Electrostatic twisted modes in multi-component dusty plasmas
International Nuclear Information System (INIS)
Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular mode numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas
Electrostatic twisted modes in multi-component dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ikram, M. [Department of Physics, Hazara University, Mansehra 21300 (Pakistan)
2016-01-15
Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular mode numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.
Twisted Landau damping rates in multi-component dusty plasmas
Ali, S.; Bukhari, S.; Mendonca, J. T.
2016-03-01
Keeping in view the kinetic treatment for plasma particles, the electrostatic twisted dust-acoustic (DA) and dust-ion-acoustic (DIA) waves are investigated in a collisionless unmagnetized multi-component dusty plasma, whose constituents are the electrons, singly ionized positive ions, and negatively charged massive dust particulates. With this background, the Vlasov-Poisson equations are coupled together to derive a generalized dielectric constant by utilizing the Laguerre-Gaussian perturbed distribution function and electrostatic potential in the paraxial limit. The dispersion and damping rates of twisted DA and DIA waves are analyzed with finite orbital angular momentum states in a multi-component dusty plasma. Significant modifications concerning the real wave frequencies and damping rates appeared with varying twisted dimensionless parameter and dust concentration. In particular, it is shown that dust concentration enhances the phase speed of the DIA waves in contrary to DA waves, whereas the impact of twisted parameter reduces the frequencies of both DA and DIA waves. The results should be useful for the understanding of particle transport and trapping phenomena caused by wave excitation in laboratory dusty plasmas.
Theory of sheath in a collisional multi-component plasma
Indian Academy of Sciences (India)
M K Mahanta; K S Goswami
2001-04-01
The aim of this brief report is to study the behaviour of sheath structure in a multicomponent plasma with dust-neutral collisions. The plasma consists of electrons, ions, micron size negatively charged dust particles and neutrals. The sheath-edge potential and sheath width are calculated for collisionally dominated sheath. Comparison of collisionless and collisionally dominated sheath are made.
Dispersion relation of electrostatic ion cyclotron waves in multi-component magneto-plasma
International Nuclear Information System (INIS)
Electrostatic ion cyclotron waves in multi component plasma composed of electrons (denoted by e−), hydrogen ions (denoted by H+), helium ions (denoted by He+) and positively charged oxygen ions (denoted by O+)in magnetized cold plasma. The wave is assumed to propagate perpendicular to the static magnetic field. It is found that the addition of heavy ions in the plasma dispersion modified the lower hybrid mode and also allowed an ion-ion mode. The frequencies of the lower hybrid and ion- ion hybrid modes are derived using cold plasma theory. It is observed that the effect of multi-ionfor different plasma densities on electrostatic ion cyclotron waves is to enhance the wave frequencies. The results are interpreted for the magnetosphere has been applied parameters by auroral acceleration region
Dispersion relation of electrostatic ion cyclotron waves in multi-component magneto-plasma
Energy Technology Data Exchange (ETDEWEB)
Khaira, Vibhooti, E-mail: khaira.vibhuti29@gmail.com; Ahirwar, G., E-mail: ganpat.physics@gmail.com [School of Studies in Physics, Vikram University, Ujjain (M.P.)-456010 (India)
2015-07-31
Electrostatic ion cyclotron waves in multi component plasma composed of electrons (denoted by e{sup −}), hydrogen ions (denoted by H{sup +}), helium ions (denoted by He{sup +}) and positively charged oxygen ions (denoted by O{sup +})in magnetized cold plasma. The wave is assumed to propagate perpendicular to the static magnetic field. It is found that the addition of heavy ions in the plasma dispersion modified the lower hybrid mode and also allowed an ion-ion mode. The frequencies of the lower hybrid and ion- ion hybrid modes are derived using cold plasma theory. It is observed that the effect of multi-ionfor different plasma densities on electrostatic ion cyclotron waves is to enhance the wave frequencies. The results are interpreted for the magnetosphere has been applied parameters by auroral acceleration region.
Electron-acoustic solitary pulses and double layers in multi-component plasmas
Mannan, A; Shukla, P K
2013-01-01
We consider the nonlinear propagation of fi?nite amplitude electron-acoustic waves (EAWs) in multi-component plasmas composed of two distinct groups of electrons (cold and hot components), and non-isothermal ions. We use the continuity and momentum equations for cold inertial electrons, Boltzmann law for inertialess hot electrons, non-isothermal density distribution for hot ions, and Poisson's equation to derive an energy integral with a modi?ed Sagdeev potential (MSP) for nonlinear EAWs. The MSP is analyzed to demonstrate the existence of arbitrary amplitude EA solitary pulses (EASPs) and EA double layers (EA-DLs). Small amplitude limits have also been considered and analytical results for EASPs and EA-DLs are presented. The implication of our results to space and laboratory plasmas is briely discussed.
Electrostatic envelope modes in multi-component non-thermal plasmas
Saiful Islam, Md; Sultana, Sharmin; Mamun, A. A.
2016-07-01
A theoretical study of envelope type solitary structures and their modulational instability has been made in a multi-component unmagnetized non-thermal plasma (consisting of negatively charged immobile heavy ions, inertial light ions and non-thermal electrons of two distinct temperatures). The cubic nonlinear Schrödinger equation (which describes the evolution of a slowly varying wave envelope with space and time) is derived by adopting the multiple scale (in space and time) perturbation technique. It is found that the plasma system under consideration supports two types (bright and dark) envelope solitons. It is also seen that the dark (bright) envelope solitons are modulationally stable (unstable). The variation of the growth rate of the unstable bright envelope solitons with various plasma parameters (e.g. wave number, temperature of plasma non-thermality, etc.) are found to be significant. The modulational instability criterions of the envelope modes are also seen to be influenced due to the variation of the intrinsic plasma parameters. This theoretical study may be useful in understanding the basic features of localized electrostatic structures in some space plasma systems (viz. Saturn's magnetosphere) where high energetic particles are available.
Pulsar emission: Langmuir modes in a relativistic multi-component plasma
Jones, P B
2014-01-01
Ions, protons and possibly a small flux of electrons and positrons are accelerated outward from the polar cap of a normal or millisecond pulsar whose rotational spin is antiparallel with its magnetic moment. The Langmuir modes of this relativistic plasma have several properties of significance for the origin of coherent radio emission. The characteristics of the mode are determined by the sequence of singularities in the dielectric tensor at real angular frequencies, which in turn is fixed by the electron-positron momentum distribution. We find that under a certain condition on its momentum distribution, an electron-positron flux two orders of magnitude smaller than the Goldreich-Julian flux stabilizes the plasma and extinguishes the mode. But more generally, both the growth rate and wavenumber of the multi-component Langmuir mode can be as much as an order of magnitude larger than those of the two-component ion-proton mode. It appears to be a further effective source for the plasma turbulence whose decay is ...
Study of nonlinear ion- and electron-acoustic waves in multi-component space plasmas
Directory of Open Access Journals (Sweden)
G. S. Lakhina
2008-11-01
Full Text Available Large amplitude ion-acoustic and electron-acoustic waves in an unmagnetized multi-component plasma system consisting of cold background electrons and ions, a hot electron beam and a hot ion beam are studied using Sagdeev pseudo-potential technique. Three types of solitary waves, namely, slow ion-acoustic, ion-acoustic and electron-acoustic solitons are found provided the Mach numbers exceed the critical values. The slow ion-acoustic solitons have the smallest critical Mach numbers, whereas the electron-acoustic solitons have the largest critical Mach numbers. For the plasma parameters considered here, both type of ion-acoustic solitons have positive potential whereas the electron-acoustic solitons can have either positive or negative potential depending on the fractional number density of the cold electrons relative to that of the ions (or total electrons number density. For a fixed Mach number, increases in the beam speeds of either hot electrons or hot ions can lead to reduction in the amplitudes of the ion-and electron-acoustic solitons. However, the presence of hot electron and hot ion beams have no effect on the amplitudes of slow ion-acoustic modes. Possible application of this model to the electrostatic solitary waves (ESWs observed in the plasma sheet boundary layer is discussed.
Axisymmetric Alfvén resonances in a multi-component plasma at finite ion gyrofrequency
Directory of Open Access Journals (Sweden)
D. Yu. Klimushkin
2006-05-01
Full Text Available This paper deals with the spatial structure of zero azimuthal wave number ULF oscillations in a 1-D inhomogeneous multi-component plasma when a finite ion gyrofrequency is taken into account. Such oscillations may occur in the terrestrial magnetosphere as Pc1-3 waves or in the magnetosphere of the planet Mercury. The wave field was found to have a sharp peak on some magnetic surfaces, an analogy of the Alfvén (field line resonance in one-fluid MHD theory. The resonance can only take place for waves with frequencies in the intervals ω<ω_{ch} or Ω_{0}<ω< ω_{cp}, where ω_{ch} and ω_{cp} are heavy and light ions gyrofrequencies, and Ω_{0} is a kind of hybrid frequency. Contrary to ordinary Alfvén resonance, the wave resonance under consideration takes place even at the zero azimuthal wave number. The radial component of the wave electric field has a pole-type singularity, while the azimuthal component is finite but has a branching point singularity on the resonance surface. The later singularity can disappear at some frequencies. In the region adjacent to the resonant surface the mode is standing across the magnetic shells.
Low-frequency electrostatic shock excitations in a multi-component dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Ferdousi, M.; Miah, M.R.; Sultana, S.; Mamun, A.A., E-mail: mariyaferdousi@gmail.com [Department of Physics, Jahangirnagar University, Savar (Bangladesh)
2015-10-01
Dust-acoustic shock waves are investigated in a four-component plasma consisting of arbitrarily charged inertial dusts, Boltzmann distributed negatively charged heavy ions, positively charged light ions, and electrons. The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers-type equation. The properties of dust-acoustic shock waves are analysed via the solution of Burgers equation. It is observed that the basic features of dust-acoustic shock waves are significantly modified due to the influence of arbitrarily charged dusts, Maxwellian electrons, number density and temperatures of heavier and lighter ions, and dust kinematic viscosity. Both polarity (positive and negative potential) shock waves are also found to exists in the plasma under consideration in this manuscript. The findings of this investigation may be used in understanding the dust-acoustic wave properties in both laboratory and space plasmas. (author)
International Nuclear Information System (INIS)
Numerical simulations of the multi-fluid equations are utilized to study the sheath structure in an acetylene plasma consists of electrons, different species of positive and negative ions, and charged nanosize dust particles. It is found that in the presence of negative ions spatially periodic fluctuations are developed in the profiles of the plasma and dust parameters. The fluctuations are enhanced with increasing the electronegativity, ion Mach number and neutral number density, while they are suppressed with increasing the dust Mach number. As the electronegativity increases, the incident dust flux on the wall decreases, whereas the positive ion flux increases. The sheath width is a descending function of the electronegativity, plasma number density, ion Mach number, and dust radius but increases monotonically with the neutral number density. - Highlights: • Numerical simulations of an acetylene sheath show spatial fluctuations in all plasma profiles. • The fluctuations are enhanced with increasing of the electronegativity α. • The incident dust flux decreases when α is increased. • The sheath width is a descending function of α, but increases with the dust radius
Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Ema, S. A.; Ferdousi, M.; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)
2015-04-15
The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas.
Energy Technology Data Exchange (ETDEWEB)
Marvi, Z.; Foroutan, G., E-mail: foroutan@sut.ac.ir
2014-01-01
Numerical simulations of the multi-fluid equations are utilized to study the sheath structure in an acetylene plasma consists of electrons, different species of positive and negative ions, and charged nanosize dust particles. It is found that in the presence of negative ions spatially periodic fluctuations are developed in the profiles of the plasma and dust parameters. The fluctuations are enhanced with increasing the electronegativity, ion Mach number and neutral number density, while they are suppressed with increasing the dust Mach number. As the electronegativity increases, the incident dust flux on the wall decreases, whereas the positive ion flux increases. The sheath width is a descending function of the electronegativity, plasma number density, ion Mach number, and dust radius but increases monotonically with the neutral number density. - Highlights: • Numerical simulations of an acetylene sheath show spatial fluctuations in all plasma profiles. • The fluctuations are enhanced with increasing of the electronegativity α. • The incident dust flux decreases when α is increased. • The sheath width is a descending function of α, but increases with the dust radius.
Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas
Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.
2012-01-01
Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.
International Nuclear Information System (INIS)
Boundary conditions for the ion component fluid velocities at the magnetic presheath entrance in multi-component plasmas with vector E x vector B and diamagnetic drifts are derived from the basic fluid equations. These conditions take into account gradients of the drift velocities and can be incorporated into multi-fluid codes used for modelling tokamak boundary plasmas and other magnetically confined plasmas. (author)
Lee, Myoung-Jae; Jung, Young-Dae
2015-09-01
Nonthermal and positron effects on the dust acoustic surface waves propagating at the interface between a multi-component Lorentzian dusty plasma and a vacuum are investigated. The dispersion relation is kinetically derived by employing the specular reflection boundary condition and the dielectric permittivity for dusty plasma containing positrons. We found that there exist two modes of the dust acoustic surface wave; high- and low-frequency modes. We observe that both H- and L-modes are enhanced by the increase of the pair annihilation rate. However, the effects of positron density are duplex depending on the ratio of annihilated positrons. The effects of nonthermal plasmas are also investigated on the H- and L-modes of dust acoustic surface waves. We found that the nonthermal plasmas suppress the frequencies both H- and L-modes. This research was supported by Nuclear Fusion Research Program through NRF funded by the Ministry of Science, ICT & Future Planning (Grant No. 2015M1A7A1A01002786).
Korotaev, A. D.; Ditenberg, I. A.; Berezovskaya, V. R.; Denisov, K. I.; Pinzhin, Yu. P.; Borisov, D. P.
2015-02-01
Within the concept of formation of multi-component, nanocomposite coatings, which assumes a simultaneous nucleation of islands of mutually insoluble or slightly-soluble phases under conditions of self-assembling microstructure during their synthesis, Al-Cr-Si-Ti-Cu-N coatings are designed and formed. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, a comprehensive investigation is performed of the influence of the operating modes of an ion-plasma synthesis of the resulting coatings on the features of their microstructure, microhardness, and elemental and phase composition. The procedures for optimization of the regimes of formation of multi-component, nanocomposite coatings of the above system are discussed.
Guo, Rui; Tian, Bo; Lü, Xing; Zhang, Hai-Qiang; Xu, Tao
2010-09-01
For the propagation of the ultrashort pulses in an inhomogeneous multi-component nonlinear medium, a system of coupled equations is analytically studied in this paper. Painlevé analysis shows that this system admits the Painlevé property under some constraints. By means of the Ablowitz-Kaup-Newell-Segur procedure, the Lax pair of this system is derived, and the Darboux transformation (DT) is constructed with the help of the obtained Lax pair. With symbolic computation, the soliton solutions are obtained by virtue of the DT algorithm. Figures are plotted to illustrate the dynamical features of the soliton solutions. Characteristics of the solitons propagating in an inhomogeneous multi-component nonlinear medium are discussed: (i) Propagation of one soliton and two-peak soliton; (ii) Elastic interactions of the parabolic two solitons; (iii) Overlap phenomenon between two solitons; (iv) Collision of two head-on solitons and two head-on two-peak solitons; (v) Two different types of interactions of the three solitons; (vi) Decomposition phenomenon of one soliton into two solitons. The results might be useful in the study on the ultrashort-pulse propagation in the inhomogeneous multi-component nonlinear media.
Multi-component assembly casting
Energy Technology Data Exchange (ETDEWEB)
James, Allister W.
2015-10-13
Multi-component vane segment and method for forming the same. Assembly includes: positioning a pre-formed airfoil component (12) and a preformed shroud heat resistant material (18) in a mold, wherein the airfoil component (12) and the shroud heat resistant material (18) each comprises an interlocking feature (24); preheating the mold; introducing molten structural material (46) into the mold; and solidifying the molten structural material such that it interlocks the pre-formed airfoil component (12) with respect to the preformed shroud heat resistant material (18) and is effective to provide structural support for the shroud heat resistant material (18). Surfaces between the airfoil component (12) and the structural material (46), between the airfoil component (12) and the shroud heat resistant material (18), and between the shroud heat resistant material (18) and the structural material (46) are free of metallurgical bonds.
The classical equation of state of fully ionized plasmas
Directory of Open Access Journals (Sweden)
Dalia Ahmed Eisa
2011-03-01
Full Text Available The aim of this paper is to calculate the analytical form of the equation of state until the third virial coefficient of a classical system interacting via an effective potential of fully Ionized Plasmas. The excess osmotic pressure is represented in the forms of a convergent series expansions in terms of the plasma Parameter μab=eaebχDKT, where χ2 is the square of the inverse Debye radius. We consider only the thermal equilibrium plasma.
Analogies between 'classical' plasmas and quark gluon plasma
International Nuclear Information System (INIS)
Using characterization methods specific to complex plasmas some information of the new state of the nuclear matter was reported by four major experiments from RHIC BNL (USA), namely the quark-gluon plasma. Additional arguments for the existence of the quark-gluon plasma in liquid phase is done. An equivalent Coulomb coupling parameter is used. Evidences for the liquid phase of the quark-gluon plasma are obtained, in agreement with the other experimental results. (author)
Multi-component Dirac equation hierarchy and its multi-component integrable couplings system
Institute of Scientific and Technical Information of China (English)
Xia Tie-cheng; You Fu-Cai
2007-01-01
A general scheme for generating a multi-component integrable equation hierarchy is proposed.A simple 3Mdimensional loop algebra (X) is produced.By taking advantage of X,a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained.Finally,an expanding loop algebra (F) M of the loop algebra (X) is presented.Based on the FM,the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated.The method in this paper can be applied to other nonlinear evolution equation hierarchies.
On the scaling of magnetic plasma confinement under classical conditions
International Nuclear Information System (INIS)
Present magnetic confinement schemes based on tokamaks and similar devices are characterized by relatively large losses and low beta values. As a consequence, thermonuclear conditions can only be reached in such devices at large linear dimensions or by means of very strong magnetic fields, in combination with large heating powers. This does not rule out the possibility of realizing the same conditions on a smaller scale, i.e. by finding alternative schemes which provide classical and stable confinement of a pure plasma in a closed magnetic bottle. (author)
Multi component equations of state for electrolytes
DEFF Research Database (Denmark)
Lin, Yi; Thomsen, Kaj; de Hemptinne, Jean-Charles
2007-01-01
Four equations of state have been implemented and evaluated for multi component electrolyte solutions at 298.15K and 1 bar. The equations contain terms accounting for short-range and long-range interactions in electrolyte solutions. Short range interactions are described by one of the three equat...
Effective binary theory of multi-component nucleation
International Nuclear Information System (INIS)
Classical theory of multi-component nucleation [O. Hirschfelder, J. Chem. Phys. 61, 2690 (1974)] belongs to the class of the so-called intractable problems: it requires computational time which is an exponential function of the number of components N. For a number of systems of practical interest with N > 10, the brute-force use of the classical theory becomes virtually impossible and one has to resort to an effective medium approach. We present an effective binary model which captures important physics of multi-component nucleation. The distinction between two effective species is based on the observation that while all N components contribute to the cluster thermodynamic properties, there is only a part of them which trigger the nucleation process. The proposed 2D-theory takes into account adsorption by means of the Gibbs dividing surface formalism and uses statistical mechanical considerations for the treatment of small clusters. Theoretical predictions for binary-, ternary-, and 14-component mixtures are compared with available experimental data and other models
Spray drying of multi-component suspensions with different density
Czech Academy of Sciences Publication Activity Database
Brožek, Vlastimil; Domlátil, J.
Praha: Česká společnost chemického inženýrství, 2006 - (Novosad, J.), s. 1395-P5.137 ISBN 80-86059-45-6. [International Congress of Chemical and Process Engineering CHISA 2006/17th./. Praha (CZ), 27.08.2006-31.08.2006] R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spray ing * spray drying * multi-component powders Subject RIV: JK - Corrosion ; Surface Treatment of Materials www.chisa.cz
Generalized Multi-component TC Hierarchy and Its Multi-component Integrable Coupling System
International Nuclear Information System (INIS)
A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X-tilde is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1. It follows that a general scheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X-tilde, a new isospectral problem is established, and then well-known multi-component TC hierarchy is obtained. Finally, an expanding loop algebra F-tildeM of the loop algebra X-tilde is presented. Based on the F-tildeM, the multi-component integrable coupling system of the generalized multi-component TC hierarchy has been worked out. The method in this paper can be applied to other nonlinear evolution equations hierarchies. It is easy to find that we can construct any finite-dimensional Lie algebra by this approach.
Multi-component Levi Hierarchy and Its Multi-component Integrable Coupling System
International Nuclear Information System (INIS)
A simple 3M-dimensional loop algebra X-tilde is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1. It follows that a general scheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X-tilde , a new isospectral problem is established, and then by making use of the Tu scheme the well-known multi-component Levi hierarchy is obtained. Finally, an expanding loop algebra F-tildeM of the loop algebra X-tilde is presented, based on the F-tildeM, the multi-component integrable coupling system of the multi-component Levi hierarchy is worked out. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
Multi-component optical solitary waves
DEFF Research Database (Denmark)
Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.;
2000-01-01
We discuss several novel types of multi-component (temporal and spatial) envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for highperformance computer networks......, multi-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons due to quasi-phase-matching in Fibonacci optical superlattices. (C) 2000 Elsevier Science B.V. All rights reserved....
Latyshev, A V
2015-01-01
The analysis of nonlinear interaction of transversal electromagnetic field with degenerate collisionless classical and quantum plasmas is carried out. Formulas for calculation electric current in degenerate collisionless classical and quantum plasmas are deduced. It has appeared, that the nonlinearity account leads to occurrence of longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis. Graphic comparison of density of electric current for classical degenerate Fermi plasmas and Fermi-Dirac plasmas (plasmas with any degree of degeneration of electronic gas) is carried out. Graphic comparison of density of electric current for classical and quantum degenerate plasmas is carried out. Also comparison of dependence of density of electric current of quantum degenerate plasmas from dimensionless wave number at various values of dimensionless frequency of oscillations of electromagnetic field is carried ...
Two New Multi-component BKP Hierarchies
International Nuclear Information System (INIS)
We firstly propose two kinds of new multi-component BKP (mcBKP) hierarchy based on the eigenfunction symmetry reduction and nonstandard reduction, respectively. The first one contains two types of BKP equation with self-consistent sources whose Lax representations are presented. The two mcBKP hierarchies both admit reductions to the k-constrained BKP hierarchy and to integrable (1+1)-dimensional hierarchy with self-consistent sources, which include two types of SK equation with self-consistent sources and of bi-directional SK equations with self-consistent sources.
Thermochemical modelling of multi-component systems
International Nuclear Information System (INIS)
Computational thermodynamic, also known as the Calphad method, is a standard tool in industry for the development of materials and improving processes and there is an intense scientific development of new models and databases. The calculations are based on thermodynamic models of the Gibbs energy for each phase as a function of temperature, pressure and constitution. Model parameters are stored in databases that are developed in an international scientific collaboration. In this way, consistent and reliable data for many properties like heat capacity, chemical potentials, solubilities etc. can be obtained for multi-component systems. A brief introduction to this technique is given here and references to more extensive documentation are provided. (authors)
Single Pass Multi-component Harvester
Energy Technology Data Exchange (ETDEWEB)
Reed Hoskinson; J. Richard Hess
2004-08-01
Abstract. In order to meet the U. S. government’s goal of supplementing the energy available from petroleum by increasing the production of energy from renewable resources, increased production of bioenergy has become one of the new goals of the United States government and our society. U.S. Executive Orders and new Federal Legislation have mandated changes in government procedures and caused reorganizations within the government to support these goals. The Biomass Research and Development Initiative is a multi-agency effort to coordinate and accelerate all U.S. Federal biobased products and bioenergy research and development. The Initiative is managed by the National Biomass Coordination Office, which is staffed by both the DOE and the USDA. One of the most readily available sources of biomass from which to produce bioenergy is an agricultural crop residue, of which straw from small grains is the most feasible residue with which to start. For the straw residue to be used its collection must be energy efficient and its removal must not impact the sustainability of the growing environment. In addition, its collection must be economically advantageous to the producer. To do all that, a single pass multi-component harvester system is most desirable. Results from our first prototype suggest that current combines probably do adequate threshing and that a separate chassis can be developed that does additional separation and that is economically feasible.
Breakdown of the Brillouin limit and classical fluxes in rotating collisional plasmas
Energy Technology Data Exchange (ETDEWEB)
Rax, J. M., E-mail: jean-marcel.rax@polytechnique.edu [Université de Paris XI and LOA, ENSTA–Ecole Polytechnique, 91128 Palaiseau (France); Fruchtman, A. [HIT, Holon Institute of Technology, 52 Golomb St., Holon 58102 (Israel); Gueroult, R.; Fisch, N. J. [PPPL, Princeton University, Princeton, New Jersey 08540 (United States)
2015-09-15
The classical collisionless analysis displaying the occurrence of slow and fast rigid body rotation modes in magnetized plasmas is extended to collisional discharges. Collisions speed up the fast mode, slow down the slow one, and break down the classical Brillouin limit. Rigid body rotation has a strong impact on transport, and a collisional radial transport regime, different from the classical Braginskii collisional flux, is identified and analyzed.
Breakdown of the Brillouin limit and classical fluxes in rotating collisional plasmas
International Nuclear Information System (INIS)
The classical collisionless analysis displaying the occurrence of slow and fast rigid body rotation modes in magnetized plasmas is extended to collisional discharges. Collisions speed up the fast mode, slow down the slow one, and break down the classical Brillouin limit. Rigid body rotation has a strong impact on transport, and a collisional radial transport regime, different from the classical Braginskii collisional flux, is identified and analyzed
The Single Pass Multi-component Harvester
Energy Technology Data Exchange (ETDEWEB)
Reed Hoskinson; John R. Hess
2004-08-01
collection must be economically advantageous to the producer. To do all that, a single pass multi-component harvester system is most desirable. Results from our first prototype suggest that current combines probably do adequate threshing and that a separate chassis can be developed that does additional separation and that is economically feasible.
Fabrication of 2D arrays of multi-component nanoparticles
International Nuclear Information System (INIS)
The paper presents a study of a physical method for fabrication of two-dimensional (2D) arrays composed of multi-component nanoparticles on a dielectric substrate. The method consists of two steps. In the first one, thin films composed of different metals are deposited by a classical PLD technique by using targets consisting of sections of different materials. Thin films composed of mixtures of different metals, as gold, silver, nickel, cobalt, iron, platinum, are thus deposited on a quartz substrate. By changing the area of the different sections in the target, thin films with different concentration of the metals are produced. The films fabricated are then annealed by nanosecond laser pulses delivered by a Nd:YAG laser system operating at its third harmonic. The modification of the films is studied as a function of the parameters of the incident radiation, as number of pulses and laser pulse fluence. It is found that the laser annealing can lead to a decomposition of the film into a monolayer of nanoparticles with a narrow size distribution. The optical properties of the structures produced are analyzed on the basis of their transmission spectra. The structures can be used in surface enhanced Raman spectroscopy (SERS) and magneto-optics.
Advances in the segmentation of multi-component microanalytical images
International Nuclear Information System (INIS)
Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms (C-means and fuzzy C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map
Zhou, Wei; Tam, Kin Y; Meng, Minxin; Shan, Jinjun; Wang, Shouchuan; Ju, Wenzheng; Cai, Baochang; Di, Liuqing
2015-01-01
The current study aims to investigate the pharmacokinetics of multi-components (caffeic acid, quinic acid, genistein, luteolin, quercetin, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, arctigenin, genistin, luteoloside, astragalin, hyperoside, isoquercitrin, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, rutin, loganin, pinoresinol-β-d-glucoside, phillyrin, isoforsythoside, forsythoside A and forsythoside B) following oral administration of Flos Lonicerae Japonicae-Fructus Forsythiae herb couple in rats. A rapid and sensitive UPLC-ESI-MS/MS with sequential positive and negative ionization modes was developed to determine the 23 absorbed ingredients using one sample preparation combined with three chromatographic conditions in rat plasma. After mixing with internal standard (IS) (tinidazole and chloramphenicol), samples were pretreated by liquid-liquid extraction (LLE) with n-butyl alcohol/ethyl acetate (1:1, v/v). The separations for pinoresinol-β-d-glucoside, phillyrin, isoforsythoside, forsythoside A and forsythoside B were performed on an ACQUITY UPLC BEH C18 column (100mm×2.1mm, 1.7μm) with acetonitrile/methanol (4:1, v/v)-water as mobile phase. For analyzing quinic acid, an ACQUITY UPLC HSS T3 column (100mm×2.1mm, 1.8μm) was applied with acetonitrile/methanol (4:1, v/v)-0.01% formic acid as mobile phase after dilution up to 25-fold. The same column was applied to the other components with acetonitrile/methanol (4:1, v/v)-0.4% formic acid as mobile phase. The method validation results demonstrated that the proposed method was sensitive, specific and reliable, which was successfully applied to the pharmacokinetic study of the multi-components after oral administration of Flos Lonicerae Japonicae-Fructus Forsythiae herb couple. PMID:25533397
Zeng, Le; Wang, Meiling; Yuan, Yu; Guo, Bin; Zhou, Jing; Tan, Zhen; Ye, Meiling; Ding, Li; Chen, Bo
2014-09-15
Ying-zhi-huang injection (YZH-I) is an injectable multi-herbal prescription derived from the ancient Chinese remedy "Yin-chen-hao-tang", which is widely used in the clinic for the treatment of jaundice and chronic liver diseases. To date, little information is available on the pharmacokinetic properties of this poly-herbal formulation. Herein, we reported a simple, rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantitative multiple reaction monitoring (MRM) of eight major ingredients of YZH-I (including baicalin, baicalein, wogonoside, geniposide, geniposidic acid, chlorogenic acid, neochlorogenic acid, and caffeic acid) in rat plasma. A fast single-tube multi-impurity precipitation extraction ("SMIPE") procedure was introduced for straightforward plasma preparation, based on one-pot deproteinization precipitation with acidified methanol extraction and in-situ multifunction impurity removal by a solid sorbent mixture (anh. magnesium sulfate plus octadecylsilane). Particularly, the addition of ascorbic acid in methanol (10 mg/mL) was found to exhibit a pronounced protective effect and significantly increase extraction effectiveness of the herbal phenolic components. Some pretreatment variables (protein precipitating solvent, acidifying agent and sorbent) were optimized with acceptable matrix effect (-18 to 7.7%), extraction recovery (65-88%) and process efficiency (62-91%) for the SMIPE-based LC-MRM multi-analyte quantitation using matrix-matched calibration (5-1000 ng/mL) without using internal standard. Mean accuracies were obtained in the range of 83-114% at three different fortification levels, with intra- and inter-day variations within 13%. This validated method was successfully applied to the simultaneous measurement and pharmacokinetic investigation of the chemical constituents in rats following an intravenous administration of YZH-I. PMID:25129410
Classical Equation of State for Dilute Relativistic Plasma
Hussein, N. A.; Eisa, D. A.; Sayed, E. G.
2016-06-01
The aim of this paper is to calculate the analytical form of the equation of state for dilute relativistic plasma. We obtained the excess free energy and pressure in the form of a convergent series expansion in terms of the thermal parameter μ where μ = {{m{c^2}} over {KT}}, m is the mass of charge, c is the speed of light, K is the Boltzmann's constant, and T is the absolute temperature. The results are discussed and compared with previous work of other authors.
Latyshev, A V
2015-01-01
From Vlasov kinetic equation for collisionless plasmas distribution function in square-law approximation on size of electromagnetic field is received. Formulas for calculation electric current at any temperature (any degree of degeneration of electronic gas) are deduced. The case of small values of the wave numbers is considered. It is shown, that the nonlinearity account leads to occurrence the longitudinal electric current directed along a wave vector. This longitudinal current orthogonal to known transversal classical current, received at the linear analysis. From the kinetic equation with Wigner integral for collisionless quantum plasma distribution function is received in square-law on vector potential approximation. Formulas for calculation electric current at any temperature are deduced. The case of small values of wave number is considered. It is shown, that size of a longitudinal current at small values of wave number and for classical plasma and for quantum plasma coincide. Graphic comparison of dim...
International Nuclear Information System (INIS)
In this paper, classical particle transport processes in field-reversed configuration plasma is investigated by particle-tracking calculations. The end-loss rate is found to increase with ion temperature, and the temperature dependence is much stronger than that of the Bohm scaling and the empirical scaling. (author)
Latyshev, A V
2015-01-01
Kinetic Vlasov equation for collisional Maxwellian plasmas is used. Collision integral of BGK (Bhatnagar, Gross and Krook) type is applied. From Vlasov equation we find distribution function of electrons in square-law approximation on size of transversal electric field. The formula for electric current calculation is deduced. This formula contains an one-dimensional quadrature. It is shown, that nonlinearity leads to revealing of the longitudinal electric current directed along a wave vector. This longitudinal current is perpendicular to known so-called transversal classical current. The classical current turns out at the linear analysis. The longitudinal current in case of small values of wave numbers is calculated. When frequency of collisions tends to zero, all received formulas for collisional plasmas pass in the known corresponding results for collisionless plasmas. Graphic research of dimensionless density of a current is carried out.
Calculation and experimental investigation of multi-component ceramic systems
International Nuclear Information System (INIS)
This work shows a way to combine thermodynamic calculations and experiments in order to get useful information on the constitution of metal/non-metal systems. Many data from literature are critically evaluated and used as a basis for experiments and calculations. The following multi-component systems are treated: 1. Multi-component systems of 'ceramic' materials with partially metallic bonding (carbides, nitrides, oxides, borides, carbonitrides, borocarbides, oxinitrides of the 4-8th transition group metals) 2. multi-component systems of non-metallic materials with dominant covalent bonding (SiC, Si3N4, SiB6, BN, Al4C3, Be2C) 3. multi-component systems of non-metallic materials with dominant heteropolar bonding (Al2O3, TiO2, BeO, SiO2, ZrO2). The interactions between 1. and 2., 2. and 3., 1. and 3. are also considered. The latest commercially available programmes for the calculation of thermodynamical equilibria and phase diagrams are evaluated and compared considering their facilities and limits. New phase diagrams are presented for many presently unknown multi-component systems; partly known systems are completed on the basis of selected thermodynamic data. The calculations are verified by experimental investigations (metallurgical and powder technology methods). Altogether 690 systems are evaluated, 126 are calculated for the first time and 52 systems are experimentally verified. New data for 60 ternary phases are elaborated by estimating the data limits for the Gibbs energy values. A synthesis of critical evaluation of literature, calculations and experiments leads to new important information about equilibria and reaction behaviour in multi-component systems. This information is necessary to develop new stable and metastable materials. (orig./MM)
Polarization interactions in multi-component defocusing media
International Nuclear Information System (INIS)
We study dark–bright soliton interactions in multi-component media such as nonlinear optical media in the defocusing regime and repulsive Bose–Einstein condensates. This is achieved using the recently developed formalism of the inverse scattering transform for the defocusing multi-component nonlinear Schrödinger equation with non-zero boundary conditions. We show that, generically, these interactions result in a non-trivial polarization shift for the bright components. We compute such polarization shift analytically and compare it to that in focusing two-component nonlinear Schrödinger systems. (paper)
On the Extended Multi-component Toda Hierarchy
Energy Technology Data Exchange (ETDEWEB)
Li, Chuanzhong, E-mail: lichuanzhong@nbu.edu.cn; He, Jingsong, E-mail: hejingsong@nbu.edu.cn [Ningbo University, Department of Mathematics (China)
2014-12-15
The extended flow equations of the multi-component Toda hierarchy are constructed. We give the Hirota bilinear equations and tau function of this new extended multi-component Toda hierarchy(EMTH). Because of logarithmic terms, some extended Vertex operators are constructed in generalized Hirota bilinear equations which might be useful in topological field theory and Gromov-Witten theory. Meanwhile the Darboux transformation and bi-hamiltonian structure of this hierarchy are given. From the hamiltonian tau symmetry, we give another different tau function of this hierarchy with some unknown mysterious connections with the one defined from the point of wave functions.
Isocyanide based multi component reactions in combinatorial chemistry.
Dömling, A.
1998-01-01
Although usually regarded as a recent development, the combinatorial approach to the synthesis of libraries of new drug candidates was first described as early as 1961 using the isocyanide-based one-pot multicomponent Ugi reaction. Isocyanide-based multi component reactions (MCR's) markedly differ f
Diffusion of elements and vacancies in multi-component systems
Czech Academy of Sciences Publication Activity Database
Fischer, F. D.; Svoboda, Jiří
2014-01-01
Roč. 60, MAR (2014), s. 338-367. ISSN 0079-6425 Institutional support: RVO:68081723 Keywords : multi-component diffusion * vacancy activity * manning theory * stress-driven diffusion Subject RIV: BJ - Thermodynamics Impact factor: 27.417, year: 2014
Surface density profile and surface tension of the one-component classical plasma
International Nuclear Information System (INIS)
The density profile and the interfacial tension of two classical plasmas in equilibrium at different densities are evaluated in the square-density-gradient approximation. For equilibrium in the absence of applied external voltage, the profile is oscillatory in the higher-density plasma and the interfacial tension is positive. The amplitude and phase of these oscillations and the magnitude of the interfacial tension are related to the width of the background profile. Approximate representations of the equilibrium profile by matching of its asymptotic forms are analyzed. A comparison with computer simulation data and a critical discussion of a local-density theory are also presented. (author)
Kinetics of Circulating Plasma Cell-Free DNA in Paediatric Classical Hodgkin Lymphoma
Primerano, Simona; Burnelli, Roberta; Carraro, Elisa; Pillon, Marta; Elia, Caterina; Farruggia, Piero; Sala, Alessandra; Vinti, Luciana; Buffardi, Salvatore; Basso, Giuseppe; Mascarin, Maurizio; Mussolin, Lara
2016-01-01
Levels of plasma cell-free DNA (cfDNA) of a large series of children with classical Hodgkin lymphoma (cHL) were evaluated and analyzed at diagnosis and during chemotherapy treatment in relation with clinical characteristics. CfDNA levels in cHL patients were significantly higher compared with controls (p=0.002). CfDNA at diagnosis was correlated with presence of B symptoms (p=0.027) and high erythrocyte sedimentation rate (p=0.049). We found that the increasing of plasma cfDNA after first che...
On the internal energy of the classical two-dimensional one-component-plasma
Directory of Open Access Journals (Sweden)
A. G. Khrapak
2015-08-01
Full Text Available We describe a new semi-phenomenological approach to estimate the internal energy of the classical one-component-plasma in two dimensions. This approach reproduces the Debye-Hückel asymptote in the limit of weak coupling, the ion disc asymptote in the limit of strong coupling, and provides reasonable interpolation between these two limits. The present analytic results are compared with those from other approximations as well as with existing data from numerical simulations.
