an equilibrated Yukawa liquid and Kelvin Helmholtz (KH) instability is observed. Coherent vortices are seen to emerge towards the nonlinear regime of the instability. It is seen that while inverse cascade leads to a continuous transfer of flow energy towards the largest scales, there is also a simultaneous transfer of flow energy into the thermal velocities of grains at the smallest scale. The latter is an effect of velocity shear and thus leads to the generation of a nonlinear heat front. In the linear regime, the heat front is seen to propagate at speed much lesser than the adiabatic sound speed of the liquid. Spatio-temporal growth of this heat front occurs concurrently with the inverse cascade of KH modes.

  7. Coevolution of inverse cascade and nonlinear heat front in shear flows of strongly coupled Yukawa liquids

    Energy Technology Data Exchange (ETDEWEB)

    Ashwin, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat (India)

    2011-08-15

    Using classical molecular dynamics (MD) simulations, we report on the development and propagation of a nonlinear heat front in parallel shear flows of a strongly coupled Yukawa liquid. At a given coupling strength, a subsonic shear profile is superposed on an equilibrated Yukawa liquid and Kelvin Helmholtz (KH) instability is observed. Coherent vortices are seen to emerge towards the nonlinear regime of the instability. It is seen that while inverse cascade leads to a continuous transfer of flow energy towards the largest scales, there is also a simultaneous transfer of flow energy into the thermal velocities of grains at the smallest scale. The latter is an effect of velocity shear and thus leads to the generation of a nonlinear heat front. In the linear regime, the heat front is seen to propagate at speed much lesser than the adiabatic sound speed of the liquid. Spatio-temporal growth of this heat front occurs concurrently with the inverse cascade of KH modes.

  8. Quantum Thermodynamics in Strong Coupling: Heat Transport and Refrigeration

    Directory of Open Access Journals (Sweden)

    Gil Katz

    2016-05-01

    Full Text Available The performance characteristics of a heat rectifier and a heat pump are studied in a non-Markovian framework. The device is constructed from a molecule connected to a hot and cold reservoir. The heat baths are modelled using the stochastic surrogate Hamiltonian method. The molecule is modelled by an asymmetric double-well potential. Each well is semi-locally connected to a heat bath composed of spins. The dynamics are driven by a combined system–bath Hamiltonian. The temperature of the baths is regulated by a secondary spin bath composed of identical spins in thermal equilibrium. A random swap operation exchange spins between the primary and secondary baths. The combined system is studied in various system–bath coupling strengths. In all cases, the average heat current always flows from the hot towards the cold bath in accordance with the second law of thermodynamics. The asymmetry of the double well generates a rectifying effect, meaning that when the left and right baths are exchanged the heat current follows the hot-to-cold direction. The heat current is larger when the high frequency is coupled to the hot bath. Adding an external driving field can reverse the transport direction. Such a refrigeration effect is modelled by a periodic driving field in resonance with the frequency difference of the two potential wells. A minimal driving amplitude is required to overcome the heat leak effect. In the strong driving regime the cooling power is non-monotonic with the system–bath coupling.

  9. Intrinsic decoherence and classical-quantum correspondence in two coupled delta-kicked rotors

    OpenAIRE

    Park, Hwa-Kyun; Kim, Sang Wook

    2002-01-01

    We show that classical-quantum correspondence of center of mass motion in two coupled delta-kicked rotors can be obtained from intrinsic decoherence of the system itself which occurs due to the entanglement of the center of mass motion to the internal degree of freedom without coupling to external environment.

  10. Energy exchange in strongly coupled plasmas with electron drift

    Energy Technology Data Exchange (ETDEWEB)

    Akbari-Moghanjoughi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745-406 Tabriz (Iran, Islamic Republic of); International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum (Germany); Ghorbanalilu, M. [Physics Department, Shahid Beheshti University, G.C., Evin, Tehran (Iran, Islamic Republic of)

    2015-11-15

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  11. Energy exchange in strongly coupled plasmas with electron drift

    International Nuclear Information System (INIS)

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam

  12. Nonlinear Debye screening in strongly-coupled plasmas

    CERN Document Server

    Sarmah, D; Tessarotto, M

    2006-01-01

    An ubiquitous property of plasmas is the so-called Debye shielding of the electrostatic potential. Important aspects of Debye screening concern, in particular, the investigation of non-linear charge screening effects taking place in strongly-coupled plasmas, that imply a reduction of the effective charge characterizing the Debye-H\\"{u}ckel potential. These effects are particularly relevant in dusty plasmas which are characterized by high-Z particles. The investigation of the effective interactions of these particles has attracted interest in recent years especially for numerical simulations. In this work we intend to analyze the consistency of the traditional mathematical model for the Debye screening. In particular, we intend to prove that the 3D Poisson equation involved in the DH model does not admit strong solutions. For this purpose a modified model is proposed which takes into account the effect of local plasma sheath (i.e., the local domain near test particles where the plasma must be considered discre...

  13. Energy exchange in strongly coupled plasmas with electron drift

    Science.gov (United States)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-11-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  14. Kolmogorov flow in two dimensional strongly coupled dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Akanksha; Ganesh, R., E-mail: ganesh@ipr.res.in; Joy, Ashwin [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 382 428 (India)

    2014-07-15

    Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τ{sub m} [0 < τ{sub m} < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τ{sub m} = 0), it is found that for Reynolds number beyond a critical R, say R{sub c}, the Kolmogorov flow becomes unstable. Importantly, it is found that R{sub c} is strongly reduced for increasing values of τ{sub m}. A critical τ{sub m}{sup c} is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < R{sub c}, the neutral stability regime found in Navier Stokes fluid (τ{sub m} = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.

  15. Strongly coupled non-Abelian plasmas in a magnetic field

    CERN Document Server

    Critelli, Renato

    2016-01-01

    In this dissertation we use the gauge/gravity duality approach to study the dynamics of strongly coupled non-Abelian plasmas. Ultimately, we want to understand the properties of the quark-gluon plasma (QGP), whose scientifc interest by the scientific community escalated exponentially after its discovery in the 2000's through the collision of ultrarelativistic heavy ions. One can enrich the dynamics of the QGP by adding an external field, such as the baryon chemical potential (needed to study the QCD phase diagram), or a magnetic field. In this dissertation, we choose to investigate the magnetic effects. Indeed, there are compelling evidences that strong magnetic fields of the order $eB\\sim 10 m_\\pi^2$ are created in the early stages of ultrarelativistic heavy ion collisions. The chosen observable to scan possible effects of the magnetic field on the QGP was the viscosity, due to the famous result $\\eta/s=1/4\\pi$ obtained via holography. In a first approach we use a caricature of the QGP, the $\\mathcal{N}=4$ s...

  16. Cubic Single Crystal Representations in Classical and Size-dependent Couple Stress Elasticity

    CERN Document Server

    Bansal, Dipanshu; Aref, Amjad J; Hadjesfandiari, Ali R

    2015-01-01

    Beginning with Cosserat theory in the early 20th century, there have been several different formulations for size-dependent elastic response. In this paper, we concentrate on the application of classical Cauchy theory and the recent parsimonious consistent couple stress theory to model a homogeneous linear elastic solid, exemplified by a pure single crystal with cubic structure. The focus is on an examination of elastodynamic response based upon wave velocities from ultrasonic excitation and phonon dispersion curves, along with adiabatic bulk moduli measurements. In particular, we consider in detail elastic parameter estimation within classical elasticity and consistent couple stress theory for four different cubic single crystals (NaCl, KCl, Cu, CuZn). The classical theory requires the estimation of three independent material parameters, while only one additional parameter relating skew-symmetric mean curvature to skew-symmetric couple-stress is needed for the size-dependent consistent couple stress theory. ...

  17. Dynamics of an electron spin in strong classical and quantized electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Skoromnik, Oleg

    2014-07-09

    The electron motion in the presence of a strong classical and quantized pulse of an electromagnetic field is studied with a special emphasis on the spin degree of freedom. It is shown that the Hamiltonian of this system can be separated into two parts with the help of canonical transformations of the field variables, namely the interaction between an electron and a single collective mode of the field and fluctuations relatively to this collective mode. The application of perturbation theory to the fluctuations allows the conditions of applicability of the single-mode approximation for the quantized external field to be formulated. Furthermore, within this approximation the electron spin evolution is investigated. In addition to fast spin oscillations at the laser frequency, a second time scale is identified due to the intensity-dependent emissions and absorptions of field quanta, that is collapse and revival dynamics. The effect is observable at the experimentally feasible intensity of 10{sup 18} Wcm{sup 2}. After this, we switch to the regime of higher intensities, when the fluctuations of the external field can be neglected. We investigate the asymmetries in the electron scattering arising due to the electron polarization and pulse duration, and constrain the optimal conditions for the asymmetry observation.

  18. A coupled-trajectory quantum-classical approach to decoherence in non-adiabatic processes

    CERN Document Server

    Min, Seung Kyu; Gross, E K U

    2015-01-01

    We present a novel quantum-classical approach to non-adiabatic dynamics, deduced from the coupled electronic and nuclear equations in the framework of the exact factorization of the electron-nuclear wave function. The method is based on the quasi-classical interpretation of the nuclear wave function, whose phase is related to the classical momentum and whose density is represented in terms of classical trajectories. In this approximation, electronic decoherence is naturally induced as effect of the coupling to the nuclei and correctly reproduces the expected quantum behaviour. Moreover, the splitting of the nuclear wave packet is captured as consequence of the correct approximation of the time-dependent potential of the theory. This new approach offers a clear improvement over Ehrenfest-like dynamics. The theoretical derivation presented in the Letter is supported by numerical results that are compared to quantum mechanical calculations.

  19. Effects of Strong Electronic Coupling in Chlorin and Bacteriochlorin Dyads.

    Science.gov (United States)

    Kang, Hyun Suk; Esemoto, Nopondo N; Diers, James R; Niedzwiedzki, Dariusz M; Greco, Jordan A; Akhigbe, Joshua; Yu, Zhanqian; Pancholi, Chirag; Bhagavathy, Ganga Viswanathan; Nguyen, Jamie K; Kirmaier, Christine; Birge, Robert R; Ptaszek, Marcin; Holten, Dewey; Bocian, David F

    2016-01-28

    Achieving tunable, intense near-infrared absorption in molecular architectures with properties suitable for solar light harvesting and biomedical studies is of fundamental interest. Herein, we report the photophysical, redox, and molecular-orbital characteristics of nine hydroporphyrin dyads and associated benchmark monomers that have been designed and synthesized to attain enhanced light harvesting. Each dyad contains two identical hydroporphyrins (chlorin or bacteriochlorin) connected by a linker (ethynyl or butadiynyl) at the macrocycle β-pyrrole (3- or 13-) or meso (15-) positions. The strong electronic communication between constituent chromophores is indicated by the doubling of prominent absorption features, split redox waves, and paired linear combinations of frontier molecular orbitals. Relative to the benchmarks, the chlorin dyads in toluene show substantial bathochromic shifts of the long-wavelength absorption band (17-31 nm), modestly reduced singlet excited-state lifetimes (τS = 3.6-6.2 ns vs 8.8-12.3 ns), and increased fluorescence quantum yields (Φf = 0.37-0.57 vs 0.34-0.39). The bacteriochlorin dyads in toluene show significant bathochromic shifts (25-57 nm) and modestly reduced τS (1.6-3.4 ns vs 3.5-5.3 ns) and Φf (0.09-0.19 vs 0.17-0.21) values. The τS and Φf values for the bacteriochlorin dyads are reduced substantially (up to ∼20-fold) in benzonitrile. The quenching is due primarily to the increased S1 → S0 internal conversion that is likely induced by increased contribution of charge-resonance configurations to the S1 excited state in the polar medium. The fundamental insights gained into the physicochemical properties of the strongly coupled hydroporphyrin dyads may aid their utilization in solar-energy conversion and photomedicine. PMID:26765839

  20. Efficient parabolic evaluation of coupling terms in hybrid quantum/classical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bastida, Adolfo, E-mail: bastida@um.es [Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Murcia, 30100 Murcia (Spain); Soler, Miguel Angel; Zuniga, Jose; Requena, Alberto [Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Murcia, 30100 Murcia (Spain); Miguel, Beatriz [Departamento de Ingenieria Quimica y Ambiental, Universidad Politecnica de Cartagena, 30203 Cartagena (Spain)

    2009-03-30

    A parabolic interpolation function of time is proposed to evaluate the non-adiabatic coupling matrix elements and the adiabatic energies at intermediate times within the classical time integration interval in hybrid quantum/classical simulations. The accuracy and the computational efficiency of this parabolic approximation are illustrated by carrying out a numerical application to the well-studied vibrational relaxation of I{sub 2} in liquid xenon.

  1. Coherent Preservation of Two-Qubit Quantum Entanglement in the Strong Coupling Region

    International Nuclear Information System (INIS)

    The entanglement of two qubits is investigated in the range of their ultra-strongly coupling with a quantum oscillator. The two qubits are initially in four Bell states and they are under the control mechanism of the coherent state of the quantum oscillator. There are four parameters: the average number of the coherent state, the ultra-strong coupling strength, the ratio of two frequencies of qubit and oscillator, and the inter-interaction coupling of the two qubits in the mechanism, and they all are influential parameters on the entanglement of the two qubits. One Bell state |0〉 is easyily kept and is trivial case. The novel results show that there is one state | I0〉 among the other three Bell states which the entanglement of the two qubits could be almost completely preserved. The possibility is made into reality by the appropriate choice of the four influential parameters. We give two different schemes to choose the respective parameters to maintain the entanglment of | I0〉 almost undiminished. The results will be useful for the quantum information process. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Magnetic coupling in superconducting spin valves with strong ferromagnets

    Science.gov (United States)

    Flokstra, M.; van der Knaap, J. M.; Aarts, J.

    2010-11-01

    We investigate the magnetotransport behavior of ferromagnet (F)/superconductor/ferromagnet trilayers made of ferromagnetic Ni80Fe20 (Permalloy, Py) and superconducting Nb for temperatures both above and below the superconducting transition temperature Tc . In such devices, and for weak ferromagnets, Tc depends on the relative magnetization directions of the two F layers in such a way that TcP of the parallel (P) alignment is lower than TcAP of the antiparallel (AP) alignment (the so-called superconducting spin-valve effect). For strong magnets, the suppression of Andreev reflection may alter this picture, but also stray field effects become important, as is known from earlier work. We compare large-area samples with microstructured ones, and find blocklike switching in the latter. We show this not to be due to a switch between the P and AP states, but rather to dipolar coupling between domains which are forming in the two Py layers, making a stray-field scenario likely. We also present measurements of the depairing (critical) current Idp and show that a similar depression of superconductivity exists far below Tc as is found around Tc .

  3. Weak-coupling superconductivity in a strongly correlated iron pnictide

    Science.gov (United States)

    Charnukha, A.; Post, K. W.; Thirupathaiah, S.; Pröpper, D.; Wurmehl, S.; Roslova, M.; Morozov, I.; Büchner, B.; Yaresko, A. N.; Boris, A. V.; Borisenko, S. V.; Basov, D. N.

    2016-01-01

    Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy (ARPES), ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978Co0.022As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Γ point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations.

  4. Large mass hierarchies from strongly-coupled dynamics

    Science.gov (United States)

    Athenodorou, Andreas; Bennett, Ed; Bergner, Georg; Elander, Daniel; Lin, C.-J. David; Lucini, Biagio; Piai, Maurizio

    2016-06-01

    Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover,our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.

  5. Large mass hierarchies from strongly-coupled dynamics

    CERN Document Server

    Athenodorou, Andreas; Bergner, Georg; Elander, Daniel; Lin, C -J David; Lucini, Biagio; Piai, Maurizio

    2016-01-01

    Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio $R$ between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in ...

  6. Ionization equilibrium and equation of state in strongly coupled plasmas

    International Nuclear Information System (INIS)

    Calculation of the physical properties of reacting plasmas depends on knowing the state of ionization and/or the state occupation numbers. Simple methods have often been used to estimate ionization balance in plasmas, but they are not adequate for understanding a variety of new experimental and observational measurements. Theoretical methods to determine the ionization state of partially ionized plasmas must confront the effects of density on bound states and strong ion coupling. These methods can be separated into two categories. Chemical picture methods consider the system to be composed of distinct chemical species. Consequently, it is necessary to assert the effect of the plasma environment on internal states of these species. On the other hand, physical picture methods view the plasma in terms of its fundamental constituents; i.e., electrons and nuclei, so that plasma effects on bound states are a basic component of the theory. A discussion of some work representative of both of these philosophies will be given. Some comparisons between theories and with recent helioseismic observations and shock experiments will also be given. (c) 2000 American Institute of Physics. (c)

  7. Strong coupling between single atoms and non-transversal photons

    International Nuclear Information System (INIS)

    Full text: We investigate the interaction between single quantum emitters and non-transversally polarized photons for which the electric field vector amplitude has a significant component in the direction of propagation. Even though this situation seems to be at odds with the description of light as a transverse wave, it regularly occurs when inter-facing or manipulating emitters with non-paraxial, guided, or evanescent light. Here, we quantitatively investigate this phenomenon for the case of single 85Rb atoms that strongly interact with a bottle-micro resonator - a novel type of whispering-gallery-mode (WGM) micro resonator. Our experimental results show that the non-transversal polarization decisively alters the physics of light–matter interaction. In addition they demonstrate that WGM resonators constitute a novel class of micro resonators that can, e.g., simultaneously sustain three orthogonally polarized eigenmodes. Building on our improved understanding, we investigate pathways to future WGM resonator based photonic devices. As a first example, we simultaneously interface the resonator with two coupling fibers, and use a single atom to route the incoming light between the optical fibers. (author)

  8. Complex (dusty) plasmas—kinetic studies of strong coupling phenomenaa)

    Science.gov (United States)

    Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.

    2012-05-01

    "Dusty plasmas" can be found almost everywhere—in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and—at the fundamental level—in the physics of strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10-12to10-9g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

  9. Complex (dusty) plasmas—kinetic studies of strong coupling phenomena

    International Nuclear Information System (INIS)

    “Dusty plasmas” can be found almost everywhere—in the interstellar medium, in star and planet formation, in the solar system in the Earth’s atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and—at the fundamental level—in the physics of strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10-12to10-9g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

  10. Dusty Plasmas - Kinetic Studies of Strong Coupling Phenomena

    Science.gov (United States)

    Morfill, Gregor

    2011-10-01

    ``Dusty plasmas'' can be found almost everywhere - in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere and in the laboratory. In astrophysical plasmas the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory there is great interest in industrial processes (e.g. etching, vapor deposition) and at the fundamental physics level - the main topic here - the study of strong coupling phenomena. Here the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and pace, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many particle systems including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10-12 to 10-9 g) precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

  11. Complex (dusty) plasmas-kinetic studies of strong coupling phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M. [Max-Planck-Institut fuer Extraterrestrische Physik, D-85740 Garching (Germany)

    2012-05-15

    'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics of strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

  12. Quantum-Classical Nonadiabatic Dynamics: Coupled- vs Independent-Trajectory Methods.

    Science.gov (United States)

    Agostini, Federica; Min, Seung Kyu; Abedi, Ali; Gross, E K U

    2016-05-10

    Trajectory-based mixed quantum-classical approaches to coupled electron-nuclear dynamics suffer from well-studied problems such as the lack of (or incorrect account for) decoherence in the trajectory surface hopping method and the inability of reproducing the spatial splitting of a nuclear wave packet in Ehrenfest-like dynamics. In the context of electronic nonadiabatic processes, these problems can result in wrong predictions for quantum populations and in unphysical outcomes for the nuclear dynamics. In this paper, we propose a solution to these issues by approximating the coupled electronic and nuclear equations within the framework of the exact factorization of the electron-nuclear wave function. We present a simple quantum-classical scheme based on coupled classical trajectories and test it against the full quantum mechanical solution from wave packet dynamics for some model situations which represent particularly challenging problems for the above-mentioned traditional methods. PMID:27030209

  13. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments

    International Nuclear Information System (INIS)

    To move beyond dedicated links and networks, quantum communications signals must be integrated into networks carrying classical optical channels at power levels many orders of magnitude higher than the quantum signals themselves. We demonstrate the transmission of a 1550 nm quantum channel with up to two simultaneous 200 GHz spaced classical telecom channels, using reconfigurable optical add drop multiplexer (ROADM) technology for multiplexing and routing quantum and classical signals. The quantum channel is used to perform quantum key distribution (QKD) in the presence of noise generated as a by-product of the co-propagation of classical channels. We demonstrate that the dominant noise mechanism can arise from either four-wave mixing or spontaneous Raman scattering, depending on the optical path characteristics as well as the classical channel parameters. We quantify these impairments and discuss mitigation strategies.

  14. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Danna [Los Alamos National Laboratory; Peterson, Charles G [Los Alamos National Laboratory; Dallmann, Nicholas [Los Alamos National Laboratory; Hughes, Richard J [Los Alamos National Laboratory; Mccabe, Kevin P [Los Alamos National Laboratory; Nordholt, Jane E [Los Alamos National Laboratory; Tyagi, Hush T [Los Alamos National Laboratory; Peters, Nicholas A [TELCORDIA TECHNOLOGIES; Toliver, Paul [TELCORDIA TECHNOLOGIES; Chapman, Thomas E [TELCORDIA TECHNOLOGIES; Runser, Robert J [TELCORDIA TECHNOLOGIES; Mcnown, Scott R [TELCORDIA TECHNOLOGIES

    2008-01-01

    To move beyond dedicated links and networks, quantum communications signals must be integrated into networks carrying classical optical channels at power levels many orders of magnitude higher than the quantum signals themselves. We demonstrate transmission of a 1550-nm quantum channel with up to two simultaneous 200-GHz spaced classical telecom channels, using ROADM (reconfigurable optical <1dd drop multiplexer) technology for multiplexing and routing quantum and classical signals. The quantum channel is used to perform quantum key distribution (QKD) in the presence of noise generated as a by-product of the co-propagation of classical channels. We demonstrate that the dominant noise mechanism can arise from either four-wave mixing or spontaneous Raman scattering, depending on the optical path characteristics as well <1S the classical channel parameters. We quantity these impairments and discuss mitigation strategies.

  15. A novel framework of classical and quantum prisoner’s dilemma games on coupled networks

    Science.gov (United States)

    Deng, Xinyang; Zhang, Qi; Deng, Yong; Wang, Zhen

    2016-03-01

    Evolutionary games on multilayer networks are attracting growing interest. While among previous studies, the role of quantum games in such a infrastructure is still virgin and may become a fascinating issue across a myriad of research realms. To mimick two kinds of different interactive environments and mechanisms, in this paper a new framework of classical and quantum prisoner’s dilemma games on two-layer coupled networks is considered. Within the proposed model, the impact of coupling factor of networks and entanglement degree in quantum games on the evolutionary process has been studied. Simulation results show that the entanglement has no impact on the evolution of the classical prisoner’s dilemma, while the rise of the coupling factor obviously impedes cooperation in this game, and the evolution of quantum prisoner’s dilemma is greatly impacted by the combined effect of entanglement and coupling.

  16. A novel framework of classical and quantum prisoner’s dilemma games on coupled networks

    Science.gov (United States)

    Deng, Xinyang; Zhang, Qi; Deng, Yong; Wang, Zhen

    2016-01-01

    Evolutionary games on multilayer networks are attracting growing interest. While among previous studies, the role of quantum games in such a infrastructure is still virgin and may become a fascinating issue across a myriad of research realms. To mimick two kinds of different interactive environments and mechanisms, in this paper a new framework of classical and quantum prisoner’s dilemma games on two-layer coupled networks is considered. Within the proposed model, the impact of coupling factor of networks and entanglement degree in quantum games on the evolutionary process has been studied. Simulation results show that the entanglement has no impact on the evolution of the classical prisoner’s dilemma, while the rise of the coupling factor obviously impedes cooperation in this game, and the evolution of quantum prisoner’s dilemma is greatly impacted by the combined effect of entanglement and coupling. PMID:26975447

  17. A novel framework of classical and quantum prisoner's dilemma games on coupled networks.

    Science.gov (United States)

    Deng, Xinyang; Zhang, Qi; Deng, Yong; Wang, Zhen

    2016-01-01

    Evolutionary games on multilayer networks are attracting growing interest. While among previous studies, the role of quantum games in such a infrastructure is still virgin and may become a fascinating issue across a myriad of research realms. To mimick two kinds of different interactive environments and mechanisms, in this paper a new framework of classical and quantum prisoner's dilemma games on two-layer coupled networks is considered. Within the proposed model, the impact of coupling factor of networks and entanglement degree in quantum games on the evolutionary process has been studied. Simulation results show that the entanglement has no impact on the evolution of the classical prisoner's dilemma, while the rise of the coupling factor obviously impedes cooperation in this game, and the evolution of quantum prisoner's dilemma is greatly impacted by the combined effect of entanglement and coupling. PMID:26975447

  18. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems.

    Science.gov (United States)

    Xiao, Cong; Li, Dingping

    2016-06-15

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems. PMID:27157714

  19. Coupled-Trajectory Quantum-Classical Approach to Electronic Decoherence in Nonadiabatic Processes

    Science.gov (United States)

    Min, Seung Kyu; Agostini, Federica; Gross, E. K. U.

    2015-08-01

    We present a novel quantum-classical approach to nonadiabatic dynamics, deduced from the coupled electronic and nuclear equations in the framework of the exact factorization of the electron-nuclear wave function. The method is based on the quasiclassical interpretation of the nuclear wave function, whose phase is related to the classical momentum and whose density is represented in terms of classical trajectories. In this approximation, electronic decoherence is naturally induced as an effect of the coupling to the nuclei and correctly reproduces the expected quantum behavior. Moreover, the splitting of the nuclear wave packet is captured as a consequence of the correct approximation of the time-dependent potential of the theory. This new approach offers a clear improvement over Ehrenfest-like dynamics. The theoretical derivation presented in this Letter is supported by numerical results that are compared to quantum mechanical calculations.

  20. Classical and thermodynamical aspects of black holes with conformally coupled scalar field hair

    OpenAIRE

    Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)

    2004-01-01

    We discuss the existence, stability and classical thermodynamics of four-dimensional, spherically symmetric black hole solutions of the Einstein equations with a conformally coupled scalar field. We review the solutions existing in the literature with zero, positive and negative cosmological constant. We also outline new results on the thermodynamics of these black holes when the cosmological constant is non-zero.

