WorldWideScience

Sample records for classical nucleation theory

  1. Revision of the classical nucleation theory for supersaturated solutions

    CERN Document Server

    Borisenko, Alexander

    2015-01-01

    During the processes of nucleation and growth of a precipitate cluster from a supersaturated solution, the diffusion flux between the cluster and the solution changes the solute concentration near the cluster-solution interface from its average bulk value. This feature affects the rates of attachment and detachment of solute atoms at the interface and, therefore, alters the entire nucleation kinetics. Unless quite obvious, this effect has been ignored in the classical nucleation theory. To illustrate the results of this new approach, for the case of homogeneous nucleation, we calculate the total solubility (including the contribution from heterophase fluctuations) and the nucleation rate as functions of two parameters of the model and compare these results to the classical ones. One can conclude that discrepancies with the classical nucleation theory are great in the diffusion-limited regime, when the bulk diffusion mobility of solute atoms is small compared to the interfacial one, while in the opposite inter...

  2. Ice Nucleation on Carbon Surface Supports the Classical Theory for Heterogeneous Nucleation

    CERN Document Server

    Cabriolu, Raffaela

    2015-01-01

    The prevalence of heterogeneous nucleation in nature was explained qualitatively by the classical theory for heterogeneous nucleation established over more than 60 years ago, but the quantitative validity and the key conclusions of the theory have remained unconfirmed. Employing the forward flux sampling method and the coarse-grained water model mW, we explicitly computed the heterogeneous ice nucleation rates in the supercooled water on a graphitic surface at various temperatures. The independently calculated ice nucleation rates were found to fit well according to the classical theory for heterogeneous nucleation. The fitting procedure further yields the estimate of the potency factor which measures the ratio of the heterogeneous nucleation barrier to the homogeneous nucleation barrier. Remarkably, the estimated potency factor agrees quantitatively with the volumetric ratio of the critical nuclei between the heterogeneous and homogeneous nucleation. Our numerical study thus provides a strong support to the ...

  3. Fluctuations, temperature, and detailed balance in classical nucleation theory

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, R. [Environmental Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973 (United States); LaViolette, R.A. [Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415 (United States)

    1995-06-08

    The role of temperature in classical nucleation theory is examined. It is shown that while even small clusters are assigned a temperature in the classical theory, this must be a fluctuating quantity. Stochastic simulations of cluster evaporation and growth are presented to track the temperature fluctuations in time. The relation {l_angle}{vert_bar}{delta}{ital T}{vert_bar}{sup 2}{r_angle}={ital kT}{sup @2}{ital d}0/{ital C}{sub {nu}} for the mean square temperature fluctuation is confirmed, where {ital k} is the Boltzmann constant, {ital C}{sub {nu}} is the cluster heat capacity, and {ital T}{sub 0} is the bath temperature. For small capillary drops (50--100 molecules), the resulting rms temperature fluctuations of 10{degree}--20{degree} might be expected to have a significant effect on the nucleation rate. However, the simulations reveal a cluster temperature distribution that is centered several degrees below {ital T}{sub 0}. A theory is presented to explain this effect. To first order, which includes Gaussian fluctuations of the cluster temperature {ital T}, we find that the effective temperature for cluster evaporation is {ital T}{minus}{ital h}/2{ital C}{sub {nu}}, where {ital h} is the latent heat. This temperature correction is precisely that required by detailed balance and results both in a centering of the cluster temperature distribution on {ital T}{sub 0} and a cancellation of any significant effect of temperature fluctuations on the nucleation rate.

  4. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.

    Science.gov (United States)

    Diemand, Jürg; Angélil, Raymond; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-11-01

    We present results from direct, large-scale molecular dynamics simulations of homogeneous bubble (liquid-to-vapor) nucleation. The simulations contain half a billion Lennard-Jones atoms and cover up to 56 million time steps. The unprecedented size of the simulated volumes allows us to resolve the nucleation and growth of many bubbles per run in simple direct micro-canonical simulations while the ambient pressure and temperature remain almost perfectly constant. We find bubble nucleation rates which are lower than in most of the previous, smaller simulations. It is widely believed that classical nucleation theory (CNT) generally underestimates bubble nucleation rates by very large factors. However, our measured rates are within two orders of magnitude of CNT predictions; only at very low temperatures does CNT underestimate the nucleation rate significantly. Introducing a small, positive Tolman length leads to very good agreement at all temperatures, as found in our recent vapor-to-liquid nucleation simulations. The critical bubbles sizes derived with the nucleation theorem agree well with the CNT predictions at all temperatures. Local hot spots reported in the literature are not seen: Regions where a bubble nucleation event will occur are not above the average temperature, and no correlation of temperature fluctuations with subsequent bubble formation is seen.

  5. Classical nucleation theory for solute precipitation amended with diffusion and reaction processes near the interface

    Science.gov (United States)

    Borisenko, Alexander

    2016-05-01

    During the processes of nucleation and growth of a precipitate cluster from a supersaturated solution, the diffusion flux between the cluster and the solution changes the solute concentration near the cluster-solution interface from its average bulk value. This feature affects the rates of attachment and detachment of solute atoms at the interface, and, therefore, the entire nucleation-growth kinetics is altered. Unless quite obvious, this effect has been ignored in classical nucleation theory. To illustrate the results of this approach, for the case of homogeneous nucleation, we calculate the total solubility and the nucleation rate as functions of two parameters of the model (the reduced interface energy and the inverse second Damköhler number), and we compare these results to the classical ones. One can conclude that discrepancies with classical nucleation theory are great in the diffusion-limited regime, when the rate of bulk diffusion is small compared to the rate of interface reactions, while in the opposite interface-limited case they vanish.

  6. The Lack of Chemical Equilibrium does not Preclude the Use of the Classical Nucleation Theory in Circumstellar Outflows

    Science.gov (United States)

    Paquette, John A.; Nuth, Joseph A., III

    2011-01-01

    Classical nucleation theory has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of classical nucleation theory (CNT) to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of condensable species. A model of silicate grain nucleation and growth was modified to evaluate the effect of a nucleation flux orders of magnitUde below the equilibrium value. The results show that a lack of chemical equilibrium has only a small effect on the ultimate grain distribution.

  7. Deposition nucleation on mineral dust particles: a case against classical nucleation theory with the assumption of a single contact angle

    Directory of Open Access Journals (Sweden)

    M. J. Wheeler

    2012-01-01

    Full Text Available Deposition nucleation on two mineral species, kaolinite and illite, was studied using a flow cell coupled to an optical microscope. The results show that the Sice conditions when ice first nucleated, defined as the onset Sice (Sice,onset, is a strong function of the surface area available for nucleation, varying from 100% to 125% at temperatures between 242 and 239 K. The surface area dependent data could not be described accurately using classical nucleation theory and the assumption of a single contact angle (defined here as the single-α model. These results suggest that caution should be applied when using contact angles determined from Sice,onset data and the single-α model. In contrast to the single-α model, the active site model, the deterministic model, and a model with a distribution of contact angles fit the data within experimental uncertainties. Parameters from the fits to the data are presented.

  8. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.

    Science.gov (United States)

    Ickes, Luisa; Welti, André; Hoose, Corinna; Lohmann, Ulrike

    2015-02-28

    The probability of homogeneous ice nucleation under a set of ambient conditions can be described by nucleation rates using the theoretical framework of Classical Nucleation Theory (CNT). This framework consists of kinetic and thermodynamic parameters, of which three are not well-defined (namely the interfacial tension between ice and water, the activation energy and the prefactor), so that any CNT-based parameterization of homogeneous ice formation is less well-constrained than desired for modeling applications. Different approaches to estimate the thermodynamic and kinetic parameters of CNT are reviewed in this paper and the sensitivity of the calculated nucleation rate to the choice of parameters is investigated. We show that nucleation rates are very sensitive to this choice. The sensitivity is governed by one parameter - the interfacial tension between ice and water, which determines the energetic barrier of the nucleation process. The calculated nucleation rate can differ by more than 25 orders of magnitude depending on the choice of parameterization for this parameter. The second most important parameter is the activation energy of the nucleation process. It can lead to a variation of 16 orders of magnitude. By estimating the nucleation rate from a collection of droplet freezing experiments from the literature, the dependence of these two parameters on temperature is narrowed down. It can be seen that the temperature behavior of these two parameters assumed in the literature does not match with the predicted nucleation rates from the fit in most cases. Moreover a comparison of all possible combinations of theoretical parameterizations of the dominant two free parameters shows that one combination fits the fitted nucleation rates best, which is a description of the interfacial tension coming from a molecular model [Reinhardt and Doye, J. Chem. Phys., 2013, 139, 096102] in combination with the activation energy derived from self-diffusion measurements [Zobrist

  9. Simultaneous SAXS/WAXS/UV-Vis Study of the Nucleation and Growth of Nanoparticles: A Test of Classical Nucleation Theory.

    Science.gov (United States)

    Chen, Xuelian; Schröder, Jan; Hauschild, Stephan; Rosenfeldt, Sabine; Dulle, Martin; Förster, Stephan

    2015-10-27

    Despite the increasing interest in the applications of functional nanoparticles, a comprehensive understanding of the formation mechanism starting from the precursor reaction with subsequent nucleation and growth is still a challenge. We for the first time investigated the kinetics of gold nanoparticle formation systematically by means of a lab-based in situ small-angle X-ray scattering (SAXS)/wide-angle X-ray scattering (WAXS)/UV-vis absorption spectroscopy experiment using a stopped-flow apparatus. We thus could systematically investigate the influence of all major factors such as precursor concentration, temperature, the presence of stabilizing ligands and cosolvents on the temporal evolution of particle size, size distribution, and optical properties from the early prenucleation state to the late growth phase. We for first time formulated and numerically solved a closed nucleation and growth model including the precursor reaction. We observe that the results can be well described within the framework of classical nucleation and growth theory, including also results of previous studies by other research groups. From the analysis, we can quantitatively derive values for the rate constants of precursor reaction and growth together with their activation free enthalpies. We find the growth process to be surface-reaction limited with negligible influence of Ostwald ripening yielding narrow disperse gold nanoparticles. PMID:26393805

  10. Scaling properties of the critical nucleus in classical and molecular-based theories of vapor-liquid nucleation

    International Nuclear Information System (INIS)

    Scaling relations are developed for the number g* of molecules in the critical nucleus and the nucleation barrier height W*. Density functional (DF) calculations for vapor-liquid nucleation confirm these relations and show systematic departure of the ratio W*/g*Δμ from its classical value of 1/2 with increasing difference Δμ in the chemical potential between the supersaturated vapor and bulk condensed phase. Discrepancies between classical and DF nucleation theories and between the classical theory and experiment are interpreted using these results. copyright 1996 The American Physical Society

  11. On the usage of classical nucleation theory in quantification of the impact of bacterial INP on weather and climate

    Science.gov (United States)

    Sahyoun, Maher; Wex, Heike; Gosewinkel, Ulrich; Šantl-Temkiv, Tina; Nielsen, Niels W.; Finster, Kai; Sørensen, Jens H.; Stratmann, Frank; Korsholm, Ulrik S.

    2016-08-01

    Bacterial ice-nucleating particles (INP) are present in the atmosphere and efficient in heterogeneous ice-nucleation at temperatures up to -2 °C in mixed-phase clouds. However, due to their low emission rates, their climatic impact was considered insignificant in previous modeling studies. In view of uncertainties about the actual atmospheric emission rates and concentrations of bacterial INP, it is important to re-investigate the threshold fraction of cloud droplets containing bacterial INP for a pronounced effect on ice-nucleation, by using a suitable parameterization that describes the ice-nucleation process by bacterial INP properly. Therefore, we compared two heterogeneous ice-nucleation rate parameterizations, denoted CH08 and HOO10 herein, both of which are based on classical-nucleation-theory and measurements, and use similar equations, but different parameters, to an empirical parameterization, denoted HAR13 herein, which considers implicitly the number of bacterial INP. All parameterizations were used to calculate the ice-nucleation probability offline. HAR13 and HOO10 were implemented and tested in a one-dimensional version of a weather-forecast-model in two meteorological cases. Ice-nucleation-probabilities based on HAR13 and CH08 were similar, in spite of their different derivation, and were higher than those based on HOO10. This study shows the importance of the method of parameterization and of the input variable, number of bacterial INP, for accurately assessing their role in meteorological and climatic processes.

  12. Unification of classical nucleation theories via a unified Itô-Stratonovich stochastic equation.

    Science.gov (United States)

    Durán-Olivencia, Miguel A; Lutsko, James F

    2015-09-01

    Classical nucleation theory (CNT) is the most widely used framework to describe the early stage of first-order phase transitions. Unfortunately, the different points of view adopted to derive it yield different kinetic equations for the probability density function, e.g., Zeldovich-Frenkel or Becker-Döring-Tunitskii equations. Starting from a phenomenological stochastic differential equation, a unified equation is obtained in this work. In other words, CNT expressions are recovered by selecting one or another stochastic calculus. Moreover, it is shown that the unified CNT thus obtained produces the same Fokker-Planck equation as that from a recent update of CNT [J. F. Lutsko and M. A. Durán-Olivencia, J. Chem. Phys. 138, 244908 (2013)10.1063/1.4811490] when mass transport is governed by diffusion. Finally, we derive a general induction-time expression along with specific approximations of it to be used under different scenarios, in particular, when the mass-transport mechanism is governed by direct impingement, volume diffusion, surface diffusion, or interface transfer.

  13. Unification of classical nucleation theories via a unified Itô-Stratonovich stochastic equation.

    Science.gov (United States)

    Durán-Olivencia, Miguel A; Lutsko, James F

    2015-09-01

    Classical nucleation theory (CNT) is the most widely used framework to describe the early stage of first-order phase transitions. Unfortunately, the different points of view adopted to derive it yield different kinetic equations for the probability density function, e.g., Zeldovich-Frenkel or Becker-Döring-Tunitskii equations. Starting from a phenomenological stochastic differential equation, a unified equation is obtained in this work. In other words, CNT expressions are recovered by selecting one or another stochastic calculus. Moreover, it is shown that the unified CNT thus obtained produces the same Fokker-Planck equation as that from a recent update of CNT [J. F. Lutsko and M. A. Durán-Olivencia, J. Chem. Phys. 138, 244908 (2013)10.1063/1.4811490] when mass transport is governed by diffusion. Finally, we derive a general induction-time expression along with specific approximations of it to be used under different scenarios, in particular, when the mass-transport mechanism is governed by direct impingement, volume diffusion, surface diffusion, or interface transfer. PMID:26465482

  14. Simple improvements to classical bubble nucleation models

    CERN Document Server

    Tanaka, Kyoko K; Angélil, Raymond; Diemand, Jürg

    2015-01-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a new prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by T...

  15. Bubble Nucleation on Nano- to Micro-size Cavities and Posts: An Experimental Validation of Classical Theory

    CERN Document Server

    Witharana, S; Strobel, S; Kim, H D; McKrell, T; Chang, J -B; Buongiorno, J; Berggren, K K; Chen, L; Ding, Y

    2012-01-01

    Recently-reported data suggest that bubble nucleation on surfaces with nano-sized features (cavities and posts) may occur close to the thermodynamic saturation temperature. However, according to the traditional theory of heterogeneous bubble nucleation, such low nucleation temperatures are possible only for surfaces with micro-scale cavities. Motivated by this apparent contradiction, we have used infrared thermometry to measure the nucleation temperature of water on custom-fabricated nano- to micro-scale cavities (from 90 nm to 4.5 um in diameter) and posts (from 60 nm to 5 um in diameter), machined on ultra-smooth and clean silicon wafers using electron beam lithography. Our cavity data are in agreement with the predictions of the Young-Laplace equation, thus re-affirming the correctness of the classic view of heterogeneous bubble nucleation, at least for the water-silicon system investigated here. The data also suggest that individual posts of any size have an insignificant effect on bubble nucleation, as e...

  16. Simple improvements to classical bubble nucleation models

    Science.gov (United States)

    Tanaka, Kyoko K.; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3 σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  17. The Role of Experimental and Statistical Uncertainty in Interpretation of Immersion Freezing: A Case for Classical Nucleation Theory

    Science.gov (United States)

    Alpert, P. A.; Knopf, D. A.

    2014-12-01

    Ice nucleation is the initial step in forming mixed-phase and cirrus clouds, and is well established as an important influence on global climate. Laboratory studies investigate at which cloud relevant conditions of temperature (T) and relative humidity (RH) ice nucleation occurs and as a result, numerous fundamentally different ice nucleation descriptions have been proposed for implementation in cloud and climate models. We introduce a new immersion freezing model based on first principles of statistics to simulate individual droplet freezing requiring only three experimental parameters, which are the total number of droplets, the uncertainty of applied surface area per droplet, and the heterogeneous ice nucleation rate coefficient, Jhet, as a function as a function of T and water activity (aw), where in equilibrium RH=aw. Previous studies reporting frozen fractions (f) or Jhet for a droplet population are described by our model for mineral, inorganic, organic, and biological ice nuclei and different techniques including cold stage, oil-immersion, continuous flow diffusion chamber, flow tube, cloud chamber, acoustic levitation and wind levitation experiments. Taking advantage of the physically based parameterization of Jhet by Knopf and Alpert (Faraday Discuss., 165, 513-534, 2013), our model can predict immersion freezing for the entire atmospherically relevant range of T, RH, particle surface area, and time scales, even for conditions unattainable in a laboratory setting. Lastly, we present a rigorous experimental uncertainty analysis using a Monte Carlo method of laboratory derived Jhet and f. These results imply that classical nucleation theory is universal for immersion freezing. In combination with a aw based description of Jhet, this approach allows for a physically based and computational little demanding implementation in climate and cloud models.

  18. Deposition freezing on mineral dust particles: a case against classical nucleation theory with the assumption of a single contact angle

    Directory of Open Access Journals (Sweden)

    M. J. Wheeler

    2011-07-01

    Full Text Available Deposition freezing on two mineral species, kaolinite and illite, was studied using a flow cell coupled to an optical microscope at ∼240 K. The results show that the onset Sice (defined as the Sice conditions when ice first nucleated is a strong function of the surface area available for nucleation, varying from 100 % to 125 %. The surface area dependent data could not be described accurately using classical nucleation theory and the assumption of a single contact angle (defined here as the single-α model. These results suggest that caution should be applied when using contact angles determined from onset Sice data and the single-α model. In contrast to the single-α model, the active site model, the deterministic model, and a model with a normal distribution of contact angles fit the data within experimental uncertainties. Parameters from the fits to the data are presented.

  19. Comment on "Simple improvements to classical bubble nucleation models"

    Science.gov (United States)

    Schmelzer, Jürn W. P.; Baidakov, Vladimir G.

    2016-08-01

    A critical analysis of several statements concerning experimental studies, molecular dynamics simulations, and the theoretical interpretation of bubble nucleation processes is performed. In particular, it is shown that the Tolman equation does not supply us, in general, with a satisfactory theoretically founded description of the curvature dependence of the surface tension and the dependence of the steady-state nucleation rate of bubbles and droplets on supersaturation in the framework of classical nucleation theory.

  20. Principles of nucleation theory

    International Nuclear Information System (INIS)

    The nucleation of small stable species is described in the problem of void growth by discrete rate equations. When gas is being produced the problem reduces to one of calculating the incubation dose for the gas bubble to void transition. A general expression for the steady state nucleation rate is derived for the case when voids are formed by vacancy fluctuations which enable an effective nucleation barrier to be crossed. (author)

  1. Comparison of the interfacial energy and pre-exponential factor calculated from the induction time and metastable zone width data based on classical nucleation theory

    Science.gov (United States)

    Shiau, Lie-Ding

    2016-09-01

    The pre-exponential factor and interfacial energy obtained from the metastable zone width (MSZW) data using the integral method proposed by Shiau and Lu [1] are compared in this study with those obtained from the induction time data using the conventional method (ti ∝J-1) for three crystallization systems, including potassium sulfate in water in a 200 mL vessel, borax decahydrate in water in a 100 mL vessel and butyl paraben in ethanol in a 5 mL tube. The results indicate that the pre-exponential factor and interfacial energy calculated from the induction time data based on classical nucleation theory are consistent with those calculated from the MSZW data using the same detection technique for the studied systems.

  2. A nanoscale temperature-dependent heterogeneous nucleation theory

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y. Y. [Nanosurface Science and Engineering Research Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060 Guangdong (China); Yang, G. W., E-mail: stsygw@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, 510275 Guangdong (China)

    2015-06-14

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale.

  3. Evaluation of the use of Classical Nucleation Theory for predicting intestinal crystalline precipitation of two weakly basic BSC class II drugs.

    Science.gov (United States)

    Carlert, Sara; Lennernäs, Hans; Abrahamsson, Bertil

    2014-03-12

    The aim of this work was to evaluate an in vitro-in silico approach for prediction of small intestinal crystalline precipitation and drug absorption of two weakly basic model BCS class II drugs, AZD0865 and mebendazole. The crystallization rates were investigated in an in vitro method using simulated gastric and intestinal media, and the result was modeled by using Classical Nucleation Theory (CNT). The effect of varying in vitro parameters (initial drug concentration, rate of mixing gastric and intestinal fluid, stirring and filtration) on the interfacial tension γ, being a key parameter in CNT, was investigated. The initial drug concentration had the most significant effect on γ for both substances tested, although γ is a fundamental parameter independent of concentration according to CNT. In the subsequent in silico prediction of drug absorption, by use of a Compartmental and Transit intestinal model, an empirical approach was used where γ was allowed to vary with simulated small intestinal concentrations. The in silico predictions were compared to published human in vivo plasma drug concentration data for different doses of AZD0865 and dog intestinal drug concentrations, amount precipitated in intestine and plasma concentrations for mebendazole. The results showed that lack of significant crystallization effects on absorption in man of the model drug AZD0865 up to doses of 4 mg/kg could be predicted which was in accordance with in vivo data. Mebendazole intestinal precipitation in canines was also well described by the model, where mean predicted amount precipitated was 136% (range 111-164%) of measured solid amount, and mean predicted intestinal concentration was 94% (range 59-147%) of measured concentration. In conclusion, the in vitro-in silico approach can be used for predictions of absorption effects of crystallization, but the model could benefit from further development work on the theoretical crystallization model and in vitro experimental design.

  4. The adsorption theory of heterogeneous nucleation and its application to ice nucleation

    Science.gov (United States)

    Laaksonen, A.; Malila, J.

    2015-12-01

    In the classical picture of heterogeneous nucleation, spherical liquid caps, characterized by a contact angle, appear on a surface at supersaturated conditions, and if these caps are larger than so called critical size, they grow spontaneously, whereas smaller caps will evaporate. In reality, vapor adsorption takes place already at subsaturated conditions, and depending on the substrate-vapor interactions, the adsorbed layer may consist of clusters centered on so called active sites. The extent of adsorption can be calculated using adsorption isotherms which give the average adsorption layer thickness as a function of vapor saturation ratio, provided that adsorption constants (characterizing the substrate-vapor interactions) are known. We recently proposed a new theory (Laaksonen, J. Phys. Chem. A., 2015) that combines adsorption and heterogeneous nucleation so that it can be used to calculate both the adsorption layer thickness at subsaturated conditions, as well as the onset supersaturation for nucleation. We showed that the new theory performs much better than the classical theory both with flat surfaces, and in the case of water vapor nucleating on SiO2, TiO2, and Ag2O nanoparticles (Laaksonen and Malila, ACPD, in press). Here, we review the new theory, and compare its predictive capability to that of the classical heterogeneous nucleation theory. We furthermore discuss the potential use of the new theory for calculation of condensation and deposition mode ice nucleation in the atmosphere.

  5. Kinetic theory of diffusion-limited nucleation

    Science.gov (United States)

    Philippe, T.; Bonvalet, M.; Blavette, D.

    2016-05-01

    We examine binary nucleation in the size and composition space {R,c} using the formalism of the multivariable theory [N. V. Alekseechkin, J. Chem. Phys. 124, 124512 (2006)]. We show that the variable c drops out of consideration for very large curvature of the new phase Gibbs energy with composition. Consequently nuclei around the critical size have the critical composition, which is derived from the condition of criticality for the canonical variables and is found not to depend on surface tension. In this case, nucleation kinetics can be investigated in the size space only. Using macroscopic kinetics, we determine the general expression for the condensation rate when growth is limited by bulk diffusion, which accounts for both diffusion and capillarity and exhibits a different dependence with the critical size, as compared with the interface-limited regime. This new expression of the condensation rate for bulk diffusion-limited nucleation is the counterpart of the classical interface-limited result. We then extend our analysis to multicomponent solutions.

  6. Theory and Simulation of Nucleation

    NARCIS (Netherlands)

    Kuipers, J.

    2009-01-01

    Nucleation is the process where a stable nucleus spontaneously emerges in a metastable environment. Examples of nucleation abound, for instance the formation of droplets in undercooled gasses and of crystals in undercooled liquids. The process is thermally activated and is key to understanding vario

  7. Classical and quantum effective theories

    CERN Document Server

    Polonyi, Janos

    2014-01-01

    A generalization of the action principle of classical mechanics, motivated by the Closed Time Path (CTP) scheme of quantum field theory, is presented to deal with initial condition problems and dissipative forces. The similarities of the classical and the quantum cases are underlined. In particular, effective interactions which describe classical dissipative forces represent the system-environment entanglement. The relation between the traditional effective theories and their CTP extension is briefly discussed and few qualitative examples are mentioned.

  8. Nucleation theory and growth of nanostructures

    CERN Document Server

    Dubrovskii, Vladimir G

    2013-01-01

    Semiconductor nanostructures such as nanowires are promising building blocks of future nanoelectronic, nanophotonic and nanosensing devices. Their physical properties are primarily determined by the epitaxy process which is rather different from the conventional thin film growth. This book shows how the advanced nucleation theory can be used in modeling of growth properties, morphology and crystal phase of such nanostructures.

  9. Crossover model for the work of critical cluster formation in nucleation theory

    NARCIS (Netherlands)

    Kalikmanov, V.I.

    2004-01-01

    We propose a relation for the work of critical cluster formation in nucleation theory W for the systems with long-range interparticle interactions. The method of bridge functions is used to combine the system behavior at sufficiently small quenches, adequately predicted by the classical nucleation t

  10. Classical theory of algebraic numbers

    CERN Document Server

    Ribenboim, Paulo

    2001-01-01

    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  11. Classical Information Theory

    Science.gov (United States)

    Suhov, Y.

    We begin with the definition of information gained by knowing that an event A has occurred: iota (A) = -log_2 {{P}}(A). (A dual point of view is also useful (although more evasive), where iota (A) is the amount of information needed to specify event A.) Here and below {{P}} stands for the underlying probability distribution. So the rarer an event A, the more information we gain if we know it has occurred. (More broadly, the rarer an event A, the more impact it will have. For example, the unlikely event that occurred in 1938 when fishermen caught a coelacanth - a prehistoric fish believed to be extinct - required a significant change to beliefs about evolution and biology. On the other hand, the likely event of catching a herring or a tuna would hardly imply any change in theories.)

  12. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  13. Systematic coarse-graining in nucleation theory

    International Nuclear Information System (INIS)

    In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 − 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys. 139, 074309 (2013)] conducted in the experimental accessible supersaturation regime for Lennard-Jones argon. We argue that this is due to the truncated state space the literature mostly relies on, where the number of atoms in a nucleus is considered the only relevant order parameter. We here formulate the nonequilibrium statistical mechanics of nucleation in an extended state space, where the internal energy and momentum of the nuclei are additionally incorporated. We show that the extended model explains the lack in agreement between the molecular dynamics simulations by Diemand et al. and the truncated state space. We demonstrate additional benefits of using the extended state space; in particular, the definition of a nucleus temperature arises very naturally and can be shown without further approximation to obey the fluctuation law of McGraw and LaViolette. In addition, we illustrate that our theory conveniently allows to extend existing theories to richer sets of order parameters

  14. Advances In Classical Field Theory

    CERN Document Server

    Yahalom, Asher

    2011-01-01

    Classical field theory is employed by physicists to describe a wide variety of physical phenomena. These include electromagnetism, fluid dynamics, gravitation and quantum mechanics. The central entity of field theory is the field which is usually a multi component function of space and time. Those multi component functions are usually grouped together as vector fields as in the case in electromagnetic theory and fluid dynamics, in other cases they are grouped as tensors as in theories of gravitation and yet in other cases they are grouped as complex functions as in the case of quantum mechanic

  15. A Rationalization of Sympathetic Nucleation-Ledgewise Growth Theory of Bainite Transformation in Fe-C Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the classic diffusion controlled nucleation and growth theory, the sympathetic nucleationledgewise growth mechanism of bainite was studied theoretically for Iow carbon Fe-C alloys. The rationality of the occurrence of sympathetic nucleation on the terraces of ledges competing with lateral ledge growth and other sites nucleation was demonstrated by the present work quantitatively. The calculations indicated that Iow reaction temperatures and high carbon concentrations may favor the sympathetic nucleation, thus accounting for the formation of multilayer structures of bainite.

  16. Systematic Coarse-Graining in Nucleation Theory

    CERN Document Server

    Schweizer, Marco

    2015-01-01

    We present a novel approach to nucleation processes based one the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent lit...

  17. Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation

    Science.gov (United States)

    Doremus, R. H.

    1982-01-01

    It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.

  18. Classical Electron Theory and Conservation Laws

    OpenAIRE

    Kiessling, Michael K. -H.

    1999-01-01

    It is shown that the traditional conservation laws for total charge, energy, linear and angular momentum, hold jointly in classical electron theory if and only if classical electron spin is included as dynamical degree of freedom.

  19. A novel approach to the theory of homogeneous and heterogeneous nucleation.

    Science.gov (United States)

    Ruckenstein, Eli; Berim, Gersh O; Narsimhan, Ganesan

    2015-01-01

    A new approach to the theory of nucleation, formulated relatively recently by Ruckenstein, Narsimhan, and Nowakowski (see Refs. [7-16]) and developed further by Ruckenstein and other colleagues, is presented. In contrast to the classical nucleation theory, which is based on calculating the free energy of formation of a cluster of the new phase as a function of its size on the basis of macroscopic thermodynamics, the proposed theory uses the kinetic theory of fluids to calculate the condensation (W(+)) and dissociation (W(-)) rates on and from the surface of the cluster, respectively. The dissociation rate of a monomer from a cluster is evaluated from the average time spent by a surface monomer in the potential well as obtained from the solution of the Fokker-Planck equation in the phase space of position and momentum for liquid-to-solid transition and the phase space of energy for vapor-to-liquid transition. The condensation rates are calculated using traditional expressions. The knowledge of those two rates allows one to calculate the size of the critical cluster from the equality W(+)=W(-) as well as the rate of nucleation. The developed microscopic approach allows one to avoid the controversial application of classical thermodynamics to the description of nuclei which contain a few molecules. The new theory was applied to a number of cases, such as the liquid-to-solid and vapor-to-liquid phase transitions, binary nucleation, heterogeneous nucleation, nucleation on soluble particles and protein folding. The theory predicts higher nucleation rates at high saturation ratios (small critical clusters) than the classical nucleation theory for both solid-to-liquid as well as vapor-to-liquid transitions. As expected, at low saturation ratios for which the size of the critical cluster is large, the results of the new theory are consistent with those of the classical one. The present approach was combined with the density functional theory to account for the density

  20. Three Approaches to Classical Thermal Field Theory

    OpenAIRE

    Gozzi, E.; Penco, R.

    2010-01-01

    In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the Closed-Time Path (CTP) formalism, the Thermofield Dynamics (TFD) and the Matsubara approach.

  1. Three approaches to classical thermal field theory

    Science.gov (United States)

    Gozzi, E.; Penco, R.

    2011-04-01

    In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the closed-time path (CTP) formalism, the thermofield dynamics (TFD) and the Matsubara approach.

  2. Cloud base levels for Jupiter and Venus and the heteromolecular nucleation theory

    Science.gov (United States)

    Stauffer, D.; Kiang, C. S.

    1974-01-01

    For purified binary gas mixtures like NH3-H2O or HCl-H2O, partial pressures appreciably greater than the two saturation partial pressures are needed to condense the gas mixture into small solution droplets (homogeneous heteromolecular nucleation). Thus without foreign nuclei, clouds are not as easily formed as in the theories of Lewis; the latter should be valid only if large condensation nuclei are available. We calculate here from classical homogeneous heteromolecular nucleation theory the threshold partial pressures necessary to achieve droplet nucleation for the gas mixtures NH3-H2O (Jupiter), HCl-H2O (Venus), H2SO4-H2O (Venus), and C2H5OH-H2O (laboratory).

  3. Classical-field theory of thermal radiation

    CERN Document Server

    Rashkovskiy, Sergey A

    2016-01-01

    In this paper, using the viewpoint that quantum mechanics can be constructed as a classical field theory without any quantization I build a fully classical theory of thermal radiation. Planck's law for the spectral energy density of thermal radiation and the Einstein A-coefficient for spontaneous emission are derived in the framework of classical field theory without using the concept of "photon". It is shown that the spectral energy density of thermal radiation is apparently not a universal function of frequency, as follows from the Planck's law, but depends weakly on the nature of atoms, while Planck's law is valid only as an approximation in the limit of weak excitation of atoms.

  4. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    clusters fluctuates, but the mean temperature remains below the temperature in the supersaturated gas until they reach the critical nucleation size. The critical nuclei have, however, a temperature equal to the supersaturated gas. The kinetics of homogeneous nucleation is not only caused by a grow or......The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  5. Equilibration properties of classical integrable field theories

    Science.gov (United States)

    De Luca, Andrea; Mussardo, Giuseppe

    2016-06-01

    We study the equilibration properties of classical integrable field theories at a finite energy density, with a time evolution that starts from initial conditions far from equilibrium. These classical field theories may be regarded as quantum field theories in the regime of high occupation numbers. This observation permits to recover the classical quantities from the quantum ones by taking a proper \\hslash \\to 0 limit. In particular, the time averages of the classical theories can be expressed in terms of a suitable version of the LeClair-Mussardo formula relative to the generalized Gibbs ensemble. For the purposes of handling time averages, our approach provides a solution of the problem of the infinite gap solutions of the inverse scattering method.

  6. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  7. Classical Electrodynamics in a Unified Theory

    CERN Document Server

    Ghose, Partha

    2016-01-01

    Some consequences of a fully classical unified theory of gravity and electromagnetism are worked out for the electromagnetic sector such as the occurrence of classical light beams with spin and orbital angular momenta that are topologically quantized in units of $q_e q_m=\\sigma$, independent of the beam size. Empirical fits require $\\sigma = \\hbar$. The theory also predicts a generalized coherency matrix whose consequences are testable.

  8. A Classical Introduction to Galois Theory

    CERN Document Server

    Newman, Stephen C

    2012-01-01

    This book provides an introduction to Galois theory and focuses on one central theme - the solvability of polynomials by radicals. Both classical and modern approaches to the subject are described in turn in order to have the former (which is relatively concrete and computational) provide motivation for the latter (which can be quite abstract). The theme of the book is historically the reason that Galois theory was created, and it continues to provide a platform for exploring both classical and modern concepts. This book examines a number of problems arising in the area of classical mathematic

  9. FROM CLASSICAL TO EPISTEMIC GAME THEORY

    OpenAIRE

    ANDRÉS PEREA

    2014-01-01

    In this paper, we give a historical overview of the transition from classical game theory to epistemic game theory. To that purpose we will discuss how important notions such as reasoning about the opponents, belief hierarchies, common belief, and the concept of common belief in rationality arose, and gradually entered the game theoretic picture, thereby giving birth to the field of epistemic game theory. We will also address the question why it took game theory so long before it finally inco...

  10. Generalizability Theory and Classical Test Theory

    Science.gov (United States)

    Brennan, Robert L.

    2011-01-01

    Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over…

  11. Beam structures classical and advanced theories

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco

    2011-01-01

    Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc.  Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for be

  12. Prototype Theory and Classical Theory:An Explanation and Comparison

    Institute of Scientific and Technical Information of China (English)

    刘莹

    2014-01-01

    This paper discusses two different ways to understand categorization, which are classical theory and prototype theory. There is a deep exploration on how to understand categories, and different theoretical backgrounds of the two categorization the⁃ories. Furthermore, it reviews the limitations and advantages of both theories. And the comparison of the theories gives a clearer angle to understand their similarities and differences.

  13. Emergence of classical theories from quantum mechanics

    CERN Document Server

    Hajicek, Petr

    2012-01-01

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is ...

  14. Classical Ergodicity and Modern Portfolio Theory

    Directory of Open Access Journals (Sweden)

    Geoffrey Poitras

    2015-01-01

    Full Text Available What role have theoretical methods initially developed in mathematics and physics played in the progress of financial economics? What is the relationship between financial economics and econophysics? What is the relevance of the “classical ergodicity hypothesis” to modern portfolio theory? This paper addresses these questions by reviewing the etymology and history of the classical ergodicity hypothesis in 19th century statistical mechanics. An explanation of classical ergodicity is provided that establishes a connection to the fundamental empirical problem of using nonexperimental data to verify theoretical propositions in modern portfolio theory. The role of the ergodicity assumption in the ex post/ex ante quandary confronting modern portfolio theory is also examined.

  15. Classical theory of the hydrogen atom

    CERN Document Server

    Rashkovskiy, Sergey

    2016-01-01

    It is shown that all of the basic properties of the hydrogen atom can be consistently described in terms of classical electrodynamics instead of taking the electron to be a particle; we consider an electrically charged classical wave field, an "electron wave", which is held in a limited region of space by the electrostatic field of the proton. It is shown that quantum mechanics must be considered to be not a theory of particles but a classical field theory in the spirit of classical electrodynamics. In this case, we are not faced with difficulties in interpreting the results of the theory. In the framework of classical electrodynamics, all of the well-known regularities of the spontaneous emission of the hydrogen atom are obtained, which is usually derived in the framework of quantum electrodynamics. It is shown that there are no discrete states and discrete energy levels of the atom: the energy of the atom and its states change continuously. An explanation of the conventional corpuscular-statistical interpre...

  16. Classical geometry from the quantum Liouville theory

    CERN Document Server

    Hadasz, L; Piatek, M; Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin

    2005-01-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  17. Classical geometry from the quantum Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl

    2005-09-26

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  18. "Scars" connect classical and quantum theory

    CERN Multimedia

    Monteiro, T

    1990-01-01

    Chaotic systems are unstable and extremely sensitive to initial condititions. So far, scientists have been unable to demonstrate that the same kind of behaviour exists in quantum or microscopic systems. New connections have been discovered though between classical and quantum theory. One is the phenomena of 'scars' which cut through the wave function of a particle (1 page).

  19. The classical theory of fields electromagnetism

    CERN Document Server

    Helrich, Carl S

    2012-01-01

    The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...

  20. Quantum field theory from classical statistics

    CERN Document Server

    Wetterich, C

    2011-01-01

    An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...

  1. Nucleation for Lennard-Jones Fluid by Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    FU Dong

    2005-01-01

    @@ A non-mean field density functional theory is employed to investigate the vapour-liquid nucleation. The excess Helmholtz free energy functional is formulated in terms of a local density approximation for short ranged repulsion and a density-gradient expansion for long-ranged attractions. An analytical expression for the direct correlation function of a Lennard-Jones fluid is utilized to take into account the effect of long-ranged attractions on intermolecular correlations. With the predicted bulk properties and surface tension as input, the nucleation properties including density profile, work of formation and number of particles at the reduced temperatures T* = 0.694 and 0.741 are inuestigated. The obtained number of particles in the critical nucleus agrees well with the simulation data.

  2. A New Theory of Nucleate Pool Boiling in Arbitrary Gravity

    Science.gov (United States)

    Buyevich, Y. A.; Webbon, Bruce W.

    1995-01-01

    Heat transfer rates specific to nucleate pool boiling under various conditions are determined by the dynamics of vapour bubbles that are originated and grow at nucleation sites of a superheated surface. A new dynamic theory of these bubbles has been recently developed on the basis of the thermodynamics of irreversible processes. In contrast to other existing models based on empirically postulated equations for bubble growth and motion, this theory does not contain unwarrantable assumptions, and both the equations are rigorously derived within the framework of a unified approach. The conclusions of the theory are drastically different from those of the conventional models. The bubbles are shown to detach themselves under combined action of buoyancy and a surface tension force that is proven to add to buoyancy in bubble detachment, but not the other way round as is commonly presumed. The theory ensures a sound understanding of a number of so far unexplained phenomena, such as effect caused by gravity level and surface tension on the bubble growth rate and dependence of the bubble characteristics at detachment on the liquid thermophysical parameters and relevant temperature differences. The theoretical predictions are shown to be in a satisfactory qualitative and quantitative agreement with observations. When being applied to heat transfer at nucleate pool boiling, this bubble dynamic theory offers an opportunity to considerably improve the main formulae that are generally used to correlate experimental findings and to design boiling heat removal in various industrial applications. Moreover, the theory makes possible to pose and study a great deal of new problems of essential impact in practice. Two such problems are considered in detail. One problem concerns the development of a principally novel physical model for the first crisis of boiling. This model allows for evaluating critical boiling heat fluxes under various conditions, and in particular at different

  3. Nucleation of vacuum bubbles in Brans-Dicke type theory

    CERN Document Server

    Kim, Hongsu; Lee, Wonwoo; Lee, Young Jae; Yeom, Dong-han

    2010-01-01

    In this paper, we study nucleation of vacuum bubbles in the Brans-Dicke type theory of gravity. In the Euclidean signatures, we calculate field combinations of vacuum bubbles as solutions of Einstein and field equations as well as their probabilities by integrating the Euclidean action. We illustrate three possible ways to obtain vacuum bubbles: true vacuum bubbles for $\\omega$ > -3/2, false vacuum bubbles for $\\omega$ -3/2 when the vacuum energy of the false vacuum in the potential of the Einstein frame is less than that of the true vacuum. After the bubble is nucleated at the t = 0 surface, we can smoothly connect and match the field combinations to some solutions of the Lorentzian signatures and consistently continue their subsequent evolutions. Therefore, we conclude that, in general scalar-tensor theories or Brans-Dicke type theories, which include some models of string theory, vacuum bubbles are allowed not only in the form of true vacuum bubbles but also false vacuum bubbles, as long as a special cond...

  4. Classical Loop Actions of Gauge Theories

    CERN Document Server

    Armand-Ugon, D; Griego, J R; Setaro, L; Armand-Ugon, Daniel; Gambini, Rodolfo; Griego, Jorge; Setaro, Leonardo

    1994-01-01

    Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.

  5. Structuring effects in binary nucleation: Molecular dynamics simulatons and coarse-grained nucleation theory

    NARCIS (Netherlands)

    Braun, S.; Kraska, T.; Kalikmanov, V.I.

    2013-01-01

    Binary clusters formed by vapor-liquid nucleation are frequently nonhomogeneous objects in which components are not well mixed. The structure of a cluster plays an important role in nucleation and cluster growth. We demonstrate structuring effects by studying high-pressure nucleation and cluster gro

  6. Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations.

    Science.gov (United States)

    Wang, B T; Shao, J L; Zhang, G C; Li, W D; Zhang, P

    2010-11-01

    By classical molecular dynamics simulations employing an embedded atom method potential, we have simulated the bcc to hcp/fcc structural transition in single-crystal iron under uniform compression. Results showed that the transition pressure is different from uniaxial compression and shock loading. The transformation occurs on a picosecond timescale and the transition time decreases along with the increase of pressure. The nucleation and growth of the hcp and fcc phases under constant pressure and temperature are analyzed in detail. The nucleation planes, all belonging to the {110}(bcc) family and parallel to the three compression directions [100], [010], and [001], have been observed. About 20% bcc atoms have transformed to fcc phase under pressure just over the critical point, and under higher pressure the fraction of the fcc phase increases steadily to exceed that of the hcp phase. We have investigated the transition mechanism of iron from initial bcc to hcp/fcc and found that the transition mainly consists of compression, rotation, and shuffle.