Classical scrapie prions in ovine blood are associated with B lymphocytes and platelet-rich plasma
Directory of Open Access Journals (Sweden)
Dassanayake Rohana P
2011-11-01
Full Text Available Abstract Background Classical scrapie is a naturally occurring transmissible spongiform encephalopathy of sheep and goats characterized by cellular accumulation of abnormal isoforms of prion protein (PrPSc in the central nervous system and the follicles of peripheral lymphoid tissues. Previous studies have shown that the whole blood and buffy coat blood fraction of scrapie infected sheep harbor prion infectivity. Although PrPSc has been detected in peripheral blood mononuclear cells (PBMCs, plasma, and more recently within a subpopulation of B lymphocytes, the infectivity status of these cells and plasma in sheep remains unknown. Therefore, the objective of this study was to determine whether circulating PBMCs, B lymphocytes and platelets from classical scrapie infected sheep harbor prion infectivity using a sheep bioassay. Results Serial rectal mucosal biopsy and immunohistochemistry were used to detect preclinical infection in lambs transfused with whole blood or blood cell fractions from preclinical or clinical scrapie infected sheep. PrPSc immunolabeling was detected in antemortem rectal and postmortem lymphoid tissues from recipient lambs receiving PBMCs (15/15, CD72+ B lymphocytes (3/3, CD21+ B lymphocytes (3/3 or platelet-rich plasma (2/3 fractions. As expected, whole blood (11/13 and buffy coat (5/5 recipients showed positive PrPSc labeling in lymphoid follicles. However, at 549 days post-transfusion, PrPSc was not detected in rectal or other lymphoid tissues in three sheep receiving platelet-poor plasma fraction. Conclusions Prion infectivity was detected in circulating PBMCs, CD72+ pan B lymphocytes, the CD21+ subpopulation of B lymphocytes and platelet-rich plasma of classical scrapie infected sheep using a sheep bioassay. Combining platelets with B lymphocytes might enhance PrPSc detection levels in blood samples.
Scale-lengths and instabilities in magnetized classical and relativistic plasma fluid models
International Nuclear Information System (INIS)
The validity of the traditional plasma continuum is predicated on a hierarchy of scale-lengths, with the Debye length being considered to be effectively unresolvable in the continuum limit. In this article, we revisit the strong magnetic field case in which the Larmor radius is comparable or smaller than the Debye length in the classical plasma, and also for a relativistic plasma. Fresh insight into the validity of the continuum assumption in each case is offered, including a fluid limit on the Alfvén speed that may impose restrictions on the validity of magnetohydrodynamics (MHD) in some solar and fusion contexts. Additional implications concerning the role of the firehose instability are also explored. (paper)
Kinetics of Circulating Plasma Cell-Free DNA in Paediatric Classical Hodgkin Lymphoma
Primerano, Simona; Burnelli, Roberta; Carraro, Elisa; Pillon, Marta; Elia, Caterina; Farruggia, Piero; Sala, Alessandra; Vinti, Luciana; Buffardi, Salvatore; Basso, Giuseppe; Mascarin, Maurizio; Mussolin, Lara
2016-01-01
Levels of plasma cell-free DNA (cfDNA) of a large series of children with classical Hodgkin lymphoma (cHL) were evaluated and analyzed at diagnosis and during chemotherapy treatment in relation with clinical characteristics. CfDNA levels in cHL patients were significantly higher compared with controls (p=0.002). CfDNA at diagnosis was correlated with presence of B symptoms (p=0.027) and high erythrocyte sedimentation rate (p=0.049). We found that the increasing of plasma cfDNA after first chemotherapy cycle seems to be associated with a worse prognosis (p=0.049). Levels of plasma cfDNA might constitute an interesting non-invasive tool in cHL patients' management. PMID:26918050
Kinetics of Circulating Plasma Cell-Free DNA in Paediatric Classical Hodgkin Lymphoma.
Primerano, Simona; Burnelli, Roberta; Carraro, Elisa; Pillon, Marta; Elia, Caterina; Farruggia, Piero; Sala, Alessandra; Vinti, Luciana; Buffardi, Salvatore; Basso, Giuseppe; Mascarin, Maurizio; Mussolin, Lara
2016-01-01
Levels of plasma cell-free DNA (cfDNA) of a large series of children with classical Hodgkin lymphoma (cHL) were evaluated and analyzed at diagnosis and during chemotherapy treatment in relation with clinical characteristics. CfDNA levels in cHL patients were significantly higher compared with controls (p=0.002). CfDNA at diagnosis was correlated with presence of B symptoms (p=0.027) and high erythrocyte sedimentation rate (p=0.049). We found that the increasing of plasma cfDNA after first chemotherapy cycle seems to be associated with a worse prognosis (p=0.049). Levels of plasma cfDNA might constitute an interesting non-invasive tool in cHL patients' management. PMID:26918050
Multi-component transparent conducting oxides: progress in materials modelling
International Nuclear Information System (INIS)
Transparent conducting oxides (TCOs) play an essential role in modern optoelectronic devices through their combination of electrical conductivity and optical transparency. We review recent progress in our understanding of multi-component TCOs formed from solid solutions of ZnO, In2O3, Ga2O3 and Al2O3, with a particular emphasis on the contributions of materials modelling, primarily based on density functional theory. In particular, we highlight three major results from our work: (i) the fundamental principles governing the crystal structures of multi-component oxide structures including (In2O3)(ZnO)n and (In2O3)m(Ga2O3)l(ZnO)n; (ii) the relationship between elemental composition and optical and electrical behaviour, including valence band alignments; (iii) the high performance of amorphous oxide semiconductors. On the basis of these advances, the challenge of the rational design of novel electroceramic materials is discussed. (topical review)
Grinding Characteristics of Multi-component Cement-based Material
Institute of Scientific and Technical Information of China (English)
LU Difen; TAO Longzhong; LI Ning; HU Haipeng
2005-01-01
The grinding characteristics of two or multi-component material of clinker with limestone, blast furnace slag and fly ash were studied. Investigation was carried out on the particle size distribution, the Blaine fineness and the sieve residue of the separate and interground products. The relative contents of clinker and limestone in different size fractions of the interground product were examined, and the interaction of two components, which have different grindabilities, was analyzed. The results show there exists a selective grinding effect during intergrinding, one component can help or hinder the grinding of the other. Making good use of this interaction appropriately not only enhances the grindabilities of two or multi-component mixtures, which can promote the grinding process of clinker with industrial wastes, but also improves their particle size distribution and properties.
Multi-component transparent conducting oxides: progress in materials modelling
Walsh, Aron; Da Silva, Juarez L. F.; Wei, Su-Huai
2011-08-01
Transparent conducting oxides (TCOs) play an essential role in modern optoelectronic devices through their combination of electrical conductivity and optical transparency. We review recent progress in our understanding of multi-component TCOs formed from solid solutions of ZnO, In2O3, Ga2O3 and Al2O3, with a particular emphasis on the contributions of materials modelling, primarily based on density functional theory. In particular, we highlight three major results from our work: (i) the fundamental principles governing the crystal structures of multi-component oxide structures including (In2O3)(ZnO)n and (In2O3)m(Ga2O3)l(ZnO)n; (ii) the relationship between elemental composition and optical and electrical behaviour, including valence band alignments; (iii) the high performance of amorphous oxide semiconductors. On the basis of these advances, the challenge of the rational design of novel electroceramic materials is discussed.
Nonlinear approximation with redundant multi-component dictionaries
Granai, Lorenzo; Vandergheynst, Pierre
2007-01-01
The problem of efficiently representing and approximating digital data is an open challenge and it is of paramount importance for many applications. This dissertation focuses on the approximation of natural signals as an organized combination of mutually connected elements, preserving and at the same time benefiting from their inherent structure. This is done by decomposing a signal onto a multi-component, redundant collection of functions (dictionary), built by the union of several subdictio...
Gamma ray analysis of multi-component material
International Nuclear Information System (INIS)
A method and apparatus is disclosed for analyzing a multi-component material having at least three components using gamma radiation having at least two different energies. Upon irradiation of at least a sample of material, the multi-energy gamma rays which are propagated through the sample are detected. The intensity of the detected gamma rays is measured and the amount of at least one of the components of the material is determined by solving a set of simultaneous equations. (author)
Certain Periodically Correlated Multi-component Locally Stationary Processes
Modarresi, N .; Rezakhah, S.
2010-01-01
By introducing $X^{ls}(t)$ as a random mixture of two stationary processes where the time dependent random weights have exponentially convex covariance, we show that this process has a multi-component locally stationary covariance function in Silverman's sense. We also define $X^p(t)$ as a certain continuous time periodically correlated (PC) process where its covariance function is generated by the covariance function of a discrete time through defining some simple random measure on real line...
Vodolazkaia Alexandra; Bossuyt Xavier; Fassbender Amelie; Kyama Cleophas M; Meuleman Christel; Peeraer Karen; Tomassetti Carla; D'Hooghe Thomas M
2011-01-01
Abstract Background Endometriosis is associated with chronic subclinical inflammation. C-reactive protein (CRP), a marker of inflammation, could serve as a biomarker of endometriosis. We tested the hypothesis that a high sensitivity CRP assay (hsCRP) is more accurate than a classical CRP assay in the detection of subclinical inflammation in plasma of women with endometriosis. Methods CRP levels were measured by hsCRP and classical CRP assays in plasma of 204 women with endometriosis and 91 wo...
Current-carrying plasma and the magnetic field ambiguity in classical MHD theory
International Nuclear Information System (INIS)
An ambiguity in the classical theoretical framework used for computing magnetohydrostatic equilibrium is pointed out and analyzed. This inconsistency implies that some proposed solutions of the magnetohydrodynamic (MHD) equations may not represent actual magnetic fields of plasma currents in the geometry considered. The root of the inconsistency is that the magnetostatic field equation and the magnetohydrostatic equations are not invariant under the same transformations. There are two types of problems where inconsistencies have arisen in the literature: (a) unphysical magnetic fields are postulated inside a plasma current; and (b) vacuum magnetic fields are postulated that are not gradient fields. In both cases, magnetic fields are obtained which cannot be created in the laboratory. This inconsistency is traced back to a mishandling of the mathematical structure of the magnetic field equation. The magnetic field rvec B is a vector potential for the current density distribution rvec j, just as rvec A is a vector potential for rvec B. Nevertheless, whereas a gauge transformation on rvec A is unobservable (gauge invariant), the analogous gauge transformation in the rvec B vector (gradient field transformation) is indeed observable and changes the Lorentz force. Following Alfven, the authors characterize plasmas mathematically through the field lines of the current density distribution vector. Classical MHD theory, by contrast, is concerned strictly with magnetic field lines. They show here how this magnetic field approach can lead to inconsistencies when applied to plasmas. A resolution of entrenched ambiguities is made possible by using the current fiber description to derive a corrected Grad-Shafranov plasma equilibrium equation
Classical Methods of Statistics With Applications in Fusion-Oriented Plasma Physics
Kardaun, Otto J W F
2005-01-01
Classical Methods of Statistics is a blend of theory and practical statistical methods written for graduate students and researchers interested in applications to plasma physics and its experimental aspects. It can also fruitfully be used by students majoring in probability theory and statistics. In the first part, the mathematical framework and some of the history of the subject are described. Many exercises help readers to understand the underlying concepts. In the second part, two case studies are presented exemplifying discriminant analysis and multivariate profile analysis. The introductions of these case studies outline contextual magnetic plasma fusion research. In the third part, an overview of statistical software is given and, in particular, SAS and S-PLUS are discussed. In the last chapter, several datasets with guided exercises, predominantly from the ASDEX Upgrade tokamak, are included and their physical background is concisely described. The book concludes with a list of essential keyword transl...
Numerical simulation of nonlinear acoustic attenuation of multi-component gas mixture
Institute of Scientific and Technical Information of China (English)
YAN Shu; WANG Shu
2009-01-01
The direct simulation Monte Carlo (DSMC) method was introduced to model the acoustic propagation in multi-component gas mixtures. And a theoretical predictive model of acoustic attenuation was proposed, which does not rely on experiential parameters. The acoustic attenuation spectra of various multi-component gas mixtures, consisting of nitrogen, oxygen, carbon dioxide, methane and water, were estimated by the DSMC method. The sound frequency range of interest is from 8 MHz to 232 MHz. Compared with the result of the relaxation attenuation based on the DL model plus that of the classical attenuation calculated by the Stokes-Kirchhoff formula, the estimations of acoustic attenuation of our model agreed with them. The precision of the model depends upon the understanding of the physical mechanism of molecule collision from which the attenuation arises. In addition, the result of our model shows that the characters of the frequency-dependent acoustic attenuation rely on the composition of the gas mixtures. And this could lead to the development of smart acoustic gas sensors capable of quantitatively determining gas composition in various environments and processes.
Novel High Pressure Multi-Component Diffusion Cell
Muthia Elma; Paul Massarotto; Victor Rudolph
2012-01-01
A novel high pressure multi-component diffusion cell (HPMCDC) apparatus has been designed and built to measure single and binary gas diffusion, including co-current and counter-diffusion, from low to high pressures. The apparatus incorporates capability to investigate scale effects in solid coal specimens, up to 25 mm in diameter and 25 mm in thickness. Future experiments will be conducted to measure diffusion and counter-diffusion of CH4 and CO2 gases in solid coal, at various temperatures, ...
Cosmic Ray Excesses from Multi-component Dark Matter Decays
Geng, Chao-Qiang; Huang, Da; Tsai, Lu-Hsing
2014-01-01
We use multi-component decaying dark matter (DM) scenario to explain the possible cosmic ray excesses in the positron fraction recently confirmed by AMS-02 and the total $e^+ +e^-$ flux observed by Fermi-LAT. In the two-component DM models, we find an interesting variation of the flavor structure along with the cutoff of the heavy DM. For the three-component DM case, we focus on a particular parameter range in which the best fits prefer to open only 2 DM decay channels with a third DM contrib...
Biosorption of Metals from Multi-Component Bacterial Solutions
Tsertsvadze, L A; Petriashvili, Sh G; Chutkerashvili, D G; Kirkesali, E I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F
2002-01-01
The method of extraction of metals from industrial solutions by means of economical and easy to apply biosorbents in subtropics such as products of tea manufacturing, moss, microorganisms is described. The multi-component solutions obtained in the process of leaching of ores, rocks and industrial wastes by peat suspension were used in the experiments. The element composition of sorbent biomass and solutions was investigated by epithermal neutron activation analysis and by atomic absorption spectrometry. The results obtained evidence that the used biosorbents are applicable for extraction of the whole set of heavy metals and actinides (U, Th, Cu, Mn, Fe, Pb, Li, Rb, Sr, Cd, As, Co and others) from industrial solutions.
Multi-component Dark Matters in Two Loop Neutrino Model
Kajiyama, Yuji; Toma, Takashi
2013-01-01
We construct a loop induced seesaw model in a TeV scale theory with gauged U(1)_{B-L} symmetry. Light neutrino masses are generated at two-loop level and right-handed neutrinos also obtain their masses by one-loop effect. Multi-component Dark Matters (DMs) are included in our model due to the remnant discrete symmetry after the B-L symmetry breaking and the Z_2 parity which is originally imposed to the model. We investigate the multi-component DM properties, in which we have two fermionic DMs with different mass scales, O(10) GeV and O(100-1000) GeV. The former mass corresponds to the lightest right-handed neutrino mass induced by the loop effect, although the latter one to the SM gauge singlet fermion. We show each of the DM annihilation processes and compare to the the observation of relic abundance, together with the constraints of Lepton Flavor Violation (LFV) and active neutrino masses. Moreover we show that our model has some parameter region allowed by the direct detection result reported by XENON100, ...
Elnagdi, Mohamed Hilmy; Moustafa, Moustafa Sherief; Al-Mousawi, Saleh Mohammed; Mekheimer, Ramadan Ahmed; Sadek, Kamal Usef
2015-08-01
Developments made since 2010 in the utilization of multi-component reactions as green efficient methodologies for the synthesis of polysubstituted pyrans, thiopyrans, pyridines, and pyrazoles are reviewed and the mechanisms of these processes are discussed. Reference is made to classical older synthetic methods developed earlier in our laboratories. PMID:25894364
Kinetic theory of the shear viscosity of a strongly coupled classical one-component plasma
International Nuclear Information System (INIS)
We present an approximation to the linearized collision operator or memory function of the exact kinetic equation obeyed by the correlation function of the phase-space density of a classical one-component plasma. This approximate collision operator generalizes the well known Balescu-Guernsey-Lenard (BGL) operator to finite wavelengths, finite frequencies, and finite coupling constants. It, moreover, satisfies the necessary symmetry relations, leads to appropriate conservation laws, and fulfills its first sum rule exactly. Next we use this operator to compute the shear viscosity eta for a series of coupling constants spanning the whole fluid phase. For weak coupling we make contact with the BGL theory, while for strong coupling we confirm, at least qualitatively, the results of Vieillefosse and Hansen, who predicted a minimum in eta as a function of temperature. We also demonstrate the important role played by the sum rules in the quantitative evaluation of a transport coefficient such as eta
New foundations and unification of basic plasma physics by means of classical mechanics
Escande, Dominique F; Elskens, Yves
2013-01-01
The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas requires many pages of heavy kinetic calculations in classical textbooks and is done in distinct, unrelated chapters. Using Newton's second law for the $N$-body system, we perform this derivation in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered on the way to Landau damping. The theory is extended to accommodate a correct description of trapping or chaos due to Langmuir waves, and to avoid the small amplitude assumption for the electrostatic potential. Using the shielded potential, collisional transport is computed for the first time by a convergent expression including the correct calculation of deflections for all impact parameters. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons.
Synthesis of Multi-component Mass-exchange Networks
Institute of Scientific and Technical Information of China (English)
LIU Linlin; DU Jian; Mahmoud M.El-Halwagi; José María Ponce-Ortega; YAO Pingjing
2013-01-01
This paper presents a superstructure-based formulation for the synthesis of mass-exchange networks (MENs) considering multiple components.The superstructure is simplified by directly using the mass separation agents (MSA) from their sources,and therefore the automatic synthesis of the multi-component system involved in the MENs can be achieved without choosing a ‘key-component' either for the whole process or the mass exchangers.A mathematical model is proposed to carry out the optimization process.The concentrations,flow rates,matches and unit operation displayed in the obtained network constitute the exact representation of the mass exchange process in terms of all species in the system.An example is used to illustrate and demonstrate the application of the proposed method.
Novel High Pressure Multi-Component Diffusion Cell
Directory of Open Access Journals (Sweden)
Muthia Elma
2012-01-01
Full Text Available A novel high pressure multi-component diffusion cell (HPMCDC apparatus has been designed and built to measure single and binary gas diffusion, including co-current and counter-diffusion, from low to high pressures. The apparatus incorporates capability to investigate scale effects in solid coal specimens, up to 25 mm in diameter and 25 mm in thickness. Future experiments will be conducted to measure diffusion and counter-diffusion of CH4 and CO2 gases in solid coal, at various temperatures, pressures and for three distinct ranks of coal. The experiments will also address the frequent and controversial literature conclusions that the apparent-diffusion of CH4, inconsistent with gas diffusion theory.
Multi-component, rigidly rotating polytropes: improved and extended theory
Caimmi, R
2016-01-01
With respect to earlier investigations, the theory of multi-component, concentric, copolar, axisymmetric, rigidly rotating polytropes is improved and extended, including subsystems with nonzero density on the boundary and subsystems with intersecting boundaries. The formulation is restricted to two subsystems for simplicity but, in principle, can be extended to $N$ subsystems. Equilibrium configurations are independent of the nature of the fluid i.e. collisional or collisionless, provided the polytropic index lies within the range, $1/2\\le n\\le5$, as in one-component systems. The solution of the equilibrium equations is expanded in power series, which can be continued up to the boundary and outside via starting points placed at increasingly larger distance from the centre of mass. A detailed analysis is devoted to special cases where the solution of the equilibrium equations can be expressed analytically. Finally a guidance example is shown, involving homogeneous subsystems with intersecting boundaries, where...
Multi-component joint analysis of surface waves
Dal Moro, Giancarlo; Moura, Rui Miguel Marques; Moustafa, Sayed S. R.
2015-08-01
Propagation of surface waves can occur with complex energy distribution amongst the various modes. It is shown that even simple VS (shear-wave velocity) profiles can generate velocity spectra that, because of a complex mode excitation, can be quite difficult to interpret in terms of modal dispersion curves. In some cases, Rayleigh waves show relevant differences depending on the considered component (radial or vertical) and the kind of source (vertical impact or explosive). Contrary to several simplistic assumptions often proposed, it is shown, both via synthetic and field datasets, that the fundamental mode of Rayleigh waves can be almost completely absent. This sort of evidence demonstrates the importance of a multi-component analysis capable of providing the necessary elements to properly interpret the data and adequately constrain the subsurface model. It is purposely shown, also through the sole use of horizontal geophones, how it can be possible to efficiently and quickly acquire both Love and Rayleigh (radial-component) waves. The presented field dataset reports a case where Rayleigh waves (both their vertical and radial components) appear largely dominated by higher modes with little or no evidence of the fundamental mode. The joint inversion of the radial and vertical components of Rayleigh waves jointly with Love waves is performed by adopting a multi-objective inversion scheme based on the computation of synthetic seismograms for the three considered components and the minimization of the whole velocity spectra misfits (Full Velocity Spectra - FVS - inversion). Such a FVS multi-component joint inversion can better handle complex velocity spectra thus providing a more robust subsurface model not affected by erroneous velocity spectra interpretations and non-uniqueness of the solution.
Dynamical structure factor and collective modes in classical one-component plasmas
International Nuclear Information System (INIS)
The dynamical structure factor and collective modes in classical one-component plasmas are studied by employing the memory-function formalism. A response function for density fluctuations of ions in the system is treated in a self-consistent manner to express it in terms of that of a free ion system and an effective potential. An exact formal expression for the effective potential is composed of two parts, static and dynamic, the latter originating from an interaction-part of a second order memory function (ISMF). By studying the properties of the effective potential and of dampings of collective modes, the latter of which are separated into Landau damping and collisional damping, a criterion for the appearance of collective modes in intermediate wave number and frequency domains is obtained as a simple inequality. The dynamical structure factor is calculated by evaluating characteristic frequencies associated with several elementary factors of dynamics of ions in the system and by taking the ISMF to be Gaussian. The result so obtained is compared with the computer-experimental data of Hansen et al. Fairly good agreement with the experimental data is obtained for the plasma parameters 0.993 <= GAMMA <= 152.4. (author)
Mithen, James P.; Daligault, Jérôme; Gregori, G.
2011-01-01
The complementarity of the liquid and plasma descriptions of the classical one-component plasma (OCP) is explored by studying wavevector and frequency dependent dynamical quantities: the dynamical structure factor (DSF), and the dynamic local field correction (LFC). Accurate Molecular Dynamics (MD) simulations are used to validate/test models of the DSF and LFC. Our simulations, which span the entire fluid regime ($\\Gamma = 0.1 - 175$), show that the DSF is very well represented by a simple a...
International Nuclear Information System (INIS)
After having recalled the formal convergence of the semi-classical multi-species Boltzmann equations toward the multi-species Euler system (i.e. mixture of gases having the same velocity), we generalize to this system the closure relations proposed by B. Despres and by F. Lagoutiere for the multi-components Euler system (i.e. mixture of non miscible fluids having the same velocity). Then, we extend the energy relaxation schemes proposed by F. Coquel and by B. Perthame for the numerical resolution of the mono-species Euler system to the multi-species isothermal Euler system and to the multi-components isobar-isothermal Euler system. This allows to obtain a class of entropic schemes under a CFL criteria. In the multi-components case, this class of entropic schemes is perhaps a way for the treatment of interface problems and, then, for the treatment of the numerical mixture area by using a Lagrange + projection scheme. Nevertheless, we have to find a good projection stage in the multi-components case. At last, in the last chapter, we discuss, through the study of a dynamical system, about a system proposed by R. Abgrall and by R. Saurel for the numerical resolution of the multi-components Euler system
International Nuclear Information System (INIS)
It is shown that scattering of a probe particle in plasma is not always described by diffusion process due to non-Markov nature of pulse transmission. Three are three various states in particle braking by plasma: stages specific for short and long time intervals when scattering is of non-diffusion nature, and the stage of intermediate time intervals when scattering may be described by diffusion process. Mechanism responsible for non-diffusion nature of scattering during long time intervals results in a new term of application of the classical mechanics to describe collisions in plasma
Efficient transfer of sensitivity information in multi-component models
International Nuclear Information System (INIS)
In support of adjoint-based sensitivity analysis, this manuscript presents a new method to efficiently transfer adjoint information between components in a multi-component model, whereas the output of one component is passed as input to the next component. Often, one is interested in evaluating the sensitivities of the responses calculated by the last component to the inputs of the first component in the overall model. The presented method has two advantages over existing methods which may be classified into two broad categories: brute force-type methods and amalgamated-type methods. First, the presented method determines the minimum number of adjoint evaluations for each component as opposed to the brute force-type methods which require full evaluation of all sensitivities for all responses calculated by each component in the overall model, which proves computationally prohibitive for realistic problems. Second, the new method treats each component as a black-box as opposed to amalgamated-type methods which requires explicit knowledge of the system of equations associated with each component in order to reach the minimum number of adjoint evaluations. (author)
Polymer Percolation Threshold in Multi-Component HPMC Matrices Tablets
Directory of Open Access Journals (Sweden)
Maryam Maghsoodi
2011-06-01
Full Text Available Introduction: The percolation theory studies the critical points or percolation thresholds of the system, where onecomponent of the system undergoes a geometrical phase transition, starting to connect the whole system. The application of this theory to study the release rate of hydrophilic matrices allows toexplain the changes in release kinetics of swellable matrix type system and results in a clear improvement of the design of controlled release dosage forms. Methods: In this study, the percolation theory has been applied to multi-component hydroxypropylmethylcellulose (HPMC hydrophilic matrices. Matrix tablets have been prepared using phenobarbital as drug,magnesium stearate as a lubricant employing different amount of lactose and HPMC K4M as a fillerandmatrix forming material, respectively. Ethylcelullose (EC as a polymeric excipient was also examined. Dissolution studies were carried out using the paddle method. In order to estimate the percolation threshold, the behaviour of the kinetic parameters with respect to the volumetric fraction of HPMC at time zero, was studied. Results: In both HPMC/lactose and HPMC/EC/lactose matrices, from the point of view of the percolation theory, the optimum concentration for HPMC, to obtain a hydrophilic matrix system for the controlled release of phenobarbital is higher than 18.1% (v/v HPMC. Above 18.1% (v/v HPMC, an infinite cluster of HPMC would be formed maintaining integrity of the system and controlling the drug release from the matrices. According to results, EC had no significant influence on the HPMC percolation threshold. Conclusion: This may be related to broad functionality of the swelling hydrophilic matrices.
Alcohol-Related Information in Multi-Component Interventions and College Students' Drinking Behavior
Thadani, Vandana; Huchting, Karen; LaBrie, Joseph
2009-01-01
Education-only interventions produce little change in drinking behaviors; but, multi-component prevention programs, which include alcohol information as one feature, can decrease drinking. This study examined the role of alcohol knowledge in a multi-component intervention previously found to reduce first-year female college students' alcohol…
Mithen, James P; Gregori, G
2011-01-01
The complementarity of the liquid and plasma descriptions of the classical one-component plasma (OCP) is explored by studying wavevector and frequency dependent dynamical quantities: the dynamical structure factor (DSF), and the dynamic local field correction (LFC). Accurate Molecular Dynamics (MD) simulations are used to validate/test models of the DSF and LFC. Our simulations, which span the entire fluid regime ($\\Gamma = 0.1 - 175$), show that the DSF is very well represented by a simple and well known memory function model of generalized hydrodynamics. On the other hand, the LFC, which we have computed using MD for the first time, is not well described by existing models.
International Nuclear Information System (INIS)
A simple and efficient numerical model describing the processes of nucleation, growth and transport of multi-component nanoparticles is developed. The approach is conceptually similar to the classical method of moments but can be applied to co-condensation of several substances. The processes of homogeneous nucleation, heterogeneous growth, and coagulations due to Brownian collisions are considered in combination with the convective and diffusive transport of particles and reacting gases within multi-dimensional geometries. The model is applied to the analysis of multi-component co-condensation of TaC nanoparticles within a dc plasma reactor
Advances In Classical Field Theory
Yahalom, Asher
2011-01-01
Classical field theory is employed by physicists to describe a wide variety of physical phenomena. These include electromagnetism, fluid dynamics, gravitation and quantum mechanics. The central entity of field theory is the field which is usually a multi component function of space and time. Those multi component functions are usually grouped together as vector fields as in the case in electromagnetic theory and fluid dynamics, in other cases they are grouped as tensors as in theories of gravitation and yet in other cases they are grouped as complex functions as in the case of quantum mechanic
Energy loss behavior of photo-generated multi-component carriers in GaN
Yi, Kyung-Soo; Kim, Hye Jung; Kim, Do-Kyun
2014-03-01
Temporal behavior and many-body effect on the energy losses of photo-generated electron-hole plasma in GaN are examined in terms of various carrier-phonon couplings. We report a comprehensive cooling behavior as a function of effective carrier temperature over the temperature range of 10 -1500 K for carrier-phonon couplings via polar and nonpolar optical phonons and piezoelectric and acoustic deformation-potentials. The many-body effect on the multi-component carrier polarizations and phonon spectral function and effect of energy reabsorption via hot phonons are included by employing temperature-dependent dynamic responses in the rpa. We show that, as the carrier temperature decreases, the energy losses via carrier-optical phonon couplings diminish rapidly and the carrier energy relaxation is dominated through the acoustic phonon scattering at low carrier energy. From the energy loss rates, energy cooling curves are obtained as a function of time, and our result shows an initial gentle energy relaxation followed by fast relaxation. Spectral analysis of the dielectric response functions and energy loss rates are also performed and their dynamic and nonlocal behavior will be discussed. This research was supported in part by Basic Science Research Program through the NRF funded by the Ministry of Education (grant number 201306330001).
Direct oxygen injection experiments and investigation of multi-component mass transfer processes
Beckmann, Annika
2009-01-01
The aim of this thesis was to investigate the impact of a direct oxygen injection as a potential remediation strategy for contaminated aquifers on a bench scale. The mass transfer between a multi-component trapped gas phase and a mobile water phase was studied. Column experiments with dynamically compressed sediments and a direct gas injection of pure oxygen gas were performed. In addition, a new developed kinetic multi-component model was used to describe the experiments. The amount of gas t...
Sundari, Sivagama M.; Vadhiyar, Sathish S.; Nanjundiah, Ravi S.
2012-01-01
Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing long-running multi-component parallel applications. In this paper, we evaluate the potential improvements in throughput of long-running multi-component applications when the different components of the applications are executed on multiple batch systems of batch grids. We compare the multiple batch executions with executions of the components on a single batch system without increasing ...
Effective-Medium Approach for Conductivities in Multi-Component Granular Mixtures
International Nuclear Information System (INIS)
We apply the effective-medium theory to a multi-component mixture system, by which the effective longitudinal and Hall conductivities can be calculated. We find that there is more than one threshold in the multi-component mixture, and the maximum number of thresholds is one less than the component number. Further, the thresholds are mainly dependent on the relative volume ratio of the components when the conductivity ratios between any two components are far larger or smaller than one
Do Van, Phuc; Vu, Hai Canh; Barros, Anne; Bérenguer, Christophe
2015-01-01
The paper deals with a maintenance grouping approach for multi-component systems whose components are connected in series. The considered systems are required to serve a sequence of missions with limited breaks/stoppage durations while maintenance teams (repairmen) are limited and may vary over time. The optimization of the maintenance grouping decision for such multi-component systems leads to a NP-complete problem. The aim of the paper is to propose and to optimize a dynamic maintenance dec...
Structural models of multi-component nicknames of american cities and towns
Zosimova O.V.
2015-01-01
The article deals with the structure of informal place names in the USA. The main structural models of multi-component nicknames of American cities and towns include: ‘Adjective + Noun’, ‘Noun + Noun’ and ‘(Attribute) Noun + of + Noun’. The most productive constituent elements of the multi-component nicknames are the words ‘city’ and ‘capital’. Their combinations with different types of modifiers characterize the US cities and towns ...
Pulsar multi-component profiles: a phenomenological model
International Nuclear Information System (INIS)
Pulsar radio emission is suggested to be confined to a number of narrow beams irregularly placed in the vicinity of the pulsar magnetic axis. The beams are assumed to originate from different streams of plasma that flow away from the region close to the polar cap. This requires that the sources responsible for generating these streams operate only at some points of the polar cap. The number of observed components in the pulsar's integrated profile does not depend predictably on the observer's location with respect to the pulsar rotation axis. Due to the radius-to-frequency mapping, the beams of radiation associated with a given stream, but corresponding to different frequency bands, are not coaxial. It may happen, therefore, that components observed at low frequencies disappear at higher frequencies, and vice versa. Finally, it is suggested that narrow, widely spaced components may result from a non-dipolar structure of the magnetic field near the star's surface. 8 references
Costa, G; Peres, G; Argiroffi, C; Bonito, R
2016-01-01
Context. It is generally accepted that, in Classical T Tauri Stars, the plasma from the circumstellar disc accretes onto the stellar surface with free fall velocity, and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims. We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream with the aim to identify in which region a significant part of the UV emission originates. Methods. We developed a 1D hydrodynamic model describing the impact of an accretion stream onto the stellar surface; the model takes into account the gravity, the radiative cooling of an optically thin plasma, the thermal conduction, and the heating due to absorption of X-ray ...
New Matrix Lie Algebra, a Powerful Tool for Constructing Multi-component C-KdV Equation Hierarchy
International Nuclear Information System (INIS)
A set of new multi-component matrix Lie algebra is constructed, which is devoted to obtaining a new loop algebra A-tilde2M. It follows that an isospectral problem is established. By making use of Tu scheme, a Liouville integrable multi-component hierarchy of soliton equations is generated, which possesses the multi-component Hamiltonian structures. As its reduction cases, the multi-component C-KdV hierarchy is given. Finally, the multi-component integrable coupling system of C-KdV hierarchy is presented through enlarging matrix spectral problem.
Energy Technology Data Exchange (ETDEWEB)
Turrell, A.E., E-mail: a.turrell09@imperial.ac.uk; Sherlock, M.; Rose, S.J.
2015-10-15
Large-angle Coulomb collisions allow for the exchange of a significant proportion of the energy of a particle in a single collision, but are not included in models of plasmas based on fluids, the Vlasov–Fokker–Planck equation, or currently available plasma Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-on’ ions, which may be more likely to undergo certain reactions, and distortions to ion distribution functions relative to what is predicted by small-angle collision only theories. We present a computational method which uses Monte Carlo techniques to include the effects of large-angle Coulomb collisions in plasmas and which self-consistently evolves distribution functions according to the creation of knock-on ions of any generation. The method is used to demonstrate ion distribution function distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing of fusion products.
International Nuclear Information System (INIS)
Large-angle Coulomb collisions allow for the exchange of a significant proportion of the energy of a particle in a single collision, but are not included in models of plasmas based on fluids, the Vlasov–Fokker–Planck equation, or currently available plasma Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-on’ ions, which may be more likely to undergo certain reactions, and distortions to ion distribution functions relative to what is predicted by small-angle collision only theories. We present a computational method which uses Monte Carlo techniques to include the effects of large-angle Coulomb collisions in plasmas and which self-consistently evolves distribution functions according to the creation of knock-on ions of any generation. The method is used to demonstrate ion distribution function distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing of fusion products
Numerical study of chiral plasma instability within the classical statistical field theory approach
Buividovich, P. V.; Ulybyshev, M. V.
2016-07-01
We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.
Dual Hierarchies of a Multi-Component Camassa-Holm System
Li, Hong-Min; Li, Yu-Qi; Chen, Yong
2015-10-01
In this paper, we derive the bi-Hamiltonian structure of a multi-component Camassa-Holm system, which associates with the multi-component AKNS hierarchy and multi-component KN hierarchy via the tri-Hamiltonian duality method. Furthermore, the spectral problems of the dual hierarchies may be obtained. Supported by the National Natural Science Foundation of China under Grant Nos. 11275072 and 11375090, Research Fund for the Doctoral Program of Higher Education of China under No. 20120076110024, the Innovative Research Team Program of the National Natural Science Foundation of China under Grant No. 61321064, Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No. ZF1213, Talent Fund and K.C. Wong Magna Fund in Ningbo University
An Experimental Investigation and Numerical Analysis of Multi-Component Fuel Spray
Myong, Kwang-Jae; Arai, Motoyuki; Tanaka, Tomoyuki; Senda, Jiro; Fujimoto, Hajime
In this study, droplet atomization and vaporization characteristics with multi-component fuel were investigated by experimental and numerical simulation methods. Spray characteristics of multi-component fuel including spray cone angle, spray angle and spray tip penetration were analyzed from shadowgraph imaging. Numerical simulation to investigate spatial distribution of fuel-vapor concentration of each component within multi-component fuel was implemented in KIVA code. Vaporization process was calculated by a simple two-phase region which was approximated by modified saturated liquid-vapor line. Experimental results show that spray cone angle and spray angle become larger increasing in mass fraction of low boiling point component. And spray tip penetration becomes shorter with increasing in mass fraction of low boiling point component in vaporizing spray during that is same on every mixed fuel in non-vaporizing spray. From numerical simulation results, temporal and spatial distribution of each fuel vapor concentration was found to be stratification.
Multi-component superstructures self-assembled from nanocrystal building blocks
Tan, Rui; Zhu, Hua; Cao, Can; Chen, Ou
2016-05-01
More than three decades of intensive study to make high-quality nanocrystals have created a unique toolbox for building multi-component superstructures, which have been recognized as a new generation of metamaterials important to both fundamental sciences and applied technologies. This minireview summarizes recent advances in this exciting field. We will focus our discussion on the synthetic strategies and superstructures of this multi-component metamaterial, and highlight their novel properties and potential applications. Additionally, some perspectives on possible developments in this field are offered at the end of this review. We hope that this minireview will both inform and stimulate research interests for the design and fabrication of these nanocrystal-based multi-component metamaterials for diverse applications in the future.
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
Directory of Open Access Journals (Sweden)
Changzheng Qu
2013-01-01
Full Text Available In this paper, multi-component generalizations to the Camassa-Holm equation, the modified Camassa-Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa-Holm equation and the multi-component modified Camassa-Holm equation are provided. It is shown that these equations arise from non-streching invariant curve flows respectively in the three-dimensional Euclidean geometry, the two-dimensional Möbius sphere and n-dimensional sphere S^n(1. Integrability to these systems is also studied.
Chen, Jing; Wang, Yang; Sun, Guoxiang; Ma, Yongfu; Guo, Xingjie
2016-07-01
A validated HPLC method was developed to evaluate the quality of Lamiophlomis rotata Pill combining the multi-components analysis by single reference standard with HPLC fingerprint analysis. Five bioactive components (shanzhiside methyl ester, loganin, 8-O-acetylshanzhiside methyl ester, forsythoside B and luteolin-7-O-β-D-glucopyranoside) were selected as markers to control the quality of L. rotata Pill. The results revealed that the chromatographic fingerprint method coupled with multi-components analysis provides an effective and feasible way to determine the components in L. rotata Pill. PMID:26595778
Porous multi-component material for the capture and separation of species of interest
Energy Technology Data Exchange (ETDEWEB)
Addleman, Raymond S.; Chouyyok, Wilaiwan; Li, Xiaohong S.; Cinson, Anthony D.; Gerasimenko, Aleksandr A
2016-06-21
A method and porous multi-component material for the capture, separation or chemical reaction of a species of interest is disclosed. The porous multi-component material includes a substrate and a composite thin film. The composite thin film is formed by combining a porous polymer with a nanostructured material. The nanostructured material may include a surface chemistry for the capture of chemicals or particles. The composite thin film is coupled to the support or device surface. The method and material provides a simple, fast, and chemically and physically benign way to integrate nanostructured materials into devices while preserving their chemical activity.