  1. From strong to ultrastrong coupling in circuit QED

    International Nuclear Information System (INIS)

    In circuit quantum electrodynamics, the light-matter coupling strength can be tuned over several orders of magnitude and can even be increased to a significant fraction of the system energy. For a flux qubit coupled to a transmission line resonator, we have reached the regime of ultrastrong light-matter interaction and show experimental evidence for the breakdown of the Jaynes-Cummings-model. We present spectroscopic measurements for different coupling schemes of flux qubits and transmission line resonators and discuss the possibility to further increase the coupling strength and reach the regime of deep-ultrastrong coupling. For a complete characterization of our qubits we also perform time-domain spectroscopy measurements in order to determine the coherence times of our qubits.

  2. D-brane physics. From weak to strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Lopes, Daniel Ordine

    2013-01-10

    In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N=1 supersymmetric theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of the brane seven-dimensional action, and obtain the N=1 characteristic data. To discuss the moduli, we first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar potential from D- and F-terms generated from brane and background configurations that would break the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kaehler potential for the moduli space of brane deformations in Type IIB theories. In the second part of the thesis we discuss effects of brane intersections when the string coupling can become strong, and we work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular SU(5) model already discussed in the literature, we construct a model which contains a point of E{sub 8} singularity, and curves of E{sub 6} singularity. By explicitly resolving the space, we show that the resolution requires the introduction of higher dimensional fibers, and argue how we can circumvent this problem for the E{sub 6} curve, leading to the expected resolution that generate an E{sub 6} group, while at the E{sub 8} point we cannot make the resolution lead to an expected E{sub 8} structure.

  3. One-Step Generation of Cluster States Assisted by a Strong Driving Classical Field in Cavity Quantum Electrodynamics

    Institute of Scientific and Technical Information of China (English)

    SHAO Xiao-Qiang; ZHANG Shou

    2008-01-01

    We propose a scheme for one-step generation of cluster states with atoms sent through a thermal cavity with strong classical driving field, based on the resonant atom-cavity interaction so that the operating time is sharply short, which is important in the view of decoherence.

  4. Markovian master equation for a classical particle coupled with arbitrary strength to a harmonic bath.

    Science.gov (United States)

    Gelin, Maxim F

    2014-12-01

    We consider a classical point particle bilinearly coupled to a harmonic bath. Assuming that the evolution of the particle is monitored on a timescale which is longer than the characteristic bath correlation time, we derive the Markovian master equation for the probability density of the particle. The relaxation operator of this master equation is evaluated analytically, without invoking the perturbation theory and the approximation of weak system-bath coupling. When the bath correlation time tends to zero, the Fokker-Planck equation is recovered. For a finite bath correlation time, the relaxation operator contains contributions of all orders in the system-bath coupling. PMID:25481131

  5. Superconducting Split Ring Resonators for Ultra strong Coupling

    International Nuclear Information System (INIS)

    Full text: We coupled superconducting Split Ring Resonators (SRR) to the cyclotron transition in two dimensional electron gases. Metallic SRRs have been proven to be a versatile structure to engineer Ultrastrong coupling between THz radiation and electronic transitions. Using Nb for the superconducting SRR structures enables an in-situ degree of tuning by means of temperature, magnetic field and optical irradiation. The latter of these techniques allows modifying the SRR properties on the picosecond time scale. (author)

  6. From strong to weak coupling in holographic models of thermalization

    CERN Document Server

    Grozdanov, Sašo; Starinets, Andrei O

    2016-01-01

    We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative $R^2$ and $R^4$ terms in the action, focusing on the dual to $\\mathcal{N}=4$ SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic oper...

  7. Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

    CERN Document Server

    Shi, L; Rekola, H T; Martikainen, J -P; Moerland, R J; Törmä, P

    2014-01-01

    We study spatial coherence properties of a system composed of periodic silver nanoparticle arrays covered with a fluorescent organic molecule (DiD) film. The evolution of spatial coherence of this composite structure from the weak to the strong coupling regime is investigated by systematically varying the coupling strength between the localized DiD excitons and the collective, delocalized modes of the nanoparticle array known as surface lattice resonances. A gradual evolution of coherence from the weak to the strong coupling regime is observed, with the strong coupling features clearly visible in interference fringes. A high degree of spatial coherence is demonstrated in the strong coupling regime, even when the mode is very excitonlike (80%), in contrast to the purely localized nature of molecular excitons. We show that coherence appears in proportion to the weight of the plasmonic component of the mode throughout the weak-to-strong coupling crossover, providing evidence for the hybrid nature of the normal m...

  8. Quark Gluon Plasma as a Strongly Coupled Color-Coulombic Plasma

    OpenAIRE

    Bannur, Vishnu Mayya

    1998-01-01

    We show that the extensively studied equation of state (EOS) of strongly coupled QED plasma fits the recent lattice EOS data of gluon plasma remarkably well, with appropriate modifications to take account of color degrees of freedom and running coupling constant. Hence we conclude that the quark gluon plasma near the critical temperature is a strongly coupled color-Coulombic plasma.

  9. Investigation of gauge-fixed pure U(1) theory at strong coupling

    CERN Document Server

    Basak, S; De, Asit K.

    2002-01-01

    We numerically investigate the phase diagram of pure U(1) gauge theory with gauge fixing at strong gauge coupling. The FM-FMD phase transition, which proved useful in defining Abelian lattice chiral gauge theory, persists also at strong gauge coupling. However, there the transition seems no to be longer continuous. At large gauge couplings we find evidences for confinement.

  10. Investigation of gauge-fixed pure U(1) theory at strong coupling

    International Nuclear Information System (INIS)

    We numerically investigate the phase diagram of pure U(1) gauge theory with gauge fixing at strong gauge coupling. The FM-FMD phase transition, which proved useful in defining Abelian lattice chiral gauge theory, persists also at strong gauge coupling. However, there the transition seems no longer to be continuous. At large gauge couplings we find evidences for confinement

  11. Some Remarks on Some Strongly Coupled Reaction-Diffusion Equations

    OpenAIRE

    Diagana, Toka

    2003-01-01

    The primary goal of this paper is to characterize solutions to coupled reaction-diffusion systems. Indeed, we use operators theory to show that under suitable assumptions, then the solutions to the reaction-diffusion equations exist. As applications, we consider a mathematical model arising in Biology and in Chemistry.

  12. Quantum Monte Carlo simulations of strongly coupled quark-gluon plasma

    International Nuclear Information System (INIS)

    Complete text of publication follows. In recent years, there has been an increasing interest in dynamics and thermodynamics of non-Abelian plasmas at both very high temperature and density. It is expected that a specific state of matter with unconfined quarks and gluons - the so called quark - gluon plasma (QGP) - can exist. The most fundamental way to compute properties of the strongly interacting matter is provided by the lattice QCD. Interpretation of these very complicated computations requires application of various QCD motivated, albeit schematic, models simulating various aspects of the full theory. Moreover, such models are needed in cases when the lattice QCD fails, e.g. at large baryon chemical potentials and out of equilibrium. A semi-classical approximation, based on a point like quasi-particle picture has been recently introduced in literature. It is expected that it allows to treat soft processes in the QGP which are not accessible by the perturbative means and the main features of non-Abelian plasmas can be understood in simple semi-classical terms without the difficulties inherent to a full quantum field theoretical analysis. Here we propose stochastic simulation of thermodynamics and kinetic properties for QGP in semiclassical approximation in the wide region of temperature, density and quasi-particles masses. We extend previous classical nonrelativistic simulations based on a color Coulomb interaction to the quantum regime and take into account the Fermi (Bose) statistics of quarks (gluons) and quantum degeneracy self-consistently. In grand canonical ensemble for finite and zero baryon chemical potential we use the direct quantum path integral Monte Carlo method (PIMC) developed for finite temperature within Feynman formulation of quantum mechanics to do calculations of internal energy, pressure and pair correlation functions. The QGP quasi-particles representing dressed quarks, antiquarks and gluons interact via color quantum Kelbg

  13. Stimulated scattering in strongly coupled nanolasers induced by Rabi oscillations

    CERN Document Server

    Marconi, Mathias; Raineri, Fabrice; Levenson, Ariel; Yacomotti, Alejandro M

    2016-01-01

    Two coupled-cavity systems, or "photonic dimers", are efficient test-beds for both fundamental optics -the realization of quantum correlated states, Josephson physics, and so forth-, and applications such as optical flip-flop memories. In this work we report on the first observation of nonlinear mode interaction in a photonic dimer formed by two semiconductor photonic crystal coupled nanolasers. For this, we investigate energy transfer between hybrid modes, which manifests as a switching from the blue-detuned (bonding) to the red-detuned (anti-bonding) modes. An mean-field model allows us to explain this phenomenon as stimulated scattering due to carrier population oscillations in the cavities at the Rabi frequency. Such asymmetrical mode interaction is universal in semiconductor laser photonic molecules, and unveils the origin of cross-correlation dips in the statistics of mode fluctuations.

  14. Polarization Coupling Between Strongly Guiding Waveguides Stacked Laterally

    OpenAIRE

    Yamauchi, Junji; Shibuya, Noriyuki; Nakano, Hisamatsu

    2009-01-01

    The full-vectorial beam-propagation method is appliedto the assessment of the coupling characteristics betweenstrongly guiding waveguides stacked laterally. The polarizationcrosstalk behavior of square waveguides stacked laterally isdemonstrated by the eigenmode and beam-propagation analyses.In order to make use of the polarization crosstalk constructively,we determine the vertical spacing between the two square waveguides.Almost complete conversion can be obtained, when the twowaveguides are...

  15. $\\eta/s$ in a strongly coupled QFT

    CERN Document Server

    Mahajan, Namit

    2016-01-01

    We consider $O(N)$ $g\\varphi^4$ theory with the coupling $g$ being large, and calculate shear viscosity to entropy density ratio ($\\eta/s$). The final result for $\\eta/s$ has a form remarkably similar to that obtained from string theory calculations via the AdS/CFT conjecture. The method adopted can be used to compute quantities of interest in other theories as well with some modifications and reveals some very interesting features within the considered theory.

  16. Multimode Strong Coupling in Superconducting Cavity Piezo-electromechanics

    OpenAIRE

    Han, Xu; Zou, Chang-Ling; Tang, Hong X.

    2016-01-01

    High frequency mechanical resonators subjected to low thermal phonon occupancy are easier to be prepared to the ground state by direct cryogenic cooling. Their extreme stiffness, however, poses a significant challenge for external interrogations. Here we demonstrate a superconducting cavity piezo-electromechanical system in which multiple modes of a bulk acoustic resonator oscillating at $10\\,\\textrm{GHz}$ are coupled to a planar microwave superconducting resonator with a cooperativity exceed...

  17. Three-point functions in the SU(2) sector at strong coupling

    International Nuclear Information System (INIS)

    Extending the methods developed in our previous works (http://arxiv.org/abs/1110.3949, http://arxiv.org/abs/1205.6060), we compute the three-point functions at strong coupling of the non-BPS states with large quantum numbers corresponding to the composite operators belonging to the so-called SU(2) sector in the N=4 super-Yang-Mills theory in four dimensions. This is achieved by the semi-classical evaluation of the three-point functions in the dual string theory in the AdS3×S3 spacetime, using the general one-cut finite gap solutions as the external states. In spite of the complexity of the contributions from various parts in the intermediate stages, the final answer for the three-point function takes a remarkably simple form, exhibiting the structure reminiscent of the one obtained at weak coupling. In particular, in the Frolov-Tseytlin limit the result is expressed in terms of markedly similar integrals, however with different contours of integration. We discuss a natural mechanism for introducing additional singularities on the worldsheet without affecting the infinite number of conserved charges, which can modify the contours of integration

  18. A high order energy preserving scheme for the strongly coupled nonlinear Schrödinger system

    International Nuclear Information System (INIS)

    A high order energy preserving scheme for a strongly coupled nonlinear Schrödinger system is proposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrödinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrödinger system exactly. (general)

  19. A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent Sources

    International Nuclear Information System (INIS)

    A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl-tilde(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Boussinesq hierarchy with self-consistent sources by using of loop algebra sl-tilde(4). In this paper, we also point out that there exist some errors in Yu's paper and have corrected these errors and set up new formula. The method can be generalized other soliton hierarchy with self-consistent sources. (general)

  20. LOCAL CLASSICAL SOLUTION OF FREE BOUNDARY PROBLEM FOR A COUPLED SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaohua; Yi Fahuai; Yang Zhou

    2005-01-01

    This paper considers a two-phase free boundary problem for coupled system including one parabolic equation and two elliptic equations. The problem comes from the discussion of a growth model of self-maintaining protocell in multidimensional case. The local classical solution of the problem with free boundary Γ:y = g(x, t) between two domains is being seeked. The local existence and uniqueness of the problem will be proved in multidimensional case.

  1. Strong coupling expansion for the mass gap in SU(2) lattice gauge theory with mixed action

    International Nuclear Information System (INIS)

    We perform a strong coupling expansion up to O(β7) for the mass gap in SU(2) lattice gauge theory with mixed action. A novel feature of the strong coupling expansion is discussed. The strong coupling series appears to approach the scaling region more smoothly and Pade approximants become more stable than in the case with simple Wilson action. The region of validity of a recently proposed resummation of perturbation theory as applied to the determination of the asymptotic scaling behavior is investigated. Results of a strong coupling calculation for the Heat Kernel action, which is related to the mixed action for a special choice of parameters are also reported. (orig.)

  2. Structural change of cooper pairs in color superconductivity. Crossover from weak coupling to strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Abuki, Hiroaki; Hatsuda, Tetsuo [Tokyo Univ., Dept. of Physics, Tokyo (Japan); Itakura, Kazunori [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)

    2002-09-01

    The two-flavor color superconductivity is studied over a wide range of baryon density with a single model. We pay a special attention to the spatial-momentum dependence of the gap and to the spatial-structure of Cooper pairs. At extremely high baryon density ({approx}O(10{sup 10} {rho}{sub 0}) with {rho}{sub 0} being the normal nuclear matter density), our model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth function of the momentum at lower densities ({approx}O(10{sup 10} {rho}{sub 0})) due to strong color magnetic and electric interactions. To study the structural change of Cooper pairs from high density to lower density, quark correlation in the color superconductor is studied both in the momentum space and in the coordinate space. The size of the Cooper pair is shown to become comparable to the averaged inter-quark distance at low densities. Also, effects of the momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS superconductivity in metals. (author)

  3. Nonequilibrium phase transitions in finite arrays of globally coupled Stratonovich models: strong coupling limit

    Energy Technology Data Exchange (ETDEWEB)

    Senf, Fabian; Altrock, Philipp M; Behn, Ulrich [Institute for Theoretical Physics, University of Leipzig, POB 100 920, D-04009 Leipzig (Germany)], E-mail: senf@iap-kborn.de, E-mail: altrock@evolbio.mpg.de, E-mail: behn@itp.uni-leipzig.de

    2009-06-15

    A finite array of N globally coupled Stratonovich models exhibits a continuous nonequilibrium phase transition. In the limit of strong coupling, there is a clear separation of timescales of centre of mass and relative coordinates. The latter relax very fast to zero and the array behaves as a single entity described by the centre of mass coordinate. We compute analytically the stationary probability distribution and the moments of the centre of mass coordinate. The scaling behaviour of the moments near the critical value of the control parameter a{sub c}(N) is determined. We identify a crossover from linear to square root scaling with increasing distance from a{sub c}. The crossover point approaches a{sub c} in the limit N{yields}{infinity} which reproduces previous results for infinite arrays. Our results are obtained in both the Fokker-Planck and the Langevin approach and are corroborated by numerical simulations. For a general class of models we show that the transition manifold in the parameter space depends on N and is determined by the scaling behaviour near a fixed point of the stochastic flow.

  4. A morphing approach to couple state-based peridynamics with classical continuum mechanics

    KAUST Repository

    Han, Fei

    2016-01-04

    A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.

  5. Overview of large N QCD with chemical potential at weak and strong coupling

    International Nuclear Information System (INIS)

    In this note we summarize the results from a longer article on obtaining the QCD phase diagram as a function of the temperature and chemical potential at large Nc and large Nf in the weak coupling limit λ → 0, and the strong coupling limit λ → ∞. The weak coupling phase diagram is obtained from the Polyakov line order parameter, and the quark number, calculated using 1-loop perturbation theory for QCD formulated on S1 × S3. The strong coupling phase diagram is obtained from the same observables calculated at leading order in the lattice strong coupling and hopping parameter expansions. We show that the matrix models in these two limits agree at temperatures and chemical potentials which are not too high, such that observables in the strongly-coupled theory can be obtained from the observables in the weakly-coupled theory, and vice versa, using a simple transformation of variables.

  6. Residues of correlators in the strongly coupled N=4 plasma

    International Nuclear Information System (INIS)

    Quasinormal modes of asymptotically AdS black holes can be interpreted as poles of retarded correlators in the dual gauge theory. To determine the response of the system to small external perturbations it is not enough to know the location of the poles: one also needs to know the residues. We compute them for R-charge currents and find that they are complex except for the hydrodynamic mode, whose residue is purely imaginary. For different quasinormal modes the residue grows with momentum q, whereas for the hydrodynamic mode it behaves as a damped oscillation with distinct zeroes at finite q. Similar to collective excitations at weak coupling the hydrodynamic mode decouples at short wavelengths. Knowledge of the residues allows as well to define the time scale τH from when on the system enters the hydrodynamic regime, restricting the validity of hydrodynamic simulations to times t>τH.

  7. Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma

    CERN Document Server

    Mateos, David

    2011-01-01

    We extend our analysis of a IIB supergravity solution dual to a spatially anisotropic finite-temperature N=4 super Yang-Mills plasma. The solution is static, possesses an anisotropic horizon, and is completely regular. The full geometry can be viewed as a renormalization group flow from an AdS geometry in the ultraviolet to a Lifshitz-like geometry in the infrared. The anisotropy can be equivalently understood as resulting from a position-dependent theta-term or from a non-zero number density of dissolved D7-branes. The holographic stress tensor is conserved and anisotropic. The presence of a conformal anomaly plays an important role in the thermodynamics. The phase diagram exhibits homogeneous and inhomogeneous (i.e. mixed) phases. In some regions the homogeneous phase displays instabilities reminiscent of those of weakly coupled plasmas. We comment on similarities with QCD at finite baryon density and with the phenomenon of cavitation.

  8. Vortical flows in strongly coupled Yukawa liquids under external forcing - A molecular dynamics approach

    Science.gov (United States)

    Ganesh, Rajaraman; Charan, Harish

    2016-07-01

    Understanding vortical flows under external forcing in two dimensional (2D) fluids is a fundamental paradigm for structure formation in driven, dissipative systems. Considering Yukawa liquid as a prototype for strongly correlated or strongly coupled plasmas characterized by coupling strength (Γ, the ratio of average potential to kinetic energy per particle) and screening parameter (κ, ratio of mean inter-particle distance to shielding length), we address two important problems: 1. Onset of Rayleigh Benard convection cell (RBCC) in 2D Yukawa liquids subject to gravity and external temperature gradient 2. Onset of von Karman vortices in 2D Yukawa liquid under external pressure head, using large scale, first principles molecular dynamics simulations. For typical values of (Γ,κ), existence of a critical external temperature difference is demonstrated, beyond which RBCC are seen to set in. Beyond this critical external temperature difference, the strength of the maximum convective flow velocity is shown to exhibit a new, hitherto unsuspected linear relationship with external temperature difference and with a slope independent of (Γ,κ). The time taken for the transients to settle down to a steady state RBCC τ_s, is found to be maximum close to the above said critical external temperature difference and is seen to reduce with increasing external temperature difference. For the range of values of (Γ, κ) considered here, τ_s ≃ 10 000-20 000;ω^{-1}_{pd}, where ω_{pd} is dust plasma frequency. As Γ is increased to very high values, due to strong coupling effects, RBC cells are seen to be in a transient state without attaining a steady state for as long as 100 000;ω^{-1}_{pd}, even for a very high external temperature difference. In the second part, we address the existence of universal relation between Strouhal (St) and Rayleigh (Ry) numbers for Yukawa liquid using first principles based classical molecular dynamics. The flow past an obstacle is seen to indeed

  9. Overview of large N QCD with chemical potential at weak and strong coupling

    DEFF Research Database (Denmark)

    Hollowood, Timothy J.; Myers, Joyce C

    2013-01-01

    Polyakov line order parameter, and the quark number, calculated using 1-loop perturbation theory for QCD formulated on S1 × S3. The strong coupling phase diagram is obtained from the same observables calculated at leading order in the lattice strong coupling and hopping parameter expansions. We show that...

  10. Thermal DBI action for the D3-brane at weak and strong coupling

    DEFF Research Database (Denmark)

    Grignani, Gianluca; Harmark, Troels; Marini, Andrea;

    2014-01-01

    We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 ...

  11. Quantum bound of the shear viscosity of a strongly coupled plasma.

    Science.gov (United States)

    Fortov, V E; Mintsev, V B

    2013-09-20

    String theory methods led to the hypothesis that the ratio of a shear viscosity coefficient to the volume density of entropy of any physical system has a lower bound. Systems with strong coupling have a small viscosity as compared to weakly coupled plasmas in which the viscosity is proportional to the mean free path. Here, we have estimated the fully ionized strongly coupled plasma viscosity based on the dynamic experimental data on electrical conductivity and have shown that the ratio of viscosity to entropy of the strongly coupled plasma is very close to that of the lower bound predicted by the string theory. PMID:24093269

  12. Spin dynamical phase and antiresonance in a strongly coupled magnon-photon system

    Science.gov (United States)

    Harder, Michael; Hyde, Paul; Bai, Lihui; Match, Christophe; Hu, Can-Ming

    2016-08-01

    We experimentally studied a strongly coupled magnon-photon system via microwave transmission measurements. An antiresonance, i.e., the suppression of the microwave transmission, is observed, indicating a relative phase change between the magnon response and the driving microwave field. We show that this antiresonance feature can be used to interpret the phase evolution of the coupled magnon-microwave system and apply this technique to reveal the phase evolution of magnon dark modes. Our work provides a standard procedure for the phase analysis of strongly coupled systems, enabling the phase characterization of each subsystem, and can be generally applied to other strongly coupled systems.

  13. Dense strongly coupled plasma in double laser pulse ablation of lithium: Experiment and simulation

    International Nuclear Information System (INIS)

    In a simple method of low power nano-second double pulsed laser ablation experiment in collinear geometry, formation of high density strongly coupled plasma is demonstrated. Using time-resolved measurements of the Stark broadened line width and line intensity ratio of the emission lines, the density and temperature of the plasma were estimated respectively. In this experiment, it is shown that ions are strongly coupled (ion-ion coupling parameter comes out to be >4). For comparison, both single and double pulsed laser ablations are presented. For the estimated experimental plasma parameters, first principle Langevin dynamics simulation corroborates the existence of a strongly coupled regime

  14. Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption

    CERN Document Server

    Zanotto, Simone; Bianco, Federica; Biasiol, Giorgio; Baldacci, Lorenzo; Vitiello, Miriam Serena; Sorba, Lucia; Colombelli, Raffaele; Tredicucci, Alessandro

    2016-01-01

    The ability to feed energy into a system, or - equivalently - to drive that system with an external input is a fundamental aspect of light-matter interaction. The key concept in many photonic applications is the "critical coupling" condition: at criticality, all the energy fed to the system via an input channel is dissipated within the system itself. Although this idea was crucial to enhance the efficiency of many devices, it was never considered in the context of systems operating in a non-perturbative regime. In this so-called strong coupling regime, the matter and light degrees of freedom are in fact mixed into dressed states, leading to new eigenstates called polaritons. Here we demonstrate that the strong coupling regime and the critical coupling condition can indeed coexist; in this situation, which we term strong critical coupling, all the incoming energy is converted into polaritons. A semiclassical theory - equivalently applicable to acoustics or mechanics - reveals that the strong critical coupling ...

  15. Electrically tunable single-dot nanocavities in the weak and strong coupling regimes

    DEFF Research Database (Denmark)

    Laucht, Arne; Hofbauer, Felix; Angele, Jacob; Stobbe, Søren; Kaniber, Michael; Böhm, Gerhard; Lodahl, Peter; Finley, Jonathan J.

    2008-01-01

    emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. Vacuum Rabi splittings up to 2g...

  16. Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples

    Energy Technology Data Exchange (ETDEWEB)

    Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.

    2003-07-01

    This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two

  17. Strong Helioseismic Constraints on Weakly-Coupled Plasmas

    Science.gov (United States)

    Nayfonov, Alan

    The extraordinary accuracy of helioseismic data allows detailed theoretical studies of solar plasmas. The necessity to produce solar models matching the experimental results in accuracy imposes strong constrains on the equations of state of solar plasmas. Several discrepancies between the experimental data and models have been successfully identified as the signatures of various non-ideal phenomena. Of a particular interest are questions of the position of the energy levels and the continuum edge and of the effect of the excited states in the solar plasma. Calculations of energy level and continuum shifts, based on the Green function formalism, appeared recently in the literature. These results have been used to examine effects of the shifts on the thermodynamic quantities. A comparison with helioseismic data has shown that the calculations based on lower-level approximations, such as the static screening in the effective two-particle wave equation, agree very well with the experimental data. However, the case of full dynamic screening produces thermodynamic quantities inconsistent with observations. The study of the effect of different internal partition functions on a complete set of thermodynamic quantities has revealed the signature of the excited states in the MHD (Mihalas, Hummer, Dappen) equation of state. The presence of exited states causes a characteristic 'wiggle' in the thermodynamic quantities due to the density-dependent occupation probabilities. This effect is absent if the ACTEX (ACTivity EXpansion) equation of state is used. The wiggle has been found to be most prominent in the quantities sensitive to density. The size of this excited states effect is well within the observational power of helioseismology, and very recent inversion analyses of helioseismic data seem to indicate the presence of the wiggle in the sun. This has a potential importance for the helioseismic determination of the helium abundance of the sun.

  18. Strong electron-lattice coupling as the mechanism behind charge densiy wave transformations in transition-metal-dichalkogenides

    OpenAIRE

    Gor'kov, Lev P.

    2011-01-01

    We consider single band of conduction electrons interacting with displacements of the transitional ions.In the classical regime strong coupling transforms the harmonic elastic energy for an ion to the one of the well with two deep minima,so that the system is described in terms of Ising spins. Inter-site interactions via the exchange by electrons order spins at lower temperatures. Extention to the quantum regime is discussed. Below the CDW-transition the energy spectrum of electrons remains m...