  7. Differential formalism aspects of the gauge classical theories

    International Nuclear Information System (INIS)

    The classical aspects of the gauge theories are shown using differential geometry as fundamental tool. Somme comments are done about Maxwell Electro-dynamics, classical Yang-Mills and gravitation theories. (L.C.)

  8. Polynomial Invariant Theory of the Classical Groups

    CERN Document Server

    Westrich, Quinton

    2011-01-01

    The goal of invariant theory is to find all the generators for the algebra of representations of a group that leave the group invariant. Such generators will be called \\emph{basic invariants}. In particular, we set out to find the set of basic invariants for the classical groups GL$(V)$, O$(n)$, and Sp$(n)$ for $n$ even. In the first half of the paper we set up relevant definitions and theorems for our search for the set of basic invariants, starting with linear algebraic groups and then discussing associative algebras. We then state and prove a monumental theorem that will allow us to proceed with hope: it says that the set of basic invariants is finite if $G$ is reductive. Finally we state without proof the First Fundamental Theorems, which aim to list explicitly the relevant sets of basic invariants, for the classical groups above. We end by commenting on some applications of invariant theory, on the history of its development, and stating a useful theorem in the appendix whose proof lies beyond the scope ...

  9. Robust topological degeneracy of classical theories

    Science.gov (United States)

    Vaezi, Mohammad-Sadegh; Ortiz, Gerardo; Nussinov, Zohar

    2016-05-01

    We challenge the hypothesis that the ground states of a physical system whose degeneracy depends on topology must necessarily realize topological quantum order and display nonlocal entanglement. To this end, we introduce and study a classical rendition of the Toric Code model embedded on Riemann surfaces of different genus numbers. We find that the minimal ground state degeneracy (and those of all levels) depends on the topology of the embedding surface alone. As the ground states of this classical system may be distinguished by local measurements, a characteristic of Landau orders, this example illustrates that topological degeneracy is not a sufficient condition for topological quantum order. This conclusion is generic and, as shown, it applies to many other models. We also demonstrate that certain lattice realizations of these models, and other theories, display a ground state entropy (and those of all levels) that is "holographic", i.e., extensive in the system boundary. We find that clock and U (1 ) gauge theories display topological (in addition to gauge) degeneracies.

  10. Pólya distribution and its asymptotics in nucleation theory

    Science.gov (United States)

    Dubrovskii, V. G.

    2014-02-01

    A model of condensation-decay rate constants that are linear with respect to the number of monomers in the nucleus is considered. In a particular case of stable growth, this model leads to an exact solution of discrete kinetic equations of the theory of heterogeneous nucleation in the form of the Pólya distribution function. An asymptotic solution in the region of large nucleus sizes that satisfies the normalization condition and provides correct mean nucleus size has been found. It is shown that, in terms of the logarithmic invariant size, the obtained distribution has a universal time-independent form. The obtained solution, being more general than the double-exponent distribution used previously, describes both Gaussian and asymmetric distributions depending on the rate constant of condensation on a bare core. The obtained results are useful for modeling processes in some systems, in particular, the growth of linear chains, two-dimensional clusters, and filamentary nanocrystals.

  11. Extending classical molecular theory with polarization.

    Science.gov (United States)

    Keyes, Tom; Napoleon, Raeanne L

    2011-01-27

    A classical, polarizable, electrostatic theory of short-ranged atom-atom interactions, incorporating the smeared nature of atomic partial charges, is presented. Detailed models are constructed for CO monomer and for CO interacting with an iron atom, as a first step toward heme proteins. A good representation is obtained of the bond-length-dependent dipole of CO monomer from fitting at the equilibrium distance only. Essential features of the binding of CO to myoglobin (Mb) and model heme compounds, including the binding energy, the position of the minimum in the Fe-C potential, the Fe-C frequency, the bending energy, the linear geometry of FeCO, and the increase of the Stark tuning rate and IR intensity, are obtained, suggesting that a substantial part of the Fe-CO interaction consists of a classical, noncovalent, "electrostatic bond ". The binding energy is primarily polarization energy, and the polarization energy of an OH pair in water is shown to be comparable to the experimental hydrogen bond energy.

  12. An approximate classical unimolecular reaction rate theory

    Science.gov (United States)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  13. Binary nucleation beyond capillarity approximation

    NARCIS (Netherlands)

    Kalikmanov, V.I.

    2010-01-01

    Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption

  14. Hilbert space theory of classical electrodynamics

    Indian Academy of Sciences (India)

    RAJAGOPAL A K; GHOSE PARTHA

    2016-06-01

    Classical electrodynamics is reformulated in terms of wave functions in the classical phase space of electrodynamics, following the Koopman–von Neumann–Sudarshan prescription for classical mechanics on Hilbert spaces sans the superselection rule which prohibits interference effects in classical mechanics. This is accomplished by transforming from a set of commutingobservables in one Hilbert space to another set of commuting observables in a larger Hilbert space. This is necessary to clarify the theoretical basis of the much recent work on quantum-like features exhibited by classical optics. Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.

  15. Characterizing protein crystal nucleation

    Science.gov (United States)

    Akella, Sathish V.

    We developed an experimental microfluidic based technique to measure the nucleation rates and successfully applied the technique to measure nucleation rates of lysozyme crystals. The technique involves counting the number of samples which do not have crystals as a function of time. Under the assumption that nucleation is a Poisson process, the fraction of samples with no crystals decays exponentially with the decay constant proportional to nucleation rate and volume of the sample. Since nucleation is a random and rare event, one needs to perform measurements on large number of samples to obtain good statistics. Microfluidics offers the solution of producing large number of samples at minimal material consumption. Hence, we developed a microfluidic method and measured nucleation rates of lysozyme crystals in supersaturated protein drops, each with volume of ˜ 1 nL. Classical Nucleation Theory (CNT) describes the kinetics of nucleation and predicts the functional form of nucleation rate in terms of the thermodynamic quantities involved, such as supersaturation, temperature, etc. We analyzed the measured nucleation rates in the context of CNT and obtained the activation energy and the kinetic pre-factor characterizing the nucleation process. One conclusion is that heterogeneous nucleation dominates crystallization. We report preliminary studies on selective enhancement of nucleation in one of the crystal polymorprhs of lysozyme (spherulite) using amorphous mesoporous bioactive gel-glass te{naomi06, naomi08}, CaO.P 2O5.SiO2 (known as bio-glass) with 2-10 nm pore-size diameter distribution. The pores act as heterogeneous nucleation centers and claimed to enhance the nucleation rates by molecular confinement. The measured kinetic profiles of crystal fraction of spherulites indicate that the crystallization of spherulites may be proceeding via secondary nucleation pathways.

  16. The Possibility of Reconciling Quantum Mechanics with Classical Probability Theory

    OpenAIRE

    Slavnov, D. A.

    2007-01-01

    We describe a scheme for constructing quantum mechanics in which a quantum system is considered as a collection of open classical subsystems. This allows using the formal classical logic and classical probability theory in quantum mechanics. Our approach nevertheless allows completely reproducing the standard mathematical formalism of quantum mechanics and identifying its applicability limits. We especially attend to the quantum state reduction problem.

  17. Introducing quantum effects in classical theories

    CERN Document Server

    Fabris, J C; Rodrigues, D C; Daouda, M H

    2015-01-01

    In this paper, we explore two different ways of implementing quantum effects in a classical structure. The first one is through an external field. The other one is modifying the classical conservation laws. In both cases, the consequences for the description of the evolution of the universe are discussed.

  18. Gauge-fields and integrated quantum-classical theory

    International Nuclear Information System (INIS)

    Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs

  19. Kinetics of spontaneous filament nucleation via oligomers: insights from theory and simulation

    CERN Document Server

    Šarić, Anđela; Zaccone, Alessio; Knowles, Tuomas P J; Frenkel, Daan

    2016-01-01

    Nucleation processes are at the heart of a large number of phenomena, from cloud formation to protein crystallization. A recently emerging area where nucleation is highly relevant is the initiation of filamentous protein self-assembly, a process that has broad implications from medicine to nanotechnology. As such, spontaneous nucleation of protein fibrils has received much attention in recent years with many theoretical and experimental studies focusing on the underlying physical principles. In this paper we make a step forward in this direction and explore the early time behaviour of filamentous protein growth in the context of nucleation theory. We first provide an overview of the thermodynamics and kinetics of spontaneous nucleation in protein filaments in the presence of one relevant degree of freedom, namely the cluster size. In this case, we review how key kinetic observables, such as the reaction order of spontaneous nucleation, are directly related to the physical size of the critical nucleus. We then...

  20. Primary nucleation of lithium carbonate

    Institute of Scientific and Technical Information of China (English)

    Yuzhu SUN; Xingfu SONG; Jin WANG; Yan LUO; Jianguo YU

    2009-01-01

    A set of laser apparatus was used to explore the induction period and the primary nucleation of lithium carbonate. Results show that the induction period increases with the decrease of supersaturation, temperature and stirring speed. Through the classical theory of primary nucleation, many important properties involved in primary nucleation under different conditions were obtained quantitatively, including the interfacial tension between solid and liquid, contact angle, critical nucleus size, critical nuleation free energy etc.

  1. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    International Nuclear Information System (INIS)

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation

  2. On the classical theory of molecular optical activity

    CERN Document Server

    Frolov, Alexei M

    2010-01-01

    The basic principles of classical and semi-classical theories of molecular optical activity are discussed. These theories are valid for dilute solutions of optically active organic molecules. It is shown that all phenomena known in the classical theory of molecular optical activity can be described with the use of one pseudo-scalar which is a uniform function of the incident light frequency $\\omega$. The relation between optical rotation and circular dichroism is derived from the basic Kramers-Kronig relations. In our discussion of the general theory of molecular optical activity we introduce the tensor of molecular optical activity. It is shown that to evaluate the optical rotation and circular dichroism at arbitrary frequencies one needs to know only nine (3 + 6) molecular tensors. The quantum (or semi-classical) theory of molecular optical activity is also briefly discussed. We also raise the possibility of measuring the optical rotation and circular dichroism at wavelengths which correspond to the vacuum ...

  3. HCI Theory Classical, Modern, and Contemporary

    CERN Document Server

    Rogers, Yvonne

    2012-01-01

    Theory is the bedrock of many sciences, providing a rigorous method toadvance knowledge through testing and falsifying hypotheses aboutobservable phenomena. To begin with, the nascent field of HCI followedsuit, borrowing theories from cognitive science to test theories aboutuser performance at the interface.But HCI has emerged as an eclectic interdiscipline rather than a welldefinedscience. It now covers all aspects of human life, from birth tobereavement, through all manner of computing, from device ecologiesto nanotechnology. It comes as no surprise that the role of theory in HCIhas also gre

  4. Dense matter theory a simple classical approach

    CERN Document Server

    Savic, P

    1998-01-01

    In the sixties,the first author and R.Kasanin have started developing a mean field theory of dense matter.This paper presents a short review of the basic ideas of the theory,and discusses some examples of its applications,which range from DAC experiments to modelling of planetary interiors.

  5. Functional Approach to Classical Yang-Mills Theories

    CERN Document Server

    Carta, P

    2002-01-01

    Sometime ago it was shown that the operatorial approach to classical mechanics, pioneered in the 30's by Koopman and von Neumann, can have a functional version. In this talk we will extend this functional approach to the case of classical field theories and in particular to the Yang-Mills ones. We shall show that the issues of gauge-fixing and Faddeev-Popov determinant arise also in this classical formalism.

  6. Classical conformality in the Standard Model from Coleman's theory

    CERN Document Server

    Kawana, Kiyoharu

    2016-01-01

    The classical conformality is one of the possible candidates for explaining the gauge hierarchy of the Standard Model. We show that it is naturally obtained from the Coleman's theory on baby universe.

  7. Experimental assessment of unvalidated assumptions in classical plasticity theory.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Rebecca Moss (University of Utah, Salt Lake City, UT); Burghardt, Jeffrey A. (University of Utah, Salt Lake City, UT); Bauer, Stephen J.; Bronowski, David R.

    2009-01-01

    This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data, thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.

  8. Conformal Invariance in Classical Field Theory

    OpenAIRE

    Grigore, D. R.

    1993-01-01

    A geometric generalization of first-order Lagrangian formalism is used to analyse a conformal field theory for an arbitrary primary field. We require that global conformal transformations are Noetherian symmetries and we prove that the action functional can be taken strictly invariant with respect to these transformations. In other words, there does not exists a "Chern-Simons" type Lagrangian for a conformally invariant Lagrangian theory.

  9. Bleb Nucleation through Membrane Peeling

    CERN Document Server

    Alert, Ricard

    2016-01-01

    We study the nucleation of blebs, i.e., protrusions arising from a local detachment of the membrane from the cortex of a cell. Based on a simple model of elastic linkers with force-dependent kinetics, we show that bleb nucleation is governed by membrane peeling. By this mechanism, the growth or shrinkage of a detached membrane patch is completely determined by the linker kinetics, regardless of the energetic cost of the detachment. We predict the critical nucleation radius for membrane peeling and the corresponding effective energy barrier. These may be typically smaller than those predicted by classical nucleation theory, implying a much faster nucleation. We also perform simulations of a continuum stochastic model of membrane-cortex adhesion to obtain the statistics of bleb nucleation times as a function of the stress on the membrane. The determinant role of membrane peeling changes our understanding of bleb nucleation and opens new directions in the study of blebs.

  10. Deliquescence and efflorescence of small particles: Unifying perspectives from nucleation theory

    Energy Technology Data Exchange (ETDEWEB)

    McGraw,R.; Lewis, E.

    2009-02-23

    We examine size dependent deliquescence/efflorescence phase transformation for particles down to several nanometers in size. A thin layer criterion (TLC) is introduced to define a deliquescence relative humidity (DRH) for small particles. The usual bulk deliquescence conditions are recovered in the limit of large dry particle size. Nano-size particles are shown to deliquesce to metastable states via a nucleation process at relative humidity just below the DRH. The nucleation barrier is located at a critical solution layer thickness and vanishes at the DRH defined by the TLC. Methods from nucleation theory form the basis for the analysis and yield new insights into the theory, facilitate the interpretation of measurements, and point to unification of deliquescence and efflorescence processes for particles in the nano regime. Methods include thermodynamic area constructions, Legendre transforms relating the binary free-energy surfaces for deliquescence and efflorescence processes, and application of nucleation theorems.

  11. Reexamination of Correlations for Nucleate Site Distribution on Boiling Surface by Fractal Theory

    Institute of Scientific and Technical Information of China (English)

    YangChunxin

    1997-01-01

    Nucleate site distribution plays an essential role in nucleate boiling process.In this paper,it is pointed out that the size and spatial distributioin density of nucleate sites presented on real boiling surface can be described by the normalized fractal distribution function,and the physical meaning of parameters involved in some experimental correlations proposed by early investigations are identified according to fractal distribution function.It is further suggested that the surface micro geometry characteristics such as the shape of cavities should be described and analyzed qualitatively by using fractal theory.

  12. From Classical to Quantum Shannon Theory

    CERN Document Server

    Wilde, Mark M

    2011-01-01

    The aim of this book is to develop "from the ground up" all of the major, exciting, pre- and post-millenium developments in the general area of study known as quantum Shannon theory. As such, we spend a significant amount of time on quantum mechanics for quantum information theory (Part II), we give a careful study of the important unit protocols of teleportation, super-dense coding, and entanglement distribution (Part III), and we develop many of the tools necessary for understanding information transmission or compression (Part IV). Parts V and VI are the culmination of this book, where all of the tools developed come into play for understanding many of the important results in quantum Shannon theory.

  13. [The establishment, contributions, and final results of classical medical theories].

    Science.gov (United States)

    Wang, Tai

    2013-01-01

    In countries with ancient civilization of both Eastern world and Western world, after the accumulation of clinical experiences of "empirical medicine" to a sufficient amount; in accordance of their primitive philosophical thoughts, classical medical theories were established to play an important role in guiding the clinical practice of "empirical medicine". Because of the similarity of philosophical thoughts all over the ancient world, their medical theories were also very similar to each other. After the scientific evaluation and improvement, Greek classical medical theories were inherited, refined or abandoned, and then eventually finished their historical mission. Chinese classical medical theories also need the similar scientific identification and improvement for flowing into the authorized main stream of modern medical theory systems to continuously apply their guiding roles in clinical practice. Scholars would better consider the developmental principles of cultures and sciences with a historical viewpoint and an open mind to avoid making mistakes from haughty and prejudice. PMID:23596779

  14. Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation

    Science.gov (United States)

    Barahona, Donifan

    2013-01-01

    In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.

  15. Classical Coupled Mode Theory of Optomechanical Crystals

    CERN Document Server

    Khorasani, Sina

    2016-01-01

    Acousto-optic interaction in optomechanical crystals allows unidirectional control of elastic waves over optical waves. However, as a result of this nonlinear interaction, infinitely many optical modes are born. This article presents an exact formulaion of coupled mode theory for interaction between elastic Bloch wave waves and photonic Bloch waves moving in a phonotonic waveguide. In general, an optical wavefront is strongly diffracted by an elastic wave in frequency and wavevector, and thus infinite modes with different frequencies and wavevectors appear. We discuss resonance and mode conversion conditions, and present a rigorous method to derive coupling rates and mode profiles. We also find a conservation law which rules over total optical power from interacting individual modes. Modifications of the theory to phonotonic cavities are also discussed. We present application examples including switch, frequency shifter, and reflector.

  16. Introduction to Classical Density Functional Theory by Computational Experiment

    CERN Document Server

    Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2014-01-01

    We present here an introductory practical course to classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely largely on nonintuitive abstract concepts and applied mathematics. They are nevertheless a powerful tool and an active field of research in physics and chemistry that led to the 1998 Nobel prize in chemistry. We here illustrate the DFT in its most mathematically simple and yet physically relevant form: the classical density functional theory of an ideal fluid in an external field, as applied to the prediction of the structure of liquid neon at the molecular scale. This introductory course is built around the production of a cDFT code written by students using the Mathematica language. In this way, they are brought to deal with (i) the cDFT theory itself, (ii) some basic concepts around the statistical mechanics of simple fluids, (iii) the underlying mathematical and numerical problem of functional minimization, and (iv) a functional programming languag...

  17. Evolving Planck Mass in Classically Scale-Invariant Theories

    CERN Document Server

    Kannike, K; Spethmann, C; Veermäe, H

    2016-01-01

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg po- tential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories....

  18. Lectures on classical and quantum theory of fields

    Energy Technology Data Exchange (ETDEWEB)

    Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics

    2010-07-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)

  19. Lectures on Classical and Quantum Theory of Fields

    CERN Document Server

    Arodź, Henryk

    2010-01-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course.

  20. Lectures on classical and quantum theory of fields

    International Nuclear Information System (INIS)

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)

  1. Quantum Mind from a Classical Field Theory of the Brain

    OpenAIRE

    Zizzi, Paola

    2011-01-01

    We suggest that, with regard to a theory of quantum mind, brain processes can be described by a classical, dissipative, non-abelian gauge theory. In fact, such a theory has a hidden quantum nature due to its non-abelian character, which is revealed through dissipation, when the theory reduces to a quantum vacuum, where temperatures are of the order of absolute zero, and coherence of quantum states is preserved. We consider in particular the case of pure SU(2) gauge theory with a special anzat...

  2. A classical theory of continuous spin and hidden gauge invariance

    International Nuclear Information System (INIS)

    We present a classical higher derivative point particle theory whose quantization gives Wigner's continuous spin representation of the Poincare group. Although the theory is not reparameterization invariant in the usual sense, it does possess a hidden gauge invariance that provides a non-local representation of the reparameterization group. The Hamiltonian of the theory does not vanish and its value is the continuous spin parameter. The theory presented here represents the simplest example of a wide class of higher derivative theories possessing a hidden gauge invariance

  3. A classical theory of continuous spin and hidden gauge invariance

    Energy Technology Data Exchange (ETDEWEB)

    Zoller, D.

    1991-01-01

    We present a classical higher derivative point particle theory whose quantization gives Wigner's continuous spin representation of the Poincare group. Although the theory is not reparameterization invariant in the usual sense, it does possess a hidden gauge invariance that provides a non-local representation of the reparameterization group. The Hamiltonian of the theory does not vanish and its value is the continuous spin parameter. The theory presented here represents the simplest example of a wide class of higher derivative theories possessing a hidden gauge invariance.

  4. A classical theory of continuous spin and hidden gauge invariance

    Energy Technology Data Exchange (ETDEWEB)

    Zoller, D.

    1991-12-31

    We present a classical higher derivative point particle theory whose quantization gives Wigner`s continuous spin representation of the Poincare group. Although the theory is not reparameterization invariant in the usual sense, it does possess a hidden gauge invariance that provides a non-local representation of the reparameterization group. The Hamiltonian of the theory does not vanish and its value is the continuous spin parameter. The theory presented here represents the simplest example of a wide class of higher derivative theories possessing a hidden gauge invariance.

  5. Quantum fermions and quantum field theory from classical statistics

    OpenAIRE

    Wetterich, C.

    2012-01-01

    An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schr\\"odinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.

  6. Plasmon mass scale in classical nonequilibrium gauge theory

    CERN Document Server

    Lappi, Tuomas

    2016-01-01

    Classical lattice Yang-Mills calculations provide a good way to understand different nonequilibrium phenomena in nonperturbatively overoccupied systems. Above the Debye scale the classical theory can be matched smoothly to kinetic theory. The aim of this work is to study the limits of this quasiparticle picture by determining the plasmon mass in classical real time Yang-Mills theory on a lattice in 3 spatial dimensions. We compare three methods to determine the plasmon mass: a hard thermal loop expression in terms of the particle distribution, an effective dispersion relation constructed from fields and their time derivatives, and by measuring oscillations between electric and magnetic field modes after artificially introducing a homogeneous color electric field. We find that a version of the dispersion relation that uses electric fields and their time derivatives agrees with the other methods within 50%.

  7. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM{sup ®} CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium

  8. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    International Nuclear Information System (INIS)

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM® CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium nucleation

  9. Non-classical Measurement Theory: a Framework for Behavioral Sciences

    CERN Document Server

    Danilov, V I

    2006-01-01

    Instances of non-commutativity are pervasive in human behavior. In this paper, we suggest that psychological properties such as attitudes, values, preferences and beliefs may be suitably described in terms of the mathematical formalism of quantum mechanics. We expose the foundations of non-classical measurement theory building on a simple notion of orthospace and ortholattice (logic). Two axioms are formulated and the characteristic state-property duality is derived. A last axiom concerned with the impact of measurements on the state takes us with a leap toward the Hilbert space model of Quantum Mechanics. An application to behavioral sciences is proposed. First, we suggest an interpretation of the axioms and basic properties for human behavior. Then we explore an application to decision theory in an example of preference reversal. We conclude by formulating basic ingredients of a theory of actualized preferences based in non-classical measurement theory.

  10. Classical Electromagnetic Field Theory in the Presence of Magnetic Sources

    Institute of Scientific and Technical Information of China (English)

    LI Kang(李康); CHEN Wen-Jun(陈文俊); NAON Carlos M.

    2003-01-01

    Using two new well-defined four-dimensional potential vectors, we formulate the classical Maxwell field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources.We set up a consistent Lagrangian for the theory. Then from the action principle we obtain both Maxwell's equation and the equation of motion of a dyon moving in the electromagnetic field.

  11. Classical electromagnetic field theory in the presence of magnetic sources

    CERN Document Server

    Chen, W J; Naón, C M; Chen, Wen-Jun; Li, Kang

    2001-01-01

    Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.

  12. Representational Realism, Closed Theories and the Quantum to Classical Limit

    CERN Document Server

    de Ronde, Christian

    2016-01-01

    In this paper we discuss the representational realist stance as a pluralist ontic approach to inter-theoretic relationships. Our stance stresses the fact that physical theories require the necessary consideration of a conceptual level of discourse which determines and configures the specific field of phenomena discussed by each particular theory. We will criticize the orthodox line of research which has grounded the analysis about QM in two (Bohrian) metaphysical presuppositions -accepted in the present as dogmas that all interpretations must follow. We will also examine how the orthodox project of "bridging the gap" between the quantum and the classical domains has constrained the possibilities of research, producing only a limited set of interpretational problems which only focus in the justification of "classical reality" and exclude the possibility of analyzing the possibilities of non-classical conceptual representations of QM. The representational realist stance introduces two new problems, namely, the ...

  13. Aesthetic Creativity: Insights from Classical Literary Theory on Creative Learning

    Science.gov (United States)

    Hellstrom, Tomas Georg

    2011-01-01

    This paper addresses the subject of textual creativity by drawing on work done in classical literary theory and criticism, specifically new criticism, structuralism and early poststructuralism. The question of how readers and writers engage creatively with the text is closely related to educational concerns, though they are often thought of as…

  14. On the variational formulation of classical Abelian gauge field theories

    International Nuclear Information System (INIS)

    It is shown how one can formulate an action principle for classical Abelian gauge theories not by means of gauge potentials and currents but in terms of the gauge invariant field strengths and gauge variant stream potentias. The discussion is on a general formal level in n=s+t space-time dimensions and uses, for brevity, the language of differential forms

  15. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead-lithium with the Self-consistent nucleation theory and surface tension corrections

    CERN Document Server

    Fradera, Jorge

    2013-01-01

    Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFoam(r) CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a cr...

  16. Droplet and bubble nucleation modeled by density gradient theory – cubic equation of state versus saft model

    Directory of Open Access Journals (Sweden)

    Hrubý Jan

    2012-04-01

    Full Text Available The study presents some preliminary results of the density gradient theory (GT combined with two different equations of state (EoS: the classical cubic equation by van der Waals and a recent approach based on the statistical associating fluid theory (SAFT, namely its perturbed-chain (PC modification. The results showed that the cubic EoS predicted for a given surface tension the density profile with a noticeable defect. Bulk densities predicted by the cubic EoS differed as much as by 100 % from the reference data. On the other hand, the PC-SAFT EoS provided accurate results for density profile and both bulk densities in the large range of temperatures. It has been shown that PC-SAFT is a promising tool for accurate modeling of nucleation using the GT. Besides the basic case of a planar phase interface, the spherical interface was analyzed to model a critical cluster occurring either for nucleation of droplets (condensation or bubbles (boiling, cavitation. However, the general solution for the spherical interface will require some more attention due to its numerical difficulty.

  17. Theory of Optimal Currency Zones: from Classics until Today

    Directory of Open Access Journals (Sweden)

    Pinchuk Anastasiya K.

    2013-12-01

    Full Text Available The article analyses evolution of the theory of optimal currency zones (OCZ, starting from its classical provisions until moder developments. Based on the critical analysis of classical criteria of OCZ, the article develops a scheme of selection of the currency mode by the Robert Mundell theory. It considers achievements of the alternative OCZ theory, the main provisions of which are shown schematically in the form of illustrations of evolution of the theory of optimal currency zones. In the result of analysis of classical criteria of optimal currency zones and generalisation of developments of the new OCZ theory, the article develops a universal algorithm of identification of optimal conditions for an efficient currency zone. Using this algorithm allows identification of a system of quantitative indicators of expediency of regional joining the OCZ, on the basis of which one can build an economic model of an optimal currency zone, which reflects the degree of readiness of any country to join or develop the OCZ. Development of this model is necessary for many countries that face the need to select the currency integration. This model is of special importance for Ukraine, for which it is important to select the course of external integration, since various directions of foreign policy significantly influence efficiency of the domestic economic policy in the country.

  18. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium

    Science.gov (United States)

    Chayen, Naomi E.; Saridakis, Emmanuel; Sear, Richard P.

    2006-01-01

    The determination of high-resolution structures of proteins requires crystals of suitable quality. Because of the new impetus given to structural biology by structural genomics/proteomics, the problem of crystallizing proteins is becoming increasingly acute. There is therefore an urgent requirement for the development of new efficient methods to aid crystal growth. Nucleation is the crucial step that determines the entire crystallization process. Hence, the holy grail is to design a "universal nucleant," a substrate that induces the nucleation of crystals of any protein. We report a theory for nucleation on disordered porous media and its experimental testing and validation using a mesoporous bioactive gel-glass. This material induced the crystallization of the largest number of proteins ever crystallized using a single nucleant. The combination of the model and the experimental results opens up the scope for the rational design of nucleants, leading to alternative means of controlling crystallization. protein crystallization | phase diagram | microbatch | vapor diffusion

  19. THE NEW CLASSICAL THEORY AND THE REAL BUSINESS CYCLE MODEL

    Directory of Open Access Journals (Sweden)

    Oana Simona HUDEA (CARAMAN

    2014-11-01

    Full Text Available The present paper aims at describing some key elements of the new classical theory-related model, namely the Real Business Cycle, mainly describing the economy from the perspective of a perfectly competitive market, characterised by price, wage and interest rate flexibility. The rendered impulse-response functions, that help us in revealing the capacity of the model variables to return to their steady state under the impact of a structural shock, be it technology or monetary policy oriented, give points to the neutrality of the monetary entity decisions, therefore confirming the well-known classical dichotomy existing between the nominal and the real factors of the economy.

  20. Reply to "Comment on 'Simple improvements to classical bubble nucleation models' ".

    Science.gov (United States)

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2016-08-01

    We reply to the Comment by Schmelzer and Baidakov [Phys. Rev. E 94, 026801 (2016)].10.1103/PhysRevE.94.026801 They suggest that a more modern approach than the classic description by Tolman is necessary to model the surface tension of curved interfaces. Therefore we now consider the higher-order Helfrich correction, rather than the simpler first-order Tolman correction. Using a recent parametrization of the Helfrich correction provided by Wilhelmsen et al. [J. Chem. Phys. 142, 064706 (2015)]JCPSA60021-960610.1063/1.4907588, we test this description against measurements from our simulations, and find an agreement stronger than what the pure Tolman description offers. Our analyses suggest a necessary correction of order higher than the second for small bubbles with radius ≲1 nm. In addition, we respond to other minor criticism about our results.

  1. Classic Grounded Theory to Analyse Secondary Data: Reality and Reflections

    Directory of Open Access Journals (Sweden)

    Lorraine Andrews

    2012-06-01

    Full Text Available This paper draws on the experiences of two researchers and discusses how they conducted a secondary data analysis using classic grounded theory. The aim of the primary study was to explore first-time parents’ postnatal educational needs. A subset of the data from the primary study (eight transcripts from interviews with fathers was used for the secondary data analysis. The objectives of the secondary data analysis were to identify the challenges of using classic grounded theory with secondary data and to explore whether the re-analysis of primary data using a different methodology would yield a different outcome. Through the process of re-analysis a tentative theory emerged on ‘developing competency as a father’. Challenges encountered during this re-analysis included the small dataset, the pre-framed data, and limited ability for theoretical sampling. This re-analysis proved to be a very useful learning tool for author 1(LA, who was a novice with classic grounded theory.

  2. Quantum Mind from a Classical Field Theory of the Brain

    CERN Document Server

    Zizzi, Paola

    2011-01-01

    We suggest that, with regard to a theory of quantum mind, brain processes can be described by a classical, dissipative, non-abelian gauge theory. In fact, such a theory has a hidden quantum nature due to its non-abelian character, which is revealed through dissipation, when the theory reduces to a quantum vacuum, where temperatures are of the order of absolute zero, and coherence of quantum states is preserved. We consider in particular the case of pure SU(2) gauge theory with a special anzatz for the gauge field, which breaks Lorentz invariance. In the ansatz, a contraction mapping plays the role of dissipation. In the limit of maximal dissipation, which corresponds to the attractive fixed point of the contraction mapping, the gauge fields reduce, up to constant factors, to the Pauli quantum gates for one-qubit states. Then tubuline-qubits can be processed in the quantum vacuum of the classical field theory of the brain, where decoherence is avoided due to the extremely low temperature. Finally, we interpret...

  3. Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation

    CERN Document Server

    Scheck, Florian

    2012-01-01

    The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...

  4. Classical field theories from Hamiltonian constraint: Canonical equations of motion and local Hamilton-Jacobi theory

    Science.gov (United States)

    Zatloukal, Václav

    2016-04-01

    Classical field theory is considered as a theory of unparametrized surfaces embedded in a configuration space, which accommodates, in a symmetric way, spacetime positions and field values. Dynamics is defined by a (Hamiltonian) constraint between multivector-valued generalized momenta, and points in the configuration space. Starting from a variational principle, we derive local equations of motion, that is, differential equations that determine classical surfaces and momenta. A local Hamilton-Jacobi equation applicable in the field theory then follows readily. The general method is illustrated with three examples: non-relativistic Hamiltonian mechanics, De Donder-Weyl scalar field theory, and string theory.

  5. Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits

    CERN Document Server

    Hanany, Amihay

    2016-01-01

    We approach the topic of Classical group nilpotent orbits from the perspective of their moduli spaces, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKahler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for ...

  6. Quantum to classical transition in quantum field theory

    CERN Document Server

    Lombardo, F C

    1998-01-01

    We study the quatum to classical transition process in the context of quantum field theory. Extending the influence functional formalism of Feynman and Vernon, we study the decoherence process for self-interacting quantum fields in flat space. We also use this formalism for arbitrary geometries to analyze the quantum to classical transition in quantum gravity. After summarizing the main results known for the quantum Brownian motion, we consider a self-interacting field theory in Minkowski spacetime. We compute a coarse grained effective action by integrating out the field modes with wavelength shorter than a critical value. From this effective action we obtain the evolution equation for the reduced density matrix (master equation). We compute the diffusion coefficients for this equation and analyze the decoherence induced on the long-wavelength modes. We generalize the results to the case of a conformally coupled scalar field in de Sitter spacetime. We show that the decoherence is effective as long as the cri...

  7. THE NEW CLASSICAL THEORY AND THE REAL BUSINESS CYCLE MODEL

    OpenAIRE

    Oana Simona HUDEA (CARAMAN); Sorin George TOMA; Marin BURCEA

    2014-01-01

    The present paper aims at describing some key elements of the new classical theory-related model, namely the Real Business Cycle, mainly describing the economy from the perspective of a perfectly competitive market, characterised by price, wage and interest rate flexibility. The rendered impulse-response functions, that help us in revealing the capacity of the model variables to return to their steady state under the impact of a structural shock, be it technology or monetary policy oriented, ...

  8. A magnetic condensate solution of the classical electroweak theory

    International Nuclear Information System (INIS)

    According to the electroweak theory a large homogeneous magnetic field exceeding m2w/e is unstable. We present a different solution of the classical electroweak field equations which is a condensate of magnetic fluxes induced by an anti-Lenz current of the charged vector bosons. The anti-Lenz mechanism is a consequence of asymptotic freedom. The range of validity of this solution depends on the Weinberg angle θ. (orig.)

  9. Conformal Field Theory Correlators from Classical Scalar Field Theory on $AdS_{d+1}$

    CERN Document Server

    Mück, W; Mueck, Wolfgang

    1998-01-01

    We use the correspondence between scalar field theory on $AdS_{d+1}$ and a conformal field theory on $R^d$ to calculate the 3- and 4-point functions of the latter. The classical scalar field theory action is evaluated at tree level.

  10. A New Fuzzy Set Theory Satisfying All Classical Set Formulas

    Institute of Scientific and Technical Information of China (English)

    Qing-Shi Gao; Xiao-Yu Gao; Yue Hu

    2009-01-01

    A new fuzzy set theory, C-fuzzy set theory, is introduced in this paper. It is a particular case of the classical set theory and satisfies all formulas of the classical set theory. To add a limitation to C-fuzzy set system, in which all fuzzy sets must be "non-uniform inclusive" to each other, then it forms a family of sub-systems, the Z-fuzzy set family. It can be proved that the Z0-fuzzy set system, one of Z-fuzzy set systems, is equivalent to Zadeh's fuzzy set system. Analysis shows that 1) Zadeh's fuzzy set system defines the relations A = B and A ∈B between two fuzzy sets A and B as "Vu e U,(u A E (u)=μB(U))" and "Au ∈ U, (μA(U) ≤μB(μ))" respectively is inappropriate, because it makes all fuzzy sets be "non-uniformly inclusive"; 2) it is also inappropriate to define two fuzzy sets' union and intersection operations as the max and rain of their grades of membership, because this prevents fuzzy set's ability to correctly reflect different kinds of fuzzy phenomenon in the natural world. Then it has to work around the problem by invent unnatural functions that are hard to understand, such as augmenting max and min for union and intersection to min{a + b, 1} and max{a + b - 1, 0}, but these functions are incorrect on inclusive case. If both pairs of definitions are used together, not only are they unnatural, but also they are still unable to cover all possible set relationships in the natural world; and 3) it is incorrect to define the set complement as 1 -μA(μ), because it can be proved that set complement cannot exist in Zadeh's fuzzy set, and it causes confusion in logic and thinking. And it is seriously mistaken to believe that logics of fuzzy sets necessarily go against classical and normal thinking, logic, and conception. The C-fuzzy set theory proposed in this paper overcomes all of the above errors and shortcomings, and more reasonably reflects fuzzy phenomenon in the natural world. It satisfies all relations, formulas, and operations of the

  11. Investigation of Vapor-Liquid Nucleation for Associating Fluids by Density Gradient Theory

    Institute of Scientific and Technical Information of China (English)

    FU Dong; LIU Jianmin

    2009-01-01

    An equation of state (EOS) applicable to both the uniform and non-uniform associating fluids was established by using the density-gradient expansion, in which the influence parameter κis formulated as a function of tempera-ture. The molecular parameters were regressed by fitting to the experimental data of vapor pressures and liquid den-sities. Within the framework of density gradient theory (DGT), the nucleation rates for water, heavy water, metha-nol, ethanol, 1-propanoi, 1-butanol, 1-pentanol and 1-hexanol were calculated. The results were satisfactory com-pared with the experimental data. Our study shows that DGT preserves all the advantages of density functional the-ory (DFT) in capturing the structure and properties of nucleus but gives much more accurate nucleation rates by adjusting the influence parameter.

  12. On the consistency of classical and quantum supergravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul [II. Institute for Theoretical Physics, University of Hamburg (Germany); Makedonski, Mathias [Department of Mathematical Sciences, University of Copenhagen (Denmark); Schenkel, Alexander [Department of Stochastics, University of Wuppertal (Germany)

    2012-07-01

    It is known that pure N=1 supergravity in d=4 spacetime dimensions is consistent at a classical and quantum level, i.e. that in a particular gauge the field equations assume a hyperbolic form - ensuring causal propagation of the degrees of freedom - and that the associated canonical quantum field theory satisfies unitarity. It seems, however, that it is yet unclear whether these properties persist if one considers the more general and realistic case of N=1, d=4 supergravity theories including arbitrary matter fields. We partially clarify the issue by introducing novel hyperbolic gauges for the gravitino field and proving that they commute with the resulting equations of motion. Moreover, we review recent partial results on the unitarity of these general supergravity theories and suggest first steps towards a comprehensive unitarity proof.

  13. Common Axioms for Inferring Classical Ensemble Dynamics and Quantum Theory

    CERN Document Server

    Parwani, R R

    2005-01-01

    Within a hamiltonian framework, the same set of physically motivated axioms is used to construct both the classical ensemble Hamilton-Jacobi equation and Schrodingers equation. Crucial roles are played by the assumptions of universality and simplicity (Occam's Razor) which restrict the number and type of of arbitrary constants that appear in the hamiltonian. In this approach, non-relativistic quantum theory is seen as the unique single parameter extension of the classical ensemble dynamics. The method is contrasted with other related constructions in the literature. Possible generalisation to the relativistic case, and some consequences of relaxing the axioms, are also discussed: for example, simple extensions of the linear Schrodinger equation lead to higher-derivative nonlinear corrections that are possibly related to gravity.

  14. The theory of variational hybrid quantum-classical algorithms

    CERN Document Server

    McClean, Jarrod R; Babbush, Ryan; Aspuru-Guzik, Alán

    2015-01-01

    Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as "the quantum variational eigensolver" was developed with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through relaxation of exponential splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this proced...

  15. Binary Nucleation of Water and Sodium Chloride

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, Thomas [Institute of Thermomechanics ASCR, Prague, Czech Republic; Marsik, Frantisek [Institute of Thermomechanics ASCR, Prague, Czech Republic; Palmer, Donald [ORNL

    2005-01-01

    Nucleation processes in the binary water-sodium chloride system are investigated in the sense of the classical nucleation theory (CNT). The CNT is modified to be able to handle the electrolytic nature of the system and is employed to investigate the acceleration of the nucleation process due to the presence of sodium chloride in the steam. This phenomenon, frequently observed in the Wilson zone of steam turbines, is called early condensation. Therefore, the nucleation rates of the water-sodium chloride mixture are of key importance in the power cycle industry.

  16. Topics In False Vacuum Decay (bubble Nucleation, Gauge Dependence, Quantum Field Theory)

    CERN Document Server

    Metaxas, D

    1998-01-01

    I review the formalism for the computation of the rate of false vacuum decay in field theories with a metastable vacuum state. I then proceed to consider the case of field theories where the false vacuum arises as a result of radiative corrections. There the calculation of the rate of false vacuum decay by bubble nucleation depends on the effective potential and the other functions that appear in the derivative expansion of the effective action. Beginning with the Nielsen identity, I derive a series of identities that describe the gauge dependence of these functions...

  17. BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory

    Science.gov (United States)

    Mann, Robert

    2013-02-01

    Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is

  18. Gauge independence of the bubble nucleation rate in theories with radiative symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, D.; Weinberg, E.J. [Department of Physics, Columbia University, New York, New York 10027 (United States)

    1996-01-01

    In field theories where a metastable false vacuum state arises as a result of radiative corrections, the calculation of the rate of false vacuum decay by bubble nucleation depends on the effective potential and the other functions that appear in the derivative expansion of the effective action. Beginning with the Nielsen identity, we derive a series of identities that govern the gauge dependence of these functions. Using these, we show, to leading nontrivial order, that, even though these functions are individually gauge dependent, one obtains a gauge-independent result for the bubble nucleation rate. Our formal arguments are complemented by explicit calculations for scalar electrodynamics in a class of {ital R}{sub {xi}} gauges. {copyright} {ital 1996 The American Physical Society.}

  19. Gauge independence of the bubble nucleation rate in theories with radiative symmetry breaking

    CERN Document Server

    Metaxas, D; Metaxas, Dimitrios; Weinberg, Erick J

    1996-01-01

    In field theories where a metastable false vacuum state arises as a result of radiative corrections, the calculation of the rate of false vacuum decay by bubble nucleation depends on the effective potential and the other functions that appear in the derivative expansion of the effective action. Beginning with the Nielsen identity, we derive a series of identities that govern the gauge dependence of these functions. Using these, we show, to leading nontrivial order, that even though these functions are individually gauge-dependent, one obtains a gauge-independent result for the bubble nucleation rate. Our formal arguments are complemented by explicit calculations for scalar electrodynamics in a class of R_\\xi gauges.

  20. Lie Groupoids in Classical Field Theory I: Noether's Theorem

    CERN Document Server

    Costa, Bruno T; Pêgas, Luiz Henrique P

    2015-01-01

    In the two papers of this series, we initiate the development of a new approach to implementing the concept of symmetry in classical field theory, based on replacing Lie groups/algebras by Lie groupoids/algebroids, which are the appropriate mathematical tools to describe local symmetries when gauge transformations are combined with space-time transformations. Here, we outline the basis of the program and, as a first step, show how to (re)formulate Noether's theorem about the connection between symmetries and conservation laws in this approach.