Internal energy of the classical two- and three-dimensional one-component-plasma
Khrapak, S A
2016-01-01
We summarize several semi-phenomenological approaches to estimate the internal energy of one-component-plasma (OCP) in two (2D) and three (3D) dimensions. Particular attention is given to a hybrid approach, which reproduces the Debye-H$\\ddot{\\text{u}}$ckel asymptote in the limit of weak coupling, the ion sphere (3D) and ion disc (2D) asymptotes in the limit of strong coupling, and provides reasonable interpolation between these two limits. More accurate ways to estimate the internal energy of 2D and 3D OCP are also discussed. The accuracy of these analytic results is quantified by comparison with existing data from numerical simulations. The relevance of the KTHNY theory in locating melting transition in 2D OCP is briefly discussed.
On the calculation of crystal lattice periods of multi-component solid solutions
International Nuclear Information System (INIS)
The periods of lattice of multi-component solid solutions are calculated using the concept of bonding electron number. The values of atomic volumes are used in the calculation. A good conformity between experimental and calculated values of lattice periods is obtained, the deviation does not exceed 0.1 %
A New Loop Algebra and Its Corresponding Multi-component Integrable Hierarchy
International Nuclear Information System (INIS)
A type of new loop algebra G-tildeM is constructed by making use of the concept of cycled numbers. As its application, an isospectral problem is designed and a new multi-component integrable hierarchy with multi-potential functions is worked out, which can be reduced to the famous KN hierarchy.
A Multi-Component Intervention Designed To Reduce Disruptive Classroom Behavior.
Kehle, Thomas J.; Bray, Melissa A.; Theodore, Lea A.; Jenson, William R.; Clark, Elaine
2000-01-01
Describes research that focused on the design of an effective, economical, and easily implemented treatment for disruptive classroom behavior in both general and special education students. Multi-component treatment options included mystery motivators, token economy with response cost, and antecedent strategies delivered within a group contingency…
Degeneracy of Multi-Component Quantum Hall States Satisfying Periodic Boundary Conditions
McDonald, I. A.
1994-01-01
In systems subject to periodic boundary conditions, Haldane has shown that states at arbitrary filling fraction possess a degeneracy with respect to center of mass translations. An analysis is carried out for multi-component electron systems and extra degeneracies are shown to exist. Their application to numerical studies is discussed.
A Multi-Component Model for Assessing Learning Objects: The Learning Object Evaluation Metric (LOEM)
Kay, Robin H.; Knaack, Liesel
2008-01-01
While discussion of the criteria needed to assess learning objects has been extensive, a formal, systematic model for evaluation has yet to be thoroughly tested. The purpose of the following study was to develop and assess a multi-component model for evaluating learning objects. The Learning Object Evaluation Metric (LOEM) was developed from a…
A dynamic predictive maintenance policy for complex multi-component systems
International Nuclear Information System (INIS)
The use of prognostic methods in maintenance in order to predict remaining useful life is receiving more attention over the past years. The use of these techniques in maintenance decision making and optimization in multi-component systems is however a still underexplored area. The objective of this paper is to optimally plan maintenance for a multi-component system based on prognostic/predictive information while considering different component dependencies (i.e. economic, structural and stochastic dependence). Consequently, this paper presents a dynamic predictive maintenance policy for multi-component systems that minimizes the long-term mean maintenance cost per unit time. The proposed maintenance policy is a dynamic method as the maintenance schedule is updated when new information on the degradation and remaining useful life of components becomes available. The performance, regarding the objective of minimal long-term mean cost per unit time, of the developed dynamic predictive maintenance policy is compared to five other conventional maintenance policies, these are: block-based maintenance, age-based maintenance, age-based maintenance with grouping, inspection condition-based maintenance and continuous condition-based maintenance. The ability of the predictive maintenance policy to react to changing component deterioration and dependencies within a multi-component system is quantified and the results show significant cost savings
Indian Academy of Sciences (India)
Afsar Ali; Amit P Singh; Rajeev Gupta
2010-05-01
This paper presents the recent developments in designing multi-component structures including metal-organic frameworks containing Lewis acidic metal ions. The emphasis has been given to understand the design elements adopted to synthesize such structures bearing Lewis acidic metal ion. Further, few important Lewis acidic metal catalysed organic transformation reactions have been discussed demonstrating the importance of such materials for practical purposes.
[Study on high accuracy detection of multi-component gas in oil-immerse power transformer].
Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang
2013-12-01
In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time. PMID:24611396
International Nuclear Information System (INIS)
Many of the essential features of high-power broadcast transmitter technology are equally important for plasma heating equipment, especially for IDRF and NBI devices. The traditional activity therefore represents a suitable basis to develop amplifiers and power supplies with relatively limited risk. The extensive requirements of fusion research on the other hand ask for improved technical solutions, which consequently also accelerate the development of standard products. The experience gathered during several IDRF and NBI projects and the resulting beneficial influence on future developments is described. The paper deals especially with: - improvement of high-power transmitting tubes - new circuit concepts for tunable radio-frequency high-power stages - solid-state technology for adjustable fast-acting high-voltage supplies. As an outlook on future IDRH Systems the use of PSM (pulse-step modulator) power supplies is discussed. This digitally-controllable high-voltage anode supply could improve IDRH operation especially for fast changing impedances of the antenna load. For future longer-pulse or CW-operation automatic, load tuning, as already used in broadcasting, should be applied. This would consequently make better use of the installed power
Lacombe, Caroline; Untereiner, Valérie; Gobinet, Cyril; Zater, Mokhtar; Sockalingum, Ganesh D; Garnotel, Roselyne
2015-04-01
Classic galactosemia is an autosomal recessive metabolic disease involving the galactose pathway, caused by the deficiency of galactose-1-phosphate uridyltransferase. Galactose accumulation induces in newborns many symptoms, such as liver disease, cataracts, and sepsis leading to death if untreated. Neonatal screening is developed and applied in many countries using several methods to detect galactose or its derived product accumulation in blood or urine. High-throughput FTIR spectroscopy was investigated as a potential tool in the current screening methods. IR spectra were obtained from blood plasma of healthy, diabetic, and galactosemic patients. The major spectral differences were in the carbohydrate region, which was first analysed in an exploratory manner using principal component analysis (PCA). PCA score plots showed a clear discrimination between diabetic and galactosemic patients and this was more marked as a function of the glucose and galactose increased concentration in these patients' plasma respectively. Then, a support vector machine leave-one-out cross-validation (SVM-LOOCV) classifier was built with the PCA scores as the input and the model was tested on median, mean and all spectra from the three population groups. This classifier was able to discriminate healthy/diabetic, healthy/galactosemic, and diabetic/galactosemic patients with sensitivity and specificity rates ranging from 80% to 94%. The total accuracy rate ranged from 87% to 96%. High-throughput FTIR spectroscopy combined with the SVM-LOOCV classification procedure appears to be a promising tool in the screening of galactosemia patients, with good sensitivity and specificity. Furthermore, this approach presents the advantages of being cost-effective, fast, and straightforward in the screening of galactosemic patients. PMID:25622686
Correlation between rheological behavior and structure of multi-component polymer systems
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Rheological measurement has been an effective method to characterize the structure and properties for multiphase/multi-component polymers, owing to its sensitivity to the structure change of hetero geneous systems. In this article, recent progress in the studies on the morphology/structure and rheological properties of heterogeneous systems is summarized, mainly reporting the findings of the authors and their collaborators, involving the correlation between the morphology and viscoelastic relaxation of LCST-type polymer blends, the microstructure and linear/nonlinear viscoelastic behavior of block copolymers, time scaling of shear-induced crystallization and rheological response of polyolefins, and the relationship between the structure/properties and rheological behavior of filled polymer blends. It is suggested that a thorough understanding of the characteristic rheological response to the morphology/structure evolution of multiphase/multi-component polymers facilitates researchers' optimizing the morphology/structure and ultimate mechanical properties of polymer materials.
Experimental study on fire extinguishing with a newly prepared multi-component compressed air foam
Institute of Scientific and Technical Information of China (English)
WANG XiShi; LIAO YaoJian; LIN Lin
2009-01-01
A multi-component compressed air foam system (MCAFS) was developed with newly prepared multi-component foaming agents. Extinguishing of wood crib and oil pool fires was performed under different conditions, such as foam concentration, mixing chamber forepart structure and working pressure. It was found that the foam concentration had sufficient effects on fire extinguishing efficiency, and an optimized concentration value exists. For instance, for diesel oil pool fires, this value is about 2.2% while it is about 4.0% for wood crib fires. The results also show that the system with a coaxial mixing chamber has greater efficiency than a T-shape. The effects of working pressure on fire extin-guishing are evident in experiments, i.e., the higher the working pressure is, the more readily the fire is extinguished.
Lu, Cuicui; Liu, Yong-Chun; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang
2016-06-01
Integrated nanoscale photonic devices have wide applications ranging from optical interconnects and optical computing to optical communications. Wavelength demultiplexer is an essential on-chip optical component which can separate the incident wavelength into different channels; however, the experimental progress is very limited. Here, using a multi-component nano-cavity design, we realize an ultracompact, broadband and high-contrast wavelength demultiplexer, with 2.3 μm feature size, 200 nm operation bandwidth (from 780 nm to 980 nm) and a contrast ratio up to 13.7 dB. The physical mechanism is based on the strong modulation of the surface plasmon polaritons induced by the multi-component nano-cavities, and it can be generalized to other nanoscale photonic devices. This provides a strategy for constructing on-chip photon routers, and also has applications for chip-integrated optical filter and optical logic gates.
Basic separative power of multi-component isotopes separation in a gas centrifuge
International Nuclear Information System (INIS)
On condition that the overall separation factor per unit exists in centrifuge for multi-component isotopes separation, the relations between separative power of each component and molecular weight have been investigated in the paper while the value function and the separative power of binary-component separation are adopted. The separative power of each component is proportional to the square of the molecular weight difference between its molecular weight and the average molecular weight of other remnant components. In addition, these relations are independent on the number of the components and feed concentrations. The basic separative power and related expressions, suggested in the paper, can be used for estimating the separative power of each component and analyzing the separation characteristics. The most valuable application of the basic separative power is to evaluate the separative capacity of centrifuge for multi-component isotopes. (author)
Correlation between rheological behavior and structure of multi-component polymer systems
Institute of Scientific and Technical Information of China (English)
2008-01-01
Rheological measurement has been an effective method to characterize the structure and properties for multiphase/multi-component polymers, owing to its sensitivity to the structure change of hetero- geneous systems. In this article, recent progress in the studies on the morphology/structure and rheological properties of heterogeneous systems is summarized, mainly reporting the findings of the authors and their collaborators, involving the correlation between the morphology and viscoelastic relaxation of LCST-type polymer blends, the microstructure and linear/nonlinear viscoelastic behavior of block copolymers, time scaling of shear-induced crystallization and rheological response of poly- olefins, and the relationship between the structure/properties and rheological behavior of filled polymer blends. It is suggested that a thorough understanding of the characteristic rheological response to the morphology/structure evolution of multiphase/multi-component polymers facilitates researchers’ op- timizing the morphology/structure and ultimate mechanical properties of polymer materials.
Motion of curves and solutions of two multi-component mKdV equations
International Nuclear Information System (INIS)
Two classes of multi-component mKdV equations have been shown to be integrable. One class called the multi-component geometric mKdV equation is exactly the system for curvatures of curves when the motion of the curves is governed by the mKdV flow. In this paper, exact solutions including solitary wave solutions of the two- and three-component mKdV equations are obtained, the symmetry reductions of the two-component geometric mKdV equation to ODE systems corresponding to it's Lie point symmetry groups are also given. Curves and their behavior corresponding to solitary wave solutions of the two-component geometric mKdV equation are presented
Prediction on the viscosity of multi-component melts with a new geometric model
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A geometric model for calculating the viscosity of multi-component melt from related binary physicochemistry properties was derived based on Chou's thermodynamic geometric model. The model derived was employed to predict the viscosity of Au-Ag-Cu alloys. The results show that the calculated viscosity for Au-Ag-Cu alloys meet the experimental data very well. In addition, the viscosity of Bi-Sn-In systems was also predicted with this model.
Non-Isothermal, Multi-phase, Multi-component Flows through Deformable Methane Hydrate Reservoirs
Gupta, Shubhangi; Helmig, Rainer; Wohlmuth, Barbara
2015-01-01
We present a hydro-geomechanical model for subsurface methane hydrate systems. Our model considers kinetic hydrate phase change and non-isothermal, multi-phase, multi-component flow in elastically deforming soils. The model accounts for the effects of hydrate phase change and pore pressure changes on the mechanical properties of the soil, and also for the effect of soil deformation on the fluid-solid interaction properties relevant to reaction and transport processes (e.g., permeability, capi...
Melting and crystallisation behaviour of multi-component Fe-C-Cr-X alloys : microstructural aspects
Tchuindjang, Jérôme Tchoufack; LECOMTE-BECKERS, Jacqueline
2004-01-01
Studied materials are of the Fe-C-Cr-X multi-component system where X represents a group of strong carbides formers as Mo, V, or Nb. These alloys are used for wear components. Differential Thermal Analysis (DTA) was used to determine the melting and solidification behaviour of these materials. Raw material has a thermomecanical history that involved casting, heat treating and hot forming, which could be investigated by the melting sequence of the DTA trial.
Quantum error correction against photon loss using multi-component cat states
Bergmann, Marcel; van Loock, Peter
2016-01-01
We analyse a generalised quantum error correction code against photon loss where a logical qubit is encoded into a subspace of a single oscillator mode that is spanned by distinct multi-component cat states (coherent-state superpositions). We present a systematic code construction that includes the extension of an existing one-photon-loss code to higher numbers of losses. When subject to a photon loss (amplitude damping) channel, the encoded qubits are shown to exhibit a cyclic behaviour wher...
Shell Effects and Phase Separation in a Trapped Multi-Component Fermi System
Salasnich, L.; Parola, A.; Reatto, L.
2000-01-01
Shell effects in the coordinate space can be seen with degenerate Fermi vapors in non-uniform trapping potentials. In particular, below the Fermi temperature, the density profile of a Fermi gas in a confining harmonic potential is characterized by several local maxima. This effect is enhanced for "magic numbers" of particles and in quasi-1D (cigar-shaped) configurations. In the case of a multi-component Fermi vapor, the separation of Fermi components in different spatial shells (phase-separat...
School-based Multi-component Intervention. Symptoms of Iranian ADHD Children
Sepideh Shaban; Maznah Baba; Sidek Mohd Noah; Wan Marzuki Wan Jaafar
2015-01-01
The present study evaluated the effectiveness of school-based multi-component intervention that implemented for ADHD school-aged children specially. Participants were 64 school-aged ADHD children that randomly assigned in two study groups including one experimental and one control group. Teachers of these children were invited to participate in the teacher training. Teachers took part in 8 sessions teacher training that involved contingency management, cognitive behavioral strategies and clas...
The Effect of Mixing Time on the Homogeneity of Multi-Component Granular Systems
Krolczyk, Jolanta B.
2016-01-01
Mixing of granular materials is unquestionably important. Mixing solids is common in industrial applications and frequently represents a critical stage of the processes. The effect of mixing determines the quality of products. The objective of this study was to determine the effect of mixing time on the quality of multi-component granular mixtures. Experimental studies were conducted at the mixing process line in an industrial feed mill. The applied granular systems are feed mixtures with dif...
Institute of Scientific and Technical Information of China (English)
Junbao Geng; Michael Azarian; Michael Pecht
2015-01-01
Although opportunistic maintenance strategies are widely used for multi-component systems, al opportunistic mainte-nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main-tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor-tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.
International Nuclear Information System (INIS)
The existed PM (preventive maintenance) efforts on multi-component systems usually ignore the PM opportunities at the component failure moments and the structure dependence among the system components. In this paper, a time window based PM model is proposed for multi-component systems with the stochastic failures and the disassembly sequence involved. Whenever one of the system components stochastically fails or reaches its reliability threshold, PM opportunities arise for other system components. A Monte-Carlo based algorithm is built up to simulate the stochastic failures and then to calculate the cumulative maintenance cost of the system. The optimal PM practice is obtained by minimizing the cumulative maintenance cost throughout the given time horizon. Finally, a numerical example is given to illustrate the calculation process and the availability of the proposed PM model. - Highlights: • We propose an opportunistic PM model for multi-component systems. • PM opportunity at stochastic failure moment is considered. • Disassembly sequence among system components is involved. • A Monte Carlo based algorithm is proposed to obtain the optimal PM practice. • More PM opportunity arises with increase of disassembly cost of intermediate nodes
Chirp-Rate Resolution of Fractional Fourier Transform in Multi-component LFM Signal
Institute of Scientific and Technical Information of China (English)
LIU Feng; HUANG Yu; TAO Ran; WANG Yue
2009-01-01
Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied.Firstly,detection and parameter estimation of multi-component LFM signal were used by discrete fast fractional Fourier transform (FrFT).Then the expression of chirp-rate resolution in fractional Fourier domain (FrFD) was deduced from discrete normalize time-frequency distribution,when multi-component LFM signal had only one center frequency.Furthermore,the detail influence of the sampling time,sampling frequeney and chirp-rate upon the resolution was analyzed by partial differential equation.Simulation results and analysis indicate that increasing the sampling time can enhance the resolution,but the influence of the sampling frequency can be omitted.What's more,in multi-component LFM signal,the chirp-rate resolution of FrFT is no less than a minimal value,and it mainly dependent on the biggest value of chirp-rates,with which it has an approximately positive exponential relationship.
Helping boys at-risk of criminal activity: qualitative results of a multi-component intervention
Directory of Open Access Journals (Sweden)
Brennan Erin
2011-05-01
Full Text Available Abstract Background This qualitative study examines parent and child experiences of participation in a multi-component community-based program aimed at reducing offending behaviour, and increasing social competence in boys 6 to 11 years old in Hamilton, Ontario, Canada. The program builds on the concept of crime prevention through social development, and includes structured groups for the identified boy, parents, and siblings. Methods A sample of 35 families participating in the multi-component program took part in the qualitative study. Individual interviews with the boys, parents and siblings asked about changes in themselves, relationships with family and peers, and school after the group. Interviews were taped, transcribed and content analysis was used to code and interpret the data. Results Parents reported improvement in parenting skills and attainment of more effective communication skills, particularly with their children. Parents also found the relationships they formed with other parents in the program and the advice that they gained to be beneficial. Boys who participated in the program also benefited, with both parents and boys reporting improvements in boys' anger management skills, social skills, impulse control, and ability to recognize potentially volatile situations. Both parents and boys described overall improvement in family relationships and school-related success. Conclusions The qualitative data revealed that parents and boys participating in the multi-component program perceived improvements in a number of specific areas, including social competence of the boys. This has not been demonstrated as clearly in other evaluations of the program.
International Nuclear Information System (INIS)
Multi-component induction logging provides great assistance in the exploration of thinly laminated reservoirs. The 1D parametric inversion following an adaptive borehole correction is the key step in the data processing of multi-component induction logging responses. To make the inversion process reasonably fast, an efficient forward modelling method is necessary. In this paper, a modelling method has been developed to simulate the multi-component induction tools in deviated wells drilled in layered anisotropic formations. With the introduction of generalized reflection coefficients, the analytic expressions of magnetic field in the form of a Sommerfeld integral were derived. The fast numerical computation of the integral has been completed by using the fast Fourier–Hankel transform and fast Hankel transform methods. The latter is so time efficient that it is competent enough for real-time multi-parameter inversion. In this paper, some simulated results have been presented and they are in excellent agreement with the finite difference method code's solution. (paper)
School-based Multi-component Intervention. Symptoms of Iranian ADHD Children
Directory of Open Access Journals (Sweden)
Sepideh Shaban
2015-03-01
Full Text Available The present study evaluated the effectiveness of school-based multi-component intervention that implemented for ADHD school-aged children specially. Participants were 64 school-aged ADHD children that randomly assigned in two study groups including one experimental and one control group. Teachers of these children were invited to participate in the teacher training. Teachers took part in 8 sessions teacher training that involved contingency management, cognitive behavioral strategies and class management instructions for managing of ADHD children. Members of the control group didn’t receive any program. Dependent measures included parent and teacher`s ratings of inattention, hyperactivity/impulsivity and ADHD symptoms. Information for the study achieved in three pre-test, post-test and follow-up levels. Parents and teachers in experimental group reported significantly less inattention, hyperactivity/impulsivity symptoms in children at home and school respectively rather than before conducting the program. Findings of the study showed similar effect of school-based multi-component intervention on all symptoms of inattention, hyperactivity/impulsivity across home and school. Results of the present study provided some supports for effectiveness of school-based multi-component program on symptoms of ADHD in school-aged children in Iran.
International Nuclear Information System (INIS)
The paper deals with a maintenance grouping approach for multi-component systems whose components are connected in series. The considered systems are required to serve a sequence of missions with limited breaks/stoppage durations while maintenance teams (repairmen) are limited and may vary over time. The optimization of the maintenance grouping decision for such multi-component systems leads to a NP-complete problem. The aim of the paper is to propose and to optimize a dynamic maintenance decision rule on a rolling horizon. The heuristic optimization scheme for the maintenance decision is developed by implementing two optimization algorithms (genetic algorithm and MULTIFIT) to find an optimal maintenance planning under both availability and limited repairmen constraints. Thanks to the proposed maintenance approach, impacts of availability constraints or/and limited maintenance teams on the maintenance planning and grouping are highlighted. In addition, the proposed grouping approach allows also updating online the maintenance planning in dynamic contexts such as the change of required availability level and/or the change of repairmen over time. A numerical example of a 20-component system is introduced to illustrate the use and the advantages of the proposed approach in the maintenance optimization framework. - Highlights: • A dynamic maintenance grouping strategy is proposed for multi-component systems. • A grouping approach based on rolling horizon, GA and MULIFIT algorithms is proposed. • Impacts of availability and/or limited repairmen constraints are highlighted. • An optimal planning under availability and/or limited repairmen constraints is given. • The maintenance planning can be dynamically updated in the presence of dynamic contexts
Multi-component based cross correlation beat detection in electrocardiogram analysis
Directory of Open Access Journals (Sweden)
Owens Frank J
2004-07-01
Full Text Available Abstract Background The first stage in computerised processing of the electrocardiogram is beat detection. This involves identifying all cardiac cycles and locating the position of the beginning and end of each of the identifiable waveform components. The accuracy at which beat detection is performed has significant impact on the overall classification performance, hence efforts are still being made to improve this process. Methods A new beat detection approach is proposed based on the fundamentals of cross correlation and compared with two benchmarking approaches of non-syntactic and cross correlation beat detection. The new approach can be considered to be a multi-component based variant of traditional cross correlation where each of the individual inter-wave components are sought in isolation as opposed to being sought in one complete process. Each of three techniques were compared based on their performance in detecting the P wave, QRS complex and T wave in addition to onset and offset markers for 3000 cardiac cycles. Results Results indicated that the approach of multi-component based cross correlation exceeded the performance of the two benchmarking techniques by firstly correctly detecting more cardiac cycles and secondly provided the most accurate marker insertion in 7 out of the 8 categories tested. Conclusion The main benefit of the multi-component based cross correlation algorithm is seen to be firstly its ability to successfully detect cardiac cycles and secondly the accurate insertion of the beat markers based on pre-defined values as opposed to performing individual gradient searches for wave onsets and offsets following fiducial point location.
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this study, experiments are carried out on the effects of magnetic fluids on the crystallization char- acterizations in a multi-component and multiphase system, which contains the liquid and the vapor of HCFC141b, water, water vapor, and gas hydrates. The mass transfer phenomena between the phase interfaces of water-HCFC141b and water-vapor are also researched. The experimental results show that in the presence of a rotary magnetic field, magnetic fluids can remarkably enhance the heat and mass transfer between phase interfaces and, therefore, improve the performance of crystallization, especially in improving the formation temperature and velocity.
Phase equilibrium calculation of multi-component gas separation of supersonic separator
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A mathematical model for phase equilibrium prediction of multi-component gas separation process inside a supersonic separator is established and an efficient numerical solution method is designed. The model and the numerical method are then used to predict the phase equilibrium characteristics and the separation performance of a field test natural gas supersonic purification separator. The predicted results are generally in good agreement with the field test measurements, which proves that the phase equilibrium model and the solution method are both reliable and accurate, and can be used for the prediction of the vapor and liquid phase equilibrium and the separation performance and the configuration optimization of supersonic separator.
A semi-discrete integrable multi-component coherently coupled nonlinear Schrödinger system
Zhao, Hai-qiong; Yuan, Jinyun
2016-07-01
A new integrable semi-discrete version is proposed for the multi-component coherently coupled nonlinear Schrödinger equation. The integrability of the semi-discrete system is confirmed by existence of Lax pair and infinite number of conservation laws. With the aid of gauge transformations, explicit formulas for N-fold Darboux transformations are derived whereby some physically important solutions of the system are presented. Furthermore, the theory of the semi-discrete system including Lax pair, Darboux transformations, exact solutions and infinite number of conservation laws are shown for their continuous counterparts in the continuous limit.
Design considerations for multi component molecular-polymeric nonlinear optical materials
Energy Technology Data Exchange (ETDEWEB)
Singer, K.D. (Case Western Reserve Univ., Cleveland, OH (USA). Dept. of Physics); Kuzyk, M.G. (Washington State Univ., Pullman, WA (USA). Dept. of Physics); Fang, T.; Holland, W.R. (AT and T Bell Labs., Princeton, NJ (USA)); Cahill, P.A. (Sandia National Labs., Albuquerque, NM (USA))
1990-01-01
We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85{degree} and posses an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to posses a large third order nonlinearity, and may display two-level behavior. 24 refs., 11 figs.
Microbial Ingrowth Around Single- and Multi-Component Adhesives Studied in vitro
Preußker, Susann; Klimm, Wolfgang; Pöschmann, Maria; Koch, Rainer
2014-01-01
The aim of this study was to compare the in vitro microbial leakage in 4 micro-hybrid composites in combination with 4 single-component dental adhesives (Scotchbond 1/Z100 MP = group 1; Syntac Single-Component/Tetric Flow = group 3; OptiBond Solo/XRV Herculite = group 5; Solobond M/Arabesk Top = group 7) and 4 multi-component dental adhesives (Scotchbond Multi-Purpose/Z100 MP = group 2; Syntac/Tetric Flow = group 4; OptiBond FL/XRV Herculite = group 6; Solobond Plus/Arabesk Top = group 8). Ni...
Moment matrices and multi-component KP, with applications to random matrix theory
Adler, Mark; Van Moerbeke, Pierre; Vanhaecke, Pol
2006-01-01
Questions on random matrices and on non-intersecting Brownian motions have led to the study of moment matrices with regard to several weights. The purpose of this paper is to show that the determinants of such moment matrices satisfy, upon adding one set of time deformations for each weight, the multi-component KP-hierarchy: these determinants are thus "tau-functions" for these integrable hierarchies. The tau-functions, so obtained, with appropriate shifts of the time-parameters (forward and ...
Influence of Natural Convection and Thermal Radiation Multi-Component Transport in MOCVD Reactors
Lowry, S.; Krishnan, A.; Clark, I.
1999-01-01
The influence of Grashof and Reynolds number in Metal Organic Chemical Vapor (MOCVD) reactors is being investigated under a combined empirical/numerical study. As part of that research, the deposition of Indium Phosphide in an MOCVD reactor is modeled using the computational code CFD-ACE. The model includes the effects of convection, conduction, and radiation as well as multi-component diffusion and multi-step surface/gas phase chemistry. The results of the prediction are compared with experimental data for a commercial reactor and analyzed with respect to the model accuracy.
Seismic Response of Base-Isolated Structures under Multi-component Ground Motion Excitation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square response of the system is obtained under different parametric variations. The effectiveness of main parameters and the torsional component during an earthquake is quantified with the help of the response ratio and the root mean square response with and without base isolation. It is observed that the base isolation has considerable influence on the response and the effect of the torsional component is not ignored.
International Nuclear Information System (INIS)
A new multi-component Lie algebra is constructed, and a type of new loop algebra is presented. A (2+1)-dimensional multi-component DLW integrable hierarchy is obtained by using a (2+1)-dimensional zero curvature equation. Furthermore, the loop algebra is expanded into a larger one and a type of integrable coupling system and its corresponding Hamiltonian structure are worked out.
Institute of Scientific and Technical Information of China (English)
Zhang Ke-Sheng; Wang Shu; Zhu Ming; Ding Yi; Hu Yi
2013-01-01
Decoupling the complicated vibrational-vibrational (V-V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures.In our previous work [Acta Phys.Sin.61 174301 (2012)],an analytical model to predict the sound absorption from vibrational relaxation in a gas medium is proposed.In this paper,we develop the model to decouple the V-V coupled energy to each vibrationaltranslational deexcitation path,and analyze how the multimode relaxations form the peaks of sound absorption spectra in gas mixtures.We prove that a multimode relaxation is the sum of its decoupled single-relaxation processes,and only the decoupled process with a significant isochoric-molar-heat can be observed as an absorption peak.The decoupling model clarifies the essential processes behind the peaks in spectra arising from the multimode relaxations in multi-component gas mixtures.The simulation validates the proposed decoupling model.
Multi-component symmetry-projected approach for molecular ground state correlations
Energy Technology Data Exchange (ETDEWEB)
Jiménez-Hoyos, Carlos A. [Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Rodríguez-Guzmán, R.; Scuseria, Gustavo E. [Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)
2013-11-28
The symmetry-projected Hartree–Fock ansatz for the electronic structure problem can efficiently account for static correlation in molecules, yet it is often unable to describe dynamic correlation in a balanced manner. Here, we consider a multi-component, systematically improvable approach, that accounts for all ground state correlations. Our approach is based on linear combinations of symmetry-projected configurations built out of a set of non-orthogonal, variationally optimized determinants. The resulting wavefunction preserves the symmetries of the original Hamiltonian even though it is written as a superposition of deformed (broken-symmetry) determinants. We show how short expansions of this kind can provide a very accurate description of the electronic structure of simple chemical systems such as the nitrogen and the water molecules, along the entire dissociation profile. In addition, we apply this multi-component symmetry-projected approach to provide an accurate interconversion profile among the peroxo and bis(μ-oxo) forms of [Cu{sub 2}O{sub 2}]{sup 2+}, comparable to other state-of-the-art quantum chemical methods.
Multi-component symmetry-projected approach for molecular ground state correlations
International Nuclear Information System (INIS)
The symmetry-projected Hartree–Fock ansatz for the electronic structure problem can efficiently account for static correlation in molecules, yet it is often unable to describe dynamic correlation in a balanced manner. Here, we consider a multi-component, systematically improvable approach, that accounts for all ground state correlations. Our approach is based on linear combinations of symmetry-projected configurations built out of a set of non-orthogonal, variationally optimized determinants. The resulting wavefunction preserves the symmetries of the original Hamiltonian even though it is written as a superposition of deformed (broken-symmetry) determinants. We show how short expansions of this kind can provide a very accurate description of the electronic structure of simple chemical systems such as the nitrogen and the water molecules, along the entire dissociation profile. In addition, we apply this multi-component symmetry-projected approach to provide an accurate interconversion profile among the peroxo and bis(μ-oxo) forms of [Cu2O2]2+, comparable to other state-of-the-art quantum chemical methods
A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays
Energy Technology Data Exchange (ETDEWEB)
Paulsson Geophysical Services
2008-03-31
The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.
Thermo-Calc based multi-component micro-segregation model and solidification paths calculations
Directory of Open Access Journals (Sweden)
Zhao Guangwei
2012-08-01
Full Text Available On the basis of a multi-length scale modeling, a mixture-averaged multi-component /multiphase micro-segregation model was proposed without pre-set function for the micro-scale solute profile. The model explains the effect of morphologies of solidifying phases and solid back diffusion (SBD on segregation, and covers the two limiting solidification cases of Scheil and Lever-rule models. A commercial Thermo-Calc software package/database was linked to the algorithms via its TQ6-interface for instantaneous determination of the related thermodynamic data of the multi-component alloys. The influences of cooling rate and other parameters on the solidification path and micro-segregation behavior were numerically investigated by sample calculation of the ternary Al-Cu-Mg alloys. A parallel experimental investigation on Al-Cu-Si alloys solidified under different cooling conditions was conducted to validate the theoretical model. Reasonable agreements were gained between the predicted solidification paths and the measured results.
A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.
Fischer, D; de la Fuente, G F; Jansen, M
2012-04-01
The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. PMID:22559543
Lattice Boltzmann pore-scale model for multi-component reactive transport
Kang, Qinjun; Lichtner, Peter; Zhang, Dongxiao; Tsimpanogiannis, Ioannis
2004-11-01
A better understanding of multi-component flow and reaction in natural and man-made porous media is critical to a wide range of fields, including hydrology (groundwater quality), fossil energy (oil, gas, coalbed methane, clathrates), economic geology (mineral processing and development), geologic carbon sequestration (hydrodynamic and mineral trapping of carbon), and materials manufacturing and degradation (polymer composites, concrete, building materials). This problem is notoriously difficult because it usually involves multiple processes (convection, diffusion, and chemical reaction) and complex geometries and boundaries. In this work, we present a multi-component lattice Boltzmann model for simulating reactive transport in porous media at the pore scale. This model takes into account convection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and the minerals, as well as the resulting geometrical changes in pore space. Homogeneous reactions are described through local equilibrium mass action relations. Mineral reactions are treated kinetically through boundary conditions at the surface. We have applied this model to a hypothetical two-component system in a synthetically constructed medium, and analyzed the effects of convection, diffusion, reaction rate constants, and chemical compositions on mineral alteration of the porous medium.
Directing folding pathways for multi-component DNA origami nanostructures with complex topology
Marras, A. E.; Zhou, L.; Kolliopoulos, V.; Su, H.-J.; Castro, C. E.
2016-05-01
Molecular self-assembly has become a well-established technique to design complex nanostructures and hierarchical mesoscale assemblies. The typical approach is to design binding complementarity into nucleotide or amino acid sequences to achieve the desired final geometry. However, with an increasing interest in dynamic nanodevices, the need to design structures with motion has necessitated the development of multi-component structures. While this has been achieved through hierarchical assembly of similar structural units, here we focus on the assembly of topologically complex structures, specifically with concentric components, where post-folding assembly is not feasible. We exploit the ability to direct folding pathways to program the sequence of assembly and present a novel approach of designing the strand topology of intermediate folding states to program the topology of the final structure, in this case a DNA origami slider structure that functions much like a piston-cylinder assembly in an engine. The ability to program the sequence and control orientation and topology of multi-component DNA origami nanostructures provides a foundation for a new class of structures with internal and external moving parts and complex scaffold topology. Furthermore, this work provides critical insight to guide the design of intermediate states along a DNA origami folding pathway and to further understand the details of DNA origami self-assembly to more broadly control folding states and landscapes.
A finite element method based microwave heat transfer modeling of frozen multi-component foods
Pitchai, Krishnamoorthy
Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a
Non-equilibrium phase-transitions in multi-component Rydberg gases
Ding, D S; Shi, B S; Guo, G C
2016-01-01
Highly-excited Rydberg atoms have strong long-range interactions resulting in exotic optical prop erties such as large single photon non-linearities and intrinsic bistability. In this paper we study optical-driven non-equilibrium phase transitions in a thermal Rydberg gas with a sensitivity two order of magnitude higher than in previous work. In this regime we can elucidate the effect of inter actions on the bistable optical response, and exploit different branches in the potential in order to study multi-component Rydberg gases with a rich of phase diagram including overlapping bistable regions. In addition, we study the effect of polarization on the width of the hysteresis loop. Finally, we observe that the medium exhibits a dynamical instability resulting from the competing dynamics of excitation and decay.
Outcomes of a Multi-Component Family Enrichment Project: 12-Month Follow-up
Directory of Open Access Journals (Sweden)
Sara Anne Tompkins
2014-02-01
Full Text Available Previous research has established that family enrichment programs work with a variety of populations (e.g., Hawkins, Stanley, Blanchard, & Albright, 2012. It is unclear if a multi-component program focusing on a variety of family outcomes can lead to lasting change. This study used growth modeling to examine effects of relationship (i.e., Within My Reach, parenting (i.e., Making Parenting a Pleasure, and financial enrichment (i.e., Spend Some, Save Some, Share Some classes over 12 months. Results revealed improvement in family functioning at one year post for all three programs. Program specific improvements included relationship functioning and parenting alliance. Program participants reported overall satisfaction and gaining of valuable skills. Findings suggest these family enrichment programs can have long-lasting effects; potential reasons for sample success and implications are discussed.
Simulation of Multi-component Multi-stage Separation Process--An Improved Algorithm and Application
Institute of Scientific and Technical Information of China (English)
李春山; 张香平; 张锁江; 谭心舜; 项曙光
2006-01-01
This paper presents a flexible model and a robust algorithm for simulation of multi-stage multi-component separation processes in which multiple feeds, side streams, strippers and/or side heat exchangers are involved. The improved algorithm effectively accelerates the speed of convergence and offers better stability by introducing a damping factor for updating the stripping factor, and also reduces the requirement on the initial estimates by updating the Joacobian matrix directly with the stripping factor and enthalpy. On the other hand, an efficient algorithm was proposed to solve the approximate tri-diagonal matrix (containing the off-band elements) derived from the material balance equations (Mequations)and phase equilibrium equations (E equations), the advantages and simplicity of the "inside-out" technique of the Russell are retained. The present algorithm was demonstrated to be effective in simulating complex separation columns with typical case studies.
Non-Isothermal, Multi-phase, Multi-component Flows through Deformable Methane Hydrate Reservoirs
Gupta, Shubhangi; Wohlmuth, Barbara
2015-01-01
We present a hydro-geomechanical model for subsurface methane hydrate systems. Our model considers kinetic hydrate phase change and non-isothermal, multi-phase, multi-component flow in elastically deforming soils. The model accounts for the effects of hydrate phase change and pore pressure changes on the mechanical properties of the soil, and also for the effect of soil deformation on the fluid-solid interaction properties relevant to reaction and transport processes (e.g., permeability, capillary pressure, reaction surface area). We discuss a 'cause-effect' based decoupling strategy for the model and present our numerical discretization and solution scheme. We then identify the important model components and couplings which are most vital for a hydro-geomechanical hydrate simulator, namely, 1) dissociation kinetics, 2) hydrate phase change coupled with non-isothermal two phase two component flow, 3) two phase flow coupled with linear elasticity (poroelasticity coupling), and finally 4) hydrate phase change c...
Probabilistic techniques using Monte Carlo sampling for multi- component system diagnostics
International Nuclear Information System (INIS)
We outline the structure of a new approach at multi-component system fault diagnostics which utilizes detailed system simulation models, uncertain system observation data, statistical knowledge of system parameters, expert opinion, and component reliability data in an effort to identify incipient component performance degradations of arbitrary number and magnitude. The technique involves the use of multiple adaptive Kalman filters for fault estimation, the results of which are screened using standard hypothesis testing procedures to define a set of component events that could have transpired. Latin Hypercube sample each of these feasible component events in terms of uncertain component reliability data and filter estimates. The capabilities of the procedure are demonstrated through the analysis of a simulated small magnitude binary component fault in a boiling water reactor balance of plant. The results show that the procedure has the potential to be a very effective tool for incipient component fault diagnosis
S, Savithiri; Pattamatta, Arvind; Das, Sarit K
2015-01-01
Severe contradictions exist between experimental observations and computational predictions regarding natural convective thermal transport in nanosuspensions. The approach treating nanosuspensions as homogeneous fluids in computations has been pin pointed as the major contributor to such contradictions. To fill the void, inter particle and particle fluid interactivities (slip mechanisms), in addition to effective thermophysical properties, have been incorporated within the present formulation. Through thorough scaling analysis, the dominant slip mechanisms have been identified. A Multi Component Lattice Boltzmann Model (MCLBM) approach has been proposed, wherein the suspension has been treated as a non homogeneous twin component mixture with the governing slip mechanisms incorporated. The computations based on the mathematical model can accurately predict and quantify natural convection thermal transport in nanosuspensions. The role of slip mechanisms such as Brownian diffusion, thermophoresis, drag, Saffman ...