  19. Coexistence of lasing and strong coupling in quantum-dot microlasers

    CERN Document Server

    Gericke, Fabian; Gartner, Paul; Holzinger, Steffen; Hopfmann, Caspar; Heindel, Tobias; Wolters, Janik; Schneider, Christian; Florian, Matthias; Jahnke, Frank; Höfling, Sven; Kamp, Martin; Reitzenstein, Stephan

    2016-01-01

    We demonstrate the coexistence of lasing and strong coupling in a quantum-dot micropillar laser. Comprehensive experimental studies including measurements of the input-output curve, second- order photon-correlation and coherence time are used to identify the transition of a strongly coupled quantum-dot microcavity system to lasing. The experimental results are evaluated on the basis of a microscopic theory that includes contributions from detuned background emitters. Furthermore, we show that both the emission spectrum and the strong coupling condition are strongly modified at the laser threshold due to the higher-order photonic states required to reach lasing. By accounting for these states that become realized under strong pumping, we provide a closed analytic expression that describes the transition from strong to weak coupling across the threshold in agreement with both experiment and a numerical approach.

  20. Coupled discrete element and finite volume solution of two classical soil mechanics problems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng [University of Tennessee, Knoxville (UTK); Drumm, Eric [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2011-01-01

    One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAM for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.

  1. Controllable strong coupling between individual spin qubits and a transmission line resonator via nanomechanical resonators

    International Nuclear Information System (INIS)

    We investigate a hybrid quantum system where an individual electronic spin qubit (EQ) and a transmission line resonator (TLR) are connected by a nanomechanical resonator (NAMR). We analyze the possibility of realizing a strong coupling between the EQ and the TLR. Compared with a direct coupling between an EQ and a TLR, the achieved coupling can be stronger and controllable. The proposal might be used to implement a high-fidelity quantum state transfer between the spin qubit and the TLR, and is scalable to involve several individual EQ-NAMR coupled systems with a TLR. -- Highlights: ► Strong coupling of a spin qubit to a transmission line resonator is achieved. ► The coupling is mediated by a nanomechanical resonator. ► The coupling is controllable and stronger than the direct spin-resonator coupling.

  2. Site effects in an alpine valley with strong velocity gradient: interest and limitations of the 'classical' BEM

    CERN Document Server

    Delepine, Nicolas

    2013-01-01

    Seismic waves may be strongly amplified in deep alluvial basins due to the velocity contrast (or velocity gradient) between the various layers as well as the basin edge effects. In this work, the seismic ground motion in a deep alpine valley (Grenoble basin, French Alps) is investigated through various 'classical' Boundary Element models. This deep valley has a peculiar geometry ("Y"-shaped) and involves a strong velocity gradient between surface geological structures. In the framework of a numerical benchmark [21-23], a representative cross section of the valley has been proposed to investigate 2D site effects through various numerical methods. The 'classical' Boundary Element Method is considered herein to model the strong velocity gradient with a 2D piecewise homogeneous medium. For a large incidence angle, the transfer functions estimated from plane SH waves are close to the one computed with shallow SH point sources. The fundamental frequency is estimated at 0.33 Hz (SH wave) and the agreement with previ...

  3. Strongly Coupled CFT in FRW Universe from AdS/CFT Correspondence

    CERN Document Server

    Koyama, K; Koyama, Kazuya; Soda, Jiro

    2001-01-01

    We develop a formalism to calculate the effective action of the strongly coupled conformal field theory (CFT) in curved spacetime. The effective action of the CFT is obtained from AdS/CFT correspondence. The anti de-Sitter (AdS) spacetime has various slicing which give various curved spacetime on its boundary. We show the de Sitter spacetime and the Friedmann-Robertson-Walker (FRW) universe can be embedded in the AdS spacetime and derive the scalar two-point function of the conformal fields in those spacetime. In curved spacetime, the two-point function depends on the vacuum state of the CFT. A method to specify the vacuum state in AdS/CFT calculations is shown. Because the classical action in AdS spacetime diverges near the boundary, we need the counter terms to regulate the result. The simple derivation of the counter terms using the Hamilton-Jacobi equation is also presented in the appendix.

  4. Strongly coupled CFT in FRW universe from AdS/CFT correspondence

    Science.gov (United States)

    Koyama, Kazuya; Soda, Jiro

    2001-05-01

    We develop a formalism to calculate the effective action of the strongly coupled conformal field theory (CFT) in curved spacetime. The effective action of the CFT is obtained from AdS/CFT correspondence. The anti de-Sitter (AdS) spacetime has various slicing which give various curved spacetime on its boundary. We show the de Sitter spacetime and the Friedmann-Robertson-Walker (FRW) universe can be embedded in the AdS spacetime and derive the scalar two-point function of the conformal fields in those spacetime. In curved spacetime, the two-point function depends on the vacuum state of the CFT. A method to specify the vacuum state in AdS/CFT calculations is shown. Because the classical action in AdS spacetime diverges near the boundary, we need the counter terms to regulate the result. The simple derivation of the counter terms using the Hamilton-Jacobi equation is also presented in the appendix.

  5. The classical particle coupled to external electromagnetic field: symmetries and conserved quantities

    International Nuclear Information System (INIS)

    Full text: We consider a classical particle minimally coupled to an external electromagnetic field, in both non-relativistic and relativistic regimes. The coupling is constructed via the electromagnetic potential which is assumed to satisfy the classical Maxwell equations. We review Noether's theorem at classical level associating infinitesimal symmetries to conserved quantities. The fundamental space-time symmetries are investigated considering a non-relativistic action, a relativistic action in a particular reference frame and an explicitly Lorentz invariant Lagrangian. We work out in detail the corresponding conserved quantities for each case. The well-known Noether's theorem establishes a connection between continuous infinitesimal symmetries of the action and conserved quantities - given a particular action, for each infinitesimal symmetry there exists an explicit conserved quantity. In particular, a single particle subjected to an external electromagnetic field gives rise to an action which may enjoy space-time symmetries. For the non-relativistic particle, we analyze translations in space and time and spatial rotations, calculating the conserved quantities - linear momentum, energy and angular momentum. The relativistic particle enjoys space-time Lorentz symmetry. Thus we check the six symmetries of the homogeneous Lorentz group, corresponding to three spatial rotations and three boosts, and the four space-time translations extending to the non-homogeneous Lorentz group (Poincare group). We consider two distinct actions describing the relativistic particle minimally coupled to an external electromagnetic field - the first one describes the particle in a particular frame of reference enforcing the relativistic generalization of Newton's second law with the Lorentz force while the second one is obtained from a Lorentz scalar Lagrangian. In all cases the conserved quantities are explicitly calculated via Noether's theorem. (author)

  6. Fast Numerical Evaluation of Time-Derivative Nonadiabatic Couplings for Mixed Quantum-Classical Methods.

    Science.gov (United States)

    Ryabinkin, Ilya G; Nagesh, Jayashree; Izmaylov, Artur F

    2015-11-01

    We have developed a numerical differentiation scheme that eliminates evaluation of overlap determinants in calculating the time-derivative nonadiabatic couplings (TDNACs). Evaluation of these determinants was the bottleneck in previous implementations of mixed quantum-classical methods using numerical differentiation of electronic wave functions in the Slater determinant representation. The central idea of our approach is, first, to reduce the analytic time derivatives of Slater determinants to time derivatives of molecular orbitals and then to apply a finite-difference formula. Benchmark calculations prove the efficiency of the proposed scheme showing impressive several-order-of-magnitude speedups of the TDNAC calculation step for midsize molecules. PMID:26538034

  7. Strongly coupled interaction between a ridge of fluid and an inviscid airflow

    KAUST Repository

    Paterson, C.

    2015-07-01

    © 2015 AIP Publishing LLC. The behaviour of a steady thin sessile or pendent ridge of fluid on an inclined planar substrate which is strongly coupled to the external pressure gradient arising from an inviscid airflow parallel to the substrate far from the ridge is described. When the substrate is nearly horizontal, a very wide ridge can be supported against gravity by capillary and/or external pressure forces; otherwise, only a narrower (but still wide) ridge can be supported. Classical thin-aerofoil theory is adapted to obtain the governing singular integro-differential equation for the profile of the ridge in each case. Attention is focused mainly on the case of a very wide sessile ridge. The effect of strengthening the airflow is to push a pinned ridge down near to its edges and to pull it up near to its middle. At a critical airflow strength, the upslope contact angle reaches the receding contact angle at which the upslope contact line de-pins, and continuing to increase the airflow strength beyond this critical value results in the de-pinned ridge becoming narrower, thicker, and closer to being symmetric in the limit of a strong airflow. The effect of tilting the substrate is to skew a pinned ridge in the downslope direction. Depending on the values of the advancing and receding contact angles, the ridge may first de-pin at either the upslope or the downslope contact line but, in general, eventually both contact lines de-pin. The special cases in which only one of the contact lines de-pins are also considered. It is also shown that the behaviour of a very wide pendent ridge is qualitatively similar to that of a very wide sessile ridge, while the important qualitative difference between the behaviour of a very wide ridge and a narrower ridge is that, in general, for the latter one or both of the contact lines may never de-pin.

  8. Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip

    CERN Document Server

    Zou, Chang-Ling; Jiang, Liang; Tang, Hong X

    2016-01-01

    Schemes to achieve strong coupling between mechanical modes of aluminum nitride microstructures and microwave cavity modes due to the piezoelectric effect are proposed. We show that the strong coupling regime is feasible for an on-chip aluminum nitride device that is either enclosed by a three-dimensional microwave cavity or integrated with a superconducting coplanar resonator. Combining with optomechanics, the piezomechanical strong coupling permits coherent conversion between microwave and optical modes with high efficiency. Hence, the piezomechanical system will be an efficient transducer for applications in hybrid quantum systems.

  9. Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip

    Science.gov (United States)

    Zou, Chang-Ling; Han, Xu; Jiang, Liang; Tang, Hong X.

    2016-07-01

    Schemes to achieve strong coupling between mechanical modes of aluminum nitride microstructures and microwave cavity modes due to the piezoelectric effect are proposed. We show that the strong-coupling regime is feasible for an on-chip aluminum nitride device that is either enclosed by a three-dimensional microwave cavity or integrated with a superconducting coplanar resonator. Combining with optomechanics, the piezomechanical strong coupling permits coherent conversion between microwave and optical modes with high efficiency. Hence, the piezomechanical system will be an efficient transducer for applications in hybrid quantum systems.

  10. Revisiting classic water erosion models in drylands: The strong impact of biological soil crusts

    Science.gov (United States)

    Bowker, M.A.; Belnap, J.; Bala, Chaudhary V.; Johnson, N.C.

    2008-01-01

    Soil erosion and subsequent degradation has been a contributor to societal collapse in the past and is one of the major expressions of desertification in arid regions. The revised universal soil loss equation (RUSLE) models soil lost to water erosion as a function of climate erosivity (the degree to which rainfall can result in erosion), topography, soil erodibility, and land use/management. The soil erodibility factor (K) is primarily based upon inherent soil properties (those which change slowly or not at all) such as soil texture and organic matter content, while the cover/management factor (C) is based on several parameters including biological soil crust (BSC) cover. We examined the effect of two more precise indicators of BSC development, chlorophyll a and exopolysaccharides (EPS), upon soil stability, which is closely inversely related to soil loss in an erosion event. To examine the relative influence of these elements of the C factor to the K factor, we conducted our investigation across eight strongly differing soils in the 0.8 million ha Grand Staircase-Escalante National Monument. We found that within every soil group, chlorophyll a was a moderate to excellent predictor of soil stability (R2 = 0.21-0.75), and consistently better than EPS. Using a simple structural equation model, we explained over half of the variance in soil stability and determined that the direct effect of chlorophyll a was 3?? more important than soil group in determining soil stability. Our results suggest that, holding the intensity of erosive forces constant, the acceleration or reduction of soil erosion in arid landscapes will primarily be an outcome of management practices. This is because the factor which is most influential to soil erosion, BSC development, is also among the most manageable, implying that water erosion in drylands has a solution. ?? 2008 Elsevier Ltd.

  11. Modeling viscosity and diffusion of plasma for pure elements and multicomponent mixtures from weakly to strongly coupled regimes

    International Nuclear Information System (INIS)

    An analytic model is presented that predicts viscosity and diffusion of plasma for pure elements and multicomponent mixtures, from the high-temperature low-density weakly coupled regime to the low temperature high-density strongly coupled regime. It relies on a pseudo-ion in jellium modeling that incorporates the effect of electron screening on the ion-ion interaction in the pseudo-ionization. Mixtures are treated using approximate kinetic expressions and mixing laws applied to the excess viscosity and self-diffusion of pure elements. Comparisons are made with classical and quantum molecular dynamics results to assess its accuracy. The mean deviations are in the range 20-40% with almost no predictions further than a factor of 2 over many decades of variation. Applications of this model in the inertial confinement fusion context could help in predicting the appearance and the growth of hydrodynamic instabilities. (authors)

  12. Chiral Symmetry Breaking on the Lattice a Study of the Strongly Coupled Lattice Schwinger Model

    CERN Document Server

    Berruto, F; Semenoff, Gordon W; Sodano, P

    1998-01-01

    We revisit the strong coupling limit of the Schwinger model on the lattice using staggered fermions and the hamiltonian approach to lattice gauge theories. Although staggered fermions have no continuous chiral symmetry, they posses a discrete axial invari ance which forbids fermion mass and which must be broken in order for the lattice Schwinger model to exhibit the features of the spectrum of the continuum theory. We show that this discrete symmetry is indeed broken spontaneously in the strong coupling li mit. Expanding around a gauge invariant ground state and carefully considering the normal ordering of the charge operator, we derive an improved strong coupling expansion and compute the masses of the low lying bosonic excitations as well as the chiral co ndensate of the model. We find very good agreement between our lattice calculations and known continuum values for these quantities already in the fourth order of strong coupling perturbation theory. We also find the exact ground state of the antiferromag ...

  13. Exact Strongly Coupled Fixed Point in $g\\varphi^4$ Theory

    OpenAIRE

    Hegg, Anthony; Phillips, Philip W.

    2015-01-01

    We show explicitly how a strongly coupled fixed point can be constructed in scalar $g\\varphi^4$ theory from the solutions to a non-linear eigenvalue problem. The fixed point exists only for $d2$ a...

  14. Strong Electron-Phonon Coupling and Origin of High Tc Superconductivity

    International Nuclear Information System (INIS)

    The superconducting state in the high Tc oxides can be fully understood by strong electron coupling to low frequency phonon modes. The major features of this state and the parameters are described. (author)

  15. Towards a hybrid strong/weak coupling approach to jet quenching

    International Nuclear Information System (INIS)

    We explore a novel hybrid model containing both strong and weak coupling physics for high energy jets traversing a deconfined medium. This model is based on supplementing a perturbative DGLAP shower with strongly coupled energy loss rate. We embed this system into a realistic hydrodynamic evolution of hot QCD plasma. We confront our results with LHC data, obtaining good agreement for jet RAA, dijet imbalance AJ and fragmentation functions

  16. Hamilton-Jacobi Solutions for Strongly-Coupled Gravity and Matter

    OpenAIRE

    Salopek, D. S.

    1998-01-01

    A Green's function method is developed for solving strongly-coupled gravity and matter in the semiclassical limit. In the strong-coupling limit, one assumes that Newton's constant approaches infinity. As a result, one may neglect second order spatial gradients, and each spatial point evolves like an homogeneous universe. After constructing the Green's function solution to the Hamiltonian constraint, the momentum constraint is solved using functional methods in conjunction with the superpositi...

  17. Strong gravitational field time delay for photons coupled to Weyl tensor in a Schwarzschild black hole

    OpenAIRE

    Lu, Xu; Yang, Feng-Wei; Xie, Yi

    2016-01-01

    We analyse strong gravitational field time delay for photons coupled to the Weyl tensor in a Schwarzschild black hole. By making use of the method of strong deflection limit, we find that these time delays between relativistic images are significantly affected by polarization directions of such a coupling. A practical problem about determination of the polarization direction by observations is investigated. It is found that if the first and second relativistic images can be resolved, the meas...

  18. Second order approximation for optical polaron in the strong coupling case

    International Nuclear Information System (INIS)

    Here we propose a method of construction second order approximation for ground state energy for class of model Hamiltonian with linear type interaction on Bose operators in strong coupling case. For the application of the above method we have considered polaron model and propose construction set of nonlinear differential equations for definition ground state energy in strong coupling case. We have considered also radial symmetry case. (author). 10 refs

  19. Towards a hybrid strong/weak coupling approach to jet quenching

    CERN Document Server

    Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2014-01-01

    We explore a novel hybrid model containing both strong and weak coupling physics for high energy jets traversing a deconfined medium. This model is based on supplementing a perturbative DGLAP shower with strongly coupled energy loss rate. We embed this system into a realistic hydrodynamic evolution of hot QCD plasma. We confront our results with LHC data, obtaining good agreement for jet RAARAA, dijet imbalance AJAJ and fragmentation functions.

  20. Coexistence of lasing and strong coupling in quantum-dot microlasers

    OpenAIRE

    Gericke, Fabian; Gies, Christopher; Gartner, Paul; Holzinger, Steffen; Hopfmann, Caspar; Heindel, Tobias; Wolters, Janik; Schneider, Christian; Florian, Matthias; Jahnke, Frank; Höfling, Sven; Kamp, Martin; Reitzenstein, Stephan

    2016-01-01

    We demonstrate the coexistence of lasing and strong coupling in a quantum-dot micropillar laser. Comprehensive experimental studies including measurements of the input-output curve, second- order photon-correlation and coherence time are used to identify the transition of a strongly coupled quantum-dot microcavity system to lasing. The experimental results are evaluated on the basis of a microscopic theory that includes contributions from detuned background emitters. Furthermore, we show that...

  1. Strong coupling and quasispinor representations of the SU(3) rotor model

    International Nuclear Information System (INIS)

    We define a coupling scheme, in close parallel to the coupling scheme of Elliott and Wilsdon, in which nucleonic intrinsic spins are strongly coupled to SU(3) spatial wave functions. The scheme is proposed for shell-model calculations in strongly deformed nuclei and for semimicroscopic analyses of rotations in odd-mass nuclei and other nuclei for which the spin-orbit interaction is believed to play an important role. The coupling scheme extends the domain of utility of the SU(3) model, and the symplectic model, to heavy nuclei and odd-mass nuclei. It is based on the observation that the low angular-momentum states of an SU(3) irrep have properties that mimic those of a corresponding irrep of the rotor algebra. Thus, we show that strongly coupled spin-SU(3) bands behave like strongly coupled rotor bands with properties that approach those of irreducible representations of the rigid-rotor algebra in the limit of large SU(3) quantum numbers. Moreover, we determine that the low angular-momentum states of a strongly coupled band of states of half-odd integer angular momentum behave to a high degree of accuracy as if they belonged to an SU(3) irrep. These are the quasispinor SU(3) irreps referred to in the title. (orig.)

  2. One-dimensional approximation to stochastic lattice system with strong coupling

    International Nuclear Information System (INIS)

    One-dimensional approximation to stochastic lattice system with strong coupling is derived. For a special periodic coupling, the existence of a rotation number is proved, which yields the frequency locking of the system. And by the one-dimensional approximation system, an approximation to the rotation number is also derived.

  3. Deconfinement transitions of large N QCD with chemical potential at weak and strong coupling

    NARCIS (Netherlands)

    Hollowood, Timothy J.; Myers, Joyce C.

    2012-01-01

    We calculate the deconfinement line of transitions for large N-c QCD at finite temperature and chemical potential in two different regimes: weak coupling in the continuum, and, strong coupling on the lattice, working in the limit where N-f is of order N-c. In the first regime we extend previous weak

  4. Controlling Strong Chaos by Adaptive Coupling Method in the Perturbed Cat Map

    Institute of Scientific and Technical Information of China (English)

    许海波; 王光瑞; 陈式刚

    2001-01-01

    The method for controlling Hamiltonian chaos by adaptive integrable mode coupling is extended to controlling strong chaos by adaptive integrable and near-integrable mode coupling. We illustrate this method with a highly chaotic system, the perturbed cat map. All orbits can be effectively controlled to the periodic or quasiperiodic orbits. The method is robust against the presence of weak external noise.

  5. Quantitative reliability of Migdal-Eliashberg theory for strong electron-phonon coupling

    OpenAIRE

    Bauer, Johannes; Han, Jong E.; Gunnarsson, Olle

    2011-01-01

    We reassess the validity of Migdal-Eliashberg (ME) theory for coupled electron-phonon systems for large couplings $\\lambda$. Although model calculations have found that ME theory breaks down for $\\lambda\\sim 0.5$, it is routinely applied for $\\lambda>1$ to strong coupling superconductors. To resolve this discrepancy it is important to distinguish between {\\em bare} parameters, used as input in models, and {\\em effective} parameters, derived from experiments. We show explicitly that ME gives a...

  6. Vortex free energy and string tension at strong and intermediate coupling

    International Nuclear Information System (INIS)

    We present results of high temperature expansions up to order g-24 for the vortex free energy respectively string tension in pure lattice gauge theories with gauge groups SU(2) and Z2 in 3 and 4 dimensions. For SU(2) in 4 dimensions the result is compared with Monte Carlo calculations of Creutz and is in good agreement. An intermediate coupling region is seen, where the string tension smoothly interpolates between strong coupling and weak coupling behaviour. (orig.)

  7. Eight supramolecular assemblies constructed from bis(benzimidazole) and organic acids through strong classical hydrogen bonding and weak noncovalent interactions

    Science.gov (United States)

    Jin, Shouwen; Wang, Daqi

    2014-05-01

    Eight crystalline organic acid-base adducts derived from alkane bridged bis(N-benzimidazole) and organic acids (2,4,6-trinitrophenol, p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dinitrobenzoic acid, 5-sulfosalicylic acid and oxalic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the eight compounds five are organic salts (1, 4, 6, 7 and 8) and the other three (2, 3, and 5) are cocrystals. In all of the adducts except 1 and 8, the ratio of the acid and the base is 2:1. All eight supramolecular assemblies involve extensive intermolecular classical hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure. The results presented herein indicate that the strength and directionality of the classical N+-H⋯O-, O-H⋯O, and O-H⋯N hydrogen bonds (ionic or neutral) and other nonbonding associations between acids and ditopic benzimidazoles are sufficient to bring about the formation of cocrystals or organic salts.

  8. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    International Nuclear Information System (INIS)

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime

  9. Strong coupling constant of negative parity nucleon with $\\pi$ meson in light cone QCD sum rules

    CERN Document Server

    Aliev, T M; Savcı, M

    2016-01-01

    We estimate strong coupling constant between the negative parity nucleons with $\\pi$ meson within the light cone QCD sum rules. A method for eliminating the unwanted contributions coming from the nucleon--nucleon and nucleon--negative parity nucleon transition is presented. It is observed that the value strong coupling constant of the negative parity nucleon $N^\\ast N^\\ast \\pi$ transition is considerably different from the one predicted by the 3--point QCD sum rules, but is quite close to the coupling constant of the positive parity $N N \\pi$ transition.

  10. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device

    Science.gov (United States)

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-01

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction’s perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule’s magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs’ electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ˜50% of the interatomic exchange coupling for the FM electrodes.

  11. Universal lineshapes at the crossover between weak and strong critical coupling in Fano-resonant coupled oscillators

    CERN Document Server

    Zanotto, Simone

    2015-01-01

    In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results.

  12. Universal lineshapes at the crossover between weak and strong critical coupling in Fano-resonant coupled oscillators

    Science.gov (United States)

    Zanotto, Simone; Tredicucci, Alessandro

    2016-04-01

    In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results.

  13. Magnetized strongly coupled plasmas and how to realize them in a dusty plasma setup

    CERN Document Server

    Bonitz, M; Ott, T; Löwen, H

    2013-01-01

    Strongly coupled plasmas in which the interaction energy exceeds the kinetic energy play an important role in many astrophysical and laboratory systems including compact stars, laser plasmas and dusty plasmas. They exhibit many unusual collective properties, such as liquid or crystalline behaviour, peculiar oscillation spectra and transport properties. Recently, strongly coupled plasmas were studied in the presence of a strong magnetic field by computer simulations, and strong modifications of their transport properties and oscillation spectra were observed. While strong magnetization is common in stellar systems it is practically impossible to achieve in complex plasmas due to the large mass of the dust particles. Here we discuss a recently demonstrated approach to achieve very strong "magnetization" by a rotation of the neutral gas, and we present new results for macroscopic two-dimensional systems.

  14. Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance

    Science.gov (United States)

    Le Floch, J.-M.; Delhote, N.; Aubourg, M.; Madrangeas, V.; Cros, D.; Castelletto, S.; Tobar, M. E.

    2016-04-01

    We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.

  15. Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells

    CERN Document Server

    Campione, Salvatore; Klem, John F; Sinclair, Michael B; Brener, Igal; Capolino, Filippo

    2014-01-01

    Strong light-matter coupling has recently been demonstrated in sub-wavelength volumes by coupling engineered optical transitions in semiconductor heterostructures (e.g., quantum wells) to metasurface resonances via near fields. It has also been shown that different resonator shapes may lead to different Rabi splittings, though this has not yet been well explained. In this paper, our aim is to understand the correlation between resonator shape and Rabi splitting, and in particular determine and quantify the physical parameters that affect strong coupling by developing an equivalent circuit network model whose elements describe energy and dissipation. Because of the subwavelength dimension of each metasurface element, we resort to the quasi-static (electrostatic) description of the near-field and hence define an equivalent capacitance associated to each dipolar element of a flat metasurface, and we show that this is also able to accurately model the phenomenology involved in strong coupling between the metasurf...

  16. Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling

    CERN Document Server

    Xiong, Wen; Bromberg, Yaron; Redding, Brandon; Rotter, Stefan; Cao, Hui

    2016-01-01

    We present experimental and numerical studies on principal modes in a multimode fiber with mode coupling. By applying external stress to the fiber and gradually adjusting the stress, we have realized a transition from weak to strong mode coupling, which corresponds to the transition from single scattering to multiple scattering in mode space. Our experiments show that principal modes have distinct spatial and spectral characteristic in the weak and strong mode coupling regimes. We also investigate the bandwidth of the principal modes, in particular, the dependence of the bandwidth on the delay time, and the effects of the mode-dependent loss. By analyzing the path-length distributions, we discover two distinct mechanisms that are responsible for the bandwidth of principal modes in weak and strong mode coupling regimes. Taking into account the mode-dependent loss in the fiber, our numerical results are in good agreement with our experimental observations. Our study paves the way for exploring potential applica...