  1. Local gauge invariant Lagrangeans in classical field theories

    International Nuclear Information System (INIS)

    We investigate the most general local gauge invariant Lagrangean in the framework of classical field theory. We rederive esentially Utiyama's result with a slight generalization. Our proof makes clear the importance of the so called current conditions, i.e. the requirement that the Noether currents are different from zero. This condition is of importance both in the general motivation for the introduction of the Yang-Mills fields and for the actual proof. Some comments are made about the basic mathematical structure of the problem - the gauge group. (author)

  2. Emergence Of A Classical World From Within Quantum Theory

    CERN Document Server

    Poulin, D

    2005-01-01

    The starting point of this dissertation is that a quantum state represents the observer's knowledge about the system of interest. As it has been pointed out several times by the opponents of this epistemic interpretation, it is difficult to reconcile this point of view with our common notion of “physical reality”, which exists independently of our monitoring, and can be discovered without disturbance. Indeed, if quantum theory is correct, it should apply to classical systems—including measurement devices—as well as to any other system. In this dissertation, we will study the quantum mechanisms responsible for our perception of the world and demonstrate how they lead to the emergence of an operational objective reality from within quantum theory: several observers gathering information through these mechanisms will arrive at a common consensus about the properties of the world. The two mechanisms we study in great detail are the redundant proliferation of information in ...

  3. Marshaling Resources: A Classic Grounded Theory Study of Online Learners

    Directory of Open Access Journals (Sweden)

    Barbara Yalof

    2014-06-01

    Full Text Available Classic grounded theory (CGT was used to identify a main concern of online students in higher education. One of the main impediments to studying online is a sense of isolation and lack of access to support systems as students navigate through complex requirements of their online programs. Hypothetical probability statements illustrate the imbalance between heightened needs of virtual learners and perceived inadequate support provided by educational institutions. The core variable, marshaling resources, explains how peer supports sustain motivation toward successful program completion. Understanding the critical contribution virtual interpersonal networks make towards maximizing resources by group problem solving is a significant aspect of this theory. Keywords: Online learning, e-learning, personal learning networks, peer networks

  4. Light-cone Wilson loop in classical lattice gauge theory

    CERN Document Server

    Laine, M

    2013-01-01

    The transverse broadening of an energetic jet passing through a non-Abelian plasma is believed to be described by the thermal expectation value of a light-cone Wilson loop. In this exploratory study, we measure the light-cone Wilson loop with classical lattice gauge theory simulations. We observe, as suggested by previous studies, that there are strong interactions already at short transverse distances, which may lead to more efficient jet quenching than in leading-order perturbation theory. We also verify that the asymptotics of the Wilson loop do not change qualitatively when crossing the light cone, which supports arguments in the literature that infrared contributions to jet quenching can be studied with dimensionally reduced simulations in the space-like domain. Finally we speculate on possibilities for full four-dimensional lattice studies of the same observable, perhaps by employing shifted boundary conditions in order to simulate ensembles boosted by an imaginary velocity.

  5. Quiver theories for moduli spaces of classical group nilpotent orbits

    Science.gov (United States)

    Hanany, Amihay; Kalveks, Rudolph

    2016-06-01

    We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3 d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.

  6. Emergence of a classical world from within quantum theory

    Science.gov (United States)

    Poulin, David

    The starting point of this dissertation is that a quantum state represents the observer's knowledge about the system of interest. As it has been pointed out several times by the opponents of this epistemic interpretation, it is difficult to reconcile this point of view with our common notion of "physical reality", which exists independently of our monitoring, and can be discovered without disturbance. Indeed, if quantum theory is correct, it should apply to classical systems---including measurement devices---as well as to any other system. In this dissertation, we will study the quantum mechanisms responsible for our perception of the world and demonstrate how they lead to the emergence of an operational objective reality from within quantum theory: several observers gathering information through these mechanisms will arrive at a common consensus about the properties of the world. The two mechanisms we study in great detail are the redundant proliferation of information in the environment and the direct measurement of a macroscopic observable. An example of the first mechanism is the photon environment which provides us with our visual data about the world. Several independent observers learning about their surroundings in this indirect fashion will agree on their findings. An example of the second mechanism is our tactile information: when the tip of our finger touches an object, it interacts collectively with a very large number of molecules. Again, under realistic assumptions, this type of information acquisition will lead to a classical perception of the world.

  7. Non-linear coupling of quantum theory and classical gravity

    International Nuclear Information System (INIS)

    The possibility that the non-linear evolution proposed earlier for a relativistic quantum field theory may be related to its coupling to a classical gravitational field is discussed. Formally, in the Schroedinger picture, it is shown how both the Schroedinger equation and Einstein's equations (with the expectation value of the energy-momentum tensor on the right) can be derived from a variational principle. This yields a non-linear quantum evolution. Other terms can be added to the action integral to incorporate explicit non-linearities of the type discussed previously. The possibility of giving a meaning to the resulting equation in a Heisenberg or interaction-like picture, is briefly discussed. (author)

  8. Complex analysis fundamentals of the classical theory of functions

    CERN Document Server

    Stalker, John

    1998-01-01

    This clear, concise introduction to the classical theory of one complex variable is based on the premise that "anything worth doing is worth doing with interesting examples." The content is driven by techniques and examples rather than definitions and theorems. This self-contained monograph is an excellent resource for a self-study guide and should appeal to a broad audience. The only prerequisite is a standard calculus course. The first chapter deals with a beautiful presentation of special functions. . . . The third chapter covers elliptic and modular functions. . . in much more detail, and from a different point of view, than one can find in standard introductory books. . . . For [the] subjects that are omitted, the author has suggested some excellent references for the reader who wants to go through these topics. The book is read easily and with great interest. It can be recommended to both students as a textbook and to mathematicians and physicists as a useful reference. ---Mathematical Reviews Mainly or...

  9. Latfield2: A c++ library for classical lattice field theory

    CERN Document Server

    David, Daverio; Bevis, Neil

    2015-01-01

    latfield2 is a C++ library designed to simplify writing parallel codes for solving partial differen- tial equations, developed for application to classical field theories in particle physics and cosmology. It is a significant rewrite of the latfield framework, moving from a slab domain decomposition to a rod decomposition, where the last two dimension of the lattice are scattered into a two dimensional process grid. Parallelism is implemented using the Message Passing Interface (MPI) standard, and hidden in the basic objects of grid-based simulations: Lattice, Site and Field. It comes with an integrated parallel fast Fourier transform, and I/O server class permitting computation to continue during the writing of large files to disk. latfield2 has been used for production runs on tens of thousands of processor elements, and is expected to be scalable to hundreds of thousands.

  10. Deformation Quantization of Principal Fibre Bundles and Classical Gauge Theories

    CERN Document Server

    Wei\\ss, Stefan

    2010-01-01

    In this dissertation the notion of deformation quantization of principal fibre bundles is established and investigated in order to find a geometric formulation of classical gauge theories on noncommutative space-times. As a generalization, the notion of deformation quantization of surjective submersions is also discussed. It is shown that deformation quantizations of surjective submersions and principal fibre bundles always exist and are unique up to equivalence. These statements concerning complex-valued functions are moreover formulated and proved for sections of arbitrary vector bundles over the total space, in particular equivariant vector bundles. The commutants of the deformed right module structures within the differential operators, playing an inportant role with regard to the infinitesimal gauge transformations, are computed explicitly in each case. Depending on the choice of specific covariant derivatives and connections the commutants are isomorphic to the formal power series of the respective vert...

  11. Geometry of Lagrangian first-order classical field theories

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria-Enriquez, A. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Munoz-Lecanda, M.C. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Roman-Roy, N. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica

    1996-10-01

    We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether`s theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)

  12. Fundamental Elements and Interactions of Nature: A Classical Unification Theory

    Directory of Open Access Journals (Sweden)

    Tianxi Zhang

    2010-04-01

    Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are considered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interaction between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation-color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deepens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a

  13. Fundamental Elements and Interactions of Nature: A Classical Unification Theory

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2010-04-01

    Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are con- sidered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interac- tion between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation- color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deep- ens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a

  14. Effects of shear flow on phase nucleation and crystallization

    Science.gov (United States)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  15. On the Classical String Solutions and String/Field Theory Duality

    OpenAIRE

    Aleksandrova, D.; Bozhilov, P.

    2003-01-01

    We classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.

  16. Homogeneous TIP4P/2005 ice nucleation at low supercooling

    CERN Document Server

    Reinhardt, Aleks

    2013-01-01

    We present a partial free energy profile for the homogeneous nucleation of ice using an all-atom model of water at low supercooling, at which ice growth dynamics are reasonably accessible to simulation. We demonstrate that the free energy profile is well described by classical nucleation theory, and that the nucleation barrier is entropic in origin. We also estimate to first order the temperature dependence of the interfacial free energy.

  17. Phase-field modeling of submonolayer growth with the modulated nucleation regime

    Energy Technology Data Exchange (ETDEWEB)

    Dong, X.L.; Xing, H.; Chen, C.L., E-mail: chenchl@nwpu.edu.cn; Wang, J.Y.; Jin, K.X.

    2015-10-16

    In this letter, we perform the phase-field simulations to investigate nucleation regime of submonolayer growth via a quantified nucleation term. Results show that the nucleation related kinetic coefficients have changed the density of islands and critical sizes to modulate the nucleation regime. The scaling behavior of the island density can be agreed with the classical theory only when effects of modulations have been quantified. We expect to produce the quantitative descriptions of nucleation for submonolayer growth in phase-field models. - Highlights: • The phase-field simulations are systematically compared with the classical nucleation rate theory. • The modulations of nucleation regime by the different kinetic coefficients have been studied. • Appropriate kinetic coefficients contribute to the agreed nucleation regime with the scaling law.

  18. A course in mathematical physics 2 classical field theory

    CERN Document Server

    Thirring, Walter

    1978-01-01

    In the past decade the language and methods ofmodern differential geometry have been increasingly used in theoretical physics. What seemed extravagant when this book first appeared 12 years ago, as lecture notes, is now a commonplace. This fact has strengthened my belief that today students of theoretical physics have to learn that language-and the sooner the better. Afterall, they willbe the professors ofthe twenty-first century and it would be absurd if they were to teach then the mathematics of the nineteenth century. Thus for this new edition I did not change the mathematical language. Apart from correcting some mistakes I have only added a section on gauge theories. In the last decade it has become evident that these theories describe fundamental interactions, and on the classical level their structure is suffi­ cientlyclear to qualify them for the minimum amount ofknowledge required by a theoretician. It is with much regret that I had to refrain from in­ corporating the interesting developments in Kal...

  19. Semi-classical theory of quiet lasers. I: Principles

    CERN Document Server

    Arnaud, J; Philippe, F; Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice

    2006-01-01

    When light originating from a laser diode driven by non-fluctuating electrical currents is incident on a photo-detector, the photo-current does not fluctuate much. Precisely, this means that the variance of the number of photo-electrons counted over a large time interval is much smaller that the average number of photo-electrons. At non-zero Fourier frequency $\\Omega$ the photo-current power spectrum is of the form $\\Omega^2/(1+\\Omega^2)$ and thus vanishes as $\\Omega\\to 0$, a conclusion equivalent to the one given above. The purpose of this paper is to show that results such as the one just cited may be derived from a (semi-classical) theory in which neither the optical field nor the electron wave-function are quantized. We first observe that almost any medium may be described by a circuit and distinguish (possibly non-linear) conservative elements such as pure capacitances, and conductances that represent the atom-field coupling. The theory rests on the non-relativistic approximation. Nyquist noise sources (...

  20. On the Relationship between Classical Test Theory and Item Response Theory: From One to the Other and Back

    Science.gov (United States)

    Raykov, Tenko; Marcoulides, George A.

    2016-01-01

    The frequently neglected and often misunderstood relationship between classical test theory and item response theory is discussed for the unidimensional case with binary measures and no guessing. It is pointed out that popular item response models can be directly obtained from classical test theory-based models by accounting for the discrete…

  1. Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10

    Science.gov (United States)

    Balla, R. Jeffrey; Everhart, Joel L.

    2012-01-01

    In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.

  2. On Classical de Sitter Vacua in String Theory

    CERN Document Server

    Wrase, Timm

    2010-01-01

    We review the prospect of obtaining tree-level de Sitter (dS) vacua and slow-roll inflation models in string compactifications. Restricting ourselves to the closed string sector and assuming the absence of NSNS-sources, we classify the minimal classical ingredients that evade the simplest no-go theorems against dS vacua and inflation. Spaces with negative integrated curvature together with certain combinations of low-dimensional orientifold planes and low-rank RR-fluxes emerge as the most promising setups of this analysis. We focus on two well-controlled classes that lead to an effective 4D, N=1 supergravity description: Type IIA theory on group or coset manifolds with SU(3)-structure and O6-planes, as well as type IIB compactifications on SU(2)-structure manifolds with O5- and O7-planes. While fully stabilized AdS vacua are generically possible, a number of problems encountered in the search for dS vacua are discussed.

  3. On covariant Poisson brackets in classical field theory

    Energy Technology Data Exchange (ETDEWEB)

    Forger, Michael [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Salles, Mário O. [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN (Brazil)

    2015-10-15

    How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.

  4. Shifting the Quantum-Classical Boundary: Theory and Experiment for Statistically Classical Optical Fields

    CERN Document Server

    Qian, Xiao-Feng; Howell, John C; Eberly, J H

    2015-01-01

    The growing recognition that entanglement is not exclusively a quantum property, and does not even originate with Schr\\"odinger's famous remark about it [Proc. Camb. Phil. Soc. {\\bf 31}, 555 (1935)], prompts examination of its role in marking the quantum-classical boundary. We have done this by subjecting correlations of classical optical fields to new Bell-analysis experiments, and report here values of the Bell parameter greater than ${\\cal B} = 2.54$. This is many standard deviations outside the limit ${\\cal B} = 2$ established by the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [Phys. Rev. Lett. {\\bf 23}, 880 (1969)], in agreement with our theoretical classical prediction, and not far from the Tsirelson limit ${\\cal B} = 2.828...$. These results cast a new light on the standard quantum-classical boundary description, and suggest a reinterpretation of it.

  5. Nucleation barrier height in undercooled metallic melts

    Institute of Scientific and Technical Information of China (English)

    Gang WANG; Dechang ZENG; Zhongwu LIU

    2012-01-01

    The phase-field model of a liquid-to-solid transition was constructed where the model parameters were linked quantitatively to the interfacial properties,and the variation of nucleation barrier height in undercooled metallic melts with respect to undercooling was studied respectively based on two kinds of forms of local free energy density.The calculation results show that,with the increase of undercooling,the critical nucleus does not show bulk properties,and the nucleation barrier height decreases gradually and deviates more and more from that predicted by the classical nucleation theory in both cases.The physical spinodal occurs for a specific form of the local free energy density,where the nucleation barrier height vanishes when the undercooling reaches a critical value and the reduced nucleation barrier height can be expressed by a function of the ratio of undercooling to critical undercooling.

  6. Harmonic generation from free electrons in intense laser fields: classical versus semi-classical theory

    International Nuclear Information System (INIS)

    In this paper, a detailed numerical comparison of the high-harmonic generation (HHG) from free electrons in intense laser fields in both classical and semi-classical frameworks has been presented. These two frameworks have been widely used in the literature. It has been found that the HHG spectra display distinct quantitative differences for high-energy electrons. In some special situations, qualitative differences appear. Even if the radiation reaction is included in the electron classical dynamics, no consistent result can be obtained. Hence it should be of critical importance to submit the present HHG theory for high-precision experimental tests, which can help us not only to justify the present theories, but also to check the QED predictions in the high-intensity regime. (paper)

  7. Binary nucleation beyond capillarity approximation

    OpenAIRE

    Kalikmanov, V.I.

    2010-01-01

    Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption is taken into account within Gibbsian approximation. Binary clusters are treated by means of statistical-mechanical considerations: tracing out the molecular degrees of freedom of the more volatil...

  8. A reappraisal of classical archetype theory and its implications for theory and practice.

    Science.gov (United States)

    Merchant, John

    2009-06-01

    This paper begins with an overview of contemporary approaches to archetype theory and notes the radical nature of certain deductions. Some argue that there is no 'archetype-as-such' as a pre-existing entity at the core of a complex driving its formation whilst the findings of current neuroscience are calling into question one very thing on which the classical theory is built--innatism. Knox's argument for image schemas raises the question as to the extent to which archetypes can be conceived in any preformationist sense. The question is then posed--to what extent can Jung's classical theory of archetypes be read in light of these current models? The case examples Jung uses to evidence the existence of archetypes, his explications of synchronicity and his own Philemon experience are then reappraised. The conclusion is drawn that it is difficult to evidence the existence of autonomous archetypes unrelated to personal affective experience. Not only would this be expected by emergent/developmental models of archetype but it can explain many of Jung's disjunctive statements about archetype constellation; the difficulties in separating personal and collective psychic content and Jung's apparent Lamarckianism. The implications of these models for theory, clinical practice and analyst training are then offered for discussion.

  9. A reappraisal of classical archetype theory and its implications for theory and practice.

    Science.gov (United States)

    Merchant, John

    2009-06-01

    This paper begins with an overview of contemporary approaches to archetype theory and notes the radical nature of certain deductions. Some argue that there is no 'archetype-as-such' as a pre-existing entity at the core of a complex driving its formation whilst the findings of current neuroscience are calling into question one very thing on which the classical theory is built--innatism. Knox's argument for image schemas raises the question as to the extent to which archetypes can be conceived in any preformationist sense. The question is then posed--to what extent can Jung's classical theory of archetypes be read in light of these current models? The case examples Jung uses to evidence the existence of archetypes, his explications of synchronicity and his own Philemon experience are then reappraised. The conclusion is drawn that it is difficult to evidence the existence of autonomous archetypes unrelated to personal affective experience. Not only would this be expected by emergent/developmental models of archetype but it can explain many of Jung's disjunctive statements about archetype constellation; the difficulties in separating personal and collective psychic content and Jung's apparent Lamarckianism. The implications of these models for theory, clinical practice and analyst training are then offered for discussion. PMID:19531124

  10. Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic

    International Nuclear Information System (INIS)

    Physical reasons for a crucial difference between the results of a three-phase theory developed recently (Kerner 2011 Phys. Rev. E 84 045102(R); 2013 Europhys. Lett. 102 28010; 2014 Physica A 397 76) and the classical theory are explained. Microscopic characteristics of traffic passing a traffic signal during the green signal phase and their dependence on the duration of the green phase have been found. It turns out that a moving synchronized flow pattern (MSP), which occurs in under-saturated traffic at the signal, causes ‘compression’ of traffic flow: the rate of MSP discharge can be considerably larger than the saturation flow rate of the classical traffic theory of city traffic. This leads to a considerably larger rate of traffic passing the signal in comparison with the saturation flow rate. This effect together with traffic behavior at the upstream queue front explains the metastability of under-saturated traffic with respect to a random time-delayed traffic breakdown. (paper)

  11. Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic

    Science.gov (United States)

    Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael

    2014-03-01

    Physical reasons for a crucial difference between the results of a three-phase theory developed recently (Kerner 2011 Phys. Rev. E 84 045102(R); 2013 Europhys. Lett. 102 28010; 2014 Physica A 397 76) and the classical theory are explained. Microscopic characteristics of traffic passing a traffic signal during the green signal phase and their dependence on the duration of the green phase have been found. It turns out that a moving synchronized flow pattern (MSP), which occurs in under-saturated traffic at the signal, causes ‘compression’ of traffic flow: the rate of MSP discharge can be considerably larger than the saturation flow rate of the classical traffic theory of city traffic. This leads to a considerably larger rate of traffic passing the signal in comparison with the saturation flow rate. This effect together with traffic behavior at the upstream queue front explains the metastability of under-saturated traffic with respect to a random time-delayed traffic breakdown.

  12. Dressing the Post-Newtonian two-body problem and Classical Effective Field Theory

    CERN Document Server

    Kol, Barak

    2009-01-01

    We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling Post-Newtonian gravitating binary. We use the effective field theory approach with the non-relativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a non-linear classical field theory coupled to point-like sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain non-linear world-line vertices, and we classify all the possible topologies of irreducible ...

  13. How some infinities cause problems in classical physical theories

    NARCIS (Netherlands)

    Atkinson, David; Peijnenburg, Jeanne; Allo, P.; van Kerhove, B.

    2014-01-01

    In this paper we review a 1992 excursion of Jean Paul Van Bendegem into physics, ‘How Infinities Cause Problems in Classical Physical Theories’, in the light of two later models concerning colliding balls, of Pérez Laraudogoitia and of Alper and Bridger, respectively. We show that Van Bendegem antic

  14. On the concept of Bell’s local causality in local classical and quantum theory

    International Nuclear Information System (INIS)

    The aim of this paper is to implement Bell’s notion of local causality into a framework, called local physical theory. This framework, based on the axioms of algebraic field theory, is broad enough to integrate both probabilistic and spatiotemporal concepts and also classical and quantum theories. Bell’s original idea of local causality will arise as the classical case of our definition. Classifying local physical theories by whether they obey local primitive causality, a property rendering the dynamics of the theory causal, we then investigate what is needed for a local physical theory to be locally causal. Finally, comparing local causality with the common cause principles and relating both to the Bell inequalities we find a nice parallelism: Bell inequalities cannot be derived neither from local causality nor from a common cause unless the local physical theory is classical or the common cause is commuting, respectively

  15. On the concept of Bell’s local causality in local classical and quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Hofer-Szabó, Gábor, E-mail: szabo.gabor@btk.mta.hu [Research Center for the Humanities, Budapest (Hungary); Vecsernyés, Péter, E-mail: vecsernyes.peter@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary)

    2015-03-15

    The aim of this paper is to implement Bell’s notion of local causality into a framework, called local physical theory. This framework, based on the axioms of algebraic field theory, is broad enough to integrate both probabilistic and spatiotemporal concepts and also classical and quantum theories. Bell’s original idea of local causality will arise as the classical case of our definition. Classifying local physical theories by whether they obey local primitive causality, a property rendering the dynamics of the theory causal, we then investigate what is needed for a local physical theory to be locally causal. Finally, comparing local causality with the common cause principles and relating both to the Bell inequalities we find a nice parallelism: Bell inequalities cannot be derived neither from local causality nor from a common cause unless the local physical theory is classical or the common cause is commuting, respectively.

  16. Antigravity and classical solutions of five-dimensional Kaluza-Klein theory

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, D. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)

    1983-02-21

    Classical solutions are exhibited of a graviton-graviphoton-graviscalar field theory which are antigravitating in the weak-field approximation. The theory itself is obtained by a Kaluza-Klein type reduction from five to four dimensions. The solutions are dyonic black holes with scalar charge. They share some similarities with the extreme Reissner-Nordstrom black holes of Einstein-Maxwell theory.

  17. Instanton Representation of Plebanski Gravity. The Classical Theory

    Science.gov (United States)

    Ita, Eyo

    2015-10-01

    This paper is a self-contained introduction to the instanton representation of Plebanski gravity (IRPG), a formulation of General Relativity (GR) where the basic variables are a spacetime gauge connection and a three by three matrix valued in the Lie algebra of so(3,C). We present a classical analysis of the IRPG from various perspectives, noting some of its interesting features and motivations.

  18. Quantization, Classical and Quantum Field Theory and Theta - Functions

    OpenAIRE

    Tyurin, Andrey N.

    2002-01-01

    In the abelian case (the subject of several beautiful books) fixing some combinatorial structure (so called theta structure of level k) one obtains a special basis in the space of sections of canonical polarization powers over the jacobians. These sections can be presented as holomorphic functions on the "abelian Schottky space". This fact provides various applications of these concrete analytic formulas to the integrable systems, classical mechanics and PDE's. Our practical goal is to do the...

  19. On inert properties of particles in classical theory

    OpenAIRE

    Kosyakov, B. P.

    2002-01-01

    This is a critical review of inert properties of classical relativistic point objects. The objects are classified as Galilean and non-Galilean. Three types of non-Galilean objects are considered: spinning, rigid, and dressed particles. In the absence of external forces, such particles are capable of executing not only uniform motions along straight lines but also Zitterbewegungs, self-accelerations, self-decelerations, and uniformly accelerated motions. A free non-Galilean object possesses th...

  20. Investigation of vapour-liquid nucleation properties for spherical and chain-like fluids by density functional theory

    Institute of Scientific and Technical Information of China (English)

    Fu Dong; Liao Tao

    2007-01-01

    The excess Helmholtz free energy functional for nonpolar chain-like molecules is formulated in terms of a weighted density approximation (WDA) for short-range interactions and a Weaks-Chandler-Andersen (WCA) approximation and a Barker-Henderson (BH) theory for long-range attraction. Within the framework of density functional theory (DFT), vapour-liquid interfacial properties including density profile and surface tension, and vapour-liquid nucleation properties including density profile, work of formation and number of particles are investigated for spherical and chainlike molecules. The obtained vapour-liquid surface tension and the number of particles in critical nucleus for LennardJones (L J) fluids are consistent with the simulation results. The influences of supersaturation, temperature and chain length on vapour-liquid nucleation properties are discussed.

  1. (Re)igniting a Sociological Imagination in Adult Education: The Continuing Relevance of Classical Theory

    Science.gov (United States)

    Lange, Elizabeth

    2015-01-01

    This article argues that sociology has been a foundational discipline for the field of adult education, but it has been largely implicit, until recently. This article contextualizes classical theories of sociology within contemporary critiques, reviews the historical roots of sociology and then briefly introduces the classical theories…

  2. Quantum Electrodynamics Basis of Classical-Field High-Harmonic Generation Theory

    Institute of Scientific and Technical Information of China (English)

    王兵兵; 高靓辉; 傅盘铭; 郭东升; R. R. Freeman

    2001-01-01

    From the nonperturbative quantum electrodynamics theory, we derive the Landau-Dykhne formula which represents the quantum-mechanical formulation of the three-step model. These studies provide a basis for the classical-field approaches to high-order harmonic generation and justify some assumptions used in classical-field modelling.

  3. Hyperdense coding and superadditivity of classical capacities in hypersphere theories

    OpenAIRE

    Massar, Serge; Pironio, Stefano; Pitalúa-García, Damián

    2015-01-01

    In quantum superdense coding, two parties previously sharing entanglement can communicate a two bit message by sending a single qubit. We study this feature in the broader framework of general probabilistic theories. We consider a particular class of theories in which the local state space of the communicating parties corresponds to Euclidean hyperballs of dimension n (the case n = 3 corresponds to the Bloch ball of quantum theory). We show that a single n-ball can encode at most one bit of i...

  4. Classical conformality in the Standard Model from Coleman’s theory

    Science.gov (United States)

    Kawana, Kiyoharu

    2016-09-01

    The classical conformality (CC) is one of the possible candidates for explaining the gauge hierarchy of the Standard Model (SM). We show that it is naturally obtained from the Coleman’s theory on baby universe.

  5. Effect of oxygen partial pressure on the nucleation kinetics of orthorhombic YBCO

    International Nuclear Information System (INIS)

    Effect of oxygen partial pressure on the nucleation kinetics of orthorhombic YBCO from tetragonal phase has been studied using classical nucleation theory. The free energy of formation of orthorhombic YBCO has been evaluated as a function of oxygen partial pressure. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  6. Introduction of a Classical Level in Quantum Theory

    Science.gov (United States)

    Prosperi, G. M.

    2016-11-01

    In an old paper of our group in Milano a formalism was introduced for the continuous monitoring of a system during a certain interval of time in the framework of a somewhat generalized approach to quantum mechanics (QM). The outcome was a distribution of probability on the space of all the possible continuous histories of a set of quantities to be considered as a kind of coarse grained approximation to some ordinary quantum observables commuting or not. In fact the main aim was the introduction of a classical level in the context of QM, treating formally a set of basic quantities, to be considered as beables in the sense of Bell, as continuously taken under observation. However the effect of such assumption was a permanent modification of the Liouville-von Neumann equation for the statistical operator by the introduction of a dissipative term which is in conflict with basic conservation rules in all reasonable models we had considered. Difficulties were even encountered for a relativistic extension of the formalism. In this paper I propose a modified version of the original formalism which seems to overcome both difficulties. First I study the simple models of an harmonic oscillator and a free scalar field in which a coarse grain position and a coarse grained field respectively are treated as beables. Then I consider the more realistic case of spinor electrodynamics in which only certain coarse grained electric and magnetic fields are introduced as classical variables and no matter related quantities.

  7. A course in mathematical physics 1 and 2 classical dynamical systems and classical field theory

    CERN Document Server

    Thirring, Walter

    1992-01-01

    The last decade has seen a considerable renaissance in the realm of classical dynamical systems, and many things that may have appeared mathematically overly sophisticated at the time of the first appearance of this textbook have since become the everyday tools of working physicists. This new edition is intended to take this development into account. I have also tried to make the book more readable and to eradicate errors. Since the first edition already contained plenty of material for a one­ semester course, new material was added only when some of the original could be dropped or simplified. Even so, it was necessary to expand the chap­ ter with the proof of the K-A-M Theorem to make allowances for the cur­ rent trend in physics. This involved not only the use of more refined mathe­ matical tools, but also a reevaluation of the word "fundamental. " What was earlier dismissed as a grubby calculation is now seen as the consequence of a deep principle. Even Kepler's laws, which determine the radii of the ...

  8. Asymptoticaly Confirmed Hypoteses Metod for the Construction of Micropolar and Classical Theories of Elastic Thin Shells

    Directory of Open Access Journals (Sweden)

    Sargsyan S.H.

    2014-03-01

    Full Text Available In the present paper, the system of equations of three-dimensional micropolar theory of elasticity, written down for thin shell as singularly perturbed with small geometric parameter system, is analyzed asymptotically: the internal iteration process and boundary layers are constructed, their interaction is studied, boundary conditions are obtained for each of them. Then, the main specific properties of the asymptotic solution accepting as hypotheses, general applied theory of micropolar elastic thin shells is constructed and it is shown that the constructed theory is asymptotically correct. Passing from the micropolar theory of thin shells to the classical theory, it is shown, that this applied classical theory of thin shells, when transverse shifts are taken into account, is asymptotically correct theory in relation to the other corrected theories of thin shells.

  9. Quantization of light energy directly from classical electromagnetic theory in vacuum

    Institute of Scientific and Technical Information of China (English)

    She Wei-Long

    2005-01-01

    It is currently believed that light quantum or the quantization of light energy is beyond classical physics, and the picture of wave-particle duality, which was criticized by Einstein but has attracted a number of experimental researches, is necessary for the description of light. It is shown in this paper, however, that the quantization of light energy in vacuum, which is the same as that in quantum electrodynamics, can be derived directly from the classical electromagnetic theory through the consideration of statistics based on classical physics. Therefore, the quantization of energy is an intrinsic property of light as a classical electromagnetic wave and has no need of being related to particles.

  10. PREFACE: Classical density functional theory methods in soft and hard matter Classical density functional theory methods in soft and hard matter

    Science.gov (United States)

    Haataja, Mikko; Gránásy, László; Löwen, Hartmut

    2010-08-01

    , about a half of which are related to the theoretical materials science community and the other half came from the soft-matter community. We begin by discussing papers related to PFC. Diverse subjects related to the phase-field crystal model include exciting topics such as predicting/controlling the equilibrium phase behavior [19, 18, 17] and kinetics of epitaxial island formation on nano-membranes [20]. Moreover, phase-field crystal modeling has proved to be very successful in simulating homogeneous and heterogeneous crystal nucleation and growth, and several aspects of these phenomena are discussed in this issue [18, 21]. Finally, it is shown how to incorporate additional orientational degrees of freedom within the PFC approach to model liquid crystals [22]. On the DFT side, the other papers in this special issue deal with problems associated with advanced DFT techniques and applications. The existence of a structural instability in sub-critical crystalline fluctuations in a supercooled liquid within a square-gradient theory is discussed in [23]. Fundamental measure theory for hard-body systems is improved by discussing a correction term in detail, as discussed in [24]. A mean-field-like density functional for charges is applied to the effective interaction between charged colloids obtained within a cell model [25]. The remaining articles provide fundamental insight into how to supplement DDFT-type methods with hydrodynamics [26, 27], highlight the role of the projection operator technique in deriving dynamical density functional theories [28], and demonstrate how perturbation methods can be employed to compute the properties of solid-liquid interfaces [29]. This particular collection of papers demonstrates rather convincingly the significant potential that classical density functional techniques possess in modeling complex systems built of either soft or hard matter (or combinations thereof). While the PFC approach offers a simple and appealing means to simulate

  11. Modelling the effect of acoustic waves on nucleation.

    Science.gov (United States)

    Haqshenas, S R; Ford, I J; Saffari, N

    2016-07-14

    A phase transformation in a metastable phase can be affected when it is subjected to a high intensity ultrasound wave. In this study we determined the effect of oscillation in pressure and temperature on a phase transformation using the Gibbs droplet model in a generic format. The developed model is valid for both equilibrium and non-equilibrium clusters formed through a stationary or non-stationary process. We validated the underlying model by comparing the predicted kinetics of water droplet formation from the gas phase against experimental data in the absence of ultrasound. Our results demonstrated better agreement with experimental data in comparison with classical nucleation theory. Then, we determined the thermodynamics and kinetics of nucleation and the early stage of growth of clusters in an isothermal sonocrystallisation process. This new contribution shows that the effect of pressure on the kinetics of nucleation is cluster size-dependent in contrast to classical nucleation theory. PMID:27421413

  12. Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in $\\phi^4$-Theory

    CERN Document Server

    Finster, Felix

    2012-01-01

    Solutions of the classical $\\phi^4$-theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a "classical measurement process" in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.

  13. k-Cosymplectic Classical Field Theories: Tulczyjew and Skinner-Rusk Formulations

    Science.gov (United States)

    Rey, Angel M.; Román-Roy, Narciso; Salgado, Modesto; Vilariño, Silvia

    2012-06-01

    The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order classical field theories are reviewed and completed. In particular, they are stated for singular and almost-regular systems. Subsequently, several alternative formulations for k-cosymplectic first-order field theories are developed: First, generalizing the construction of Tulczyjew for mechanics, we give a new interpretation of the classical field equations. Second, the Lagrangian and Hamiltonian formalisms are unified by giving an extension of the Skinner-Rusk formulation on classical mechanics.

  14. Topics in the theory of quantum and classical networks

    Science.gov (United States)

    Almaas, Eivind

    We study both quantum and classical networks. The quantum networks consist of 1D and 2D arrays of Josephson junctions coupled to a resonant cavity. We derive dynamical equations for these arrays by applying the Heisenberg equations of motion to a model Hamiltonian. By means of a canonical transformation, we also show that, in the absence of an applied current and dissipation, our model reduces to one used to describe coupled qubits, and that the cavity-junction coupling corresponds to a capacitive coupling between the array and the cavity mode. From extensive numerical solutions of the model in both 1D and 2D, we find that the array locks into a coherent, periodic state above a critical number of active junctions, that the current-voltage characteristics of the array have self-induced resonant steps (SIRS's), that when N a active junctions are synchronized on a SIRS, the energy emitted into the resonant cavity is quadratic in Na, and that when a fixed number of junctions is biased on a SIRS, the energy is linear in the input power. All these results are in agreement with recent experiments. We conclude that most of the experimental data can be understood from classical equations of motion. Our study of classical networks is divided into two parts. In the first, we study the structural properties of 'small-world' networks (SWN)---networks that display properties of both regular and random graphs. We generalize the model for generating such networks that was first introduced by Watts and Strogatz. For this model, we study the distribution function for minimal paths, derive its general form and also discuss its scaling properties. Using this distribution function, we derive exact expressions for several network properties, like the average minimal distance, ℓ¯ and its variance, sigma2. These exact relations are independent of the 'degree distribution', i.e. the distribution of nearest-neighbor connections. In the second, we study how the structure of the network

  15. Classical versus Keynesian theory of unemployment : an approach to the Spanish labor market

    OpenAIRE

    Alonso Rodríguez, Rubén

    2015-01-01

    In the last decade the unemployment skyrocketed defining a dramatic landscape for the Spanish economy. In order to understand the root causes, I have revisited two theories widely extended in labor economics: The Classical Theory of Unemployment and the Keynesian Theory of Unemployment. Despite both conceptions are well known and supported by academic literature, in the Spanish case as in many other countries is still unclear what theory better adjust to reality. To solve this lack of clearne...

  16. 3D gravity with dust: classical and quantum theory

    CERN Document Server

    Husain, Viqar

    2015-01-01

    We study the Einstein gravity and dust system in three spacetime dimensions as an example of a non-perturbative quantum gravity model with local degrees of freedom. We derive the Hamiltonian theory in the dust time gauge and show that it has a rich class of exact solutions. These include the Ba\\~nados-Teitelboim-Zanelli black hole, static solutions with naked singularities and travelling wave solutions with dynamical horizons. We give a complete quantization of the wave sector of the theory, including a definition of a self-adjoint spacetime metric operator. This operator is used to demonstrate the quantization of deficit angle and the fluctuation of dynamical horizons.

  17. A class of exact classical solutions to string theory.

    Science.gov (United States)

    Coley, A A

    2002-12-31

    We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.

  18. THE CONCEPT OF INTERNATIONAL TRADE AND MAIN CLASSIC THEORIES

    Directory of Open Access Journals (Sweden)

    Elena Ramona TERZEA

    2016-07-01

    Full Text Available Taking into account the major impact that international trade has on the economy and on the people’s lives, and considering its effects on the economic growth, the foreign commerce has to be well understood so that the commercial policies have to be well elaborated, implemented and followed. The theories of international trade are extremely important in order to determine the flows, but especially in the anticipation of the evolution of the forces that influences its dymanic. The theories regarding the foreign trade are used also by the big companies, by their managers, in their attempt to identify the most advantageous strategies of internationalizations, on the most promising markets.

  19. Ternary nucleation of H2SO4, NH3 and H2O

    OpenAIRE

    Kulmala, M.; Korhonen, P.; Laaksonen, A.; Viisanen, Y.; McGraw, R; Seinfeld, J. H.

    2000-01-01

    A classical theory of the ternary homogeneous nucleation of sulfuric acid—ammonia—water is presented. For NH3 mixing ratios exceeding 1 ppt, the presence of ammonia enhances the binary (sulfuric acid—water) nucleation rate by several orders of magnitude. However, the limiting component for ternary nucleation—as for binary nucleation—is sulfuric acid. The sulfuric acid concentration needed for significant ternary nucleation is several orders of magnitude below that required in binary case....

  20. Classical theory of thermal radiation from a solid.

    Science.gov (United States)

    Guo, Wei

    2016-06-01

    In this work, a solid at a finite temperature is modeled as an ensemble of identical atoms, each of which moves around a lattice site inside an isotropic harmonic potential. The motion of one such atom is studied first. It is found that the atom moves like a time-dependent current density and, thus, can emit electromagnetic radiation. Since all the atoms are identical, they can radiate, too. The resultant radiation from the atoms is the familiar thermal radiation from the solid. After its general expression is obtained, the intensity of the thermal radiation is discussed for its properties, and specifically calculated in the low-temperature limit. Both atomic motion and radiation are formulated in the classical domain. PMID:27409442

  1. Foundations of the classical theory of partial differential equations

    CERN Document Server

    Egorov, Yu V

    1998-01-01

    From the reviews of the first printing, published as volume 30 of the Encyclopaedia of Mathematical Sciences: "... I think the volume is a great success and an excellent preparation for future volumes in the series. ... the introductory style of Egorov and Shubin is .. attractive. ... a welcome addition to the literature and I am looking forward to the appearance of more volumes of the Encyclopedia in the near future. ..." The Mathematical Intelligencer, 1993 "... According to the authors ... the work was written for nonspecialists and physicists but in my opinion almost every specialist will find something new ... in the text. The style is clear, the notations are chosen luckily. The most characteristic feature of the work is the accurate emphasis on the fundamental notions ..." Acta Scientiarum Mathematicarum, 1993 "... On the whole, a thorough overview on the classical aspects of the topic may be gained from that volume." Monatshefte für Mathematik, 1993 "... It is comparable in scope with the great Coura...

  2. Classical instanton and wormhole solutions of Type IIB string theory

    OpenAIRE

    Kim, Jin Young; Lee, H. W.; Myung, Y. S.

    1996-01-01

    We study $p=-1$ D-brane in type IIB superstring theory. In addition to RR instanton, we obtain the RR charged wormhole solution in the Einstein frame. This corresponds to the ten-dimensional singular wormhole solution with infinite euclidean action.

  3. Pseudo-one-dimensional nucleation in dilute polymer solutions

    Science.gov (United States)

    Zhang, Lingyun; Schmit, Jeremy D.

    2016-06-01

    Pathogenic protein fibrils have been shown in vitro to have nucleation-dependent kinetics despite the fact that one-dimensional structures do not have the size-dependent surface energy responsible for the lag time in classical theory. We present a theory showing that the conformational entropy of the peptide chains creates a free-energy barrier that is analogous to the translational entropy barrier in higher dimensions. We find that the dynamics of polymer rearrangement make it very unlikely for nucleation to succeed along the lowest free-energy trajectory, meaning that most of the nucleation flux avoids the free-energy saddle point. We use these results to construct a three-dimensional model for amyloid nucleation that accounts for conformational entropy, backbone H bonds, and side-chain interactions to compute nucleation rates as a function of concentration.

  4. Multiscale approach to CO2 hydrate formation in aqueous solution: phase field theory and molecular dynamics. Nucleation and growth.

    Science.gov (United States)

    Tegze, György; Pusztai, Tamás; Tóth, Gyula; Gránásy, László; Svandal, Atle; Buanes, Trygve; Kuznetsova, Tatyana; Kvamme, Bjorn

    2006-06-21

    A phase field theory with model parameters evaluated from atomistic simulations/experiments is applied to predict the nucleation and growth rates of solid CO(2) hydrate in aqueous solutions under conditions typical to underwater natural gas hydrate reservoirs. It is shown that under practical conditions a homogeneous nucleation of the hydrate phase can be ruled out. The growth rate of CO(2) hydrate dendrites has been determined from phase field simulations as a function of composition while using a physical interface thickness (0.85+/-0.07 nm) evaluated from molecular dynamics simulations. The growth rate extrapolated to realistic supersaturations is about three orders of magnitude larger than the respective experimental observation. A possible origin of the discrepancy is discussed. It is suggested that a kinetic barrier reflecting the difficulties in building the complex crystal structure is the most probable source of the deviations.

  5. Universality principle and the development of classical density functional theory

    Institute of Scientific and Technical Information of China (English)

    周世琦; 张晓琪

    2002-01-01

    The universality principle of the free energy density functional and the ‘test particle' trick by Percus are combined to construct the approximate free energy density functional or its functional derivative. Information about the bulk fluid ralial distribution function is integrated into the density functional approximation directly for the first time in the present methodology. The physical foundation of the present methodology also applies to the quantum density functional theory.