Numerical code for multi-component galaxies: from N-body to chemistry and magnetic fields
Khoperskov, S A; Khoperskov, A V; Lubimov, V N
2015-01-01
We present a numerical code for multi-component simulation of the galactic evolution. Our code includes the following parts: $N$-body is used to evolve dark matter, stellar dynamics and dust grains, gas dynamics is based on TVD-MUSCL scheme with the extra modules for thermal processes, star formation, magnetic fields, chemical kinetics and multi-species advection. We describe our code in brief, but we give more details for the magneto-gas dynamics. We present several tests for our code and show that our code have passed the tests with a reasonable accuracy. Our code is parallelized using the MPI library. We apply our code to study the large scale dynamics of galactic discs.
Stossel, Zeev; Kissinger, Meidad; Meir, Avinoam
2015-11-01
Urban environmental quality indices can provide policy makers and the public with valuable information. However, common assessment tools have several shortcomings: most indices do leave out some important components of the state of urban environmental quality; they use a relative assessment in which urban environmental performance is evaluated relative to other cities, not against established environmental benchmarks; and only a few assessment tools compare urban performance to environmental quality standards. This paper presents a new multi component urban performance (EMCUP) index aiming to tackle those shortcomings. It analyses the overall state of urban environmental quality by using a list of indicators to evaluate key urban environmental quality topics such as air, water, open space, sanitation and solid waste. It presents an absolute score calculated in relation to both the standard and desired optimum levels. The use of the index is demonstrated by three Israeli cities. PMID:26334706
Study on a multi-component palladium alloy membrane for the fusion fuel cleanup system
International Nuclear Information System (INIS)
Demonstration Tests with (D,T)2 gas to examine the reported hydrogen embrittlement and helium damage on Pd and Pd-Ag binary alloy are needed for a palladium alloy membrane for its application to a fusion fuel system. T2-gas circulating and T2-gas immersion tests with a multi-component palladium alloy, which had been selected for use of tritum purification, have been performed in the Tritium Systems Test Assembly(TSTA) at Los Alamos National Laboratory under the Japan/US Fusion Cooperation Program. Mechanical tensile tests and metallographic studies have been conducted in these durability tests. Similar tests had been performed on the same material under tritium-free atmospheres(H2, N2) to analyse the data obtained by the T2-gas tests. This report describes the results of the mechanical tensile tests and the test conditions. (author)
Recent advances on multi-component hybrid nanostructures for electrochemical capacitors
Xiong, Pan; Zhu, Junwu; Wang, Xin
2015-10-01
With the continuously growing energy demand and ever-escalating environmental problems, the great energy transition from conventional fossil fuels to renewable sources of energy is under way, and requires more efficient and reliable electrochemical energy storage devices, such as electrochemical capacitors (also called as supercapacitors). In order to achieve high energy and power densities of supercapacitors, numerous efforts are devoted to the development of advanced multi-component hybrid electrode materials for realizing high-performance. This review summarizes the most recent progress in the development of nanostructured electrode materials for energy storage, with a particular focus on these nanostructures that integrate carbon materials, metal oxides/hydroxides and conducting polymers for enhancing energy storage performances via taking advantage of each component's unique functionality and their synergetic effects. Finally, we give some perspectives on the challenges and opportunities in this intriguing field.
Dispersing multi-component and unstable powders in aqueous media using comb-type anionic polymers
DEFF Research Database (Denmark)
Laarz, E.; Kauppi, A.; Andersson, K.M.;
2006-01-01
We have investigated the effect of polymeric dispersants on the rheological properties and consolidation behavior of concentrated cemented carbide (WC-Co) and magnesia (MgO) suspensions. The relatively novel types of comb-type anionic polymers with grafted non-ionic side chains are effective...... dispersants also in multi-component powder mixtures with a complex solution and surface chemistry and result in more robust suspensions at significantly higher solids loading compared with e.g., a traditional cationic polyelectrolyte. Direct force measurements on comb-type dispersants with different lengths...... of the grafted ethylene oxide side chains showed that the dispersants adsorb onto a MgO surface and infer a repulsion where the range scales with the length of the poly ethylene oxide side chains. The compressibility and the consolidation behavior of MgO particle networks in response to a centrifugal...
Study on multi-component combustible gas explosive characteristics of high gas mine*
Institute of Scientific and Technical Information of China (English)
ZHOU Xi-hua; WANG Ji-ren; LI Xin; LI Cheng-yu; HU Chun-yan
2008-01-01
Studied on multi-component combustible gas, methane mainly, explosion char-acteristics of high gas mine, obtained the rules of gas explosive limit that influenced by environment temperature, pressure, concentration of oxygen, other combustible gas, coal dust, energy of fire source, and the inert gas, proposed a new method of divide gas explo-sive triangle partition, and gave new partition linear equations. The gas explosive triangle and its new partition has important directive significance in distinguishing if the fire area has a gas explosion when sealing or opening fire area, or fire extinguishing in sealed fire area, and judging if there will be a gas explosion or other trend while fire extinguishing with inert gas.
Study on multi-component combustible gas explosive characteristics of high gas mine
Institute of Scientific and Technical Information of China (English)
ZHOU Xi-hua; WANG Ji-ren; LI Xin; LI Cheng-yu; HU Chun-yan
2008-01-01
Studied on multi-component combustible gas,methane mainly,explosion characteristics of high gas mine,obtained the rules of gas explosive limit that influenced by environment temperature,pressure,concentration of oxygen,other combustible gas,coaldust,energy of fire source,and the inert gas,proposed a new method of divide gas explosive tdangle partition,and gave new partition linear equations.The gas explosive triangle and its new partition has important directive significance in distinguishing if the fire area has a gas explosion when sealing or opening fire area,or fire extinguishing in sealed firearea,and judging if there will be a gas explosion or other trend while fire extinguishing with inert gas.
Otomo, Hiroshi; Li, Yong; Dressler, Marco; Staroselsky, Ilya; Zhang, Raoyang; Chen, Hudong
2016-01-01
We present recent developments in lattice Boltzmann modeling for multi-component flows, implemented on the platform of a general purpose, arbitrary geometry solver PowerFLOW. Presented benchmark cases demonstrate the method's accuracy and robustness necessary for handling real world engineering applications at practical resolution and computational cost. The key requirements for such approach are that the relevant physical properties and flow characteristics do not strongly depend on numerics. In particular, the strength of surface tension obtained using our new approach is independent of viscosity and resolution, while the spurious currents are significantly suppressed. Using a much improved surface wetting model, undesirable numerical artifacts including thin film and artificial droplet movement on inclined wall are significantly reduced.
A solid-state NMR method to determine domain sizes in multi-component polymer formulations
Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon
2015-12-01
Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).
International Nuclear Information System (INIS)
The main purpose of this work is to model continuously monitored deteriorating systems by using Monte Carlo simulation and embedding the resulting model within an 'on condition' maintenance optimisation scheme that aims at minimising the expected total system cost over a given mission time. The simulation model is first introduced by considering a non-repairable single component subjected to stochastic degradation. The modelling is then generalised to multi-component repairable systems. To find the optimal degradation thresholds of maintenance intervention, the cost optimisation procedure employed is a simple search in the space of the maintenance thresholds. The sensitivity of the results to some of the driving cost parameters has also been examined
Coupling Multi-Component Models with MPH on Distributed MemoryComputer Architectures
Energy Technology Data Exchange (ETDEWEB)
He, Yun; Ding, Chris
2005-03-24
A growing trend in developing large and complex applications on today's Teraflop scale computers is to integrate stand-alone and/or semi-independent program components into a comprehensive simulation package. One example is the Community Climate System Model which consists of atmosphere, ocean, land-surface and sea-ice components. Each component is semi-independent and has been developed at a different institution. We study how this multi-component, multi-executable application can run effectively on distributed memory architectures. For the first time, we clearly identify five effective execution modes and develop the MPH library to support application development utilizing these modes. MPH performs component-name registration, resource allocation and initial component handshaking in a flexible way.
Multi-component dark matter in the light of new AMS-02 data
Lai, Chang; Huang, Da; Geng, Chao-Qiang
2015-10-01
We study the possible positron/electron excesses within the multi-component leptonically decaying dark matter (DM) scenario by fitting the most recent AMS-02 data on the positron fraction and total e+ + e- flux. We show that both the single- and two-component DM models are able to fit the two AMS-02 datasets. However, the single-component DM model favors the e+/e- energy cutoff from the DM decay less than 1 TeV through the τ-channel, which is already well constrained by the diffuse γ-ray spectrum measured by Fermi-LAT. For the two-component case with closing the τ-mode for the heavy DM particle, we find that the new AMS-02 data allows the heavy DM cutoff larger than 1 TeV, providing a good description of the high-energy behavior of the total e+ + e- flux and satisfying the diffuse γ-ray constraint.
Maintenance grouping strategy for multi-component systems with dynamic contexts
International Nuclear Information System (INIS)
This paper presents a dynamic maintenance grouping strategy for multi-component systems with both “positive” and “negative” economic dependencies. Positive dependencies are commonly due to setup cost whereas negative dependencies are related to shutdown cost. Actually, grouping maintenance activities can save part of the setup cost, but can also in the same time increase the shutdown cost. Until now, both types of dependencies have been jointly taken into account only for simple system structures as pure series. The first aim of this paper is to investigate the case of systems with any combination of basic structures (series, parallel or k-out-of n structures). A cost model and a heuristic optimization scheme are proposed since the optimization of maintenance grouping strategy for such multi-component systems leads to a NP-complete problem. Then the second objective is to propose a finite horizon (dynamic) model in order to optimize online the maintenance strategy in the presence of dynamic contexts (change of the environment, the working condition, the production process, etc). A numerical example of a 16-component system is finally introduced to illustrate the use and the advantages of the proposed approach in the maintenance optimization framework. - Highlights: • A dynamic grouping maintenance strategy for complex structure systems is proposed. • Impacts of the system structure on grouping maintenance are investigated. • A grouping approach based on the rolling horizon and GA algorithm is proposed. • Different dynamic contexts and their impacts on grouping maintenance are studied. • The proposed approach can help to update the maintenance planning in dynamic contexts
Cremaschini, Claudio; 10.1140/epjp/i2011-11063-3
2012-01-01
A notorious difficulty in the covariant dynamics of classical charged particles subject to non-local electromagnetic (EM) interactions arising in the EM radiation-reaction (RR) phenomena is due to the definition of the related non-local Lagrangian and Hamiltonian systems. The lack of a standard Lagrangian/Hamiltonian formulation in the customary asymptotic approximation for the RR equation may inhibit the construction of consistent kinetic and fluid theories. In this paper the issue is investigated in the framework of Special Relativity. It is shown that, for finite-size spherically-symmetric classical charged particles, non-perturbative Lagrangian and Hamiltonian formulations in standard form can be obtained, which describe particle dynamics in the presence of the exact EM RR self-force. As a remarkable consequence, based on axiomatic formulation of classical statistical mechanics, the covariant kinetic theory for systems of charged particles subject to the EM RR self-force is formulated in Hamiltonian form....
Takahashi, H.; Asakawa, E.; Hayashi, T.; Inamori, T.; Saeki, T.
2011-12-01
A 2D multi-component seismic survey was carried out in the Nankai Trough using the RSCS (Real-time Seismic Cable System) system in 2006. The RSCS is the newly developed ocean bottom cable system which is usable in more than 2000m water depth. The results of the PP and data PS components gave us much information of the methane hydrates bearing zone. Based on RSCS technology, we are developing a new monitoring system using multi-component seismic sensors to delineate the methane hydrate dissociation zone for the offshore methane hydrate production test scheduled in FY2012. Conventional RSCS is composed of three component gimbaled geophones which require a large volume inside the receiver. We will adopt accelerometers to achieve a small receiver that is 2/3 the size of conventional RSCS. The accelerometer data can be corrected into horizontal or vertical directions based on the gravity acceleration. The receiver case has a protective metallic exterior and the cable is protected with steel-screened armoring, allowing for burial usage using ROV for sub-seabed deployment. It will realize a unique survey style that leaves the system on the seabed between pre-test baseline survey and post-test repeated survey, which might be up to 6 months. The fixed location of the receiver is very important for time-lapse monitoring survey. We name the new system as DSS (Deep-sea Seismic System). A feasibility study to detect the methane hydrate dissociation with the DSS was carried out and we found that the methane hydrate dissociation could be detected with the DSS depending on the area of the dissociation. The first experiment of the DSS performance test in a marine area is planned in November 2011. The main features of DSS are described as follows: (1) Deep-sea /Ultra Deep-sea Operation Methane hydrate exists in equilibrium temperature and pressure holds at water depths greater than 500m. The system water depth resistance target up to 2000m. The receiver case has a protective
Sorption of selenite in a multi-component system using the “dialysis membrane” method
International Nuclear Information System (INIS)
79Se is a potentially mobile long-lived fission product, which may make a dominant contribution to the long-term radiation exposure resulting from deep geological disposal of radioactive waste. Its mobility is affected by sorption on minerals. Selenium sorption processes have been studied mainly by considering interaction with a single mineral surface. In the case of multi-component systems (e.g. soils), it is difficult to predict the radioelement behaviour only from the mineral constituents. This study contributes to the understanding of multi-component controls of Se concentrations towards predicting Se behaviour in soils after migration from a disposal site. This goal was approached by measuring selenite sorption on mono and multi-phase systems physically separated by dialysis membranes. To the best of the authors’ knowledge, very few studies have used dialysis membranes to study the sorption competition of selenite between several mineral phases. Other workers have used this method to study the sorption of pesticides on montmorillonite in the presence of dissolved organic matter. Indeed, this method allows measurement of individual Kd in a system composed of several mineral phases. Dialysis membranes allowed (i) determination of the competition of two mineral phases for selenite sorption (ii) and determination of the role of humic acids (HAs) on selenite sorption in oxidising conditions. Experimental results at pH 7.0 show an average Se(IV) sorption distribution coefficient (Kd) of approximately 125 and 9410 L kg−1 for bentonite and goethite, respectively. The average Kd for goethite decreases to 613 L kg−1 or 3215 L kg−1 in the presence of bentonite or HA, respectively. For bentonite, the average Kd decreases slightly in the presence of goethite (60 L kg−1) and remains unchanged in the presence of HA. The experimental data were successfully modelled with a surface complexation model using the PHREEQC geochemical code. The drastic decrease in Se
International Nuclear Information System (INIS)
A new numerical approach to solve the linear integrodifferential Fokker-Planck equation (FPE), which describes a collisional and magnetized plasma, is presented. For this purpose, the FPE is reduced to a simple set of ordinary differential equations, which can be easily solved, with the use of standard numerical methods. The transport coefficients induced by the first anisotropic distribution function computed by Braginskii [Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1] and improved by Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], have been recovered. The viscosity coefficients are computed for arbitrary atomic numbers and arbitrary magnetic field strength and are compared to the results reported in the literature
Evaporation of multi-component mixtures and shell formation in spray dried droplets
Valente, Pedro; Duarte, Íris; Porfirio, Tiago; Temtem, Márcio
2015-11-01
Drug particles where the active pharmaceutical ingredient (APIs) is dispersed in a polymer matrix forming an amorphous solid dispersion (ASD) is a commonly used strategy to increase the solubility and dissolution rate of poorly water soluble APIs. However, the formation and stability of an amorphous solid dispersion depends on the polymer/API combination and process conditions to generate it. The focus of the present work is to further develop a numerical tool to predict the formation of ASDs by spray drying solutions of different polymer/API combinations. Specifically, the evaporation of a multi-component droplet is coupled with a diffusion law within the droplet that minimizes the Gibbs free energy of the polymer/API/solvents system, following the Flory-Huggins model. Prior to the shell formation, the evaporation of the solvents is modelled following the simplified approach proposed by Abramzon & Sirignano (1989) which accounts for the varying relative velocity between the droplet and the drying gas. After shell formation, the diffusion of the solvents across the porous shell starkly modifies the evaporative dynamics.
On the multi-component nonlinear Schrodinger equation with constant boundary conditions
International Nuclear Information System (INIS)
The multi-component nonlinear Schrodinger equation related to C.I ≃ Sp(2p)/U(p) and D.III ≃ SO(2p)/f/(p)-type symmetric spaces with non-vanishing boundary conditions is solvable with the inverse scattering method (ISM). As Lax operator L we use the generalized Zakharov-Shabat operator. We show that the ISM for the Lax operator L(x,λ) is a nonlinear analog of the Fourier-transform method. As appropriate generalizations of the usual Fourier-exponential functions we use the so-called 'squared solutions', which are constructed in terms of the fundamental analytic solutions (FAS) χ±(x'λ) of L(x, λ) and the Cartan-Weyl basis of the Lie algebra, relevant to the symmetric space. We derive the completeness relation for the 'squared solutions' which turns out to provide spectral decomposition of the recursion (generating) operators Λ±, a natural generalizations of 1/i d/dx in the case of nonlinear evolution equations (NLEE). (author)
Solis, Eduardo; Meyn, Larry
2016-01-01
Calibrating the internal, multi-component balance mounted in the Tiltrotor Test Rig (TTR) required photogrammetric measurements to determine the location and orientation of forces applied to the balance. The TTR, with the balance and calibration hardware attached, was mounted in a custom calibration stand. Calibration loads were applied using eleven hydraulic actuators, operating in tension only, that were attached to the forward frame of the calibration stand and the TTR calibration hardware via linkages with in-line load cells. Before the linkages were installed, photogrammetry was used to determine the location of the linkage attachment points on the forward frame and on the TTR calibration hardware. Photogrammetric measurements were used to determine the displacement of the linkage attachment points on the TTR due to deflection of the hardware under applied loads. These measurements represent the first photogrammetric deflection measurements to be made to support 6-component rotor balance calibration. This paper describes the design of the TTR and the calibration hardware, and presents the development, set-up and use of the photogrammetry system, along with some selected measurement results.
Development of a hard nano-structured multi-component ceramic coating by laser cladding
International Nuclear Information System (INIS)
The present paper reports laser-assisted synthesis of a multi-component ceramic composite coating consisting of aluminum oxide, titanium di-boride and titanium carbide (Al2O3-TiB2-TiC). A pre-placed powder mixture of aluminum (Al), titanium oxide (TiO2) and boron carbide (B4C) was made to undergo self-propagating high-temperature synthesis (SHS) by laser triggering. Laser subsequently effected cladding of the products of SHS on the substrate. The effect of laser scanning speed on the hardness, microstructure and phase composition of the composite coating was investigated. The coating exhibited an increase in hardness and a decrease in grain size with increase in laser scanning speed. A maximum micro-hardness of 2500 HV0.025 was obtained. X-ray diffraction (XRD) of the top surface of the coating revealed the presence of aluminum oxide (Al2O3), titanium di-boride (TiB2) and titanium carbide (TiC) along with some non-stoichiometric products of the Ti-Al-B-C-O system. Field emission gun scanning electron microscopy (FESEM) and high-resolution transmission electron microscopic (HRTEM) analysis revealed some nano-structured TiB2 and Al2O3, which are discussed in detail.
Performances of Multi-Level and Multi-Component Compressed BitmapIndices
Energy Technology Data Exchange (ETDEWEB)
Wu, Kesheng; Stockinger, Kurt; Shoshani, Arie
2007-04-30
This paper presents a systematic study of two large subsetsof bitmap indexing methods that use multi-component and multi-levelencodings. Earlier studies on bitmap indexes are either empirical or foruncompressed versions only. Since most of bitmap indexes in use arecompressed, we set out to study the performance characteristics of thesecompressed indexes. To make the analyses manageable, we choose to use aparticularly simple, but efficient, compression method called theWord-Aligned Hybrid (WAH) code. Using this compression method, a numberof bitmap indexes are shown to be optimal because their worst-case timecomplexities for answering a query is a linear function of the number ofhits. Since compressed bitmap indexes behave drastically different fromuncompressed ones, our analyses also lead to a number of new methods thatare much more efficient than commonly used ones. As a validation for theanalyses, we implement a number of the best methods and measure theirperformance against well-known indexes. The fastest new methods arepredicted and observed to be 5 to 10 times faster than well-knownindexing methods.
Nonlinear Dynamic Analysis of Multi-component Mooring Lines Incorporating Line-seabed Interaction
Directory of Open Access Journals (Sweden)
V.J. Kurian
2013-07-01
Full Text Available In this study, a deterministic approach for the dynamic analysis of a multi-component mooring line was formulated. The floater motion responses were considered as the mooring line upper boundary conditions while the anchored point was considered as pinned. Lumped parameter approach was adopted for the mooring line modelling. The forces considered were the submerged weights of mooring/attachment, physical/added inertia, line tension, fluid/line relative drag forces and line/seabed reactive forces. The latter interactions were modelled assuming that the mooring line rested on an elastic dissipative foundation. An iterative procedure for the dynamic analysis was developed and results for various mooring lines partially lying on different soils were obtained and validated by conducting a comparative study against published results. Good agreement between numerical and published experimental results was achieved. The contribution of the soil characteristics of the seabed to the dynamic behaviour of mooring line was investigated for different types of soil and reported.
Computational Design of Multi-component Bio-Inspired Bilayer Membranes
Directory of Open Access Journals (Sweden)
Evan Koufos
2014-04-01
Full Text Available Our investigation is motivated by the need to design bilayer membranes with tunable interfacial and mechanical properties for use in a range of applications, such as targeted drug delivery, sensing and imaging. We draw inspiration from biological cell membranes and focus on their principal constituents. In this paper, we present our results on the role of molecular architecture on the interfacial, structural and dynamical properties of bio-inspired membranes. We focus on four lipid architectures with variations in the head group shape and the hydrocarbon tail length. Each lipid species is composed of a hydrophilic head group and two hydrophobic tails. In addition, we study a model of the Cholesterol molecule to understand the interfacial properties of a bilayer membrane composed of rigid, single-tail molecular species. We demonstrate the properties of the bilayer membranes to be determined by the molecular architecture and rigidity of the constituent species. Finally, we demonstrate the formation of a stable mixed bilayer membrane composed of Cholesterol and one of the phospholipid species. Our approach can be adopted to design multi-component bilayer membranes with tunable interfacial and mechanical properties. We use a Molecular Dynamics-based mesoscopic simulation technique called Dissipative Particle Dynamics that resolves the molecular details of the components through soft-sphere coarse-grained models and reproduces the hydrodynamic behavior of the system over extended time scales.
NuSTAR Spectroscopy of Multi-Component X-ray Reflection from NGC 1068
Bauer, Franz E; Walton, Dominic J; Koss, Michael J; Puccetti, Simonetta; Gandhi, Poshak; Stern, Daniel; Alexander, David M; Balokovic, Mislav; Boggs, Steve E; Brandt, William N; Brightman, Murray; Christensen, Finn E; Comastri, Andrea; Craig, William W; Del Moro, Agnese; Hailey, Charles J; Harrison, Fiona A; Hickox, Ryan; Luo, Bin; Markwardt, Craig B; Marinucci, Andrea; Matt, Giorgio; Rigby, Jane R; Rivers, Elizabeth; Saez, Cristian; Treister, Ezequiel; Urry, C Megan; Zhang, William W
2014-01-01
We report on observations of NGC1068 with NuSTAR, which provide the best constraints to date on its $>10$~keV spectral shape. We find no strong variability over the past two decades, consistent with its Compton-thick AGN classification. The combined NuSTAR, Chandra, XMM-Newton, and Swift-BAT spectral dataset offers new insights into the complex reflected emission. The critical combination of the high signal-to-noise NuSTAR data and a spatial decomposition with Chandra allow us to break several model degeneracies and greatly aid physical interpretation. When modeled as a monolithic (i.e., a single N_H) reflector, none of the common Compton-reflection models are able to match the neutral fluorescence lines and broad spectral shape of the Compton reflection. A multi-component reflector with three distinct column densities (e.g., N_H~1.5e23, 5e24, and 1e25 cm^{-2}) provides a more reasonable fit to the spectral lines and Compton hump, with near-solar Fe abundances. In this model, the higher N_H components provide...
Development of multi-component explosive lenses for arbitrary phase velocity generation
Loiseau, Jason; Huneault, Justin; Petel, Oren; Goroshin, Sam; Frost, David; Higgins, Andrew; Zhang, Fan
2013-06-01
The combination of explosives with different detonation velocities and lens-like geometric shaping is a well-established technique for producing structured detonation waves. This technique can be extended to produce nearly arbitrary detonation phase velocities for the purposes of sequentially imploding pressurized tubes or driving Mach disks through high-density metalized explosives. The current study presents the experimental development of accelerating, multi-component lenses designed using simple geometric optics and idealized front curvature. The fast explosive component is either Composition C4 (VOD = 8 km/s) or Primasheet 1000 (VOD = 7 km/s), while the slow component varies from heavily amine-diluted nitromethane (amine mass fraction exceeding 20%) to packed metal and glass particle beds wetted with amine-sensitized nitromethane. The applicability of the geometric optic analog to such highly heterogeneous explosives is also investigated. The multi-layered lens technique is further developed as a means of generating a directed mass and momentum flux of metal particles via Mach-disk formation and jetting in circular and oval planar lenses.
Preventive maintenance optimization for a multi-component system under changing job shop schedule
International Nuclear Information System (INIS)
Variability and small lot size is a common feature for many discrete manufacturing processes designed to meet a wide array of customer needs. Because of this, job shop schedule often has to be continuously updated in reaction to changes in production plan. Generally, the aim of preventive maintenance is to ensure production effectiveness and therefore the preventive maintenance models must have the ability to be adaptive to changes in job shop schedule. In this paper, a dynamic opportunistic preventive maintenance model is developed for a multi-component system with considering changes in job shop schedule. Whenever a job is completed, preventive maintenance opportunities arise for all the components in the system. An optimal maintenance practice is dynamically determined by maximizing the short-term cumulative opportunistic maintenance cost savings for the system. The numerical example shows that the scheme obtained by the proposed model can effectively address the preventive maintenance scheduling problem caused by the changes in job shop schedule and is more efficient than the ones based on two other commonly used preventive maintenance models.
REVIEW ARTICLE: Multi-component force balances for conventional and cryogenic wind tunnels
Ewald, Bernd F. R.
2000-06-01
The measurement of the total forces acting on the surface of a wind tunnel model is still the most important wind tunnel measurement technology. Either the model is mounted by struts to a balance, which is located outside the test section (an `external balance'), or the balance is located inside the model and connects the model structure to the mounting sting, which in the case of aeroplane configurations protrudes from the rear fuselage (an `internal balance'). This review concerns internal balances only. The functional principle is described and some comments on the demand for high accuracy are given. The optimization of designs for strain gauge balances, the fabrication methods and the selection of materials are commented on. The calibration theory of multi-component balances is outlined and the calibration equipment is described. Examples for conventional manual calibration equipment and for an automatic calibration machine are given. Finally the specific design features of cryogenic balances and half model balances are given. This review presents the author's experiences and developments. Since there is hardly any general literature on the subject of strain gauge balances and since the balance engineers in the world have not that much contact with each other, there may be different points of view at other institutions.
Phase relationship of complex multi-component system in chromate cleaner production
Institute of Scientific and Technical Information of China (English)
Ge Xinlei; Wang Xidong; Zheng Shili; Zhang Mei; Zhang Yi
2007-01-01
The phase relationships of the complex multi-component systems in the liquid-phase oxidization and separation process related with the chromate cleaner production are investigated theoretically and experimentally. The phase diagram of main system Fe-Cr2O4-KOH-O2 of oxidization process and the relationship of its standard Gibbs free energy change with temperature are calculated. A series of phase diagrams of the separation process at different temperatures, such as K(Na)OH-K (Na)2CrO4-H2O, KOH-KAlO2-H2O,K(Na)OH- K(Na)2CO3-H2O, K(Na)OH-K(Na)HCO3-H2O and K(Na)HCO3-K(Na)2CrO4-H2O have also been calculated. Some experiments are carried out to verify the calculated results. Our results showed that the sub-molten salt media are suitable for the oxidization and separation processes; FeCr2O4 can be oxidized across a wide range of temperature; K (Na)2CrO4 can be separated from K(Na) AlO2 system at appropriate temperature and proper concentration; the crystallization of carbonate is easier than that of K(Na)2CrO4.
Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance
Liu, Qifan; Jing, Bo; Peng, Chao; Tong, Shengrui; Wang, Weigang; Ge, Maofa
2016-01-01
The hygroscopic properties of two water-soluble organic compounds (WSOCs) relevant to urban haze pollution (phthalic acid and levoglucosan) and their internally mixtures with inorganic salts (ammonium sulfate and ammonium nitrate) are investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA) system. The multi-component particles uptake water gradually in the range 5-90% relative humidity (RH). The experimental results are compared with the thermodynamic model predictions. For most mixtures, Extended Aerosol Inorganic Model (E-AIM) predictions agree well with the measured growth factors. The hygroscopic growth of mixed particles can be well described by the Zdanovskii-Stokes-Robinson (ZSR) relation as long as the mixed particles are completely liquid. ZSR calculations underestimate the water uptake of mixed particles at moderate RH due to the partial dissolution of ammonium sulfate in the organic and ammonium nitrate solution in this RH region. The phase of ammonium nitrate in the initial dry particles changes dramatically with the composition of mixtures. The presence of organics in the mixed particles can inhibit the crystallization of ammonium nitrate during the drying process and results in water uptake at low RH (RH water uptake of particles.
New approaches to the modelling of multi-component fuel droplet heating and evaporation
Sazhin, Sergei S
2015-02-25
The previously suggested quasi-discrete model for heating and evaporation of complex multi-component hydrocarbon fuel droplets is described. The dependence of density, viscosity, heat capacity and thermal conductivity of liquid components on carbon numbers n and temperatures is taken into account. The effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model. This model is applied to the analysis of Diesel and gasoline fuel droplet heating and evaporation. The components with relatively close n are replaced by quasi-components with properties calculated as average properties of the a priori defined groups of actual components. Thus the analysis of the heating and evaporation of droplets consisting of many components is replaced with the analysis of the heating and evaporation of droplets consisting of relatively few quasi-components. It is demonstrated that for Diesel and gasoline fuel droplets the predictions of the model based on five quasi-components are almost indistinguishable from the predictions of the model based on twenty quasi-components for Diesel fuel droplets and are very close to the predictions of the model based on thirteen quasi-components for gasoline fuel droplets. It is recommended that in the cases of both Diesel and gasoline spray combustion modelling, the analysis of droplet heating and evaporation is based on as little as five quasi-components.
Data quality of a low fold seismic survey employing a buried multi-component array at Ketzin
Meekes, J.A.C.; Vandeweijer, V.P.; Arts, R.J.
2011-01-01
To monitor the migration of the injected CO2 in the Ketzin project (Germany) a permanently buried multi-component seismic array has been installed in August 2009. Besides passive seismic recordings, this monitoring system was used to record data for an active survey carried out in 2009, resulting in
Indian Academy of Sciences (India)
Prakasam Thirumurugan; S Mahalaxmi; Paramasivan T Perumal
2010-11-01
A simple protocol for the efficient preparation of 2-(1-Indol-3-yl)-6-methoxy-4-arylpyridine-3,5-dicarbonitrile has been achieved through one-pot multi-component reaction under reflux condition. These compounds showed a good anti-inflammatory activity. Also a series of bis-Hantzsch dihydropyridine derivatives were synthesized and they exhibit analgesic activity.
Directory of Open Access Journals (Sweden)
Xiao-Wei Hong
2015-09-01
Full Text Available An efficient multi-component reaction to synthesize multi-substituted 1,3-oxazolidine compounds of high optical purity was described. All the products were well-characterized and the absolute configuration of one chiral center was determined. The plausible mechanism was proposed and a kinetic resolution of epoxides process was confirmed.
DEFF Research Database (Denmark)
Huang, T.; Larsen, K. T.; Moller, N. C.;
2015-01-01
Objective. To examine the effects of a multi-component camp-based intervention on inflammatory markers and adipokines in children. Methods. One hundred and fifteen children were recruited in Odense, Denmark (2012-2014). The participants were randomly allocated to either the day camp intervention ...
Energy Technology Data Exchange (ETDEWEB)
Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.
1997-03-01
We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors). 13 refs., 1 tab.
Directory of Open Access Journals (Sweden)
B. M. Khroustalev
2016-03-01
Full Text Available The paper considers modern approaches to usage of hydrocarbon-containing waste as energy resources and presents description of investigations, statistic materials, analysis results on formation of hydrocarbon-containing waste in the Republic of Belarus. Main problems pertaining to usage of waste as a fuel and technologies for their application have been given in the paper. The paper describes main results of the investigations and a method for efficient application of viscous hydrocarbon-containing waste as an energy-packed component and a binding material while producing a solid fuel. A technological scheme, a prototype industrial unit which are necessary to realize a method for obtaining multi-component solid fuel are represented in the paper. A paper also provides a model of technological process with efficient sequence of technological operations and parameters of optimum component composition. Main factors exerting significant structure-formation influence in creation of structural composition of multi-component solid fuel have been presented in the paper. The paper gives a graphical representation of the principle for selection of mixture particles of various coarseness to form a solid fuel while using a briquetting method and comprising viscous hydrocarbon-containing waste. A dependence of dimensionless concentration g of emissions into atmosphere during burning of two-component solid fuel has been described in the paper. The paper analyzes an influence of the developed methodology for emission calculation of multi-component solid fuels and reveals a possibility to optimize the component composition in accordance with ecological function and individual peculiar features of fuel-burning equipment. Special features concerning storage and transportation, advantages and disadvantages, comparative characteristics, practical applicability of the developed multi-component solid fuel have been considered and presented in the paper. The paper
Krysiak, R; Kowalcze, K; Bednarska-Czerwińska, A; Okopień, B
2016-04-01
Non-classic congenital adrenal hyperplasia (NC-CAH), one of the most common genetic disorders, is often associated with the presence of hyperandrogenism. Recently both simvastatin and metformin were found to reduce plasma steroid hormone levels in this disorder. This study included 8 women with NC-CAH and diabetes or impaired glucose tolerance, as well as 12 matched women with similar glucose metabolism abnormalities but normal adrenal function. Both groups of women, receiving metformin for at least 6 months, were then treated with simvastatin (20 mg daily) for the following 12 weeks. Compared to patients with normal adrenal function, metformin-treated women with NC-CAH showed increased plasma levels of 17-hydroxyprogesterone, total testosterone, free testosterone, androstenedione and DHEA-S. Simvastatin reduced total and LDL cholesterol levels in both patients with NC-CAH and normal adrenal function. Moreover, in the former group of women, statin therapy decreased plasma levels of testosterone, free testosterone, androstenedione, dehydroepiandrosterone sulphate and tended to reduce 17-hydroxyprogesterone. Our results suggest that metformin-statin combination therapy may be useful in the management of symptomatic women with NC-CAH. PMID:26824284
International Nuclear Information System (INIS)
Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S
Energy Technology Data Exchange (ETDEWEB)
Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)
2015-02-01
Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.
Farrell, J.; Lin, F. C.
2015-12-01
We present a new S-wave velocity model for the Yellowstone magmatic system derived from the inversion of Rayleigh- and Love-wave phase velocity measurements from periods from 6 to 35 s. All available data from 2007-2014 within and near the Yellowstone region was downloaded for the USArray TA network (TA), the Yellowstone Seismic Network (WY), the NOISY array (Z2), the USGS Intermountain West network (IW), the Plate Boundary Observatory Borehole Seismic Network (PB), and the USGS National Seismic Network (US). For each station, we perform daily noise pre-processing (temporal normalization and spectrum whitening) simultaneously for all three components before multi-component noise cross-correlations are calculated. Results for both Rayleigh- and Love-wave phase velocity inversions clearly show the low velocity anomaly associated with the upper-crustal magma reservoir seen previously using body wave tomography. In addition, low-velocity anomalies associated with sediment-filled basins are visible in Wyoming. Short period low Love-wave velocities are seen along the Snake River Plain, the track of the Yellowstone hotspot likely related to the shallow sediment layer. Based on the surface wave phase velocity maps, we invert for a 3D S-wave crustal model. The resulting model will be compared to previous, but spatially limited, body wave S-wave models as well as recent body wave P-wave velocity models to better constrain Vp/Vs ratios as well as the melt fraction of the magma chamber. Preliminary results using amplitude information of noise cross-correlations to calculate Rayleigh-wave ellipticity, or Rayleigh-wave H/V (horizontal to vertical) amplitude ratios to better constrain the shallow velocity structure will also be discussed.
A Study on the Simultaneous Multi-Components Analysis of Soil Pollution
Energy Technology Data Exchange (ETDEWEB)
Chung, Kang-Sup; Kim, Kun-Han; Choi, Byung-In [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)
1999-12-01
Dissolution properties for the several inorganic pollutants in soils have been studied and simultaneous multi-components analytical method has been established with using ICP/MS and LA-ICP/MS for 14 monitoring elements in order to protect water and soil environments. And addition, more effective new analytical methods have been studied for BTEX, TPH(total petroleum hydrocarbon) and organophosphorus compounds, PCBs in soils. Several inorganic pollutants were spiked to 3 kinds of fresh soils which were sand, clay, loam. The dissolution properties of the prepared samples were investigated under the various extracting conditions such as extracting time, acid concentration, particle size, etc. in order to take basic information about the process of extraction test and improvement of related analytical methods. As the results, dissolution properties were affected mainly by acid concentration in extracting procedure and mineral composition of soils. On the other hand, extracting time, sort of acids and particle size of soils had a little influence on the dissolution properties. Cd revealed very high dissolving efficiency and As was very low in whole extracting test. Current analytical methods for the determination of oils are based on the purge and trap for volatiles such as gasoline and solvent extraction for semivolatiles such as kerosene and diesel oils. These methods are not proper in cost and time. In addition to, there are potential for analyte contamination and some problems in pretreatment procedure. In this study, we have discussed simultaneous determination of TPH containing gasoline, kerosene, diesel oils and etc.. And determination of Organophosphorus compounds in soils has studied. In this procedure, the application of ultrasonication methods and several extraction methods were compared. In the results of this study, we could take very low practical detection limit and good precision. Approved methods were suitable for the determination of oils and pesticides
Directory of Open Access Journals (Sweden)
Keith B Godfrey
2009-12-01
Full Text Available During development, neurons extend axons to different brain areas and produce stereotypical patterns of connections. The mechanisms underlying this process have been intensively studied in the visual system, where retinal neurons form retinotopic maps in the thalamus and superior colliculus. The mechanisms active in map formation include molecular guidance cues, trophic factor release, spontaneous neural activity, spike-timing dependent plasticity (STDP, synapse creation and retraction, and axon growth, branching and retraction. To investigate how these mechanisms interact, a multi-component model of the developing retinocollicular pathway was produced based on phenomenological approximations of each of these mechanisms. Core assumptions of the model were that the probabilities of axonal branching and synaptic growth are highest where the combined influences of chemoaffinity and trophic factor cues are highest, and that activity-dependent release of trophic factors acts to stabilize synapses. Based on these behaviors, model axons produced morphologically realistic growth patterns and projected to retinotopically correct locations in the colliculus. Findings of the model include that STDP, gradient detection by axonal growth cones and lateral connectivity among collicular neurons were not necessary for refinement, and that the instructive cues for axonal growth appear to be mediated first by molecular guidance and then by neural activity. Although complex, the model appears to be insensitive to variations in how the component developmental mechanisms are implemented. Activity, molecular guidance and the growth and retraction of axons and synapses are common features of neural development, and the findings of this study may have relevance beyond organization in the retinocollicular pathway.