  17. Titratable macroions in multivalent electrolyte solutions: Strong coupling dressed ion approach

    Science.gov (United States)

    Adžić, Nataša; Podgornik, Rudolf

    2016-06-01

    We present a theoretical description of the effect of polyvalent ions on the interaction between titratable macroions. The model system consists of two point-like macroions with dissociable sites, immersed in an asymmetric ionic mixture of monovalent and polyvalent salts. We formulate a dressed ion strong coupling theory, based on the decomposition of the asymmetric ionic mixture into a weakly electrostatically coupled monovalent salt and into polyvalent ions that are strongly electrostatically coupled to the titratable macro-ions. The charge of the macroions is not considered as fixed, but is allowed to respond to local bathing solution parameters (electrostatic potential, pH of the solution, and salt concentration) through a simple charge regulation model. The approach presented, yielding an effective polyvalent-ion mediated interaction between charge-regulated macroions at various solution conditions, describes the strong coupling equivalent of the Kirkwood-Schumaker interaction.

  18. Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system

    International Nuclear Information System (INIS)

    We present a study of the strong coupling between radiation and matter, considering a system of two quantum dots, which are in mutual interaction and interact with a single mode of light confined in a semiconductor nanocavity. We take into account dissipative mechanisms such as the escape of the cavity photons, decay of the quantum dot excitons by spontaneous emission, and independent exciton pumping. It is shown that the mutual interaction between the dots can be measured off-resonance only if the strong coupling condition is reached. Using the quantum regression theorem, a reasonable definition of the dynamical coupling regimes is introduced in terms of the complex Rabi frequency. Finally, the emission spectrum for relevant conditions is presented and compared with the above definition, demonstrating that the interaction between the excitons does not affect the strong coupling.

  19. Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Paulo C; RodrIguez, Boris A [Instituto de Fisica, Universidad de Antioquia, AA 1226 MedellIn (Colombia); Quesada, Nicolas [McLennan Physical Laboratories, University of Toronto, 60 St George Street, Toronto, ON, M5S 1A7 (Canada); Vinck-Posada, Herbert, E-mail: pcardenas@fisica.udea.edu.co [Departamento de Fisica, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia)

    2011-07-06

    We present a study of the strong coupling between radiation and matter, considering a system of two quantum dots, which are in mutual interaction and interact with a single mode of light confined in a semiconductor nanocavity. We take into account dissipative mechanisms such as the escape of the cavity photons, decay of the quantum dot excitons by spontaneous emission, and independent exciton pumping. It is shown that the mutual interaction between the dots can be measured off-resonance only if the strong coupling condition is reached. Using the quantum regression theorem, a reasonable definition of the dynamical coupling regimes is introduced in terms of the complex Rabi frequency. Finally, the emission spectrum for relevant conditions is presented and compared with the above definition, demonstrating that the interaction between the excitons does not affect the strong coupling.

  20. Titratable Macroions in Multivalent Electrolyte Solutions: Strong Coupling Dressed Ion Approach

    CERN Document Server

    Adzic, Natasa

    2016-01-01

    We present a theoretical description of the effect of polyvalent ions on the interaction between titratable macro-ions. The model system consists of two point-like macro-ions with dissociable sites, immersed in an asymmetric ionic mixture of monovalent and polyvalent salts. We formulate a {\\em dressed ion strong coupling theory}, based on the decomposition of the asymmetric ionic mixture into a weakly electrostatically coupled monovalent salt, and into polyvalent ions that are strongly electrostatically coupled to the titratable macro-ions. The charge of the macroions is not considered as fixed, but is allowed to respond to local bathing solution parameters (electrostatic potential, $pH$ of the solution, salt concentration) through a simple {\\em charge regulation} model. The approach presented, yielding an effective polyvalent-ion mediated interaction between charge-regulated macro-ions at various solution conditions, describes the strong coupling equivalent of the Kirkwood-Schumaker interaction.

  1. Coupling constant metamorphosis and Nth order symmetries in classical and quantum mechanics

    CERN Document Server

    Kalnins, E G; Post, S

    2009-01-01

    We review the fundamentals of coupling constant metamorphosis (CCM) and the St\\"ackel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which do preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature 3rd and 4th order superintegrable systems in 2 space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.

  2. Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kalnins, E G [Department of Mathematics and Statistics, University of Waikato, Hamilton (New Zealand); Miller, W Jr; Post, S [School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (United States)], E-mail: miller@ima.umn.edu

    2010-01-22

    We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.

  3. Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics

    International Nuclear Information System (INIS)

    We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.

  4. Entanglement Entropy Renormalization for the NC scalar field coupled to classical BTZ geometry

    CERN Document Server

    Jurić, Tajron

    2016-01-01

    In this work, we consider a noncommutative (NC) massless scalar field coupled to the classical nonrotational BTZ geometry. In a manner of the theories where the gravity emerges from the underlying scalar field theory, we study the effective action and the entropy derived from this noncommutative model. In particular, the entropy is calculated by making use of the two different approaches, the brick wall method and the heat kernel method designed for spaces with conical singularity. We show that the UV divergent structures of the entropy, obtained through these two different methods, agree with each other. It is also shown that the same renormalization condition that removes the infinities from the effective action can also be used to renormalize the entanglement entropy for the same system. Besides, the interesting feature of the NC model considered here is that it allows an interpretation in terms of an equivalent system comprising of a commutative massive scalar field, but in a modified geometry; that of th...

  5. Quantum-jumps and photon-statistic in fluorescent systems coupled to classically fluctuating reservoirs

    CERN Document Server

    Budini, Adrian A

    2010-01-01

    In this paper, we develop a quantum-jump approach for describing the photon-emission process of single fluorophore systems coupled to complex classically fluctuating reservoirs. The formalism relies on an open quantum system approach where the dynamic of the system and the reservoir fluctuations are described through a density matrix whose evolution is defined by a Lindblad rate equation. For each realization of the photon measurement processes it is possible to define a conditional system state (stochastic density matrix) whose evolution depends on both the photon detection events and the fluctuations between the configurational states of the reservoir. In contrast to standard fluorescent systems the photon-to-photon emission process is not a renewal one, being defined by a (stochastic) waiting time distribution that in each recording event parametrically depends on the conditional state. The formalism allows calculating experimental observables such as the full hierarchy of joint probabilities associated to...

  6. Floquet topological system based on frequency-modulated classical coupled harmonic oscillators

    Science.gov (United States)

    Salerno, Grazia; Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2016-02-01

    We theoretically propose how to observe topological effects in a generic classical system of coupled harmonic oscillators, such as classical pendula or lumped-element electric circuits, whose oscillation frequency is modulated fast in time. Making use of Floquet theory in the high-frequency limit, we identify a regime in which the system is accurately described by a Harper-Hofstadter model where the synthetic magnetic field can be externally tuned via the phase of the frequency modulation of the different oscillators. We illustrate how the topologically protected chiral edge states, as well as the Hofstadter butterfly of bulk bands, can be observed in the driven-dissipative steady state under a monochromatic drive. In analogy with the integer quantum Hall effect, we show how the topological Chern numbers of the bands can be extracted from the mean transverse shift of the steady-state oscillation amplitude distribution. Finally, we discuss the regime where the analogy with the Harper-Hofstadter model breaks down.

  7. Ultrafast Polariton-Phonon Dynamics of Strongly Coupled Quantum Dot-Nanocavity Systems

    Science.gov (United States)

    Müller, Kai; Fischer, Kevin A.; Rundquist, Armand; Dory, Constantin; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Kelaita, Yousif A.; Borish, Victoria; Vučković, Jelena

    2015-07-01

    We investigate the influence of exciton-phonon coupling on the dynamics of a strongly coupled quantum dot-photonic crystal cavity system and explore the effects of this interaction on different schemes for nonclassical light generation. By performing time-resolved measurements, we map out the detuning-dependent polariton lifetime and extract the spectrum of the polariton-to-phonon coupling with unprecedented precision. Photon-blockade experiments for different pulse-length and detuning conditions (supported by quantum optical simulations) reveal that achieving high-fidelity photon blockade requires an intricate understanding of the phonons' influence on the system dynamics. Finally, we achieve direct coherent control of the polariton states of a strongly coupled system and demonstrate that their efficient coupling to phonons can be exploited for novel concepts in high-fidelity single-photon generation.

  8. Fano-resonance induced strong-coupling of a hyperbolic cavity to a quantum emitter

    CERN Document Server

    Hasan, Mehedi; Belov, Pavel

    2015-01-01

    Light-matter interaction is studied for an open quantum system in the strong-coupling regime. A quantum dot and a hyperbolic cavity of spherical geometry is shown to couple light with large Rabi frequency and the role of Fano resonance is shown in the coupling mechanism. High Purcell factor and large Lamb shift are outlined. In the near-field spectrum, two distinct anti-crossings are evident, namely -- the one near the epsilon near zero (ENZ) frequency (from the effective medium description) which is detectable in the far-field, and the second anti-crossing is a pseudomode that does not appear in the far-field spectrum. This delineates the phenomenon `farfield propagating large Purcell factor'. Finally, we remark the fidelity of the strong-coupling, i.e. how prone the strong-coupling with respect to the loss mechanisms. This study on strong-coupling will have applications for spectroscopy, control over chemical reaction rate, microcavity, and in quantum information technology.

  9. Transient state work fluctuation theorem for a classical harmonic oscillator linearly coupled to a harmonic bath

    Indian Academy of Sciences (India)

    Rajarshi Chakrabarti

    2009-04-01

    Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we do not assume anything about the spectral nature of the harmonic bath the derivation is not restricted only to the Ohmic bath, rather it is more general, for a non-Ohmic bath. We also derive expressions of the average work done and the variance of the work done in terms of the two-time correlation function of the fluctuations of the position of the harmonic oscillator. In the case of an Ohmic bath, we use these relations to evaluate the average work done and the variance of the work done analytically and verify the transient state work fluctuation theorem quantitatively. Actually these relations have far-reaching consequences. They can be used to numerically evaluate the average work done and the variance of the work done in the case of a non-Ohmic bath when analytical evaluation is not possible.

  10. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    Science.gov (United States)

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-01

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  11. Strong ferromagnetically-coupled spin valve sensor devices for droplet magnetofluidics.

    Science.gov (United States)

    Lin, Gungun; Makarov, Denys; Schmidt, Oliver G

    2015-01-01

    We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays. PMID:26024419

  12. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, Dibakar, E-mail: dibakar.roychowdhury@anu.edu.au [Center for Sustainable Energy Systems, College of Engineering and Computer Science, Australian National University, Canberra 0200 (Australia); College of Engineering, Mahindra Ecole Centrale, Jeedimetla, Hyderabad, 500043 (India); Xu, Ningning; Zhang, Weili [School of Electrical Engineering and Computer Science, Oklahoma State University, Stillwater, Oklahoma 87074 (United States); Singh, Ranjan, E-mail: ranjans@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  13. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    International Nuclear Information System (INIS)

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials

  14. The strong-weak coupling symmetry in 2D Φ4 field models

    Directory of Open Access Journals (Sweden)

    B.N.Shalaev

    2005-01-01

    Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.

  15. Formation and evolution of vortices in a collisional strongly coupled dusty plasma

    Science.gov (United States)

    Jana, Sayanee; Banerjee, Debabrata; Chakrabarti, Nikhil

    2016-07-01

    Formation and evolution of vortices are studied in a collisional strongly coupled dusty plasma in the framework of a Generalized Hydrodynamic model (GH). Here we mainly present the nonlinear dynamical response of this strongly coupled system in presence of dust-neutral collisional drag. It is shown that the interplay between the nonlinear elastic stress and the dust-neutral collisional drag results in the generation of non-propagating monopole vortex for some duration before it starts to propagate like transverse shear wave. It is also found that the interaction between two unshielded monopole vortices having both same (co-rotating) and opposite (counter rotating) rotations result in the formation of two propagating dipole vortices of equal and unequal strength respectively. These results will provide some new understanding on the transport properties in such a strongly coupled system. The numerical simulation is carried out using a de-aliased doubly periodic pseudo-spectral code with Runge-Kutta-Gill time integrator.

  16. The effective U(1)-Higgs theory at strong coupling on optical lattices?

    CERN Document Server

    Bazavov, Alexei; Tsai, Shan-Wen; Meurice, Yannick

    2014-01-01

    We discuss the U(1)-Higgs model in two dimensions in the strongly coupled regime. If we neglect the plaquette interactions, we generate an effective theory where link variables are integrated out, producing 4-field operators. Plaquette interactions can be restored order by order as in recent calculations with staggered fermions. In the case of a SU(2) gauge theory with fermions, this strong coupling expansion can be related to the strong coupling expansion of Fermi-Hubbard models possibly implementable on optical lattice. We would like to provide a similar construction relating the U(1)-Higgs model to some Bose-Hubbard model. As a first step in this direction, we discuss a recent proposal to implement the O(2) model on optical lattices using a 87Rb and 41K Bose-Bose mixture of cold atoms.

  17. The Sound of Strongly Coupled Field Theories: Quasinormal Modes In AdS

    CERN Document Server

    Landsteiner, Karl

    2012-01-01

    The AdS/CFT correspondence has developed over the last years into a very useful and powerful tool for studying strongly coupled field theories at finite temperature and density. Of particular interest is the regime of near equilibrium real time evolution that can be captured via linear response theory. The AdS/CFT correspondence allows the calculation of retarded two point functions of gauge invariant operators by studying fluctuations around asymptotically AdS black holes. A major role is played by the poles of these holographic response functions: the quasinormal frequencies. I will review the applications of these ideas to the hydrodynamics of the strongly coupled quark gluon plasma and the holographic realization of strongly coupled superfluids.

  18. The Bekenstein bound in strongly coupled O(N) scalar field theory

    International Nuclear Information System (INIS)

    We discuss the O(N) self-interacting scalar field theory, in the strong-coupling regime and also in the limit of large N. Considering that the system is in thermal equilibrium with a reservoir at temperature β-1, we assume the presence of macroscopic boundaries conning the field in a hypercube of side L. Using the strong-coupling perturbative expansion, we generalize previous results, i.e., we obtain the renormalized mean energy E and entropy S for the system in rst order of the strong-coupling perturbative expansion, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. When considering the low temperature behavior of the specific entropy, the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)

  19. Strong coupling of Rydberg atoms and surface phonon polaritons on piezoelectric superlattices

    OpenAIRE

    Sheng, Jiteng; Chao, Yuanxi; Shaffer, James P.

    2016-01-01

    We propose a hybrid quantum system where the strong coupling regime can be achieved between a Rydberg atomic ensemble and propagating surface phonon polaritons on a piezoelectric superlattice. By exploiting the large electric dipole moment and long lifetime of Rydberg atoms as well as tightly confined surface phonon polariton modes, it is possible to achieve a coupling constant far exceeding the relevant decay rates. The frequency of the surface mode can be selected so it is resonant with a R...

  20. Strong-coupling theory of magnetic-exciton-mediated superconductivity in UPd$_2$Al$_3$

    OpenAIRE

    McHale, P.; Thalmeier, P.; Fulde, P.

    2004-01-01

    There is compelling evidence from inelastic-neutron-scattering and tunneling experiments that the heavy-fermion superconductor UPd$_2$Al$_3$ can be understood as a dual system consisting of magnetic excitons, arising from crystal-field-split U$^{4+}$ levels, coupled to delocalised f-electrons. We have computed the superconducting transition temperature and the mass renormalisation arising from a dual model with maximal spin anisotropy using a strong-coupling approach. We find an instability t...

  1. Global configuration stabilization for the VTOL aircraft with strong input coupling

    OpenAIRE

    Olfati-Saber, Reza

    2002-01-01

    Trajectory tracking and configuration stabilization for the vertical takeoff and landing (VTOL) aircraft has been so far considered in the literature only in the presence of a slight (or zero) input coupling (i.e., for a small ε). In this paper, our main contribution is to address global configuration stabilization for the VTOL aircraft with a strong input coupling using a smooth static state feedback. In addition, the differentially flat outputs for the VTOL aircraft are automatically obtain...

  2. Optimal limits of cavity optomechanical cooling in the strong coupling regime

    OpenAIRE

    Liu, Yong-Chun; Shen, Yu-Feng; Gong, Qihuang; Xiao, Yun-Feng

    2014-01-01

    Laser cooling of mesoscopic mechanical resonators is of great interest for both fundamental studies and practical applications. We provide a general framework to describe the cavity-assisted backaction cooling in the strong coupling regime. By studying the cooling dynamics, we find that the temporal evolution of mean phonon number oscillates as a function of the optomechanical coupling strength depending on frequency mixing. The further analytical result reveals that the optimal cooling limit...

  3. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    Energy Technology Data Exchange (ETDEWEB)

    Schluck, F.; Lehmann, G.; Spatschek, K. H. [Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf (Germany)

    2015-09-15

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process. First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.

  4. High-energy scattering in strongly coupled N=4 super Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Sprenger, Martin

    2014-11-15

    This thesis concerns itself with the analytic structure of scattering amplitudes in strongly coupled N=4 super Yang-Mills theory (abbreviated N = 4 SYM) in the multi-Regge limit. Through the AdS/CFT-correspondence observables in strongly coupled N = 4 SYM are accessible via dual calculations in a weakly coupled string theory on an AdS{sub 5} x S{sub 5}-geometry, in which observables can be calculated using standard perturbation theory. In particular, the calculation of the leading order of the n-gluon amplitude in N = 4 SYM at strong coupling corresponds to the calculation of a minimal surface embedded into AdS{sub 5}. This surface ends on the concatenation of the gluon momenta, which is a light-like curve. The calculation of the minimal surface area can be reduced to finding the solution of a set of non-linear, coupled integral equations, which have no analytic solution in arbitrary kinematics. In this thesis, we therefore specialise to the multi-Regge limit, the n-particle generalisation of the Regge limit. This limit is especially interesting as even in the description of scattering amplitudes in weakly coupled N = 4 SYM in this limit a certain set of Feynman diagrams has to be resummed. This description organises itself into orders of logarithms of the energy involved in the scattering process. In this expansion each order in logarithms includes terms from every order in the coupling constant and therefore contains information about the strong coupling sector of the theory, albeit in a very specific way. This raises the central question of this thesis, which is how much of the analytic structure of the scattering amplitudes in the multi-Regge limit is preserved as we go to the strong coupling regime. We show that the equations governing the area of the minimal surface simplify drastically in the multi-Regge limit, which allows us to obtain analytic results for the scattering amplitudes. We develop an algorithm for the calculation of scattering amplitudes in the

  5. Tricritical points in a compact U (1 ) lattice gauge theory at strong coupling

    Science.gov (United States)

    De, Asit K.; Sarkar, Mugdha

    2016-06-01

    Pure compact U (1 ) lattice gauge theory exhibits a phase transition at gauge coupling g ˜O (1 ) separating a familiar weak coupling Coulomb phase, having free massless photons, from a strong coupling phase. However, the phase transition was found to be of first order, ruling out any nontrivial theory resulting from a continuum limit from the strong coupling side. In this work, a compact U (1 ) lattice gauge theory is studied with addition of a dimension-two mass counterterm and a higher derivative (HD) term that ensures a unique vacuum and produces a covariant gauge-fixing term in the naive continuum limit. For a reasonably large coefficient of the HD term, now there exists a continuous transition from a regular ordered phase to a spatially modulated ordered phase. For weak gauge couplings, a continuum limit from the regular ordered phase results in a familiar theory consisting of free massless photons. For strong gauge couplings with g ≥O (1 ), this transition changes from first order to continuous as the coefficient of the HD term is increased, resulting in tricritical points which appear to be a candidate in this theory for a possible nontrivial continuum limit.

  6. Tricritical points in a compact $U(1)$ lattice gauge theory at strong coupling

    CERN Document Server

    De, Asit K

    2016-01-01

    Pure compact $U(1)$ lattice gauge theory exhibits a phase transition at gauge coupling $g \\sim {\\cal{O}}(1)$ separating a familiar weak coupling Coulomb phase, having free massless photons, from a strong coupling phase. However, the phase transition was found to be of first order, ruling out any non-trivial theory resulting from a continuum limit from the strong coupling side. In this work, a compact $U(1)$ lattice gauge theory is studied with addition of a dimension-two mass counter-term and a higher derivative (HD) term that ensures a unique vacuum and produces a covariant gauge-fixing term in the naive continuum limit. For a reasonably large coefficient of the HD term, now there exists a continuous transition from a regular ordered phase to a spatially modulated ordered phase which breaks Euclidean rotational symmetry. For weak gauge couplings, a continuum limit from the regular ordered phase results in a familiar theory consisting of free massless photons. For strong gauge couplings with $g\\ge {\\cal{O}}(1...

  7. Magnetic field controlled interaction strength of a strongly coupled quantum dot-micropillar system

    International Nuclear Information System (INIS)

    So far most experimental studies of strong coupling in QD-microcavity systems have relied on temperature tuning or electro-optical resonance tuning based on the quantum confined Stark effect. In this work we demonstrate that an external magnetic field provides a further degree of freedom to fully explore the potential of coherently coupled QD-microcavity system. We investigated magneto-optical resonance tuning of a laterally extended In0.3Ga0.7As QD embedded in the active layer of a micropillar cavity with a Q-Factor of 11000 which corresponds to a cavity mode linewidth of γC=120 μeV. Strong coupling with a QD exciton was observed at zero magnetic field exhibiting a Vacuum Rabi splitting (VRS) of 105 μeV. Magnetic field dependent studies show that the VRS and the associated coupling strength g decrease when magnetic confinement becomes significant above 3 T. This effect is explained in terms of a magnetic field dependent oscillator strength of the extended QDs. In this sense the magnetic field not only acts as a tuning parameter but also opens a way of in situ modifying the coupling strength of the interacting system. In a further approach we demonstrated spin-selective strong coupling by tuning Zeeman-split exciton lines sequentially through the cavity resonance.

  8. Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity

    Science.gov (United States)

    Lai, Ying-Yu; Chou, Yu-Hsun; Lan, Yu-Pin; Lu, Tien-Chang; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2016-02-01

    Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach to generate both exciton and polariton lasing in a strongly coupled microcavity (MC) and determine the critical driving requirements for simultaneously triggering these two lasing operation in temperature mechanisms in strongly coupled MCs and verify a new method with which to trigger dual laser emission based on exciton and polariton.

  9. Aspects of strongly-coupled field therory from gauge-gravity duality

    OpenAIRE

    Threlfall, Edward James

    2009-01-01

    The issue of calculating at strong coupling is a hard problem in physics. The discovery of gauge-gravity duality at the end of the Twentieth Century provides a novel means of calculating in a large-N gauge theory at strong coupling. In this thesis we apply the method of gauge-gravity duality to a variety of questions. Firstly we review the string theory background material and then introduce the gauge-gravity duality. We discuss the procedure for adding fundamental representati...

  10. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  11. Hamilton-Jacobi Solutions for Strongly-Coupled Gravity and Matter

    CERN Document Server

    Salopek, D S

    1998-01-01

    A Green's function method is developed for solving strongly-coupled gravity and matter in the semiclassical limit. In the strong-coupling limit, one assumes that Newton's constant approaches infinity. As a result, one may neglect second order spatial gradients, and each spatial point evolves like an homogeneous universe. After constructing the Green's function solution to the Hamiltonian constraint, the momentum constraint is solved using functional methods in conjunction with the superposition principle for Hamilton-Jacobi theory. Exact and approximate solutions are given for a dust field or a scalar field interacting with gravity.

  12. Strong gravitational field time delay for photons coupled to Weyl tensor in a Schwarzschild black hole

    Science.gov (United States)

    Lu, Xu; Yang, Feng-Wei; Xie, Yi

    2016-07-01

    We analyze strong gravitational field time delay for photons coupled to the Weyl tensor in a Schwarzschild black hole. By making use of the method of strong deflection limit, we find that these time delays between relativistic images are significantly affected by polarization directions of such a coupling. A practical problem about determination of the polarization direction by observations is investigated. It is found that if the first and second relativistic images can be resolved, the measurement of time delay can more effectively improve detectability of the polarization direction.

  13. Collective strong coupling of cold potassium atoms in a ring cavity

    CERN Document Server

    Culver, Robert; Megyeri, Balázs; Pahwa, Komal; Mudarikwa, Lawrence; Holynski, Michael; Courteille, Philippe W; Goldwin, Jon

    2016-01-01

    We present experiments on ensemble cavity quantum electrodynamics with cold potassium atoms in a high-finesse ring cavity. Potassium-39 atoms are cooled in a two-dimensional magneto-optical trap, and transferred to a three-dimensional trap which intersects the cavity mode. The apparatus is described in detail and the first observations of strong coupling with potassium atoms are presented. Collective strong coupling of atoms and light is demonstrated via the splitting of the cavity transmission spectrum and the avoided crossing of the normal modes.

  14. Strong gravitational field time delay for photons coupled to Weyl tensor in a Schwarzschild black hole

    CERN Document Server

    Lu, Xu; Xie, Yi

    2016-01-01

    We analyse strong gravitational field time delay for photons coupled to the Weyl tensor in a Schwarzschild black hole. By making use of the method of strong deflection limit, we find that these time delays between relativistic images are significantly affected by polarization directions of such a coupling. A practical problem about determination of the polarization direction by observations is investigated. It is found that if the first and second relativistic images can be resolved, the measurement of time delay can more effectively improve detectability of the polarization direction.

  15. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2007-09-03

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  16. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    International Nuclear Information System (INIS)

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects

  17. Measurement of the strong coupling constant with hadronic jets in deep inelastic scattering

    International Nuclear Information System (INIS)

    The deep inelastic scattering (DIS) in electron-positron collisions at HERA is an adequate tool to probe the strong interaction at high energy. Particularly the production of directional jets composed of hadrons is an event directly linked to the intensity of the strong coupling and as a consequence measurement of the strong coupling can be made from the production cross-section of hadronic jets. This new analysis is based on an extensive data collected between 2003 and 2007 by the HERA experiment. This work is organised around 3 main parts. The first part is dedicated to the theoretical basis in which we present the general structure of perturbative calculations in QCD (quantum chromodynamics) and we introduce the strong coupling constant αs. We also introduce the jet observables sensitive to the strong coupling as well as the perturbative calculations used to predict jet observables and other QCD parameters. The second part is dedicated to the measurement of the jet production cross-sections at HERA. The H1 detector, the methods used for the reconstruction of the DIS neutral current (NC) kinematics and the procedure used to select DIS NC events are detailed. The third part deals with the analysis of the experimental data in view of extracting a more accurate value of αs. We have got: αs(mZ) equals 0.1181 ± 0.0007 (exp) ± 0.0045 (th). (A.C.)