  6. Opportunizing: A classic grounded theory study on business and management

    Directory of Open Access Journals (Sweden)

    Ólavur Christiansen

    2006-11-01

    Full Text Available Opportunizing emerged as the core variable of this classic GT study on business and management. Opportunizing is the recurrent main concern that businesses have to continually resolve, and it explains how companies recurrently create, identify, seize or exploit situations to maintain their growth or survival. Opportunizing is the recurrent creation and re-creation of opportunities in business. Opportunizing is basically what business managers do and do all the time. The problematic nature of opportunizing is resolved by a core social process ofopportunizing and its attached sub-processes that account for change over time and for the variations of the problematic nature of its resolution.Opportunizing has five main facets. These are conditional befriending (confidence building & modifying behavior,prospecting (e.g. information gaining, weighing up (information appraisal & decision-making, moment capturing (quick intervention for seizing strategic opportunities, andconfiguration matching (adjusting the business organization to abet the other activities of opportunizing.On a more abstract level, opportunizing has three more organizational facets: the physically boundary-less, the valuehierarchical, and the physically bounded. The first of these called perpetual opportunizing. This emerges from the conjunction of conditional befriending and prospecting. The second facet is called triggering opportunizing. It arises from the coming together of weighing up and moment capturing. The final facet is called spasmodic opportunizing. This happens when moment capturing and configuration matching unite.

  7. A Classical Test Theory Perspective on LSAT Local Item Dependence. LSAC Research Report Series. Statistical Report.

    Science.gov (United States)

    Reese, Lynda M.

    This study extended prior Law School Admission Council (LSAC) research related to the item response theory (IRT) local item independence assumption into the realm of classical test theory. Initially, results from the Law School Admission Test (LSAT) and two other tests were investigated to determine the approximate state of local item independence…

  8. A modification of Amiet's classical trailing edge noise theory for strictly two dimensional flows

    OpenAIRE

    Sandberg, Richard D.; Sandham, Neil D.

    2007-01-01

    The aim of this report is to derive theoretical expressions for the far-field pressure generated by disturbances convecting over a trailing edge. First, a general calculation of the far-field pressure is discussed. Then the classical theory of Amiet (1976b) is reviewed, listing the most relevant assumptions. Amiet's theory is then revised for two-dimensional flows.

  9. Matrix Analogues to Some Classical Problems in Number Theory

    OpenAIRE

    Niwa, Masahiko

    1996-01-01

    The aim of this paper is to give a few results on some problems in the matrix ring Mn(R) over a commutative ring R analogous to some classical problems in number theory, which are handled in L. N. Vaserstein[4]. As for Matrix Goldbach Problem we can easily give an affirmative solution in Mn(R)(any n≧2), contrary to the difficulty of the original conjecture. As for Matrix Fermat Problem we will explain the connection of this problem with elements of finite order of the group GLn(R) of uni...

  10. Perturbative quantization of Yang-Mills theory with classical double as gauge algebra

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Ruiz, F. [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)

    2016-02-15

    Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary. (orig.)

  11. Homogeneous vs. heterogeneous nucleation in water-dicarboxylic acid systems

    Directory of Open Access Journals (Sweden)

    A. I. Hienola

    2008-10-01

    Full Text Available Binary heterogeneous nucleation of water-succinic/glutaric/malonic/adipic acid on nanometer-sized particles is investigated within the frame of classical heterogeneous nucleation theory. Homogeneous nucleation is also included for comparison. It is found that the nucleation probabilities depend on the contact angle and on the size of the seed particles. New thermodynamical properties, such as saturation vapor pressure, density and surface tension for all the dicarboxylic acid aqueous solutions are included in the calculations. While the new surface tension and density formulations do not bring any significant difference in the computed nucleation rate for homogeneous nucleation for succinic and glutaric acids, the use of the newly derived equations for the vapor pressure decrease the acid concentrations in gas phase with 3 orders of magnitude. According to our calculations, the binary heterogeneous nucleation of succinic acid-water and glutaric acid-water – although it requires a 3–4 orders of magnitude lower vapor concentrations than the homogeneous nucleation – cannot take place in atmospheric conditions. On the other hand binary homogeneous nucleation of adipic acid-water systems might be possible in conditions occuring in upper boundary layer. However, a more detailed characterization of the interaction between the surface and the molecules of the nucleating vapor should be considered in the future.

  12. On the Foundational Equations of the Classical Theory of Electrodynamics

    CERN Document Server

    Mansuripur, Masud

    2014-01-01

    A close examination of the Maxwell-Lorentz theory of electrodynamics reveals that polarization and magnetization of material media need not be treated as local averages over small volumes - volumes that nevertheless contain a large number of electric and/or magnetic dipoles. Indeed, Maxwell's macroscopic equations are exact and self-consistent mathematical relations between electromagnetic fields and their sources, which consist of free charge, free current, polarization, and magnetization. When necessary, the discrete nature of the constituents of matter and the granularity of material media can be handled with the aid of special functions, such as Dirac's delta-function. The energy of the electromagnetic field and the exchange of this energy with material media are treated with a single postulate that establishes the Poynting vector S = ExH as the rate of flow of electromagnetic energy under all circumstances. Similarly, the linear and angular momentum densities of the fields are simple functions of the Poy...

  13. Quasi-classical theory of electronic flux density in electronically adiabatic molecular processes.

    Science.gov (United States)

    Diestler, D J

    2012-11-26

    The standard Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (EFD). A previously proposed "coupled-channels" theory permits the extraction of the EFD from the BO wave function for one-electron diatomic systems, but attempts at generalization to many-electron polyatomic systems are frustrated by technical barriers. An alternative "quasi-classical" approach, which eliminates the explicit quantum dynamics of the electrons within a classical framework, yet retains the quantum character of the nuclear motion, appears capable of yielding EFDs for arbitrarily complex systems. Quasi-classical formulas for the EFD in simple systems agree with corresponding coupled-channels formulas. Results of the application of the new quasi-classical formula for the EFD to a model triatomic system indicate the potential of the quasi-classical scheme to elucidate the dynamical role of electrons in electronically adiabatic processes in more complex multiparticle systems.

  14. Treatise on classical elasticity theory and related problems

    CERN Document Server

    Teodorescu, Petre P

    2013-01-01

    Deformable solids have a particularly complex character; mathematical modeling is not always simple and often leads to inextricable difficulties of computation. One of the simplest mathematical models and, at the same time, the most used model, is that of the elastic body – especially the linear one. But, notwithstanding its simplicity, even this model of a real body may lead to great difficulties of computation. The practical importance of a work about the theory of elasticity, which is also an introduction to the mechanics of deformable solids, consists of the use of scientific methods of computation in a domain in which simplified methods are still used. This treatise takes into account the consideration made above, with special attention to the theoretical study of the state of strain and stress of a deformable solid. The book draws on the known specialized literature, as well as the original results of the author and his 50+ years experience as Professor of Mechanics and Elasticity at the University o...

  15. Momentum relation and classical limit in the future-not-included complex action theory

    CERN Document Server

    Nagao, Keiichi

    2013-01-01

    Studying the time development of the expectation value in the future-not-included complex action theory we point out that the momentum relation (relation analogous to $p=\\frac{\\partial L}{\\partial \\dot{q}}$), which was derived via Feynman path integral and was shown to be right in the future-included theory in our previous papers, is not valid in the future-not-included theory. We provide the correct momentum relation in the future-not-included theory, and argue that the future-not-included classical theory is described by a certain real action. In addition we provide another way to understand the time development of the future-not-included theory by utilizing the future-included theory. Furthermore, applying the method used in our previous paper to the future-not-included theory properly by introducing a formal Lagrangian, we derive the correct momentum relation in the future-not-included theory.

  16. Dressing the post-Newtonian two-body problem and classical effective field theory

    Science.gov (United States)

    Kol, Barak; Smolkin, Michael

    2009-12-01

    We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling post-Newtonian (PN) gravitating binary. We use the effective field theory approach with the nonrelativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a nonlinear classical field theory coupled to pointlike sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain nonlinear worldline vertices, and we classify all the possible topologies of irreducible diagrams for low loop numbers. We apply the dressing program to our post-Newtonian case of interest. The dressed charges consist of the dressed energy-momentum tensor after a nonrelativistic decomposition, and we compute all dressed charges (in the harmonic gauge) appearing up to 2PN in the 2-body effective action (and more). We determine the irreducible skeleton diagrams up to 3PN and we employ the dressed charges to compute several terms beyond 2PN.

  17. Estimation of the nucleation rate by differential scanning calorimetry

    Science.gov (United States)

    Kelton, Kenneth F.

    1992-01-01

    A realistic computer model is presented for calculating the time-dependent volume fraction transformed during the devitrification of glasses, assuming the classical theory of nucleation and continuous growth. Time- and cluster-dependent nucleation rates are calculated by modeling directly the evolving cluster distribution. Statistical overlap in the volume fraction transformed is taken into account using the standard Johnson-Mehl-Avrami formalism. Devitrification behavior under isothermal and nonisothermal conditions is described. The model is used to demonstrate that the recent suggestion by Ray and Day (1990) that nonisothermal DSC studies can be used to determine the temperature for the peak nucleation rate, is qualitatively correct for lithium disilicate, the glass investigated.

  18. Development of a unified viscoplasticity constitutive model based on classical plasticity theory

    Institute of Scientific and Technical Information of China (English)

    GUAN Ping; LIU ChangChun; L(U) HeXiang

    2009-01-01

    The traditional unified viscoplasticity constitutive model can be only applied to metal materials. The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model, thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model. Moreover, this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method, which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials. The numerical simulation indicates that the construction should be both reasonable and practical.

  19. Development of a unified viscoplasticity constitutive model based on classical plasticity theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The traditional unified viscoplasticity constitutive model can be only applied to metal materials.The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model,thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model.Moreover,this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method,which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials.The numerical simulation indicates that the construction should be both reasonable and practical.

  20. Theory for nucleation at an interface and magnetization reversal of a two-layer nanowire

    OpenAIRE

    Loxley, P.N.; Stamps, R. L.

    2006-01-01

    Nucleation at the interface between two adjoining regions with dissimilar physical properties is investigated using a model for magnetization reversal of a two-layer ferromagnetic nanowire. Each layer of the nanowire is considered to have a different degree of magnetic anisotropy, representing a hard magnetic layer exchange-coupled to a softer layer. A magnetic field applied along the easy axis causes the softer layer to reverse, forming a domain wall close to the interface. For small applied...

  1. Classical and quantum contents of solvable game theory on Hilbert space

    International Nuclear Information System (INIS)

    A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation

  2. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2010-11-01

    Full Text Available Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions, atmospheric nucleation was studied by (i developing and testing new air ion and cluster spectrometers, (ii conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii investigating atmospheric nucleation mechanism under field conditions, and (iv applying new theoretical and modelling tools for data interpretation and development of parameterisations. The current paper provides a synthesis of the obtained results and identifies the remaining major knowledge gaps related to atmospheric nucleation. The most important technical achievement of the project was the development of new instruments for measuring sub-3 nm particle populations, along with the extensive application of these instruments in both the laboratory and the field. All the results obtained during EUCAARI indicate that sulphuric acid plays a central role in atmospheric nucleation. However, also vapours other than sulphuric acid are needed to explain the nucleation and the subsequent growth processes, at least in continental boundary layers. Candidate vapours in this respect are some organic compounds, ammonia, and especially amines. Both our field and laboratory data demonstrate that the nucleation rate scales to the first or second power of the nucleating vapour concentration(s. This agrees with the few earlier field observations, but is in stark contrast with classical thermodynamic nucleation theories. The average formation rates of 2-nm particles were found to vary by almost two orders of magnitude between the different EUCAARI sites, whereas the formation rates of charged 2-nm particles varied very little between the sites. Overall, our observations are indicative of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger neutral nucleation events in the continental lower troposphere. The most concrete

  3. The Simulation of High Pressure Nucleation Experiments in Diffusion Cloud Chamber

    CERN Document Server

    Fisenko, Sergey P

    2007-01-01

    For high- pressure nucleation experiments in upward diffusion cloud chamber, there is the great deviation of predictions of classical nucleation theory from experimental results; the discrepancy is more than 10 orders of magnitude of nucleation rate. Experimental data for 1-propanol vapor are under investigation in this paper. It was shown that mathematical model of a single droplet growth and motion semi- quantitatively explained all experimentally discovered regularities. For explanations low nucleation rate versus high supersaturation, the coalescence mechanism in gaseous phase has been proposed. As result of coalescence the vast majority of newly formed clusters evaporate and restore vapor density and temperature profile in DCC. The observed picture with low nucleation rate is result of diffusion interaction between small clusters and droplets in nucleation zone for high- pressure nucleation experiments.

  4. a Classical Isodual Theory of Antimatter and its Prediction of Antigravity

    Science.gov (United States)

    Santilli, Ruggero Maria

    An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatment of matter and antimatter in due time, and as the classical foundations of an axiomatically consistent inclusion of gravitation in unified gauge theories recently appeared elsewhere, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with corresponding formulations at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also antiautomorphic (and more generally, antiisomorphic), yet it is applicable beginning at the classical level and then persists at the quantum level where it becomes equivalent to charge conjugation. We therefore present, apparently for the first time, the classical isodual theory of antimatter, we identify the physical foundations of the theory as being the novel isodual Galilean, special and general relativities, and we show the compatibility of the theory with all available classical experimental data on antimatter. We identify the classical foundations of the prediction of antigravity for antimatter in the field of matter (or vice-versa) without any claim on its validity, and defer its resolution to specifically identified experiments. We identify the novel, classical, isodual electromagnetic waves which are predicted to be emitted by antimatter, the so-called space-time machine based on a novel non-Newtonian geometric propulsion, and other implications of the theory. We also introduce, apparently for the first time, the isodual space and time inversions and show that they are nontrivially different than the conventional ones, thus

  5. Neo-classical theory of competition or Adam Smith's hand as mathematized ideology

    Science.gov (United States)

    McCauley, Joseph L.

    2001-10-01

    Orthodox economic theory (utility maximization, rational agents, efficient markets in equilibrium) is based on arbitrarily postulated, nonempiric notions. The disagreement between economic reality and a key feature of neo-classical economic theory was criticized empirically by Osborne. I show that the orthodox theory is internally self-inconsistent for the very reason suggested by Osborne: lack of invertibility of demand and supply as functions of price to obtain price as functions of supply and demand. The reason for the noninvertibililty arises from nonintegrable excess demand dynamics, a feature of their theory completely ignored by economists.

  6. Theory of linear physical systems theory of physical systems from the viewpoint of classical dynamics, including Fourier methods

    CERN Document Server

    Guillemin, Ernst A

    2013-01-01

    An eminent electrical engineer and authority on linear system theory presents this advanced treatise, which approaches the subject from the viewpoint of classical dynamics and covers Fourier methods. This volume will assist upper-level undergraduates and graduate students in moving from introductory courses toward an understanding of advanced network synthesis. 1963 edition.

  7. Phase-field Modeling of the Influence of Elastic Field on the Nucleation and Microstructure Evolution in Precipitation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-xiang; WANG Jin-cheng; YANG Yu-juan; YANG Gen-cang; ZHOU Yao-he

    2007-01-01

    A phase-field method was employed to study the influence of elastic field on the nucleation and microstructure evolution. Two kinds of nucleation process were considered: one using fixed nucleation probability and the other calculated from the classical nucleation theory. In the latter case, the simulated results show that the anisotropic elastic strain field yields significant effects on the behavior of nucleation. With a large lattice misfit between the matrixes and the precipitates, the nucleation process does not appear fully random but displays some spatial correlation and has a preference for the elastic soft direction. However, with a small lattice misfit, this bias does not look quite clean On the contrary, in the case of fixed nucleation probability, the elastic field has no influence on the nucleation process. The lattice mismatch also exerts influences on the microstructure morphology: with lattice mismatch becoming larger, the microstructure proves to align along the elastic soft direction.

  8. Uniting the Spheres: Modern Feminist Theory and Classic Texts in AP English

    Science.gov (United States)

    Drew, Simao J. A.; Bosnic, Brenda G.

    2008-01-01

    High school teachers Simao J. A. Drew and Brenda G. Bosnic help familiarize students with gender role analysis and feminist theory. Students examine classic literature and contemporary texts, considering characters' historical, literary, and social contexts while expanding their understanding of how patterns of identity and gender norms exist and…

  9. Anisotropic cosmology in S\\'aez-Ballester theory: classical and quantum solutions

    CERN Document Server

    Socorro, J; G., M A Sánchez; Palos, M G Frías

    2010-01-01

    We use the S\\'aez-Ballester theory on anisotropic Bianchi I cosmological model, with barotropic fluid and cosmological constant. We obtain the classical solution by using the Hamilton-Jacobi approach. Also the quantum regime is constructed and exact solutions to the Wheeler-DeWitt equation are found.

  10. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  11. Molecular dynamics simulations of bubble nucleation in dark matter detectors

    CERN Document Server

    Denzel, Philipp; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy di...

  12. A comparison of three classical analytical theories for the motion of artificial satellites

    Science.gov (United States)

    Gordon, R. A.; Mistreets, G. D.; Watson, J. S.

    1978-01-01

    Motivated by the heavy reliance upon the analytic orbit theory in orbit determination operations at the Goddard Space Flight Center (GSFC), a comparison study is performed for three classical analytical theories of artificial satellite motion about an oblate earth. The three analytical theories are: (1) Brouwer, (2) a modified Brouwer, i.e., Brouwer-Lyddane and Cohen, and (3) Vinti. Comparison results for each theory are produced for a number of representative satellites of current or past interest which proved amenable to analytic theory application. The uniformity of these results has significant implications for current and future mission operations and planning activities. Subsidiary topics arising from the results of this study which relate to the optimum usage of the individual theories are also discussed

  13. Nucleation and structural growth of cluster crystals

    CERN Document Server

    Leitold, Christian

    2016-01-01

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n=4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply-occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, w...

  14. Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.

    Science.gov (United States)

    Lei, Wenwen; McKenzie, David R

    2016-07-21

    Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks. PMID:27336652

  15. A New Conformal Theory of Semi-Classical Quantum General Relativity

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2007-10-01

    Full Text Available We consider a new four-dimensional formulation of semi-classical quantum general relativity in which the classical space-time manifold, whose intrinsic geometric properties give rise to the effects of gravitation, is allowed to evolve microscopically by means of a conformal function which is assumed to depend on some quantum mechanical wave function. As a result, the theory presented here produces a unified field theory of gravitation and (microscopic electromagnetism in a somewhat simple, effective manner. In the process, it is seen that electromagnetism is actually an emergent quantum field originating in some kind of stochastic smooth extension (evolution of the gravitational field in the general theory of relativity.

  16. Effective model hierarchies for dynamic and static classical density functional theories

    Energy Technology Data Exchange (ETDEWEB)

    Majaniemi, S [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11100, FI-00076 Aalto (Finland); Provatas, N [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S-4L7 (Canada); Nonomura, M, E-mail: maj@fyslab.hut.f [Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2010-09-15

    The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.

  17. Studying thin film damping in a micro-beam resonator based on non-classical theories

    Institute of Scientific and Technical Information of China (English)

    Mina Ghanbari; Siamak Hossainpour; Ghader Rezazadeh

    2016-01-01

    In this paper, a mathematical model is presented for studying thin film damping of the surrounding fluid in an in-plane oscillating micro-beam resonator. The proposed model for this study is made up of a clamped-clamped micro-beam bound between two fixed layers. The micro-gap between the micro-beam and fixed layers is filled with air. As classical theories are not properly capable of pre-dicting the size dependence behaviors of the micro-beam, and also behavior of micro-scale fluid media, hence in the presented model, equation of motion governing longitudinal displacement of the micro-beam has been extracted based on non-local elasticity theory. Furthermore, the fluid field has been modeled based on micro-polar theory. These coupled equations have been simplified using Newton-Laplace and continuity equations. After transforming to non-dimensional form and linearizing, the equations have been discretized and solved simultaneously using a Galerkin-based reduced order model. Considering slip boundary conditions and applying a complex frequency approach, the equivalent damping ratio and quality factor of the micro-beam resonator have been obtained. The obtained values for the quality factor have been compared to those based on classical theories. We have shown that applying non-classical theories underestimate the values of the quality factor obtained based on classical theo-ries. The effects of geometrical parameters of the micro-beam and micro-scale fluid field on the quality factor of the res-onator have also been investigated.

  18. Transition state theory description of surface self-diffusion: Comparison with classical trajectory results

    International Nuclear Information System (INIS)

    We have computed the surface self-diffusion constants on four different crystal faces [fcc(111), fcc(100), bcc(110), and bcc(211)] using classical transition state theory methods. These results can be compared directly with previous classical-trajectory results which used the same Lennard-Jones 6-12 potential and template model; the agreement is good, though dynamical effects are evident for the fcc(111) and bcc(110) surfaces. Implications are discussed for low-temperature diffusion studies, which are inaccessible to direct molecular dynamics, and the use of ab initio potentials rather than approximate pairwise potentials

  19. Verification and Invalidation of the Theory of Symplectic Manifold with Contact Degeneracies as Applied to the Classical Field Theory

    CERN Document Server

    Sokolov, Igor V

    2015-01-01

    A theory of Symplectic Manifold with Contact Degeneracies (SMCD) was developed in [Zot'ev,2007]. The symplectic geometry uses an anti-symmetric tensor (closed differential form) such as a field tensor used in the classical field theory. The SMCD theory studies degeneracies of such form. In [Zot'ev,2011] the SMCD theory was applied to study a front of an electromagnetic pulsed field propagating into a region with no field. Here, the result of [Zot'ev,2011] is compared with the problem solution obtained using the well-known method presented in Witham, G.B., Linear and nonlinear waves, 1974. It is shown that the SMCD theory prediction is not supported by the result obtained with the Witham method.

  20. Systematic method for unification of various field theories in a two-dimensional classical $\\phi^4$ field theory

    CERN Document Server

    Zarei, Mohammad Hossein

    2016-01-01

    Although creating a unified theory in Elementary Particles Physics is still an open problem, there are a lot of attempts for unifying other fields of physics. Following such unifications, we regard a two dimensional (2D) classical $\\Phi^{4}$ field theory model to study several field theories with different symmetries in various dimensions. While the completeness of this model has been already proved by a mapping between statistical mechanics and quantum information theory, here, we take into account a fundamental systematic approach with purely mathematical basis to re-derive such completeness in a general manner. Due to simplicity and generality, we believe that our method leads to a general approach which can be understood by other physical communities as well as quantum information theorists. Furthermore, our proof of the completeness is not only a proof-of-principle, but also an interesting algorithmic proof. We consider a discrete version of a general field theory as an arbitrary polynomial function of f...

  1. Ice nucleation by water-soluble macromolecules

    Science.gov (United States)

    Pummer, B. G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C. J.; Huber, R. G.; Liedl, K. R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C. E.; Wex, H.; Grothe, H.; Pöschl, U.; Koop, T.; Fröhlich-Nowoisky, J.

    2015-04-01

    Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models.

  2. Second order classical perturbation theory for the sticking probability of heavy atoms scattered on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Tapas; Pollak, Eli [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2015-08-14

    A second order classical perturbation theory is developed to calculate the sticking probability of a particle scattered from an uncorrugated thermal surface. An analytic expression for the temperature dependent energy loss of the particle to the surface is derived by employing a one-dimensional generalized Langevin equation. The surface temperature reduces the energy loss, since the thermal surface transfers energy to the particle. Using a Gaussian energy loss kernel and the multiple collision theory of Fan and Manson [J. Chem. Phys. 130, 064703 (2009)], enables the determination of the fraction of particles trapped on the surface after subsequent momentum reversals of the colliding particle. This then leads to an estimate of the trapping probability. The theory is tested for the model scattering of Ar on a LiF(100) surface. Comparison with numerical simulations shows excellent agreement of the analytical theory with simulations, provided that the energy loss is determined by the second order perturbation theory.

  3. Pseudo-classical transport in a sheared magnetic field: Theory and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nevins, W.M.; Harte, J.; Gell, Y.

    1979-11-01

    The cross-field transport due to the trapping of electrons in a finite amplitude wave (pseudo-classical transport) is investigated. Both finite wave frequencies and magnetic shear are included. The single particle orbit equations are solved to obtain the trapping criterion as well as the trapped particle orbit width and bounce frequency. Using a random walk model, the scaling of the pseudo-classical transport coefficients with the parameters of the plasma and wave are deduced. This scaling is employed to extend a previous calculation of the transport coefficients to include magnetic shear which is found to reduce these transport coefficients. Computer simulations of this transport process are presented. The measured transport rates are in very good agreement with the previous kinetic calculation in the absence of magnetic shear and with this extension of pseudo-classical transport theory which includes magnetic shear.

  4. From Classical Mechanics with Doubled Degrees of Freedom to Quantum Field Theory for Nonconservative System

    OpenAIRE

    Kuwahara, Y; Nakamura, Y; Yamanaka, Y

    2013-01-01

    The $2 \\times 2$-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [Phys. Rev. Lett. 110, 174301 (2013)]. We show that the Galley's Hamilto...

  5. Translation invariant theory of polaron (bipolaron) and the problem of quantizing near the classical solution

    Energy Technology Data Exchange (ETDEWEB)

    Lakhno, V. D., E-mail: lak@impb.psn.ru [Russian Academy of Sciences, Institute of Mathematical Problems of Biology (Russian Federation)

    2013-06-15

    A physical interpretation of translation-invariant polarons and bipolarons is presented, some results of their existence are discussed. Consideration is given to the problem of quantization in the vicinity of the classical solution in the quantum field theory. The lowest variational estimate is obtained for the bipolaron energy E({eta}) with E(0) = -0.440636{alpha}{sup 2}, where {alpha} is a constant of electron-phonon coupling, {eta} is a parameter of ion binding.

  6. Charged free fermions, vertex operators and the classical theory of conjugate nets

    International Nuclear Information System (INIS)

    We show that the quantum field theoretical formulation of the τ-function theory has a geometrical interpretation within the classical transformation theory of conjugate nets. In particular, we prove that (i) the partial charge transformations preserving the neutral sector are Laplace transformations, (ii) the basic vertex operators are Levy and adjoint Levy transformations and (iii) the diagonal soliton vertex operators generate fundamental transformations. We also show that the bilinear identity for the multicomponent Kadomtsev-Petviashvili hierarchy becomes, through a generalized Miwa map, a bilinear identity for the multidimensional quadrilateral lattice equations. (author)

  7. Charged free fermions, vertex operators and the classical theory of conjugate nets

    Energy Technology Data Exchange (ETDEWEB)

    Doliwa, Adam [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Warsaw (Poland); Manas, Manuel [Departamento de Matematica Aplicada y Estadistica, EUIT Aeronautica, Universidad Politecnica de Madrid, Madrid (Spain); Departamento de Fisica Teorica, Universidad Complutense, Madrid (Spain); Martinez Alonso, Luis; Medina, Elena [Departamento de Matematicas, Universidad de Cadiz, Cadiz (Spain); Santini, Paolo Maria [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Dipartimento di Fisica, Universita di Catania, Catania (Italy)

    1999-02-19

    We show that the quantum field theoretical formulation of the {tau}-function theory has a geometrical interpretation within the classical transformation theory of conjugate nets. In particular, we prove that (i) the partial charge transformations preserving the neutral sector are Laplace transformations, (ii) the basic vertex operators are Levy and adjoint Levy transformations and (iii) the diagonal soliton vertex operators generate fundamental transformations. We also show that the bilinear identity for the multicomponent Kadomtsev-Petviashvili hierarchy becomes, through a generalized Miwa map, a bilinear identity for the multidimensional quadrilateral lattice equations. (author)

  8. From classical mechanics with doubled degrees of freedom to quantum field theory for nonconservative systems

    Science.gov (United States)

    Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.

    2013-12-01

    The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [1]. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.

  9. From classical mechanics with doubled degrees of freedom to quantum field theory for nonconservative systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Y., E-mail: a.kuwahara1224@asagi.waseda.jp; Nakamura, Y., E-mail: nakamura@aoni.waseda.jp; Yamanaka, Y., E-mail: yamanaka@waseda.jp

    2013-12-09

    The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.

  10. Relativistic semi-classical theory of atom ionization in ultra-intense laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A relativistic semi-classical theory (RSCT) of H-atom ionizationin ultra-intense laser (UIL) is proposed. A relativistic analytical expression for ionization probability of H-atom in its ground state is given. This expression, compared with non-relativistic expression, clearly shows the effects of the magnet vector in the laser, the non-dipole approximation and the relativistic mass-energy relation on the ionization processes. At the same time, we show that under some conditions the relativistic expression reduces to the non-relativistic expression of non-dipole approximation. At last, some possible applications of the relativistic theory are briefly stated.

  11. Bubble nucleation in polymer–CO2 mixtures.

    Science.gov (United States)

    Xu, Xiaofei; Cristancho, Diego E; Costeux, Stéphane; Wang, Zhen-Gang

    2013-10-28

    We combine density-functional theory with the string method to calculate the minimum free energy path of bubble nucleation in two polymer–CO2 mixture systems, poly(methyl methacrylate) (PMMA)–CO2 and polystyrene (PS)–CO2. Nucleation is initiated by saturating the polymer liquid with high pressure CO2 and subsequently reducing the pressure to ambient condition. Below a critical temperature (Tc), we find that there is a discontinuous drop in the nucleation barrier as a function of increased initial CO2 pressure (P0), as a result of an underlying metastable transition from a CO2-rich-vapor phase to a CO2-rich-liquid phase. The nucleation barrier is generally higher for PS–CO2 than for PMMA–CO2 under the same temperature and pressure conditions, and both higher temperature and higher initial pressure are required to lower the nucleation barrier for PS–CO2 to experimentally relevant ranges. Classical nucleation theory completely fails to capture the structural features of the bubble nucleus and severely underestimates the nucleation barrier.

  12. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  13. Homotopy Theory of Probability Spaces I: Classical independence and homotopy Lie algebras

    CERN Document Server

    Park, Jae-Suk

    2015-01-01

    This is the first installment of a series of papers whose aim is to lay a foundation for homotopy probability theory by establishing its basic principles and practices. The notion of a homotopy probability space is an enrichment of the notion of an algebraic probability space with ideas from algebraic homotopy theory. This enrichment uses a characterization of the laws of random variables in a probability space in terms of symmetries of the expectation. The laws of random variables are reinterpreted as invariants of the homotopy types of infinity morphisms between certain homotopy algebras. The relevant category of homotopy algebras is determined by the appropriate notion of independence for the underlying probability theory. This theory will be both a natural generalization and an effective computational tool for the study of classical algebraic probability spaces, while keeping the same central limit. This article is focused on the commutative case, where the laws of random variables are also described in t...

  14. Investigations on nucleation thermodynamical parameters of NdBa2Cu3O7– (Nd123) crystallization by high temperature solution growth

    Indian Academy of Sciences (India)

    D P Paul; R Jayavel; C Subramanian; P Ramasamy

    2000-04-01

    Investigations on nucleation thermodynamical parameters are very essential for the successful growth of good quality single crystals from high temperature solution. A theoretical estimation of the nucleation thermodynamical parameters like interfacial energy between the solid Nd123 and its flux BaO–CuO, metastable zone-width, Gibbs free energy, critical energy barrier for nucleation and critical nucleation radius have been calculated from the knowledge of solubility data and by applying the classical nucleation theory. Results are discussed to understand the growth kinetics of Nd123 crystals.

  15. Direct Simulations of Homogeneous Bubble Nucleation: Agreement with CNT and no Local Hot Spots

    CERN Document Server

    Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-01-01

    We present results from direct, large-scale molecular dynamics (MD) simulations of homogeneous bubble (liquid-to-vapor) nucleation. The simulations contain half a billion Lennard-Jones (LJ) atoms and cover up to 56 million time-steps. The unprecedented size of the simulated volumes allows us to resolve the nucleation and growth of many bubbles per run in simple direct micro-canonical (NVE) simulations while the ambient pressure and temperature remain almost perfectly constant. We find bubble nucleation rates which are lower than in most of the previous, smaller simulations. It is widely believed that classical nucleation theory (CNT) generally underestimates bubble nucleation rates by very large factors. However, our measured rates are within two orders of magnitude of CNT predictions - only at very low temperatures does CNT underestimate the nucleation rate significantly. Introducing a small, positive Tolman length leads to very good agreement at all temperatures, as found in our recent vapor-to-liquid nucle...

  16. A High Order Theory for Linear Thermoelastic Shells: Comparison with Classical Theories

    Directory of Open Access Journals (Sweden)

    V. V. Zozulya

    2013-01-01

    Full Text Available A high order theory for linear thermoelasticity and heat conductivity of shells has been developed. The proposed theory is based on expansion of the 3-D equations of theory of thermoelasticity and heat conductivity into Fourier series in terms of Legendre polynomials. The first physical quantities that describe thermodynamic state have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby all equations of elasticity and heat conductivity including generalized Hooke's and Fourier's laws have been transformed to the corresponding equations for coefficients of the polynomial expansion. Then in the same way as in the 3D theories system of differential equations in terms of displacements and boundary conditions for Fourier coefficients has been obtained. First approximation theory is considered in more detail. The obtained equations for the first approximation theory are compared with the corresponding equations for Timoshenko's and Kirchhoff-Love's theories. Special case of plates and cylindrical shell is also considered, and corresponding equations in displacements are presented.

  17. Resonant Nucleation

    CERN Document Server

    Gleiser, M; Gleiser, Marcelo; Howell, Rafael

    2004-01-01

    We investigate the role played by fast quenching on the decay of metastable (or false vacuum) states. Instead of the exponentially-slow decay rate per unit volume, $\\Gamma_{\\rm HN} \\sim \\exp[-E_b/k_BT]$ ($E_b$ is the free energy of the critical bubble), predicted by Homogeneous Nucleation theory, we show that under fast enough quenching the decay rate is, in fact, a power law $\\Gamma_{\\rm RN} \\sim [E_b/k_BT]^{-B}$, where $B$ is weakly sensitive to the temperature. We argue that the fast quench generates large-amplitude fluctuations about the metastable state which promote its rapid decay via parametric resonance. Possible decay mechanisms and their dependence on $E_b$ are proposed and illustrated in a (2+1)-dimensional scalar field model with an asymmetric double-well potential.

  18. 六氨氯化镁初级成核研究%Primary nucleation of magnesium chloride hexammoniate

    Institute of Scientific and Technical Information of China (English)

    赵建海; 汪瑾; 宋兴福; 于建国

    2005-01-01

    Production of anhydrous magnesium chloride by dehydration of bischofite is one of the best ways to utilize the magnesium resource of salt lakes. Formation of magnesium chloride hexammoniate (MgC12·6NH3) is the critical step of the coupled reaction crystallization process, which is an attractive dehydration process. Primary nucleation of MgC12 · 6NH3 by reaction crystallization process was performed in this research. The induction period of MgC12 · 6NH3 primary nucleation was measured by the laser method, and classical theory of primary nucleation was used to quantify the nucleation process. When supersaturation ratio (S=C/C*) S>2, homogeneous nucleation occurred; when S<2, heterogeneous nucleation occurred. The relationships among critical free energy of nucleation, critical size of nucleus and supersaturation was obtained. Critical free energy and critical size of nucleus decreased with increasing supersaturation.

  19. Is That a Real Theory or Did You Just Make It Up? Teaching Classic Grounded Theory

    Directory of Open Access Journals (Sweden)

    Odis E. Simmons, Ph.D.

    2010-06-01

    Full Text Available The title of this paper was derived from an incident I observed some years ago while accompanying a highly talented musician-songwriter friend to a performance. During a break, an audience member approached him to compliment the last song he had performed. He had written both the music and the lyrics to the song, one of many he had written. The audience member queried, “Is that a real song, or did you just make it up?” A touch amused, and not knowing whether he should be flattered or insulted, he politely replied, “It is a real song and I made it up.”This episode puts in mind a similar attitude in the social sciences that Glaser and Strauss (1967 noted, in which a small number of ’theoretical capitalists’ originate what are considered to be “real” theories and others are relegated to the role of “proletariat” testers. The means by which these theorists derived their theories remained largely mysterious. Unleashing proletariat testers was one of the chief rationales behind Glaser and Strauss’ development of grounded theory. It brought a democratic option into the social sciences that enabled anyone who learned the methodology to generate theory. The democratic ethos of the methodology may also have inadvertently unleashed an abundance of aspiring remodelers of the methodology, who unfortunately have eroded its primary purpose—to generate theories that are fully grounded in data rather than speculation or ideology.

  20. Force-Field Functor Theory: Classical Force-Fields which Reproduce Equilibrium Quantum Distributions

    Directory of Open Access Journals (Sweden)

    Ryan eBabbush

    2013-10-01

    Full Text Available Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.

  1. Ice nucleation behaviour on sol-gel coatings with different surface energy and roughness.

    Science.gov (United States)

    Fu, Q T; Liu, E J; Wilson, P; Chen, Z

    2015-09-01

    In this paper, the ice nucleation temperatures of 10 μL water droplets on a series of sol-gel coatings with different roughness and surface energies were obtained using a customized automatic measurement system. Classical nucleation theory was then employed to explain the different icing behaviour on the coatings. It was found that the wetting mode at low temperatures is strongly correlated with the icing behavior of the droplets on the surfaces. Ice-phobic coatings can lower the icing temperature of the droplet on the surface by up to 6.9 °C compared with non-icephobic ones. Using classical nucleation theory, our results support some recent observations that the dominant nucleation sites are along the substrate-water-vapour three-phase contact line rather than at the substrate-water interface. PMID:26220055

  2. [A non-classical approach to medical practices: Michel Foucault and Actor-Network Theory].

    Science.gov (United States)

    Bińczyk, E

    2001-01-01

    The text presents an analysis of medical practices stemming from two sources: Michel Foucault's conception and the research of Annemarie Mol and John Law, representatives of a trend known as Actor-Network Theory. Both approaches reveal significant theoretical kinship: they can be successfully consigned to the framework of non-classical sociology of science. I initially refer to the cited conceptions as a version of non-classical sociology of medicine. The identity of non-classical sociology of medicine hinges on the fact that it undermines the possibility of objective definitions of disease, health and body. These are rather approached as variable social and historical phenomena, co-constituted by medical practices. To both Foucault and Mol the main object of interest was not medicine as such, but rather the network of medical practices. Mol and Law sketch a new theoretical perspective for the analysis of medical practices. They attempt to go beyond the dichotomous scheme of thinking about the human body as an object of medical research and the subject of private experience. Research on patients suffering blood-sugar deficiency provide the empirical background for the thesis of Actor-Network Theory representatives. Michel Foucault's conceptions are extremely critical of medical practices. The French researcher describes the processes of 'medicalising' Western society as the emergence of a new type of power. He attempts to sensitise the reader to the ethical dimension of the processes of medicalising society.

  3. Unified field theory from the classical wave equation: Preliminary application to atomic and nuclear structure

    Science.gov (United States)

    Múnera, Héctor A.

    2016-07-01

    It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger's first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich's unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.

  4. The quench map in an integrable classical field theory: nonlinear Schrödinger equation

    Science.gov (United States)

    Caudrelier, Vincent; Doyon, Benjamin

    2016-11-01

    We study the non-equilibrium dynamics obtained by an abrupt change (a quench) in the parameters of an integrable classical field theory, the nonlinear Schrödinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the quench map which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux–Bäcklund transformations, Gelfand–Levitan–Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the quantization of our classical approach to the quantum quench problem.

  5. Motion in classical field theories and the foundations of the self-force problem

    CERN Document Server

    Harte, Abraham I

    2014-01-01

    This article serves as a pedagogical introduction to the problem of motion in classical field theories. The primary focus is on self-interaction: How does an object's own field affect its motion? General laws governing the self-force and self-torque are derived using simple, non-perturbative arguments. The relevant concepts are developed gradually by considering motion in a series of increasingly complicated theories. Newtonian gravity is discussed first, then Klein-Gordon theory, electromagnetism, and finally general relativity. Linear and angular momenta as well as centers of mass are defined in each of these cases. Multipole expansions for the force and torque are then derived to all orders for arbitrarily self-interacting extended objects. These expansions are found to be structurally identical to the laws of motion satisfied by extended test bodies, except that all relevant fields are replaced by effective versions which exclude the self-fields in a particular sense. Regularization methods traditionally ...

  6. Thermal flucatuations in a classical theory with shape degrees of freedom for heavy ion collisions

    Science.gov (United States)

    Samaddar, S. K.; Sperber, D.; Zielińska-Pfabe, M.; Sobel, M. I.; Garpman, S. I.

    1981-02-01

    We use a classical dynamical theory with shape degrees of freedom to describe deep inelastic scattering of heavy ions, and include thermal fluctuations by means of the Fokker-Planck equation. The degrees of freedom allow for neck formation, mass transfer, and stretching of the two-nucleus system. Inertias are calculated for these degrees of freedom, and dissipative and conservative forces are used. Fluctuations are calculated by considering the second moments of the distribution and determining a temperature from the excitation energy at each time. We calculate distributions in final energy, angle, charge, and mass, including some double differential cross sections. Results are in good agreement with data. NUCLEAR REACTIONS Classical dynamical model, shape degrees of freedom, Fokker-Planck equation, thermal fluctuations; angular, energy, mass, and charge distributions are calculated for the reactions 209Bi + 84Kr, 209Bi + 136Xe, and 197Au + 63Cu.

  7. Quantum epistemology from subquantum ontology: quantum mechanics from theory of classical random fields

    CERN Document Server

    Khrennikov, Andrei

    2016-01-01

    The scientific methodology based on two descriptive levels, ontic (reality as it is ) and epistemic (observational), is briefly presented. Following Schr\\"odinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be inaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity - the quantum state ("wave function"). The correspondence PCSFT to QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and th...

  8. In Situ Investigations into CaCO3 Nucleation

    Science.gov (United States)

    Nielsen, Michael Harold

    Classical theories of nucleation were developed over a hundred years ago starting with Gibbs. However, much remains unknown about the process of phase transition in aqueous electrolyte solutions due to the lack of experimental tools able to probe dynamic processes at the time and length scales of the phase transformation. In the calcium carbonate system, recent discovery of an amorphous phase, as well as the suggested existence of potential precursor states such as so-called 'pre-nucleation clusters' or dense liquid droplets, has called into question the utility of the classical framework in making accurate predictions of nucleation. Added to these questions are those regarding the effects that chemical templates have on nucleating calcium carbonate. Many organisms use complex organic matrices to form architecturally complex functional structures out of sea water at ambient temperatures. By contrast, laboratory methods to materials synthesis often require extreme conditions yet maintain at best a low level of control over the development of the resulting material. With the goal of tightly controlling formation of functional materials, scientists have looked to such biomineral systems for inspiration. Self-assembled monolayers (SAMs) of functionalized alkanethiols have been found to act as idealized chemical templates for calcium carbonate nucleation, controlling the nucleating plane of the calcite phase for many surface functionalities. Yet there remain many open questions as to the fundamental mechanisms by which these templates achieve this control. In this dissertation many investigations of calcium carbonate nucleation are discussed, which examine the nucleation pathways of calcium carbonate and mechanisms of control by which alkanethiol surfaces direct the oriented formation of calcite. Traditional in situ microscopy techniques are used to make nucleation rate measurements of templated calcite nucleation on alkanethiol SAMs to test the applicability of the

  9. The Postmodern Turn: Shall Classic Grounded Theory Take That Detour? A Review Essay

    Directory of Open Access Journals (Sweden)

    Vivian B. Martin, PhD

    2006-06-01

    Full Text Available Adherents to classic grounded theory have gotten used to spotting the pretenders working under the grounded theory banner. Some of these faux-GT researchers have worked in a fog, misunderstanding fundamentals of the method; these are the studies that leave us shaking our heads and wondering about the doctoral committee and peer reviewers who did not bother to find out more about the method they were evaluating. More infuriating are the authors who are claiming to improve on grounded theory, to reground it, to quote one notable British author who, lack of handson grounded theory experience aside, manages a booklength critique of the method. Two recent books in the“remaking grounded theory” genre are from sociologists with some years of grounded theory projects behind them. Adele E. Clarke, author of Situational Analysis, was a student and colleague of Anselm L. Strauss at the University of California San Francisco. Kathy Charmaz, author of Constructing Grounded Theory, is among the few grounded theorists who studied with Barney G. Glaser and Strauss at UCSF.