High Performance Multi-GPU SpMV for Multi-component PDE-Based Applications
Abdelfattah, Ahmad
2015-07-25
Leveraging optimization techniques (e.g., register blocking and double buffering) introduced in the context of KBLAS, a Level 2 BLAS high performance library on GPUs, the authors implement dense matrix-vector multiplications within a sparse-block structure. While these optimizations are important for high performance dense kernel executions, they are even more critical when dealing with sparse linear algebra operations. The most time-consuming phase of many multicomponent applications, such as models of reacting flows or petroleum reservoirs, is the solution at each implicit time step of large, sparse spatially structured or unstructured linear systems. The standard method is a preconditioned Krylov solver. The Sparse Matrix-Vector multiplication (SpMV) is, in turn, one of the most time-consuming operations in such solvers. Because there is no data reuse of the elements of the matrix within a single SpMV, kernel performance is limited by the speed at which data can be transferred from memory to registers, making the bus bandwidth the major bottleneck. On the other hand, in case of a multi-species model, the resulting Jacobian has a dense block structure. For contemporary petroleum reservoir simulations, the block size typically ranges from three to a few dozen among different models, and still larger blocks are relevant within adaptively model-refined regions of the domain, though generally the size of the blocks, related to the number of conserved species, is constant over large regions within a given model. This structure can be exploited beyond the convenience of a block compressed row data format, because it offers opportunities to hide the data motion with useful computations. The new SpMV kernel outperforms existing state-of-the-art implementations on single and multi-GPUs using matrices with dense block structure representative of porous media applications with both structured and unstructured multi-component grids.
Research on the simultaneous multi-components analytical method for polluted soil
Energy Technology Data Exchange (ETDEWEB)
Jung, Kang Sup; Song, Duk Young; Choi, Byung In; Kim, Kun Han; Eum, Chul Hun; Jeon, Chi Wan; Lee, Jung Hwa [Korea Institute of Geology Mining and Materials, Taejon (Korea)
1998-12-01
Dissolution properties for the several inorganic pollutants in soils have been studied and simultaneous multi-components analytical method has been established with using ICP/MS for 13 monitoring elements in order to protect water and soil environments. And addition, more effective new analytical methods have been studied for TPH(total petroleum hydrocarbon) and organophosphorus compounds in soils. Several inorganic pollutants were spiked to 3 kinds of fresh soils which were sand, clay, loam. The dissolution properties of the prepared samples were investigated under the various extracting conditions such as extracting time, acid concentration, particle size, etc. in order to take basic information about the process of extraction test and improvement of related analytical methods. As the results, dissolution properties were affected mainly by acid concentration in extraction procedure and mineral composition of soils. On the other hand, extracting time, sort of acids and particle size of soils has a little influence on the dissolution properties. Cd revealed very high dissolving efficiency and As was very low in whole extracting test. Current analytical methods for the determination of soils are based on the purge and trap for volatiles such as gasoline and solvent extraction for semivolatiles such as kerosene and diesel oils. These methods are not proper in cost and time. In addition to, there are potential for analyte contamination and some problems in pretreatment procedure. In this study , we have discussed simultaneous determination of TPH containing gasoline, kerosene, diesel oils and etc. And determination of Organophosphorus compounds in soils has studied. In this procedure, the application of ultrasonication methods and several extraction methods were compared. In the results of this study, we could take very low practical detection limit and good precision. Approved methods were suitable for the determination of oils and pesticides in soil at high and low
DeArmond, Patrick D.; West, Graham M.; Huang, Hai-Tsang; Fitzgerald, Michael C.
2011-03-01
Described here is a stable isotope labeling protocol that can be used with a chemical modification- and mass spectrometry-based protein-ligand binding assay for detecting and quantifying both the direct and indirect binding events that result from protein-ligand binding interactions. The protocol utilizes an H{2/16}O2 and H{2/18}O2 labeling strategy to evaluate the chemical denaturant dependence of methionine oxidation in proteins both in the presence and absence of a target ligand. The differential denaturant dependence to the oxidation reactions performed in the presence and absence of ligand provides a measure of the protein stability changes that occur as a result of direct interactions of proteins with the target ligand and/or as a result of indirect interactions involving other protein-ligand interactions that are either induced or disrupted by the ligand. The described protocol utilizes the 18O/16O ratio in the oxidized protein samples to quantify the ligand-induced protein stability changes. The ratio is determined using the isotopic distributions observed for the methionine-containing peptides used for protein identification in the LC-MS-based proteomics readout. The strategy is applied to a multi-component protein mixture in this proof-of-principle experiment, which was designed to evaluate the technique's ability to detect and quantify the direct binding interaction between cyclosporin A and cyclophilin A and to detect the indirect binding interaction between cyclosporin A and calcineurin (i.e., the protein-protein interaction between cyclophilin A and calcineurin that is induced by cyclosporin A binding to cyclophilin A).
International Nuclear Information System (INIS)
A critical analysis is given of the well-known expression for the electron-impact ionization rate constant αi of neutral atoms and ions, derived by linearization of the ionization cross section σi(ε) as a function of the electron energy near the threshold I and containing the characteristic factor (I + 2kT). Using the classical Thomson expression for the ionization cross section, it is shown that in addition to the linear slope of σi(ε), it is also necessary to take into account the large negative curvature of this function near the threshold. In this case, the second term in parentheses changes its sign, which means that the commonly used expression for αi (∼4kT/I) already at moderate values of the temperature (kT/I ∼ 0.1). The source of this error lies in a mathematical mistake in the original approach and is related to the incorrect choice of the sequential orders of terms small in the parameter kT/I. On the basis of a large amount of experimental data and considerations similar to the Gryzinski theory, a universal two-parameter modification of the Thomson formula (as well as the Bethe—Born formula) is proposed and a new simple expression for the ionization rate constant for arbitrary values of kT/I is derived
International Nuclear Information System (INIS)
A self-consistent approximation scheme is formulated for the calculation of the dynamical linear polarizability of classical electron monolayers. The derivation is carried out in two stages. In the first stage, the authors formulate a simple response function relation linking linear and quadratic polarizabilities; the dynamical coupling function is expressed entirely in terms of the latter. The basic elements in the derivation are the first BBGKY kinetic equation (prepared in the velocity average approximation) and the non-linear fluctuation-dissipation theorem. The new response function relation is exact at zero frequency and exactly satisfies the third frequency moment sum rule. In the second stage, self-consistency is guaranteed by approximating the quadratic polarizability in terms of linear ones. The theory is examined in the weak coupling limit where it is found that a dominant γ-independent non-RPA contribution to the damping is missing. The structure of the missing term is identified at arbitrary coupling strengths. Work is in progress to see how it can be incorporated into the approximation scheme. (author)
International Nuclear Information System (INIS)
The trace identity is extended to the quadratic-form identity. The Hamiltonian structures of the NLS-MKdV hierarchy, and integrable coupling of multi-component Levi hierarchy are obtained by the quadratic-form identity. The method can be used to produce the Hamiltonian structures of the other integrable couplings or multi-component hierarchies
International Nuclear Information System (INIS)
Direct laser induced fluorescence measurements are shown of cross-field ion flows normal to an absorbing boundary that is aligned parallel to the axial magnetic field in a helicon plasma. We show Langmuir and emissive probe measurements of local density and plasma potential in the same region, as well as floating probe spectra near the boundary. With these measurements, we investigate the influence of ion-neutral collisionality on radial ion transport by varying the ratio of the ion gyro-radius, ρi, to the ion-neutral collision length, λ, over the range 0.34 ≤ ρiλ−1 ≤ 1.60. Classical drift-diffusion transport along density and potential gradients is sufficient to describe flow profiles for most cases. For two parameter regimes (ρiλ−1 = 0.65 and 0.44), low-frequency electrostatic fluctuations (f < 10 kHz) and enhanced cross-field bulk ion flow to the boundary are observed
Energy Technology Data Exchange (ETDEWEB)
Siddiqui, M. Umair, E-mail: musiddiqui@mail.wvu.edu; Thompson, Derek S.; McIlvain, Julianne M.; Short, Zachary D.; Scime, Earl E. [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States)
2015-12-15
Direct laser induced fluorescence measurements are shown of cross-field ion flows normal to an absorbing boundary that is aligned parallel to the axial magnetic field in a helicon plasma. We show Langmuir and emissive probe measurements of local density and plasma potential in the same region, as well as floating probe spectra near the boundary. With these measurements, we investigate the influence of ion-neutral collisionality on radial ion transport by varying the ratio of the ion gyro-radius, ρ{sub i}, to the ion-neutral collision length, λ, over the range 0.34 ≤ ρ{sub i}λ{sup −1} ≤ 1.60. Classical drift-diffusion transport along density and potential gradients is sufficient to describe flow profiles for most cases. For two parameter regimes (ρ{sub i}λ{sup −1} = 0.65 and 0.44), low-frequency electrostatic fluctuations (f < 10 kHz) and enhanced cross-field bulk ion flow to the boundary are observed.
DEFF Research Database (Denmark)
Diky, Vladimir; Chirico, Robert D.; Muzny, Chris;
. However, the accuracy of such calculations are generally unknown that often leads to overdesign of the operational units and results in significant additional cost. TDE provides a tool for the analysis of uncertainty of property calculations for multi-component streams. A process stream in TDE can be......ThermoData Engine (TDE, NIST Standard Reference Databases 103a and 103b) is the first product that implements the concept of Dynamic Data Evaluation in the fields of thermophysics and thermochemistry, which includes maintaining the comprehensive and up-to-date database of experimentally measured...... variations). Predictions can be compared to the available experimental data, and uncertainties are estimated for all efficiency criteria. Calculations of the properties of multi-component streams including composition at phase equilibria (flash calculations) are at the heart of process simulation engines...
Lei, Wang; Yanzhong, Li; Zhan, Liu; Kang, Zhu
An improved CFD model involving a multi-component gas mixturein the ullage is constructed to predict the pressurization behavior of a cryogenic tank considering the existence of pressurizing helium.A temperature difference between the local fluid and its saturation temperature corresponding to the vapor partial pressure is taken as the phase change driving force. As practical application of the model, hydrogen and oxygen tanks with helium pressurization arenumerically simulated by using themulti-component gas model. The results presentthat the improved model produce higher ullage temperature and pressure and lower wall temperaturethan those without multi-component consideration. The phase change has a slight influence on thepressurization performance due to the small quantities involved.
Development of multi-component filter metal with low melting point for joining Ti-Super STS metals
International Nuclear Information System (INIS)
We report the development of multi-component filler metal with low melting point for joining Ti-Super STS metals based on the followings. - Design of filler metal alloys with low melting point - Design of filler metal alloys based on understanding of dissimilar joining - Effect of addition elements on the melting point of filter metals - Optimization of process parameters for fabrication of powder/ribbon type filler metal
Spanos, D.; Boyle, S.; Hankey, C.; Melville, C.
2013-01-01
Background: The prevalence of obesity in adults with intellectual disabilities (ID) is rising, although the evidence base for its treatment in this population group is minimal. Weight management interventions that are accessible to adults with ID will reduce the inequalities that they frequently experience in health services. This short report compared the effectiveness of weight management in those with and without ID who completed nine sessions of a multi-component weight management program...
Villareal, Dennis T.; Smith, Gordon I.; Sinacore, David R.; Shah, Krupa; Mittendorfer, Bettina
2010-01-01
Aging is associated with a decline in strength, endurance, balance, and mobility. Obesity worsens the age-related impairment in physical function and often leads to frailty. The American College of Sports Medicine recommends a multi-component (strength, endurance, flexibility, and balance) exercise program to maintain physical fitness. However, the effect of such an exercise program on physical fitness in frail, obese older adults is not known. We therefore determined the effect of a 3 month-...
Middleton, Geoff; Keegan, Richard; Henderson, Hannah
2012-01-01
Background: Food for Fitness is an on-going multi-component health promotion programme, delivered in primary and secondary schools by community nutrition assistants. The programme uses nutritional interventions aimed at promoting healthier eating practices for children. This service evaluation investigated the receipt and delivery of the programme, as perceived by local stakeholders who had experienced and administered the service. Methods: Semi-structured interviews and focus groups we...
Smith, Amos B.; Wuest, William M.
2008-01-01
Efficient construction of architecturally complex natural and unnatural products is the hallmark of organic chemistry. Anion Relay Chemistry (ARC) - a multi-component coupling protocol - has the potential to provide the chemist with a powerful synthetic tactic, enabling efficient, rapid elaboration of structurally complex scaffolds in a single operation with precise stereochemical control. The ARC tactic can be subdivided into two main classes, comprising the relay of negative charge either t...
International Nuclear Information System (INIS)
In the present study, adsorption of three metal ions Pb(II), Hg(II) and Cd(II) on carbon aerogel a new form of activated carbon has been investigated in mono- and multi-component (binary and tertiary) system. Batch experiments were also carried out for mono- and multi-component systems with varying metal ion concentration (mg/l) to investigate the competitive adsorption characteristics. Many adsorbents have been studied for their adsorption properties pertaining to mono-component solutions of metal ions. However, to treat wastewater with new materials, their performance needs to be ascertained in multi-component system. The scanning electron micrographs (SEM) and EDAX spectrum of carbon aerogel surfaces before and after the adsorbent was equilibrated with the metal ion solution clearly establishes the presence of the metal ions and some surface modifications can be observed on the carbon aerogel particles adsorption with (i) surface chemistry of the pellets on the surface of carbon aerogel and (ii) inside layers of the carbon aerogel. Applicability of the isotherm models namely Freundlich and Langmuir to predict the equilibrium uptake of Pb(II), Hg(II) and Cd(II) in mono-component, binary and tertiary system has also been tested. Langmuir and Freundlich models are found to generally represent the experimental though but not consistently
Torrielli, Alessandro
2016-08-01
We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin–Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand–Levitan–Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.
Cohn, A G; Rabinowitz, Mario
2003-01-01
A classical representation of an extended body over barriers of height greater than the energy of the incident body is shown to have many features in common with quantum tunneling as the center-of-mass literally goes through the barrier. It is even classically possible to penetrate any finite barrier with a body of arbitrarily low energy if the body is sufficiently long. A distribution of body lengths around the de Broglie wavelength leads to reasonable agreement with the quantum transmission coefficient.
Cohn, Arthur; Rabinowitz, Mario
2003-01-01
A classical representation of an extended body over barriers of height greater than the energy of the incident body is shown to have many features in common with quantum tunneling as the center-of-mass literally goes through the barrier. It is even classically possible to penetrate any finite barrier with a body of arbitrarily low energy if the body is sufficiently long. A distribution of body lengths around the de Broglie wavelength leads to reasonable agreement with the quantum transmission...
Mould, Richard A
2003-01-01
Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previous...
Multi-component ground-based observation of ULF waves: goals and methods
Fedorov, E. N.; De Lauretis, M.; Anisimov, S.; Vellante, M.; V. A. Pilipenko; U. Villante
1998-01-01
A revival of the combined magnetic and telluric electric measurements at magnetic observatories is suggested.A number of problems, where such observations might be very helpful, are outlined: 1) the account for the resonance structure of the ULF field during the magnetotelluric probing of low-conductive geoelectrical structures; 2) the hydromagnetic diagnostics of the magnetospheric plasma distribution; 3) the discrimination of ionospheric and seismic contributions in anomalous ULF signa...
Carry, Béatrice; Zhang, Liang; Nishiura, Masayoshi; Hou, Zhaomin
2016-05-17
The catalytic selective multi-component coupling of CO2 , bis(pinacolato)diboron, LiOtBu, and a wide range of aldehydes has been achieved for the first time by using an NHC-copper catalyst. This transformation has efficiently afforded a series of novel lithium cyclic boracarbonate ion pair compounds in high yields from readily available starting materials. This protocol has not only provided a new catalytic process for the utilization of CO2 , but it has also constituted a novel route for the efficient synthesis of a new class of lithium borate compounds that might be of interest as potential electrolyte candidates for lithium ion batteries. PMID:27061244
Yamasaki, Hisatsugu; Natsume, Yuhei; Nakamura, Katsuhiro
2005-01-01
To show a mechanism leading to the breakdown of a particle picture for the multi-component Bose-Einstein condensates(BECs) with a harmonic trap in high dimensions, we investigate the corresponding 2-$d$ nonlinear Schr{\\"o}dinger equation (Gross-Pitaevskii equation) with use of a modified variational principle. A molecule of two identical Gaussian wavepackets has two degrees of freedom(DFs), the separation of center-of-masses and the wavepacket width. Without the inter-component interaction(IC...
International Nuclear Information System (INIS)
The quasistatic dissipation of thermically induced cracks in brittle multi-components material with plane boundary areas is studied. The distribution of Eigentension, which is causing the dissipation of cracks, is produced by cooling the composite material from the production temperature to room temperature. Tension distributions, respectively of the fracture-mechanical coefficients were determined by solving of the boundary value problems of the theory of plane thermoelasticity, a based on existence of a plane distortion state, respectively of a plane state of tension. Because of the complicated shape of the free surface one adopted a numerical solution, the finite-element method, to solve the corresponding mixed boundary value problems. (orig.)
Multi-component ground-based observation of ULF waves: goals and methods
Directory of Open Access Journals (Sweden)
E. N. Fedorov
1998-06-01
Full Text Available A revival of the combined magnetic and telluric electric measurements at magnetic observatories is suggested.A number of problems, where such observations might be very helpful, are outlined: 1 the account for the resonance structure of the ULF field during the magnetotelluric probing of low-conductive geoelectrical structures; 2 the hydromagnetic diagnostics of the magnetospheric plasma distribution; 3 the discrimination of ionospheric and seismic contributions in anomalous ULF signals possibly related with earthquakes. The experimental apparatus for telluric current measurements, which has recently been installed at the observatories of Borok (Russia and L'Aquila (Italy, is described.
Mould, R A
2003-01-01
Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previously given rules support all of these cases. Key Words: brain states, conscious observer, detector, measurement, probability current, state reduction, von Neumann, wave collapse.
International Nuclear Information System (INIS)
The irradiation of an atomic cluster with a femtosecond x-ray free-electron laser pulse results in a nanoplasma formation. This typically occurs within a few hundred femtoseconds. By this time the x-ray pulse is over, and the direct photoinduced processes no longer contributing. All created electrons within the nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms, electrons, and ions of various charges. While expanding, it is undergoing electron impact ionization and three-body recombination. Below we present a hydrodynamic model to describe the dynamics of such multi-component nanoplasmas. The model equations are derived by taking the moments of the corresponding Boltzmann kinetic equations. We include the equations obtained, together with the source terms due to electron impact ionization and three-body recombination, in our hydrodynamic solver. Model predictions for a test case, expanding spherical Ar nanoplasma, are obtained. With this model, we complete the two-step approach to simulate x-ray created nanoplasmas, enabling computationally efficient simulations of their picosecond dynamics. Moreover, the hydrodynamic framework including collisional processes can be easily extended for other source terms and then applied to follow relaxation of any finite non-isothermal multi-component nanoplasma with its components relaxed into local thermodynamic equilibrium
Fanood, Mohammad M Rafiee; Ram, N Bhargava; Lehmann, C Stefan; Powis, Ivan; Janssen, Maurice H M
2015-01-01
Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron-ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2-4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140
Fanood, Mohammad M Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.
2015-01-01
Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron–ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2–4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140
Energy Technology Data Exchange (ETDEWEB)
Saxena, Vikrant, E-mail: vikrant.saxena@desy.de [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Ziaja, Beata, E-mail: ziaja@mail.desy.de [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland)
2016-01-15
The irradiation of an atomic cluster with a femtosecond x-ray free-electron laser pulse results in a nanoplasma formation. This typically occurs within a few hundred femtoseconds. By this time the x-ray pulse is over, and the direct photoinduced processes no longer contributing. All created electrons within the nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms, electrons, and ions of various charges. While expanding, it is undergoing electron impact ionization and three-body recombination. Below we present a hydrodynamic model to describe the dynamics of such multi-component nanoplasmas. The model equations are derived by taking the moments of the corresponding Boltzmann kinetic equations. We include the equations obtained, together with the source terms due to electron impact ionization and three-body recombination, in our hydrodynamic solver. Model predictions for a test case, expanding spherical Ar nanoplasma, are obtained. With this model, we complete the two-step approach to simulate x-ray created nanoplasmas, enabling computationally efficient simulations of their picosecond dynamics. Moreover, the hydrodynamic framework including collisional processes can be easily extended for other source terms and then applied to follow relaxation of any finite non-isothermal multi-component nanoplasma with its components relaxed into local thermodynamic equilibrium.
Ambikasaran, Sivaram
2015-01-01
Using accurate multi-component diffusion treatment in numerical combustion studies remains formidable due to the computational cost associated with solving for diffusion velocities. To obtain the diffusion velocities, for low density gases, one needs to solve the Stefan-Maxwell equations along with the zero diffusion flux criteria, which scales as $\\mathcal{O}(N^3)$, when solved exactly. In this article, we propose an accurate, fast, direct and robust algorithm to compute multi-component diffusion velocities. To our knowledge, this is the first provably accurate algorithm (the solution can be obtained up to an arbitrary degree of precision) scaling at a computational complexity of $\\mathcal{O}(N)$ in finite precision. The key idea involves leveraging the fact that the matrix of the reciprocal of the binary diffusivities, $V$, is low rank, with its rank being independent of the number of species involved. The low rank representation of matrix $V$ is computed in a fast manner at a computational complexity of $\\...
Danforth, Douglas G.
2001-01-01
Classical systems can be entangled. Entanglement is defined by coincidence correlations. Quantum entanglement experiments can be mimicked by a mechanical system with a single conserved variable and 77.8% conditional efficiency. Experiments are replicated for four particle entanglement swapping and GHZ entanglement.
Gallavotti, Giovanni
1999-01-01
This is the English version of a friendly graduate course on Classical Mechanics, containing about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. For the Spanish version, see physics/9906066
Laser-induced periodic surface structures of thin, complex multi-component films
Reif, Juergen; Varlamova, Olga; Ratzke, Markus; Uhlig, Sebastian
2016-04-01
Femtosecond laser-induced regular nanostructures are generated on a complex multilayer target, namely a piece of a commercial, used hard disk memory. It is shown that after single-shot 800-nm irradiation at 0.26 J/cm2 only the polymer cover layer and—in the center—a portion of the magnetic multilayer are ablated. A regular array of linearly aligned spherical 450-nm features at the uncovered interface between cover and magnetic layers appears not to be produced by the irradiation. Only after about 10 pulses on one spot, classical ripples perpendicular to the laser polarization with a period of ≈700 nm are observed, with a modulation between 40 nm above and 40 nm below the pristine surface and an ablation depth only slightly larger than the thickness of the multilayer magnetic film. Further increase of the pulse number does not result in deeper ablation. However, 770-nm ripples become parallel to the polarization and are swelling to more than 120 nm above zero, much more than the full multilayer film thickness. In the spot periphery, much shallower 300-nm ripples are perpendicular to the strong modulation and the laser polarization. Irradiation with 0.49-J/cm2 pulses from an ultrafast white-light continuum results—in the spot periphery—in the formation of 200-nm ripples, only swelling above zero after removal of the polymer cover, without digging into the magnetic film.
Rudraraju, Shiva; Garikipati, Krishna
2015-01-01
We present a new phenomenological treatment of phase transformations in multi-component crystalline solids driven by free energy density functions that are non-convex in mechanical and chemical variables. We identify the mechano-chemical spinodal as the region in strain-composition space where the free energy density function is non-convex. Our treatment describes diffusional phase transformations that are accompanied by symmetry breaking structural changes of the crystal unit cell due to mechanical instabilities in the mechano-chemical spinodal. This approach is relevant to phase transformations wherein the structural order parameters can be expressed as linear combinations of strains relative to a high-symmetry reference crystal. Because the local strains in an inhomogeneous, transforming microstructure can be finite, the elasticity problem must account for geometric nonlinearity. Furthermore, for physical consistency and mathematical well-posedness, we regularize the free energy density functions by interf...
Saxena, Vikrant
2016-01-01
The irradiation of an atomic cluster with a femtosecond x-ray free-electron laser pulse results in a nanoplasma formation. This typically occurs within a few hundreds femtoseconds. By this time the x-ray pulse is over, and the direct photoinduced processes no longer contributing. All created electrons within the nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms, electrons and ions of various charges. While expanding, it is undergoing electron impact ionization and three-body recombination. Below we present a hydrodynamic model to describe the dynamics of such multi-component nanoplasma. The model equations are derived by taking the moments of the corresponding Boltzmann kinetic equations. We include the equations obtained, together with the source terms due to electron impact ionization and three-body recombination, in our hydrodynamic solver. Model predictions for a test case: expanding spherical Ar nanoplasma are obtained. With this model we complete the two-step approach to simul...
Salo, Heikki; Laurikainen, Eija; Laine, Jarkko; Comerón, Sebastien; Gadotti, Dimitri A.; Buta, Ron; Sheth, Kartik; Zaritsky, Dennis; Ho, Luis; Knapen, Johan; Athanassoula, E.; Bosma, Albert; Laine, Seppo; Cisternas, Mauricio; Kim, Taehyun; Muñoz-Mateos, Juan Carlos; Regan, Michael; Hinz, Joannah L.; Gil de Paz, Armando; Menendez-Delmestre, Karin; Mizusawa, Trisha; Erroz-Ferrer, Santiago; Meidt, Sharon E.; Querejeta, Miguel
2015-07-01
The Spitzer Survey of Stellar Structure in Galaxies (S4G) is a deep 3.6 and 4.5 μm imaging survey of 2352 nearby (web page (www.oulu.fi/astronomy/S4G_PIPELINE4/MAIN). These products include all the input data and decomposition files in electronic form, making it easy to extend the decompositions to suit specific science purposes. We also provide our IDL-based visualization tools (GALFIDL) developed for displaying/running GALFIT-decompositions, as well as our mask editing procedure (MASK_EDIT) used in data preparation. A detailed analysis of the bulge, disk, and bar parameters derived from multi-component decompositions will be published separately.
Dervishi, Enkeleda; Hategekimana, Festus; Boyer, Laurent; Watanabe, Fumiya; Mustafa, Thikra; Biswas, Abhijit; Biris, Alexandru R.; Biris, Alexandru S.
2013-12-01
Two types of nano-materials (nanotubes and graphene) were incorporated at different concentrations into a bio-compatible polymer matrix, and the mechanical properties of the composite films were studied. Although both nanomaterials improved the mechanical attributes of the polymer, it was found that the composites containing the nanotube-graphene mixture exhibited significantly superior elasto-plastic properties. This work presents a facile technique of fabricating nano-composites that could be scaled up and applied to various types of polymers. These multi-component films have the potential to be used in a wide range of applications including bio-medicine and photovoltaics, as well as the military and automotive industry.
Smith, Amos B; Wuest, William M
2008-12-01
Efficient construction of architecturally complex natural and unnatural products is the hallmark of organic chemistry. Anion relay chemistry (ARC)-a multi-component coupling protocol-has the potential to provide the chemist with a powerful synthetic tactic, enabling efficient, rapid elaboration of structurally complex scaffolds in a single operation with precise stereochemical control. The ARC tactic can be subdivided into two main classes, comprising the relay of negative charge either through bonds or through space, the latter with aid of a transfer agent. This review will present the current state of through-space anion relay, in conjunction with examples of natural and unnatural product syntheses that illustrate the utility of this synthetic method. PMID:19030533
Energy Technology Data Exchange (ETDEWEB)
Zabkova, Katerina; Hatesuer, Florian; Luke, Andrea [Kassel Univ. (Germany). FG Technische Thermodynamik
2011-07-01
Multicomponent conveyor systems are used especially in petroleum and natural gas production. The contribution describes a multi-component screw-spindle pump which is compact and efficient and can even convey fluids with a high gas concentrations and will also operate dry-running for a short period of time. Various types and their functions are explained, and a multi-component screw-spindle pump is integrated in an experimental plant for the purpose of investigating its conveying characteristics. The pumping circuit and its components are described in detail, and the results of experiments carried out with it are presented. It was found that the production rate depends on the pump speed, on the pressure gradient between the pump inlet and outlet, and on the gas volume. The volume flow will get slower at higher pressure gradients and with high gas volumes. [German] Mehrphasenfoerdersysteme werden in der Industrie immer mehr verwendet, vor allem bei der Erdoel- und Erdgasgewinnung. In diesem Bereich ist die doppelflutige Variante der zweispindeligen Mehrphasen-Schraubenspindelpumpe aufgrund ihrer kompakten Bauweise und Foerdercharakteristik besonders geeignet. Sogar die Foerderung von Fluiden mit sehr hohem Gasanteil und auch ein kurzfristiger Trockenlauf sind moeglich. In dieser Arbeit werden verschiedene Typen von Mehrphasenpumpen (MPP) vorgestellt und deren Funktionsweise naeher erlaeutert. Zur Untersuchung des Foerderverhaltens unter unterschiedlichen Randbedingungen wird eine MPP in eine Versuchsanlage integriert. Der Foerderkreislauf mit seinen Komponenten wird ausfuehrlich beschrieben und im Anschluss werden die Ergebnisse der durchgefuehrten experimentellen Untersuchungen diskutiert. Es zeigt sich, dass die MPP-Foerderrate von der Drehzahl der MPP, von der Druckdifferenz zwischen Einlass und Auslass der MPP und vom Gasanteil beeinflusst wird. Bei hoeheren Druckdifferenzen sowie bei hohen Gasanteilen nimmt der Volumenstrom ab.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
Kou, Jisheng
2016-05-10
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests
Greiner, Maximilian; Sonnleitner, Bettina; Mailänder, Markus; Briesen, Heiko
2014-02-01
Additional benefits of foods are an increasing factor in the consumer's purchase. To produce foods with the properties the consumer demands, understanding the micro- and nanostructure is becoming more important in food research today. We present molecular dynamics (MD) simulations as a tool to study complex and multi-component food systems on the example of chocolate conching. The process of conching is chosen because of the interesting challenges it provides: the components (fats, emulsifiers and carbohydrates) contain diverse functional groups, are naturally fluctuating in their chemical composition, and have a high number of internal degrees of freedom. Further, slow diffusion in the non-aqueous medium is expected. All of these challenges are typical to food systems in general. Simulation results show the suitability of present force fields to correctly model the liquid and crystal density of cocoa butter and sucrose, respectively. Amphiphilic properties of emulsifiers are observed by micelle formation in water. For non-aqueous media, pulling simulations reveal high energy barriers for motion in the viscous cocoa butter. The work for detachment of an emulsifier from the sucrose crystal is calculated and matched with detachment of the head and tail groups separately. Hydrogen bonding is shown to be the dominant interaction between the emulsifier and the crystal surface. Thus, MD simulations are suited to model the interaction between the emulsifier and sugar crystal interface in non-aqueous media, revealing detailed information about the structuring and interactions on a molecular level. With interaction parameters being available for a wide variety of chemical groups, MD simulations are a valuable tool to understand complex and multi-component food systems in general. MD simulations provide a substantial benefit to researchers to verify their hypothesis in dynamic simulations with an atomistic resolution. Rapid rise of computational resources successively
International Nuclear Information System (INIS)
A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author)
Energy Technology Data Exchange (ETDEWEB)
Professor Richard Eisenberg
2012-07-18
The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved
Significance of Multi-Component Risk Importance Measures in Risk-Informed Design of I and C Systems
International Nuclear Information System (INIS)
In this article, a need for an additional risk importance measure has been highlighted for multi-components because single component risk importance measure keep shifting from one component to other component when system is modified to reduce risk for particular component. For explanation, let's consider three components A, B and C in a certain system. If we make a system configuration-I and analyze, component A is returned as one of the highest risk sensitive component. In order to reduce risk due to this component, we formulate configuration-II by considering the risk feedback in configuration-I. In new system configuration, component C appears as high risk contributing component with the fact that configuration-II has high availability than configuration-I. This cycle keeps on and there is no stop limit or criteria to decide which level of availability or which configuration is best. Based on the aforementioned discussion and feedback, it can be concluded that single component risk index cannot be used for risk based design and optimization because it is a relative measure to system Probability of Failure on Demand (PFD) and strongly dependent on component failure probability or rate
Björnstad, Kristian; Beck, Olof; Helander, Anders
2009-04-15
A sensitive and specific LC-MS/MS method for simultaneous detection of 10 plant-derived psychoactive substances (atropine, N,N-dimethyltryptamine, ephedrine, harmaline, harmine, ibogaine, lysergic acid amide, psilocin, scopolamine and yohimbine) in urine was developed. Direct injection of urine diluted with 3 deuterated internal standards allowed for a readily accessible method suitable for application in clinical intoxication cases. Separation was achieved using reversed phase chromatography and gradient elution with a total analysis time of 14 min. Electrospray ionization was used and ions were monitored in the positive selected reaction monitoring mode. The calibration curves were linear (r(2)>0.999) and the total imprecision at high (1000 microg/L) and low (50 microg/L) substance concentrations were 4.9-13.8% and 8.3-26%, respectively. Infusing the analytes post column and injecting matrix samples showed limited influence by ion suppression. The multi-component method proved to be useful for investigation of authentic cases of intoxication with plant-derived psychoactive drugs and was indicated to cover the clinically relevant concentration ranges. PMID:19332394
Smith, Louise Hardman; Hviid, Kirsten; Frydendall, Karen Bo; Flyvholm, Mari-Ann
2013-10-01
Global labour migration has increased in recent years and immigrant workers are often recruited into low status and low paid jobs such as cleaning. Research in a Danish context shows that immigrants working in the cleaning industry often form social networks based on shared languages and backgrounds, and that conflict between different ethnic groups may occur. This paper evaluates the impact of a multi-component intervention on the psychosocial work environment at a multi-ethnic Danish workplace in the cleaning sector. The intervention included Danish lessons, vocational training courses, and activities to improve collaboration across different groups of cleaners. Interviews about the outcome of the intervention were conducted with the cleaners and their supervisor. The Copenhagen Psychosocial Questionnaire was used as a supplement to the interviews. The results suggest that the psychosocial work environment had improved after the intervention. According to the interviews with the cleaners, the intervention had led to improved communication, trust, and collaboration. These findings are supported by the questionnaire where social support from supervisor and colleagues, social community, trust, and teamwork seem to have improved together with meaning of work, rewards, and emotional demands. The design of the intervention may provide inspiration for future psychosocial work environment interventions at multi-ethnic work places. PMID:24129115
Directory of Open Access Journals (Sweden)
Mari-Ann Flyvholm
2013-10-01
Full Text Available Global labour migration has increased in recent years and immigrant workers are often recruited into low status and low paid jobs such as cleaning. Research in a Danish context shows that immigrants working in the cleaning industry often form social networks based on shared languages and backgrounds, and that conflict between different ethnic groups may occur. This paper evaluates the impact of a multi-component intervention on the psychosocial work environment at a multi-ethnic Danish workplace in the cleaning sector. The intervention included Danish lessons, vocational training courses, and activities to improve collaboration across different groups of cleaners. Interviews about the outcome of the intervention were conducted with the cleaners and their supervisor. The Copenhagen Psychosocial Questionnaire was used as a supplement to the interviews. The results suggest that the psychosocial work environment had improved after the intervention. According to the interviews with the cleaners, the intervention had led to improved communication, trust, and collaboration. These findings are supported by the questionnaire where social support from supervisor and colleagues, social community, trust, and teamwork seem to have improved together with meaning of work, rewards, and emotional demands. The design of the intervention may provide inspiration for future psychosocial work environment interventions at multi-ethnic work places.
Kou, Jisheng
2015-08-01
Surface tension significantly impacts subsurface flow and transport, and it is the main cause of capillary effect, a major immiscible two-phase flow mechanism for systems with a strong wettability preference. In this paper, we consider the numerical simulation of the surface tension of multi-component mixtures with the gradient theory of fluid interfaces. Major numerical challenges include that the system of the Euler-Lagrange equations is solved on the infinite interval and the coefficient matrix is not positive definite. We construct a linear transformation to reduce the Euler-Lagrange equations, and naturally introduce a path function, which is proven to be a monotonic function of the spatial coordinate variable. By using the linear transformation and the path function, we overcome the above difficulties and develop the efficient methods for calculating the interface and its interior compositions. Moreover, the computation of the surface tension is also simplified. The proposed methods do not need to solve the differential equation system, and they are easy to be implemented in practical applications. Numerical examples are tested to verify the efficiency of the proposed methods. © 2014 Elsevier B.V.
International Nuclear Information System (INIS)
Bose-Einstein condensate (BEC) provides a nice stage when the nonlinear Schroedinger equation plays a vital role. We study the dynamics of multi-component repulsive BEC in 2 dimensions with harmonic traps by using the nonlinear Schroedinger (or Gross-Pitaevskii) equation. Firstly we consider a driven two-component BEC with each component trapped in different vertical positions. The appropriate tuning of the oscillation frequency of the magnetic field leads to a striking anti-gravity transport of BEC. This phenomenon is a manifestation of macroscopic non-adiabatic tunneling in a system with two internal (electronic) degrees of freedom. The dynamics splits into a fast complex spatio-temporal oscillation of each condensate wavefunctions together with a slow levitation of the total center of mass. Secondly, we examine the three-component repulsive BEC in 2 dimensions in a harmonic trap in the absence of magnetic field, and construct a model conservative chaos based on a picture of vortex molecules. We obtain an effective nonlinear dynamics for three vortex cores, which represents three charged particles under the uniform magnetic field with the repulsive inter-particle potential quadratic in the inter-vortex distance γij on short scale and logarithmic in γij on large scale. The vortices here acquire the inertia in marked contrast to the standard theory of point vortices since Onsager. We then explore 'the chaos in the three-body problem' in the context of vortices with inertia. (author)
Directory of Open Access Journals (Sweden)
Xiaoting Chen
2015-06-01
Full Text Available We have prepared a multi-component nanoporous PtRuCuW (np-PtRuCuW electrocatalyst via a combined chemical dealloying and mechanical alloying process. The X-ray diffraction (XRD, transmission electron microscopy (TEM and electrochemical measurements have been applied to characterize the microstructure and electrocatalytic activities of the np-PtRuCuW. The np-PtRuCuW catalyst has a unique three-dimensional bi-continuous ligament structure and the length scale is 2.0 ± 0.3 nm. The np-PtRuCuW catalyst shows a relatively high level of activity normalized to mass (467.1 mA mgPt−1 and electrochemically active surface area (1.8 mA cm−2 compared to the state-of-the-art commercial PtC and PtRu catalyst at anode. Although the CO stripping peak of np-PtRuCuW 0.47 V (vs. saturated calomel electrode, SCE is more positive than PtRu, there is a 200 mV negative shift compared to PtC (0.67 V vs. SCE. In addition, the half-wave potential and specific activity towards oxygen reduction of np-PtRuCuW are 0.877 V (vs. reversible hydrogen electrode, RHE and 0.26 mA cm−2, indicating a great enhancement towards oxygen reduction than the commercial PtC.