  18. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    Science.gov (United States)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  19. On the strong-coupling spectrum of pure SU(3) Seiberg-Witten theory

    International Nuclear Information System (INIS)

    We consider the two complex dimensional moduli space of supersymmetric vacua for low energy effective N=2 SYM with gauge group SU(3). We describe, at the topological level, a consistent model of how the relevant curves of marginal stability (CMS) intertwine with the branch cuts to partition the moduli space into pieces carrying different BPS spectra. At strong coupling we find connected cores which carry a smaller BPS spectrum than that at weak coupling. At the strongest coupling we find double cores which carry a finite BPS spectrum. These include not only states one can deduce from the monodromy group, but three states, bounded away from weak coupling, each of which we interpret as a bound state of two BPS gauge bosons. We find new BPS states at weak coupling corresponding to a excitations of a state with magnetic charge a simple co-root, with respect to the other simple root direction. (author)

  20. Dust-Acoustic Waves in Strongly Coupled Dusty Plasmas Containing Variable-Charge Impurities

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song; HE Kai-Fen; M. Y. Yu

    2000-01-01

    A relatively self-consistent theory of dust-acoustic waves in the strongly coupled dusty plasmas containing variable charge impurities is given. Relevant physical processes such as dust elastic relaxation and dust charge relaxation are taken into account. It is shown that the negative dispersion of dust-acoustic waves due to the strong correlation of dusts is enhanced in the presence of dust-neutral collisions.

  1. Suppression of Instability in Strongly Coupled Dusty Plasmas with Ion Flow

    Institute of Scientific and Technical Information of China (English)

    贺凯芬; 谢柏松; 刘克富

    2001-01-01

    The instability of low-frequency longitudinal modes in strongly coupled dusty plasmas with an ion flow is investigated. The dust charging relaxation is taken into account. It is found that when the ion flow is strong enough,the suppression, even disappearance. of instability can occur. Similar to that of the real frequency of waves, the imaginary part of waves also exhibits a transition, which arises from the sensitive dependences on the system parameters and their competition.

  2. Candidate Multi-Peptide-Vaccine Against Classical Swine Fever Virus Induces Strong Antibody Response with Predefined Specificity

    Institute of Scientific and Technical Information of China (English)

    张耿; 董晓楠; 陈应华

    2002-01-01

    Previous investigations demonstrated that the envelope glycoprotein E2 (gp55) of classical swine fever virus (CSFV) is the most immunogenic protein. Interestingly, recombinant protein E2 that contains only one structural antigenic unit (unit B/C or A) could protect pigs from a lethal challenge of CSFV. Based on these findings, we designed and prepared five overlapping synthetic peptides that covered the sequence unit B/C (aa 693-777) of Shimen E2 and conjugated individual peptides with bovine serum albumin (BSA). After the vaccination, the specificity of the rabbit sera was analyzed in the enzyme-linked immunosorbent assay (ELISA) and the fast protein liquid chromatography (FPLC). The results show that each of the five candidate peptide-vaccines can successfully induce a high titer of specific antibodies in New Zealand White Rabbits (n=3). Subsequently, the five candidate peptide-vaccines were applied in combination for immunization of pigs (n=10) and induced specific and strong humoral responses against all of the five designed peptides in pigs. Our studies indicate that the candidate multi-peptide-vaccine would prove an excellent marker vaccine against CSFV and provide a model for developing effective synthetic peptide vaccines to stop viral epidemics in humans and animals.

  3. Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (′/)-expansion method

    Indian Academy of Sciences (India)

    Sachin Kumar; K Singh; R K Gupta

    2012-07-01

    In this paper, coupled Higgs field equation are studied using the Lie classical method. Symmetry reductions and exact solutions are reported for Higgs equation and Hamiltonian amplitude equation. We also establish the travelling wave solutions involving parameters of the coupled Higgs equation and Hamiltonian amplitude equation using (′/)-expansion methodc, where = () satisfies a second-order linear ordinary differential equation (ODE). The travelling wave solutions expressed by hyperbolic, trigonometric and the rational functions are obtained.

  4. Evolution of entanglement between qubits ultra-strongly coupling to a quantum oscillator

    International Nuclear Information System (INIS)

    We investigate the dynamics of two qubits coupled with a quantum oscillator by using the adiabatic approximation method. We take account of the interaction between the qubits and show how the entanglement is affected by the interaction parameter. The most interesting result is that we can prolong the entanglement time or improve the entanglement degree by using an appropriate interaction parameter. As the generation and preservation of entanglement of qubits are crucial for quantum information processing, our research will be useful. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. Single-molecule strong coupling at room temperature in plasmonic nanocavities.

    Science.gov (United States)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J; Scherman, Oren A; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter1, 2, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds. PMID:27296227

  6. Study of spin sum rules (and the strong coupling constant at large distances)

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur

    2009-12-01

    We present recent results from Jefferson Lab on sum rules related to the spin structure of the nucleon. We then discuss how the Bjorken sum rule with its connection to the Gerasimov-Drell-Hearn sum, allows us to conveniently define an effective coupling for the strong force at all distances.

  7. Strong coupling of sapphire surface polariton with aluminum nitride film phonon

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, V.A., E-mail: yakovlev@isan.troitsk.r [Institute for Spectroscopy of Russian Academy of Sciences, Troitsk, Moscow reg., 142190 (Russian Federation); Novikova, N.N.; Vinogradov, E.A. [Institute for Spectroscopy of Russian Academy of Sciences, Troitsk, Moscow reg., 142190 (Russian Federation); Ng, S.S.; Hassan, Z.; Hassan, H. Abu [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2009-06-22

    Surface polariton spectra of a thin (25 nm) aluminum nitride film on sapphire substrate have been measured using attenuated total reflection technique. Due to the strong coupling of sapphire substrate surface polariton with the film transverse optical phonon the splitting of the dispersion curve of sapphire surface polariton was found.

  8. Strong Coupling Asymptotics for a Singular Schrodinger Operator with an Interaction Supported by an Open Arc

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Pankrashkin, K.

    2014-01-01

    Roč. 39, č. 2 (2014), s. 193-212. ISSN 0360-5302 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Eigenvalue * Schrödinger operator * singular interaction * strong coupling * 35Q40 * 35P15 * 35J10 Subject RIV: BE - Theoretical Physics Impact factor: 1.013, year: 2014

  9. Longitudinal Waves in Strongly Coupled Magnetized Dusty Plasma with Dust Charging Relaxation

    Institute of Scientific and Technical Information of China (English)

    谢柏松

    2002-01-01

    Low-frequency longitudinal dust waves in strongly coupled magnetized dusty plasmas are investigated. The dustcharging relaxation is taken into account. It is found that the frequency and damping of dust waves are modifiedsignificantly due to the existence of the magnetic field as well as the effect of dust charging.

  10. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems bot...

  11. Effective hadronic Lagrangian in the strong coupling expansion of lattice QCD with Susskind fermions

    International Nuclear Information System (INIS)

    The effective hadronic action in lattice QCD with U(N) and SU(N) gauge groups and with Susskind fermions is constructed in the frame-work of the strong coupling approximation. For N=3 the authors find the expectation value of the left-angle bar χχ right-angle and the hadron masses

  12. Strong light-matter coupling in two-dimensional atomic crystals

    CERN Document Server

    Liu, Xiaoze; Sun, Zheng; Xia, Fengnian; Lin, Erh-chen; Lee, Yi-Hsien; Kéna-Cohen, Stéphane; Menon, Vinod M

    2014-01-01

    Two dimensional (2D) atomic crystals of graphene, and transition metal dichalcogenides have emerged as a class of materials that show strong light-matter interaction. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction is engineered to be stronger than the dissipation of light and matter entities, one approaches the strong coupling regime resulting in the formation of half-light half-matter bosonic quasiparticles called microcavity polaritons. Here we report the evidence of strong light-matter coupling and formation of microcavity polaritons in a two dimensional atomic crystal of molybdenum disulphide (MoS2) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 meV and highly directional emission is observed from the MoS2 microcavity owing to the coupling between the 2D excitons and the cavity photons. Realizing strong coupling effects at room temperature in a disorder free potential landscape is central to the ...

  13. Phonon interaction of electrons in the translation-invariant strong-coupling theory

    Science.gov (United States)

    Lakhno, V. D.

    2016-01-01

    A dependence of phonon interaction on the interelectronic distance is found for a translation-invariant (TI) strong-coupling bipolaron. It is shown that the charge induced by the electrons in a TI-bipolaron state is always greater than that in a bipolaron with spontaneously broken symmetry.

  14. Global solutions of a strongly coupled reaction-diffusion system with different diffusion coefficients

    OpenAIRE

    L. W. Somathilake; Peiris, J. M. J. J.

    2005-01-01

    We deal with a mathematical model for a four-component chemical reaction-diffusion process. The model is described by a system of strongly coupled reaction-diffusion equations with different diffusion rates. The existence of the global solution of this reaction-diffusion system in unbounded domain is proved by using semigroup theory and estimates on the growth of solutions.

  15. Photoluminescence and excitation spectra of GaAs-Ga(Al)As strongly coupled double well superlattice

    International Nuclear Information System (INIS)

    The electron and holes mini-bands are calculated as a function of the parallel momentum for a strongly coupled double well structure. Photoluminescence and excitation spectra for 45A GaAs wells separated by 12A Ga(Al)As barrier is analyzed. (Author)

  16. Entanglement entropy renormalization for the noncommutative scalar field coupled to classical BTZ geometry

    Science.gov (United States)

    Jurić, Tajron; Samsarov, Andjelo

    2016-05-01

    In this work, we consider a noncommutative (NC) massless scalar field coupled to the classical nonrotational BTZ geometry. In a manner of the theories where the gravity emerges from the underlying scalar field theory, we study the effective action and the entropy derived from this noncommutative model. In particular, the entropy is calculated by making use of the two different approaches, the brick-wall method and the heat kernel method designed for spaces with conical singularity. We show that the UV divergent structures of the entropy obtained through these two different methods agree with each other. It is also shown that the same renormalization condition that removes the infinities from the effective action can also be used to renormalize the entanglement entropy for the same system. Besides, the interesting feature of the NC model considered here is that it allows an interpretation in terms of an equivalent system comprising a commutative massive scalar field but in a modified geometry: that of the rotational BTZ black hole, the result that hints at a duality between the commutative and noncommutative systems in the background of a BTZ black hole.

  17. Dynamics of compressional Mach cones in a strongly coupled complex plasma

    CERN Document Server

    Bandyopadhyay, P; Kadyan, Sangeeta; Sen, Abhijit

    2016-01-01

    Using a Generalised-Hydrodynamic (GH) fluid model we study the influence of strong coupling induced modification of the fluid compressibility on the dynamics of compressional Mach cones in a dusty plasma medium. A significant structural change of lateral wakes for a given Mach number and Epstein drag force is found in the strongly coupled regime. With the increase of fluid compressibility, the peak amplitude of the normalised perturbed dust density first increases and then decreases monotonically after reaching its maximum value. It is also noticed that the opening angle of the cone structure decreases with the increase of the compressibility of the medium and the arm of the Mach cone breaks up into small structures in the velocity vector profile when the coupling between the dust particles increases.

  18. Strong coupling of Rydberg atoms and surface phonon polaritons on piezoelectric superlattices

    CERN Document Server

    Sheng, Jiteng; Shaffer, James P

    2016-01-01

    We propose a hybrid quantum system where the strong coupling regime can be achieved between a Rydberg atomic ensemble and propagating surface phonon polaritons on a piezoelectric superlattice. By exploiting the large electric dipole moment and long lifetime of Rydberg atoms as well as tightly confined surface phonon polariton modes, it is possible to achieve a coupling constant far exceeding the relevant decay rates. The frequency of the surface mode can be selected so it is resonant with a Rydberg transition by engineering the piezoelectric superlattice. We describe a way to observe the Rabi splitting associated with the strong coupling regime under realistic experimental conditions. The system can be viewed as a new type of optomechanical system.

  19. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  20. New heavy quark physics in the strongly Yukawa coupled standard model

    International Nuclear Information System (INIS)

    We show that for strong enough Yukawa coupling and weak gauge coupling the electroweak standard model quark finds it energetically advantageous to transform itself into a bound state in a Skyrme background. The mass of such a 'heavy' quark as also the heavy nucleon (a three quark color singlet composite) then decreases with the Yukawa coupling resulting in a maximum for the quark (nucleon) of 2 TeV (3 TeV). The three quark bound state, that is the nucleon, can be very strongly bound in this sheme in contrast to the weak binding mediated by QCD gluon exchange. As a candidate for new phenomenology at the SSC we find that the decay of a Δ like excited state of the heavy nucleon into WL plus heavy nucleon could provide an experimental signature of this scheme

  1. Dynamics of compressional Mach cones in a strongly coupled complex plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P., E-mail: pintu@ipr.res.in; Dey, R.; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Kadyan, Sangeeta [Department of Physics, Maharshi Dayanand University, Rohtak 124001 (India)

    2014-10-15

    Using a Generalised-Hydrodynamic (GH) fluid model, we study the influence of strong coupling induced modification of the fluid compressibility on the dynamics of compressional Mach cones in a dusty plasma medium. A significant structural change of lateral wakes for a given Mach number and Epstein drag force is found in the strongly coupled regime. With the increase of fluid compressibility, the peak amplitude of the normalised perturbed dust density first increases and then decreases monotonically after reaching its maximum value. It is also noticed that the opening angle of the cone structure decreases with the increase of the compressibility of the medium and the arm of the Mach cone breaks up into small structures in the velocity vector profile when the coupling between the dust particles increases.

  2. Dynamics of compressional Mach cones in a strongly coupled complex plasma

    International Nuclear Information System (INIS)

    Using a Generalised-Hydrodynamic (GH) fluid model, we study the influence of strong coupling induced modification of the fluid compressibility on the dynamics of compressional Mach cones in a dusty plasma medium. A significant structural change of lateral wakes for a given Mach number and Epstein drag force is found in the strongly coupled regime. With the increase of fluid compressibility, the peak amplitude of the normalised perturbed dust density first increases and then decreases monotonically after reaching its maximum value. It is also noticed that the opening angle of the cone structure decreases with the increase of the compressibility of the medium and the arm of the Mach cone breaks up into small structures in the velocity vector profile when the coupling between the dust particles increases

  3. Mode Modification of Plasmonic Gap Resonances induced by Strong Coupling with Molecular Excitons

    CERN Document Server

    Chen, Xingxing; Qin, Jian; Zhao, Ding; Ding, Boyang; Blaikie, Richard J; Qiu, Min

    2016-01-01

    Plasmonic cavities can be used to control the atom-photon coupling process at the nanoscale, since they provide ultrahigh density of optical states in an exceptionally small mode volume. Here we demonstrate strong coupling between molecular excitons and plasmonic resonances (so-called plexcitonic coupling) in a film-coupled nanocube cavity, which can induce profound and significant spectral and spatial modifications to the plasmonic gap modes. Within the spectral span of a single gap mode in the nanotube-film cavity with a 3-nm wide gap, the introduction of narrow-band J-aggregate dye molecules not only enables an anti-crossing behavior in the spectral response, but also splits the single spatial mode into two distinct modes that are easily identified by their far-field scattering profiles. Simulation results confirm the experimental findings and the sensitivity of the plexcitonic coupling is explored using digital control of the gap spacing. Our work opens up a new perspective to study the strong coupling pr...

  4. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons

    CERN Document Server

    Hu, Tao; Wu, Lin; Zhang, Long; Shan, Yuwei; Lu, Jian; Wang, Jun; Luo, Song; Zhang, Zhe; Liao, Liming; Wu, Shiwei; Shen, S C; Chen, Zhanghai

    2016-01-01

    Two dimensional (2D) semiconductor materials of transition-metal dichalcogenides (TMDCs) manifest many peculiar physical phenomena in the light-matter interaction. Due to their ultrathin property, strong interaction with light and the robust excitons at room temperature, they provide a perfect platform for studying the physics of strong coupling in low dimension and at room temperature. Here we report the strong coupling between 2D semiconductor excitons and Tamm plasmon polaritons (TPPs). We observe a Rabi splitting of about 54 meV at room temperature by measuring the angle resolved differential reflectivity spectra and simulate the theoretical results by using the transfer matrix method. Our results will promote the realization of the TPP based ultrathin polariton devices at room temperature.

  5. Strongly coupled slow-light polaritons in one-dimensional disordered localized states

    CERN Document Server

    Gao, Jie; Liang, Baolai; Schmitteckert, Peter; Lehoucq, Gaelle; Xavier, Stephane; Xu, Xinan; Busch, Kurt; Huffaker, Diana L; De Rossi, Alfredo; Wong, Chee Wei

    2013-01-01

    Cavity quantum electrodynamics advances the coherent control of a single quantum emitter with a quantized radiation field mode, typically piecewise engineered for the highest finesse and confinement in the cavity field. This enables the possibility of strong coupling for chip-scale quantum processing, but till now is limited to few research groups that can achieve the precision and deterministic requirements for these polariton states. Here we observe for the first time coherent polariton states of strong coupled single quantum dot excitons in inherently disordered one-dimensional localized modes in slow-light photonic crystals. Large vacuum Rabi splittings up to 311 {\\mu}eV are observed, one of the largest avoided crossings in the solid-state. Our tight-binding models with quantum impurities detail these strong localized polaritons, spanning different disorder strengths, complementary to model-extracted pure dephasing and incoherent pumping rates. Such disorder-induced slow-light polaritons provide a platfor...

  6. Two-dimensional confined photonic wire resonators - strong light-matter coupling

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Grund, Ruediger; Hilmer, Helena; Hinkel, Annekatrin; Sturm, Chris; Rheinlaender, Bernd; Gottschalch, Volker; Lange, Martin; Zuniga-Perez, Jesus; Grundmann, Marius [Universitaet Leipzig, Institut fuer Experimentelle Physik II, Linnestr. 5, 04103 Leipzig (Germany)

    2010-06-15

    Oxide based Bragg reflector (BR) shells were grown conformally on various curved micro- and nanostructures by means of plasma-enhanced chemical vapor deposition and pulsed laser deposition. The BR shells on circular-cylindrical shaped glass-rods exhibit an omnidirectional Bragg stop-band, which was confirmed by spatially resolved ellipsometry. Single free standing hexagonally shaped GaAs and ZnO nanopillars coated with lateral concentric BRs represent two-dimensionally confined photonic-wire resonators (PWR). Spatially resolved PL experiments in dependence on the pillar diameter and the temperature provide strong hints for the ZnO PWR being in the strong-coupling regime. The coupling strength can be estimated to be V = 80 meV, reflecting the enhancement of the exciton-polariton coupling strength due to the reduction of the mode volume in such PWR. Left: Scanning electron microscopy image of a BR coated ZnO nanopillar. The insets show longitudinal and cross-sectional cuts of such a PWR. Right: Spectra of the photoluminescence in dependence of the core cavity diameter d taken from the lateral surface of a ZnO PWR. The mode evolution indicates strong light-matter coupling. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Thermoplasmonic Study of a Triple Band Optical Nanoantenna Strongly Coupled to Mid IR Molecular Mode

    Science.gov (United States)

    Hasan, Dihan; Ho, Chong Pei; Pitchappa, Prakash; Yang, Bin; Yang, Chunsheng; Lee, Chengkuo

    2016-02-01

    We report the first thermal study of a triple band plasmonic nanoantenna strongly coupled to a molecular mode at mid IR wavelength (MW IR). The hybrid plasmonic structure supports three spatially and spectrally variant resonances of which two are magnetic and one is dipolar in nature. A hybridized mode is excited by coupling the structure’s plasmonic mode with the vibrational mode of PMMA at 5.79 μm. Qualitative agreement between the spectral changes in simulation and experiment clearly indicates that resistive heating is the dominant mechanisms behind the intensity changes of the dipolar and magnetic peaks. The study also unveils the thermal insensitivity of the coupled mode intensity as the temperature is increased. We propose a mechanism to reduce the relative intensity change of the coupled mode at elevated temperature by mode detuning and surface current engineering and demonstrate less than 9% intensity variation. Later, we perform a temperature cycling test and investigate into the degradation of the Au-PMMA composite device. The failure condition is identified to be primarily associated with the surface chemistry of the material interface rather than the deformation of the nanopatterns. The study reveals the robustness of the strongly coupled hybridized mode even under multiple cycling.

  8. Recent progress on correlated electron systems with strong spin-orbit coupling.

    Science.gov (United States)

    Schaffer, Robert; Kin-Ho Lee, Eric; Yang, Bohm-Jung; Kim, Yong Baek

    2016-09-01

    The emergence of novel quantum ground states in correlated electron systems with strong spin-orbit coupling has been a recent subject of intensive studies. While it has been realized that spin-orbit coupling can provide non-trivial band topology in weakly interacting electron systems, as in topological insulators and semi-metals, the role of electron-electron interaction in strongly spin-orbit coupled systems has not been fully understood. The availability of new materials with significant electron correlation and strong spin-orbit coupling now makes such investigations possible. Many of these materials contain 5d or 4d transition metal elements; the prominent examples are iridium oxides or iridates. In this review, we succinctly discuss recent theoretical and experimental progress on this subject. After providing a brief overview, we focus on pyrochlore iridates and three-dimensional honeycomb iridates. In pyrochlore iridates, we discuss the quantum criticality of the bulk and surface states, and the relevance of the surface/boundary states in a number of topological and magnetic ground states, both in the bulk and thin film configurations. Experimental signatures of these boundary and bulk states are discussed. Domain wall formation and strongly-direction-dependent magneto-transport are also discussed. In regard to the three-dimensional honeycomb iridates, we consider possible quantum spin liquid phases and unusual magnetic orders in theoretical models with strongly bond-dependent interactions. These theoretical ideas and results are discussed in light of recent resonant x-ray scattering experiments on three-dimensional honeycomb iridates. We also contrast these results with the situation in two-dimensional honeycomb iridates. We conclude with the outlook on other related systems. PMID:27540689

  9. Strong coupling between whispering gallery modes and chromium ions in ruby

    Science.gov (United States)

    Farr, Warrick G.; Goryachev, Maxim; Creedon, Daniel L.; Tobar, Michael E.

    2014-08-01

    We report the study of interactions between cavity photons and paramagnetic Cr3+ spins in a ruby (Cr3+:Al2O3) whispering gallery mode (WGM) resonator. Examining the system at microwave frequencies and millikelvin temperatures, spin-photon couplings up to 610 MHz or about 5% of photon energy are observed between the impurity spins and high quality factor (Q >105) WGM. Large tunability and spin-spin interaction allows operation in the strong coupling regime. The system exhibits behavior not predicted by the usual Tavis-Cummings model because of interactions within the two-level spin bath, and the existence of numerous photonic modes.

  10. Higgs Boson Mass and Muon g-2 with Strongly Coupled Vector-like Generations

    CERN Document Server

    Nishida, Michinobu

    2016-01-01

    We study the Higgs boson mass and the muon anomalous magnetic moment (the muon $g-2$) in a supersymmetric standard model with vector-like generations. The infrared physics of the model is governed by strong renormalization-group effects of the gauge couplings. That leads to sizable extra Yukawa couplings of Higgs doublets between the second and vector-like generations in both quark and lepton sectors. It is found with this property that there exist wide parameter regions where the Higgs boson mass and the muon $g-2$ are simultaneously explained.

  11. Effective mass of the ground state of the strong-coupling exciton in a quantum well

    Institute of Scientific and Technical Information of China (English)

    Eerdunchaolu; Xin Wei

    2009-01-01

    The properties of the effective mass of the ground state of the exciton, for which the electron (hole) is strongly coupled with interface-optical (IO) phonons but weakly coupled with bulk-longitudinal-optical (LO) phonons in a quantum well, are studied by means of Tokuda's improved linear combination operator and a modified second Lee-Low-Pines transformation method. The results indicate that the contributions of the interaction between the electron (hole) and the different phonon branches to the effective mass are greatly different, and change with the well width and the relative position between the electron and the hole.

  12. Higgs Boson Mass and Muon g-2 with Strongly Coupled Vector-like Generations

    OpenAIRE

    Nishida, Michinobu; Yoshioka, Koichi

    2016-01-01

    We study the Higgs boson mass and the muon anomalous magnetic moment (the muon $g-2$) in a supersymmetric standard model with vector-like generations. The infrared physics of the model is governed by strong renormalization-group effects of the gauge couplings. That leads to sizable extra Yukawa couplings of Higgs doublets between the second and vector-like generations in both quark and lepton sectors. It is found with this property that there exist wide parameter regions where the Higgs boson...

  13. Control of optical properties of hybrid materials with chirped femtosecond laser pulses under strong coupling conditions

    CERN Document Server

    Sukharev, Maxim

    2014-01-01

    The interaction of chirped femtosecond laser pulses with hybrid materials - materials comprised of plasmon sustaining structures and resonant molecules - is scrutinized using a self-consistent model of coupled Maxwell-Bloch equations. The optical properties of such systems are examined with the example of periodic sinusoidal gratings. It is shown that under strong coupling conditions one can control light transmission using chirped pulses in a spatiotemporal manner. The temporal origin of control relies on chirps non-symmetric in time while the space control is achieved via spatial localization of electromagnetic energy due to plasmon resonances.

  14. The strong running coupling at $\\tau$ and $Z_0$ mass scales from lattice QCD

    CERN Document Server

    Blossier, B; Brinet, M; De Soto, F; Du, X; Morenas, V; Pène, O; Petrov, K; Rodríguez-Quintero, J

    2012-01-01

    This letter reports on the first computation, from data obtained in lattice QCD with $u,d,s$ and $c$ quarks in the sea, of the running strong coupling via the ghost-gluon coupling renormalized in the MOM Taylor scheme. We provide with estimates of $\\alpha_{\\bar{\\rm MS}}(m_\\tau^2)$ and $\\alpha_{\\bar{\\rm MS}}(m_Z^2)$ (for which the inclusion of the dynamical charm quark makes the running much safer) in very good agreement with experimental results.