  10. Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving

    CERN Document Server

    Kerner, Boris S

    2016-01-01

    In a mini-review [Physica A {\\bf 392} (2013) 5261--5282] it has been shown that classical traffic flow theories and models failed to explain empirical traffic breakdown -- a phase transition from metastable free flow to synchronized flow at highway bottlenecks. The main objective of this mini-review is to study the consequence of this failure of classical traffic-flow theories for an analysis of empirical stochastic highway capacity as well as for the effect of automatic driving vehicles and cooperative driving on traffic flow. To reach this goal, we show a deep connection between the understanding of empirical stochastic highway capacity and a reliable analysis of automatic driving vehicles in traffic flow. With the use of simulations in the framework of three-phase traffic theory, a probabilistic analysis of the effect of automatic driving vehicles on a mixture traffic flow consisting of a random distribution of automatic driving and manual driving vehicles has been made. We have found that the parameters o...

  11. Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving

    Science.gov (United States)

    Kerner, Boris S.

    2016-05-01

    In a mini-review Kerner (2013) it has been shown that classical traffic flow theories and models failed to explain empirical traffic breakdown - a phase transition from metastable free flow to synchronized flow at highway bottlenecks. The main objective of this mini-review is to study the consequence of this failure of classical traffic-flow theories for an analysis of empirical stochastic highway capacity as well as for the effect of automatic driving vehicles and cooperative driving on traffic flow. To reach this goal, we show a deep connection between the understanding of empirical stochastic highway capacity and a reliable analysis of automatic driving vehicles in traffic flow. With the use of simulations in the framework of three-phase traffic theory, a probabilistic analysis of the effect of automatic driving vehicles on a mixture traffic flow consisting of a random distribution of automatic driving and manual driving vehicles has been made. We have found that the parameters of automatic driving vehicles can either decrease or increase the probability of the breakdown. The increase in the probability of traffic breakdown, i.e., the deterioration of the performance of the traffic system can occur already at a small percentage (about 5%) of automatic driving vehicles. The increase in the probability of traffic breakdown through automatic driving vehicles can be realized, even if any platoon of automatic driving vehicles satisfies condition for string stability.

  12. Bohr's correspondence principle in quantum field theory and classical renormalization scheme: the Nelson model

    OpenAIRE

    AMMARI, Zied; Falconi, Marco

    2016-01-01

    In the mid Sixties Edward Nelson proved the existence of a consistent quantum field theory that describes the Yukawa-like interaction of a non-relativistic nucleon field with a relativistic meson field. Since then it is thought, despite the renormalization procedure involved in the construction, that the quantum dynamics should be governed in the classical limit by a Schr\\"odinger-Klein-Gordon system with Yukawa coupling. In the present paper we prove this fact in the form of a Bohr correspon...

  13. Eigenfunctions for Liouville Operators, Classical Collision Operators, and Collision Bracket Integrals in Kinetic Theory

    OpenAIRE

    Eu, Byung Chan

    2010-01-01

    In the kinetic theory of dense fluids the many-particle collision bracket integral is given in terms of a classical collision operator defined in the phase space. To find an algorithm to compute the collision bracket integrals, we revisit the eigenvalue problem of the Liouville operator and re-examine the method previously reported[Chem. Phys. 20, 93(1977)]. Then we apply the notion and concept of the eigenfunctions of the Liouville operator and knowledge acquired in the study of the eigenfun...

  14. The Energy-Momentum Tensor(s) in Classical Gauge Theories

    CERN Document Server

    Blaschke, Daniel N; Reboud, Meril; Schweda, Manfred

    2016-01-01

    We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. The relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.

  15. Redundancy of constraints in the classical and quantum theories of gravitation.

    Science.gov (United States)

    Moncrief, V.

    1972-01-01

    It is shown that in Dirac's version of the quantum theory of gravitation, the Hamiltonian constraints are greatly redundant. If the Hamiltonian constraint condition is satisfied at one point on the underlying, closed three-dimensional manifold, then it is automatically satisfied at every point, provided only that the momentum constraints are everywhere satisfied. This permits one to replace the usual infinity of Hamiltonian constraints by a single condition which may be taken in the form of an integral over the manifold. Analogous theorems are given for the classical Einstein Hamilton-Jacobi equations.

  16. Two-Component Theory of Classical Proca Fields in Curved Spacetimes with Torsionless Affinities

    Science.gov (United States)

    Santos Júnior, S. I.; Cardoso, J. G.

    2016-04-01

    The world formulation of the full theory of classical Proca fields in generally relativistic spacetimes is reviewed. Subsequently the entire set of field equations is transcribed in a straightforward way into the framework of one of the Infeld-van der Waerden formalisms. Some well-known calculational techniques are then utilized for deriving the wave equations that control the propagation of the fields allowed for. It appears that no interaction couplings between such fields and electromagnetic curvatures are ultimately carried by the wave equations at issue. What results is, in effect, that the only interactions which occur in the theoretical context under consideration involve strictly Proca fields and wave functions for gravitons.

  17. Investigation of the Heterogeneous Nucleation on Fractal Surfaces

    Institute of Scientific and Technical Information of China (English)

    Meng Wang; Ying Zhang; Haoyong Zheng; Xin Lin; Weidong Huang

    2012-01-01

    Classical theory of heterogeneous nucleation has been developed with an implied hypothesis of smooth substrate surfaces; however, morphologies of any real substrate surfaces are generally complicated and demonstrate fractal characteristics. In this paper, the wettability between the embryo and the fractal substrate surface was discussed, and heterogeneous nucleation behaviors were theoretically analyzed. The result shows that the roughness factor of a fractal surface varies with the scale of the embryo. As a result, the fractal character of the substrate surface has important effects on heterogeneous nucleation behaviors. It has been shown that the energy barrier for heterogeneous nucleation of a non-wetting phase on a fractal rough surface increases with increasing fractal dimensions, and both the critical nucleus radius and the nucleation energy barrier decrease with increasing fractal dimensions for heterogeneous nucleation of a wetting phase on the fractal rough surface. For a non-wetting system, the critical nucleus radius shows a slight shift with changes of the intrinsic wetting angle, but for a wetting system, the critical nucleus radius shows an obvious change with decreasing intrinsic wetting angle, thus imposes a stronger effect on the heterogeneous nucleation behaviors.

  18. Peridynamic theory of solids from the perspective of classical statistical mechanics

    Science.gov (United States)

    Rahman, R.; Foster, J. T.

    2015-11-01

    In this paper the classical statistical mechanics has been explored in order to develop statistical mechanical framework for peridynamics. Peridynamic equation of motion is known as upscaled Newton's equation. The peridynamic system consists of finite number of nonlocally interacting particles at nano and meso scales. This particle representation of peridynamics can be treated in terms of classical statistical mechanics. Hence, in this work the phase space is constructed based on the PD particle from their evolving momentum pi and positions xi. The statistical ensembles are derived by defining appropriate partition functions. The algorithms for NVE and NPH implemented in the classical molecular dynamics are revisited for equilibrium peridynamic models. The current work introduces Langevin dynamics to the peridynamic theory through fluctuation-dissipation principle. This introduces a heat bath to the peridynamic system which eliminates the ambiguity with the role of temperature in a peridynamic system. Finally, it was seen that the homogenization of a peridynamic model with finite number of particles approaches to a conventional continuum model. The upscaled non-equilibrium peridynamics has potential applications in modeling wide variety of multiscale-multiphysics problems from nano to macro scale or vice versa.

  19. Classical density functional theory & simulations on a coarse-grained model of aromatic ionic liquids.

    Science.gov (United States)

    Turesson, Martin; Szparaga, Ryan; Ma, Ke; Woodward, Clifford E; Forsman, Jan

    2014-05-14

    A new classical density functional approach is developed to accurately treat a coarse-grained model of room temperature aromatic ionic liquids. Our major innovation is the introduction of charge-charge correlations, which are treated in a simple phenomenological way. We test this theory on a generic coarse-grained model for aromatic RTILs with oligomeric forms for both cations and anions, approximating 1-alkyl-3-methyl imidazoliums and BF₄⁻, respectively. We find that predictions by the new density functional theory for fluid structures at charged surfaces are very accurate, as compared with molecular dynamics simulations, across a range of surface charge densities and lengths of the alkyl chain. Predictions of interactions between charged surfaces are also presented. PMID:24718295

  20. Personality as continuous stochastic process: what Western personality theory can learn from classical confucianism.

    Science.gov (United States)

    Giordano, Peter J

    2014-06-01

    An important objective of personality psychology is to provide compelling descriptions and explanations of intraindividual personality dynamics that capture the unique qualities of persons. Among contemporary Western personality theories, the Five-Factor Model enjoys prominence in describing individual differences in personality traits. It falls short, however, in its ability to work with intraindividual personality function. This article argues that classical Confucianism, originating 2500 years ago in mainland China, offers Western personality psychologists important theoretical resources for capturing the complex and dynamic processes inherent in human personality. The Confucian perspective emphasizes a behaviorally anchored, continuous, stochastic, process-oriented understanding of the self as relationally constructed and proposes an elegant description of the relational virtuosity of exemplary persons. The article concludes with five characteristics of a Confucian inspired model of personality and questions the viability of a universal theory of personality. PMID:24101234

  1. A semi-classical theory of multi-step nuclear reaction processes

    International Nuclear Information System (INIS)

    The master equation theory of precompound and compound nuclear reaction has been generalized to the inclusion of the conservation of angular momentum and parity. This improved semi-classical theory has been extended for application as an evaluation tool of the calculations of nucleon induced reaction cross sections and double differential cross sections. For structural materials at incident neutron energies below 20 MeV, it is demonstrated that the constructed model contains the Hauser-Feshbach, Weisskopf-Ewing as well as the exciton models as limiting cases. The unified treatment of pre-equilibrium processes includes a number of interesting features, such as the exciton state densities with the exact Pauli exclusion correction which are renormalized to the back-shifted Fermi-gas formula; the introduction of formation factors of composite particle in calculations of pick-up type composite particle emission and the double differential cross sections for all kinds of particles in terms of the leading particle model

  2. Particle creation, classicality and related issues in quantum field theory: I. Formalism and toy models

    CERN Document Server

    Mahajan, Gaurang

    2007-01-01

    The quantum theory of a harmonic oscillator with a time dependent frequency arises in several important physical problems, especially in the study of quantum field theory in an external background. While the mathematics of this system is straightforward, several conceptual issues arise in such a study. We present a general formalism to address some of the conceptual issues like the emergence of classicality, definition of particle content, back reaction etc. In particular, we parametrize the wave function in terms of a complex number (which we call excitation parameter) and express all physically relevant quantities in terms it. Many of the notions -- like those of particle number density, effective Lagrangian etc., which are usually defined using asymptotic in-out states -- are generalized as time-dependent concepts and we show that these generalized definitions lead to useful and reasonable results. Having developed the general formalism we apply it to several examples. Exact analytic expressions are found ...

  3. Vacuum-to-vacuum transition probability and the classic radiation theory

    International Nuclear Information System (INIS)

    Using the fact that the vacuum-to-vacuum transition probability for the interaction of the Maxwell field Aμ(x) with a given current Jμ(x) represents the probability of no photons emitted by the current of a Poisson distribution, the average number of photons emitted of given energies for the underlying distribution is readily derived. From this the classical power of radiation of Schwinger of a relativistic charged particle follows. - Highlights: • Quantum viewpoint of radiation theory based on the vacuum-to-transition probabilities. • Mathematical method in handling radiation for extended and point sources. • Radiated energy and power for arbitrary source distribution obtained from the above. • Explicit power of radiation for point relativistic sources from the general theory

  4. Axiomatics of classical electrodynamics and its relation to gauge field theory

    CERN Document Server

    Gronwald, F; Nitsch, J; Gronwald, Frank; Hehl, Friedrich W.

    2005-01-01

    We give a concise axiomatic introduction into the fundamental structure of classical electrodynamics: It is based on electric charge conservation, the Lorentz force, magnetic flux conservation, and the existence of local and linear constitutive relations. The {\\it inhomogeneous} Maxwell equations, expressed in terms of $D^i$ and $H_i$, turn out to be a consequence of electric charge conservation, whereas the {\\it homogeneous} Maxwell equations, expressed in terms of $E_i$ and $B^i$, are derived from magnetic flux conservation and special relativity theory. The excitations $D^i$ and $H_i$, by means of constitutive relations, are linked to the field strengths $E_i$ and $B^i$. Eventually, we point out how this axiomatic approach is related to the framework of gauge field theory.

  5. Corporate social responsibility and the classical theory of the firm: Are both theories irreconcilable?

    Directory of Open Access Journals (Sweden)

    Jesús García-de-Madariaga

    2011-10-01

    Full Text Available There has been a lot of discussion about corporate social responsibility (CSR during these last decades. Neoclassical authors support the idea that CSR is not compatible with the objective of profit maximization, and defenders of CSR argue that, in these times of globalization and network economies, the idea of a company managed just to meet shareholders’ interests does not support itself. However, beyond this discussion, how can CSR affect firms’ market value? If we found a positive relationship between these variables, we could conclude that the two theories are reconcilable and the objective of profit maximization, perhaps, should satisfy not only shareholders’ interests, but also stakeholders’. We review previous literature and propose a model to analyze how CSR affects firms’ market value.

  6. The Quench Map in an Integrable Classical Field Theory: Nonlinear Schr\\"odinger Equation

    CERN Document Server

    Caudrelier, Vincent

    2016-01-01

    We study the non-equilibrium dynamics obtained by an abrupt change (a {\\em quench}) in the parameters of an integrable classical field theory, the nonlinear Schr\\"odinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the {\\em quench map} which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux-B\\"acklund transformations, Gelfand-Levitan-Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the ...

  7. Quantum theory of an electromagnetic observer: classically behaving macroscopic systems and emergence of classical world in quantum electrodynamics

    OpenAIRE

    Plimak, L. I.; Ivanov, Misha; Aiello, A.; Stenholm, S.

    2015-01-01

    Quantum electrodynamics under conditions of distinguishability of interacting matter entities, and of controlled actions and back-actions between them, is considered. Such "mesoscopic quantum electrodynamics" is shown to share its dynamical structure with the classical stochastic electrodynamics. In formal terms, we demonstrate that all general relations of the mesoscopic quantum electrodynamics may be recast in a form lacking Planck's constant. Mesoscopic quantum electrodynamics is therefore...

  8. On divacancy and di-interstitial roles in the theory of homogeneous nucleation of radiation-induced porosity in metals

    International Nuclear Information System (INIS)

    The system of stiff nonlinear differential equations describing the kinetics of vacancy voids and interstitial dislocation loops nucleation and growth in pure metal (nickel) is solved with the high mobilities of divacances and diinterstitials taken into account. The calculated time dependences of void nucleation rate are presented and discussed, the dependences of other values calculated are briefly described. It is shown that the account of di-defects mobility results in significant increase of void nucleation rate. However, the rates obtained are not high enough to meet the void concentrations usually observed at highest temperatures of void formations. 13 refs.; 1 fig.; 1 tab

  9. Relativistic and nonrelativistic classical field theory on fivedimensional space-time

    International Nuclear Information System (INIS)

    This paper is a sequel to earlier ones in which, on the one hand, classical field theories were described on a curved Newtonian space-time, and on the other hand, the Newtonian gravitation theory was formulated on a fivedimensional space-time with a metric of signature and a covariantly constant vector field. Here we show that Lagrangians for matter fields are easily formulated on this extended space-time from simple invariance arguments and that stress-energy tensors can be derived from them in the usual manner so that four-dimensional space-time expressions are obtained that are consistent in the relativistic as well as in the Newtonian case. In the former the theory is equivalent to General Relativity. When the magnitude of the distinguished vector field vanishes equations for the (covariant) Newtonian limit follow. We demonstrate this here explicity in the case of the Klein-Gordon/Schroedinger and the Dirac field and its covariant nonrelativistic analogue, the Levy-Leblond field. Especially in the latter example the covariant Newtonian theory simplifies dramatically in this fivedimensional form

  10. The KAM story a friendly introduction to the content, history, and significance of classical Kolmogorov-Arnold-Moser theory

    CERN Document Server

    Dumas, H Scott

    2014-01-01

    This is a semi-popular mathematics book aimed at a broad readership of mathematically literate scientists, especially mathematicians and physicists who are not experts in classical mechanics or KAM theory, and scientific-minded readers. Parts of the book should also appeal to less mathematically trained readers with an interest in the history or philosophy of science. The scope of the book is broad: it not only describes KAM theory in some detail, but also presents its historical context (thus showing why it was a 'breakthrough'). Also discussed are applications of KAM theory (especially to celestial mechanics and statistical mechanics) and the parts of mathematics and physics in which KAM theory resides (dynamical systems, classical mechanics, and Hamiltonian perturbation theory). Although a number of sources on KAM theory are now available for experts, this book attempts to fill a long-standing gap at a more descriptive level. It stands out very clearly from existing publications on KAM theory because it ...

  11. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations.

    Science.gov (United States)

    Sosso, Gabriele C; Chen, Ji; Cox, Stephen J; Fitzner, Martin; Pedevilla, Philipp; Zen, Andrea; Michaelides, Angelos

    2016-06-22

    The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments. PMID:27228560

  12. Nucleation behavior of melted Bi films at cooling rates from 101 to 104 K/s studied by combining scanning AC and DC nano-calorimetry techniques

    International Nuclear Information System (INIS)

    Highlights: • We proposed a general data reduction scheme that combines scanning AC and DC calorimetry results for the study of reaction kinetics. • Calorimetry measurements at cooling rates ranging from 30 K/s to 20,000 K/s were achieved. • Upon initial melting, the Bi thin-film sample breaks up into thousands of isolated islands, and highly repeatable nucleation behavior is observed. • The nucleation rate of melted Bi is calculated, which can be well described by classical nucleation theory over a wide range of cooling rates. - Abstract: We study the nucleation behavior of undercooled liquid Bi at cooling rates ranging from 101 to 104 K/s using a combination of scanning DC and AC nano-calorimetry techniques. Upon initial melting, the Bi thin-film sample breaks up into silicon nitride-coated isolated islands. The number of islands in a typical sample is sufficiently large that highly repeatable nucleation behavior is observed, despite the stochastic nature of the nucleation process. We establish a data reduction technique to evaluate the nucleation rate from DC and AC calorimetry results. The results show that the driving force for the nucleation of melted Bi is well described by classical nucleation theory over a wide range of cooling rates. The proposed technique provides a unique and efficient way to examine nucleation kinetics with cooling rates over several orders of magnitude. The technique is quite general and can be used to evaluate reaction kinetics in other materials

  13. Homogeneous condensation - Freezing nucleation rate measurements for small water droplets in an expansion cloud chamber

    Science.gov (United States)

    Hagen, D. E.; Anderson, R. J.; Kassner, J. L., Jr.

    1981-01-01

    Experimental data on ice nucleation, presented in an earlier paper, are analyzed to yield information about the homogeneous nucleation rate of ice from supercooled liquid and the heights of energy barriers to that nucleation. The experiment consisted of using an expansion cloud chamber to nucleate from the vapor a cloud of supercooled pure water drops and the observation of the fraction of drops which subsequently froze. The analysis employed standard classical homogeneous nucleation theory. The data are used to extract the first experimental measurement (albeit indirect) of the activation energy for the transfer of a water molecule across the liquid-ice interface at temperatures near -40 C. The results provide further evidence that the local liquid structure becomes more icelike as the temperature is lowered.

  14. ANALYSIS OF THE RESPONSE OF A LAMINATE TO IMPOSED FORCES USING CLASSICAL LAMINATION THEORY AND FINITE ELEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    N.K.Chhapkhane

    2013-07-01

    Full Text Available The laminate is a two or more lamina bonded together to act as an integral structural element. The laminae are combined to create a laminate. Classical lamination theory consists of a collection of mechanics of materials type of stress and deformation hypothesis. By use of classical lamination theory we can consistently proceed directly from the basic building block, the lamina, to the end result, a structural laminate. The classical lamination theory is very important in analysis of laminate because it will predict the stresses, strains, forces and moments relationships with reasonable accuracy. The composite materials are widely used in military aircraft, civil aircraft, space and automobile applications. ANSYS 11software is used for analysis of composite laminate. First order shear stress deformation theory is used for the analysis of laminate in finite element technique.

  15. Self psychology as a shift away from the paranoid strain in classical analytic theory.

    Science.gov (United States)

    Terman, David M

    2014-12-01

    Classical psychoanalytic theory has a paranoid strain. There is, in effect, an "evil other"--the id--within each individual that must be tamed in development and confronted and worked through as resistance in treatment. This last has historically endgendered an adversarial relationship between patient and analyst. This paranoid strain came from a paranoid element in Freud's personality that affected his worldview, his relationships, and his theory. Self psychology offers a different view of development and conflict. It stresses the child's need for responsiveness from and admiration of caretakers in order to develop a well-functioning self. Though severe behavioral and character problems may result from faults in the process of self-construction, the essential need is not instinctual discharge but connection. Hence the long-assumed opposition between individual needs and social institutions or between patient and analyst is no longer inevitable or universal. Rather, an understanding of the primary need for connection creates both a different interpretive stance and a more cooperative ambience. These changes in theory and technique are traced to Kohut's personal struggles to emancipate himself from his paranoid mother. PMID:25339303

  16. Numerical study of chiral plasma instability within the classical statistical field theory approach

    Science.gov (United States)

    Buividovich, P. V.; Ulybyshev, M. V.

    2016-07-01

    We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.

  17. Hydration of Clays at the Molecular Scale: The Promising Perspective of Classical Density Functional Theory

    CERN Document Server

    Jeanmairet, Guillaume; Levesque, Maximilien; Rotenberg, Benjamin; Borgis, Daniel

    2014-01-01

    We report here how the hydration of complex surfaces can be efficiently studied thanks to recent advances in classical molecular density functional theory. This is illustrated on the example of the pyrophylite clay. After presenting the most recent advances, we show that the strength of this implicit method is that (i) it is in quantitative or semi-quantitative agreement with reference all-atoms simulations (molecular dynamics here) for both the solvation structure and energetics, and that (ii) the computational cost is two to three orders of magnitude less than in explicit methods. The method remains imperfect, in that it locally overestimates the polarization of water close to hydrophylic sites of the clay. The high numerical efficiency of the method is illustrated and exploited to carry a systematic study of the electrostatic and van der Waals components of the surface-solvant interactions within the most popular force field for clays, CLAYFF. Hydration structure and energetics are found to weakly depend u...

  18. Kinetic theory of the shear viscosity of a strongly coupled classical one-component plasma

    International Nuclear Information System (INIS)

    We present an approximation to the linearized collision operator or memory function of the exact kinetic equation obeyed by the correlation function of the phase-space density of a classical one-component plasma. This approximate collision operator generalizes the well known Balescu-Guernsey-Lenard (BGL) operator to finite wavelengths, finite frequencies, and finite coupling constants. It, moreover, satisfies the necessary symmetry relations, leads to appropriate conservation laws, and fulfills its first sum rule exactly. Next we use this operator to compute the shear viscosity eta for a series of coupling constants spanning the whole fluid phase. For weak coupling we make contact with the BGL theory, while for strong coupling we confirm, at least qualitatively, the results of Vieillefosse and Hansen, who predicted a minimum in eta as a function of temperature. We also demonstrate the important role played by the sum rules in the quantitative evaluation of a transport coefficient such as eta

  19. Classical solutions in quantum field theory solitons and instantons in high energy physics

    CERN Document Server

    Weinberg, Erick J

    2012-01-01

    Classical solutions play an important role in quantum field theory, high energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on ...

  20. Classical and quantum theory of the massive spin-two field

    Science.gov (United States)

    Koenigstein, Adrian; Giacosa, Francesco; Rischke, Dirk H.

    2016-05-01

    In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz-Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincaré group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark-antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers JPC =2-+ is, to our knowledge, given here for the first time.

  1. Classical and quantum theory of the massive spin-two field

    CERN Document Server

    Koenigstein, Adrian; Rischke, Dirk H

    2015-01-01

    In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz-Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincar\\'{e} group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark-antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers $J^{PC}=2^{-+}$ is, to our knowledge, given here for the first time.

  2. Gauge bridges in classical field theory; Eichbruecken in der klassischen Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Jakobs, S.

    2009-03-15

    In this thesis Poisson structures of two classical gauge field theories (Maxwell-Klein-Gordon- and Maxwell-Dirac-system) are constructed using the parametrix construction of Green's functions. Parametrices for the Maxwell-Klein-Gordon- and Maxwell-Dirac-system are constructed in Minkowski space and this construction is later generalized to curved space times for the Maxwell-Klein-Gordon-system. With these Green's functions Poisson brackets will be defined as Peierls brackets. Finally non-local, gauge invariant observables, the so-called 'gauge bridges'are constructed. Gauge bridges are the matrix elements of holonomy operators. It is shown, that these emerge from Poisson brackets of local, gauge invariant observables. (orig.)

  3. Measuring Student Involvement: A Comparison of Classical Test Theory and Item Response Theory in the Construction of Scales from Student Surveys

    Science.gov (United States)

    Sharkness, Jessica; DeAngelo, Linda

    2011-01-01

    This study compares the psychometric utility of Classical Test Theory (CTT) and Item Response Theory (IRT) for scale construction with data from higher education student surveys. Using 2008 Your First College Year (YFCY) survey data from the Cooperative Institutional Research Program at the Higher Education Research Institute at UCLA, two scales…

  4. Heterogeneous nucleation on surfaces of the ellipsoid of rotation

    Science.gov (United States)

    Li, Xiang-Ming; Liu, Qing-Hui

    2016-08-01

    This paper focusses on the heterogeneous nucleation on the surface with the non-constant curvature. The formation of a spherical nucleus on the ellipsoid of rotation is considered. Following the classical nucleation theory, the work of formation of a critical nucleus on the ellipsoid of rotation has been given, and the effects of geometry sizes and the material properties of the ellipsoid of rotation on the work of formation of a critical nucleus have been obtained. When the geometry size of the substrate is about value of the critical nucleus radius, there may exist twice nucleation on the ellipsoid of rotation for the case of the smaller value of λ and ϕ rotational ellipsoid is more easy than on the spherical surface, while nucleation on the prolate ellipsoid of rotation is more difficult than on the spherical surface. Furthermore, if the particles of the ellipsoid are added into the parent phase as nucleation agents or catalysts, for some geometry sizes, they would not have the effects on the heterogeneous nucleation.

  5. Classification and Properties of Solutions for the System of Equations of Classical Electrode Effect Theory

    Science.gov (United States)

    Kalinin, A. V.; Grigor'ev, E. E.; Zhidkov, A. A.; Terent'ev, A. M.

    2014-04-01

    We study a one-dimensional stationary system of equations comprising the continuity equation for the ion concentration with the recombination effects taken into account and the Gauss law for the electric field. This system gives a simplified description of various phenomena in ionized medium theory and is used, in particular, for modeling of the electrode effect in the atmospheric surface layers with the turbulent diffusion effects neglected. Using the integral of the system and a phase portrait in the ion concentration plane, we offer a complete classification of types of solutions of the system, examine their properties, and deduce some analytical relations between the ion concentration and the electric field. The basic equations of classical electrode effect theory are obtained for some classes of solutions within the framework of this approach. Correct formulations of the problems are discussed. New classes of solutions, for which there are layers with infinitely increasing conductivity and charge density are described. The Appendix illustrates, in both analytical and graphical form, the results obtained in the main part of this paper on the basis of qualitative reasoning for parameters close to real. Analytical expressions for the fields and ion concentrations are given for all types of solutions. Relations for the distances between electrodes and analytical relations describing the properties of the spatially localized solutions are presented.

  6. Field theory and weak Euler-Lagrange equation for classical particle-field systems.

    Science.gov (United States)

    Qin, Hong; Burby, Joshua W; Davidson, Ronald C

    2014-10-01

    It is commonly believed as a fundamental principle that energy-momentum conservation of a physical system is the result of space-time symmetry. However, for classical particle-field systems, e.g., charged particles interacting through self-consistent electromagnetic or electrostatic fields, such a connection has only been cautiously suggested. It has not been formally established. The difficulty is due to the fact that the dynamics of particles and the electromagnetic fields reside on different manifolds. We show how to overcome this difficulty and establish the connection by generalizing the Euler-Lagrange equation, the central component of a field theory, to a so-called weak form. The weak Euler-Lagrange equation induces a new type of flux, called the weak Euler-Lagrange current, which enters conservation laws. Using field theory together with the weak Euler-Lagrange equation developed here, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived from the underlying space-time symmetry.

  7. The Accounting concept of measurement and the thin line between representational measurement theory and the classical theory of measurement. 

    OpenAIRE

    Charmaine Scrimnger-Christian; S. Wedzerai Musvoto

    2011-01-01

    The purpose of this study is to discuss a possible way forward in accounting measurement. It also highlights the importance of understanding the lack of appreciation given by the accounting researchers to the distinction between representation measurement theory and the axioms of quantity on which the classical theory of measurement is based. For long, research in measurement theory has classified representational measurement as nothing but applications of the axioms of quantity. It was belie...

  8. SU(2)-Invariant Continuum Theory for an Unconventional Phase Transition in a Three-Dimensional Classical Dimer Model

    Science.gov (United States)

    Powell, Stephen; Chalker, J. T.

    2008-10-01

    We derive a continuum theory for the phase transition in a classical dimer model on the cubic lattice, observed in recent Monte Carlo simulations. Our derivation relies on the mapping from a three-dimensional classical problem to a two-dimensional quantum problem, by which the dimer model is related to a model of hard-core bosons on the kagome lattice. The dimer-ordering transition becomes a superfluid Mott insulator quantum phase transition at fractional filling, described by an SU(2)-invariant continuum theory.

  9. Theoretical study of vapor-liquid homogeneous nucleation using stability analysis of a macroscopic phase.

    Science.gov (United States)

    Carreón-Calderón, Bernardo

    2012-10-14

    Stability analysis is generally used to verify that the solution to phase equilibrium calculations corresponds to a stable state (minimum of the free energy). In this work, tangent plane distance analysis for stability of macroscopic mixtures is also used for analyzing the nucleation process, reconciling thus this analysis with classical nucleation theories. In the context of the revised nucleation theory, the driving force and the nucleation work are expressed as a function of the Lagrange multiplier corresponding to the mole fraction constraint from the minimization problem of stability analysis. Using a van der Waals fluid applied to a ternary mixture, Lagrange multiplier properties are illustrated. In particular, it is shown how the Lagrange multiplier value is equal to one on the binodal and spinodal curves at the same time as the driving force of nucleation vanishes on these curves. Finally, it is shown that, on the spinodal curve, the nucleation work from the revised and generalized nucleation theories are characterized by two different local minima from stability analysis, irrespective of any interfacial tension models. PMID:23061836

  10. Structure Theory for Extended Kepler-Coulomb 3D Classical Superintegrable Systems

    Directory of Open Access Journals (Sweden)

    Ernie G. Kalnins

    2012-06-01

    Full Text Available The classical Kepler-Coulomb system in 3 dimensions is well known to be 2nd order superintegrable, with a symmetry algebra that closes polynomially under Poisson brackets. This polynomial closure is typical for 2nd order superintegrable systems in 2D and for 2nd order systems in 3D with nondegenerate (4-parameter potentials. However the degenerate 3-parameter potential for the 3D extended Kepler-Coulomb system (also 2nd order superintegrable is an exception, as its quadratic symmetry algebra doesn't close polynomially. The 3D 4-parameter potential for the extended Kepler-Coulomb system is not even 2nd order superintegrable. However, Verrier and Evans (2008 showed it was 4th order superintegrable, and Tanoudis and Daskaloyannis (2011 showed that in the quantum case, if a second 4th order symmetry is added to the generators, the double commutators in the symmetry algebra close polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider an infinite class of classical extended Kepler-Coulomb 3- and 4-parameter systems indexed by a pair of rational numbers (k_1,k_2 and reducing to the usual systems when k_1=k_2=1. We show these systems to be superintegrable of arbitrarily high order and work out explicitly the structure of the symmetry algebras determined by the 5 basis generators we have constructed. We demonstrate that the symmetry algebras close rationally; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering constants of the motion, not themselves polynomials in the momenta, that can be employed to construct the polynomial symmetries and their structure relations.

  11. Current-carrying plasma and the magnetic field ambiguity in classical MHD theory

    International Nuclear Information System (INIS)

    An ambiguity in the classical theoretical framework used for computing magnetohydrostatic equilibrium is pointed out and analyzed. This inconsistency implies that some proposed solutions of the magnetohydrodynamic (MHD) equations may not represent actual magnetic fields of plasma currents in the geometry considered. The root of the inconsistency is that the magnetostatic field equation and the magnetohydrostatic equations are not invariant under the same transformations. There are two types of problems where inconsistencies have arisen in the literature: (a) unphysical magnetic fields are postulated inside a plasma current; and (b) vacuum magnetic fields are postulated that are not gradient fields. In both cases, magnetic fields are obtained which cannot be created in the laboratory. This inconsistency is traced back to a mishandling of the mathematical structure of the magnetic field equation. The magnetic field rvec B is a vector potential for the current density distribution rvec j, just as rvec A is a vector potential for rvec B. Nevertheless, whereas a gauge transformation on rvec A is unobservable (gauge invariant), the analogous gauge transformation in the rvec B vector (gradient field transformation) is indeed observable and changes the Lorentz force. Following Alfven, the authors characterize plasmas mathematically through the field lines of the current density distribution vector. Classical MHD theory, by contrast, is concerned strictly with magnetic field lines. They show here how this magnetic field approach can lead to inconsistencies when applied to plasmas. A resolution of entrenched ambiguities is made possible by using the current fiber description to derive a corrected Grad-Shafranov plasma equilibrium equation

  12. Amines in the Earth’s Atmosphere: A Density Functional Theory Study of the Thermochemistry of Pre-Nucleation Clusters

    Directory of Open Access Journals (Sweden)

    Jason Herb

    2011-02-01

    Full Text Available The impact of organic species which are present in the Earth’s atmosphere on the burst of new particles is critically important for the understanding of the molecular nature of atmospheric nucleation phenomena. Amines have recently been proposed as possible stabilizers of binary pre-nucleation clusters. In order to advance the understanding of atmospheric nucleation phenomena, a quantum-chemical study of hydrogen-bonded complexes of binary sulfuric acid-water clusters with methyl-, dimethyl- and trimethylamines representing common atmospheric organic species, vegetation products and laboratory impurities has been carried out. The thermochemical stability of the sulfuric acid-amines-water complexes was found to be higher than that of the sulfuric acid-ammonia-water complexes, in qualitative agreement with the previous studies. However, the enhancement in stability due to amines appears to not be large enough to overcome the difference in typical atmospheric concentrations of ammonia and amines. Further research is needed in order to address the existing uncertainties and to reach a final conclusion about the importance of amines for the atmospheric nucleation.

  13. Macroscopic models for vehicular flows and crowd dynamics theory and applications classical and non–classical advanced mathematics for real life applications

    CERN Document Server

    Rosini, Massimiliano Daniele

    2013-01-01

    This monograph  presents a systematic treatment of the theory for hyperbolic conservation laws and their applications to vehicular traffics and crowd dynamics. In the first part of the book, the author presents very basic considerations and gradually introduces the mathematical tools necessary to describe and understand the mathematical models developed in the following parts focusing on vehicular and pedestrian traffic. The book is a self-contained valuable resource for advanced courses in mathematical modeling, physics and civil engineering. A number of examples and figures facilitate a better understanding of the underlying concepts and motivations for the students. Important new techniques are presented, in particular the wave front tracking algorithm, the operator splitting approach, the non-classical theory of conservation laws and the constrained problems. This book is the first to present a comprehensive account of these fundamental new mathematical advances.  

  14. Nonperturbative effects on nucleation

    CERN Document Server

    Gleiser, Marcello; Gleiser, Marcelo; Heckler, Andrew F

    1996-01-01

    A nonperturbative correction to the thermal nucleation rate of critical bubbles in a first order phase transition is estimated. The correction originates from large-amplitude fluctuations which may be present before the transition occurs. Using a simple model of a scalar field in a double-well potential, we present a method to obtain a corrected potential which incorporates the free-energy density available from large-amplitude fluctuations, which is not included in the usual perturbative calculation. For weaker phase transitions, the nucleation rate can be much larger than the rate calculated via perturbation theory. As an application of our method, we show how nonperturbative corrections can both qualitatively and quantitatively explain anomalously high nucleation rates observed in 2-d numerical simulations.

  15. Semi-classical theory and experimental research for polarization flipping in a single frequency laser with feedback effect

    Institute of Scientific and Technical Information of China (English)

    Chen Wen-Xue; Zhang Shu-Lian; Zhang Peng; Zeng Zhao-Li

    2012-01-01

    In this paper,we propose a semi-classical theory to successfully explain the polarization flipping in a single frequency laser. An experimental setup is built to verify this theory. The observed experimental phenomena are consistent with the theoretical analysis.We perform phase retardation measurements of birefringent components using this experimental system.The results show that the measurement repeatability is 0.12° and the measurement accuracy is 0.22°.

  16. Hamiltonian formulation for the classical EM radiation-reaction problem: application to the kinetic theory for relativistic collisionless plasmas

    CERN Document Server

    Cremaschini, Claudio; 10.1140/epjp/i2011-11063-3

    2012-01-01

    A notorious difficulty in the covariant dynamics of classical charged particles subject to non-local electromagnetic (EM) interactions arising in the EM radiation-reaction (RR) phenomena is due to the definition of the related non-local Lagrangian and Hamiltonian systems. The lack of a standard Lagrangian/Hamiltonian formulation in the customary asymptotic approximation for the RR equation may inhibit the construction of consistent kinetic and fluid theories. In this paper the issue is investigated in the framework of Special Relativity. It is shown that, for finite-size spherically-symmetric classical charged particles, non-perturbative Lagrangian and Hamiltonian formulations in standard form can be obtained, which describe particle dynamics in the presence of the exact EM RR self-force. As a remarkable consequence, based on axiomatic formulation of classical statistical mechanics, the covariant kinetic theory for systems of charged particles subject to the EM RR self-force is formulated in Hamiltonian form....

  17. Thermodynamic derivation of the activation energy for ice nucleation

    Science.gov (United States)

    Barahona, D.

    2015-12-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the

  18. Thermodynamic Derivation of the Activation Energy for Ice Nucleation

    Science.gov (United States)

    Barahona, D.

    2015-01-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the

  19. Thermoelectric properties of fully hydrogenated graphene: Semi-classical Boltzmann theory

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk [New Technologies-Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)

    2015-06-14

    Based on the calculated band structure, the electronic transport coefficients of chair-/boat-like graphane were evaluated by using the semi-classical Boltzmann theory and rigid band model. The maximum value of electrical conductivity for chair (boat)-like graphane of about 1.4 (0.6) × 10{sup 19} (Ωms){sup −1} is achieved at 600 K. The charge carrier concentration and the electrical conductivity linearly increase with increasing the temperature in agreement with the experimental work for graphene. The investigated materials exhibit the highest value of Seebeck coefficient at 300 K. We should emphasize that in the chemical potential between ∓0.125 μ(eV) the investigated materials exhibit minimum value of electronic thermal conductivity, therefore, maximum efficiency. As the temperature increases, the electronic thermal conductivity increases exponentially, in agreement with the experimental data of graphene. We also calculated the power factor of chair-/boat-like graphane at 300 and 600 K as a function of chemical potential between ∓0.25 μ(eV)

  20. Geometric field theory and weak Euler-Lagrange equation for classical relativistic particle-field systems

    CERN Document Server

    Fan, Peifeng; Liu, Jian; Xiang, Nong; Yu, Zhi

    2016-01-01

    A manifestly covariant, or geometric, field theory for relativistic classical particle-field system is developed. The connection between space-time symmetry and energy-momentum conservation laws for the system is established geometrically without splitting the space and time coordinates, i.e., space-time is treated as one identity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that particles and field reside on different manifold. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of electromagnetic fields and also a functional of particles' world-lines. The other difficulty associated with the geometric setting is due to the mass-shell condition. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell condition is imposed. For the particle-field system, the geometric EL equation is further generalized into a w...

  1. Introducing DInaMo: A Package for Calculating Protein Circular Dichroism Using Classical Electromagnetic Theory

    Directory of Open Access Journals (Sweden)

    Igor V. Uporov

    2015-09-01

    Full Text Available The dipole interaction model is a classical electromagnetic theory for calculating circular dichroism (CD resulting from the π-π* transitions of amides. The theoretical model, pioneered by J. Applequist, is assembled into a package, DInaMo, written in Fortran allowing for treatment of proteins. DInaMo reads Protein Data Bank formatted files of structures generated by molecular mechanics or reconstructed secondary structures. Crystal structures cannot be used directly with DInaMo; they either need to be rebuilt with idealized bond angles and lengths, or they need to be energy minimized to adjust bond lengths and bond angles because it is common for crystal structure geometries to have slightly short bond lengths, and DInaMo is sensitive to this. DInaMo reduces all the amide chromophores to points with anisotropic polarizability and all nonchromophoric aliphatic atoms including hydrogens to points with isotropic polarizability; all other atoms are ignored. By determining the interactions among the chromophoric and nonchromophoric parts of the molecule using empirically derived polarizabilities, the rotational and dipole strengths are determined leading to the calculation of CD. Furthermore, ignoring hydrogens bound to methyl groups is initially explored and proves to be a good approximation. Theoretical calculations on 24 proteins agree with experiment showing bands with similar morphology and maxima.

  2. An Analysis of Cross Racial Identity Scale Scores Using Classical Test Theory and Rasch Item Response Models

    Science.gov (United States)

    Sussman, Joshua; Beaujean, A. Alexander; Worrell, Frank C.; Watson, Stevie

    2013-01-01

    Item response models (IRMs) were used to analyze Cross Racial Identity Scale (CRIS) scores. Rasch analysis scores were compared with classical test theory (CTT) scores. The partial credit model demonstrated a high goodness of fit and correlations between Rasch and CTT scores ranged from 0.91 to 0.99. CRIS scores are supported by both methods.…

  3. Kendall's Shape Statistics as a Classical Realization of Barbour-type Timeless Records Theory approach to Quantum Gravity

    CERN Document Server

    Anderson, Edward

    2013-01-01

    I already showed that Kendall's shape geometry work was the geometrical description of Barbour's relational mechanics' reduced configuration spaces (alias shape spaces). I now describe the extent to which Kendall's subsequent statistical application to such as the `standing stones problem' realizes further ideas along the lines of Barbour-type timeless records theories, albeit just at the classical level.

  4. Kendall's Shape Statistics as a Classical Realization of Barbour-type Timeless Records Theory approach to Quantum Gravity

    OpenAIRE

    Anderson, Edward

    2013-01-01

    I previously showed that Kendall's work on shape geometry is in fact also the geometrical description of Barbour's relational mechanics' reduced configuration spaces (alias shape spaces). I now describe the extent to which Kendall's subsequent statistical application to e.g. the `standing stones problem' realizes further ideas along the lines of Barbour-type timeless records theories, albeit just at the classical level.

  5. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Directory of Open Access Journals (Sweden)

    B. Verheggen

    2006-01-01

    Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.

  6. Nucleation in a Sheared Liquid Binary Mixture.

    Science.gov (United States)

    Min, Kyung-Yang

    inverse of the initial supercooling revealed a curvature for small values of supercooling, implying a breakdown of the classical nucleation theory (3). (Abstract shortened by UMI.).