International Nuclear Information System (INIS)
The cyclic stress-strain behaviour of metals and alloys in cyclic saturation can reasonably be described by means of simple multi-component models, such as the model based on a parallel arrangement of elastic-perfectly plastic elements, which was originally proposed by Masing already in 1923. This model concept was applied to thermomechanical fatigue loading of two metallic engineering materials which were found to be rather oppositional with respect to cyclic plastic deformation. One material is an austenitic stainless steel of type AISI304L which shows dynamic strain aging (DSA) and serves as an example for a rather ductile alloy. A dislocation arrangement was found after TMF testing deviating characteristically from the corresponding isothermal microstructures. The second material is a third-generation near-gamma TiAl alloy which is characterized by a very pronounced ductile-to-brittle transition (DBT) within the temperature range of TMF cycling. Isothermal fatigue testing at temperatures below the DBT temperature leads to cyclic hardening, while cyclic softening was found to occur above DBT. The combined effect under TMF leads to a continuously developing mean stress. The experimental observations regarding isothermal and non-isothermal stress-strain behaviour and the correlation to the underlying microstructural processes was used to further develop the TMF multi-composite model in order to accurately predict the TMF stress-strain response by taking the alloy-specific features into account.
Anchishkin, D
2014-01-01
Generalized mean-field approach for thermodynamic description of relativistic single- and multi-component gas in the grand canonical ensemble is formulated. In the framework of the proposed approach different phenomenological excluded-volume procedures are presented and compared to the existing ones. The mean-field approach is then used to effectively include hard-core repulsion in hadron-resonance gas model for description of chemical freeze-out in heavy-ion collisions. We calculate the collision energy dependence of several quantities for different values of hard-core hadron radius and for different excluded-volume procedures such as van der Waals and Carnahan-Starling models. It is shown that a choice of the excluded-volume model becomes important for large particle densities, and for large enough values of hadron radii ($r\\gtrsim0.9$ fm) there can be a sizable difference between different excluded-volume procedures used to describe the chemical freeze-out in heavy-ion collisions.
Anchishkin, D.; Vovchenko, V.
2015-10-01
A generalized mean-field approach for the thermodynamic description of relativistic single- and multi-component gas in the grand canonical ensemble is formulated. In the framework of the proposed approach, different phenomenological excluded-volume procedures are presented and compared to the existing ones. The mean-field approach is then used to effectively include hard-core repulsion in hadron-resonance gas model for description of chemical freeze-out in heavy-ion collisions. We calculate the collision energy dependence of several quantities for different values of hard-core hadron radius and for different excluded-volume procedures such as the van der Waals and Carnahan-Starling models. It is shown that a choice of the excluded-volume model becomes important for large particle densities. For large enough values of hadron radii (r≳ 0.9 fm) there can be a sizable difference between different excluded-volume procedures used to describe the chemical freeze-out in heavy-ion collisions. At the same time, for the smaller and more commonly used values of hard-core hadron radii (r≲ 0.5 fm), the precision of the van der Waals excluded-volume procedure is shown to be sufficient.
International Nuclear Information System (INIS)
In the steam generator using liquid sodium, Water intensely reacts with sodium when it leaked out from a heat tube. It is important to evaluate an influence of the sodium-water reaction to, such as, heat tubes surrounding a leakage and the generator. In the past, evaluations of this phenomenon have been carried out by experiments. However it is difficult to extrapolate an effect by configuration of a heat tube or change of operating condition, etc. and experiments using sodium need incredible cost. Then quantification by a numerical method is desirable. To develop a multi component and multi phase numerical method with chemical reaction, fundamental models of a multi phase numerical method are selected with organizing previous works in this paper, as follows. Fluid model : multi fluid model, Pressure model : one pressure model, Solving method : HSMAC (Highly Simplified Maker And Cell) method. Two-dimensional two-phase flow analysis technique is developed to evaluate a validity of these models. And verification analyses are carried out shown in the following. Two-dimensional square cavity flow. Two-dimensional natural convection in a square cavity. Air blow down from a pressure vessel. Dam break-down problem. Edwards pipe blow down problem. In each verification analysis, good agreements are obtained and the validity of the models to a multi phase numerical method is confirmed. (author)
Wang, Peilong; Wang, Zhi; Su, Xiaoou
2015-02-15
A sensitive and quantitative fluorescent multi-component immuno-chromatographic sensor was developed for detection of three β-agonizts: clenbuterol, ractopamine and salbuterol. A competitive immune strategy between antibody conjugated fluorescent beads and β-agonist or their antigens was employed. Each monoclonal antibody specifically recognizes it is corresponding β-agonist in the conjugating zone. The unreacted antibodies were captured by β-agonist antigens immobilized at three test lines in nitrocellulose membrane reaction zone. This enables simultaneous detection of 3 β-agonizts in one single test without any further sample preparation. The test results can be obtained within 10 min. Limit of detections for clenbuterol, ractopamine and salbuterol were 0.10 ng/mL, 0.10 ng/mL and 0.09 ng/mL, respectively. Recoveries ranged from 70.0% to 100.5% and relative standard deviations were below 15%. The assay was evaluated using spiked and real samples and the results were compared with LC-MS/MS. The developed novel assay method provides a low cost, sensitive and rapid approach for on site detection of β-agonizts. PMID:25310481
International Nuclear Information System (INIS)
More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.
Neo-classical impurity transport
International Nuclear Information System (INIS)
The neo-classical theory for impurity transport in a toroidal plasma is outlined, and the results discussed. A general account is given of the impurity behaviour and its dependence on collisionality. The underlying physics is described with special attention to the role of the poloidal rotation
Directory of Open Access Journals (Sweden)
Bili Su
2016-06-01
Full Text Available The complexity of traditional Chinese medicines (TCMs is related to their multi-component system. TCM aqueous decoction is a common clinical oral formulation. Between molecules in solution, there exist intermolecular strong interactions to form chemical bonds or weak non-bonding interactions such as hydrogen bonds and Van der Waals forces, which hold molecules together to form “molecular aggregates”. Taking the TCM Puerariae lobatae Radix (Gegen as an example, we explored four Gegen decoctions of different concentration of 0.019, 0.038, 0.075, and 0.30 g/mL, named G-1, G-2, G-3, and G-4. In order of molecular aggregate size (diameter the four kinds of solution were ranked G-1 < G-2 < G-3 < G-4 by Flow Cell 200S IPAC image analysis. A rabbit vertebrobasilar artery insufficiency (VBI model was set up and they were given Gegen decoction (GGD at a clinical dosage of 0.82 g/kg (achieved by adjusting the gastric perfusion volume depending on the concentration. The HPLC fingerprint of rabbit plasma showed that the chemical component absorption into blood in order of peak area values was G-1 < G-2 > G-3 > G-4. Puerarin and daidzin are the major constituents of Gegen, and the pharmacokinetics of G-1 and G-2 puerarin conformed with the two compartment open model, while for G-3 and G-4, they conformed to a one compartment open model. For all four GGDs the pharmacokinetics of daidzin complied with a one compartment open model. FQ-PCR assays of rabbits’ vertebrobasilar arterial tissue were performed to determine the pharmacodynamic profiles of the four GGDs. GGD markedly lowered the level of AT1R mRNA, while the AT2R mRNA level was increased significantly vs. the VBI model, and G-2 was the most effective. In theory the dosage was equal to the blood drug concentration and should be consistent; however, the formation of molecular aggregates affects drug absorption and metabolism, and therefore influences drugs’ effects. Our data provided references for
多分量地震极化分析评述%Review of multi-component seismic polarization analysis
Institute of Scientific and Technical Information of China (English)
马见青; 李庆春; 王美丁
2011-01-01
多分量地震勘探弥补了用常规单分量地震勘探进行岩性识别、地层构造解释时造成的多解性的不足.极化分析方法在多分量地震资料处理中又起着举足轻重的作用,它根据各种类型的波在传播过程中不同的极化矢量,对地震资料进行震相识别、波场分离和去噪等,为多分量地震资料的后续处理和解释打下基础.目前,国内外学者对极化分析方法进行了大量的研究,取得了丰富的成果.极化分析方法按照地震波场极化分析所依赖的变换域,可以分为时间域、频率域以及时频域三大类,但还没有对这些技术方法进行系统的分析对比.本文旨在对目前发展起来的各种类型的极化分析方法进行分析总结,包括其方法原理、各自的优缺点、应用范围、以及发展前景.试图为今后对极化分析方法的研究提供思路与借鉴.%Multi-component seismic exploration makes up the deficiencies of multi-solutions of conventional single component seismic exploration in lithologic identification and stratum structural interpretation. Polarization analysis methods have pivotal role in multi-component seismic data processing. According to the different polarization vectors of seismic data in propagation, it can be used in phase identification, wave-field separation and denoising, which is the basement of subsequent seismic data processing and interpretation. At present, the scholars have made a lot of research of polarization analysis methods, and obtained large number of results. According to the polarization analysis transform domain, polarization analysis methods can be divided into three kinds, which are the time domain, frequency domain and time-frequency domain. The typical polarization analysis methods at present mainly include polarization analysis based on the standard covariance matrix analysis method and the instantaneous polarization attributes based on adaptive covariance matrix in the
Microstructures and mechanical properties of multi-component (AlCrTaTiZr)NxCy nanocomposite coatings
International Nuclear Information System (INIS)
Multi-component (AlCrTaTiZr)NxCy coatings with the incorporation of quinary metallic elements and different N and C contents were deposited by AlCrTaTiZr/C co-sputtering in an N2/Ar mixed atmosphere under an AlCrTaTiZr-alloy-target power of 150 W and different C-target powers (0-200 W). At a C-target power of 0 W, an (AlCrTaTiZr)N0.6 coating with a face-centered cubic solid-solution structure was deposited and exhibited a large columnar structure; its hardness and steady-stage creep strain rate were measured as about 20 GPa and 1.5 x 10-4 1/s, respectively. By applying a C-target power of 100 W, an (AlCrTaTiZr)N0.6C0.2 coating was formed with a fine columnar structure. Owing to the incorporated C atoms, the (111) interplanar spacing of the face-centered cubic structure was increased from 0.249 to 0.253 nm. The hardness increased to 32 GPa and the creep strain rate was lowered to 1.1 x 10-4 1/s attributed to the introduction of covalent-like bonds, grain refinement and the formation of an amorphous-like and nanocomposite structure. Furthermore, under a C-target power of 200 W, excess C atoms agglomerated to form clusters in the deposited (AlCrTaTiZr)N0.6C0.4 coating. Consequently, the hardness slightly decreased to 30 GPa and the creep strain rate increased to 2.4 x 10-4 1/s.
International Nuclear Information System (INIS)
Risk assessment of radioactive waste sites require an accurate prediction of geochemical interactions during transport. The prediction of the long-term leaching behaviour of radioactive substances is an increasingly important issue as awareness of the potential future pollution risks associated with management of such wastes grows. An adequate understanding of the numerous and complex processes which may act to retard or mobilise radioactive contaminants along the transport pathway form the repository to the biosphere is necessary. Modelling of the physicochemical processes which take place between the radioactive substances and soil is an invaluable tool as it is often not possible to conduct experiments over sufficiently long time scales in order to observe the long term leaching behaviour of wastes. A COupled Solute Transport and CHemical Equilibrium SPeciation (COSTCHESP) model has been developed. The model has the capability for simulating transport of multiple components of radioactive substances, thermodynamically reacting chemical, through the clay barrier systems. It consists of two main modules, a finite difference transport module (COST), and an equilibrium geochemistry module (CHESP) which is modified version of MINTEQA2. This linearizes the coupling between the physical and chemical processes and leads to a simple and efficient model to simulate the simultaneous processes of advective-dispersive transport (advection; diffusion, osmotic and ion restriction effect) and geochemical reactions (complexation, exchange, precipitation, adsorption and desorption) under different temperature and pressure. The model will lead to proper identification of the form of specific ions ( i.e., adsorbed and precipitated on solid, and available in solution). The proposed model has been simulated for the transport of strontium through compacted bentonite in a multi-component solution at two different temperature. (author)
Chiban, Mohamed; Soudani, Amina; Sinan, Fouad; Persin, Michel
2011-02-01
A low-cost adsorbent and environmentally friendly adsorbent from Carpobrotus edulis plant was used for the removal of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions from single, binary and multi-component systems. The efficiency of the adsorbent was studied using batch adsorption technique under different experimental conditions by varying parameters such as pH, initial concentration and contact time. In single component systems, the dried C. edulis has the highest affinity for Pb(2+), followed by NO(3)(-), Cd(2+) and H(2)PO(4)(-), with adsorption capacities of 175mg/g, 125mg/g, 28mg/g and 26mg/g, respectively. These results showed that the adsorption of NO(3)(-) and H(2)PO(4)(-) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. Freundlich adsorption model, showed the best fit to the single and binary experimental adsorption data. These results also indicated that the adsorption yield of Pb(2+) ion was reduced by the presence of Cd(2+) ion in binary metal mixture. The competitive adsorption of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions on dried C. edulis plant shows that NO(3)(-) and H(2)PO(4)(-) anions are able to adsorb on different free binding sites and Pb(2+) and Cd(2+) cations are able to adsorb on the same active sites of C. edulis particles. The dried C. edulis was found to be efficient in removing nitrate, phosphate, cadmium and lead from aqueous solution as compared to other adsorbents already used for the removal of these ions. PMID:20951008
Institute of Scientific and Technical Information of China (English)
黄水根; 李麟
2005-01-01
@@ Ceria-yttria co-doped zirconia-based multi-components ceramics, with superfine alumina dispersed in the matrix, possess excellent fracture toughness,strength and thermal stability. However, the mechanical properties and microstructure are strongly dependent on the composition and the fabrication procedure, especially the composition of zirconia containing multi-component ceramics.
Indian Academy of Sciences (India)
Mohammad Ali Zolfigol; Ardeshir Khazaei; Abdolkarim Zare; Mohammad Mokhlesi; Tahereh Hekmat-Zadeh; Alireza Hasaninejad; Fatemeh Derakhshan-Panah; Ahmad Reza Moosavi-Zare; Hassan Keypour; Ahmad Ali Dehghani-Firouzabadid; Maria Merajoddin
2012-03-01
Silica-functionalized sulfonic acid (SFSA) and sulfuric acid-modified polyethylene glycol-6000 (PEG-OSO3H) efficiently catalysed one-pot multi-component condensation of enolizable ketones or alkyl acetoacetates with arylaldehydes, acetonitrile and acetyl chloride to afford the corresponding -acetamido ketone or ester derivatives in high to excellent yields and in relatively short reaction times. Moreover, in this work, some novel -acetamido carbonyl compounds (i.e., one complex structure) are synthesized.
Masanori Tachikawa; Takayoshi Ishimoto; Taro Udagawa
2013-01-01
We have theoretically analyzed the nuclear quantum effect on the nuclear magnetic shieldings for the intramolecular hydrogen-bonded systems of σ-hydroxy acyl aromatic species using the gauge-including atomic orbital technique combined with our multi-component density functional theory. The effect of H/D quantum nature for geometry and nuclear magnetic shielding changes are analyzed. Our study clearly demonstrated that the geometrical changes of hydrogen-bonds induced by H/D isotope effect (ca...
Partridge, Stephanie R.; Allman-Farinelli, Margaret; McGeechan, Kevin; Balestracci, Kate; Wong, Annette T.Y.; Hebden, Lana; Harris, Mark F; Bauman, Adrian; Phongsavan, Philayrath
2016-01-01
Background TXT2BFiT was one of the first few innovative mHealth programs designed for young adults (18–35 years) with demonstrated efficacy in weight management. However, research is lacking to understand intervention effectiveness, especially in complex, multi-component mHealth programs. This paper investigates participant perceptions of and engagement with the mHealth program components in the TXT2BFiT to understand program effects. Methods Process evaluation data were collected continuousl...
Johnson, Kirsten; Sidani, Souraya; Epstein, Dana R.
2015-01-01
Insomnia and depression are prevalent and co-occurring conditions that are associated with significant impairment of life. Previous research indicates that cognitive-behavioral interventions for insomnia (CBT-I) can improve both insomnia and depressive symptoms. The aim of this study was to determine whether a multi-component behavioral intervention (MCI) improved both insomnia and depressive symptoms in persons presenting with insomnia and high levels of depression. The sample consisted of 3...
Kathrotiya Harshad G.; Patel Ranjan G.; Patel Manish P.
2012-01-01
A series of pyrano[2,3-c]pyrazole derivatives of indole has been synthesized by multi-component reaction using conventional and microwave irradiation approach. Particularly valuable features of this method include high yield, broad substrate scope, shorter reaction time and straightforward procedure. Antimicrobial screening against eight human pathogens, namely B. subtilis, C. tetani, S. pneumoniae, S. typhi, V. cholerae, E. coli, A. fumigatus and C. albicans by employing broth microdil...
Directory of Open Access Journals (Sweden)
Kathrotiya Harshad G.
2012-01-01
Full Text Available A series of pyrano[2,3-c]pyrazole derivatives of indole has been synthesized by multi-component reaction using conventional and microwave irradiation approach. Particularly valuable features of this method include high yield, broad substrate scope, shorter reaction time and straightforward procedure. Antimicrobial screening against eight human pathogens, namely B. subtilis, C. tetani, S. pneumoniae, S. typhi, V. cholerae, E. coli, A. fumigatus and C. albicans by employing broth microdilution MIC method as recommended by NCCLS.
Institute of Scientific and Technical Information of China (English)
SHI Feng; ZHANG Ge; ZHOU Dianxiang; MA Ning; ZHANG Yajie; CHEN Rongshun; TU Shujiang
2009-01-01
An unexpected green and facile synthesis of 2,6-diaryl-4-styryipyridines was realized via microwave-assisted multi-component reactions of 3-arylacrylaldehyde oximes,l-arylethanones and ammonium acetate in solvent-free conditions.This protocol has the prominent advantages of environmental-friendliness,short reaction time,high yields,low cost,easy operation as well as broad scope of applicability.
Energy Technology Data Exchange (ETDEWEB)
Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027 (Japan)
2015-12-31
To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.
Institute of Scientific and Technical Information of China (English)
SHATERIAN,Hamid Reza; HOSSEINIAN,Asghar; GHASHANG,Majid
2009-01-01
Silica-supported polyphosphoric acid (PPA-SiO2) was found to be an efficient catalyst for the multi-component condensation reaction of benzaldehydes,2-naphthol,and methyl/benzyl carbamate to afford the corresponding N-[α-(β-hydroxy-α-naphthyl)(benzyl)]O-alkyl carbamate derivatives in good to excellent yields.This new approach consistently has the advantage of short reaction time,high conversions,clean reaction profiles,and simple experimental and work-up procedures.
International Nuclear Information System (INIS)
The paper presents a one-dimensional transient mathematical model of compressible thermal multi-component gas mixture flow in a shock tube. The set of mass, momentum and enthalpy conservation equations is solved for the gas phase. Thermo-physical properties of multi-component natural gas mixture are calculated by solving the Equation of State (EOS) in the form of the Soave-Redlich-Kwong (SRK-EOS) model. The proposed mathematical model is validated against the experiments where the decompression wave speed in dry natural gases was measured at low temperatures and shows a good agreement with the experimental data at high and low initial pressure. The effect of the initial temperature on rapid decompression process is investigated numerically using the proposed model. Numerical results show that the proposed model simulates the decompression in natural gases much better and accurate than other models, and shows a great potential because it can be extended on the case of gas–liquid two-phase flow in a shock tube. Highlights: ► 1D transient mathematical model of thermal multi-component gas mixture pipe flows is developed. ► The model is validated on the experiments on RGD in dry natural gases. ► Numerical analysis on RGD in dry natural gas mixtures is performed. ► Predictions fit to the experiments much better than any other models
International Nuclear Information System (INIS)
Highlights: • We analyze nuclear quantum effects on hydrogen bonds around the chromophore in the photoactive yellow protein. • Multi-component density functional theory is used to analyze the H/D isotope effect on hydrogen bond distances. • The donor–acceptor distance in the hydrogen bonds are elongated by the deuterium substitution. - Abstract: To theoretically analyze the nuclear quantum effects of protons on two hydrogen bonds around the chromophore (CRO) in the photoactive yellow protein (PYP), we have calculated simple cluster model consisting of CRO, Glu46, and Tyr42 residues in PYP with the multi-component molecular orbital method and multi-component density functional theory, which can take account of quantum fluctuations of light mass particles. The average OO distances between CRO and Glu46 and between CRO and Tyr42 with our methods are shorter than the corresponding equilibrium ones, while the OH distances become longer due to the anharmonicity of the potential. The H/D geometrical isotope effect is also found, that is, the distances between oxygen atoms are elongated by the deuterium substitution, known as Ubbelohde effect
Moore, Michael D; Cogdill, Robert P; Short, Steven M; Hair, Colleen R; Wildfong, Peter L D
2008-06-01
X-ray powder diffraction (XRPD) analysis of intact multi-component consolidated mixtures has significant potential owing to the ability to non-destructively quantify and discriminate between solid phases in composite bodies with minimal sample preparation. There are, however, limitations to the quantitative power using traditional univariate methods on diffraction data containing features from all components in the system. The ability to separate multi-component diffraction data into patterns representing single constituents allows both composition as well as physical phenomena associated with the individual components of complex systems to be probed. Intact, four-component compacts, consisting of two crystalline and two amorphous constituents were analyzed using XRPD configured in both traditional Bragg-Brentano reflectance geometry and parallel-beam transmission geometry. Two empirical, model-based methods consisting of a multiple step net analyte signal (NAS) orthogonalization are presented as ways to separate multi-component XRPD patterns into single constituent patterns. Multivariate figures of merit (FOM) were calculated for each of the isolated constituents to compare method-specific parameters such as sensitivity, selectivity, and signal-to-noise, enabling quantitative comparisons between the two modes of XRPD analysis. PMID:18294800
Bonì, Roberta; Fiaschi, Simone; Calcaterra, Domenico; Di Martire, Diego; Ibrahim, Ahmed; Meisina, Claudia; Perini, Luisa; Ramondini, Massimo; Tessitore, Serena; Floris, Mario
2015-04-01
images acquired by ERS-1/2 (1992-2000), ENVISAT (2003-2010) and TERRASAR-X (2012-2014) sensors. The test site is located in the south-eastern sector of the Po River plain, along the Adriatic Sea, where there are present around 1500-3000 m of Quaternary deposits, mainly constituted by sandy and silty-clay layers of alluvial and marine origin. These sediments lay on a pre-Quaternary substratum characterized by buried active thrusts, which are parallel to the Apennine alignment. The particular geological context deserves special attention, because it hosts several municipalities and relevant infrastructures, where a long-trend of subsidence rate has been recorded over the last decades, representing the result of superimposed phenomena: tectonic, depositional, climatic and man-induced processes. The definition of the multi-component contribution is intended as a crucial step towards a more reliable subsidence prediction model, which, in turn, will help to better calibrate the suitable remedial measures as to prevent further ground deformations of this important coastal lowland.
What classicality? Decoherence and Bohr's classical concepts
Schlosshauer, Maximilian
2010-01-01
Niels Bohr famously insisted on the indispensability of what he termed "classical concepts." In the context of the decoherence program, on the other hand, it has become fashionable to talk about the "dynamical emergence of classicality" from the quantum formalism alone. Does this mean that decoherence challenges Bohr's dictum and signifies a break with the Copenhagen interpretation-for example, that classical concepts do not need to be assumed but can be derived? In this paper we'll try to shine some light down the murky waters where formalism and philosophy cohabitate. To begin, we'll clarify the notion of classicality in the decoherence description. We'll then discuss Bohr's and Heisenberg's take on the quantum-classical problem and reflect on different meanings of the terms "classicality" and "classical concepts" in the writings of Bohr and his followers. This analysis will allow us to put forward some tentative suggestions for how we may better understand the relation between decoherence-induced classical...
International Nuclear Information System (INIS)
Graphical abstract: Molecular dynamics method based on multi-component molecular orbital method was applied to basic hydrogen bonding systems, H5O2+, and its isotopomers (D5O2+andT5O2+). Highlights: ► Molecular dynamics method with nuclear quantum effect was developed. ► Multi-component molecular orbital method was used as ab initio MO calculation. ► Developed method applied to basic hydrogen bonding system, H5O2+, and isotopomers. ► O⋯O vibrational stretching reflected to the distribution of protonic wavefunctions. ► H/D/T isotope effect was also analyzed. - Abstract: We propose a molecular dynamics (MD) method based on the multi-component molecular orbital (MCMO) method, which takes into account the quantum effect of proton directly, for the detailed analyses of proton transfer in hydrogen bonding system. The MCMO based MD (MCMO-MD) method is applied to the basic structures, H5O2+ (called “Zundel ion”), and its isotopomers (D5O2+andT5O2+). We clearly demonstrate the geometrical difference of hydrogen bonded O⋯O distance induced by H/D/T isotope effect because the O⋯O in H-compound was longer than that in D- or T-compound. We also find the strong relation between stretching vibration of O⋯O and the distribution of hydrogen bonded protonic wavefunction because the protonic wavefunction tends to delocalize when the O⋯O distance becomes short during the dynamics. Our proposed MCMO-MD simulation is expected as a powerful tool to analyze the proton dynamics in hydrogen bonding systems.
Directory of Open Access Journals (Sweden)
Masanori Tachikawa
2013-05-01
Full Text Available We have theoretically analyzed the nuclear quantum effect on the nuclear magnetic shieldings for the intramolecular hydrogen-bonded systems of σ-hydroxy acyl aromatic species using the gauge-including atomic orbital technique combined with our multi-component density functional theory. The effect of H/D quantum nature for geometry and nuclear magnetic shielding changes are analyzed. Our study clearly demonstrated that the geometrical changes of hydrogen-bonds induced by H/D isotope effect (called geometrical isotope effect: GIE is the dominant factor of deuterium isotope effect on 13C chemical shift.
Salo, Heikki; Laine, Jarkko; Comerón, Sebastien; Gadotti, Dimitri A; Buta, Ron; Sheth, Kartik; Zaritsky, Dennis; Ho, Luis; Knapen, Johan; Athannassoula, E; Bosma, Albert; Laine, Seppo; Cisternas, Mauricio; Kim, Taehyun; Regan, Juan Carlos Muñoz-Mateos Michael; Hinz, Joannah L; de Paz, Armando Gil; Menendez-Delmestre, Karin; Mizusawa, Trisha; Erroz-Ferrer, Santiago; Meidt, Sharon E; Querejeta, Miguel
2015-01-01
The Spitzer Survey of Stellar Structure in Galaxies (S$^4$G, Sheth et. al. 2010) is a deep 3.6 and 4.5 $\\mu$m imaging survey of 2352 nearby ($< 40$ Mpc) galaxies. We describe the S$^4$G data analysis pipeline 4, which is dedicated to 2-dimensional structural surface brightness decompositions of 3.6 $\\mu$m images, using GALFIT3.0 \\citep{peng2010}. Besides automatic 1-component S\\'ersic fits, and 2-component S\\'ersic bulge + exponential disk fits, we present human supervised multi-component decompositions, which include, when judged appropriate, a central point source, bulge, disk, and bar components. Comparison of the fitted parameters indicates that multi-component models are needed to obtain reliable estimates for the bulge S\\'ersic index and bulge-to-total light ratio ($B/T$), confirming earlier results \\citep{laurikainen2007, gadotti2008, weinzirl2009}. In this first paper, we describe the preparations of input data done for decompositions, give examples of our decomposition strategy, and describe the d...
Directory of Open Access Journals (Sweden)
Jantien van Berkel
Full Text Available OBJECTIVES: The aim of the present study was to evaluate the effectiveness of a worksite mindfulness-related multi-component health promotion intervention on work engagement, mental health, need for recovery and mindfulness. METHODS: In a randomized controlled trial design, 257 workers of two research institutes participated. The intervention group (n = 129 received a targeted mindfulness-related training, followed by e-coaching. The total duration of the intervention was 6 months. Data on work engagement, mental health, need for recovery and mindfulness were collected using questionnaires at baseline and after 6 and 12 months follow-up. Effects were analyzed using linear mixed effect models. RESULTS: There were no significant differences in work engagement, mental health, need for recovery and mindfulness between the intervention and control group after either 6- or 12-months follow-up. Additional analyses in mindfulness-related training compliance subgroups (high and low compliance versus the control group as a reference and subgroups based on baseline work engagement scores showed no significant differences either. CONCLUSIONS: This study did not show an effect of this worksite mindfulness-related multi-component health promotion intervention on work engagement, mental health, need for recovery and mindfulness after 6 and 12 months. TRIAL REGISTRATION: Netherlands Trial Register NTR2199.
International Nuclear Information System (INIS)
In the present paper, mass transfer has been numerically studied in a laminar flow through a circular graphite tube to evaluate graphite corrosion rate and generation rate of carbon monoxide during a pipe rupture accident in a high temperature gas cooled reactor. In the analysis, heterogeneous (graphite oxidation and graphite/carbon dioxide reaction) and homogeneous (carbon monoxide combustion) chemical reactions were dealt in the multi-component gas mixture; helium, oxygen, carbon monoxide and carbon dioxide. Multi-component diffusion coefficients were used in a diffusion term. Mass conservation equations of each gas component, mass conservation equation and momentum conservation equations of the gas mixture were solved by using SIMPLE algorism. Chemical reactions between graphite and oxygen, graphite and carbon dioxide, and carbon monoxide combustion were taken into account in the present numerical analysis. An energy equation for the gas mixture was not solved and temperature was held to be constant in order to understand basic mass transfer characteristics without heat transfer. But, an energy conservation equation for single component gas was added to know heat transfer characteristics without mass transfer. The effects of these chemical reactions on the mass transfer coefficients were quantitatively and qualitatively clarified in the range of 50 to 1000 of inlet Reynolds numbers, 0 to 0.5 of inlet oxygen mass fraction and 800 to 1600degC of temperature. (author)
Directory of Open Access Journals (Sweden)
Yajing Lou
2014-01-01
Full Text Available Background: A new method has been developed for the simultaneous determination of ferulic acid, senkyunolide A, and Z-ligustilide in Angelicae Sinensis Radix before and after sulfur-fumigation using quantitative analysis of multi-components by a single marker (QAMS. Materials and Methods: The feasibility and accuracy of QAMS were checked by the external standard method, and various high-performance liquid chromatographic instruments and chromatographic conditions were investigated to verify its applicability. Using ferulic acid as the internal reference substance, and the contents of senkyunolide A and Z-ligustilide were calculated according to relative correction factors by high-performance liquid chromatography. Meanwhile, the influence of sulfur-fumigation on these chemical components in Angelicae Sinensis Radix were evaluated and discriminated by chromatographic fingerprint and chemometrics. Results: There was no significant difference observed between the QAMS method and the external standard method. Furthermore, sulfur-fumigation reduced the contents of ferulic acid, senkyunolide A, and Z-ligustilide in Angelicae Sinensis Radix by some degree, and the sun-drying and sulfur-fumigation processing could be easily discriminated by chromatographic fingerprint and chemometrics. Conclusion: QAMS is a convenient and accurate approach to analyzing multi-component when reference substances are unavailable, simultaneously, chemometrics is an effective way to discriminate sun-dried and sulfur-fumigated Angelicae Sinensis Radix.
McEwan, Desmond; Harden, Samantha M; Zumbo, Bruno D; Sylvester, Benjamin D; Kaulius, Megan; Ruissen, Geralyn R; Dowd, A Justine; Beauchamp, Mark R
2016-03-01
Drawing from goal setting theory (Latham & Locke, 1991; Locke & Latham, 2002; Locke et al., 1981), the purpose of this study was to conduct a systematic review and meta-analysis of multi-component goal setting interventions for changing physical activity (PA) behaviour. A literature search returned 41,038 potential articles. Included studies consisted of controlled experimental trials wherein participants in the intervention conditions set PA goals and their PA behaviour was compared to participants in a control group who did not set goals. A meta-analysis was ultimately carried out across 45 articles (comprising 52 interventions, 126 effect sizes, n = 5912) that met eligibility criteria using a random-effects model. Overall, a medium, positive effect (Cohen's d(SE) = .552(.06), 95% CI = .43-.67, Z = 9.03, p goal setting interventions in relation to PA behaviour was found. Moderator analyses across 20 variables revealed several noteworthy results with regard to features of the study, sample characteristics, PA goal content, and additional goal-related behaviour change techniques. In conclusion, multi-component goal setting interventions represent an effective method of fostering PA across a diverse range of populations and settings. Implications for effective goal setting interventions are discussed. PMID:26445201
Directory of Open Access Journals (Sweden)
D. O. Topping
2006-11-01
Full Text Available In order to predict the physical properties of aerosol particles, it is necessary to adequately capture the behaviour of the ubiquitous complex organic components. One of the key properties which may affect this behaviour is the contribution of the organic components to the surface tension of aqueous particles in the moist atmosphere. Whilst the qualitative effect of organic compounds on solution surface tensions has been widely reported, our quantitative understanding on mixed organic and mixed inorganic/organic systems is limited. Furthermore, it is unclear whether models that exist in the literature can reproduce the surface tension variability for binary and higher order multi-component organic and mixed inorganic/organic systems of atmospheric significance. The current study aims to resolve both issues to some extent. Surface tensions of single and multiple solute aqueous solutions were measured and compared with predictions from a number of model treatments. On comparison with binary organic systems, two predictive models found in the literature provided a range of values resulting from sensitivity to calculations of pure component surface tensions. Results indicate that a fitted model can capture the variability of the measured data very well, producing the lowest average percentage deviation for all compounds studied. The performance of the other models varies with compound and choice of model parameters. The behaviour of ternary mixed inorganic/organic systems was unreliably captured by using a predictive scheme and this was composition dependent. For more "realistic" higher order systems, entirely predictive schemes performed poorly. It was found that use of the binary data in a relatively simple mixing rule, or modification of an existing thermodynamic model with parameters derived from binary data, was able to accurately capture the surface tension variation with concentration. Thus, it would appear that in order to model
Bidirectional coherent classical communication
Harrow, Aram W.; Leung, Debbie W.
2005-01-01
A unitary interaction coupling two parties enables quantum or classical communication in both the forward and backward directions. Each communication capacity can be thought of as a tradeoff between the achievable rates of specific types of forward and backward communication. Our first result shows that for any bipartite unitary gate, bidirectional coherent classical communication is no more difficult than bidirectional classical communication — they have the same achievable rate regions. ...
Entanglement in Classical Optics
Ghose, Partha; Mukherjee, Anirban
2013-01-01
The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate betw...
Directory of Open Access Journals (Sweden)
Lori Graham
2015-09-01
Full Text Available This study was designed to demonstrate the effect of implementing multi-component vocabulary strategy instruction in fourth grade social studies. Curriculum was designed for a six-week period and was intended to actively engage students and reinforce retention of word meanings in isolation and in context. Teachers were randomly chosen for assignment to the intervention and/or to the comparison group. The study included 375 fourth-grade students from 3 different districts and 5 schools. The student population consisted of 29 classes taught by 23 different teachers. Two different vocabulary and comprehension measures were administered, and results were analyzed using difference score analyses and repeated measures ANOVAs. Outcomes were consistent across both administered measures. Although student scores improved in both the group receiving the intervention and the group receiving regular classroom instruction, findings indicated that the group receiving the intervention showed greater gains and persisted longer than in the comparison classrooms.
Li, Da-Wei; Zhu, Ming; Shao, Yun-Dong; Shen, Zhe; Weng, Chen-Chen; Yan, Wei-Dong
2016-04-15
The quality of tea is mainly attributed to tea polyphenols and caffeine. In this paper, a new strategy for quality evaluation of green tea extracts was explored and verified through qualitative and quantitative analysis of multi-components by single marker (QAMS). Taguchi Design was introduced to evaluate the fluctuations of the relative conversion factors (fx) of tea catechins, gallic acid and caffeine to epigallocatechin gallate. The regression model (Sig.=0.000) and the deviations (R(2)>0.999) between QAMS and normal external standard method proved the consistency of the two methods. Hierarchical cluster analysis and canonical discriminant analysis were employed to classify 26 batches of commercial Longjing green tea extracts (LJGTEs) collected from different producers. The results showed a significant difference in component profile between the samples from different origins. The QAMS method was verified to be an alternative and promising method to comprehensively and effectively control the quality of LJGTEs from different origins. PMID:26675847
Energy Technology Data Exchange (ETDEWEB)
Mauviel, G.
2003-12-15
Hydrogen separation by reverse selectivity membranes is investigated. The first goal is to develop materials showing an increased selectivity. Silicone membranes loaded with inorganic fillers have been prepared, but the expected enhancement is not observed. The second goal is to model the multi- component transport through rubbers. Indeed the permeability model is not able to predict correctly permeation when a vapour is present. Thus many phenomena have to be considered: diffusional inter-dependency, sorption synergy, membrane swelling and drag effect. The dependence of diffusivities with the local composition is modelled according to free-volume theory. The model resolution allows to predict the permeation flow-rates of mixed species from their pure sorption and diffusion data. For the systems under consideration, the diffusional inter-dependency is shown to be preponderant. Besides, sorption synergy importance is pointed out, whereas it is most often neglected. (author)
Tavakoli, Rouhollah
2016-01-01
An unconditionally energy stable time stepping scheme is introduced to solve Cahn-Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate the success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results.
Construction and evaluation of multi-component Zn-Al based bearing alloys (Zn-Al-Si, Zn-Al-Cu)
International Nuclear Information System (INIS)
Zn-Al based alloys, with excellent mechanical properties, are finding increasing applications in various industries, especially bearing and bushing fields. Observed dimensional instabilities, in their multicomponent systems, (e. g. Zn-Al-Si and, Zn-Al Si-Cu), is believed to be as the result of some kinds of phase transformation, due to the temperature variations, while in service. Profound understanding of the phase transformations due to the temperature variation, requires detailed evaluations of the isothermal sections of the multi-components phase diagrams of Zn-Al-Si and, Zn-Al-Si-Cu alloy systems. In the present article, the isothermal sections of the aforementioned ternary and quaternary systems in the solid state regions have been investigated and observed phase transitions have been critically evaluated
Classical, Semi-classical and Quantum Noise
Poor, H; Scully, Marlan
2012-01-01
David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...
Teleportation via classical entanglement
Rafsanjani, Seyed Mohammad Hashemi; Magaña-Loaiza, Omar S; Boyd, Robert W
2015-01-01
We present a classical counterpart to quantum teleportation that uses classical entanglement instead of quantum entanglement. In our implementation we take advantage of classical entanglement among three parties: orbital angular momentum (OAM), polarization, and the radial degrees of freedom of a beam of light. We demonstrate the teleportation of arbitrary OAM states, in the subspace spanned by any two OAM states, to the polarization of the same beam. Our letter presents the first classical demonstration of a commonly-perceived--quantum phenomenon that requires entanglement among more than two parties.