  15. Relaxation- and Decoherence-free subspaces in networks of weakly and strongly coupled resonators

    CERN Document Server

    De Ponte, M A; Moussa, M H Y

    2006-01-01

    We consider a network of interacting resonators and analyze the physical ingredients that enable the emergence of relaxation-free and decoherence-free subspaces. We investigate two different situations: i) when the whole network interacts with a common reservoir and ii) when each resonator, strongly coupled to each other, interacts with its own reservoir. Our main result is that both subspaces are generated when all the resonators couple with the same group of reservoir modes, thus building up a correlation (among these modes), which has the potential to shield particular network states against relaxation and/or decoherence.

  16. Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schneebeli, Lukas

    2009-11-27

    While many quantum-optical phenomena are already well established in the atomic systems, like the photon antibunching, squeezing, Bose-Einstein condensation, teleportation, the quantum-optical investigations in semiconductors are still at their beginning. The fascinating results observed in the atomic systems inspire physicists to demonstrate similar quantum-optical effects also in the semiconductor systems. In contrast to quantum optics with dilute atomic gases, the semiconductors exhibit a complicated many-body problem which is dominated by the Coulomb interaction between the electrons and holes and by coupling with the semiconductor environment. This makes the experimental observation of similar quantum-optical effects in semiconductors demanding. However, there are already experiments which have verified nonclassical effects in semiconductors. In particular, experiments have demonstrated that semiconductor quantum dots (QDs) can exhibit the single-photon emission and generation of polarization-entangled photon pairs. In fact, both atom and QD systems, embedded within a microcavity, have become versatile platforms where one can perform systematic quantum-optics investigations as well as development work toward quantum-information applications. Another interesting field is the strong-coupling regime in which the light-matter coupling exceeds both the decoherence rate of the atom or QD and the cavity resulting in a reversible dynamics between light and matter excitations. In the strong-coupling regime, the Jaynes-Cummings ladder is predicted and shows a photon-number dependent splitting of the new dressed strong-coupling states which are the polariton states of the coupled light-matter system. Although the semiclassical effect of the vacuum Rabi splitting has already been observed in QDs, the verification of the quantum-mechanical Jaynes-Cummings splitting is still missing mainly due to the dephasing. Clearly, the observation of the Jaynes-Cummings ladder in QDs

  17. Nonlinear coupling of acoustic and shear mode in a strongly coupled dusty plasma with a density dependent viscosity

    Science.gov (United States)

    Garai, S.; Janaki, M. S.; Chakrabarti, N.

    2016-09-01

    The nonlinear propagation of low frequency waves, in a collisionless, strongly coupled dusty plasma (SCDP) with a density dependent viscosity, has been studied with a proper Galilean invariant generalized hydrodynamic (GH) model. The well known reductive perturbation technique (RPT) has been employed in obtaining the solutions of the longitudinal and transverse perturbations. It has been found that the nonlinear propagation of the acoustic perturbations govern with the modified Korteweg-de Vries (KdV) equation and are decoupled from the sheared fluctuations. In the regions, where transversal gradients of the flow exists, coupling between the longitudinal and transverse perturbations occurs due to convective nonlinearity which is true for the homogeneous case also. The results, obtained here, can have relative significance to astrophysical context as well as in laboratory plasmas.

  18. Strong exciton-photon coupling with colloidal nanoplatelets in an open microcavity

    OpenAIRE

    Flatten, Lucas C.; Christodoulou, Sotirios; Patel, Robin K.; Buccheri, Alexander; Coles, David M.; Benjamin P. L. Reid; Taylor, Robert A.; Moreels, Iwan; Smith, Jason M.

    2016-01-01

    Colloidal semiconductor nanoplatelets exhibit quantum size effects due to their thickness of only few monolayers, together with strong optical band-edge transitions facilitated by large lateral extensions. In this article we demonstrate room temperature strong coupling of the light and heavy hole exciton transitions of CdSe nanoplatelets with the photonic modes of an open planar microcavity. Vacuum Rabi splittings of $66 \\pm 1$ meV and $58 \\pm 1$ meV are observed for the heavy and light hole ...

  19. Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France); Sandulescu, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France)]|[Institute of Physics and Nuclear Engineering, 76900 Bucharest (Romania)]|[Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France); Schuck, P. [Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France)]|[Universite Paris-Sud, Orsay, F-91505 (France)

    2007-01-15

    With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the surface of superfluid nuclei. This study confirms and extends previous results given in the literature that use more schematic approaches. It is shown that the strong concentration of pair probability of small Cooper pairs in the nuclear surface is a quite general and generic feature and that nuclear pairing is much closer to the strong coupling regime than previously assumed.

  20. Chaotic inflation with a fractional power-law potential in strongly coupled gauge theories

    International Nuclear Information System (INIS)

    Models of chaotic inflation with a fractional power-law potential are not only viable but also testable in the foreseeable future. We show that such models can be realized in simple strongly coupled supersymmetric gauge theories. In these models, the energy scale during inflation is dynamically generated by the dimensional transmutation due to the strong gauge dynamics. Therefore, such models not only explain the origin of the fractional power in the inflationary potential but also provide a reason why the energy scale of inflation is much smaller than the Planck scale

  1. Strong-coupling scales and the graph structure of multi-gravity theories

    Science.gov (United States)

    Scargill, James H. C.; Noller, Johannes

    2016-01-01

    In this paper we consider how the strong-coupling scale, or perturbative cutoff, in a multi-gravity theory depends upon the presence and structure of interactions between the different fields. This can elegantly be rephrased in terms of the size and structure of the `theory graph' which depicts the interactions in a given theory. We show that the question can be answered in terms of the properties of various graph-theoretical matrices, affording an efficient way to estimate and place bounds on the strong-coupling scale of a given theory. In light of this we also consider the problem of relating a given theory graph to a discretised higher dimensional theory, à la dimensional deconstruction.

  2. High flux cold Rubidium atomic beam for strongly coupled Cavity QED

    CERN Document Server

    Roy, Basudev

    2012-01-01

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity QED experiments in the regime of strong coupling. A 2 $D^+$ MOT, loaded by rubidium getters in a dry film coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate of 1.5 x $10^{10}$ atoms/sec. The MM-MOT provided a continuous beam with tunable velocity. This beam was then directed through the waist of a 280 $\\mu$m cavity resulting in a Rabi splitting of more than +/- 10 MHz. The presence of sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling regime, with parameters (g, $\\kappa$, $\\gamma$)/2$\\pi$ equal to (7, 3, 6)/ 2$\\pi$ MHz.

  3. Thermal DBI action for the D3-brane at weak and strong coupling

    CERN Document Server

    Grignani, Gianluca; Marini, Andrea; Orselli, Marta

    2013-01-01

    We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading $T^4$ correction for the thermal DBI action at weak and strong coupling we find that the $3/4$ factor well-known from the AdS/CFT correspondence extends to the case of arbitrary electric and magnetic fields on the D3-brane. We investigate the reason for this by taking the decoupling limit in both the open and the closed string descriptions thus showing that the AdS/CFT correspondence extends to the case of arbitrary constant electric and magnetic fields on the D3-brane.

  4. Self-accelerating Massive Gravity: Superluminality, Cauchy Surfaces and Strong Coupling

    CERN Document Server

    Motloch, Pavel; Joyce, Austin; Motohashi, Hayato

    2015-01-01

    Self-accelerating solutions in massive gravity provide explicit, calculable examples that exhibit the general interplay between superluminality, the well-posedness of the Cauchy problem, and strong coupling. For three particular classes of vacuum solutions, one of which is new to this work, we construct the conformal diagram for the characteristic surfaces on which isotropic stress-energy perturbations propagate. With one exception, all solutions necessarily possess spacelike characteristics, indicating perturbative superluminality. Foliating the spacetime with these surfaces gives a pathological frame where kinetic terms of the perturbations vanish, confusing the Hamiltonian counting of degrees of freedom. This frame dependence distinguishes the vanishing of kinetic terms from strong coupling of perturbations or an ill-posed Cauchy problem. We give examples where spacelike characteristics do and do not originate from a point where perturbation theory breaks down and where spacelike surfaces do or do not inte...

  5. Equilibration Rates in a Strongly Coupled Nonconformal Quark-Gluon Plasma.

    Science.gov (United States)

    Buchel, Alex; Heller, Michal P; Myers, Robert C

    2015-06-26

    We initiate the study of equilibration rates of strongly coupled quark-gluon plasmas in the absence of conformal symmetry. We primarily consider a supersymmetric mass deformation within N=2^{*} gauge theory and use holography to compute quasinormal modes of a variety of scalar operators, as well as the energy-momentum tensor. In each case, the lowest quasinormal frequency, which provides an approximate upper bound on the thermalization time, is proportional to temperature, up to a prefactor with only a mild temperature dependence. We find similar behavior in other holographic plasmas, where the model contains an additional scale beyond the temperature. Hence, our study suggests that the thermalization time is generically set by the temperature, irrespective of any other scales, in strongly coupled gauge theories. PMID:26197117

  6. Exploiting vibrational strong coupling to make an optical parametric oscillator out of a Raman laser

    CERN Document Server

    del Pino, Javier; Feist, Johannes

    2016-01-01

    When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this work we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the mid-infrared.

  7. Strong coupling critique of spin fluctuation driven charge order in underdoped cuprates

    Science.gov (United States)

    Mishra, Vivek; Norman, M. R.

    2015-08-01

    Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d -wave symmetry for the order. These were motivated by earlier spin fluctuation theoretical studies based on an expansion about hot spots in the Brillouin zone that indicated such an order would be competitive with d -wave superconductivity. Here, we reexamine this problem by solving strong coupling equations in the full Brillouin zone for experimentally relevant parameters. We find that bond-oriented order, as seen experimentally, is strongly suppressed. We also include coupling to B1 g phonons and do not see any qualitative change. Our results argue against an itinerant model for the charge order, implying instead that such order is likely due to Coulombic phase separation of the doped holes.

  8. Strong coupling effects between a meta-atom and MIM nanocavity

    Directory of Open Access Journals (Sweden)

    San Chen

    2012-09-01

    Full Text Available In this paper, we investigate the strong coupling effects between a meta-atom and a metal-insulator-metal (MIM nanocavity. By changing the meta-atom sizes, we achieve the meta-atomic electric dipole, quadrupole or multipole interaction with the plasmonic nanocavity, in which characteristic anticrossing behaviors demonstrate the occurrence of the strong coupling. The various interactions present obviously different splitting values and behaviors of dependence on the meta-atomic position. The largest Rabi-type splittings, about 360.0 meV and 306.1 meV, have been obtained for electric dipole and quadrupole interaction, respectively. We attribute the large splitting to the highly-confined cavity mode and the large transition dipole of the meta-atom. Also the Rabi-type oscillation in time domain is given.

  9. Determination of the strong coupling from hadronic tau decays using renormalization group summed perturbation theory

    CERN Document Server

    Abbas, Gauhar; Caprini, I

    2013-01-01

    We determine the strong coupling constant $\\alpha_s$ from the $\\tau$ hadronic width using a renormalization group summed (RGS) expansion of the QCD Adler function. The main theoretical uncertainty in the extraction of $\\alpha_s$ is due to the manner in which renormalization group invariance is implemented, and the as yet uncalculated higher order terms in the QCD perturbative series. We show that new expansion exhibits good renormalization group improvement and the behaviour of the series is similar to that of the standard CIPT expansion. The value of the strong coupling in ${\\overline{\\rm MS}}$ scheme obtained with the RGS expansion is $ \\alpha_s(M_\\tau^2)= 0.338 \\pm 0.010$. The convergence properties of the new expansion can be improved by Borel transformation and analytic continuation in the Borel plane. This is discussed elsewhere in these proceedings.

  10. Determination of the Strong Coupling from Hadronic Tau Decays Using Renormalization Group Summed Perturbation Theory

    Science.gov (United States)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, Irinel

    2013-08-01

    We determine the strong coupling constant αs from the τ hadronic width using a renormalization group summed (RGS) expansion of the QCD Adler function. The main theoretical uncertainty in the extraction of αs is due to the manner in which renormalization group invariance is implemented, and the as yet uncalculated higher order terms in the QCD perturbative series. We show that new expansion exhibits good renormalization group improvement and the behavior of the series is similar to that of the standard CIPT expansion. The value of the strong coupling in /lineMS scheme obtained with the RGS expansion is α s(M_τ 2) = 0.338 ± 0.010. The convergence properties of the new expansion can be improved by Borel transformation and analytic continuation in the Borel plane. This is discussed elsewhere in these issues.

  11. Field-theoretic methods in strongly-coupled models of general gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Jean-François, E-mail: jean-francois.fortin@cern.ch [Theory Division, Department of Physics, CERN, CH-1211 Geneva 23 (Switzerland); Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 (United States); Stergiou, Andreas, E-mail: stergiou@physics.ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States)

    2013-08-01

    An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split.

  12. Review of strongly-coupled composite dark matter models and lattice simulations

    CERN Document Server

    Kribs, Graham D

    2016-01-01

    We review models of new physics in which dark matter arises as a composite bound state from a confining strongly-coupled non-Abelian gauge theory. We discuss several qualitatively distinct classes of composite candidates, including dark mesons, dark baryons, and dark glueballs. We highlight some of the promising strategies for direct detection, especially through dark moments, using the symmetries and properties of the composite description to identify the operators that dominate the interactions of dark matter with matter, as well as dark matter self-interactions. We briefly discuss the implications of these theories at colliders, especially the (potentially novel) phenomenology of dark mesons in various regimes of the models. Throughout the review, we highlight the use of lattice calculations in the study of these strongly-coupled theories, to obtain precise quantitative predictions and new insights into the dynamics.

  13. Particularities of surface plasmon-exciton strong coupling with large Rabi splitting

    International Nuclear Information System (INIS)

    This paper presents some of the particularities of the strong coupling regime occurring between surface plasmon (SP) modes and excitons. Two different active materials were deposited on a silver film: a cyanine dye J-aggregate, and a two-dimensional layered perovskite-type semiconductor. The dispersion relations, which are deduced from angular resolved reflectometry spectra, present an anticrossing characteristic of the strong coupling regime. The wavevector is a good parameter to determine the Rabi splitting. Due to the large interaction energies (several hundreds of milli-electron-volts), the calculations at constant angle can induce an overestimation of the Rabi splitting of more than a factor of two. Another property of polaritons based on SP is their nonradiative character. In order to observe the polaritonic emission, it is thus necessary to use particular extraction setups, such as gratings or prisms. Otherwise only the incoherent emission can be detected, very similar to the bare exciton emission

  14. Strong-coupling scales and the graph structure of multi-gravity theories

    CERN Document Server

    Scargill, James H C

    2016-01-01

    In this paper we consider how the strong-coupling scale, or perturbative cutoff, in a multi-gravity theory depends upon the presence and structure of interactions between the different fields. This can elegantly be rephrased in terms of the size and structure of the `theory graph' which depicts the interactions in a given theory. We show that the question can be answered in terms of the properties of various graph-theoretical matrices, affording an efficient way to estimate and place bounds on the strong-coupling scale of a given theory. In light of this we also consider the problem of relating a given theory graph to a discretised higher dimensional theory, a la dimensional deconstruction.

  15. Thermal DBI action for the D3-brane at weak and strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Grignani, Gianluca [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); Harmark, Troels [The Niels Bohr Institute, Copenhagen University Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Marini, Andrea [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); Orselli, Marta [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); The Niels Bohr Institute, Copenhagen University Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi Piazza del Viminale 1, I-00184 Rome (Italy)

    2014-03-25

    We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T{sup 4} correction for the thermal DBI action at weak and strong coupling we find that the 3/4 factor well-known from the AdS/CFT correspondence extends to the case of arbitrary electric and magnetic fields on the D3-brane. We investigate the reason for this by taking the decoupling limit in both the open and the closed string descriptions thus showing that the AdS/CFT correspondence extends to the case of arbitrary constant electric and magnetic fields on the D3-brane.

  16. Thermal DBI action for the D3-brane at weak and strong coupling

    International Nuclear Information System (INIS)

    We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 factor well-known from the AdS/CFT correspondence extends to the case of arbitrary electric and magnetic fields on the D3-brane. We investigate the reason for this by taking the decoupling limit in both the open and the closed string descriptions thus showing that the AdS/CFT correspondence extends to the case of arbitrary constant electric and magnetic fields on the D3-brane

  17. Strong coupling and stimulated emission in single parabolic quantum well microcavity for terahertz cascade

    Energy Technology Data Exchange (ETDEWEB)

    Tzimis, A.; Savvidis, P. G. [Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Trifonov, A. V.; Ignatiev, I. V. [Spin Optics Laboratory, State University of Saint-Petersburg, 1 Ulianovskaya, 198504 St. Petersburg (Russian Federation); Christmann, G.; Tsintzos, S. I. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Hatzopoulos, Z. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Department of Physics, University of Crete, 71003 Heraklion, Crete (Greece); Kavokin, A. V. [Spin Optics Laboratory, State University of Saint-Petersburg, 1 Ulianovskaya, 198504 St. Petersburg (Russian Federation); School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-09-07

    We report observation of strong light-matter coupling in an AlGaAs microcavity (MC) with an embedded single parabolic quantum well. The parabolic potential is achieved by varying aluminum concentration along the growth direction providing equally spaced energy levels, as confirmed by Brewster angle reflectivity from a reference sample without MC. It acts as an active region of the structure which potentially allows cascaded emission of terahertz (THz) light. Spectrally and time resolved pump-probe spectroscopy reveals characteristic quantum beats whose frequencies range from 0.9 to 4.5 THz, corresponding to energy separation between relevant excitonic levels. The structure exhibits strong stimulated nonlinear emission with simultaneous transition to weak coupling regime. The present study highlights the potential of such devices for creating cascaded relaxation of bosons, which could be utilized for THz emission.

  18. Experimental measurement of non-Markovian dynamics and self-diffusion in a strongly coupled plasma

    CERN Document Server

    Strickler, T S; McQuillen, P; Daligault, J; Killian, T C

    2015-01-01

    We present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short timescales compared to the inverse collision rate. Non-exponential decay towards equilibrium for the average velocity of a tagged population of ions heralds non-Markovian dynamics and a breakdown of assumptions underlying standard kinetic theory. We prove the equivalence of the average-velocity curve to the velocity autocorrelation function, a fundamental statistical quantity that provides access to equilibrium transport coefficients and aspects of individual particle trajectories in a regime where experimental measurements have been lacking. From our data, we calculate the ion self-diffusion constant. This demonstrates the utility of ultracold neutral plasmas for isolating the effects of strong coupling on collisional processes, which is of interest for dense laboratory and astrophysical plasmas.

  19. Universal Scaling of Pair-Excess Entropy and Diffusion in Strongly Coupled Liquids

    CERN Document Server

    Joy, Ashwin

    2016-01-01

    Understanding diffusion in liquids from properties of static structure is a long standing problem in condensed matter theory. Here we report an atomistic study of excess entropy and diffusion coefficient in a strongly coupled Yukawa liquid. We observe that the pair excess entropy $s_2$ scales with temperature as $-3.285 \\;(T_m / T)^{0.665}$ and contributes to about $90\\%$ of the total excess entropy close to the freezing transition $T_m$. We further report that at low temperatures where the diffusive transport is mediated by cage relaxation, the diffusion coefficient when expressed in natural units of the Enskog collision frequency and the effective hard sphere diameter, obeys the scaling law $0.04\\; e^{s_2}$ and deviates from it at high enough temperatures where cages cannot form. The scaling laws reported here may also apply to strongly coupled dusty plasmas and charged colloids.

  20. Strong-coupling theory of high-temperature superconductivity and colossal magnetoresistance

    Science.gov (United States)

    Alexandrov, A. S.

    2005-08-01

    We argue that the extension of the BCS theory to the strong-coupling regime describes the high-temperature superconductivity of cuprates and the colossal magnetoresistance (CMR) of ferromagnetic oxides if the phonon dressing of carriers and strong attractive correlations are taken into account. The attraction between carriers, which is prerequisite to high-temperature superconductivity, is caused by an almost unretarted electron-phonon interaction sufficient to overcome the direct Coulomb repulsion in the strong-coupling limit, where electrons become polarons and bipolarons (real-space electron or hole pairs dressed by phonons). The long-range Froehlich electron-phonon interaction has been identified as the most essential in cuprates providing "superlight" lattice polarons and bipolarons. A number of key observations have been predicted and/or explained with polarons and bipolarons including unusual isotope effects, normal state (pseudo)gaps, upper critical fields, etc. Here some kinetic, magnetic, and more recent thermomagnetic normal state measurements are interpreted in the framework of the strong-coupling theory, including the Nernst effect and normal state diamagnetism. Remarkably, a similar strong-coupling approach offers a simple explanation of CMR in ferromagnetic oxides, while the conventional double-exchange (DEX) model, proposed half a century ago and generalised more recently to include the electronphonon interaction, is in conflict with a number of modern experiments. Among these experiments are site-selective spectroscopies, which have shown that oxygen p-holes are current carriers rather than d-electrons in ferromagnetic manganites (and in cuprates) ruling out DEX mechanism of CMR. Also some samples of ferromagnetic manganites manifest an insulating-like optical conductivity at all temperatures contradicting the DEX notion that their ferromagnetic phase is metallic. On the other hand, the pairing of oxygen holes into heavy bipolarons in the

  1. Room temperature strong light-matter coupling in 3D THz meta-atoms (Conference Presentation)

    Science.gov (United States)

    Paulillo, Bruno; Manceau, Jean-Michel; Li, Lianhe; Linfield, Edmund; Colombelli, Raffaele

    2016-04-01

    We demonstrate strong light-matter coupling at room temperature in the terahertz (THz) spectral region using 3D meta-atoms with extremely sub-wavelength volumes. Using an air-bridge fabrication scheme, we have implemented sub-wavelength 3D THz micro-resonators that rely on suspended loop antennas connected to semiconductor-filled patch cavities. We have experimentally shown that they possess the functionalities of lumped LC resonators: their frequency response can be adjusted by independently tuning the inductance associated the antenna element or the capacitance provided by the metal-semiconductor-metal cavity. Moreover, the radiation coupling and efficiency can be engineered acting on the design of the loop antenna, similarly to conventional RF antennas. Here we take advantage of this rich playground in the context of cavity electrodynamics/intersubband polaritonics. In the strong light-matter coupling regime, a cavity and a two-level system exchange energy coherently at a characteristic rate called the vacuum Rabi frequency ΩR which is dominant with respect to all other loss mechanisms involved. The signature, in the frequency domain, is the appearance of a splitting between the bare cavity and material system resonances: the new states are called upper and a lower polariton branches. So far, most experimental demonstrations of strong light-matter interaction between an intersubband transition and a deeply sub-wavelength mode in the THz or mid-infrared ranges rely on wavelength-scale or larger resonators such as photonic crystals, diffractive gratings, dielectric micro-cavities or patch cavities. Lately, planar metamaterials have been used to enhance the light-matter interaction and strongly reduce the interaction volume by engineering the electric and magnetic resonances of the individual subwavelength constituents. In this contribution we provide evidence of strong coupling between a THz intersubband transition and an extremely sub-wavelength mode (≈λ/10

  2. Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng-Fei; ZHANG Yu-Chi; LI Gang; DU Jin-Jin; ZHANG Yan-Feng; GUO Yan-Qiang; WANG Jun-Min; ZHANG Tian-Cai; LI Wei-Dong

    2011-01-01

    We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime.A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center.The atoms fall down freely in gravitation after shutting off the magnetooptical trap and pass through the cavity.The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually.We detect the single atom transits either in the resonance or various detunings.The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz.The average duration of atom-cavity coupling of about 110μs is obtained according to the probability distribution of the atom transits.%@@ We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime.A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5mm above the micro-cavity center.The atoms fall down freely in gravitation after shutting off the magnetooptical trap and pass through the cavity.The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually.We detect the single atom transits either in the resonance or various detunings.The single atom vacuum-Rabi splitting is directly measured to be Ω=2π×23.9 MHz.The average duration of atom-cavity coupling of about 110μs is obtained according to the probability distribution of the atom transits.

  3. The two-dimensional O(2) model on a random planar lattice at strong coupling

    International Nuclear Information System (INIS)

    The large spacing phase of the infinite random matrix chain, which represents the strongly coupled two-dimensional O(2) model on a random planar lattice, is explored. A class of solutions valid for large lattice spacings is constructed. It is proved that these solutions exhibit the critical exponents characteristic of pure two-dimensional gravity. The character expansion for the chain model is developed and an order parameter governing the Kosterlitz-Thouless phase transition is identified. (author)

  4. An Importance Sampling Scheme on Dual Factor Graphs. II. Models with Strong Couplings

    CERN Document Server

    Molkaraie, Mehdi

    2014-01-01

    We consider the problem of estimating the partition function of the two-dimensional ferromagnetic Ising model in an external magnetic field. The estimation is done via importance sampling in the dual of the Forney factor graph representing the model. We present importance sampling schemes that can efficiently compute an estimate of the partition function in a wide range of model parameters. Emphasis is on models in which a subset of the coupling parameters is strong.

  5. Review of strongly-coupled composite dark matter models and lattice simulations

    OpenAIRE

    Kribs, Graham D.; Neil, Ethan T.

    2016-01-01

    We review models of new physics in which dark matter arises as a composite bound state from a confining strongly-coupled non-Abelian gauge theory. We discuss several qualitatively distinct classes of composite candidates, including dark mesons, dark baryons, and dark glueballs. We highlight some of the promising strategies for direct detection, especially through dark moments, using the symmetries and properties of the composite description to identify the operators that dominate the interact...

  6. Space Quantization of Light Transmission by Strong Coupling of Plasmonic Cavity Modes with Photosynthetic Complexes

    OpenAIRE

    Carmeli, Itai; Cohen, Moshik; Hieflero, Omri; Liliach, Igal; Zalevsky, Zeev; Mujica, Vladimiro; Richeter, Shachar

    2014-01-01

    The interaction between molecules and surface plasmons in defined geometries can lead to new light mater hybrid states where light propagation is strongly influenced by molecular photon absorption. Their application range from lasing LEDs to controlling chemical reactions and are relevant in light harvesting. The coupling between the electromagnetic field and molecular excitations may also lead to macroscopic extended coherent states characterized by an increase in temporal and spatial cohere...

  7. Nonlinear collisional absorption of laser light in dense, strongly coupled plasmas

    OpenAIRE

    Grinenko, A.; Gericke, D. O.