  7. Nonclassical nucleation and growth of inorganic nanoparticles

    Science.gov (United States)

    Lee, Jisoo; Yang, Jiwoong; Kwon, Soon Gu; Hyeon, Taeghwan

    2016-08-01

    The synthesis of nanoparticles with particular compositions and structures can lead to nanoparticles with notable physicochemical properties, thus promoting their use in various applications. In this area of nanoscience, the focus is shifting from size- and shape-uniform single-component nanoparticles to multicomponent nanoparticles with enhanced performance and/or multifunctionality. With the increasing complexity of synthetic reactions, an understanding of the formation mechanisms of the nanoparticles is needed to enable a systematic synthetic approach. This Review highlights mechanistic studies underlying the synthesis of nanoparticles, with an emphasis on nucleation and growth behaviours that are not expected from classical theories. We discuss the structural properties of nanoclusters that are of a size that bridges molecules and solids. We then describe the role of nanoclusters in the prenucleation process as well as in nonclassical nucleation models. The growth of nanoparticles via the assembly and merging of primary particles is also overviewed. Finally, we present the heterogeneous nucleation mechanisms behind the synthesis of multicomponent nanoparticles.

  8. Energetics of high-speed running: integrating classical theory and contemporary observations.

    Science.gov (United States)

    Weyand, Peter G; Bundle, Matthew W

    2005-04-01

    We hypothesized that the anaerobic power and aerobic power outputs during all-out runs of any common duration between 10 and 150 s would be proportional to the maximum anaerobic (E(an-max)) and aerobic powers (E(aer-max)) available to the individual runner. Seventeen runners who differed in E(an-max) and E(aer-max) (5 sprinters, 5 middle-distance runners, and 7 long distance runners) were tested during treadmill running on a 4.6 degrees incline. E(an-max) was estimated from the fastest treadmill speed subjects could attain for eight steps. E(aer-max) was determined from a progressive, discontinuous, treadmill test to failure. Oxygen deficits and rates of uptake were measured to assess the respective anaerobic and aerobic power outputs during 11-16 all-out treadmill runs that elicited failure between 10 and 220 s. We found that, during all-out runs of any common duration, the relative anaerobic and aerobic powers utilized were largely the same for sprint, middle-distance, and long-distance subjects. The similar fractional utilization of the E(an-max) and E(aer-max) available during high-speed running 1) provides empirical values that modify and advance classic theory, 2) allows rates of anaerobic and aerobic energy release to be quantified from individual maxima and run durations, and 3) explains why the high-speed running performances of different event specialists can be accurately predicted (R(2) = 0.97; n = 254) from two direct measurements and the same exponential time constant.

  9. BOOK REVIEW: Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications

    Science.gov (United States)

    Sihvola, Ari

    2005-03-01

    ' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly\\endcolumn defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in todayÂ's materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and experimental optics scientists, radiophysics

  10. Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications

    International Nuclear Information System (INIS)

    ' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in today?s materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and experimental optics scientists, radiophysics experts

  11. Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sihvola, Ari [Helsinki University of Technology (Finland)

    2005-03-11

    everything seems to work well with the 'old' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in today?s materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and

  12. A classical-map simulation of two-dimensional electron fluid: an extension of classical-map hypernetted-chain theory beyond the hypernetted-chain approximation

    International Nuclear Information System (INIS)

    A method for numerically simulating quantum systems is proposed and applied to the two-dimensional electron fluid at T = 0. This method maps quantum systems onto classical ones in the spirit of the classical-map hypernetted-chain theory and performs simulations on the latter. The results of the simulations are free from the assumption of the hypernetted-chain approximation and the neglect of the bridge diagrams. A merit of this method is the applicability to systems with geometrical complexity and finite sizes including the cases at finite temperatures. Monte Carlo and molecular dynamics simulations are performed corresponding to two previous proposals for the 'quantum' temperature and an improvement in the description of the diffraction effect. It is shown that one of these two proposals with the improved diffraction effect gives significantly better agreement with quantum Monte Carlo results reported previously for the range of 5≤rs≤40. These results may serve as the basis for the application of this method to finite non-periodic systems like quantum dots and systems at finite temperatures.

  13. Homogeneous bubble nucleation in binary systems of liquid solvent and dissolved gas

    Science.gov (United States)

    Němec, Tomáš

    2016-03-01

    A formulation of the classical nucleation theory (CNT) is developed for bubble nucleation in a binary system composed of a liquid solvent and a dissolved gas. The theoretical predictions are compared to the experimental nucleation data of four binary mixtures, i.e. diethylether - nitrogen, propane - carbon dioxide, isobutane - carbon dioxide, and R22 (chlorodifluoromethane) - carbon dioxide. The presented CNT formulation is found to improve the precision of the simpler theoretical method of Ward et al. [J. Basic Eng. 92 (10), 71-80, 1970] based on the weak-solution approximation. By analyzing the available experimental nucleation data, an inconsistency in the data reported by Mori et al. [Int. J. Heat Mass Transfer, 19 (10), 1153-1159, 1976] for propane - carbon dioxide and R22 - carbon dioxide is identified.

  14. Heterogeneous nucleation of ice from supercooled NaCl solution confined in porous cement paste

    Science.gov (United States)

    Zeng, Qiang; Li, Kefei; Fen-Chong, Teddy

    2015-01-01

    Clarifying the nucleation process of chloride-based deicing salt solution (e.g., NaCl solution) confined in cement-based porous materials remains an important issue to understand its detrimental effects on material substrates. In this study, the pore structures of hardened cement pastes were characterized by mercury-intrusion and nitrogen-sorption porosimetry. The ice nucleation temperature of NaCl solution of different concentrations confined in the hardened cement pastes was measured and analyzed by classical heterogeneous nucleation theory. The kinetic factor, contact-angle factor including the contact angle between ice and the substrate were evaluated. The results revealed that the contact angle between ice and the substrate showed the minimum value when adding 3% NaCl into water. The heterogeneous ice nucleation rates were found to be proportional to the water activity shifts.

  15. Quaternionic Formulation of Classical Electrodynamics and Theory of Functions of a Biquaternion Variable

    OpenAIRE

    "今枝, 国之助"; "イマエダ, クニノスケ"; Kuninosuke", "Imaeda

    1985-01-01

    "Quaternionic formulation of classical electrodynamics by using ""biq""(real part of a complex-quaternions) has been presented. Also, the solutions of Maxwell's equations have been given using regular functions of a biq variable."

  16. Gauge fixing and classical dynamical r-matrices in ISO(2,1)-Chern-Simons theory

    CERN Document Server

    Meusburger, Catherine

    2012-01-01

    We apply Dirac's gauge fixing procedure to Chern-Simons theory with gauge group ISO(2,1) on manifolds RxS, where S is a punctured oriented surface of general genus. For all gauge fixing conditions that satisfy certain structural requirements, this yields an explicit description of the Poisson structure on the moduli space of flat ISO(2,1)-connections on S via the resulting Dirac bracket. The Dirac bracket is determined by classical dynamical r-matrices for ISO(2,1). We show that the Poisson structures and classical dynamical r-matrices arising from different gauge fixing conditions are related by dynamical ISO(2,1)-valued transformations that generalise the usual gauge transformations of classical dynamical r-matrices. By means of these transformations, it is possible to classify all Poisson structures and classical dynamical r-matrices obtained from such gauge fixings. Generically these Poisson structures combine classical dynamical r-matrices for non-conjugate Cartan subalgebras of ISO(2,1).

  17. Open and Closed String field theory interpreted in classical Algebraic Topology

    OpenAIRE

    Sullivan, Dennis

    2003-01-01

    There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.

  18. Failure of classical traffic and transportation theory: The maximization of the network throughput maintaining free flow conditions in network

    CERN Document Server

    Kerner, Boris S

    2016-01-01

    We show that the minimization of travel times in a network as generally accepted in classical traffic and transportation theories deteriorates the traffic system through a considerable increase in the probability of traffic breakdown in the network. We introduce a network characteristic {\\it minimum network capacity} that shows that rather than the minimization of travel times in the network, the minimization of the probability of traffic breakdown in the network maximizes the network throughput at which free flow persists in the whole network.

  19. The evolution of strategic thought since September 11, 2001: a Swiss perspective on Clausewitz, classical, and contemporary theories

    OpenAIRE

    Monnet, Grégoire O.

    2015-01-01

    Approved for public release; distribution is unlimited Since 1991, a long list of scholars has sought to write off Clausewitz as outdated and no longer worth study. In light of the past fifteen years and the absence of a strategic victory in the wars in Iraq and Afghanistan, however, Clausewitz’s early retirement is misguided, to say the least. Are the classical theories of Clausewitz on the nature of war—particularly concerning small wars and insurgencies—relevant to contemporary conflict...

  20. A Time-Dependent Classical Solution of C=1 String Field Theory and Non-Perturbative Effects

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.

    1993-01-01

    We describe a real-time classical solution of $c=1$ string field theory written in terms of the phase space density, $u(p,q,t)$, of the equivalent fermion theory. The solution corresponds to tunnelling of a single fermion above the filled fermi sea and leads to amplitudes that go as $\\exp(- C/ \\gst)$. We discuss how one can use this technique to describe non-perturbative effects in the Marinari-Parisi model. We also discuss implications of this type of solution for the two-dimensional black hole.

  1. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2007-10-01

    Full Text Available We attempt to present a classical theoretical framework in which the gravitational and electromagnetic fields are unified as intrinsic geometric objects in the space-time manifold. For this purpose, we first present the preliminary geometric considerations dealing with the metric differential geometry of Cartan connections. The unified field theory is then developed as an extension of the general theory of relativity based on a semi- symmetric Cartan connection which is meant to be as close as possible structurally to the symmetric connection of the Einstein-Riemann space-time.

  2. Ice nucleation from aqueous NaCl droplets with and without marine diatoms

    Directory of Open Access Journals (Sweden)

    P. A. Alpert

    2011-06-01

    Full Text Available Ice formation in the atmosphere by homogeneous and heterogeneous nucleation is one of the least understood processes in cloud microphysics and climate. Here we describe our investigation of the marine environment as a potential source of atmospheric IN by experimentally observing homogeneous ice nucleation from aqueous NaCl droplets and comparing against heterogeneous ice nucleation from aqueous NaCl droplets containing intact and fragmented diatoms. Homogeneous and heterogeneous ice nucleation are studied as a function of temperature and water activity, aw. Additional analyses are presented on the dependence of diatom surface area and aqueous volume on heterogeneous freezing temperatures, ice nucleation rates, ωhet, ice nucleation rate coefficients, Jhet, and differential and cumulative ice nuclei spectra, k(T and K(T, respectively. Homogeneous freezing temperatures and corresponding nucleation rate coefficients are in agreement with the water activity based homogeneous ice nucleation theory within experimental and predictive uncertainties. Our results confirm, as predicted by classical nucleation theory, that a stochastic interpretation can be used to describe the homogeneous ice nucleation process. Heterogeneous ice nucleation initiated by intact and fragmented diatoms can be adequately represented by a modified water activity based ice nucleation theory. A horizontal shift in water activity, Δaw, het = 0.2303, of the ice melting curve can describe median heterogeneous freezing temperatures. Individual freezing temperatures showed no dependence on available diatom surface area and aqueous volume. Determined at median diatom freezing temperatures for aw from 0.8 to 0.99, ωhet~0.11+0.06−0.05 s−1, Jhet~1.0+1.16−0.61×104 cm−2

  3. Thermodynamic and kinetic theory of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets on soluble particles.

    Science.gov (United States)

    Shchekin, Alexander K; Shabaev, Ilya V; Hellmuth, Olaf

    2013-02-01

    Thermodynamic and kinetic peculiarities of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets formed on soluble condensation nuclei from a solvent vapor have been considered. The interplay of the effects of solubility and the size of condensation nuclei has been analyzed. Activation barriers for the deliquescence and phase transitions and for the reverse efflorescence transition have been determined as functions of the relative humidity of the vapor-gas atmosphere, initial size, and solubility of condensation nuclei. It has been demonstrated that, upon variations in the relative humidity of the atmosphere, the crossover in thermodynamically stable and unstable variables of the droplet state takes place. The physical meaning of stable and unstable variables has been clarified. The kinetic equations for establishing equilibrium and steady distributions of binary droplets have been solved. The specific times for relaxation, deliquescence and efflorescence transitions have been calculated. PMID:23406138

  4. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2012-05-01

    nuclei than dust, but owe their high ice nucleation onsets to their large sizes. Surface-area-dependent parameterizations of heterogeneous ice nucleation are discussed. For immersion freezing on mineral dust, fitted INAS densities are available, but should not be used outside the temperature interval of the data they were based on. Classical nucleation theory, if employed with one fitted contact angle, does not reproduce the observed temperature dependence for immersion nucleation, temperature and supersaturation dependence for deposition nucleation, and time dependence.

  5. On the homogeneous and heterogeneous nucleation of some organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hienola, A.

    2008-07-01

    The conversion of a metastable phase into a thermodynamically stable phase takes place via the formation of clusters. Clusters of different sizes are formed spontaneously within the metastable mother phase, but only those larger than a certain size, called the critical size, will end up growing into a new phase. There are two types of nucleation: homogeneous, where the clusters appear in a uniform phase, and heterogeneous, when pre-existing surfaces are available and clusters form on them. The nucleation of aerosol particles from gas-phase molecules is connected not only with inorganic compounds, but also with nonvolatile organic substances found in atmosphere. The question is which ones of the myriad of organic species have the right properties and are able to participate in nucleation phenomena. This thesis discusses both homogeneous and heterogeneous nucleation, having as theoretical tool the classical nucleation theory (CNT) based on thermodynamics. Different classes of organics are investigated. The members of the first class are four dicarboxylic acids (succinic, glutaric, malonic and adipic). They can be found in both the gas and particulate phases, and represent good candidates for the aerosol formation due to their low vapor pressure and solubility. Their influence on the nucleation process has not been largely investigated in the literature and it is not fully established. The accuracy of the CNT predictions for binary water-dicarboxylic acid systems depends significantly on the good knowledge of the thermophysical properties of the organics and their aqueous solutions. A large part of the thesis is dedicated to this issue. We have shown that homogeneous and heterogeneous nucleation of succinic, glutaric and malonic acids in combination with water is unlikely to happen in atmospheric conditions. However, it seems that adipic acid could participate in the nucleation process in conditions occurring in the upper troposphere. The second class of organics is

  6. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.

    Science.gov (United States)

    Shen, Yizhou; Tao, Jie; Tao, Haijun; Chen, Shanlong; Pan, Lei; Wang, Tao

    2015-10-01

    On the basis of the icing-delay performance and ice adhesion strength, the anti-icing potential of the superhydrophobic surface has been well-investigated in the past few years. The present work mainly emphasized the investigations of ice nucleation and growth to fully explore the anti-icing potential of the superhydrophobic surface. We took the various surfaces ranging from hydrophilic to superhydrophobic as the research objects and, combining the classical nucleation theory, discussed the ice nucleation behaviors of the water droplets on these sample surfaces under the condition of supercooling. Meanwhile, the macroscopical growth processes of ice on these surfaces were analyzed on the basis of the growth mechanism of the ice nucleus. It was found that the superhydrophobic surface could greatly reduce the solid-liquid interface nucleation rate, owing to the extremely low actual solid-liquid contact area caused by the composite micro-nanoscale hierarchical structures trapping air pockets, leading to the bulk nucleation dominating the entire ice nucleation at the lower temperatures. Furthermore, ice on the superhydrophobic surface possessed a lower macroscopical growth velocity as a result of the less ice nucleation rate and the insulating action of the trapped air pockets. PMID:26367109

  7. Homogeneous SPC/E water nucleation in large molecular dynamics simulations

    CERN Document Server

    Angelil, R; Tanaka, K; Tanaka, H

    2015-01-01

    We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to $\\sim 4\\cdot 10^6$ molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to $\\sim 10^{19}\\,\\textrm{cm}^{-3}\\textrm{s}^{-1}$, helping close the gap between experimentally measured rates $\\sim 10^{17}\\,\\textrm{cm}^{-3}\\textrm{s}^{-1}$. We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst, a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run avera...

  8. Niels Bohr as Philosopher of Experiment: Does Decoherence Theory Challenge Bohr's Doctrine of Classical Concepts?

    CERN Document Server

    Camilleri, Kristian

    2015-01-01

    Niels Bohr's doctrine of the primacy of "classical concepts" is arguably his most criticized and misunderstood view. We present a new, careful historical analysis that makes clear that Bohr's doctrine was primarily an epistemological thesis, derived from his understanding of the functional role of experiment. A hitherto largely overlooked disagreement between Bohr and Heisenberg about the movability of the "cut" between measuring apparatus and observed quantum system supports the view that, for Bohr, such a cut did not originate in dynamical (ontological) considerations, but rather in functional (epistemological) considerations. As such, both the motivation and the target of Bohr's doctrine of classical concepts are of a fundamentally different nature than what is understood as the dynamical problem of the quantum-to-classical transition. Our analysis suggests that, contrary to claims often found in the literature, Bohr's doctrine is not, and cannot be, at odds with proposed solutions to the dynamical problem...

  9. An empirical approach to the nucleation of sulfuric acid droplets in the atmosphere

    Directory of Open Access Journals (Sweden)

    P. R. Turco

    2003-06-01

    Full Text Available We use quantum mechanical evaluations of the Gibbs free energy of the hydrates of sulfuric acid, H2SO4. nH2O and (H2SO42 . nH2O to evaluate an empirical surface tension for sulfuric acid-water clusters containing few molecules. We use this surface tension to evaluate nucleation rates using classical heteromolecular theory. At low temperatures (T 213 K the nucleation rates obtained with the empirical surface tensions are signifi cantly greater than those using bulk values of the surface tension. At higher temperatures the difference disappears.

  10. Kinetic theory of the eigenmodes of classical fluids and neutron scattering

    NARCIS (Netherlands)

    Cohen, E.G.D.; Schepper, I.M. de; Zuilhof, M.J.

    1984-01-01

    The lowest lying eigenmodes of a classical fluid have been approximately determined for a wide range of densities and wavenumbers. The most important eigenmodes are direct extensions of the three hydrodynamic heat and sound modes to much larger wavenumbers. A new and consistent interpretation of neu

  11. Equation of Motion of a Mass Point in Gravitational Field and Classical Tests of Gauge Theory of Gravity

    Institute of Scientific and Technical Information of China (English)

    WU Ning; ZHANG Da-Hua

    2007-01-01

    A systematic method is developed to study the classical motion of a mass point in gravitational gauge field.First,by using Mathematica,a spherical symmetric solution of the field equation of gravitational gauge field is obtained,which is just the traditional Schwarzschild solution.Combining the principle of gauge covariance and Newton's second law of motion,the equation of motion of a mass point in gravitational field is deduced.Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field,we can discuss classical tests of gauge theory of gravity,including the deflection of light by the sun,the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun.It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.

  12. Embodied Revelation: A Classic Grounded Theory of Heart Failure Patient Decision Making Surrounding Primary Prevention Implantable Cardioverter Defibrillator Therapy

    Directory of Open Access Journals (Sweden)

    Vera Barton-Caro Ph.D.,

    2015-12-01

    Full Text Available The purpose of this classic grounded theory study was to explain the complex decision making process of heart failure (HF patients considering primary prevention implantable cardioverter defibrillator (ICD therapy. Sudden cardiac death (SCD is the leading cause of death for people with HF as well as the primary cause of death in the United States (US. ICDs represent the standard of care as the only effective therapy for primary prevention of SCD. However, a significant proportion of qualifying HF patients declines this invasive, yet life-saving device. The grounded theory is of Embodied revelation. The threat of SCD for ICD candidates consists of four stages: living in conscious denial, heightening of awareness, sanctioning ICD therapy, and living in new assurance. The first stage ends abruptly with the critical juncture of grasping the threat of SCD. This grounded theory has implications for research, nursing and medical practice, as well as bioethical considerations.

  13. Kinetic roughening of the Kossel (100) surface: comparison of classical criteria with Monte Carlo results

    NARCIS (Netherlands)

    Veenendaal, van E.; Hoof, van P.J.C.M.; Suchtelen, van J.; Enckevort, van W.J.P.; Bennema, P.

    1998-01-01

    Kinetic roughening is not a phase transition and, as such, it lacks an exact definition. Many criteria are used to mark the onset of kinetic roughening. Criteria stemming from the classical two-dimensional nucleation theory are widely used. On the other hand, experimentalists observe a transition fr

  14. Basic Theory and Theory System of Medical Classic of Yellow Emperor%《黄帝内经》的基础理论与理论体系

    Institute of Scientific and Technical Information of China (English)

    马卫东

    2012-01-01

    《黄帝内经》作为中国古代医学的奠基之作,内容十分丰富,并已形成了较为完备的基础理论和理论体系.《内经》的基础理论可以概括为:以阴阳五行学说为理论基础,天地人一体而人为自然界一部分;人体是一个有机整体而五脏为六腑、五体、五官、九窍、四肢、百骸中心的医学理论.而《内经》的理论体系,依其内容可概括为三大组成部分,共九个主要学说.即:生理卫生部分的藏象学说、经络学说、养生运气学说;病因病理部分的病因学说、病机学说、病证学说;辨证施治部分的诊法学说、治则学说、针刺学说.《内经》理论体系的博大精深,在于上述三大组成部分的九个主要学说有其严密的内在逻辑关系.%As the foundation's work of the medical science in ancient China, the Medical Classic of Yellow Emperor had rich content and formed a set of relatively complete basic theory and theory system. The basic theory of Medical Classic of Yellow Emperor can be summarized as: taking the Yin-Yang and five elements philosophy as the basic theory; believing that the Sky, the Ground and the Human being forming a whole and the Human being was one of the parts of the nature; regarding the human body as an organic whole and claiming that the five internal organs were the rulers of the six hollow organs, the five body constituents, the five sense organs, the nine orifices, the four limbs and the hundred human bones. According to its content, the theory system of Medical Classic of Yellow Emperor can be summed up in three major parts and nine main theories: the part of the physiological health consists of the viscera-state doctrine, the Meridian theory and the wellness and breathing exercising theory; the part of the etiology and pathology consists of the cause of disease theory, the pathogenesis theory and the sickness syndrome theory; the part of the differentiation treatment consists of the

  15. A concise course on the theory of classical liquids basics and selected topics

    CERN Document Server

    Santos, Andrés

    2016-01-01

    This short primer offers non-specialist readers a concise, yet comprehensive introduction to the field of classical fluids – providing both fundamental information and a number of selected topics to bridge the gap between the basics and ongoing research. In particular, hard-sphere systems represent a favorite playground in statistical mechanics, both in and out of equilibrium, as they represent the simplest models of many-body systems of interacting particles, and at higher temperature and densities they have proven to be very useful as reference systems for real fluids. Moreover, their usefulness in the realm of soft condensed matter has become increasingly recognized – for instance, the effective interaction among (sterically stabilized) colloidal particles can be tuned to almost perfectly match the hard-sphere model. These lecture notes present a brief, self-contained overview of equilibrium statistical mechanics of classical fluids, with special applications to both the structural and thermodynamic pr...

  16. Experimental challenges to theories of classical conditioning: application of an attentional model of storage and retrieval.

    Science.gov (United States)

    Schmajuk, Nestor A; Larrauri, José A

    2006-01-01

    Several studies have recently challenged the accuracy of traditional models of classical conditioning that account for some experimental data in terms of a storage deficit. Among other results, it has been reported that extinction of the blocking or overshadowing stimulus results in the recovery of the response to the blocked or overshadowed stimulus, backward blocking shows spontaneous recovery, extinction of the training context results in the recovery from latent inhibition, interposing a delay between conditioning and testing in latent inhibition increases latent inhibition, and latent inhibition antagonizes overshadowing. An existing neural network model of classical conditioning (N. A. Schmajuk, Y. Lam, & J. A. Gray, 1996), which includes an attentional mechanism controlling both storage and retrieval of associations, is able to quantitatively describe these results.

  17. Theory of hybrid systems; 1, The operator formulation of classical mechanics and semiclassical limit

    CERN Document Server

    Prvanovic, S

    2001-01-01

    The algebra of polynomials in operators that represent generalized coordinate and momentum and depend on the Planck constant is defined. The Planck constant is treated as the parameter taking values between zero and some nonvanishing $h_0$. For the second of these two extreme values, introduced operatorial algebra becomes equivalent to the algebra of observables of quantum mechanical system defined in the standard manner by operators in the Hilbert space. For the vanishing Planck constant, the generalized algebra gives the operator formulation of classical mechanics since it is equivalent to the algebra of variables of classical mechanical system defined, as usually, by functions over the phase space. In this way, the semiclassical limit of kinematical part of quantum mechanics is established through the generalized operatorial framework.

  18. THE CLASSICAL BALLET METHODOLOGY AND THEIR POSSIBLE DIALOGUE WITH LABANIANAS THEORIES

    OpenAIRE

    Lanusse Sousa Jaime

    2015-01-01

    Establish a dialogue between a codified technique with other body techniques becomes a challenge when it comes to a tradition. Moths new avenues for the ballet teaching may move several problems found with respect to a hierarchy of knowledge. Ballet with its tradition and its stroked paths can be reorganized to build thinking and conscious bodies? The traditional classical technique transits other body language? Often there are more complex issues to think today in teaching and learning balle...

  19. A Hamiltonian theory of adaptive resolution simulations of classical and quantum models of nuclei

    Science.gov (United States)

    Kreis, Karsten; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello

    2015-03-01

    Quantum delocalization of atomic nuclei strongly affects the physical properties of low temperature systems, such as superfluid helium. However, also at room temperature nuclear quantum effects can play an important role for molecules composed by light atoms. An accurate modeling of these effects is possible making use of the Path Integral formulation of Quantum Mechanics. In simulations, this numerically expensive description can be restricted to a small region of space, while modeling the remaining atoms as classical particles. In this way the computational resources required can be significantly reduced. In the present talk we demonstrate the derivation of a Hamiltonian formulation for a bottom-up, theoretically solid coupling between a classical model and a Path Integral description of the same system. The coupling between the two models is established with the so-called Hamiltonian Adaptive Resolution Scheme, resulting in a fully adaptive setup in which molecules can freely diffuse across the classical and the Path Integral regions by smoothly switching their description on the fly. Finally, we show the validation of the approach by means of adaptive resolution simulations of low temperature parahydrogen. Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany.

  20. Mechanics and analysis of beams, columns and cables. A modern introduction to the classic theories

    DEFF Research Database (Denmark)

    Krenk, Steen

    The book illustrates the use of simple mathematical analysis techniques within the area of basic structural mechanics, in particular the elementary theories of beams, columns and cables. The focus is on: i) Identification of the physical background of the theories and their particular mathematical...

  1. Applying Classical Ethical Theories to Ethical Decision Making in Public Relations: Perrier's Product Recall.

    Science.gov (United States)

    Pratt, Cornelius B.

    1994-01-01

    Links ethical theories to the management of the product recall of the Perrier Group of America. Argues for a nonsituational theory-based eclectic approach to ethics in public relations to enable public relations practitioners, as strategic communication managers, to respond effectively to potentially unethical organizational actions. (SR)

  2. Early history of extended irreversible thermodynamics (1953-1983): An exploration beyond local equilibrium and classical transport theory

    Science.gov (United States)

    Lebon, G.; Jou, D.

    2015-03-01

    This paper gives a historical account of the early years (1953-1983) of extended irreversible thermodynamics (EIT). The salient features of this formalism are to upgrade the thermodynamic fluxes of mass, momentum, energy, and others, to the status of independent variables, and to explore the consistency between generalized transport equations and a generalized version of the second law of thermodynamics. This requires going beyond classical irreversible thermodynamics by redefining entropy and entropy flux. EIT provides deeper foundations, closer relations with microscopic formalisms, a wider spectrum of applications, and a more exciting conceptual appeal to non-equilibrium thermodynamics. We first recall the historical contributions by Maxwell, Cattaneo, and Grad on generalized transport equations. A thermodynamic theory wide enough to cope with such transport equations was independently proposed between 1953 and 1983 by several authors, each emphasizing different kinds of problems. In 1983, the first international meeting on this theory took place in Bellaterra (Barcelona). It provided the opportunity for the various authors to meet together for the first time and to discuss the common points and the specific differences of their previous formulations. From then on, a large amount of applications and theoretical confirmations have emerged. From the historical point of view, the emergence of EIT has been an opportunity to revisit the foundations and to open new avenues in thermodynamics, one of the most classical and well consolidated physical theories.

  3. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    Science.gov (United States)

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-01

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost. PMID:26851913

  4. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory

    International Nuclear Information System (INIS)

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost

  5. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States)

    2016-02-07

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  6. Ice nucleation properties of mineral dust particles: determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles

    Directory of Open Access Journals (Sweden)

    S. Dobbie

    2010-01-01

    Full Text Available A newly developed ice nucleation experimental set up was used to investigate the heterogeneous ice nucleation properties of three Saharan and one Spanish dust particle samples. It was observed that the spread in the onset relative humidities with respect to ice (RHi for Saharan dust particles varied from 104% to 110%, whereas for the Spanish dust from 106% to 110%. The elemental composition analysis shows a prominent Ca feature in the Spanish dust sample which could potentially explain the differences in nucleation threshold. Although the spread in the onset RHi for the three Saharan dust samples were in agreement, the active fractions and nucleation time-lags calculated at various temperature and RHi conditions were found to differ. This could be due to the subtle variation in the elemental composition of the dust samples, and surface irregularities like steps, cracks, cavities etc. A combination of classical nucleation theory and active site theory is used to understand the importance of these surface irregularities on the nucleability parameter, contact angle that is widely used in ice cloud modeling. These calculations show that the surface irregularities can reduce the contact angle by approximately 10 degrees.

  7. Ice nucleation properties of mineral dust particles: Determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles

    Directory of Open Access Journals (Sweden)

    S. Dobbie

    2009-05-01

    Full Text Available A newly developed ice nucleation experimental set up was used to investigate the heterogeneous ice nucleation properties of three Saharan and one Spanish dust particle samples. It was observed that the spread in the onset relative humidities with respect to ice (RHi for Saharan dust particles varied from 104% to 110%, whereas for the Spanish dust from 106% to 110%. The elemental composition analysis shows a prominent Ca feature in the Spanish dust sample which could potentially explain the differences in nucleation threshold. Although the spread in the onset RHi for the Saharan dust samples were in agreement, the active fractions and nucleation time-lags calculated at various temperature and RHi conditions were found to differ. This could be due to the subtle variation in the elemental composition of the dust samples, and surface irregularities like steps, cracks, cavities etc. A combination of classical nucleation theory and active site theory is used to understand the importance of these surface irregularities on the nucleability parameter contact angle that is widely used in the ice cloud modeling. These calculations show that the surface irregularities can reduce the contact angle by approximately 10°.

  8. Selected topics in the classical theory of functions of a complex variable

    CERN Document Server

    Heins, Maurice

    2014-01-01

    Elegant and concise, this text is geared toward advanced undergraduate students acquainted with the theory of functions of a complex variable. The treatment presents such students with a number of important topics from the theory of analytic functions that may be addressed without erecting an elaborate superstructure. These include some of the theory's most celebrated results, which seldom find their way into a first course. After a series of preliminaries, the text discusses properties of meromorphic functions, the Picard theorem, and harmonic and subharmonic functions. Subsequent topics incl

  9. THE INNOVATION THEORY OF JOSEPH SCHUMPETER: FROM THE CLASSICAL DEFINITION OF THE TERM “INNOVATION” UP TO THE MODERN UNDERSTANDING OF THE INNOVATION IDEAS

    OpenAIRE

    Masliukivska, A.

    2013-01-01

    The paper studies the evolution of the appearance of the term “innovation” and its classical definition. The study exposes the main provisions of innovation theory of Joseph Schumpeter and their modern understanding.

  10. THE INNOVATION THEORY OF JOSEPH SCHUMPETER: FROM THE CLASSICAL DEFINITION OF THE TERM “INNOVATION” UP TO THE MODERN UNDERSTANDING OF THE INNOVATION IDEAS

    Directory of Open Access Journals (Sweden)

    A. Masliukivska

    2013-03-01

    Full Text Available The paper studies the evolution of the appearance of the term “innovation” and its classical definition. The study exposes the main provisions of innovation theory of Joseph Schumpeter and their modern understanding.

  11. Classical Electron Model with Negative Energy Density in Einstein-Cartan Theory of Gravitation

    CERN Document Server

    Ray, S; Ray, Saibal; Bhadra, Sumana

    2002-01-01

    Experimental result regarding the maximum limit of the radius of the electron \\sim 10^{-16} cm and a few of the theoretical works suggest that the gravitational mass which is a priori a positive quantity in Newtonian mechanics may become negative in general theory of relativity. It is argued that such a negative gravitational mass and hence negative energy density also can be obtained with a better physical interpretation in the framework of Einstein-Cartan theory.

  12. Theory of quantum and classical connections in modeling atomic, molecular and electrodynamical systems

    CERN Document Server

    Popa, Alexandru

    2013-01-01

    Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamic Systems is intended for scientists and graduate students interested in the foundations of quantum mechanics and applied scientists interested in accurate atomic and molecular models. This is a reference to those working in the new field of relativistic optics, in topics related to relativistic interactions between very intense laser beams and particles, and is based on 30 years of research. The novelty of this work consists of accurate connections between the properties of quantum equations and correspon

  13. Field theory and weak Euler-Lagrange equation for classical particle-field systems

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Hong [PPPL; Burby, Joshua W [PPPL; Davidson, Ronald C [PPPL

    2014-10-01

    It is commonly believed that energy-momentum conservation is the result of space-time symmetry. However, for classical particle-field systems, e.g., Klimontovich-Maxwell and Klimontovich- Poisson systems, such a connection hasn't been formally established. The difficulty is due to the fact that particles and the electromagnetic fields reside on different manifolds. To establish the connection, the standard Euler-Lagrange equation needs to be generalized to a weak form. Using this technique, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived.

  14. Semi-classical periodic-orbit theory for chaotic Hamiltonians with discrete symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, T.H.; Weidenmuller, H.A

    1994-12-07

    We generalize an idea applied recently to the case of identical particles and present a group-theoretical analysis of the periodic-orbit structure of a chaotic dynamical system with a discrete symmetry. The class structure of the group provides the key for the classification of periodic orbits. This structure perfectly fits the quantum-mechanical trace formula which is the starting point for the Balian-Bloch-Gutzwiller semi-classical approximation. For a specific irreducible representation of the symmetry group, we derive a modified form of the periodic-orbit sum. (author)

  15. THE CLASSICAL BALLET METHODOLOGY AND THEIR POSSIBLE DIALOGUE WITH LABANIANAS THEORIES

    Directory of Open Access Journals (Sweden)

    Lanusse Sousa Jaime

    2015-12-01

    Full Text Available Establish a dialogue between a codified technique with other body techniques becomes a challenge when it comes to a tradition. Moths new avenues for the ballet teaching may move several problems found with respect to a hierarchy of knowledge. Ballet with its tradition and its stroked paths can be reorganized to build thinking and conscious bodies? The traditional classical technique transits other body language? Often there are more complex issues to think today in teaching and learning ballet . These issues translate my need to research and experiment with new ways to teach this technique.

  16. Classical and Quantum Theory of Photothermal Cavity Cooling of a Mechanical Oscillator

    CERN Document Server

    Restrepo, Juan; Ciuti, Cristiano; Favero, Ivan

    2010-01-01

    Photothermal effects allow very efficient optomechanical coupling between mechanical degrees of freedom and photons. In the context of cavity cooling of a mechanical oscillator, the question of if the quantum ground state of the oscillator can be reached using photothermal back-action has been debated and remains an open question. Here we address this problem by complementary classical and quantum calculations. Both lead us to conclude that: first, the ground-state can indeed be reached using photothermal cavity cooling, second, it can be reached in a regime where the cavity detuning is small allowing a large amount of photons to enter the cavity.

  17. Ab initio molecular dynamics with nuclear quantum effects at classical cost: ring polymer contraction for density functional theory

    CERN Document Server

    Marsalek, Ondrej

    2015-01-01

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ab initio ring polymer contraction (AI-RPC) scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive pro...

  18. Heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-Si alloys investigated by entrained droplet technique and DSC

    Science.gov (United States)

    Li, J. H.; Albu, M.; Ludwig, T. H.; Hofer, F.; Arnberg, L.; Schumacher, P.

    2016-03-01

    Entrained droplet technique and DSC analyses were employed to investigate the influence of trace elements of Sr, Eu and P on the heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-5wt.% Si alloys. Sr and Eu addition was found to exert negative effects on the nucleation process, while an increased undercooling was observed. This can be attributed to the formation of phosphide compounds having a lower free energy and hence may preferentially form compared to AlP. Only a trace P addition was found to have a profound effect on the nucleation process. The nucleation kinetics is discussed on the basis of the classical nucleation theory and the free growth model, respectively. The estimated AlP patch size was found to be sufficient for the free growth of Si to occur within the droplets, which strongly indicates that the nucleation of Si on an AlP patch or AlP particle is a limiting step for free growth. The maximum nucleation site density within one droplet is directly related to the size distribution of AlP particles or AlP patches for Si nucleation, but is independent of the cooling rates. Although the nucleation conditions were optimized in entrained droplet experiments, the observed mechanisms are also valid at moderate cooling conditions, such as in shape casting.

  19. Molecular Dynamics Studies of the Kinetics of Phase Changes in Clusters IV: Crystal Nucleation from Molten (NaCl)256 and (NaCl)500 Clusters

    Institute of Scientific and Technical Information of China (English)

    李小华; 黄锦凡

    2003-01-01

    Molecular dynamics computer simulation based on the Born-Mayer-Huggins potential function has been carried out to study the effects of duster size and temperature on the nucleation rate of sodium chloride dusters in the temperature range of 580 K to 630 K. Clusters with 256 and 500 NaCl molecules have been studied and the results have been compared with those obtained from 108 molecule dusters. The melting point (MP) of the clusters were observed to increase with the size of the clusters and can be well described by a linear equation MP =1107(37)-1229(23)N-1/3(N is the number of molecules in the duster).The nucleation rate was found to decrease with increasing the duster size or temperature. Various nucleation theories have been used to interpret the nucleation rates obtained from this molecular dynamics simulation. It is possible to use a constant diffuse interface thickness to interpret the nucleation rate from the diffuse interface theory in the temperature range of this study. However, the interfacinl free energy estimated from classical nucleation theory and diffuse interface theory increases too fast with increasing the temperature while that from Gran-Gunton theory does not change with changing temperatures.The sizes of critical nuclei estimated from all the theories are smaller than those estimated from our simulations.

  20. Free vibration of functionally graded beams based on both classical and first-order shear deformation beam theories

    Institute of Scientific and Technical Information of China (English)

    李世荣; 万泽青; 张静华

    2014-01-01

    The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma-tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen-cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.

  1. Homogeneous droplet nucleation modeled using the gradient theory combined with the PC-SAFT equation of state

    Directory of Open Access Journals (Sweden)

    Vinš Václav

    2013-04-01

    Full Text Available In this work, we used the density gradient theory (DGT combined with the cubic equation of state (EoS by Peng and Robinson (PR and the perturbed chain (PC modification of the SAFT EoS developed by Gross and Sadowski [1]. The PR EoS is based on very simplified physical foundations, it has significant limitations in the accuracy of the predicted thermodynamic properties. On the other hand, the PC-SAFT EoS combines different intermolecular forces, e.g., hydrogen bonding, covalent bonding, Coulombic forces which makes it more accurate in predicting of the physical variables. We continued in our previous works [2,3] by solving the boundary value problem which arose by mathematical solution of the DGT formulation and including the boundary conditions. Achieving the numerical solution was rather tricky; this study describes some of the crucial developments that helped us to overcome the partial problems. The most troublesome were computations for low temperatures where we achieved great improvements compared to [3]. We applied the GT for the n-alkanes: nheptane, n-octane, n-nonane, and n-decane because of the availability of the experimental data. Comparing them with our numerical results, we observed great differences between the theories; the best results gave the combination of the GT and the PC-SAFT. However, a certain temperature drift was observed that is not satisfactorily explained by the present theories.

  2. Energy-momentum tensors in classical field theories — A modern perspective

    Science.gov (United States)

    Voicu, Nicoleta

    2016-04-01

    The paper presents a general geometric approach to energy-momentum tensors in Lagrangian field theories, based on a global Hilbert-type definition. The approach is consistent with the ones defining energy-momentum tensors in terms of hypermomentum maps given by the diffeomorphism invariance of the Lagrangian — and, in a sense, complementary to these, with the advantage of an increased simplicity of proofs and also, opening up new insights on the topic. A special attention is paid to the particular cases of metric and metric-affine theories.

  3. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    Science.gov (United States)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  4. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    Science.gov (United States)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes. PMID:26871185

  5. Investigating heterogeneous nucleation in peritectic materials via the phase-field method

    International Nuclear Information System (INIS)

    Here we propose a phase-field approach to investigate the influence of convection on peritectic growth as well as the heterogeneous nucleation kinetics of peritectic systems. For this purpose we derive a phase-field model for peritectic growth taking into account fluid flow in the melt, which is convergent to the underlying sharp interface problem in the thin interface limit (Karma and Rappel 1996 Phys. Rev. E 53 R3017). Moreover, we employ our new phase-field model to study the heterogeneous nucleation kinetics of peritectic material systems. Our approach is based on a similar approach towards homogeneous nucleation in Granasy et al (2003 Interface and Transport Dynamics (Springer Lecture Notes in Computational Science and Engineering vol 32) ed Emmerich et al (Berlin: Springer) p 190). We applied our model successfully to extend the nucleation rate predicted by classical nucleation theory for an additional morphological term relevant for peritectic growth. Further applications to understand the mechanisms and consequences of heterogeneous nucleation kinetics in more detail are discussed

  6. Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data

    Directory of Open Access Journals (Sweden)

    J.-P. Chen

    2008-12-01

    Full Text Available The rate of ice nucleation in clouds is not easily determined and large discrepancies exist between model predictions and actual ice crystal concentration measured in clouds. In an effort to improve the parameterization of ice nucleating in cloud models, we investigate the rate of heterogeneous ice nucleation under specific ambient conditions by knowing the sizes as well as two thermodynamic parameters of the ice nuclei – contact angle and activation energy. Laboratory data of freezing and deposition nucleation modes were analyzed to derive inversely the two thermodynamic parameters for a variety of ice nuclei, including mineral dusts, bacteria, pollens, and soot particles. The analysis considered the Zeldovich factor for the adjustment of ice germ formation, as well as the solute and curvature effects on surface tension; the latter effects have strong influence on the contact angle. Contact angle turns out to be a more important factor than the activation energy in discriminating the nucleation capabilities of various ice nuclei species. By extracting these thermodynamic parameters, laboratory results can be converted into a formulation that follows classical nucleation theory, which then has the flexibility of incorporating factors such as the solute effect and curvature effect that were not considered in the experiments. Due to various uncertainties, contact angle and activation energy derived in this study should be regarded as "apparent" thermodynamics parameters.

  7. Magnetic behavior of the giant Heisenberg molecular magnet Mo_72Fe_30: Classical theory and experiment

    Science.gov (United States)

    Luban, Marshall; Modler, Robert; Axenovich, Maria; Canfield, Paul; Bud'Ko, Sergey; Schröder, Christian; Schnack, Jürgen; Müller, Achim; Kögerler, Paul; Harrison, Neil

    2001-03-01

    The Keplerate species Mo_72Fe_30 containing 30 high-spin Fe^3+ ions, is by far the largest paramagnetic molecule synthesized to date, and it serves as an effective building block and prototype for a new class of diverse molybdenum-oxygen based compounds. These substances are of importance for identifying the most pertinent criteria for the passage from microscopic to macroscopic magnetism, and for their potential as molecular-based electronic and magnetic devices. We report excellent agreement, from room temperature down to 0.1 K, and for magnetic fields up to 60 Tesla between our theoretical results based on the classical Heisenberg model and our measurements of its magnetic properties.