Intrinsic surface hardening and precipitation kinetics of Al0.3CrFe1.5MnNi0.5 multi-component alloy
International Nuclear Information System (INIS)
Highlights: ► Al0.3CrFe1.5MnNi0.5 multi-component alloy with surface hardening was developed. ► By simple aging treatments, the surface hardness was markedly enhanced. ► Wear resistance was efficiently improved, and fracture toughness retained. ► The intrinsic surface hardening behaves similar to short-range decomposition. ► The intrinsic surface hardening has relatively low heterogeneous nucleation energy. - Abstract: An Al0.3CrFe1.5MnNi0.5 multi-component alloy with a very effective surface hardening ability attributed to intrinsic ρ phase precipitation and applicable to complex tool components was developed. Under a conventional aging treatment in a normal atmosphere at 550 °C for 2 h, the alloy with the surface precipitation hardening layer of 74 μm thick exhibited markedly enhanced surface hardness from HV 338 to HV 840 and efficiently improved wear resistance to 1.4 times the values of SUJ2 and SKD61 steels, while high fracture toughness close to that of ductile SKD61 steel was effectively retained. Precipitation thermodynamics and growth kinetics of the surface hardening layer were also investigated. The growth of the surface hardening layer was much faster than that of the precipitation in the bulk matrix; it did not follow typical long-distance diffusion kinetics but behaves more similar to a self-induced or reaction-accelerated short-range decomposition with a thickness increase proportional to the cube of aging time. On the surface, a lower heterogeneous nucleation energy and a reduced strain energy (total 55 kJ/mol) than the regular nucleation energy in the bulk matrix (78 kJ/mol) dominated the rapid formation and growth of the intrinsic surface precipitation with significant strain relaxations.
International Nuclear Information System (INIS)
Highlights: • The approach aims to improve multi-phase and multi-component thermal-hydraulics. • Same interface relation applies for ceramic dissolution, MCCI and IVR. • Interface temperature depends on fluid and wall properties and on ablation rate. • We predict ablation instabilities when the melt interacts with two walls. - Abstract: The question of the transient interface conditions in various severe accident situations, involving multi-component and multi-phase material mixtures has until now remained largely unresolved. The interface temperature controls melt temperature and transient heat-flux distribution. The present paper proposes a new approach to the transient interface temperature, drawing on the numerous past efforts. A single relation is proposed which applies to various severe accident situations: (i) thermal-hydraulic steady state for in-vessel retention (IVR); (ii) transient solidification; (iii) transient concrete ablation (MCCI); and (iv) refractory material (ceramic) ablation (core-catcher retention, liner design). This approach yields the following important conclusions: -When a thermal-hydraulic steady state can be reached (external cooling, in case of IVR and melt stabilization in an externally cooled core-catcher), the melt-solid interface temperature tends towards the liquidus temperature corresponding to the melt composition. -During the ablation transient: • the interface temperature is lower than the melt liquidus temperature if the wall-melting temperature is less than the melt liquidus temperature (MCCI), • the interface temperature is higher than the melt liquidus temperature if the melting temperature of the wall exceeds the melt liquidus (oxidic corium-refractory ceramic interaction). The new interface model also suggests that simultaneous ablation of two similar walls (for instance: two concrete walls) may be subject to instabilities which can potentially result in complete arrest of the ablation of one of the walls
Drummond, James E
2013-01-01
A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa
Casimir effect: The classical limit
International Nuclear Information System (INIS)
We analyze the high temperature (or classical) limit of the Casimir effect. A useful quantity which arises naturally in our discussion is the 'relative Casimir energy', which we define for a configuration of disjoint conducting boundaries of arbitrary shapes, as the difference of Casimir energies between the given configuration and a configuration with the same boundaries infinitely far apart. Using path integration techniques, we show that the relative Casimir energy vanishes exponentially fast in temperature. This is consistent with a simple physical argument based on Kirchhoff's law. As a result the 'relative Casimir entropy', which we define in an obviously analogous manner, tends, in the classical limit, to a finite asymptotic value which depends only on the geometry of the boundaries. Thus the Casimir force between disjoint pieces of the boundary, in the classical limit, is entropy driven and is governed by a dimensionless number characterizing the geometry of the cavity. Contributions to the Casimir thermodynamical quantities due to each individual connected component of the boundary exhibit logarithmic deviations in temperature from the behavior just described. These logarithmic deviations seem to arise due to our difficulty to separate the Casimir energy (and the other thermodynamical quantities) from the 'electromagnetic' self-energy of each of the connected components of the boundary in a well defined manner. Our approach to the Casimir effect is not to impose sharp boundary conditions on the fluctuating field, but rather take into consideration its interaction with the plasma of 'charge carriers' in the boundary, with the plasma frequency playing the role of a physical UV cutoff. This also allows us to analyze deviations from a perfect conductor behavior
Lectures on Classical Integrability
Torrielli, Alessandro
2016-01-01
We review some essential aspects of classically integrable systems. The detailed outline of the lectures consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schroedinger model, principal chiral field); 4. Features of classical r-matrices: Belavin-Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel'fand-Levitan-Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.
Grassmannians of classical buildings
Pankov, Mark
2010-01-01
Buildings are combinatorial constructions successfully exploited to study groups of various types. The vertex set of a building can be naturally decomposed into subsets called Grassmannians. The book contains both classical and more recent results on Grassmannians of buildings of classical types. It gives a modern interpretation of some classical results from the geometry of linear groups. The presented methods are applied to some geometric constructions non-related to buildings - Grassmannians of infinite-dimensional vector spaces and the sets of conjugate linear involutions. The book is self
Davidson and classical pragmatism
Directory of Open Access Journals (Sweden)
Paula Rossi
2007-06-01
Full Text Available In this paper I wish to trace some connections between Donald Davidson's work (1917-2003 and two major representatives of the classical pragmatist movement: Charles S. Peirce (1839-1914 and William James (1842-1910. I will start with a basic characterization of classical pragmatism; then, I shall examine certain conceptions in Peirce's and James' pragmatism, in order to establish affinities with Davidson´s thought. Finally, and bearing in mind the previous con-nections, I will reflect briefly on the relevance –often unrecognized- of classical pragmatist ideas in the context of contemporary philosophi-cal discussions.
Directory of Open Access Journals (Sweden)
D. O. Topping
2007-01-01
Full Text Available In order to predict the physical properties of aerosol particles, it is necessary to adequately capture the behaviour of the ubiquitous complex organic components. One of the key properties which may affect this behaviour is the contribution of the organic components to the surface tension of aqueous particles in the moist atmosphere. Whilst the qualitative effect of organic compounds on solution surface tensions has been widely reported, our quantitative understanding on mixed organic and mixed inorganic/organic systems is limited. Furthermore, it is unclear whether models that exist in the literature can reproduce the surface tension variability for binary and higher order multi-component organic and mixed inorganic/organic systems of atmospheric significance. The current study aims to resolve both issues to some extent. Surface tensions of single and multiple solute aqueous solutions were measured and compared with predictions from a number of model treatments. On comparison with binary organic systems, two predictive models found in the literature provided a range of values resulting from sensitivity to calculations of pure component surface tensions. Results indicate that a fitted model can capture the variability of the measured data very well, producing the lowest average percentage deviation for all compounds studied. The performance of the other models varies with compound and choice of model parameters. The behaviour of ternary mixed inorganic/organic systems was unreliably captured by using a predictive scheme and this was dependent on the composition of the solutes present. For more atmospherically representative higher order systems, entirely predictive schemes performed poorly. It was found that use of the binary data in a relatively simple mixing rule, or modification of an existing thermodynamic model with parameters derived from binary data, was able to accurately capture the surface tension variation with concentration. Thus
Directory of Open Access Journals (Sweden)
Eves Frank F
2012-06-01
Full Text Available Abstract Background Accumulation of lifestyle physical activity is a current aim of health promotion, with increased stair climbing one public health target. While the workplace provides an opportunity for regular stair climbing, evidence for effectiveness of point-of-choice interventions is equivocal. This paper reports a new approach to worksite interventions, aimed at changing attitudes and, hence, behaviour. Methods Pre-testing of calorific expenditure messages used structured interviews with members of the public (n = 300. Effects of multi-component campaigns on stair climbing were tested with quasi-experimental, interrupted time-series designs. In one worksite, a main campaign poster outlining the amount of calorific expenditure obtainable from stair climbing and a conventional point-of-choice prompt were used (Poster alone site. In a second worksite, additional messages in the stairwell about calorific expenditure reinforced the main campaign (Poster + Stairwell messages site. The outcome variables were automated observations of stair and lift ascent (28,854 and descent (29,352 at baseline and for three weeks after the intervention was installed. Post-intervention questionnaires for employees at the worksites assessed responses to the campaign (n = 253. Analyses employed Analysis of Variance with follow-up Bonferroni t-tests (message pre-testing, logistic regression of stair ascent and descent (campaign testing, and Bonferroni t-tests and multiple regression (follow-up questionnaire. Results Pre-testing of messages based on calorific expenditure suggested they could motivate stair climbing if believed. The new campaign increased stair climbing, with greater effects at the Poster + Stairwell messages site (OR = 1.52, 95% CI = 1.40-1.66 than Posters alone (OR = 1.24, 95% CI = 1.15-1.34. Follow-up revealed higher agreement with two statements about calorific outcomes of stair climbing in the site where they
Physics of classical electromagnetism
Fujimoto, Minoru
2007-01-01
The classical electromagnetism described by the Maxwell equations constitutes a fundamental law in contemporary physics. Even with the advent of sophisticated new materials, the principles of classical electromagnetism are still active in various applied areas in today’s advanced communication techniques. Physics of Classical Electromagnetism, by Minoru Fujimoto, is written with concise introductory arguments emphasizing the original field concept, with an aim at understanding objectives in modern information technology. Following basic discussions of electromagnetism with a modernized approach, this book will provide readers with an overview of current problems in high-frequency physics. To further the reader’s understanding of the concepts and applications discussed, each illustration within the book shows the location of all active charges, and the author has provided many worked-out examples throughout the book. Physics of Classical Electromagnetism is intended for students in physics and engineering ...
Quirk, R
1984-11-01
The specialised medical knowledge about dancers' injuries is negligible compared with that which surrounds sports medicine. The author discusses his experience in the management of more than 2000 injuries sustained by dancers of classical ballet. PMID:6151832
Classical and Quantum Intertwine
Blanchard, Ph.; Jadczyk, A.
1993-01-01
Model interactions between classical and quantum systems are briefly discussed. These include: general measurement-like couplings, Stern-Gerlach experiment, model of a counter, quantum Zeno effect, SQUID-tank model.
Horzela, Andrzej; Kapuscik, Edward
1993-01-01
An alternative picture of classical many body mechanics is proposed. In this picture particles possess individual kinematics but are deprived from individual dynamics. Dynamics exists only for the many particle system as a whole. The theory is complete and allows to determine the trajectories of each particle. It is proposed to use our picture as a classical prototype for a realistic theory of confined particles.
Davidson and classical pragmatism
Paula Rossi
2007-01-01
In this paper I wish to trace some connections between Donald Davidson's work (1917-2003) and two major representatives of the classical pragmatist movement: Charles S. Peirce (1839-1914) and William James (1842-1910). I will start with a basic characterization of classical pragmatism; then, I shall examine certain conceptions in Peirce's and James' pragmatism, in order to establish affinities with Davidson´s thought. Finally, and bearing in mind the previous con-nections, I will reflect brie...
Classical electromagnetism in a nutshell
Garg, Anupam
2012-01-01
This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.
SO2在多组分悬浮液中的吸收反应特性%CHARACTERISTICS OF SULFURDIOXIDE ABSORPFION IN MULTI-COMPONENT SUSPENSIONS
Institute of Scientific and Technical Information of China (English)
刘妮; 高翔; 骆仲泱; 孔华; 岑可法
2001-01-01
The emission of sulfur dioxide in flue gases is an important problem in industry involving combustion of coal. The wet scrubbing process using lime/limestone slurry as the scrubbing medium is currently the dominant technology for the flue gas desulfurization. Due to the presence of numerous ionic and neutral species in the slurry, the chemical reactions involved in the slurry upon absorption of sulfur dioxide are complex. In this paper, a method of measuring the sulfur dioxide absorption in multi-component suspensions was developed and the characteristics of sulfur dioxide absorption were investigated. The results show that different additives chosed in the experiment can improve the ability of SO2 absorption. As to the same additive, the improvement effect is differ with different concentration. For the magnesium hydroxide additive, its optimum concentration is 1×10-4 mol/L. Experiment results suggested that dissolved sulfur dioxide reacts mainly with the magnesium sulfite ion pair which is responsible for the increased absorption rate of SO2. However, when CO2-3 or SO24- anions are present in the solution, the catalytic effect of magnesium hydroxide precipitate on sulfur dioxide absorption reduces. According to the experiments, absorbents with better performance can be optimized to be applied in semi-dry or wet FGD process to raise SO2 removal efficiency.
Sanphui, Palash; Rajput, Lalit; Gopi, Shanmukha Prasad; Desiraju, Gautam R
2016-06-01
Erlotinib is a BCS (biopharmaceutical classification system) class II drug used for the treatment of non-small cell lung cancer. There is an urgent need to obtain new solid forms of higher solubility to improve the bioavailability of the API (active pharmaceutical ingredient). In this context, cocrystals with urea, succinic acid, and glutaric acid and salts with maleic acid, adipic acid, and saccharin were prepared via wet granulation and solution crystallizations. Crystal structures of the free base (Z' = 2), cocrystals of erlotinib-urea (1:1), erlotinib-succinic acid monohydrate (1:1:1), erlotinib-glutaric acid monohydrate (1:1:1) and salts of erlotinib-adipic acid adipate (1:0.5:0.5) are determined and their hydrogen-bonding patterns are analyzed. Self recognition via the (amine) N-H...N (pyridine) hydrogen bond between the API molecules is replaced by several heterosynthons such as acid-pyridine, amide-pyridine and carboxylate-pyridinium in the new binary systems. Auxiliary interactions play an important role in determining the conformation of the API in the crystal. FT-IR spectroscopy is used to distinguish between the salts and cocrystals in the new multi-component systems. The new solid forms are characterized by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) to confirm their unique phase identity. PMID:27240760
Energy Technology Data Exchange (ETDEWEB)
Kim, J. S.; Lee, M. H., E-mail: mhlee1@kitech.re.kr [Headquarters Bearing Division, Iljin Global Co., Ltd., Seoul 135-875 (Korea, Republic of); Kim, S. Y. [Rare Metals R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Kim, D. H. [Center for Noncrystalline Materials, Yonsei University, Seoul 120-749 (Korea, Republic of); Ott, R. T. [Division of Materials and Engineering, Ames Laboratory (US DOE), Ames, Iowa 50011 (United States); Kim, H. G. [LWR Fuel Technology Division, Korea Atomic Energy Institute, Daejeon 305-600 (Korea, Republic of)
2015-07-15
The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni{sub 59}Zr{sub 20}Ti{sub 16}Si{sub 2}Sn{sub 3} metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO{sub 3}, ZrTiO{sub 4} and ZrSnO{sub 4} ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.
Energy Technology Data Exchange (ETDEWEB)
Machrafi, Hatim, E-mail: hatim-machrafi@enscp.f [UPMC Universite Paris 06, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); Universite de Liege, Thermodynamique des Phenomenes Irreversibles, 17, Allee du Six-Aout, 4000 Liege (Belgium)
2010-10-15
In order to contribute to the auto-ignition and emission control for Homogeneous Charge Compression Ignition (HCCI), a kinetic multi-component mechanism, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene is validated in this work, comparing for the concentration profiles of the fuel, the total hydrocarbons, O{sub 2}, CO{sub 2}, CO, acetaldehyde and iso-butene. These species are sampled during the combustion and quantified. For these measurements an automotive exhaust analyser, a gas chromatograph, coupled to a mass spectrometer and a flame ionisation detector are used, depending on the species to be measured. The fuel, total hydrocarbons, O{sub 2}, CO{sub 2}, iso-butene and acetaldehyde showed a satisfactory quantitative agreement between the mechanism and the experiments. Both the experiments and the modelling results showed the same formation behaviour of the different species. An example is shown of how such a validated mechanism can provide for a set of information of the behaviour of the auto-ignition process and the emission control as a function of engine parameters.
Gao, Wen; Wang, Rui; Li, Dan; Liu, Ke; Chen, Jun; Li, Hui-Jun; Xu, Xiaojun; Li, Ping; Yang, Hua
2016-01-01
The flowers of Lonicera japonica Thunb. were extensively used to treat many diseases. As the demands for L. japonica increased, some related Lonicera plants were often confused or misused. Caffeoylquinic acids were always regarded as chemical markers in the quality control of L. japonica, but they could be found in all Lonicera species. Thus, a simple and reliable method for the evaluation of different Lonicera flowers is necessary to be established. In this work a method based on single standard to determine multi-components (SSDMC) combined with principal component analysis (PCA) for control and distinguish of Lonicera species flowers have been developed. Six components including three caffeoylquinic acids and three iridoid glycosides were assayed simultaneously using chlorogenic acid as the reference standard. The credibility and feasibility of the SSDMC method were carefully validated and the results demonstrated that there were no remarkable differences compared with external standard method. Finally, a total of fifty-one batches covering five Lonicera species were analyzed and PCA was successfully applied to distinguish the Lonicera species. This strategy simplifies the processes in the quality control of multiple-componential herbal medicine which effectively adapted for improving the quality control of those herbs belonging to closely related species. PMID:26432385
Kou, Jisheng
2015-03-01
In this paper, we consider multi-component dynamic two-phase interface models, which are formulated by the Cahn-Hilliard system with Peng-Robinson equation of state and various boundary conditions. These models can be derived from the minimum problems of Helmholtz free energy or grand potential in the realistic thermodynamic systems. The resulted Cahn-Hilliard systems with various boundary conditions are fully coupled and strongly nonlinear. A linear transformation is introduced to decouple the relations between different components, and as a result, the models are simplified. From this, we further propose a semi-implicit unconditionally stable time discretization scheme, which allows us to solve the Cahn-Hilliard system by a decoupled way, and thus, our method can significantly reduce the computational cost and memory requirements. The mixed finite element methods are employed for the spatial discretization, and the approximate errors are also analyzed for both space and time. Numerical examples are tested to demonstrate the efficiency of our proposed methods. © 2015 Elsevier B.V.
Directory of Open Access Journals (Sweden)
Farzaneh Movaseghi
2015-05-01
Full Text Available The purpose of the present study was to examine the effect of 3-years of moderate multi-component exercise training on bone mineral density and bone mineral content in a female subject with osteoporosis. A 57-year-old postmenopausal woman, a known case of osteoporosis following an accident, participated in this study. Bone mineral density and bone mineral content was measured in the femoral neck area and the lumbar spine by dual energy X-ray absorptiometry. The measurements lasted four years, first year without any exercise training and three succeeding years with exercise intervention. After three years of exercise training, bone mineral density and bone mineral content were improved in both regions, despite the increase in age and decrease in weight. This case highlights the importance of exercise training in maintaining and increasing bone mineral density and bone mineral content of the spine and hip in post-menopausal women. Considering its positive effects, regular and lifelong exercise training must be incorporated into peoples' life due to the chronic nature of bone loss in aging process.
Kulmala, M.; Lappalainen, H. K.; Petäjä, T.; Kurten, T.; Kerminen, V.-M.; Viisanen, Y.; Hari, P.; Bondur, V.; Kasimov, N.; Kotlyakov, V.; Matvienko, G.; Baklanov, A.; Guo, H. D.; Ding, A.; Hansson, H.-C.; Zilitinkevich, S.
2015-08-01
The Pan-Eurasian Experiment (PEEX) is a multi-disciplinary, multi-scale and multi-component research, research infrastructure and capacity building program. PEEX has originated from a bottom-up approach by the science communities, and is aiming at resolving the major uncertainties in Earth System Science and global sustainability issues concerning the Arctic and boreal Pan-Eurasian regions, as well as China. The vision of PEEX is to solve interlinked global grand challenges influencing human well-being and societies in northern Eurasia and China. Such challenges include climate change, air quality, biodiversity loss, urbanization, chemicalization, food and fresh water availability, energy production and use of natural resources by mining, industry, energy production and transport sectors. Our approach is integrative and supra-disciplinary, recognizing the important role of the Arctic and boreal ecosystems in the Earth system. The PEEX vision includes establishing and maintaining long-term, coherent and coordinated research activities as well as continuous, comprehensive research and educational infrastructures and related capacity building across the PEEX domain. In this paper we present the PEEX structure, summarize its motivation, objectives and future outlook.
International Nuclear Information System (INIS)
We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively
Djebbi, Ramzi
2014-08-05
Multi-parameter inversion in anisotropic media suffers from the inherent trade-off between the anisotropic parameters, even under the acoustic assumption. Multi-component data, often acquired nowadays in ocean bottom acquisition and land data, provide additional information capable of resolving anisotropic parameters under the acoustic approximation assumption. Based on Born scattering approximation, we develop formulas capable of characterizing the radiation patterns for the acoustic pseudo-pure mode P-waves. Though commonly reserved for the elastic fields, we use displacement fields to constrain the acoustic vertical transverse isotropic (VTI) representation of the medium. Using the asymptotic Green\\'s functions and a horizontal reflector we derive the radiation patterns for perturbations in the anisotropic media. The radiation pattern for the anellipticity parameter η is identically zero for the horizontal displacement. This allows us to dedicate this component to invert for velocity and δ. Computing the traveltime sensitivity kernels based on the unwrapped phase confirms the radiation patterns observations, and provide the model wavenumber behavior of the update.
Directory of Open Access Journals (Sweden)
J. S. Kim
2015-07-01
Full Text Available The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K and highly pressurized water (18.9 MPa near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni59Zr20Ti16Si2Sn3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO3, ZrTiO4 and ZrSnO4 ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.
Directory of Open Access Journals (Sweden)
Sheri Kingsdorf
2016-12-01
Full Text Available In third grade the focus on math word problems becomes prominent. In the limited third grade research, teacher-mediated explicit instruction with multiple exemplars, teaching students to use visual representations, and the incorporation of self-strategies, have proven effective. For these practices to reach their full potential though, their content must be relevant and provide for growth to mature mathematical concepts. Based on these conclusions, additional research was needed. Therefore, the focus of this study was to evaluate the effectiveness of a multi-component word problem-solving intervention with explicit instruction strategies, multiple exemplars, the teaching of student-generated visual representations, incorporation of a self-monitoring checklist, and Common Core State Standards’ appropriate curriculum. Within a multiple baseline across behaviors design, the study evaluated the paraphrasing, visualizing, and computing word problem-solving responses of 10 third graders identified as learning disabilities, at-risk, and/or ESOL. The study revealed that all students made gains in some behaviors related to problem solving. Results are discussed in relation to a cognitive-behavioral framework and individual student characteristics, including discussions of limitations and educational significance.
Directory of Open Access Journals (Sweden)
M. Kulmala
2015-08-01
Full Text Available The Pan-Eurasian Experiment (PEEX is a multi-disciplinary, multi-scale and multi-component research, research infrastructure and capacity building program. PEEX has originated from a bottom-up approach by the science communities, and is aiming at resolving the major uncertainties in Earth System Science and global sustainability issues concerning the Arctic and boreal Pan-Eurasian regions, as well as China. The vision of PEEX is to solve interlinked global grand challenges influencing human well-being and societies in northern Eurasia and China. Such challenges include climate change, air quality, biodiversity loss, urbanization, chemicalization, food and fresh water availability, energy production and use of natural resources by mining, industry, energy production and transport sectors. Our approach is integrative and supra-disciplinary, recognizing the important role of the Arctic and boreal ecosystems in the Earth system. The PEEX vision includes establishing and maintaining long-term, coherent and coordinated research activities as well as continuous, comprehensive research and educational infrastructures and related capacity building across the PEEX domain. In this paper we present the PEEX structure, summarize its motivation, objectives and future outlook.
International Nuclear Information System (INIS)
The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni59Zr20Ti16Si2Sn3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO3, ZrTiO4 and ZrSnO4 ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing
Classically-Controlled Quantum Computation
Perdrix, Simon; Jorrand, Philippe
2004-01-01
Quantum computations usually take place under the control of the classical world. We introduce a Classically-controlled Quantum Turing Machine (CQTM) which is a Turing Machine (TM) with a quantum tape for acting on quantum data, and a classical transition function for a formalized classical control. In CQTM, unitary transformations and measurements are allowed. We show that any classical TM is simulated by a CQTM without loss of efficiency. The gap between classical and quantum computations, ...
Learning Classical Music Club
2010-01-01
There is a new CERN Club called “Learning Classical Music at CERN”. We are aiming to give classical music lessons for different instruments (see link) for students from 5 to 100 years old. We are now ready to start our activities in the CERN barracks. We are now in the enrollment phase and hope to start lessons very soon ! Club info can be found in the list of CERN Club: http://user.web.cern.ch/user/Communication/SocialLifeActivities/Clubs/Clubs.html Salvatore Buontempo Club President
Dzhunushaliev, V D
1997-01-01
The spherically symmetric solution in classical SU(3) Yang - Mills theory is found. It is supposed that such solution describes a classical quark. It is regular in origin and hence the interaction between two quarks is small on the small distance. The obtained solution has the singularity on infinity. It is possible that is the reason why the free quark cannot exist. Evidently, nonlocality of this object leads to the fact that in quantum chromodynamic the difficulties arise connected with investigation of quarks interaction on large distance.
Brehm, Enrico M
2016-01-01
In this work, we introduce classical holographic codes. These can be understood as concatenated probabilistic codes and can be represented as networks uniformly covering hyperbolic space. In particular, classical holographic codes can be interpreted as maps from bulk degrees of freedom to boundary degrees of freedom. Interestingly, they are shown to exhibit features similar to those expected from the AdS/CFT correspondence. Among these are a version of the Ryu-Takayanagi formula and intriguing properties regarding bulk reconstruction and boundary representations of bulk operations. We discuss the relation of our findings with expectations from AdS/CFT and, in particular, with recent results from quantum error correction.
Classical mechanics with Maxima
Timberlake, Todd Keene
2016-01-01
This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.
Elementary classical hydrodynamics
Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C
1967-01-01
Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c
Classic Problems of Probability
Gorroochurn, Prakash
2012-01-01
"A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin
International Nuclear Information System (INIS)
The classical nova outburst occurs on the white dwarf component in a close binary system. Nova systems are members of the general class of cataclysmic variables and other members of the class are the Dwarf Novae, AM Her variables, Intermediate Polars, Recurrent Novae, and some of the Symbiotic variables. Although multiwavelength observations have already provided important information about all of these systems, in this review I will concentrate on the outbursts of the classical and recurrent novae and refer to other members of the class only when necessary. 140 refs., 1 tab
Nishida, Maki
The feasibility of Raman correlation spectroscopy (RCS) is investigated as a new temporal optical fluctuation spectroscopy in this dissertation. RCS analyzes the correlations of the intensity fluctuations of Raman scattering from particles in a suspension that undergo Brownian motion. Because each Raman emission line arises from a specific molecular bond, the RCS method could yield diffusion behavior of specific chemical species within a dispersion. Due to the nature of Raman scattering as a coherent process, RCS could provide similar information as acquired in dynamic light scattering (DLS) and be practical for various applications that requires the chemical specificity in dynamical information. The theoretical development is discussed, and four experimental implementations of this technique are explained. The autocorrelation of the intensity fluctuations from a beta-carotene solution is obtained using the some configurations; however, the difficulty in precise alignment and weak nature of Raman scattering prevented the achievement of high sensitivity and resolution. Possible fluctuations of the phase of Raman scattering could also be affecting the results. A possible explanation of the observed autocorrelation in terms of number fluctuations of particles is also examined to test the feasibility of RCS as a new optical characterization method. In order to investigate the complex systems for which RCS would be useful, strategies for the creation of a multicomponent nanoparticle system are also explored. Using regular solution theory along with the concept of Hansen solubility parameters, an analytical model is developed to predict whether two or more components will form single nanoparticles, and what effect various processing conditions would have. The reprecipitation method was used to demonstrate the formation of the multi-component system of the charge transfer complex perylene:TCNQ (tetracyanoquinodimethane) and the active pharmaceutical ingredient cocrystal
International Nuclear Information System (INIS)
In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO2 and B4C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al2O3, TiC, and TiB2 were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al2O3, TiC, and TiB2 were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB2 and Al2O3 in the composite
Directory of Open Access Journals (Sweden)
Maria Paz Garcia-Portilla
2013-12-01
Full Text Available Only a few studies have examined the efficacy and safety of smoking cessation programmes in patients with mental disorders. The aim of this paper is to describe in detail the methodology used in the study as well as the Multi-component Smoking Cessation Support Programme in terms of pharmacological treatments and psychological interventions. An open-label 9-month follow-up study was conducted in Spain. A total of 82 clinically stable outpatients with schizophrenia, schizoaffective or bipolar disorder were enrolled. Treatment consisted of a programme specifically developed by the research team for individuals with severe mental disorders. The programme consisted of two phases: (1 weekly individual motivational therapy for 4–12 weeks, and (2 a 12-week active treatment phase. During this phase, at each study visit patients received a one- or two-week supply of medication (transdermal nicotine patches, varenicline or bupropion with instructions on how to take it, in addition to group psychotherapy for smoking cessation. Evaluations were performed: (1 at the time of enrolment in the study, (2 during the 12-week active treatment phase of the study (weekly for the first 4 weeks and then biweekly, and (3 after the end of this phase (two follow-up assessments at weeks 12 and 24. Evaluations included: (1 smoking history, (2 substance use, (3 psychopathology, (4 adverse events, and (5 laboratory tests. The importance of this study lies in addressing a topical issue often ignored by psychiatrists: the unacceptably high rates of tobacco use in patients with severe mental disorders.
Arciero, Paul J; Ives, Stephen J; Norton, Chelsea; Escudero, Daniela; Minicucci, Olivia; O'Brien, Gabe; Paul, Maia; Ormsbee, Michael J; Miller, Vincent; Sheridan, Caitlin; He, Feng
2016-01-01
The beneficial cardiometabolic and body composition effects of combined protein-pacing (P; 5-6 meals/day at 2.0 g/kg BW/day) and multi-mode exercise (resistance, interval, stretching, endurance; RISE) training (PRISE) in obese adults has previously been established. The current study examines PRISE on physical performance (endurance, strength and power) outcomes in healthy, physically active women. Thirty exercise-trained women (>4 days exercise/week) were randomized to either PRISE (n = 15) or a control (CON, 5-6 meals/day at 1.0 g/kg BW/day; n = 15) for 12 weeks. Muscular strength (1-RM bench press, 1-RM BP) endurance (sit-ups, SUs; push-ups, PUs), power (bench throws, BTs), blood pressure (BP), augmentation index, (AIx), and abdominal fat mass were assessed at Weeks 0 (pre) and 13 (post). At baseline, no differences existed between groups. Following the 12-week intervention, PRISE had greater gains (p < 0.05) in SUs, PUs (6 ± 7 vs. 10 ± 7, 40%; 8 ± 13 vs. 14 ± 12, 43% ∆reps, respectively), BTs (11 ± 35 vs. 44 ± 34, 75% ∆watts), AIx (1 ± 9 vs. -5 ± 11, 120%), and DBP (-5 ± 9 vs. -11 ± 11, 55% ∆mmHg). These findings suggest that combined protein-pacing (P; 5-6 meals/day at 2.0 g/kg BW/day) diet and multi-component exercise (RISE) training (PRISE) enhances muscular endurance, strength, power, and cardiovascular health in exercise-trained, active women. PMID:27258301
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com [Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura 799055 (India); Bandyopadhyay, Kaushik; Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)
2014-07-01
In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.
Li, Huibin
2014-06-01
In the theory of differential geometry, surface normal, as a first order surface differential quantity, determines the orientation of a surface at each point and contains informative local surface shape information. To fully exploit this kind of information for 3D face recognition (FR), this paper proposes a novel highly discriminative facial shape descriptor, namely multi-scale and multi-component local normal patterns (MSMC-LNP). Given a normalized facial range image, three components of normal vectors are first estimated, leading to three normal component images. Then, each normal component image is encoded locally to local normal patterns (LNP) on different scales. To utilize spatial information of facial shape, each normal component image is divided into several patches, and their LNP histograms are computed and concatenated according to the facial configuration. Finally, each original facial surface is represented by a set of LNP histograms including both global and local cues. Moreover, to make the proposed solution robust to the variations of facial expressions, we propose to learn the weight of each local patch on a given encoding scale and normal component image. Based on the learned weights and the weighted LNP histograms, we formulate a weighted sparse representation-based classifier (W-SRC). In contrast to the overwhelming majority of 3D FR approaches which were only benchmarked on the FRGC v2.0 database, we carried out extensive experiments on the FRGC v2.0, Bosphorus, BU-3DFE and 3D-TEC databases, thus including 3D face data captured in different scenarios through various sensors and depicting in particular different challenges with respect to facial expressions. The experimental results show that the proposed approach consistently achieves competitive rank-one recognition rates on these databases despite their heterogeneous nature, and thereby demonstrates its effectiveness and its generalizability. © 2014 Elsevier B.V.
Introduction to plasma dynamics
Morozov, A I
2013-01-01
As the twenty-first century progresses, plasma technology will play an increasing role in our lives, providing new sources of energy, ion-plasma processing of materials, wave electromagnetic radiation sources, space plasma thrusters, and more. Studies of the plasma state of matter not only accelerate technological developments but also improve the understanding of natural phenomena. Beginning with an introduction to the characteristics and types of plasmas, Introduction to Plasma Dynamics covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock w
Frank, Irmgard
2016-01-01
The notion from ab-initio molecular dynamics simulations that nuclear motion is best described by classical Newton dynamics instead of the time-dependent Schr{\\"o}dinger equation is substantiated. In principle a single experiment should bring clarity. Caution is however necessary, as temperature dependent effects must be eliminated when trying to determine the existence of a zero-point energy.
Strong Coupling and Classicalization
Dvali, Gia
2016-01-01
Classicalization is a phenomenon in which a theory prevents itself from entering into a strong-coupling regime, by redistributing the energy among many weakly-interacting soft quanta. In this way, the scattering process of some initial hard quanta splits into a large number of soft elementary processes. In short, the theory trades the strong coupling for a high-multiplicity of quanta. At very high energies, the outcome of such a scattering experiment is a production of soft states of high occupation number that are approximately classical. It is evident that black hole creation in particle collision at super-Planckian energies is a result of classicalization, but there is no a priory reason why this phenomenon must be limited to gravity. If the hierarchy problem is solved by classicalization, the LHC has a chance of detecting a tower of new resonances. The lowest-lying resonances must appear right at the strong coupling scale in form of short-lived elementary particles. The heavier members of the tower must b...
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe
1. Berlin, Heidelberg: Springer-Verlag, 2013 - (Björm, E.), s. 205-224 ISBN 978-3-540-70528-4 Institutional support: RVO:68145535 Keywords : classical iterative methods * applied computational mathematics * encyclopedia Subject RIV: BA - General Mathematics http://www.springerreference.com/docs/ navigation .do?m=Encyclopedia+of+Applied+and+Computational+Mathematics+%28Mathematics+and+Statistics%29-book224
Classical and quantum satisfiability
de Araújo, Anderson; 10.4204/EPTCS.81.6
2012-01-01
We present the linear algebraic definition of QSAT and propose a direct logical characterization of such a definition. We then prove that this logical version of QSAT is not an extension of classical satisfiability problem (SAT). This shows that QSAT does not allow a direct comparison between the complexity classes NP and QMA, for which SAT and QSAT are respectively complete.
Why Study Classical Languages?
Lieberman, Samuel
This speech emphasizes the significance of living literatures and living cultures which owe a direct debt to the Romans and the Greeks from whom they can trace their origins. After commenting on typical rejoinders to the question "Why study classical languages?" and poking fun at those who advance jaded, esoteric responses, the author dispels the…
Camic, Charles
2008-01-01
They seem the perfect bookends for the social psychologist's collection of "classics" of the field. Two volumes, nearly identical in shape and weight and exactly a century old in 2008--each professing to usher "social psychology" into the world as they both place the hybrid expression square in their titles but then proceed to stake out the field…
Mecanica Clasica (Classical Mechanics)
Rosu, H. C.
1999-01-01
First Internet graduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031
Classical galactosaemia revisited
A.M. Bosch
2006-01-01
Classical galactosaemia (McKusick 230400) is an: autosomal recessive disorder of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712). Most patients present in the neonatal period, after ingestion of galactose, with jaundice, hepatospl
Classical Mythology. Fourth Edition.
Morford, Mark P. O.; Lenardon, Robert J.
Designed for students with little or no background in classical literature, this book introduces the Greek and Roman myths of creation, myths of the gods, Greek sagas and local legends, and presents contemporary theories about the myths. Drawing on Homer, Hesiod, Pindar, Vergil, and others, the book provides many translations and paraphrases of…
Huddleston, Gregory H.
1993-01-01
Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)
Mecanica Clasica (Classical Mechanics)
Rosu, H C
1999-01-01
First Internet undergraduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031
Classical electromagnetic radiation
Heald, Mark A
2012-01-01
Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.
Nelson, Norman N.; Fisch, Forest N.
1973-01-01
Discussed are techniques of presentation and solution of the Classical Cake Problem. A frosted cake with a square base is to be cut into n pieces with the volume of cake and frosting the same for each piece. Needed are minimal geometric concepts and the formula for the volume of a prism. (JP)
Quantum emulation of classical dynamics
Margolus, Norman
2011-01-01
In statistical mechanics, it is well known that finite-state classical lattice models can be recast as quantum models, with distinct classical configurations identified with orthogonal basis states. This mapping makes classical statistical mechanics on a lattice a special case of quantum statistical mechanics, and classical combinatorial entropy a special case of quantum entropy. In a similar manner, finite-state classical dynamics can be recast as finite-energy quantum dynamics. This mapping...
Stacey, Weston M
2012-01-01
This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...
Randomness: quantum versus classical
Khrennikov, Andrei
2015-01-01
Recent tremendous development of quantum information theory led to a number of quantum technological projects, e.g., quantum random generators. This development stimulates a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is elaboration of a consistent and commonly accepted interpretation of quantum state. Closely related problem is clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. The second part of this review is devoted to the information interpretation of quantum mechanics (QM) in the spirit of Zeilinger and Brukner (and QBism of Fuchs et al.) and physics in general (e.g., Wheeler's "it from bit") as well as digital philosophy of Chaitin (with historical coupling to ideas of Leibnitz). Finally, w...
Classical and statistical thermodynamics
Rizk, Hanna A
2016-01-01
This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.
Computation in Classical Mechanics
Timberlake, Todd
2007-01-01
There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss the ways we have used computation in our classical mechanics courses, focusing on how computational work can improve students' understanding of physics as well as their computational skills. We present examples of computational problems that serve these two purposes. In addition, we provide information about resources for instructors who would like to include computation in their courses.
International Nuclear Information System (INIS)
Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Class Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator design. It includes modules for building accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty
Directory of Open Access Journals (Sweden)
Adriana Coutinho de Azevedo Guimarães
2008-06-01
Full Text Available This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external rotation at hip level and to undue use of point ballet slippers. The commonest lesions are in feet and ankles, followed by knees and hips. The rarest ones are in the upper limbs. These injuries are caused by exercise excess, by repetitions always in the same side and by wrong and early use of point slippers. The study reached the conclusion that incorrect application of classical ballet technique predisposes the dancers to characteristic injuries.
Classical Diophantine equations
1993-01-01
The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...
Are superparamagnetic spins classical?
Garanin, D. A.