    2009-01-01

    We present a new theoretical approach for collisional absorption of laser energy in dense plasmas which accommodates arbitrary frequencies and high intensities of the laser field. We establish a connection between laser absorption by inverse Bremstrahlung and the stopping power. This relation is then applied to include strong correlations beyond the mean field approach. The results show an excellent agreement with molecular dynamics simulations up to very high coupling strength.

  8. Charged colloids, polyelectrolytes and biomolecules viewed as strongly coupled Coulomb systems

    CERN Document Server

    Löwen, H; Likos, C N; Blaak, R; Dzubiella, J; Jusufi, A; Hoffmann, N; Harreis, H M

    2003-01-01

    A brief review is given on recent studies of charged soft matter solutions, as modelled by the 'primitive' approach of strongly coupled Coulomb systems, where the solvent just enters as a dielectric background. These include charged colloids, biological macromolecules such as proteins and DNA, polyelectrolytes and polyelectrolyte stars. Also some original results are presented on colloid-polyelectrolyte complex formation near walls and on the anomalous fluid structure of polyelectrolyte stars as a function of increasing concentration.

  9. Charged colloids, polyelectrolytes and biomolecules viewed as strongly coupled Coulomb systems

    International Nuclear Information System (INIS)

    A brief review is given on recent studies of charged soft matter solutions, as modelled by the 'primitive' approach of strongly coupled Coulomb systems, where the solvent just enters as a dielectric background. These include charged colloids, biological macromolecules such as proteins and DNA, polyelectrolytes and polyelectrolyte stars. Also some original results are presented on colloid-polyelectrolyte complex formation near walls and on the anomalous fluid structure of polyelectrolyte stars as a function of increasing concentration

  10. Simple thermodynamics of strongly coupled one-component-plasma in two and three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Khrapak, Sergey A., E-mail: Sergey.Khrapak@dlr.de [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Khrapak, Alexey G. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-10-15

    Simple analytical approximations for the internal energy of the strongly coupled one-component-plasma in two and three dimensions are discussed. As a result, new practical expressions for the internal energy in the fluid phase are proposed. Their accuracy is checked by evaluating the location of the fluid-solid phase transition from the free energy consideration. Possible applications to other related systems are briefly discussed.

  11. Effects of chiral restoration on the behaviour of the Polyakov loop at strong coupling

    OpenAIRE

    Fukushima, Kenji

    2002-01-01

    We discuss the relation between the Polyakov loop and the chiral order parameter at finite temperature. For that purpose we analyse an effective model proposed by Gocksch and Ogilvie, which is constructed by the double expansion of strong coupling and large dimensionality. We make improvements in dealing with the model and then obtain plausible results for the behaviours of both the Polyakov loop and the chiral scalar condensate. The pseudo-critical temperature read from the Polyakov loop tur...

  12. Global solutions of a strongly coupled reaction-diffusion system with different diffusion coefficients

    Directory of Open Access Journals (Sweden)

    L. W. Somathilake

    2005-01-01

    Full Text Available We deal with a mathematical model for a four-component chemical reaction-diffusion process. The model is described by a system of strongly coupled reaction-diffusion equations with different diffusion rates. The existence of the global solution of this reaction-diffusion system in unbounded domain is proved by using semigroup theory and estimates on the growth of solutions.

  13. Dust acoustic solitary and shock waves in strongly coupled dusty plasmas with nonthermal ions

    Indian Academy of Sciences (India)

    Hamid Reza Pakzad; Kurosh Javidan

    2009-11-01

    The Korteweg–de Vries–Burgers (KdV–Burgers) equation and modified Korteweg–de Vries–Burgers equation are derived in strongly coupled dusty plasmas containing nonthermal ions and Boltzmann distributed electrons. It is found that solitary waves and shock waves can be produced in this medium. The effects of important parameters such as ion nonthermal parameter, temperature, density and velocity on the properties of shock waves and solitary waves are discussed.

  14. Effective hadronic Lagrangian in the lattice QCD with Susskind fermions in strong-coupling approximation

    International Nuclear Information System (INIS)

    The effective hadronic action in lattice QCD with U(N) and SU(N) gauge groups and with Susskind fermions is constructed in the framework of the strong coupling approximation. For arbitrary finite (odd) N (in particular, N=3) an effective potential, vacuum expectation value of the (χ-barχ), and an effective action for the physical meson field π(χ) are found

  15. Effective hadronic Lagrangian in latice QCD with Susskind fermions in the strong-coupling approximation

    International Nuclear Information System (INIS)

    An effective hadronic action in lattice QCD with Susskind fermions and with U(N) or SU(N) gauge groups is constructed in the framework of the strong-coupling expansion. The effective potential, the vacuum expectation value left-angle bar χχ right-angle, and the effective action for the physical meson field π(x) are found for arbitrary finite (odd) N (in particular for N=3)

  16. Effective hadronic Lagrangian in latice QCD with Susskind fermions in the strong-coupling approximation

    Energy Technology Data Exchange (ETDEWEB)

    Azakov, S.I.; Aliev, E.S. (Institute of Physics, Academy of Science of Azerbaidzhan SSR (SU))

    1989-05-01

    An effective hadronic action in lattice QCD with Susskind fermions and with U({ital N}) or SU({ital N}) gauge groups is constructed in the framework of the strong-coupling expansion. The effective potential, the vacuum expectation value {l angle}{bar {chi}}{chi}{r angle}, and the effective action for the physical meson field {pi}({ital x}) are found for arbitrary finite (odd) {ital N} (in particular for {ital N}=3).

  17. Effective hadronic lagrangian in the strong coupling expansion of lattice QCD with Susskind fermions

    International Nuclear Information System (INIS)

    The effective hadronic action in lattice QCD with U(N) and SU(N) gauge groups and with Susskind fermions is constructed in the framework of the strong coupling approximation. For arbitrary finite (odd) N (in particular N=3) we find an effective potential, vacuum expectation value of the (χ-barχ) and an effective action for the physical meson field π(x). (author). 19 refs

  18. On the four-loop strong coupling beta-function in the SM

    CERN Document Server

    Bednyakov, A V

    2016-01-01

    In the talk the leading four-loop contribution to the beta-function of the strong coupling in the SM is discussed. Some details of calculation techniques are provided. Special attention is paid to the ambiguity due to utilized $\\gamma_5$ treatment and a particular prescription with anticommuting $\\gamma_5$ is advocated. As a by-product of our computation the four-loop beta-function in QCD with "gluino" is also obtained.

  19. MODEL OF ELECTROSTATIC ACTUATED DEFORMABLE MIRROR USING STRONGLY COUPLED ELECTRO-MECHANICAL FINITE ELEMENT

    OpenAIRE

    Rochus, Véronique; Golinval, Jean-Claude; Mendez, C.; Klapka, I.; Louis, C.

    2006-01-01

    The aim of this paper is to deal with multi-physics simulation of micro-electro-mechanical systems (MEMS) based on an advanced numerical methodology. MEMS are very small devices in which electric as well as mechanical and fluid phenomena appear and interact. Because of their microscopic scale, strong coupling effects arise between the different physical fields, and some forces, which were negligible at macroscopic scale, have to be taken into account. In order to accurately design such micro-...

  20. Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity.

    Science.gov (United States)

    Kato, Shinya; Aoki, Takao

    2015-08-28

    We demonstrate an all-fiber cavity quantum electrodynamics system with a trapped single atom in the strong coupling regime. We use a nanofiber Fabry-Perot cavity, that is, an optical nanofiber sandwiched by two fiber-Bragg-grating mirrors. Measurements of the cavity transmission spectrum with a single atom in a state-insensitive nanofiber trap clearly reveal the vacuum Rabi splitting. PMID:26371652

  1. Strong-Coupling Calculation of Fluctuation Pressure of a Membrane Between Walls

    OpenAIRE

    Bachmann, M; Kleinert, H.; Pelster, A.

    1999-01-01

    We calculate analytically the proportionality constant in the pressure law of a membrane between parallel walls from the strong-coupling limit of variational perturbation theory up to third order. Extrapolating the zeroth to third approximations to infinity yields the pressure constant alpha=0.0797149. This result lies well within the error bounds of the most accurate available Monte-Carlo result 0.0798 +- 0.0003.

  2. Strong coupling limits and quantum isomorphisms of the gauged Thirring model

    OpenAIRE

    Bufalo, Rodrigo; Casana, Rodolfo; Pimentel, Bruto Max

    2010-01-01

    We have studied the quantum equivalence in the respective strong coupling limits of the bidimensional gauged Thirring model with both Schwinger and Thirring models. It is achieved following a nonperturbative quantization of the gauged Thirring model into the path-integral approach. First, we have established the constraint structure via the Dirac's formalism for constrained systems and defined the correct vacuum--vacuum transition amplitude by using the Faddeev-Senjanovic method. Next, we hav...

  3. Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer

    International Nuclear Information System (INIS)

    The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated

  4. A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances

    OpenAIRE

    Xuezhe Wei; Zhenshi Wang; Haifeng Dai

    2014-01-01

    Strongly coupled magnetic resonance (SCMR), proposed by researchers at MIT in 2007, attracted the world’s attention by virtue of its mid-range, non-radiative and high-efficiency power transfer. In this paper, current developments and research progress in the SCMR area are presented. Advantages of SCMR are analyzed by comparing it with the other wireless power transfer (WPT) technologies, and different analytic principles of SCMR are elaborated in depth and further compared. The hot research...

  5. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    OpenAIRE

    Chen Wang,; Jie Ren; Jianshu Cao

    2015-01-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissect...

  6. Quantum fluctuation theorem for heat exchange in the strong coupling regime

    OpenAIRE

    Nicolin, L.; Segal, D

    2011-01-01

    We study quantum heat exchange in a multi-state impurity coupled to two thermal reservoirs. Allowing for strong system-bath interactions, we show that a steady-state heat exchange fluctuation theorem holds, though the dynamical processes nonlinearly involve the two reservoirs. We accomplish a closed expression for the cumulant generating function, and use it obtain the heat current and its cumulants in a nonlinear thermal junction, the two-bath spin-boson model.

  7. A Time Varying Strong Coupling Constant as a Model of Inflationary Universe

    CERN Document Server

    Chamoun, N; Vucetich, H

    2000-01-01

    We consider a scenario where the strong coupling constant was changing in the early universe. We attribute this change to a variation in the colour charge within a Bekenstein-like model. Allowing for a large value for the vacuum gluon condensate $\\sim 10^{22}GeV^4$, we could generate inflation with the required properties to solve the fluctuation and other standard cosmology problems. A possible approach to end the inflation is suggested.

  8. Thermo-magnetic properties of the strong coupling in the local Nambu--Jona-Lasinio model

    CERN Document Server

    Ayala, Alejandro; Hernandez, L A; Loewe, M; Raya, Alfredo; Rojas, J C; Villavicencio, C

    2016-01-01

    We study the thermo-magnetic behavior of the strong coupling constant and quark mass entering the Nambu-Jona-Lasinio model. The behavior of the quark condensate as function of magnetic field strength and temperature is also obtained and confronted with lattice QCD results. We find that for temperatures above the chiral/deconfinement phase transitions, where the condensate decreases monotonically with increasing field, the coupling also decreases monotonically. For temperatures below the transition temperature we find that the coupling initially grows and then decreases with increasing field strength. We consider this turnover behavior as a key element in the behavior of the quark condensate above the transition temperature. Hence, it allows for an understanding of the inverse magnetic catalysis phenomenon.

  9. Shear viscosity of two-dimensional strongly coupled complex (dusty) plasmas

    International Nuclear Information System (INIS)

    A molecular dynamics method has been employed of studying shear viscosity for two-dimensional plasma liquids. For the entire range of strongly coupled liquid states, shear autocorrelation functions indicate overall valid viscosity coefficients. A systematic dependence of shear viscosity value on screening strength (appa) is observed for an intermediate and higher Coulomb coupling strengths (gamma). The simulation data indicate that the position of the viscosity value shifts towards higher gamma as appa increases. It is observed that valid viscosity coefficient exists and it is dependent on plasma parameters (gamma, appa). A finite minimum viscosity exists nearly at the same value of T where the most extreme super-diffusion was earlier found and is reported for a wide range of coupling and screening parameters. (author)

  10. Shear viscosity of two-dimensional strongly coupled complex (dusty) plasmas

    International Nuclear Information System (INIS)

    A molecular dynamics method has been employed of studying shear viscosity for two-dimensional plasma liquids. For the entire range of strongly coupled liquid states, shear autocorrelation functions indicate overall valid viscosity coefficients. A systematic dependence of shear viscosity value on screening strength (κ) is observed for an intermediate and higher Coulomb coupling strengths (Γ). The simulation data indicate that the position of the viscosity value shifts towards higher Γ as κ increases. It is observed that valid viscosity coefficient exists and it is dependent on plasma parameters (Γ, κ). A finite minimum viscosity exists nearly at the same value of T where the most extreme super-diffusion was earlier found and is reported for a wide range of coupling and screening parameters

  11. Non-Markovian Dynamics and Self-Diffusion in Strongly Coupled Plasmas

    Science.gov (United States)

    Strickler, Trevor; Langin, Thomas; McQuillen, Patrick; Daligault, Jerome; Maksimovich, Nikola; Killian, Thomas

    2015-11-01

    In weakly coupled plasmas, collisions are dominated by long range, small angle scattering, and each collision is an uncorrelated binary event. In contrast, collisions in strongly coupled plasmas (coupling parameter Γ > 1) are dominated by short range, large angle scattering in which the collisions may be correlated and non-independent in time, i.e., non-Markovian. In this work, we present experimental results indicative of non-Markovian processes in a strongly coupled ultracold neutral plasma (UCNP) created by photoionizing strontium atoms in a magneto-optical trap. We use optical pumping to create spin ``tagged'' subpopulations of ions having non-zero average velocity , and use laser induced fluorescence (LIF) imaging to measure the relaxation of back to equilibrium. We observe clear non-exponential decay in , which indicates non-Markovian dynamics. We further demonstrate there is a theoretical basis to consider as an approximation to the ion velocity autocorrelation function (VAF). We then calculate diffusion coefficients from our data, demonstrating experimental measurement of self-diffusion coefficients for 0 . 3 Air Force Office of Scientific Research (FA9550- 12-1-0267).

  12. Strong Ferromagnetically-Coupled Spin Valve Sensor Devices for Droplet Magnetofluidics

    Directory of Open Access Journals (Sweden)

    Gungun Lin

    2015-05-01

    Full Text Available We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays.

  13. Energy transfer efficiency in the chromophore network strongly coupled to a vibrational mode

    Science.gov (United States)

    Mourokh, Lev G.; Nori, Franco

    2015-11-01

    Using methods from condensed matter and statistical physics, we examine the transport of excitons through the photosynthetic complex from a receiving antenna to a reaction center. Writing the equations of motion for the exciton creation-annihilation operators, we are able to describe the exciton dynamics, even in the regime when the reorganization energy is of the order of the intrasystem couplings. We determine the exciton transfer efficiency in the presence of a quenching field and protein environment. While the majority of the protein vibrational modes are treated as a heat bath, we address the situation when specific modes are strongly coupled to excitons and examine the effects of these modes on the energy transfer efficiency in the steady-state regime. Using the structural parameters of the Fenna-Matthews-Olson complex, we find that, for vibrational frequencies below 16 meV, the exciton transfer is drastically suppressed. We attribute this effect to the formation of a "mixed exciton-vibrational mode" where the exciton is transferred back and forth between the two pigments with the absorption or emission of vibrational quanta, instead of proceeding to the reaction center. The same effect suppresses the quantum beating at the vibrational frequency of 25 meV. We also show that the efficiency of the energy transfer can be enhanced when the vibrational mode strongly couples to the third pigment only, instead of coupling to the entire system.

  14. Quark masses and strong coupling constant in 2+1 flavor QCD

    CERN Document Server

    Maezawa, Y

    2016-01-01

    We present a determination of the strange, charm and bottom quark masses as well as the strong coupling constant in 2+1-flavor lattice QCD simulations using Highly Improved Staggered Quark action. The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained from the meson masses calculated on the lattice and found to be $m_c/m_s=11.871(91)$ and $m_b/m_c=4.528(57)$ in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the moments of pseudoscalar charmonium correlators: $\\alpha_s(\\mu=m_c)=0.3697(75)$ and $m_c(\\mu=m_c)=1.267(11)$ GeV. Our result for $\\alpha_s$ corresponds to the determination of the strong coupling constant at the lowest energy scale so far and is translated to the value $\\alpha_s(\\mu=M_Z,n_f=5)=0.11622(75)$.

  15. The strong coupling from the revised ALEPH data for hadronic $\\tau$ decays

    CERN Document Server

    Boito, Diogo; Maltman, Kim; Osborne, James; Peris, Santiago

    2014-01-01

    We apply an analysis method previously developed for the extraction of the strong coupling from the OPAL data to the recently revised ALEPH data for non-strange hadronic $\\tau$ decays. Our analysis yields the values $\\alpha_s(m_\\tau^2)=0.296\\pm 0.010$ using fixed-order perturbation theory, and $\\alpha_s(m_\\tau^2)=0.310\\pm 0.014$ using contour-improved perturbation theory. Averaging these values with our previously obtained values from the OPAL data, we find $\\alpha_s(m_\\tau^2)=0.303\\pm 0.009$, respectively, $\\alpha_s(m_\\tau^2)=0.319\\pm 0.012$. We present a critique of the analysis method employed previously, for example in analyses by the ALEPH and OPAL collaborations, and compare it with our own approach. Our conclusion is that non-perturbative effects limit the accuracy with which the strong coupling, an inherently perturbative quantity, can be extracted at energies as low as the $\\tau$ mass. Our results further indicate that systematic errors on the determination of the strong coupling from analyses of had...

  16. Strongly Coupled Dark Energy Cosmologies: preserving LCDM success and easing low scale problems II - Cosmological simulations

    CERN Document Server

    Macciò, Andrea V; Penzo, Camilla; Bonometto, Silvio A

    2015-01-01

    In this second paper we present the first Nbody cosmological simulations of strongly coupled Dark Energy models (SCDEW), a class of models that alleviates theoretical issues related to the nature of dark energy (namely the coincidence and the fine tuning problems). SCDEW models assume a strong coupling between Dark Energy (DE) and an ancillary Cold Dark Matter (CDM) component together with the presence of an uncoupled Warm Dark Matter component. The strong coupling between CDM and DE allows us to preserve small scale fluctuations even if the warm particle is quite light (~100 eV). Our large scale simulations show that, for 1e11

  17. Stability and evolution of wave packets in strongly coupled degenerate plasmas.

    Science.gov (United States)

    Misra, A P; Shukla, P K

    2012-02-01

    We study the nonlinear propagation of electrostatic wave packets in a collisional plasma composed of strongly coupled ions and relativistically degenerate electrons. The equilibrium of ions is maintained by an effective temperature associated with their strong coupling, whereas that of electrons is provided by the relativistic degeneracy pressure. Using a multiple-scale technique, a (3 + 1)-dimensional coupled set of nonlinear Schrödinger-like equations with nonlocal nonlinearity is derived from a generalized viscoelastic hydrodynamic model. These coupled equations, which govern the dynamics of wave packets, are used to study the oblique modulational instability of a Stoke's wave train to a small plane-wave perturbation. We show that the wave packets, though stable to the parallel modulation, become unstable against oblique modulations. In contrast to the long-wavelength carrier modes, the wave packets with short wavelengths are shown to be stable in the weakly relativistic case, whereas they can be stable or unstable in the ultrarelativistic limit. Numerical simulation of the coupled equations reveals that a steady-state solution of the wave amplitude exists together with the formation of a localized structure in (2 + 1) dimensions. However, in the (3 + 1)-dimensional evolution, a Gaussian wave beam self-focuses after interaction and blows up in a finite time. The latter is, however, arrested when the dispersion predominates over the nonlinearities. This occurs when the Coulomb coupling strength is higher or a choice of obliqueness of modulation, or a wavelength of excitation is different. Possible application of our results to the interior as well as in an outer mantle of white dwarfs are discussed. PMID:22463339

  18. Single-Spin Spectrum-Analyzer for a Strongly Coupled Environment

    CERN Document Server

    Kotler, Shlomi; Glickman, Yinnon; Ozeri, Roee

    2012-01-01

    A qubit can be used as a sensitive spectrum analyzer of its environment. Here we show how the problem of spectral analysis of noise induced by a strongly coupled environment can be solved for discrete spectra. Our analytical model shows non-linear signal dependence on noise power, as well as possible frequency mixing, both are inherent to quantum evolution. This model enabled us to use a single trapped ion as a sensitive probe for strong, non-Gaussian, discrete magnetic field noise. To overcome ambiguities arising from the non-linear character of strong noise, we develop a three step noise characterization scheme: peak identification, magnitude identification and fine-tuning. Finally, we compare experimentally equidistant versus Uhrig pulse schemes for spectral analysis. The method is readily available to any quantum probe which can be coherently manipulated.

  19. Field theoretical approach to the paramagnetic-ferrimagnetic transition in strongly coupled paramagnetic systems

    International Nuclear Information System (INIS)

    The aim of this paper is the investigation of the critical properties of two strongly coupled paramagnetic sublattices exhibiting a paramagnetic-ferrimagnetic transition, at some critical temperature Tc greater than the room temperature. In order to take into account the strong fluctuations of the magnetization near the critical point, use is made of the renormalization-group (RG) techniques applied to an elaborated field model describing such a transition, which is of Landau-Ginzburg-Wilson type. The associated free energy or action is a functional of two kinds of order parameters (local magnetizations), which are scalar fields phi (cursive,open) Greek and ψ relative to these sublattices. It involves quadratic and quartic terms in both fields, and a lowest-order coupling Cophi (cursive,open) Greekψ, where Co>0 stands for the coupling constant measuring the interaction between the two sublattices. We first show that the associated field theory is renormalizable at any order of the perturbation series in the coupling constants, up to a critical dimension dc=4, and that, the corresponding counterterms have the same form as those relative to the usual phi (cursive,open) Greek4-theory (Co=0). The existence of the renormalization theory enables us to write the RG-equations satisfied by the correlation functions. We solve these using the standard characteristics method, to get all critical properties of the system under investigation. We first determine the exact shape of the critical line in the (T,C)-plane, along which the system undergoes a phase transition. Second, we determine the scaling laws of the correlation functions, with respect to relevant parameters of the problem, namely, the wave vector q, the (renormalized) coupling C and the temperature shift T-Tc. We find that these scaling laws are characterized by critical exponents, which are the same as those relative to Ising-like magnetic systems

  20. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    International Nuclear Information System (INIS)

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D+ magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 1010 atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  1. Field theoretical approach to the paramagnetic-ferrimagnetic transition in strongly coupled paramagnetic systems

    CERN Document Server

    Chahid, M

    2000-01-01

    The aim of this paper is the investigation of the critical properties of two strongly coupled paramagnetic sublattices exhibiting a paramagnetic-ferrimagnetic transition, at some critical temperature T sub c greater than the room temperature. In order to take into account the strong fluctuations of the magnetization near the critical point, use is made of the renormalization-group (RG) techniques applied to an elaborated field model describing such a transition, which is of Landau-Ginzburg-Wilson type. The associated free energy or action is a functional of two kinds of order parameters (local magnetizations), which are scalar fields phi (cursive,open) Greek and psi relative to these sublattices. It involves quadratic and quartic terms in both fields, and a lowest-order coupling C sub o phi (cursive,open) Greek psi, where C sub o >0 stands for the coupling constant measuring the interaction between the two sublattices. We first show that the associated field theory is renormalizable at any order of the pertur...

  2. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  3. Strong-coupling electrostatic theory of polymer counterions close to planar charges

    Science.gov (United States)

    Dutta, Sandipan; Jho, Y. S.

    2016-01-01

    Strong-coupling phenomena, such as like-charge macroion attraction, opposite-charged macroion repulsion, charge renormalization, and charge inversion, are known to be mediated by multivalent counterions. Most theories treat the counterions as point charges and describe the system by a single coupling parameter that measures the strength of the Coulomb interactions. In many biological systems, the counterions are highly charged and have finite sizes and can be well-described by polyelectrolytes. The shapes and orientations of these polymer counterions play a major role in the thermodynamics of these systems. In this work we apply a field-theoretic description in the strong-coupling regime to the polymer counterions in the presence of a fixed charge distribution. We work out the special cases of rodlike polymer counterions confined by one, and two charged walls, respectively. The effects of the geometry of the rodlike counterions and the excluded volume of the walls on the density, pressure, and free energy of the rodlike counterions are discussed.

  4. Application of the Kalman Filter for Faster Strong Coupling of Cardiovascular Simulations.

    Science.gov (United States)

    Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya

    2016-07-01

    In this paper, we propose a method for reducing the computational cost of strong coupling for multiscale cardiovascular simulation models. In such a model, individual model modules of myocardial cell, left ventricular structural dynamics, and circulatory hemodynamics are coupled. The strong coupling method enables stable and accurate calculation, but requires iterative calculations which are computationally expensive. The iterative calculations can be reduced, if accurate initial approximations are made available by predictors. The proposed method uses the Kalman filter to estimate accurate predictions by filtering out noise included in past values. The performance of the proposed method was assessed with an application to a previously published multiscale cardiovascular model. The proposed method reduced the number of iterations by 90% and 62% compared with no prediction and Lagrange extrapolation, respectively. Even when the parameters were varied and number of elements of the left ventricular finite-element model increased, the number of iterations required by the proposed method was significantly lower than that without prediction. These results indicate the robustness, scalability, and validity of the proposed method. PMID:26011898

  5. Constraints on parton distributions and the strong coupling from LHC jet data

    Science.gov (United States)

    Rojo, Juan

    2015-11-01

    Jet production at hadron colliders provides powerful constraints on the parton distribution functions (PDFs) of the proton, in particular on the gluon PDF. Jet production can also be used to extract the QCD coupling αs(Q) and to test its running with the momentum transfer up to the TeV region. In this review, I summarize the information on PDFs and the strong coupling that has been provided by Run I LHC jet data. First of all, I discuss why jet production is directly sensitive to the gluon and quark PDFs at large-x, and then review the state-of-the-art perturbative calculations for jet production at hadron colliders and the corresponding fast calculations required for PDF fitting. Then I present the results of various recent studies on the impact on PDFs, in particular the gluon, that have been performed using as input jet measurements from ATLAS and CMS. I also review the available determinations of the strong coupling constant based on ATLAS and CMS jet data, with emphasis on the fact that LHC jet data provides, for the first time, a direct test of the αs(Q) running at the TeV scale. I conclude with a brief outlook on possible future developments.