  8. Comparison of 3D Classical Trajectory and Transition-State Theory Reaction Cross Sections

    Science.gov (United States)

    Koeppl, G. W.; Karplus, Martin

    1970-10-01

    Although there is excellent agreement for a system such as H+H{sub 2} --> H{sub 2}+H, in which both the potential and the particle masses are symmetric, significant deviations occur for more asymmetric reactions. A detailed analysis show that the calculated differences are from the violation of two assumptions of transition-state theory.

  9. Philosophical Roots of Classical Grounded Theory: Its Foundations in Symbolic Interactionism

    Science.gov (United States)

    Aldiabat, Khaldoun M.; Le Navenec, Carole-Lynne

    2011-01-01

    Although many researchers have discussed the historical relationship between the Grounded Theory methodology and Symbolic Interactionism, they have not clearly articulated the congruency of their salient concepts and assumptions. The purpose of this paper is to provide a thorough discussion of this congruency. A hypothetical example about smoking…

  10. FEATURES OF INVESTMENT PROCESS UNDERSTANDING BY A. SMITH AS THE FOUNDER OF CLASSICAL THEORY

    Directory of Open Access Journals (Sweden)

    T. Ovcharenko

    2013-03-01

    Full Text Available The paper examines the essence and the nature of the concept of “investment”. The main conceptual elements of a scientific theory of Adam Smith are defined. The features of the investment process by Adam Smith as the driving mechanism for social and economic development of a society are revealed.

  11. Hamiltonian approach to GR - Part 1: covariant theory of classical gravity

    CERN Document Server

    Cremaschini, Claudio

    2016-01-01

    A challenging issue in General Relativity concerns the determination of the manifestly-covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor $\\hat{g}(r)\\equiv \\left\\{ \\hat{g}_{\\mu \

  12. On the limits of quantum theory: Contextuality and the quantum–classical cut

    International Nuclear Information System (INIS)

    This paper is based on four assumptions: 1. Physical reality is made of linearly behaving components combined in non-linear ways. 2. Higher level behaviour emerges from this lower level structure. 3. The way the lower level elements behaves depends on the context in which they are embedded. 4. Quantum theory applies to the lower level entities. An implication is that higher level effective laws, based on the outcomes of non-linear combinations of lower level linear interactions, will generically not be unitary; hence the applicability of quantum theory at higher levels is strictly limited. This leads to the view that both state vector preparation and the quantum measurement process are crucially based on top-down causal effects, and helps provide criteria for the Heisenberg cut that challenge some views on Schrödinger’s cat. - Highlights: ► Gives a framework for looking at emergence based on quantum theory. ► Considers how the linearity of quantum theory relates to complex systems. ► Emphasizes the interaction of bottom-up and top-down causation. ► Uses this to discuss the classical–quantum cut. ► Applies this to Schrödinger’s cat.

  13. Semi-classical theory of fluctuations in nuclear matter; Theorie semi-classique des fluctuations dans la matiere nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Benhassine, B. [Nantes Univ., 44 (France)

    1994-01-14

    At intermediate energies the heavy ion collisions can be studied within the framework of a semi-classical approach based on the Vlasov-Uehling-Uhlenbeck (VUU) equation. Such an approach reduces the N-body problem to its description in terms of the one-body distribution function and constitutes the basis of several successful simulation models. Our aim in this work is to extend these average approaches to treat fluctuations. Within the framework of a linear approximation, we derived a Fokker-Planck transport equation in the one-body phase space. When it is reduced to its first moments, one recovers the VUU equation for the average dynamics together with the time evolution equation for the correlations. The collective transport coefficients are then obtained by projection on the one-body collective space. Independently, using a projection method introduced by Van Kampen, based on the constants of motion, we deduce the stationary expressions for the covariance matrix in phase space. We extract then, the equilibrium dispersions of one-body observables in a homogeneous case and in a spherical symmetric one. These results are compared with two types of simulation models in a relaxation time approximation. In the first one which is of Lagrangian type, the collective transport coefficients are directly extracted from the simulation and consequently the numerical fluctuations are washed out. The second model, due to its Eulerian character, allows us to make a microscopical comparison. (author) 58 refs.

  14. Representations of cohomological Hall algebras and Donaldson-Thomas theory with classical structure groups

    CERN Document Server

    Young, Matthew B

    2016-01-01

    We introduce a new class of representations of the cohomological Hall algebras of Kontsevich and Soibelman which we call cohomological Hall modules, or CoHM for short. These representations are constructed from self-dual representations of a quiver with contravariant involution $\\sigma$ and provide a mathematical model for the space of BPS states in orientifold string theory. We use the CoHM to define a generalization of cohomological Donaldson-Thomas theory of quivers which allows the quiver representations to have orthogonal and symplectic structure groups. The associated invariants are called orientifold Donaldson-Thomas invariants. We prove the integrality conjecture for orientifold Donaldson-Thomas invariants of $\\sigma$-symmetric quivers. We also formulate precise conjectures regarding the geometric meaning of these invariants and the freeness of the CoHM of a $\\sigma$-symmetric quiver. We prove the freeness conjecture for disjoint union quivers, loop quivers and the affine Dynkin quiver of type $\\widet...

  15. Direct Calculation of Ice Homogeneous Nucleation Rate for a Molecular Model of Water

    CERN Document Server

    Haji-Akbari, Amir

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of systems and environments, including biological cells [1], soil [2], aircraft [3], transportation infrastructure [4] and atmospheric clouds [5,6]. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water [7-9]. For the more realistic molecular models, only indirect estimates have been obtained, e.g.~by assuming the validity of classical nucleation theory [10]. Here, we use a path sampling approach to perform the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice [11], the most accurate among the existing molecular models for studying ice polymorphs. By using a novel topological order parameter for distinguishing different polymorphs, we are able to identify a freezing me...

  16. Equations of motion in Double Field Theory: from classical particles to quantum cosmology

    CERN Document Server

    Kan, Nahomi; Shiraishi, Kiyoshi

    2012-01-01

    The equation of motion for a point particle in the background field of double field theory is considered. We find that the motion is described by a geodesic flow in the doubled geometry. Inspired by analysis on the particle motion, we propose a modified model of quantum string cosmology, which includes two scale factors. The report is based on Phys. Rev. D84 (2011) 124049 [arXiv:1108.5795].

  17. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.

    Science.gov (United States)

    Singh, Rakesh S; Bagchi, Biman

    2014-04-28

    The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phases having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments. PMID:24784283

  18. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    Science.gov (United States)

    Dahms, Rainer N.

    2016-04-01

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing

  19. II - Conservation of Gravitational Energy Momentum and Poincare-Covariant Classical Theory of Gravitation

    OpenAIRE

    Wiesendanger, C.

    2011-01-01

    Viewing gravitational energy-momentum $p_G^\\mu$ as equal by observation, but different in essence from inertial energy-momentum $p_I^\\mu$ naturally leads to the gauge theory of volume-preserving diffeormorphisms of an inner Minkowski space ${\\bf M}^{\\sl 4}$. To extract its physical content the full gauge group is reduced to its Poincar\\'e subgroup. The respective Poincar\\'e gauge fields, field strengths and Poincar\\'e-covariant field equations are obtained and point-particle source currents a...

  20. Interpreting nowhere dense graph classes as a classical notion of model theory

    OpenAIRE

    Adler, H; Adler, I

    2014-01-01

    A class of graphs is nowhere dense if for every integer r there is a finite upper bound on the size of complete graphs that occur as r-minors. We observe that this recent tameness notion from (algorithmic) graph theory is essentially the earlier stability theoretic notion of superflatness. For subgraph-closed classes of graphs we prove equivalence to stability and to not having the independence property. Expressed in terms of PAC learning, the concept classes definable in first-order logic in...

  1. Pressure in the Landau-Ginzburg functional: Pascal's law, nucleation in fluid mixtures, a meanfield theory of amphiphilic action, and interface wetting in glassy liquids.

    Science.gov (United States)

    Chan, Ho Yin; Lubchenko, Vassiliy

    2015-09-28

    We set up the problem of finding the transition state for phase nucleation in multi-component fluid mixtures, within the Landau-Ginzburg density functional. We establish an expression for the coordinate-dependent local pressure that applies to mixtures, arbitrary geometries, and certain non-equilibrium configurations. The expression allows one to explicitly evaluate the pressure in spherical geometry, à la van der Waals. Pascal's law is recovered within the Landau-Ginzburg density functional theory, formally analogously to how conservation of energy is recovered in the Lagrangian formulation of mechanics. We establish proper boundary conditions for certain singular functional forms of the bulk free energy density that allow one to obtain droplet solutions with thick walls in essentially closed form. The hydrodynamic modes responsible for mixing near the interface are explicitly identified in the treatment; the composition at the interface is found to depend only weakly on the droplet size. Next we develop a Landau-Ginzburg treatment of the effects of amphiphiles on the surface tension; the amphiphilic action is seen as a violation of Pascal's law. We explicitly obtain the binding potential for the detergent at the interface and the dependence of the down-renormalization of the surface tension on the activity of the detergent. Finally, we argue that the renormalization of the activation barrier for escape from long-lived structures in glassy liquids can be viewed as an action of uniformly seeded, randomly oriented amphiphilic molecules on the interface separating two dissimilar aperiodic structures. This renormalization is also considered as a "wetting" of the interface. The resulting conclusions are consistent with the random first order transition theory. PMID:26429019

  2. Pressure in the Landau-Ginzburg functional: Pascal's law, nucleation in fluid mixtures, a meanfield theory of amphiphilic action, and interface wetting in glassy liquids.

    Science.gov (United States)

    Chan, Ho Yin; Lubchenko, Vassiliy

    2015-09-28

    We set up the problem of finding the transition state for phase nucleation in multi-component fluid mixtures, within the Landau-Ginzburg density functional. We establish an expression for the coordinate-dependent local pressure that applies to mixtures, arbitrary geometries, and certain non-equilibrium configurations. The expression allows one to explicitly evaluate the pressure in spherical geometry, à la van der Waals. Pascal's law is recovered within the Landau-Ginzburg density functional theory, formally analogously to how conservation of energy is recovered in the Lagrangian formulation of mechanics. We establish proper boundary conditions for certain singular functional forms of the bulk free energy density that allow one to obtain droplet solutions with thick walls in essentially closed form. The hydrodynamic modes responsible for mixing near the interface are explicitly identified in the treatment; the composition at the interface is found to depend only weakly on the droplet size. Next we develop a Landau-Ginzburg treatment of the effects of amphiphiles on the surface tension; the amphiphilic action is seen as a violation of Pascal's law. We explicitly obtain the binding potential for the detergent at the interface and the dependence of the down-renormalization of the surface tension on the activity of the detergent. Finally, we argue that the renormalization of the activation barrier for escape from long-lived structures in glassy liquids can be viewed as an action of uniformly seeded, randomly oriented amphiphilic molecules on the interface separating two dissimilar aperiodic structures. This renormalization is also considered as a "wetting" of the interface. The resulting conclusions are consistent with the random first order transition theory.

  3. Pressure in the Landau-Ginzburg functional: Pascal's law, nucleation in fluid mixtures, a meanfield theory of amphiphilic action, and interface wetting in glassy liquids

    Science.gov (United States)

    Chan, Ho Yin; Lubchenko, Vassiliy

    2015-09-01

    We set up the problem of finding the transition state for phase nucleation in multi-component fluid mixtures, within the Landau-Ginzburg density functional. We establish an expression for the coordinate-dependent local pressure that applies to mixtures, arbitrary geometries, and certain non-equilibrium configurations. The expression allows one to explicitly evaluate the pressure in spherical geometry, à la van der Waals. Pascal's law is recovered within the Landau-Ginzburg density functional theory, formally analogously to how conservation of energy is recovered in the Lagrangian formulation of mechanics. We establish proper boundary conditions for certain singular functional forms of the bulk free energy density that allow one to obtain droplet solutions with thick walls in essentially closed form. The hydrodynamic modes responsible for mixing near the interface are explicitly identified in the treatment; the composition at the interface is found to depend only weakly on the droplet size. Next we develop a Landau-Ginzburg treatment of the effects of amphiphiles on the surface tension; the amphiphilic action is seen as a violation of Pascal's law. We explicitly obtain the binding potential for the detergent at the interface and the dependence of the down-renormalization of the surface tension on the activity of the detergent. Finally, we argue that the renormalization of the activation barrier for escape from long-lived structures in glassy liquids can be viewed as an action of uniformly seeded, randomly oriented amphiphilic molecules on the interface separating two dissimilar aperiodic structures. This renormalization is also considered as a "wetting" of the interface. The resulting conclusions are consistent with the random first order transition theory.

  4. The Super-Natural Supersymmetry and Its Classic Example: M-Theory Inspired NMSSM

    CERN Document Server

    Li, Tianjun; Wang, Xiao-Chuan

    2015-01-01

    We briefly review the super-natural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the Minimal Supersymmetric Standard model (MSSM), the Next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for super-natural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on $S^1/Z_2$. In these scenarios, SUSY is broken by one and only one $F$-term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the K\\"ahler potential and superpotential from Calabi-Yau compactification of M-theory on $S^1/Z_2$. Thus, as predicted by super-natural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are r...

  5. Revisiting Classical Theories on Quality Management%质量管理经典理论再启示

    Institute of Scientific and Technical Information of China (English)

    牟慈

    2015-01-01

    质量是企业的立身之本。重温质量管理经典理论,为增强企业整体质量管理意识,创新管理理念,提升全员质量管理水平夯实理论基础,让中国石化“质量永远领先一步”。%Quality is fundamental to the development of companies. Revisiting classical theories on quality management can facilitate a more solid theoretical basis for the company’s efforts to improve its overall quality management awareness, innovate management philosophies and elevate total quality management level, thereby always keeping SINOPEC“a step ahead in quality”.

  6. Classical phase space and Hadamard states in the BRST formalism for gauge field theories on curved spacetime

    CERN Document Server

    Wrochna, Michał

    2014-01-01

    We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove it is isomorphic to the phase space in the subsidiary condition approach of Hack and Schenkel in the case of Maxwell, Yang-Mills, and Rarita-Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang-Mills case is concluded from known results in the subsidiary condition (or Gupta-Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang-Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.

  7. On the limits of quantum theory: contextuality and the quantum-classical cut

    CERN Document Server

    Ellis, George F R

    2011-01-01

    This paper is based on four assumptions: 1. Physical reality is made of linearly behaving components combined in non-linear ways. 2. Higher level behaviour emerges from this lower level structure. 3. The way the lower level elements behaves depends on the context in which they are imbedded. 4. Quantum theory applies to the lower level entities. An implication is that higher level effective laws, based in the outcomes of non-linear combinations of lower level linear interactions, will generically not be unitary. This leads to the view that both state vector preparation and the quantum measurement process are crucially based in top-down causal effects, supports the contention that the flow of time is real, and helps provide criteria for the Heisenberg cut that challenge some views on Schroedinger's cat and the existence of the wave function of the universe.

  8. Supernatural supersymmetry and its classic example: M-theory inspired NMSSM

    Science.gov (United States)

    Li, Tianjun; Raza, Shabbar; Wang, Xiao-Chuan

    2016-06-01

    We briefly review the supernatural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the minimal supersymmetric standard model (MSSM), the next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for supernatural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on S1/Z2. In these scenarios, SUSY is broken by one and only one F term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the Kähler potential and superpotential from Calabi-Yau compactification of M-theory on S1/Z2. Thus, as predicted by supernatural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are relatively light around 1 TeV, stau can even be as light as 580 GeV and degenerate with the lightest neutralino, chargino masses are larger than 1 TeV, the light stop masses are around 2 TeV or larger, the first two-generation squark masses are about 3 TeV or larger, and gluinos are heavier tha.n squarks. In the dilaton dominant SUSY breaking scenario, the qualitative picture remains the same but we have heavier spectra as compared to the moduli dominant SUSY breaking scenario. In addition to it, we have Higgs H2/A1-resonance solutions for dark matter (DM). In both scenarios, the minimal value of DM relic density is about 0.2. To obtain the observed DM relic density, we can consider the dilution effect from supercritical string cosmology or introduce the axino as the lightest supersymmetric particle.

  9. Classical density-functional theory of inhomogeneous water including explicit molecular structure and nonlinear dielectric response.

    Science.gov (United States)

    Lischner, Johannes; Arias, T A

    2010-02-11

    We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response of water in the nonlinear regime, finding excellent agreement with known data.

  10. Monte Carlo simulations of phase transformations caused by nucleation and subsequent anisotropic growth: Extension of the Johnson-Mehl-Avrami-Kolmogorov theory

    OpenAIRE

    Kooi, BJ

    2004-01-01

    Monte Carlo (MC) simulations of isothermal phase transformations were performed based on a temperature- and time-dependent nucleation rate and a temperature-dependent and time-independent anisotropic growth rate (linear growth). One- or two-dimensional anisotropic growth in two-dimensional space is considered and nucleation occurs randomly throughout space. The MC simulations show that parallel growth of anisotropically growing transformation products with identical convex shape can be descri...

  11. Nucleation of earthquakes and its implication to precursors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The recent argument about nucleation phase of earthquakes reminds us to completely study the concept of earthquake nucleation. The original meaning of nucleation includes concentration, nucleation and initiation of the eruptive processes. Thus, it is needed to discuss how to exactly translate the word "nucleation" into Chinese in different fields. The basic concept of earthquake nucleation refers to microcrack concentration in rock. It causes local weakening and instability of the rock. The narrow sense of nucleation theory of friction constitutive is significant in friction of fault surfaces, but should not abuse everywhere unconditionally. In terms of thermodynamics, nucleation actually means the variety processes of multiple state parameters of rock. The nucleation is a project that covers multiple courses. In this paper, the studies of damage theory, fracture, earthquake rupture dynamics and constitutive of friction and their implication to earthquake nucleation are remarked. The recently developments are introduced, including the influence of tectonic on the earthquake nucleation process, the method of measuring medium anisotropy, especially shear wave splitting led by concentration and orientation of microcracks, and the experimental study of remote sensing of infrared and microwave radiation related to the nucleation, etc. This paper also discusses the characteristic of large earthquake nucleation, and the implication of above studies to precursors of strong earthquakes.

  12. Perturbation theory of structure in classical liquid mixtures: Application to metallic systems near phase separation. Ph.D. Thesis

    Science.gov (United States)

    Henderson, R. L.

    1974-01-01

    The partial structure factors of classical simple liquid mixtures near phase separation are dicussed. The theory is developed for particles interacting through pair potentials, and is thus appropriate both to insulating fluids, and also to metallic systems if these may be described by an effective ion-ion pair interaction. The motivation arose from consideration of metallic liquid mixtures, in which resistive anomalies have been observed near phase separation. A mean field theory correction appropriate to 3 pair potential for the effects of correlated motions in the reference fluid is studied. The work is cast in terms of functions which are closely related to the direct correlation functions of Ornstein and Zernike. The results are qualitatively in accord with physical expectations. Quantitative agreement with experiment seems to turn on the selection of the hard core reference potential in terms of the metallic effective pair potential. It is suggested that the present effective pair potentials are perhaps not properly used to calculate the metallic structure factors at long wavelength.

  13. Early development of rostrum saw-teeth in a fossil ray tests classical theories of the evolution of vertebrate dentitions.

    Science.gov (United States)

    Smith, Moya Meredith; Riley, Alex; Fraser, Gareth J; Underwood, Charlie; Welten, Monique; Kriwet, Jürgen; Pfaff, Cathrin; Johanson, Zerina

    2015-10-01

    In classical theory, teeth of vertebrate dentitions evolved from co-option of external skin denticles into the oral cavity. This hypothesis predicts that ordered tooth arrangement and regulated replacement in the oral dentition were also derived from skin denticles. The fossil batoid ray Schizorhiza stromeri (Chondrichthyes; Cretaceous) provides a test of this theory. Schizorhiza preserves an extended cartilaginous rostrum with closely spaced, alternating saw-teeth, different from sawfish and sawsharks today. Multiple replacement teeth reveal unique new data from micro-CT scanning, showing how the 'cone-in-cone' series of ordered saw-teeth sets arrange themselves developmentally, to become enclosed by the roots of pre-existing saw-teeth. At the rostrum tip, newly developing saw-teeth are present, as mineralized crown tips within a vascular, cartilaginous furrow; these reorient via two 90° rotations then relocate laterally between previously formed roots. Saw-tooth replacement slows mid-rostrum where fewer saw-teeth are regenerated. These exceptional developmental data reveal regulated order for serial self-renewal, maintaining the saw edge with ever-increasing saw-tooth size. This mimics tooth replacement in chondrichthyans, but differs in the crown reorientation and their enclosure directly between roots of predecessor saw-teeth. Schizorhiza saw-tooth development is decoupled from the jaw teeth and their replacement, dependent on a dental lamina. This highly specialized rostral saw, derived from diversification of skin denticles, is distinct from the dentition and demonstrates the potential developmental plasticity of skin denticles.

  14. Relativistic semi-classical theory of atom ionization in ultra-intense laser

    Institute of Scientific and Technical Information of China (English)

    CHEN; Baozhen

    2001-01-01

    [1]Schoch, A., Seitliche Versetzung eines total reflektierten strahles bei Utraschallwellen, Acustica, 1952, 2: 17.[2]Neubauer, W. G., Ultrasonic reflection of a bounded beam at Rayleigh and critical angles for a plane liquid-solid interface, J. Appl. Phys., 1973, 44: 48.[3]Ngoc, T. D. K., Mayer, W. G., Numerical integration method for reflected beam profiles near Rayleigh angle, J. Acoust. Soc. Am., 1980, 67, 1149.[4]Nagy, P. B., Cho, K., Focal shift of convergent ultrasonic beams reflected from a liquid-solid interface, J. Acoust. Soc. Am., 1987, 81(4): 835.[5]Bertoni, H. L., Hsue, C. W., Tamir, T., Non-specular reflection of convergent beams from liquid-solid interface, Traitement du Signal, 1985, 2: 201.[6]Zhu Guozhen, Liu Liang, Fu Deyong, Reflected beam displacements of a slightly divergent ultrasonic Gaussian beam on a water-glass interface near Rayleigh angle incidence, Chinese Physics Letters, 1999, 16(11): 819.[7]Bertoni, H. L., Tamir, T., Unified theory of Rayleigh-angle phenomena for acoustic beams onto liquid-solid interface, Appl. Phys., 1973, 2: 157.[8]Zeroug, S., Felsen, L. B., Nonspecular reflection of two- and three-dimensional acoustic beams from fluid-immersed plane-layered elastic structures, J. Acoust. Soc. Am., 1994, 95: 3075.[9]Chimenti, D. E., Zeroug, S. et al., Interaction of acoustic beams with fluid-loaded elastic structures, J. Acoust. Soc. Am., 1994, 95(1): 45.[10]Breazeale, M. A. L., Adler, L., Scott, G. W., Interaction of ultrasonic waves incident at the Rayleigh angle onto a liquid-solid interface, J. Appl. Phys., 1977, 48(2): 530.[11]Ngoc, T. D. K., Mayer, W. G., General description of ultrasonic nonspecular reflection and transmission effects for layered media, IEEE Trans. Sonics Ultrason., 1980, SU-27: 229.[12]Martin, F. D., Breazeale, M. A., J. Acoust. Soc. Am., 1971, 49: 1668.[13]Gunarathne, G. P. P., Szilard, J., A new stroboscope for Schlieren and photoelastic visualization

  15. Classical tachyons

    International Nuclear Information System (INIS)

    A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author)

  16. The Impact of Technology and Distance Education: A Classical Learning Theory Viewpoint

    Directory of Open Access Journals (Sweden)

    Herb Thompson

    1999-01-01

    Full Text Available For the past two years the author has been teaching economics (History of Economic Thought and Economic Development at the tertiary level via the Internet and computer-mediation. This is done primarily for students who are unable or who do not wish to attend classes on campus, but desire an education as good, if not better, as the campus based enterprise. This paper provides a reflective analysis of the theoretical content of that practice. Teaching ‘online’ is a vastly different enterprise than face-to-face exercises, thereby demanding a revaluation of one’s pedagogical theory and praxis. In The German Ideology, Marx and Engels articulated their claim that historically dominant classes embody their ideas in essential forms, representing them as universally valid. It is within this framework that we begin to examine what it means to "know" in economics. How knowledge is legitimated in universities continues to be under-theorised, particularly with regard to electronic transmission. The mechanism of transmission of particular concern here is that which is computer-mediated. Landow represents hypertext as the latest flowering in a long march of democratic processes originating in the displacement of Platonic authority by the lesser authority of the written word. It is argued here that the determinism of the "progressive narrative" within and around the "hypertext revolution" deserves careful scrutiny, particularly in its application to pedagogy. Pedagogical artefacts, such as computers, mediate the transmission of ideas. The question "how does this happen?" relates to the complexity of theorizing the relationship between the educational process and the social relations of capitalist social formations. Over two decades ago, Bowles and Gintis attempted a Marxist understanding of the nature of this relationship. In their conception, pedagogical mechanisms were seen to operate in a fairly deterministic way to mirror and model the norms and values

  17. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.

    Science.gov (United States)

    Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C

    2012-09-27

    Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS.

  18. Modelling polytypism in III-V nanowires: role of group V and nucleation patterns during the growth

    Science.gov (United States)

    Grecenkov, J.; Dubrovskii, V. G.

    2015-11-01

    This theoretical work deals with polytypism in nanowires by utilizing nucleation theory and by modifying standard expression for nucleation rate. Polycentric and monocentric nucleation cases are also considered. Results show good agreement with experimental data.

  19. Nucleation and dissociation of nano-particles in gas phase

    International Nuclear Information System (INIS)

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Nan and heterogeneous NanX particles (X = (NaOH)2 or (Na2O)2). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na+(NaOH)p et Na+(NaF)p particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na+ Na+ (NaOH)p clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  20. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    Science.gov (United States)

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  1. Homogeneous nucleation rates of nitric acid dihydrate (NAD at simulated stratospheric conditions – Part II: Modelling

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available Activation energies ΔGact for the nucleation of nitric acid dihydrate (NAD in supercooled binary HNO3/H2O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol, Interactions, and Dynamics in the Atmosphere aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 and 197 K, NAD saturation ratios SNAD between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation for ΔGact=A×(T ln SNAD−2+B is fitted to the experimental data with A=2.5×106 kcal K2 mol−1 and B=11.2−0.1(T−192 kcal mol−1. A and B were chosen to also achieve good agreement with literature data of ΔGact. The parameter A implies, for the temperature and composition range of our analysis, a mean interface tension σsl=51 cal mol−1 cm−2 between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter B. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001 and surface-based (Tabazadeh et al., 2002 nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments.

  2. Steady-state molecular dynamics simulation of vapour to liquid nucleation with McDonald's daemon

    CERN Document Server

    Horsch, Martin; Vrabec, Jadran

    2009-01-01

    The most interesting step of condensation is the cluster formation up to the critical size. In a closed system, this is an instationary process, as the vapour is depleted by the emerging liquid phase. This imposes a limitation on direct molecular dynamics (MD) simulation of nucleation by affecting the properties of the vapour to a significant extent so that the nucleation rate varies over simulation time. Grand canonical MD with McDonald's daemon is discussed in the present contribution and applied for sampling both nucleation kinetics and steady-state properties of a supersaturated vapour. The idea behind that approach is to simulate the production of clusters up to a given size for a specified supersaturation. In that way, nucleation is studied by a steady-state simulation. A series of simulations is conducted for the truncated and shifted Lennard-Jones fluid which accurately describes the fluid phase coexistence of noble gases and methane. The classical nucleation theory is found to overestimate the free e...

  3. Direct Calculation of the Rate of Homogeneous Ice Nucleation for a Molecular Model of Water

    Science.gov (United States)

    Haji-Akbari, Amir; Debenedetti, Pablo

    Ice formation is ubiquitous in nature, with important consequences in many systems and environments. However, its intrinsic kinetics and mechanism are difficult to discern with experiments. Molecular simulations of ice nucleation are also challenging due to sluggish structural relaxation and the large nucleation barriers, and direct calculations of homogeneous nucleation rates have only been achieved for mW, a monoatomic coarse-grained model of water. For the more realistic molecular models, only indirect estimates have been obtained by assuming the validity of classical nucleation theory. Here, we use a coarse-grained variant of a path sampling approach known as forward-flux sampling to perform the first direct calculation of the homogeneous nucleation rate for TIP4P/Ice, which is the most accurate water model for studying ice polymorphs. By using a novel topological order parameter, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice polymorphs. In this competition, cubic ice wins as its growth leads to more compact crystallites

  4. Nucleation and dissociation of nano-particles in gas phase; Nucleation et evaporation de nanoparticules en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, P

    2007-09-15

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Na{sub n} and heterogeneous Na{sub n}X particles (X = (NaOH){sub 2} or (Na{sub 2}O){sub 2}). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na{sup +}(NaOH){sub p} et Na{sup +}(NaF){sub p} particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na{sup +} Na{sup +} (NaOH){sub p} clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  5. The Theory of Clinical Medicine of Huangdi's Classic of Internal Medicine%《黄帝内经》的临床医学理论

    Institute of Scientific and Technical Information of China (English)

    周安方

    2011-01-01

    The rich theory of clinical medicine of Huangdi 's Classic of Internal Medicine includes the clinical guiding ideology, theory of pathogenic factor and pathogenesis, theory of clinical diagnosis and examination, theory of clinical differentiation of syndrome, theory of clinical treatment. And the clinical guiding ideology includes the ideology of people o-riented, prevention foremost and harmony premium. And the theory of clinical treatment includes theory of root treatment, theory of yin - yang balance, theory of harmony of Qi and blood, theory of harmony of healthy Qi and pathogenic factor, theory of naturopathy, theory of five elements restraint, theory of opposition treatment, theory of correspondence between flavors and viscera. The theories and methods of Huangdis Classic of Internal Medicine have significant guiding effects on TCM clinic.%的临床医学理论非常丰富,它包括临床指导思想、病因病机理论、临床诊察理论、临床辩证理论、临床论治理论等,其临床指导思想包括以人为本思想、以防为主思想、以和为贵思想;其临床论治理论包括治病求本理论、阴阳求衡理论、气血求和理论、正邪求谐理论、时势求顺理论、五行制胜理论、以此治彼理论、各有所宜理论等.的这些理论及其方法,对中医临床具有重要的指导作用.

  6. Nucleation and growth of geological faults

    Directory of Open Access Journals (Sweden)

    D. Stoyan

    2011-08-01

    Full Text Available We present a new model of fault nucleation and growth based on the Weibull theory, already widely used in fracture research engineering. We propose that, according to a birth-and-growth process, germs (nuclei are born at random instants at random spatial locations and then grow with time. This leads to a satisfactory formulation of fault length distribution, different from classical statistical laws. Especially, this formulation reconciles previous analyses of fault datasets displaying power-law and/or exponential behaviors. The Weibull parameters can be statistically estimated in a simple way. We show that the model can be successfully fitted to natural data in Kenya and Ethiopia. In contrast to existing descriptive models developed for geological fault systems, such as fractal approaches, the Weibull theory allows to characterize the strength of the material, i.e. its resistance to deformation. Since this model is very general, we expect that it can be applied in many situations, and for simulations of geological fracture processes. The model is independent of deformation intensity and type and therefore allows a better constraint of the seismic risk in threatened regions.

  7. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y. [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Wu, H. A., E-mail: wuha@ustc.edu.cn [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China)

    2014-06-07

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m{sup −2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33−34} s{sup −1} m{sup −3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  8. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    Science.gov (United States)

    Cai, Y.; Wu, H. A.; Luo, S. N.

    2014-06-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (˜0.9 J {m}^{-2}) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (1033 - 34 s-1 m-3) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  9. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.

    Science.gov (United States)

    Cai, Y; Wu, H A; Luo, S N

    2014-06-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence. PMID:24908018

  10. Efficiency of immersion mode ice nucleation on surrogates of mineral dust

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2007-10-01

    Full Text Available A differential scanning calorimeter (DSC was used to explore heterogeneous ice nucleation of emulsified aqueous suspensions of two Arizona test dust (ATD samples with particle diameters of nominally 0–3 and 0–7 μm, respectively. Aqueous suspensions with ATD concentrations of 0.01–20 wt% have been investigated. The DSC thermograms exhibit a homogeneous and a heterogeneous freezing peak whose intensity ratios vary with the ATD concentration in the aqueous suspensions. Homogeneous freezing temperatures are in good agreement with recent measurements by other techniques. Depending on ATD concentration, heterogeneous ice nucleation occurred at temperatures as high as 256 K or down to the onset of homogeneous ice nucleation (237 K. For ATD-induced ice formation Classical Nucleation Theory (CNT offers a suitable framework to parameterize nucleation rates as a function of temperature, experimentally determined ATD size, and emulsion droplet volume distributions. The latter two quantities serve to estimate the total heterogeneous surface area present in a droplet, whereas the suitability of an individual heterogeneous site to trigger nucleation is described by the compatibility function (or contact angle in CNT. The intensity ratio of homogeneous to heterogeneous freezing peaks is in good agreement with the assumption that the ATD particles are randomly distributed amongst the emulsion droplets. The observed dependence of the heterogeneous freezing temperatures on ATD concentrations cannot be described by assuming a constant contact angle for all ATD particles, but requires the ice nucleation efficiency of ATD particles to be (lognormally distributed amongst the particles. Best quantitative agreement is reached when explicitly assuming that high-compatibility sites are rare and that therefore larger particles have on average more and better active sites than smaller ones. This analysis suggests that a particle has to have a diameter of at least 0

  11. Efficiency of immersion mode ice nucleation on surrogates of mineral dust

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2007-07-01

    Full Text Available A differential scanning calorimeter (DSC was used to explore heterogeneous ice nucleation of emulsified aqueous suspensions of two Arizona test dust (ATD samples with particle diameters of nominally 0–3 and 0–7 μm, respectively. Aqueous suspensions with ATD concentrations of 0.01–20 wt% have been investigated. The DSC thermograms exhibit a homogeneous and a heterogeneous freezing peak whose intensity ratios vary with the ATD concentration in the aqueous suspensions. Homogeneous freezing temperatures are in good agreement with recent measurements by other techniques. Depending on ATD concentration, heterogeneous ice nucleation occurred at temperatures as high as 256 K or down to the onset of homogeneous ice nucleation (237 K. For ATD-induced ice formation Classical Nucleation Theory (CNT offers a suitable framework to parameterize nucleation rates as a function of temperature, experimentally determined ATD size, and emulsion droplet volume distributions. The latter two quantities serve to estimate the total heterogeneous surface area present in a droplet, whereas the suitability of an individual heterogeneous site to trigger nucleation is described by the compatibility function (or contact angle in heterogeneous CNT. The intensity ratio of homogeneous to heterogeneous freezing peaks is in good agreement with the assumption that the ATD particles are randomly distributed amongst the emulsion droplets. The observed dependence of the heterogeneous freezing temperatures on ATD concentrations cannot be described by assuming a constant contact angle for all ATD particles, but requires the ice nucleation efficiency of ATD particles to be (lognormally distributed amongst the particles. Best quantitative agreement is reached when explicitly assuming that high-compatibility sites are rare and that therefore larger particles have on average more and better active sites than smaller ones. This analysis suggests that a particle has to have a diameter

  12. The effects of academic and interpersonal stress on dating violence among college students: a test of classical strain theory.

    Science.gov (United States)

    Mason, Brandon; Smithey, Martha

    2012-03-01

    This study examines Merton's Classical Strain Theory (1938) as a causative factor in intimate partner violence among college students. We theorize that college students experience general life strain and cumulative strain as they pursue the goal of a college degree. We test this strain on the likelihood of using intimate partner violence. Strain due to unrealistic expectations of intimate partnership and economic strain are also examined. The analysis examines the following causative factors representing strain: 1) the College Undergraduate Stress Scale (Renner & Mackin, 1998); 2) cumulative academic strain measured by college classification; 3) cumulative intimate partner strain measured as the length of time in the relationship; 4) academic strain measured by number of hours studied weekly, and 5) economic strain measured by number of hours worked weekly. Additionally, we examine the extent to which gender and race/ethnicity differentially affect intimate partner in the context of these measures of strain. The Conflict Tactics Scales II (Straus et al, 1996) are used to measure dating violence and include indicators for sexual coercion, physical aggression, injury, and psychological aggression. Data were collected from 142 students in lower-division classes from Texas Tech University. Results show that general strain and cumulative intimate partner strain increase the use of dating violence among college students. The longer dating partners are in a relationship, the higher the chances of psychological aggression, physical assault, and sexual coercion. Converse to our expectations, time spent working reduces psychological aggression due to reducing time spent together rather than reflecting economic strain.

  13. Classical scattering theory of waves from the view point of an eigenvalue problem and application to target identification

    Energy Technology Data Exchange (ETDEWEB)

    Bottcher, C.; Strayer, M.R. [Oak Ridge National Lab., TN (United States); Werby, M.F. [Naval Research Lab. Detachment, Stennis Space Center, MS (United States)

    1993-10-01

    The Helmholtz-Poincare Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWE`s. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can by obtained in matrix form be expanding all relevant terms in partial wave expansions, including a biorthogonal expansion of the Green function. However some freedom of choice in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways to long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermition operator. The methodology will be explained in detail and examples will be presented.

  14. Dense ionic fluids confined in planar capacitors: in- and out-of-plane structure from classical density functional theory.

    Science.gov (United States)

    Härtel, Andreas; Samin, Sela; van Roij, René

    2016-06-22

    The ongoing scientific interest in the properties and structure of electric double layers (EDLs) stems from their pivotal role in (super)capacitive energy storage, energy harvesting, and water treatment technologies. Classical density functional theory (DFT) is a promising framework for the study of the in- and out-of-plane structural properties of double layers. Supported by molecular dynamics simulations, we demonstrate the adequate performance of DFT for analyzing charge layering in the EDL perpendicular to the electrodes. We discuss charge storage and capacitance of the EDL and the impact of screening due to dielectric solvents. We further calculate, for the first time, the in-plane structure of the EDL within the framework of DFT. While our out-of-plane results already hint at structural in-plane transitions inside the EDL, which have been observed recently in simulations and experiments, our DFT approach performs poorly in predicting in-plane structure in comparison to simulations. However, our findings isolate fundamental issues in the theoretical description of the EDL within the primitive model and point towards limitations in the performance of DFT in describing the out-of-plane structure of the EDL at high concentrations and potentials. PMID:27116552

  15. Dense ionic fluids confined in planar capacitors: in- and out-of-plane structure from classical density functional theory

    Science.gov (United States)

    Härtel, Andreas; Samin, Sela; van Roij, René

    2016-06-01

    The ongoing scientific interest in the properties and structure of electric double layers (EDLs) stems from their pivotal role in (super)capacitive energy storage, energy harvesting, and water treatment technologies. Classical density functional theory (DFT) is a promising framework for the study of the in- and out-of-plane structural properties of double layers. Supported by molecular dynamics simulations, we demonstrate the adequate performance of DFT for analyzing charge layering in the EDL perpendicular to the electrodes. We discuss charge storage and capacitance of the EDL and the impact of screening due to dielectric solvents. We further calculate, for the first time, the in-plane structure of the EDL within the framework of DFT. While our out-of-plane results already hint at structural in-plane transitions inside the EDL, which have been observed recently in simulations and experiments, our DFT approach performs poorly in predicting in-plane structure in comparison to simulations. However, our findings isolate fundamental issues in the theoretical description of the EDL within the primitive model and point towards limitations in the performance of DFT in describing the out-of-plane structure of the EDL at high concentrations and potentials.

  16. Approximation scheme for classical surface plasmas at strong coupling: Progress in the formulation of a dynamical theory

    International Nuclear Information System (INIS)

    A self-consistent approximation scheme is formulated for the calculation of the dynamical linear polarizability of classical electron monolayers. The derivation is carried out in two stages. In the first stage, the authors formulate a simple response function relation linking linear and quadratic polarizabilities; the dynamical coupling function is expressed entirely in terms of the latter. The basic elements in the derivation are the first BBGKY kinetic equation (prepared in the velocity average approximation) and the non-linear fluctuation-dissipation theorem. The new response function relation is exact at zero frequency and exactly satisfies the third frequency moment sum rule. In the second stage, self-consistency is guaranteed by approximating the quadratic polarizability in terms of linear ones. The theory is examined in the weak coupling limit where it is found that a dominant γ-independent non-RPA contribution to the damping is missing. The structure of the missing term is identified at arbitrary coupling strengths. Work is in progress to see how it can be incorporated into the approximation scheme. (author)

  17. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt

    International Nuclear Information System (INIS)

    The homogeneous nucleation of crystals of the ionic liquid [dmim+][Cl−] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589–2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 1010 cm−3 s−1 was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores

  18. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt.

    Science.gov (United States)

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2015-09-28

    The homogeneous nucleation of crystals of the ionic liquid [dmim(+)][Cl(-)] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 10(10) cm(-3) s(-1) was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores. PMID:26429023

  19. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiaoxia; Shen, Yan [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Hung, Francisco R., E-mail: frhung@lsu.edu [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Santiso, Erik E. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-28

    The homogeneous nucleation of crystals of the ionic liquid [dmim{sup +}][Cl{sup −}] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589–2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 10{sup 10} cm{sup −3} s{sup −1} was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores.

  20. 经方象数规律刍议%Discuss on Image-number Theory of Classical Prescription

    Institute of Scientific and Technical Information of China (English)

    王位庆

    2012-01-01

    The incorporation of mathematics is vital for the development of any streams of science whereas that of pattern-recognition is a key for in-depth investigation of mankind and its relationship between physics, chemistry, biology, ecology and social sciences. Every classic Chinese medicine formula represents a unique set of mathematics and pattern. The pattern of the formulae refer to the corresponding pathology and the mathematics refers to the dosage of prescription. In this article, we proved that the dosage of the classic formulae was coherent to the pattern stated in the Luo-shu Match of Zangfu Organs and illustrated the relationship between the dosage and pattern of the formulae. We firstly consolidated the Treatise on Cold Damage and Miscellaneous Diseases, Auxiliary Verse on Drugs and Methods for Zangfu Organs and the Luo- shu Match of Zangfu Organs. Then, we examined the engendering and restraining properties of the basic formulae in the Treatise on Cold Damage and Miscellaneous Diseases with five phase theory and examined the dosage suggested in 16 basic formulae. We believe these are critical in both clinical practice and Chinese medicine research.%没有数,任何一门学问都成不了科学.没有象,任何一门医学都不能穷究物理,不能贯通人的物理、化学、生物、生态和社会属性等.每首经方,都有自己的象和数.象为经方的病机及病位脏腑;数为剂量,方中药物的重量.文章结合《伤寒论》《辅行诀脏腑用药法要》、《洛书》配脏腑法,通过阐发经方药对配伍五行生克的补泻、互补、化生三大原则,加减计算小大二旦和六神共16首《伤寒论》基础方的剂量,揭示经方符合洛书九宫图的象数规律,从而破解经方剂量与病机关系的千古之谜,对临床遣方用药及理解中医的科学性具有一定的指导意义.