  6. Minimal Surfaces of the $AdS_5\\times S^5$ Superstring and the Symmetries of Super Wilson Loops at Strong Coupling

    CERN Document Server

    Munkler, Hagen

    2015-01-01

    Based on an extension of the holographic principle to superspace, we provide a strong-coupling description of smooth super Wilson loops in terms of minimal surfaces of the $AdS_5 \\times S^5$ superstring. We employ the classical integrability of the Green-Schwarz superstring on $AdS_5 \\times S^5$ to derive the superconformal and Yangian $Y[\\mathfrak{psu}(2,2|4)]$ Ward identities for the super Wilson loop, thus extending the strong coupling results obtained for the Maldacena-Wilson loop. In the course of the derivation, we determine the minimal surface solution up to third order in an expansion close to the conformal boundary.

  7. Minimal surfaces of the {{AdS}}_{5}\\times {S}^{5} superstring and the symmetries of super Wilson loops at strong coupling

    Science.gov (United States)

    Münkler, Hagen; Pollok, Jonas

    2015-09-01

    Based on an extension of the holographic principle to superspace, we provide a strong-coupling description of smooth super Wilson loops in {N}=4 super Yang-Mills theory in terms of minimal surfaces of the {{AdS}}5× {S}5 superstring. We employ the classical integrability of the Green-Schwarz superstring on {{AdS}}5× {S}5 to derive the superconformal and Yangian Y[{psu}(2,2| 4)] Ward identities for the super Wilson loop, thus extending the strong coupling results obtained for the Maldacena-Wilson loop. In the course of the derivation, we determine the minimal surface solution up to third order in an expansion close to the conformal boundary.

  8. A NRC-BNL benchmark evaluation of seismic analysis methods for non-classically damped coupled systems

    International Nuclear Information System (INIS)

    Under the auspices of the U.S. Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a comprehensive program to evaluate state-of-the-art methods and computer programs for seismic analysis of typical coupled nuclear power plant (NPP) systems with non-classical damping. In this program, four benchmark models of coupled building-piping/equipment systems with different damping characteristics were developed and analyzed by BNL for a suite of earthquakes. The BNL analysis was carried out by the Wilson-θ time domain integration method with the system-damping matrix computed using a synthesis formulation as presented in a companion paper [Nucl. Eng. Des. (2002)]. These benchmark problems were subsequently distributed to and analyzed by program participants applying their uniquely developed methods and computer programs. This paper is intended to offer a glimpse at the program, and provide a summary of major findings and principle conclusions with some representative results. The participant's analysis results established using complex modal time history methods showed good comparison with the BNL solutions, while the analyses produced with either complex-mode response spectrum methods or classical normal-mode response spectrum method, in general, produced more conservative results, when averaged over a suite of earthquakes. However, when coupling due to damping is significant, complex-mode response spectrum methods performed better than the classical normal-mode response spectrum method. Furthermore, as part of the program objectives, a parametric assessment is also presented in this paper, aimed at evaluation of the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled NPP systems. It is believed that the findings and insights learned from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving license

  9. Solitary and shock structures in a strongly coupled cryogenic quantum plasma

    International Nuclear Information System (INIS)

    The quantum ion-acoustic (QIA) solitary and shock structures formed in a strongly coupled cryogenic quantum plasma (containing strongly coupled positively charged inertial cold ions and Fermi electrons as well as positrons) have been theoretically investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been employed to derive the Korteweg-de Vries (K-dV) and Burgers equations. The basic features of the QIA solitary and shock structures are identified by analyzing the stationary solitary and shock wave solutions of the K-dV and Burgers equations. It is found that the basic characteristics (e.g., phase speed, amplitude, and width) of the QIA solitary and shock structures are significantly modified by the effects of the Fermi pressures of electrons and positrons, the ratio of Fermi temperature of positrons to that of electrons, the ratio of effective ion temperature to electron Fermi temperature, etc. It is also observed that the effect of strong correlation among extremely cold ions acts as a source of dissipation, and is responsible for the formation of the QIA shock structures. The results of this theoretical investigation should be useful for understanding the nonlinear features of the localized electrostatic disturbances in laboratory electron-positron-ion plasmas (viz., super-intense laser-dense matter experiments)

  10. Nonrelativistic structure calculations of two-electron ions in a strongly coupled plasma environment

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.; Saha, J. K.; Mukherjee, T. K.

    2015-04-01

    In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with the Linac coherent light source (LCLS) x-ray free electron laser (FEL) and the Orion laser has been addressed. In both kinds of experiments, heliumlike and hydrogenlike spectral lines are used for plasma diagnostics. However, there exist no precise theoretical calculations for He-like ions within a dense plasma environment. The strong need for an accurate theoretical estimate for spectral properties of He-like ions in a strongly coupled plasma environment leads us to perform ab initio calculations in the framework of the Rayleigh-Ritz variation principle in Hylleraas coordinates where an ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with an extended basis inside a finite domain is presented here. The present values of electron densities corresponding to the disappearance of different spectral lines obtained within the framework of an ion-sphere potential show excellent agreement with Orion laser experiments in Al plasma and with recent theories. Moreover, this method is extended to predict the critical plasma densities at which the spectral lines of H-like and He-like carbon and argon ions disappear. Incidental degeneracy and level-crossing phenomena are being reported for two-electron ions embedded in strongly coupled plasma. Thermodynamic pressure experienced by the ions in their respective ground states inside the ion spheres is also reported.

  11. Strong Coupling Effects on the Specific Heat of an Ultracold Fermi Gas in the Unitarity Limit

    Science.gov (United States)

    van Wyk, P.; Tajima, H.; Hanai, R.; Ohashi, Y.

    2016-05-01

    We investigate strong-coupling corrections to the specific heat C_V in the normal state of an ultracold Fermi gas in the BCS-BEC crossover region. A recent experiment on a ^6Li unitary Fermi gas (Ku et. al. in Science 335:563 2012) shows that C_V is remarkably amplified near the superfluid phase transition temperature T_c, being similar to the well-known λ -structure observed in liquid ^4He. Including pairing fluctuations within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that strong pairing fluctuations are sufficient to explain the anomalous behavior of C_V observed in a ^6Li unitary Fermi gas near T_c. We also show that there is no contribution from stable preformed Cooper pairs to C_V at the unitarity. This indicates that the origin of the observed anomaly is fundamentally different from the case of liquid 4He, where stable ^4He Bose atoms induce the λ -structure in C_V near the superfluid instability. Instead, the origin is the suppression of the entropy S, near T_c, due to the increase of metastable preformed Cooper pairs. Our results indicate that the specific heat is a useful quantity to study the effects of pairing fluctuations on the thermodynamic properties of an ultracold Fermi gas in the BCS-BEC crossover region.

  12. Solitary and shock structures in a strongly coupled cryogenic quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M. A., E-mail: armanplasma@gmail.com; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)

    2015-07-15

    The quantum ion-acoustic (QIA) solitary and shock structures formed in a strongly coupled cryogenic quantum plasma (containing strongly coupled positively charged inertial cold ions and Fermi electrons as well as positrons) have been theoretically investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been employed to derive the Korteweg-de Vries (K-dV) and Burgers equations. The basic features of the QIA solitary and shock structures are identified by analyzing the stationary solitary and shock wave solutions of the K-dV and Burgers equations. It is found that the basic characteristics (e.g., phase speed, amplitude, and width) of the QIA solitary and shock structures are significantly modified by the effects of the Fermi pressures of electrons and positrons, the ratio of Fermi temperature of positrons to that of electrons, the ratio of effective ion temperature to electron Fermi temperature, etc. It is also observed that the effect of strong correlation among extremely cold ions acts as a source of dissipation, and is responsible for the formation of the QIA shock structures. The results of this theoretical investigation should be useful for understanding the nonlinear features of the localized electrostatic disturbances in laboratory electron-positron-ion plasmas (viz., super-intense laser-dense matter experiments)

  13. Photon mass new limits from strong photon-torsion coupling generation of primordial magnetic fields

    CERN Document Server

    de Andrade, Garcia

    2011-01-01

    Recently Adelberger et al [Phys Rev Lett 98: 010402, (2007)] have placed a limit to photon mass by investigating the primordial magnetic fields. Earlier Bertolami et al [Phys Lett \\textbf{B} 455, 96(1999)] showed that massive photons in a spontaneous Lorentz breaking may generate primordial magnetic fields consistent with galactic dynamo seeds. Torsion coupling constant of order $10^{-5}$, much higher than the previously obtained by de Sabbata and Sivaram of $10^{-24}$, leads to strong amplification of magnetic field able to seed galactic dynamo at recombination era contrary to what happens in general relativistic dynamos. This results in $B\\sim{10^{-5}{\\beta}G}$ where ${\\beta}$ is the massive photon-torsion coupling. Thus in order to obtain the observed galaxy field of $B_{G}\\sim{{\\mu}G}$ one should have a coupling $\\beta\\sim{10^{-1}}$, never observed in the universe. Thus we may conclude that the weaker couplings for torsion to e.m fields shall only produce magnetic fields without dynamos starting from extr...

  14. Strong Coupling in F-theory and Geometrically Non-Higgsable Seven-branes

    CERN Document Server

    Halverson, James

    2016-01-01

    Geometrically non-Higgsable seven-branes carry gauge sectors that cannot be broken by complex structure deformation, and there is growing evidence that such configurations are typical in F-theory. We study strongly coupled physics associated with these branes. Axiodilaton profiles are computed using Ramanujan's theories of elliptic functions to alternative bases, showing explicitly that the string coupling is order one in the vicinity of the brane; that it sources nilpotent $SL(2,\\mathbb{Z})$ monodromy and therefore the associated brane charges are modular; and that essentially all F-theory compactifications have regions with order one string coupling. It is shown that non-perturbative $SU(3)$ and $SU(2)$ seven-branes are related to weakly coupled counterparts with D7-branes via deformation-induced Hanany-Witten moves on $(p,q)$ string junctions that turn them into fundamental open strings; only the former may exist for generic complex structure. D3-brane near these and the Kodaira type II seven-branes probe ...

  15. Fermion condensates and Lorentz symmetry breaking in strongly-coupled large N gauge theories

    CERN Document Server

    Tomboulis, E T

    2012-01-01

    The possibility of Lorentz symmetry breaking (LSB) has attracted considerable attention in recent years. Spontaneous LSB, in particular, offers the attractive prospect of the graviton as a Nambu-Golstone boson. Here we consider the question of spontaneous LSB in lattice gauge theories via formation of fermion condensates in the strong coupling and large N limits. We employ naive massless fermions in a fermionic hopping expansion in the presence of sources coupled to various condensate operators of interest. The expansion is resumed in the large N limit in two equivalent ways: (i) direct resummation of all leading N graphs; and (ii) construction of the corresponding large N effective action for composite operators. When sources are turned off a variety of fermionic condensates is found to persist. These include the chiral symmetry breaking condensates, thus recovering previous results; but also some LSB condensates, in particular, axial vector and rank-2 tensor condensates. Furthermore, in the presence of inte...

  16. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2

    Science.gov (United States)

    Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng

    2016-04-01

    Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and

  17. Strong coupling expansion in lattice QCD at finite temperature and finite baryon density

    International Nuclear Information System (INIS)

    Analytical investigation of chiral symmetry restoration in the lattice QCD at finite temperature and finite baryon density is carried out using the strong coupling expansion. The prediction is made concerning the order of the phase transition. The effective action for QCD with SU(3) colour group in the d-dimensional space for finite and large coupling constant and finite temperature and chemical potential μ is obtained by means of 1/d expansion. Inclusion of baryons is shown to have practically no influence on the phase picture corresponding to μ=0 so that in complete QCD (incorporating both mesons and nucleons) there is the chiral phase transition of the second order discovered earlier in the baryonless QCD. The chiral phase transition of the second order is found to exist at μ=μc and at arbitrary low temperature

  18. Strong-coupling expansion in lattice QCD at finite temperature and finite baryon density

    International Nuclear Information System (INIS)

    By means of the strong-coupling expansion an analytic study is made of the restoration of chiral symmetry in lattice QCD at finite temperature and finite baryon-number density, and the order of the phase transition is predicted. By means of the 1/d expansion an effective for QCD is derived with the color group SU(3) in d-dimensional space at a finite large coupling constant and at finite temperature and chemical potential μ. It is shown that the inclusion of baryons leaves the phase picture corresponding to μ = 0 almost unchanged, and that in full QCD (with mesons and baryons) the second-order chiral phase transition, discovered previously in QCD without baryons, exists. A second-order chiral phase transition is found at μ = μc and at arbitrary low temperature

  19. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan; Albert, Magnus; Drewsen, Michael

    2009-01-01

    information 10 . At present, photons are the best carriers of quantum information between physically separated sites 11, 12 and quantum-information processing using stationary qubits 10 is most promising, with the furthest advances having been made with trapped ions 13, 14, 15 . The implementation of complex...... quantum-information-processing networks 11, 12 hence requires devices to efficiently couple photons and stationary qubits. Here, we present the first CQED experiments demonstrating that the collective strong-coupling regime 2 can be reached in the interaction between a solid in the form of an ion Coulomb...... crystal 16 and an optical field. The obtained coherence times are in the millisecond range and indicate that Coulomb crystals positioned inside optical cavities are promising for realizing a variety of quantum-information devices, including quantum repeaters 12 and quantum memories for light 17, 18...

  20. Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    The oblique collision between two equal amplitude dust acoustic solitons is observed in a strongly coupled dusty plasma. The solitons are subjected to oblique interaction at different colliding angles. We observe a resonance structure during oblique collision at a critical colliding angle which is described by the idea of three wave resonance interaction modeled by Kadomtsev-Petviashvili equation. After collision, the solitons preserve their identity. The amplitude of the resultant wave formed during interaction is measured for different collision angles as well as for different colliding soliton amplitudes. At resonance, the maximum amplitude of the new soliton formed is nearly 3.7 times the initial soliton amplitude

  1. Atomic spatial coherence with spontaneous emission in a strong coupling cavity

    CERN Document Server

    Fang, Zhen; Zhou, Xiaoji; Chen, Xuzong

    2010-01-01

    The role of spontaneous emission in the interaction between a two-level atom and a pumped micro-cavity in the strong coupling regime is discussed in this paper. Especially, using a quantum Monte-Carlo simulation, we investigate atomic spatial coherence. It is found that atomic spontaneous emission destroys the coherence between neighboring lattice sites, while the cavity decay does not. Furthermore, our computation of the spatial coherence function shows that the in-site locality is little affected by the cavity decay, but greatly depends on the cavity pump amplitude.

  2. Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Boruah, A.; Sharma, S. K., E-mail: sumita-sharma82@yahoo.com; Bailung, H.; Nakamura, Y. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035 (India)

    2015-09-15

    The oblique collision between two equal amplitude dust acoustic solitons is observed in a strongly coupled dusty plasma. The solitons are subjected to oblique interaction at different colliding angles. We observe a resonance structure during oblique collision at a critical colliding angle which is described by the idea of three wave resonance interaction modeled by Kadomtsev-Petviashvili equation. After collision, the solitons preserve their identity. The amplitude of the resultant wave formed during interaction is measured for different collision angles as well as for different colliding soliton amplitudes. At resonance, the maximum amplitude of the new soliton formed is nearly 3.7 times the initial soliton amplitude.

  3. The $1/N$ expansion for $SO(N)$ lattice gauge theory at strong coupling

    CERN Document Server

    Chatterjee, Sourav

    2016-01-01

    The $1/N$ expansion is an asymptotic series expansion for certain quantities in large-$N$ lattice gauge theories. This article gives a rigorous formulation and proof of the $1/N$ expansion for Wilson loop expectations in $SO(N)$ lattice gauge theory in the strong coupling regime in any dimension. The terms in the expansion are expressed as sums over trajectories of strings in a lattice string theory, establishing an explicit gauge-string duality. The trajectories trace out surfaces of genus zero for the first term in the expansion, and surfaces of higher genus for the higher terms.

  4. A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances

    Directory of Open Access Journals (Sweden)

    Xuezhe Wei

    2014-07-01

    Full Text Available Strongly coupled magnetic resonance (SCMR, proposed by researchers at MIT in 2007, attracted the world’s attention by virtue of its mid-range, non-radiative and high-efficiency power transfer. In this paper, current developments and research progress in the SCMR area are presented. Advantages of SCMR are analyzed by comparing it with the other wireless power transfer (WPT technologies, and different analytic principles of SCMR are elaborated in depth and further compared. The hot research spots, including system architectures, frequency splitting phenomena, impedance matching and optimization designs are classified and elaborated. Finally, current research directions and development trends of SCMR are discussed.

  5. Screening in strongly coupled N=2* supersymmetric Yang-Mills plasma

    CERN Document Server

    Hoyos, Carlos; Yaffe, Laurence G

    2011-01-01

    Using gauge-gravity duality, we extend thermodynamic studies and present results for thermal screening masses in strongly coupled N=2* supersymmetric Yang-Mills theory. This non-conformal theory is a mass deformation of maximally supersymmetric N=4 gauge theory. Results are obtained for the entropy density, pressure, specific heat, equation of state, and screening masses, down to previously unexplored low temperatures. The temperature dependence of screening masses in various symmetry channels, which characterize the longest length scales over which thermal fluctuations in the non-Abelian plasma are correlated, is examined and found to be asymptotically linear in the low temperature regime.

  6. Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

    DEFF Research Database (Denmark)

    Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang;

    2010-01-01

    We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from...... yields time-dependent probabilities for the atoms to be in one of the two hyperfine states. This analysis is extended to short time bins where a simple threshold analysis would not yield reasonable results. We discuss the effect of super-Poissonian photon number distributions caused by atomic motion....

  7. Spin Sum Rules and the Strong Coupling Constant at large distance.

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur

    2009-07-01

    We present recent results on the Bjorken and the generalized forward spin polarizability sum rules from Jefferson Lab Hall A and CLAS experiments, focusing on the low $Q^2$ part of the measurements. We then discuss the comparison of these results with Chiral Perturbation theory calculations. In the second part of this paper, we show how the Bjorken sum rule with its connection to the Gerasimov-Drell-Hearn sum, allows us to conveniently define an effective coupling for the strong force at all distances.

  8. On the strong coupling dynamics of heterotic string theory onC3/Z3

    Energy Technology Data Exchange (ETDEWEB)

    Ganor, O.J.; Sonnenschein, J.

    2002-02-28

    The authors study the strong coupling dynamics of the heterotic E{sub 8} x E{sub 8} string theory on the orbifolds T{sup 6}/Z{sub 3} and C{sup 3}/Z{sub 3} using the duality with the Horava-Witten M-theory picture. This leads us to a conjecture about the low energy description of the five dimensional E{sub 0}-theory (the CFT that describes the singularity region of M-theory on C{sup 3}/Z{sub 3}) compactified on S{sup 1}/Z{sub 2}.

  9. Lattice Hamiltonian approach to the Schwinger model. Further results from the strong coupling expansion

    Energy Technology Data Exchange (ETDEWEB)

    Szyniszewski, Marcin [Lancaster Univ. (United Kingdom). Dept. of Physics; Manchester Univ. (United Kingdom). NoWNano DTC; Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Kujawa-Cichy, Agnieszka [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Theortische Physik

    2014-10-15

    We employ exact diagonalization with strong coupling expansion to the massless and massive Schwinger model. New results are presented for the ground state energy and scalar mass gap in the massless model, which improve the precision to nearly 10{sup -9}%. We also investigate the chiral condensate and compare our calculations to previous results available in the literature. Oscillations of the chiral condensate which are present while increasing the expansion order are also studied and are shown to be directly linked to the presence of flux loops in the system.

  10. Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory

    International Nuclear Information System (INIS)

    We study the dynamics of a 'composite' or 'dressed' quark in strongly-coupled large-Nc N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a Lorentz covariant formula for its rate of radiation.

  11. Approaches to QCD phase diagram; effective models, strong-coupling lattice QCD, and compact stars

    CERN Document Server

    Ohnishi, Akira

    2016-01-01

    The outline of the two lectures given in "Dense Matter School 2015" is given. After giving an overview on the relevance of the phase diagram studies to heavy-ion collisions and compact star phenomena, I give some basic formulae to discuss the QCD phase diagram in the mean field treatment of the Nambu-Jona-Lasinio model. Next, I introduce the strong-coupling lattice QCD, which is one of the promising methods to access the QCD phase diagram including the first order phase boundary. In the last part, I discuss the QCD phase diagram in asymmetric matter, which should be formed in compact star phenomena.

  12. Strong-coupling fixed points of current interactions and disordered fermions in two dimensions

    International Nuclear Information System (INIS)

    The all-orders β function is used to study disordered Dirac fermions in two dimensions. The generic strong coupling fixed 'points' of anisotropic current-current interactions at large distances are actually isotropic manifolds corresponding to subalgebras of the maximal current algebra at short distances. The argue that IR fixed point theories are generally current algebra cosets. We illustrate this with the simple example of anisotropic su(2), which is the physics of Kosterlitz-Thouless transitions. We propose a phase diagram for the Chalker-Coddington network model which is in the universality class of the integer quantum Hall transition. One phase is in the universality class of dense polymers

  13. Stability of an elliptical vortex in a strongly coupled dusty plasma

    Science.gov (United States)

    Jana, Sayanee; Banerjee, Debabrata; Chakrabarti, Nikhil

    2015-08-01

    The stability of a long scale equilibrium vortex structure to short scale perturbations is studied in a strongly coupled dusty plasma in the framework of a generalized hydrodynamic model. It is shown that the free energy associated with the velocity shear of the vortex can drive secondary instabilities consisting of transverse shear waves when the resonance condition between the vortex rotation frequency and the secondary wave frequency is met. Such a process can transfer energy from the long scale vortex to the short scale secondary wave and thereby provide a saturation mechanism for long scale vortices in plasmas in a manner analogous to that in neutral fluids.

  14. Dressed states of a quantum emitter strongly coupled to a metal nanoparticle

    CERN Document Server

    Varguet, H; Dzsotjan, D; Jauslin, H; Guerin, S; Francs, G Colas des

    2016-01-01

    Hybrid molecular-plasmonic nanostructures have demonstrated their potential for surface enhanced spectroscopies, sensing or quantum control at the nanoscale. In this work, we investigate the strong coupling regime and explicitly describe the hybridization between the localized plasmons of a metal nanoparticle and the excited state of a quantum emitter, offering a simple and precise understanding of the energy exchange in full analogy with cavity quantum electrodynamics treatment and dressed atom picture. Both near field emission and far field radiation are discussed, revealing the richness of such optical nanosources.

  15. Strong coupling expansion in lattice QCD at finite temperature and finite baryon density

    International Nuclear Information System (INIS)

    Using strong coupling expansion in lattice QCD we study analytically the restoration of chiral symmetry in the theory with finite temperature and finite baryon number density and make predictions regarding the order of the phase transition. The inclusion of baryons does not change the phase picture when μ=0, and in full QCD (with mesons and baryons) there is a chiral phase transition of the second order, discovered earlier in QCD without baryons. We have found a first order chiral phase transition at μ=μc and at any low temperature. (author). 19 refs, 3 figs

  16. Analytic properties of the OCP and ionic mixtures in the strongly coupled fluid state

    International Nuclear Information System (INIS)

    Exact results for the Madelung constants and first order anharmonic energies are given for the inverse power potentials with the Coulomb potential as the softest example. Similar exact results are obtained using the analysis of Rosenfeld on the Γ → ∞ limit for the OCP internal energy, direct correlation function, screening function, and bridge functions. Knowing these exact limits for the fluid phase of the OCP allows one to determine the nature of the thermal corrections to the strongly coupled results. Solutions of the HNC equation modified with the hard sphere bridge function give an example

  17. Strong couplings of heavy mesons to a light vector meson in QCD

    International Nuclear Information System (INIS)

    We make a detailed analysis of the BBρ(DDρ) and B*Bρ(D*Dρ) strong couplings gBBρ(gDDρ) and gB*Bρ(gD*Dρ) using QCD light-cone sum rules (LCSR's). The existing negligence is pointed out in a previous LCSR calculation on gB*Bρ(gD*Dρ) and an updated estimate is presented. Our findings can be used to understand the behavior of the B,D→ρ semileptonic form factors at large momentum transitions

  18. Coexistence of strong and weak coupling in ZnO nanowire cavities

    Science.gov (United States)

    Michalsky, Tom; Franke, Helena; Buschlinger, Robert; Peschel, Ulf; Grundmann, Marius; Schmidt-Grund, Rüdiger

    2016-06-01

    We present a high quality two-dimensional cavity structure based on ZnO nanowires coated with concentrical Bragg reflectors. The spatial mode distribution leads to the simultaneous appearance of the weak and strong coupling regime even at room temperature. Photoluminescence (PL) measurements agree with finite difference time domain (FDTD) simulations. Furthermore the ZnO core nanowires allow for the observation of middle polariton branches between the A- and B-exciton ground state resonances. Further, lasing emission up to room temperature is detected in excitation dependent photoluminescence measurements. Supplementary online material is available in electronic form at http://www.epjap.org

  19. Spatio-temporal Control of Light Transmission through a Multimode Fiber with Strong Mode Coupling

    CERN Document Server

    Xiong, Wen; Bromberg, Yaron; Rotter, Stefan; Cao, Hui

    2016-01-01

    We experimentally generate and characterize the eigenstates of the Wigner-Smith time-delay matrix, called principal modes, in a multimode fiber with strong mode coupling. The unique spectral and temporal properties of principal modes enable a global control of the temporal dynamics of optical pulses transmitted through the fiber, despite random mode mixing. Our analysis reveals that the well-defined delay time of the eigenstates are formed by multi-path interference, which can be effectively manipulated by the spatial degrees of freedom of the input wavefront. This study is essential to controlling the dynamics of wave scattering, paving the way for coherent control of pulse propagation through complex media.

  20. A strongly conservative finite element method for the coupling of Stokes and Darcy flow

    KAUST Repository

    Kanschat, G.

    2010-08-01

    We consider a model of coupled free and porous media flow governed by Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition. This model is discretized using divergence-conforming finite elements for the velocities in the whole domain. Discontinuous Galerkin techniques and mixed methods are used in the Stokes and Darcy subdomains, respectively. This discretization is strongly conservative in Hdiv(Ω) and we show convergence. Numerical results validate our findings and indicate optimal convergence orders. © 2010 Elsevier Inc.