  1. Monte Carlo simulations of phase transformations caused by nucleation and subsequent anisotropic growth : Extension of the Johnson-Mehl-Avrami-Kolmogorov theory

    NARCIS (Netherlands)

    Kooi, BJ

    2004-01-01

    Monte Carlo (MC) simulations of isothermal phase transformations were performed based on a temperature- and time-dependent nucleation rate and a temperature-dependent and time-independent anisotropic growth rate (linear growth). One- or two-dimensional anisotropic growth in two-dimensional space is

  2. Finite element modelling versus classic beam theory: comparing methods for stress estimation in a morphologically diverse sample of vertebrate long bones.

    Science.gov (United States)

    Brassey, Charlotte A; Margetts, Lee; Kitchener, Andrew C; Withers, Philip J; Manning, Phillip L; Sellers, William I

    2013-02-01

    Classic beam theory is frequently used in biomechanics to model the stress behaviour of vertebrate long bones, particularly when creating intraspecific scaling models. Although methodologically straightforward, classic beam theory requires complex irregular bones to be approximated as slender beams, and the errors associated with simplifying complex organic structures to such an extent are unknown. Alternative approaches, such as finite element analysis (FEA), while much more time-consuming to perform, require no such assumptions. This study compares the results obtained using classic beam theory with those from FEA to quantify the beam theory errors and to provide recommendations about when a full FEA is essential for reasonable biomechanical predictions. High-resolution computed tomographic scans of eight vertebrate long bones were used to calculate diaphyseal stress owing to various loading regimes. Under compression, FEA values of minimum principal stress (σ(min)) were on average 142 per cent (±28% s.e.) larger than those predicted by beam theory, with deviation between the two models correlated to shaft curvature (two-tailed p = 0.03, r(2) = 0.56). Under bending, FEA values of maximum principal stress (σ(max)) and beam theory values differed on average by 12 per cent (±4% s.e.), with deviation between the models significantly correlated to cross-sectional asymmetry at midshaft (two-tailed p = 0.02, r(2) = 0.62). In torsion, assuming maximum stress values occurred at the location of minimum cortical thickness brought beam theory and FEA values closest in line, and in this case FEA values of τ(torsion) were on average 14 per cent (±5% s.e.) higher than beam theory. Therefore, FEA is the preferred modelling solution when estimates of absolute diaphyseal stress are required, although values calculated by beam theory for bending may be acceptable in some situations.

  3. Heterogeneous ice nucleation: Exploring the transition from stochastic to singular freezing behavior

    Science.gov (United States)

    Stratmann, F.; Niedermeier, D.; Hartmann, S.; Shaw, R. A.; Clauss, T.; Wex, H.

    2011-12-01

    Heterogeneous ice nucleation directly influences cloud physical processes, precipitation formation, global radiation balances, and therefore Earth's climate (Cantrell and Heymsfield, 2005 and references therein). It is important to understand the heterogeneous freezing process at a fundamental level in order to describe this process in a physically-based way that will behave robustly in weather and climate models. There is longstanding debate as to whether heterogeneous ice nucleation is a stochastic process (e.g., Carte, 1956) or whether it exhibits singular behaviour (e.g., Langham and Mason, 1958). Fundamentally, the stochastic ice nucleation behavior implies ice nucleation being time dependent, while singular behavior is characterized by ice nucleation taking place on specific particle surface sites at a certain temperature and being time independent (Vali and Stansbury, 1966). We addressed this issue using both experimental and theoretical methods. Experiments focused on immersion freezing of Arizona Test Dust (ATD) were carried out using the Leipzig Aerosol Cloud Interaction Simulator (LACIS), a seven meter long laminar flow diffusion chamber. Both, temperature and time dependencies of ATD-particle induced immersion freezing were investigated. It was found, that ATD-particle induced immersion freezing took place over a wide temperature range and exhibited no detectable time dependence within the range investigated. The theoretical investigations were carried out using a Classical Nucleation Theory (CNT) based, i.e., purely stochastic, numerical model. This idealized model treats statistically similar particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in the past. Based on CNT alone, a population of

  4. Evolution operator equation: Integration with algebraic and finite difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado

    1997-10-01

    The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.

  5. 不是名著的名著--作家决定论下的《恋恋笔记本》赏析%A Non-Classic Classic--The Appreciation of The Notebook under Writer Determinism Theory

    Institute of Scientific and Technical Information of China (English)

    欧阳乐

    2013-01-01

    There are many ways of interpreting a literary work, and in the context of the merging of different disciplines nowa⁃days, it is undoubtedly feasible to do it within a stylistic perspective. Can The Notebook, representative of American bestselling writer Nicholas Sparks, which has been adapted to a movie, and also a bestseller on the ranking list of New York Times, be called world classic? The main reflection of the Romantic Movement which sprang up in the 18th century on the stylistic theories is writer determinism theory. The popularness as well as some shortcomings of The Notebook can be revealed after careful analysis of it under the frame work of writer determinism theory. It can be concluded that it is indeed a non-classic classic.%  评价一部文学作品有很多种方法,在当今各学科相互融合的背景下,从文体学的角度来阐释无疑是可行的。《恋恋笔记本》,这部被改编成电影、《纽约时报》排行榜上的畅销书,美国畅销小说作家尼古拉斯·斯帕克思的代表作,是否能被称为世界文学名著呢?18世纪兴起的浪漫主义运动在文体学理论上主要反映为作家决定论。通过在作家决定论的理论框架下对其进行分析,可以得出其令人称道之处,同时指出其不足。它的确是一部不是名著的名著。

  6. 传统《诗经》学的重大历史转折 ——朱熹“以《诗》言《诗》”说申论%The historic turning point of traditional studies on classic poetry ——ZHU Xi 's theory of commenting on classic poetry through classic poetry

    Institute of Scientific and Technical Information of China (English)

    汪大白

    2001-01-01

    ZHU Xi's theory of and his deeds in commenting on Classic Poetry through Classic Poetry is a negation and criticism on the idea of illustrating Classic Poetry with history expressed in “the Preface to Classic Poetry" and the Confucianists' concept of illustrating Classic Poetry with “the Preface to Classic Poetry". It also shows a deep understanding on the literature nature of Classic Poetry and the rules in composing poems. To carry out the principle of commenting on classic Poetry through Classic Poetry and to implement a great reform on traditional studies on classic Poetry is a great mission for scholars in Song Dynasty from the need of historical development and the time. Being a famous literaturist as well as a master in the studies on Classic Poetry and integrating literature of past dynasties with the studies on “Classic Poetry" of past dynasties are the main condition and the objective foundation for ZHU Xi to implement his reform on the studies on classic Poetry.%朱熹首倡并躬行的“以《诗》言《诗》”说是对《诗序》“以史证《诗》”以及后儒“以《序》解《诗》”的否定与批判,同时又体现了对《诗经》文学本质与诗歌创作规律的深刻认识。贯彻“以《诗》言《诗》”的原则,实现传统《诗经》学的重大变革,是历史的发展与时代的需求赋予宋代学者的重大使命;而文学名家与经学大师的一身兼任,历代文学与历代经学的双轨集成,是朱熹实现《诗经》学变革的主体条件与客观基础。

  7. Efficiency of organelle capture by microtubules as a function of centrosome nucleation capacity: general theory and the special case of polyspermia.

    Directory of Open Access Journals (Sweden)

    Ivan V Maly

    Full Text Available Transport of organelles along microtubules is essential for the cell metabolism and morphogenesis. The presented analysis derives the probability that an organelle of a given size comes in contact with the microtubule aster. The question is asked how this measure of functionality of the microtubule aster is controlled by the centrosome. A quantitative model is developed to address this question. It is shown that for the given set of cellular parameters, such as size and total tubulin content, a centrosome nucleation capacity exists that maximizes the probability of the organelle capture. The developed general model is then applied to the capture of the female pronucleus by microtubules assembled on the sperm centrosome, following physiologically polyspermic fertilization. This application highlights an unintuitive reflection of nonlinearity of the nucleated polymerization of the cellular pool of tubulin. The prediction that the sperm centrosome should lower its nucleation capacity in the face of the competition from the other sperm is a stark illustration of the new optimality principle. Overall, the model calls attention to the capabilities of the centrosomal pathway of regulation of the transport-related functionality of the microtubule cytoskeleton. It establishes a quantitative and conceptual framework that can guide experiment design and interpretation.

  8. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    Science.gov (United States)

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets

  9. Development and validation of the Brazilian version of the Attitudes to Aging Questionnaire (AAQ: An example of merging classical psychometric theory and the Rasch measurement model

    Directory of Open Access Journals (Sweden)

    Trentini Clarissa M

    2008-01-01

    Full Text Available Abstract Background Aging has determined a demographic shift in the world, which is considered a major societal achievement, and a challenge. Aging is primarily a subjective experience, shaped by factors such as gender and culture. There is a lack of instruments to assess attitudes to aging adequately. In addition, there is no instrument developed or validated in developing region contexts, so that the particularities of ageing in these areas are not included in the measures available. This paper aims to develop and validate a reliable attitude to aging instrument by combining classical psychometric approach and Rasch analysis. Methods Pilot study and field trial are described in details. Statistical analysis included classic psychometric theory (EFA and CFA and Rasch measurement model. The latter was applied to examine unidimensionality, response scale and item fit. Results Sample was composed of 424 Brazilian old adults, which was compared to an international sample (n = 5238. The final instrument shows excellent psychometric performance (discriminant validity, confirmatory factor analysis and Rasch fit statistics. Rasch analysis indicated that modifications in the response scale and item deletions improved the initial solution derived from the classic approach. Conclusion The combination of classic and modern psychometric theories in a complementary way is fruitful for development and validation of instruments. The construction of a reliable Brazilian Attitudes to Aging Questionnaire is important for assessing cultural specificities of aging in a transcultural perspective and can be applied in international cross-cultural investigations running less risk of cultural bias.

  10. Development and validation of the coronary heart disease scale under the system of quality of life instruments for chronic diseases QLICD-CHD: combinations of classical test theory and Generalizability theory

    OpenAIRE

    Wan, Chonghua; Li, Hezhan; Fan, Xuejin; Yang, Ruixue; Pan, Jiahua; Chen, Wenru; Zhao, Rong

    2014-01-01

    Background Quality of life (QOL) for patients with coronary heart disease (CHD) is now concerned worldwide with the specific instruments being seldom and no one developed by the modular approach. Objectives This paper is aimed to develop the CHD scale of the system of Quality of Life Instruments for Chronic Diseases (QLICD-CHD) by the modular approach and validate it by both classical test theory and Generalizability Theory. Methods The QLICD-CHD was developed based on programmed decision pro...

  11. Influence of aerosol lifetime on the interpretation of nucleation experiments with respect to the first nucleation theorem

    Directory of Open Access Journals (Sweden)

    S. Ehrhart

    2013-04-01

    Full Text Available The SAWNUC microphysical aerosol nucleation model is used to study the effect of reactor walls on the interpretation of nucleation experiments with respect to nucleation theory. This work shows that loss processes, such as wall losses, influence the interpretation of nucleation experiments, especially at low growth rates and short lifetime of freshly nucleated particles. In these cases the power dependency of the formation rates, determined at a certain particle size, with respect to H2SO4 does not correspond to the approximate number of H2SO4 molecules in the critical cluster as expected by the first nucleation theorem. Observed ∂log(J/∂log([H2SO4] therefore can vary widely for identical nucleation conditions but different sink terms.

  12. "Kohn-Shamification" of the classical density-functional theory of inhomogeneous polar molecular liquids with application to liquid hydrogen chloride

    OpenAIRE

    Lischner, Johannes; Arias, T. A.

    2008-01-01

    The Gordian knot of density-functional theories for classical molecular liquids remains finding an accurate free-energy functional in terms of the densities of the atomic sites of the molecules. Following Kohn and Sham, we show how to solve this problem by considering noninteracting molecules in a set of effective potentials. This shift in perspective leads to an accurate and computationally tractable description in terms of simple three-dimensional functions. We also treat both the linear- a...

  13. On the use of classical JMAK crystallization kinetic theory to describe simultaneous processes leading to the formation of different phases in metals

    OpenAIRE

    Blázquez, J.S.; Conde, C. F.; Conde, A.

    2014-01-01

    The classical theory of Johnson–Mehl–Avrami–Kolmogorov (JMAK) is widely used to describe the kinetics of crystallization even when the premises required for its application are not strictly fulfilled. In this paper we propose a procedure to obtain the JMAK parameters of the independent transformations that simultaneously occur during a crystallization process (e.g. leading to the formation of several crystalline phases). The predictions of the analysis have been used to describe the crystalli...

  14. Mixed Quantum/Classical Theory for Molecule-Molecule Inelastic Scattering: Derivations of Equations and Application to N2 + H2 System.

    Science.gov (United States)

    Semenov, Alexander; Babikov, Dmitri

    2015-12-17

    The mixed quantum classical theory, MQCT, for inelastic scattering of two molecules is developed, in which the internal (rotational, vibrational) motion of both collision partners is treated with quantum mechanics, and the molecule-molecule scattering (translational motion) is described by classical trajectories. The resultant MQCT formalism includes a system of coupled differential equations for quantum probability amplitudes, and the classical equations of motion in the mean-field potential. Numerical tests of this theory are carried out for several most important rotational state-to-state transitions in the N2 + H2 system, in a broad range of collision energies. Besides scattering resonances (at low collision energies) excellent agreement with full-quantum results is obtained, including the excitation thresholds, the maxima of cross sections, and even some smaller features, such as slight oscillations of energy dependencies. Most importantly, at higher energies the results of MQCT are nearly identical to the full quantum results, which makes this approach a good alternative to the full-quantum calculations that become computationally expensive at higher collision energies and for heavier collision partners. Extensions of this theory to include vibrational transitions or general asymmetric-top rotor (polyatomic) molecules are relatively straightforward.

  15. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.

    Science.gov (United States)

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-08-25

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  16. Nonequilibrium thermodynamics of nucleation

    International Nuclear Information System (INIS)

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects

  17. Nonequilibrium thermodynamics of nucleation.

    Science.gov (United States)

    Schweizer, M; Sagis, L M C

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects. PMID:25494727

  18. Ice nucleation terminology

    Directory of Open Access Journals (Sweden)

    G. Vali

    2014-08-01

    Full Text Available Progress in the understanding of ice nucleation is being hampered by the lack of uniformity in how some terms are used in the literature. This even extends to some ambiguity of meanings attached to some terms. Suggestions are put forward here for common use of terms. Some are already well established and clear of ambiguities. Others are less engrained and will need a conscious effort in adoption. Evolution in the range of systems where ice nucleation is being studied enhances the need for a clear nomenclature. The ultimate limit in the clarity of definitions is, of course, the limited degree to which ice nucleation processes are understood.

  19. Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment

    OpenAIRE

    Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Zou, Xu-Bo; Guo, Guang-Can

    2012-01-01

    We experimentally generate a non-classical correlated two-color photon pair at 780 and 1529.4 nm in a ladder-type configuration using a hot 85Rb atomic vapor with the production rate of ~107/s. The non-classical correlation between these two photons is demonstrated by strong violation of Cauchy-Schwarz inequality by the factor R=48+-12. Besides, we experimentally investigate the relations between the correlation and some important experimental parameters such as the single-photon detuning, th...

  20. The Contemporary Implication and Social Justice Theory of Classical Writers%经典作家社会公平理论及其当代启示

    Institute of Scientific and Technical Information of China (English)

    胡芳

    2011-01-01

    马克思恩格斯科学的社会公平理论为社会发展提供了愿景,经典作家的社会实践和社会公平理论丰富并发展了这一理论。针对我国社会不公平现象突显,其危机令人堪忧问题,根据马克思主义经典作家的社会公平理论提出“转变经济发展方式是解决社会公平的基本前提、还富于民是解决社会公平问题的根本”的思路。%Marx and Engels put forward the scientific theory on social justice, which provides a vision for social development. The social practice and the theory on social justice by classical writers have greatly enriched and developed the theory. Based on the worrying problem embodied in social inequities in China, and on the theories on social justice by the classical writers specialized in Marxism, the present paper puts forward the view that " the transformation of economic development pattern is the basic premise to achieve social equity ; while dividend to the community is the fundamental issue to achieve this goal. "

  1. New constraints for low-momentum electronic excitations in condensed matter: fundamental consequences from classical and quantum dielectric theory

    Science.gov (United States)

    Chantler, C. T.; Bourke, J. D.

    2015-11-01

    We present new constraints for the transportation behaviour of low-momentum electronic excitations in condensed matter systems, and demonstrate that these have both a fundamental physical interpretation and a significant impact on the description of low-energy inelastic electron scattering. The dispersion behaviour and characteristic lifetime properties of plasmon and single-electron excitations are investigated using popular classical, semi-classical and quantum dielectric models. We find that, irrespective of constrained agreement to the well known high-momentum and high-energy Bethe ridge limit, standard descriptions of low-momentum electron excitations are inconsistent and unphysical. These observations have direct impact on calculations of transport properties such as inelastic mean free paths, stopping powers and escape depths of charged particles in condensed matter systems.

  2. New constraints for low-momentum electronic excitations in condensed matter: fundamental consequences from classical and quantum dielectric theory

    International Nuclear Information System (INIS)

    We present new constraints for the transportation behaviour of low-momentum electronic excitations in condensed matter systems, and demonstrate that these have both a fundamental physical interpretation and a significant impact on the description of low-energy inelastic electron scattering. The dispersion behaviour and characteristic lifetime properties of plasmon and single-electron excitations are investigated using popular classical, semi-classical and quantum dielectric models. We find that, irrespective of constrained agreement to the well known high-momentum and high-energy Bethe ridge limit, standard descriptions of low-momentum electron excitations are inconsistent and unphysical. These observations have direct impact on calculations of transport properties such as inelastic mean free paths, stopping powers and escape depths of charged particles in condensed matter systems. (paper)

  3. Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment.

    Science.gov (United States)

    Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Zou, Xu-Bo; Guo, Guang-Can

    2012-05-01

    We experimentally generate a non-classical correlated two-color photon pair at 780 and 1529.4 nm in a ladder-type configuration using a hot 85Rb atomic vapor with the production rate of ~10(7)/s. The non-classical correlation between these two photons is demonstrated by strong violation of Cauchy-Schwarz inequality by the factor R = 48 ± 12. Besides, we experimentally investigate the relations between the correlation and some important experimental parameters such as the single-photon detuning, the powers of pumps. We also make a theoretical analysis in detail and the theoretical predictions are in reasonable agreement with our experimental results. PMID:22565763

  4. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.;

    atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far......The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...

  5. Classical antiparticles

    Energy Technology Data Exchange (ETDEWEB)

    Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.

    1997-03-01

    We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors). 13 refs., 1 tab.

  6. Adler-Gelfand-Dickey approach to classical W-algebras within the theory of Poisson vertex algebras

    OpenAIRE

    Sole, A.; Kac, V. G.; Valeri, D.

    2014-01-01

    We put the Adler-Gelfand-Dickey approach to classical W-algebras in the framework of Poisson vertex algebras. We show how to recover the bi-Poisson structure of the KP hierarchy, together with its generalizations and reduction to the N-th KdV hierarchy, using the formal distribution calculus and the lambda-bracket formalism. We apply the Lenard-Magri scheme to prove integrability of the corresponding hierarchies. We also give a simple proof of a theorem of Kupershmidt and Wilson in this frame...

  7. Non-equilibrium statistical field theory for classical particles: Linear and mildly non-linear evolution of cosmological density power spectra

    CERN Document Server

    Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia

    2014-01-01

    We use the non-equlibrium statistical field theory for classical particles, recently developed by Mazenko and Das and Mazenko, together with the free generating functional we have previously derived for point sets initially correlated in phase space, to calculate the time evolution of power spectra in the free theory, i.e. neglecting particle interactions. We provide expressions taking linear and quadratic momentum correlations into account. Up to this point, the expressions are general with respect to the free propagator of the microscopic degrees of freedom. We then specialise the propagator to that expected for particles in cosmology treated within the Zel'dovich approximation and show that, to linear order in the momentum correlations, the linear growth of the cosmological power spectrum is reproduced. Quadratic momentum correlations return a first contribution to the non-linear evolution of the power spectrum, for which we derive a simple closed expression valid for arbitrary wave numbers. This expressio...

  8. 古典医学理论的建立、贡献和归宿%The Establishment, Contributions, and Final Results of Classical Medical Theories

    Institute of Scientific and Technical Information of China (English)

    王台

    2013-01-01

    In countries with ancient civilization of both Eastern world and Western world, after the accumulation of clinical experiences of "empirical medicine" to a sufficient amount; in accordance of their primitive philosophical thoughts, classical medical theories were established to play an important role in guiding the clinical practice of "empirical medicine". Because of the similarity of philosophical thoughts all over the ancient world, their medical theories were also very similar to each other. After the scientific evaluation and improvement, Greek classical medical theories were inherited, refined or abandoned, and then eventually finished their historical mission. Chinese classical medical theories also need the similar scientific identification and improvement for flowing into the authorized main stream of modern medical theory systems to continuously apply their guiding roles in clinical practice. Scholars would better consider the developmental principles of cultures and sciences with a historical viewpoint and an open mind to avoid making mistakes from haughty and prejudice.%东西方文明古国的"经验医学"发展到一定阶段后,分别吸取各自朴素的哲学思想建立了不同于现代医学理论的古典医学理论,发挥着指导"经验医学"医疗实践的重要作用.由于古代各国的哲学都具有类似的内涵,因而它们的医学理论也极其相似.古希腊医学的理论接受了科学实验的检验而被继承、改进或抛弃,从而完成了它的历史使命.中医学的古典理论同样需要接受这种科学实验的检验,验明正身,得到提升,继续发挥其指导医疗实践的作用.学者们需要用历史的观点和开阔的眼界考察文化和科学的发展规律,避免坐井观天和固步自封.

  9. Nucleation in an ultra low ionization environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean;

    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar...... Laboratory, located 1100 meters below ground, thus reducing the flux of ionizing cosmic radiation by six orders of magnitude. Similarly we have reduced the gamma background by shielding the experiment in lead and copper. Finally we have used air stored for several weeks and passed through an active charcoal...... filter in order to reduce the Radon concentration. In this way we have been able to make nucleation experiments with very low ionizing background, meaning that we can rule out ion induced nucleation as a contributing mechanism. Our experimental setup is a 50 L electropolished stainless steel reactor...

  10. Surface hopping outperforms secular Redfield theory when reorganization energies range from small to moderate (and nuclei are classical)

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Brian R., E-mail: landrybr@gmail.com; Subotnik, Joseph E. [Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104 (United States)

    2015-03-14

    We evaluate the accuracy of Tully’s surface hopping algorithm for the spin-boson model in the limit of small to moderate reorganization energy. We calculate transition rates between diabatic surfaces in the exciton basis and compare against exact results from the hierarchical equations of motion; we also compare against approximate rates from the secular Redfield equation and Ehrenfest dynamics. We show that decoherence-corrected surface hopping performs very well in this regime, agreeing with secular Redfield theory for very weak system-bath coupling and outperforming secular Redfield theory for moderate system-bath coupling. Surface hopping can also be extended beyond the Markovian limits of standard Redfield theory. Given previous work [B. R. Landry and J. E. Subotnik, J. Chem. Phys. 137, 22A513 (2012)] that establishes the accuracy of decoherence-corrected surface-hopping in the Marcus regime, this work suggests that surface hopping may well have a very wide range of applicability.

  11. Comparison of quasi-classical, transition state theory, and quantum calculations of rate constants and activation energies for the collinear reaction X + F2 → XF + F (X = Mu, H, D, T)

    International Nuclear Information System (INIS)

    Accurate quantum total reaction probabilities for the collinear reaction X + F2 (upsilon = 0.1) → XF + F (X = Mu, H, D, T) have been used to calculate collinear rate constants and activation energies. Comparison is made with collinear quasi-classical trajectory calculations and transition state theory assuming classical motion along a separable reaction coordinate and vibrational adiabaticity. Considerable differences between the quantum and quasi-classical and transition state theory results are found only for the Mu reaction at low temperatures. 5 figures, 35 references, 6 tables

  12. Cavitation Bubble Nucleation by Energetic Particles

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  13. "Why Don't I Know about These Women?": The Integration of Early Women Sociologists in Classical Theory Courses

    Science.gov (United States)

    Thomas, Jan E.; Kukulan, Annis

    2004-01-01

    In recent years, early women sociologists such as Harriet Martineau, Ida B. Wells, and Jane Addams have begun to appear in some introductory textbooks and theory books. Usually, they appear in a box, as a sidebar, or as selected "others." So why do we not know more about these women? Our research seeks to answer this question. Given the…

  14. Argyres-Douglas Loci, Singularity Structures and Wall-Crossings in Pure N=2 Gauge Theories with Classical Gauge Groups

    CERN Document Server

    Seo, Jihye

    2012-01-01

    N=2 Seiberg-Witten theories allow an interesting interplay between the Argyres-Douglas loci, singularity structures and wall-crossing formulae. In this paper we investigate this connection by first studying the singularity structures of hyper-elliptic Seiberg-Witten curves for pure N=2 gauge theories with SU(r+1) and Sp(2r) gauge groups, and propose new methods to locate the Argyres-Douglas loci in the moduli space, where multiple mutually non-local BPS states become massless. In a region of the moduli space, we compute dyon charges for all 2r+2 and 2r+1 massless dyons for SU(r+1) and Sp(2r) gauge groups respectively for rank r>1. From here we elucidate the connection to the wall-crossing phenomena for pure Sp(4) Seiberg-Witten theory near the Argyres-Douglas loci, despite our emphasis being only at the massless sector of the BPS spectra. We also present 2r-1 candidates for the maximal Argyres-Douglas points for pure SO(2r+1) Seiberg-Witten theory.

  15. The effect of industry clockspeed on supply chain co-ordination: Classical theory to sharpen an emerging concept

    NARCIS (Netherlands)

    Meijboom, Bert; Voordijk, Hans; Akkermans, Henk

    2007-01-01

    Purpose – The relevance of “industry clockspeed” to supply chain co-ordination (SCC) has recently been stressed but hardly been researched. Taking an information-processing perspective, the purpose of this paper is to examine the development of SCC theory under varying clockspeed circumstances. De

  16. Note: Determination of torsional spring constant of atomic force microscopy cantilevers: Combining normal spring constant and classical beam theory

    DEFF Research Database (Denmark)

    Álvarez-Asencio, R.; Thormann, Esben; Rutland, M.W.

    2013-01-01

    A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power...

  17. THERMODYNAMIC STUDY OF NUCLEATION PROPERTY OF NUCLEATING AGENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    It is deduced from thermodynamic relations and confirm ed by experiment results that the nucleation rate and nucleation temperature o f nucleating agents in the glass are dependent upon their melting entropy ΔSm melting temperature Tm and crystal-type transition in terms of some mathemati cal expressions.

  18. Nonequilibrium thermodynamics of nucleation

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.

    2014-01-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a met

  19. Perspectives on human development theory in democracy promotion: A comparison of democracy promotion programmes in Egypt through the lenses of classical and revised modernisation theory

    OpenAIRE

    Moen Dyrnes, I.K.

    2012-01-01

    This paper argues that the concept of socio-economic development needs to be redefined for the purpose of effective democracy promotion. By including aspects from human development theory, advocates of revised modernisation theory state that mass values in a society shift towards a preferance for democracy as higher levels socio-economic development provide existential security. This implies that a democratic culture shapes its institutions and not the other way around. If donor countries are...

  20. Laboratory measurements of heterogeneous CO2 ice nucleation on nanoparticles under conditions relevant to the Martian mesosphere

    Science.gov (United States)

    Nachbar, Mario; Duft, Denis; Mangan, Thomas Peter; Martin, Juan Carlos Gomez; Plane, John M. C.; Leisner, Thomas

    2016-05-01

    Clouds of CO2 ice particles have been observed in the Martian mesosphere. These clouds are believed to be formed through heterogeneous nucleation of CO2 on nanometer-sized meteoric smoke particles (MSPs) or upward propagated Martian dust particles (MDPs). Large uncertainties still exist in parameterizing the microphysical formation process of these clouds as key physicochemical parameters are not well known. We present measurements on the nucleation and growth of CO2 ice on sub-4 nm radius iron oxide and silica particles representing MSPs at conditions close to the mesosphere of Mars. For both particle materials we determine the desorption energy of CO2 to be ΔFdes = (18.5 ± 0.2) kJ mol-1 corresponding to ΔFdes = (0.192 ± 0.002) eV and obtain m = 0.78 ± 0.02 for the contact parameter that governs heterogeneous nucleation by analyzing the measurements using classical heterogeneous nucleation theory. We did not find any temperature dependence for the contact parameter in the temperature range examined (64 K to 73 K). By applying these values for MSPs in the Martian mesosphere, we derive characteristic temperatures for the onset of CO2 ice nucleation, which are 8-18 K below the CO2 frost point temperature, depending on particle size. This is in line with the occurrence of highly supersaturated conditions extending to 20 K below frost point temperature without the observation of clouds. Moreover, the sticking coefficient of CO2 on solid CO2 was determined to be near unity. We further argue that the same parameters can be applied to CO2 nucleation on upward propagated MDPs.

  1. How does surface wettability influence nucleate boiling?

    Science.gov (United States)

    Phan, Hai Trieu; Caney, Nadia; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2009-05-01

    Although the boiling process has been a major subject of research for several decades, its physics still remain unclear and require further investigation. This study aims at highlighting the effects of surface wettability on pool boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20° to 110° by modifying nanoscale surface topography and chemistry. The experimental results obtained disagree with the predictions of the classical models. A new approach of nucleation mechanism is established to clarify the nexus between the surface wettability and the nucleate boiling heat transfer. In this approach, we introduce the concept of macro- and micro-contact angles to explain the observed phenomenon. To cite this article: H.T. Phan et al., C. R. Mecanique 337 (2009).

  2. Numerical determination of the interfacial energy and nucleation barrier of curved solid-liquid interfaces in binary systems

    Science.gov (United States)

    Kundin, Julia; Choudhary, Muhammad Ajmal

    2016-07-01

    The phase-field crystal (PFC) technique is a widely used approach for modeling crystal growth phenomena with atomistic resolution on mesoscopic time scales. We use a two-dimensional PFC model for a binary system based on the work of Elder et al. [Phys. Rev. B 75, 064107 (2007), 10.1103/PhysRevB.75.064107] to study the effect of the curved, diffuse solid-liquid interface on the interfacial energy as well as the nucleation barrier. The calculation of the interfacial energy and the nucleation barrier certainly depends on the proper definition of the solid-liquid dividing surface and the corresponding nucleus size. We define the position of the sharp interface at which the interfacial energy is to be evaluated by using the concept of equimolar dividing surface (re) and the minimization of the interfacial energy (rs). The comparison of the results based on both radii shows that the difference re-rs is always positive and has a limit for large cluster sizes which is comparable to the Tolman length. Furthermore, we found the real nucleation barrier for small cluster sizes, which is defined as a function of the radius rs, and compared it with the classical nucleation theory. The simulation results also show that the extracted interfacial energy as function of both radii is independent of system size, and this dependence can be reasonably described by the nonclassical Tolman formula with a positive Tolman length.

  3. Numerical determination of the interfacial energy and nucleation barrier of curved solid-liquid interfaces in binary systems.

    Science.gov (United States)

    Kundin, Julia; Choudhary, Muhammad Ajmal

    2016-07-01

    The phase-field crystal (PFC) technique is a widely used approach for modeling crystal growth phenomena with atomistic resolution on mesoscopic time scales. We use a two-dimensional PFC model for a binary system based on the work of Elder et al. [Phys. Rev. B 75, 064107 (2007)PRBMDO1098-012110.1103/PhysRevB.75.064107] to study the effect of the curved, diffuse solid-liquid interface on the interfacial energy as well as the nucleation barrier. The calculation of the interfacial energy and the nucleation barrier certainly depends on the proper definition of the solid-liquid dividing surface and the corresponding nucleus size. We define the position of the sharp interface at which the interfacial energy is to be evaluated by using the concept of equimolar dividing surface (r^{e}) and the minimization of the interfacial energy (r^{s}). The comparison of the results based on both radii shows that the difference r^{e}-r^{s} is always positive and has a limit for large cluster sizes which is comparable to the Tolman length. Furthermore, we found the real nucleation barrier for small cluster sizes, which is defined as a function of the radius r^{s}, and compared it with the classical nucleation theory. The simulation results also show that the extracted interfacial energy as function of both radii is independent of system size, and this dependence can be reasonably described by the nonclassical Tolman formula with a positive Tolman length.

  4. Theory of motion for monopole-dipole singularities of classical Yang-Mills-Higgs fields. I. Laws of motion

    Science.gov (United States)

    Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold

    1984-02-01

    In two recent papers, the general form of the laws of motion for point particles which are multipole sources of the classical coupled Yang-Mills-Higgs fields was determined by Havas, and for the special case of monopole singularities of a Yang-Mills field an iteration procedure was developed by Drechsler and Rosenblum to obtain the equations of motion of mass points, i.e., the laws of motion including the explicit form of the fields of all interacting particles. In this paper we give a detailed derivation of the laws of motion of monopole-dipole singularities of the coupled Yang-Mills-Higgs fields for point particles with mass and spin, following a procedure first applied by Mathisson and developed by Havas. To obtain the equations of motion, a systematic approximation method is developed in the following paper for the solution of the nonlinear field equations and determination of the fields entering the laws of motion found here to any given order in the coupling constant g.

  5. Fabrication of Two-Dimensional Arrays of Micron-Sized Gold Rings Based on Preferential Nucleation at Reentrant Sites

    Institute of Scientific and Technical Information of China (English)

    DONG Wen; GUO Xiang; WANG Si-Zhen; WANG Zhen-Lin; MING Nai-Ben

    2008-01-01

    @@ A templating method for fabricating two-dimensional (2D) arrays of micron-sized gold rings is reported. The microstructures are formed by electroless plating in a through-porous polymer membrane on a silicon substrate obtained from a closed-packed silica colloidal crystal. Our results show that the sizes of gold rings can be altered by varying electroless plating conditions for the porous polystyrene membranes. Moreover, we explain the growth mechanism of gold rings using the classical crystal growth theory that is preferential nucleation at reentrant sites.

  6. A plug flow model for chemical reactions and aerosol nucleation and growth in an alkali-containing flue gas

    DEFF Research Database (Denmark)

    Christensen, K. A.; Livbjerg, Hans

    2000-01-01

    multicomponent growth models are treated. The local gas phase composition is determined from a gas phase chemical equilibrium calculation combined with finite reaction rate kinetics for slower reactions. The model is useful in the analysis of boiler operation with respect to the formation of particles, HCl, SO2......The paper presents a numerical model for the simulation of gas to particle conversion and the chemical changes during cooling of a flue gas from the combustion of fuels rich in volatile alkali species. For the homogeneous nucleation of alkali species the model uses the classical theory modified...

  7. 论卢曼法律悖论理论的隐秘源头%On the Classical Source of Luhmann’s Theory of Paradox

    Institute of Scientific and Technical Information of China (English)

    宾凯

    2014-01-01

    从康德到卢曼近两百年的德国思想史,贯穿了对于悖论问题的思考这一条红线。经过费希特对“自我与非我”的论述以及黑格尔对费希特思想的扬弃,德国古典哲学家们在悖论问题上呈现出了连贯的思考脉络。二十世纪后期,德国古典哲学中的“主体”虽然已经转换为卢曼社会理论中的“系统”,但是德国先贤们的智力资源却潜入到了卢曼的社会理论中,并成为其法律悖论思想的一个隐秘源头。文章通过在费希特、黑格尔关于悖论的思想与卢曼法律社会学中的悖论理论之间的对比研究,展示了卢曼在其法律悖论思想中对于德国古典哲学传统的反思性继承和创造性超越。%In the history of German philosophy from Kant to Luhmann,the thinking around the problem of paradox is definitely a strand going through almost two hundred years.Fichte’s discussion on “self and non-self”and Hegel’s relevant theory demonstrate that there was some consistent and successive research on the problem of paradox in German classical thought.In the latter half of the twentieth century,though the key word “subject”in German classical philosophy were replaced by“system”in Luhmann’s social theory,the resources provided by German antecessors became the necessary premise of the theory of legal paradox contributed by Luhmann,who inherited but at same time went beyond classical thoughts.

  8. Report on the Implementation of Homogeneous Nucleation Scheme in MARMOT-based Phase Field Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin

    2013-09-30

    In this report, we summarized our effort in developing mesoscale phase field models for predicting precipitation kinetics in alloys during thermal aging and/or under irradiation in nuclear reactors. The first part focused on developing a method to predict the thermodynamic properties of critical nuclei such as the sizes and concentration profiles of critical nuclei, and nucleation barrier. These properties are crucial for quantitative simulations of precipitate evolution kinetics with phase field models. Fe-Cr alloy was chosen as a model alloy because it has valid thermodynamic and kinetic data as well as it is an important structural material in nuclear reactors. A constrained shrinking dimer dynamics (CSDD) method was developed to search for the energy minimum path during nucleation. With the method we are able to predict the concentration profiles of the critical nuclei of Cr-rich precipitates and nucleation energy barriers. Simulations showed that Cr concentration distribution in the critical nucleus strongly depends on the overall Cr concentration as well as temperature. The Cr concentration inside the critical nucleus is much smaller than the equilibrium concentration calculated by the equilibrium phase diagram. This implies that a non-classical nucleation theory should be used to deal with the nucleation of Cr precipitates in Fe-Cr alloys. The growth kinetics of both classical and non-classical nuclei was investigated by the phase field approach. A number of interesting phenomena were observed from the simulations: 1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; 2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics. 3) a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of these results demonstrated that it is critical to introduce the correct critical nuclei into phase

  9. Classics Online.

    Science.gov (United States)

    Clayman, Dee L.

    1995-01-01

    Appraises several databases devoted to classical literature. Thesaurus Linguae Graecae (TLG) contains the entire extant corpus of ancient Greek literature, including works on lexicography and historiography, extending into the 15th century. Other works awaiting completion are the Database of Classical Bibliography and a CD-ROM pictorial dictionary…

  10. Classical integrability

    Science.gov (United States)

    Torrielli, Alessandro

    2016-08-01

    We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin–Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand–Levitan–Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.

  11. Martensitic nucleation mechanism

    Institute of Scientific and Technical Information of China (English)

    陈奇志; 桑灿; 吴杏芳; 柯俊

    1997-01-01

    A sort of special dislocation configuration was deformation-induced in an Fe-Ni-V-C alloy by in-situ elongation tests of TEM. The cooling in-situ observations, as well as the SADPs from the region of the special dislocation configurations, proved that they are martensitic nuclei. In martensitic transformation, a nucleus changed into a small martensitic sub-plate, and a group of parallel sub-plates that formed from a group of parallel nuclei made up a big martensitic plate Martensitic transformation involved opposite shear between adjacent martensitic nuclei. By using the reduced-cell method, the crystallographic structure of observed martensitic nuclei was indexed as a face-centered orthogonal (FCO) lattice, which was explained by the nucleation mechanism proposed by the present authors. The crystallographic analysis confirmed that the defect faulting involved in martensitic nucleation took place among three close pakked planes, instead of between two adjacent planes as an ordinary stacking fault.

  12. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian gauge theories, and gravitation. 3. ed.; Theoretische Physik 3. Klassische Feldtheorie. Von Elektrodynamik, nicht-Abelschen Eichtheorien und Gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Scheck, Florian [Mainz Univ. (Germany). Fachbereich Physik

    2010-07-01

    Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [German] Stringente Darstellung der Feldtheorie, vermittelt den Zusammenhang von der klassischen Elektrodynamik bis zu modernen Eichtheorien. Die kompakte Darstellung ist ideal fuer das Bachelor-Studium. Neues Kapitel zur Allgemeinen Relativitaetstheorie. Vertieft das Erlernte durch zahlreiche Anwendungsbeispiele aus Laserphysik, Metamaterialien uvm. Theoretische Physik 3. Klassische Feldtheorie. Von Elektrodynamik, nicht-Abelschen Eichtheorien und Gravitation ist der dritte von fuenf Baenden zur Theoretischen Physik von Professor Scheck. Der Zyklus Theoretische Physik umfasst: Band 1: Mechanik. Von den Newtonschen Gesetzen zum deterministischen Chaos. Band 2: Nichtrelativistische Quantentheorie. Vom Wasserstoffatom zu den Vielteilchensystemen. Band 3: Klassische Feldtheorie

  13. The Relation between Classical and Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Mario Bacelar Valente

    2011-01-01

    Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.

  14. Nucleation in Synoptically Forced Cirrostratus

    Science.gov (United States)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  15. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  16. The nature of free electrons in superfluid helium - a test of quantum mechanics and a basis to review its foundations and make a comparison to classical theory

    Energy Technology Data Exchange (ETDEWEB)

    Mills, R.L. [BlackLight Power, Inc., Cranbury, NJ (United States)

    2001-10-01

    addressed. It is time for the physical rather than the mathematical nature of the wave function to be determined. A theory of classical quantum mechanics (CQM) was derived from first principles by Mills (The grand unified theory of classical quantum mechanics. January 2000 ed; Cranbury, NJ, 2000, BlackLight Power, Inc., (Distributed by Amazon.com; Posted at www.blacklightpower.com)) that successfully applies physical laws on all scales. Using the classical wave equation with the constraint of nonradiation based on Maxwell's equations, CQM gives closed form physical solutions for the electron in atoms, the free electron, and the free electron in superfluid helium. The prediction of fractional principal quantum energy states of the electron in liquid helium match the photoconductivity and mobility observations without requiring that the electron is divisible. (author)

  17. Secondary Psychometric Examination of the Dimensional Obsessive-Compulsive Scale: Classical Testing, Item Response Theory, and Differential Item Functioning.

    Science.gov (United States)

    Thibodeau, Michel A; Leonard, Rachel C; Abramowitz, Jonathan S; Riemann, Bradley C

    2015-12-01

    The Dimensional Obsessive-Compulsive Scale (DOCS) is a promising measure of obsessive-compulsive disorder (OCD) symptoms but has received minimal psychometric attention. We evaluated the utility and reliability of DOCS scores. The study included 832 students and 300 patients with OCD. Confirmatory factor analysis supported the originally proposed four-factor structure. DOCS total and subscale scores exhibited good to excellent internal consistency in both samples (α = .82 to α = .96). Patient DOCS total scores reduced substantially during treatment (t = 16.01, d = 1.02). DOCS total scores discriminated between students and patients (sensitivity = 0.76, 1 - specificity = 0.23). The measure did not exhibit gender-based differential item functioning as tested by Mantel-Haenszel chi-square tests. Expected response options for each item were plotted as a function of item response theory and demonstrated that DOCS scores incrementally discriminate OCD symptoms ranging from low to extremely high severity. Incremental differences in DOCS scores appear to represent unbiased and reliable differences in true OCD symptom severity. PMID:25422521

  18. Classical Motion

    OpenAIRE

    Mould, Richard A

    2003-01-01

    Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previous...

  19. Bubble nucleation in polymer–CO_2 mixtures

    OpenAIRE

    Xu, Xiaofei; Cristancho, Diego E.; Costeux, Stéphane; Wang, Zhen-Gang

    2013-01-01

    We combine density-functional theory with the string method to calculate the minimum free energy path of bubble nucleation in two polymer–CO_2 mixture systems, poly(methyl methacrylate) (PMMA)–CO_2 and polystyrene (PS)–CO_2. Nucleation is initiated by saturating the polymer liquid with high pressure CO_2 and subsequently reducing the pressure to ambient condition. Below a critical temperature (Tc), we find that there is a discontinuous drop in the nucleation barrier as a function of increased...

  20. On the Ice Nucleation Spectrum

    Science.gov (United States)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be