2008-01-01
Effective giant spins of magnetic nanoparticles are considered classically in the conventional theory of superparamagnetism based on the Landau-Lifshitz-Langevin equation. However, microscopic calculations for a large spin with uniaxial anisotropy, coupled to the lattice via the simplest generic mechanism, show that the results of the conventional theory are not reproduced in the limit S ->\\infty. In particular, the prefactor Gamma_0 in the Arrhenius escape rate over the barrier Gamma =Gamma_...
Adriana Coutinho de Azevedo Guimarães; Joseani Paulini Neves Simas
2008-01-01
This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external ...
Institute of Scientific and Technical Information of China (English)
WANG HAIRONG
2010-01-01
@@ North Korea's Phibada Opera Troupe arrived in Beijing on May3,bringing with it a Korean opera adapted from China's classic novel A Dream of Red Mansions written by Cao Xueqin(around 1715-63),a great novelist of the Qing Dynasty(1644-1911).The troupe,invited by the Chinese Ministry of Culture,is one of the largest performing groups having visited China in recent years.
Computation in Classical Mechanics
Timberlake, Todd; Hasbun, Javier E.
2007-01-01
There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss th...
Sociology and Classical Liberalism
KLEIN, Daniel; Stern, Lotta
2005-01-01
We advocate the development of a classical-liberal character within professional sociology. The American Sociological Association (ASA) is taken as representative of professional sociology in the United States. We review the ASA’s activities and organizational statements, to show the association’s leftist character. Internal criticism is often very uneasy about leftist domination of the field. We present survey results establishing that, in voting and in policy views, the ASA membership is mo...
Rogers, Ibram
2008-01-01
As a 26-year-old English teacher in 1958, Chinua Achebe had no idea that the book he was writing would become a literary classic, not only in Africa but also throughout the world. He could only try to articulate the feelings he had for his countrymen and women. Achebe had a burning desire to tell the true story of Africa and African humanity. The…
Strong, John
2004-01-01
An intermediate course in optics, this volume explores both experimental and theoretical concepts, offering practical knowledge of geometrical optics that will enhance students' comprehension of any relevant applied science. Its exposition of the concepts of classical optics is presented with a minimum of mathematical detail but presumes some knowledge of calculus, vectors, and complex numbers.Subjects include light as wave motion; superposition of wave motions; electromagnetic waves; interaction of light and matter; velocities and scattering of light; polarized light and dielectric boundarie
Diffusion of Classical Solitons
Dziarmaga, J.; Zakrzewski, W.
1998-01-01
We study the diffusion and deformation of classical solitons coupled to thermal noise. The diffusion coefficient for kinks in the $\\phi^4$ theory is predicted up to the second order in $kT$. The prediction is verified by numerical simulations. Multiskyrmions in the vector O(3) sigma model are studied within the same formalism. Thermal noise results in a diffusion on the multisoliton collective coordinate space (moduli space). There are entropic forces which tend, for example, to bind pairs of...
Waters, C Kenneth
2004-12-01
I present an account of classical genetics to challenge theory-biased approaches in the philosophy of science. Philosophers typically assume that scientific knowledge is ultimately structured by explanatory reasoning and that research programs in well-established sciences are organized around efforts to fill out a central theory and extend its explanatory range. In the case of classical genetics, philosophers assume that the knowledge was structured by T. H. Morgan's theory of transmission and that research throughout the later 1920s, 30s, and 40s was organized around efforts to further validate, develop, and extend this theory, I show that classical genetics was structured by an integration of explanatory reasoning (associated with the transmission theory) and investigative strategies (such as the 'genetic approach'). The investigative strategies, which have been overlooked in historical and philosophical accounts, were as important as the so-called laws of Mendelian genetics. By the later 1920s, geneticists of the Morgan school were no longer organizing research around the goal of explaining inheritance patterns; rather, they were using genetics to investigate a range of biological phenomena that extended well beyond the explanatory domain of transmission theories. Theory-biased approaches in history and philosophy of science fail to reveal the overall structure of scientific knowledge and obscure the way it functions. PMID:15682554
International Nuclear Information System (INIS)
Highlights: ► Apatites are effective sorbents to remove Cd2+ and Zn2+ in multi-component solution. ► Competitive metal sorption reduces the individual amounts of metal ions removed. ► The complexation of metal ions with EDTA inhibits their sorption on apatites. ► XPS proofs the formation of Ca2+ and Zn2+-substituted surface layer by ion exchange. ► Composition of new surface layer on apatite is Ca8.4−xMex(HPO4)1.6(PO4)4.4(OH)0.4. -- Abstract: Apatites are suitable sorbent materials for contaminated soil and water remediation because of their low solubility and ability to bind toxic metals into their structure. Whereas in soil/water systems different complexing ligands are present, it is important to examine how these ligands affect apatite metal sorption process. The removal of cadmium (Cd) and zinc (Zn) ions from aqueous solutions by hydroxyapatite (HAP) and fluorapatite (FAP) was investigated by batch experiments with and without EDTA being present in the pH range 4–11. The surface composition of the solid phases was analyzed by X-ray photoelectron spectroscopy (XPS). The surface layer of apatites (AP), according to the (Ca + Cd + Zn):P atomic ratio, remained constant (1.4 ± 0.1) through an ion exchange. The amount of Cd2+ and Zn2+ removed increased with increasing pH. The removed amount of Zn2+ was higher than Cd2+. In the Cd–Zn binary system, competitive sorption reduced the individual removed amounts but the total maximum sorption was approximately constant. In the presence of EDTA, Cd2+ and Zn2+ removal was reduced because of the formation of [CdEDTA]2− and [ZnEDTA]2− in solution. XPS revealed an enrichment of AP surface by Cd2+ and Zn2+ and formation of new surface solid-solution phase with the general composition Ca8.4−xMex(HPO4)1.6(PO4)4.4(OH)0.4
Bergh Ingunn H; Bjelland Mona; Grydeland May; Lien Nanna; Andersen Lene F; Klepp Knut-Inge; Anderssen Sigmund A; Ommundsen Yngvar
2012-01-01
Abstract Background There is limited knowledge as to whether obesity prevention interventions are able to produce change in the determinants hypothesized to precede change in energy balance-related behaviors in young people. The aim of this study was to evaluate the effect of a multi-component intervention on a wide range of theoretically informed determinants of physical activity (PA) and sedentary behavior (SB). Moderation effects of gender, weight status and parental education level and wh...
Bergh, Ingunn H; Bjelland, Mona; Grydeland, May; Lien, Nanna; Andersen, Lene F.; Klepp, Knut-Inge; Anderssen, Sigmund A; Ommundsen, Yngvar
2012-01-01
Background There is limited knowledge as to whether obesity prevention interventions are able to produce change in the determinants hypothesized to precede change in energy balance-related behaviors in young people. The aim of this study was to evaluate the effect of a multi-component intervention on a wide range of theoretically informed determinants of physical activity (PA) and sedentary behavior (SB). Moderation effects of gender, weight status and parental education le...
Hai-yan Li; Xiang-yong Cui; Feng Gao; Peter York; Qun Shao; Xian-zhen Yin; Tao Guo; Zhen Guo; Jing-kai Gu; Ji-wen Zhang
2011-01-01
It is essential to develop effective methods for the quality control of the traditional medicine with multiple components. However, few researches on the quality control have been conducted to interpret the holistic characteristics of the traditional medicine in terms of dissolution/release. In this study, the multi-component release kinetics of Traditional Chinese Medicine (TCM) dosage forms was characterized and mapped by multivariate analysis techniques in the field of “-omics”. The Liuwei...
Institute of Scientific and Technical Information of China (English)
2008-01-01
A green approach to the synthesis of biologically important indeno[2,1-e]pyrazolo[5,4-b]pyridines was suc-cessfully realized via multi-component reactions of aldehyde, 3-methyl-l-phenyl-1H-pyrazol-5-amine and 1,3-indanedione in water under microwave irradiation without catalyst. This protocol has the prominent advantages of environmental-friendliness, short reaction time, excellent yields, low cost, easy operation as well as broad scope of applicability.
Institute of Scientific and Technical Information of China (English)
Heshmatollah Alinezhad; Sahar Mohseni Tavakkoli; Pourya Biparva
2014-01-01
Cu doped ZnO nanocrystalline powder (10 mol%) has been found to be an efficient catalyst for the one-pot multi-component synthesis of fully substituted new indeno[1,2-b]pyridines through a com-bination of 1,3-indandione, propiophenone or acetophenone derivatives, aromatic aldehydes, and ammonium acetate in ethanol/H2O at room temperature. The methodology is mild, efficient and high to excellent yielding.
Directory of Open Access Journals (Sweden)
Laurent Chusseau
2013-02-01
Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.
Mechanics classical and quantum
Taylor, T T
2015-01-01
Mechanics: Classical and Quantum explains the principles of quantum mechanics via the medium of analytical mechanics. The book describes Schrodinger's formulation, the Hamilton-Jacobi equation, and the Lagrangian formulation. The author discusses the Harmonic Oscillator, the generalized coordinates, velocities, as well as the application of the Lagrangian formulation to systems that are partially or entirely electromagnetic in character under certain conditions. The book examines waves on a string under tension, the isothermal cavity radiation, and the Rayleigh-Jeans result pertaining to the e
Institute of Scientific and Technical Information of China (English)
2002-01-01
FIVE years ago, an ancient Chinese air was beamed to outer space as a PR exercise. To humankind, music is a universal language, so the tune seemed an ideal medium for communication with extraterrestrial intelligence. So far there has been no response, but it is believed that the tune will play for a billion years, and eventually be heard and understood. The melody is called High Mountain and Flowing Stream, and it is played on the guqin, a seven-stringed classical musical instrument similar to the zither.
Two stream instabilities in degenerate quantum plasmas
Son, S.
2013-01-01
The quantum mechanical effect on the plasma two-stream instability is studied based on the dielectric function approach. The analysis suggests that the degenerate plasma relevant to the inertial confinement fusion behaves differently from classical plasmas when the electron drift velocity is comparable to the Fermi velocity. For high wave vector comparable to the Fermi wave vector, the degenerate quantum plasma has larger regime of the two-stream instabilities than the classical plasma. A reg...
Numerical calculation of classical and non-classical electrostatic potentials
Christensen, D; Neyenhuis, B; Christensen, Dan; Durfee, Dallin S.; Neyenhuis, Brian
2006-01-01
We present a numerical exercise in which classical and non-classical electrostatic potentials were calculated. The non-classical fields take into account effects due to a possible non-zero photon rest mass. We show that in the limit of small photon rest mass, both the classical and non-classical potential can be found by solving Poisson's equation twice, using the first calculation as a source term in the second calculation. Our results support the assumptions in a recent proposal to use ion interferometry to search for a non-zero photon rest mass.
Fano Interference in Classical Oscillators
Satpathy, S.; Roy, A.; Mohapatra, A.
2012-01-01
We seek to illustrate Fano interference in a classical coupled oscillator by using classical analogues of the atom-laser interaction. We present an analogy between the dressed state picture of coherent atom-laser interaction and a classical coupled oscillator. The Autler-Townes splitting due to the atom-laser interaction is analogous to the…
Siart, C.; Bubenzer, O.; Eitel, B.
2009-04-01
GIS layer intersections. The results indicate a significant altitudinal change of typical karst forms due to changing climatic thresholds. Larger depressions mostly appear at medium altitudes, while dolines are ubiquitously distributed. Besides elevation, heterogeneous petrographic attributes as well as tectonic stress lead to a spatially different intensity of karstification. Size and shape of karst features may also vary considerably with regard to the geological setting. As demonstrated by our investigations, standard RS-techniques based on satellite imagery are of great value for morphological studies but - just as the exclusive use of DEMs for karst landform detection - they can not record area wide karstification comprehensively, if solely implemented. Since applicability problems caused by unsuitable spatial and spectral resolution may hamper these methods, a multi-component approach with supplementary data as additional detection criteria helps to improve the analysis. Hence, the combination of high resolution imagery and digital elevation models offers promising prospects to further karstmorphologic mapping.
International Nuclear Information System (INIS)
The relevant parameters of two steady-state models of a plasma column, in fusion regime, were analyzed for an ideal Tokamak. The neo-classical transport theory was considered in the banana regime and in the Pfirsch-Schlueter regime. The first model proposes a correction in the numerical coefficients of the transport equations. In the other one, a poloidal current from Pfirsch-Schlueter classical diffusion is considered aiming to satisfy the pressure balance. (M.C.K.)
Mechanical Systems, Classical Models
Teodorescu, Petre P
2009-01-01
This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...
Grassmannization of classical models
Pollet, Lode; Prokof'ev, Nikolay V; Svistunov, Boris V
2016-01-01
Applying Feynman diagrammatics to non-fermionic strongly correlated models with local constraints might seem generically impossible for two separate reasons: (i) the necessity to have a Gaussian (non-interacting) limit on top of which the perturbative diagrammatic expansion is generated by Wick's theorem, and (ii) the Dyson's collapse argument implying that the expansion in powers of coupling constant is divergent. We show that for arbitrary classical lattice models both problems can be solved/circumvented by reformulating the high-temperature expansion (more generally, any discrete representation of the model) in terms of Grassmann integrals. Discrete variables residing on either links, plaquettes, or sites of the lattice are associated with the Grassmann variables in such a way that the partition function (and correlations) of the original system and its Grassmann-field counterpart are identical. The expansion of the latter around its Gaussian point generates Feynman diagrams. A proof-of-principle implement...
Directory of Open Access Journals (Sweden)
Maryann Wilson
2013-01-01
Full Text Available BACKGROUND: The impact of a scientific article is proportional to the citations it has received. In this study, we set out to identify the most cited works in epileptology in order to evaluate research trends in this field. METHODS: According to the Web of Science database, articles with more than 400 citations qualify as "citation classics". We conducted a literature search on the ISI Web of Science bibliometric database for scientific articles relevant to epilepsy. RESULTS: We retrieved 67 highly cited articles (400 or more citations, which were published in 31 journals: 17 clinical studies, 42 laboratory studies, 5 reviews and 3 classification articles. Clinical studies consisted of epidemiological analyses (n=3, studies on the clinical phenomenology of epilepsy (n=5 – including behavioral and prognostic aspects – and articles focusing on pharmacological (n=6 and non-pharmacological (n=3 treatment. The laboratory studies dealt with genetics (n=6, animal models (n=27, and neurobiology (n=9 – including both neurophysiology and neuropathology studies. The majority (61% of citation classics on epilepsy were published after 1986, possibly reflecting the expansion of research interest in laboratory studies driven by the development of new methodologies, specifically in the fields of genetics and animal models. Consequently, clinical studies were highly cited both before and after the mid 80s, whilst laboratory researches became widely cited after 1990. CONCLUSIONS: Our study indicates that the main drivers of scientific impact in the field of epileptology have increasingly become genetic and neurobiological studies, along with research on animal models of epilepsy. These articles are able to gain the highest numbers of citations in the time span of a few years and suggest potential directions for future research.
Classicalization of quantum variables and quantum–classical hybrids
International Nuclear Information System (INIS)
The extraction of classical degrees of freedom in quantum mechanics is studied in the stochastic variational method. By using this classicalization, a hybrid model constructed from quantum and classical variables (quantum–classical hybrids) is derived. In this procedure, conservation laws such as energy are maintained, and Ehrenfest's theorem is still satisfied with modification. The criterion for the applicability of quantum–classical hybrids is also discussed. - Highlights: • The new derivation of a quantum–classical hybrid (QCH) model is discussed based on a variational principle. • Any conserved quantities are automatically defined as the invariant transforms of a stochastic action. • The quantitative criterion to determine the validity of QCH is proposed. • Ehrenfest's theorem is satisfied in a modified way
Analogies between classical statistical mechanics and quantum mechanics
International Nuclear Information System (INIS)
Some analogies between nonequilibrium classical statistical mechanics and quantum mechanics, at the level of the Liouville equation and at the kinetic level, are commented on. A theorem, related to the Vlasov equation applied to a plasma, is proved. The theorem presents an analogy with Ehrenfest's theorem of quantum mechanics. An analogy between the plasma kinetic theory and Bohm's quantum theory with 'hidden variables' is also shown. (Author)
Crowder, Martin J
2001-01-01
If something can fail, it can often fail in one of several ways and sometimes in more than one way at a time. There is always some cause of failure, and almost always, more than one possible cause. In one sense, then, survival analysis is a lost cause. The methods of Competing Risks have often been neglected in the survival analysis literature. Written by a leading statistician, Classical Competing Risks thoroughly examines the probability framework and statistical analysis of data of Competing Risks. The author explores both the theory of the subject and the practicalities of fitting the models to data. In a coherent, self-contained, and sequential account, the treatment moves from the bare bones of the Competing Risks setup and the associated likelihood functions through survival analysis using hazard functions. It examines discrete failure times and the difficulties of identifiability, and concludes with an introduction to the counting-process approach and the associated martingale theory.With a dearth of ...
Grafakos, Loukas
2014-01-01
The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition. Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...
Sullivan, Woodruff Turner
1982-01-01
Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...
Directory of Open Access Journals (Sweden)
Hai-yan Li
2011-08-01
Full Text Available It is essential to develop effective methods for the quality control of the traditional medicine with multiple components. However, few researches on the quality control have been conducted to interpret the holistic characteristics of the traditional medicine in terms of dissolution/release. In this study, the multi-component release kinetics of Traditional Chinese Medicine (TCM dosage forms was characterized and mapped by multivariate analysis techniques in the field of “-omics”. The Liuweidihuang pill was used as a model formulation. The multi-component release kinetics of the concentrated and water-honeyed Liuweidihuang pills at rotation speeds of 50 and 100 rpm were analyzed by chemomic release kinetic theory and modified LC/MS/MS method. Mass features of 103 (concentrated pills and 101 (water-honeyed pills were selected with a linear correlation coefficient ≥0.99 between mass responses and concentrations. To compose the chemomic standard spectrum, the relative abundance of both mass features was no less than 1% as compared with an internal standard. The correlation coefficients between six samples of various solutions were in line with analytical requirements of precision (r≥0.985. The score plots of principal component analysis showed that the concentrated Liuweidihuang pills presented better chemomic release reproducibility than the water-honeyed pills. Conversely, the impact of rotation speed on the chemomic release was less obvious. The heat maps of hierarchical clustering analysis did not show significant changes in individual clusters of mass features along different time intervals, reflecting the release integrity of the mass features. Therefore, both multivariate analysis methods, the principal component analysis and the hierarchical clustering analysis, seemed to be effective techniques to demonstrate the multiple component release performance of TCM. The research provided the basis of a new strategy for the quality
Institute of Scientific and Technical Information of China (English)
范洁; 陈霄; 黄奇峰; 周玉; 陈刚
2013-01-01
In order to solve the problem of low accuracy and mutual interference in multi-component gas detection ,a kind of multi-component gas detection network with high accuracy was designed .A semiconductor laser with narrow bandwidth was uti-lized as light source and a novel long-path gas cell was also used in this system .By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM ) and time division multiplexing (TDM ) technique ,the detection of multi-component gas was achieved .The experiments indicate that the linearity relevance coefficient is 0.99 and the measurement relative error is less than 4% .The system dynamic response time is less than 15 s ,by filling a volume of multi-component gas into the gas cell gradually .The system has advantages of high accuracy and quick response ,which can be used in the fault gas on-line monitoring for power transformers in real time .%针对多组分气体测量精度低、交叉影响等问题，建立了一种高精度多气体网络式在线检测系统。系统中采用窄线宽激光器作为光源，设计了新型长光程气室，通过单一高频三角信号调制激光光谱，利用谐波检测技术和光学时分、空分复用技术相结合，实现了三种气体（CO ，C H4，C2 H2）的同时多点高精度在线测量。实验结果表明，多气体浓度测量最大相对误差小于4％，每种气体响应时间均小于15 s。该系统多气体检测精度高、响应时间快，非常适合用于变压器绝缘油中多组分气体实时在线检测。
Classical and quantum effective theories
Polonyi, Janos
2014-01-01
A generalization of the action principle of classical mechanics, motivated by the Closed Time Path (CTP) scheme of quantum field theory, is presented to deal with initial condition problems and dissipative forces. The similarities of the classical and the quantum cases are underlined. In particular, effective interactions which describe classical dissipative forces represent the system-environment entanglement. The relation between the traditional effective theories and their CTP extension is briefly discussed and few qualitative examples are mentioned.
Population in the classic economics
Adnan Doğruyol
2013-01-01
Growth subject in economics is an important factor of development. Classic economics ecole indicates the population as main variable which tender of growth. On the other hand T. R. Malthus is known as economist who regards population as a problem and brings up it among the classical economists. However, Adam Smith is an intellectual who discussed population problem earlier on the classic economics theory. According to Adam Smith one of the main factors that realise the growth is labour. In ad...
Coherent Communication of Classical Messages
Harrow, Aram W.
2003-01-01
We define "coherent communication" in terms of a simple primitive, show it is equivalent to the ability to send a classical message with a unitary or isometric operation, and use it to relate other resources in quantum information theory. Using coherent communication, we are able to generalize super-dense coding to prepare arbitrary quantum states instead of only classical messages. We also derive single-letter formulae for the classical and quantum capacities of a bipartite unitary gate assi...
The classic: Bone morphogenetic protein.
Urist, Marshall R; Strates, Basil S
2009-12-01
This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406. PMID:19727989
2007-01-01
M51, whose name comes from being the 51st entry in Charles Messier's catalog, is considered to be one of the classic examples of a spiral galaxy. At a distance of about 30 million light-years from Earth, it is also one of the brightest spirals in the night sky. A composite image of M51, also known as the Whirlpool Galaxy, shows the majesty of its structure in a dramatic new way through several of NASA's orbiting observatories. X-ray data from NASA's Chandra X-ray Observatory reveals point-like sources (purple) that are black holes and neutron stars in binary star systems. Chandra also detects a diffuse glow of hot gas that permeates the space between the stars. Optical data from the Hubble Space Telescope (green) and infrared emission from the Spitzer Space Telescope (red) both highlight long lanes in the spiral arms that consist of stars and gas laced with dust. A view of M51 with the Galaxy Evolution Explorer telescope shows hot, young stars that produce lots of ultraviolet energy (blue). The textbook spiral structure is thought be the result of an interaction M51 is experiencing with its close galactic neighbor, NGC 5195, which is seen just above. Some simulations suggest M51's sharp spiral shape was partially caused when NGC 5195 passed through its main disk about 500 million years ago. This gravitational tug of war may also have triggered an increased level of star formation in M51. The companion galaxy's pull would be inducing extra starbirth by compressing gas, jump-starting the process by which stars form.
Golgi bypass: skirting around the heart of classical secretion
Grieve, A.; Rabouille, C.
2011-01-01
Classical secretion consists of the delivery of transmembrane and soluble proteins to the plasma membrane and the extracellular medium, respectively, and is mediated by the organelles of the secretory pathway, the Endoplasmic Reticulum (ER), the ER exit sites, and the Golgi, as described by the Nobe
Institute of Scientific and Technical Information of China (English)
2002-01-01
The heyday of Beijing’s classical music beganin 1993, when top-quality sound equipment andrecords were imported. Also in that year, BeijingMusic Radio presented a classical music programtitled "Fan’s Club" and founded the "Music and
Dynamical Symmetries in Classical Mechanics
Boozer, A. D.
2012-01-01
We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…
Classical dynamics a modern perspective
Sudarshan, Ennackal Chandy George
2016-01-01
Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of ...
Confinement and heating of FRC plasma
International Nuclear Information System (INIS)
Confinement times of particle and trapped magnetic flux in FRC plasmas were simulated using a one dimensional transport modal and classical (Spitzer's) resistivity. Comparing the simulation results and experimental results indicated that a transport in the plasmas was basically classical and deviations of experimental results from classical values (so-called anomaly) might attribute to a plasma geometry effect, by which the deviation was larger for fat plasmas and smaller for prolate ones. In order to verify this indication, a plasma electron heating with an axial injection of pulsed and intense ion beams was proposed for the plasmas in current FRC experiments. Possibility of this heating were examined by estimating an energy deposit rate of a beam ion in the plasmas. The energy deposit rate is a few% to about 100% for a plasma of 12cm in diameter and 80cm in length with a plasma parameter range of current experiments. 6 refs., 7 figs., 1 tab
Akibue, Seiseki; Owari, Masaki; Kato, Go; Murao, Mio
2016-01-01
Phenomena induced by the existence of entanglement, such as nonlocal correlations, exhibit characteristic properties of quantum mechanics distinguishing from classical theories. When entanglement is accompanied by classical communication, it enhances the power of quantum operations jointly performed by two spatially separated parties. Such a power has been analyzed by the gap between the performances of joint quantum operations implementable by local operations at each party connected by clas...
Quantum localization of Classical Mechanics
Batalin, Igor A
2016-01-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Quantum localization of classical mechanics
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
The Wigner representation of classical mechanics, quantization and classical limit
International Nuclear Information System (INIS)
Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2π → 0. (author)
Classical and stochastic Laplacian growth
Gustafsson, Björn; Vasil’ev, Alexander
2014-01-01
This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Löwner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive biblio...
New perspectives on classical electromagnetism
Cote, Paul J.
2009-01-01
The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.
Classical Mechanics and Symplectic Integration
DEFF Research Database (Denmark)
Nordkvist, Nikolaj; Hjorth, Poul G.
2005-01-01
Content: Classical mechanics: Calculus of variations, Lagrange’s equations, Symmetries and Noether’s theorem, Hamilton’s equations, cannonical transformations, integrable systems, pertubation theory. Symplectic integration: Numerical integrators, symplectic integrators, main theorem on symplectic...
Fano interference in classical oscillators
International Nuclear Information System (INIS)
We seek to illustrate Fano interference in a classical coupled oscillator by using classical analogues of the atom-laser interaction. We present an analogy between the dressed state picture of coherent atom-laser interaction and a classical coupled oscillator. The Autler-Townes splitting due to the atom-laser interaction is analogous to the splitting of normal-mode frequencies of a coupled oscillator. Using this analogy, we simulate and experimentally demonstrate Fano interference and the associated phenomena in three-level atoms in a coupled electrical resonator circuit. This work aims to highlight analogies between classical and quantum systems for students at the postgraduate and graduate levels. Also, the reported technique can be easily realized in undergraduate laboratories. (paper)
Elementary charges in classical electrodynamics
KAPU'{S}CIK, Edward
1999-01-01
In the framework of classical electrodynamics elementary particles are treated as capacitors. The electrostatic potentials satisfy equations of the Schrödinger type. An interesting "quantization condition" for elementary charges is derived.
Two stream instabilities in degenerate quantum plasmas
Son, S
2013-01-01
The quantum mechanical effect on the plasma two-stream instability is studied based on the dielectric function approach. The analysis suggests that the degenerate plasma relevant to the inertial confinement fusion behaves differently from classical plasmas when the electron drift velocity is comparable to the Fermi velocity. For high wave vector comparable to the Fermi wave vector, the degenerate quantum plasma has larger regime of the two-stream instabilities than the classical plasma. A regime, where the plasma waves with the frequency larger than 1.5 times of the Langmuir wave frequency become unstable to the two-stream instabilities, is identified.
Probabilities for classically forbidden transitions using classical and classical path methods
International Nuclear Information System (INIS)
Limits are established for the applicability of purely classical methods for calculating nonreactive, inelastic transition probabilities in collinear collisions of a structureless atom and a harmonic oscillator. These limits, obtained by comparison with previous exact quantum mechanical results, indicate that such methods are inappropriate not only for ''classically forbidden'' but for many ''classically allowed'' transitions (in spite of the fact that they are widely used to calculate probabilities for such processes). A classical path method in the context of infinite-order time-dependent perturbation theory is described which yields extremely accurate transition probabilities even for the most classically forbidden transitions in the collinear atom--harmonic oscillator system. The essential features of this method are: (1) the use of the expectation value of the total interaction potential in determining the atom--oscillator (central force) trajectory, and (2) the use of the arithmetic mean of the initial and final velocities of relative motion in the (elastic) central force trajectory. This choice of interaction potential allows the relative motion to be coupled to changes in the internal state of the oscillator. The present classical method is further applied to three-dimensional atom-breathing sphere collisions, and exact quantum mechanical calculations are also carried out. Comparison of the classical path and exact quantum results shows excellent agreement both in the specific inelastic cross section and in the individual partial-wave contributions
Anderson localization from classical trajectories
Brouwer, Piet W.; Altland, Alexander
2008-01-01
We show that Anderson localization in quasi-one dimensional conductors with ballistic electron dynamics, such as an array of ballistic chaotic cavities connected via ballistic contacts, can be understood in terms of classical electron trajectories only. At large length scales, an exponential proliferation of trajectories of nearly identical classical action generates an abundance of interference terms, which eventually leads to a suppression of transport coefficients. We quantitatively descri...
Gaussian Dynamics is Classical Dynamics
Habib, Salman
2004-01-01
A direct comparison of quantum and classical dynamical systems can be accomplished through the use of distribution functions. This is useful for both fundamental investigations such as the nature of the quantum-classical transition as well as for applications such as quantum feedback control. By affording a clear separation between kinematical and dynamical quantum effects, the Wigner distribution is particularly valuable in this regard. Here we discuss some consequences of the fact that when...
Quantum systems as classical systems
Cassa, Antonio
2001-01-01
A characteristical property of a classical physical theory is that the observables are real functions taking an exact outcome on every (pure) state; in a quantum theory, at the contrary, a given observable on a given state can take several values with only a predictable probability. However, even in the classical case, when an observer is intrinsically unable to distinguish between some distinct states he can convince himself that the measure of its ''observables'' can have several values in ...
Quantum money with classical verification
International Nuclear Information System (INIS)
We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it
Classical theory of radiating strings
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Quantum money with classical verification
Energy Technology Data Exchange (ETDEWEB)
Gavinsky, Dmitry [NEC Laboratories America, Princeton, NJ (United States)
2014-12-04
We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.
International Nuclear Information System (INIS)
A cursory examination of the research activities of the Magneto-Fluid Dynamics Division for the calendar year 1988 shows the effects of the gradual transformation of the group. Although our principal activity, fusion plasma physics research, is unchanged, the work shows closer ties to problems relevant to present experiments than previously. Most notable is the concentrated effort on tokamak equilibrium and transport. We are exploring the implication of turbulence induced transport, resistive MHD effects, neoclassical transport, and possible interpretations of transport based on classical phenomena. In addition, one of our members has chosen to focus on problems of enhanced statistical methods for interpretation of experiments. All of this activity preceded the Tokamak Transport Initiative and reflects our active involvement and concern with the world-wide tokamak program. Since equilibrium and transport are by no means the only theoretical plasma physics problems affecting fusion devices we continue substantial efforts in wave propagation and heating, particle simulation of plasmas, stability theory, enhancement of numerical algorithms, and general plasma physics. We are attempting to develop effective numerical schemes for the Boltzmann equation, adaptive grid methods for MHD, and particle simulation of boundary and antenna effects. Many of these topics reflect our continuing concern to maintain a modest effort in the development of theoretical models and tools for problems of real significance to fusion, but not necessarily of immediate highest priority. We select problems which we expect to become extremely important in the future. Our space plasma physics activities, funded by agencies other than DOE, transfers knowledge learned in fusion plasma physics to another area and conversely stimulates work also relevant to fusion problems
Directory of Open Access Journals (Sweden)
Ali Salehabadi
2014-06-01
Full Text Available Multi-component nanohybrids comprising of organo-modified montmorillonite (MMT and immiscible biopolymer blends of poly(3-hydroxybutyrate (PHB and epoxidized natural rubber (ENR-50 were prepared by solvent casting technique. The one and three dimensional morphology of PHB/ENR-50/MMT systems were studied using Polarizing Optical Microscopy (POM and Scanning Electron Microscopy (SEM. Differential scanning calorimetry (DSC technique was used to evaluate the thermal properties of the nanohybrids. The melting temperature (Tm and enthalpy of melting (ΔHm of PHB decrease with respect to the increase in ENR-50 as well as MMT content. The non-isothermal decomposition of the nanohybrids was studied using thermogravimetric (TG-DTG analysis. FTIR-ATR spectra supported ring opening of the epoxide group via reaction with carboxyl group of PHB and amines of organic modifier. The reaction mechanism towards the formation of the nanohybrids is proposed.
DEFF Research Database (Denmark)
Poon, Hiew Mun; Pang, Kar Mun; Ng, Hoon Kiat;
2016-01-01
-dimensional chemical kinetic simulations under a wide range of shock tube and jetstirred reactor conditions. Subsequently, the fidelity of the surrogate models is further evaluated in two-dimensional CFD spray combustion simulations. Simulation results show that ignition delay (ID) prediction corresponds well to the......The aim of this study is to develop compact yet comprehensive multi-component diesel surrogate fuel models for computational fluid dynamics (CFD) spray combustion modelling studies. The fuel constituent reduced mechanisms including n-hexadecane (HXN), 2,2,4,4,6,8,8-heptamethylnonane (HMN...... change of fuel constituent mass fraction which is calculated to match the cetane number (CN). In addition, comparisons of the simulation results to the experimental data of #2diesel fuel (D2) in a constant volume combustion chamber show that IDs and lift-off lengths are reasonably well replicated by the...
A commentary on multi-component seismic technology in the 84th SEG annual meeting%第84届SEG年会多分量地震技术评述
Institute of Scientific and Technical Information of China (English)
孙丽霞; 杨春; 王赟; 张智
2016-01-01
综合分析2014年度美国SEG年会上多分量地震技术方面的学术论文，不难发现：在多波地震偏移成像研究中，叠前时间偏移仍是实际应用的主要方法；相比于 PS折射波初至拾取，径向-道域变换的射线路径一致性静校正方法效果更好；全波形反演在四维地震应用中具有诱人的前景，基于纵波反射系数的流体因子反演方法在稳定性、准确性方面显示出很大的优势，有望产生实际的应用效果。多分量地震技术的发展特点可归纳为“一批亮点，一个重点”，即：页岩的岩石物理实验与数值模拟分析、地震波的低频衰减气溶机理、六分量矢量波场特征的研究、多组多尺度裂缝系统的响应特征是该领域研究的亮点；综合利用海洋四分量压制鬼波及径向波、去除海底多次波、提高纵波的信噪比是海洋多分量地震技术发展的重点。%Through analysis of papers about multi-component seismic technology presented in the 84th SEG annual meeting, it is easy to find out that prestack time migration is still the major method used in multi-component migration imaging. Compared with the method based on S-wave refraction, static correction method using the radial-trace domain transform for ray path consistency can get the real reflection interface, the application of the full waveform inversion in 4D seismics has attractive perspective. Based on the advantages of stability and accuracy of the fluid factor of longitudinal wave, it is hopeful to produce practical effect. The development characteristics of the multi-component seismics can be summarized as “a lot of highlight spots and one emphasis”, the highlight spots include rock physical experiment and numerical simulation of shale, aerosol mechanism of low frequency attenuation of seismic wave, research on the characteristics six-component vector wave field, research on response characteristics of multi-group and
Gray, Darren J; Li, Yue-Sheng; Williams, Gail M; Zhao, Zheng-Yuan; Harn, Donald A; Li, Sheng-Ming; Ren, Mao-Yuan; Feng, Zeng; Guo, Feng-Ying; Guo, Jia-Gang; Zhou, Jie; Dong, Yu-Lan; Li, Yuan; Ross, Allen G; McManus, Donald P
2014-08-01
Despite major successes in its control over the past 50years, schistosomiasis japonica continues to be a public health problem in the People's Republic of China (P.R. China). Historically, the major endemic foci occur in the lakes and marshlands along the Yangtze River, areas where transmission interruption has proven difficult. The current endemic situation may alter due to the closure of the Three Gorges Dam. Considerable environmental and ecological changes are anticipated that may result in new habitats for the oncomelanid intermediate snail host of Schistosoma japonicum (Sj), thereby increasing the risk of transmission. The current national control program for P.R. China involves a multi-component integrated strategy but, despite targeting multiple transmission pathways, certain challenges remain. As the Chinese government pushes towards elimination, there is a requirement for additional tools, such as vaccination, for long-term prevention. Whereas the zoonotic nature of schistosomiasis japonica adds to the complexity of control, it provides a unique opportunity to develop a transmission blocking vaccine targeting bovines to assist in the prevention of human infection and disease. Mathematical modelling has shown that control options targeting the various transmission pathways of schistosomiasis japonica and incorporating bovine vaccination, mass human chemotherapy and mollusciciding could lead to its elimination from P.R. China. Here we present the study design and baseline results of a four-year cluster randomised intervention trial we are undertaking around the schistosomiasis-endemic Dongting Lake in Hunan Province aimed at determining the impact on schistosome transmission of the multi-component integrated control strategy, including bovine vaccination using a heterologous "prime-boost" delivery platform based on the previously tested SjCTPI vaccine. PMID:24929133
Alipour, Dariush; Keshtkar, Ali Reza; Moosavian, Mohammad Ali
2016-03-01
The novel polyvinyl alcohol/titanium oxide/zinc oxide (PVA/TiO2/ZnO) nanofiber adsorbent functionalized with 3-mercaptopropyltrimethoxysilane (TMPTMS) was prepared by electrospinning method and its potential was investigated for the adsorption of thorium from single and multi-metal aqueous solutions. The prepared adsorbent was characterized by FTIR, SEM and BET analysis. The influences of different operational parameters such as pH, ionic strength, equilibrium time, initial concentration and temperature were studied in batch mode. Investigation of ionic strength effect showed that the addition of NaNO3 to metal solution has a slight effect on the thorium adsorption, whereas pH value has a serious effect on the thorium adsorption at pH values lower than 4. The double-exponential model described the adsorption of Th(IV) ions much better than other kinetic models within both the single and multi-component systems. Among various isotherm models used, the equilibrium data of Th(IV) conformed the Langmuir isotherm in the single system, while those were best fitted by Dubinin-Radushkevich (D-R) isotherm in multi-component system. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the nature of adsorption process was spontaneous, endothermic and thermodynamically favored. The inhibitory effect of other metal ions on the adsorption capacity of Th(IV) was in order of Al(III) > Cu(II) > Cd(II) > Ni(II) > U(VI) > Fe(II).
Does classical liberalism imply democracy?
Directory of Open Access Journals (Sweden)
David Ellerman
2015-12-01
Full Text Available There is a fault line running through classical liberalism as to whether or not democratic self-governance is a necessary part of a liberal social order. The democratic and non-democratic strains of classical liberalism are both present today—particularly in the United States. Many contemporary libertarians and neo-Austrian economists represent the non-democratic strain in their promotion of non-democratic sovereign city-states (start-up cities or charter cities. We will take the late James M. Buchanan as a representative of the democratic strain of classical liberalism. Since the fundamental norm of classical liberalism is consent, we must start with the intellectual history of the voluntary slavery contract, the coverture marriage contract, and the voluntary non-democratic constitution (or pactum subjectionis. Next we recover the theory of inalienable rights that descends from the Reformation doctrine of the inalienability of conscience through the Enlightenment (e.g. Spinoza and Hutcheson in the abolitionist and democratic movements. Consent-based governments divide into those based on the subjects’ alienation of power to a sovereign and those based on the citizens’ delegation of power to representatives. Inalienable rights theory rules out that alienation in favor of delegation, so the citizens remain the ultimate principals and the form of government is democratic. Thus the argument concludes in agreement with Buchanan that the classical liberal endorsement of sovereign individuals acting in the marketplace generalizes to the joint action of individuals as the principals in their own organizations.
No Return to Classical Reality
Jennings, David
2015-01-01
At a fundamental level, the classical picture of the world is dead, and has been dead now for almost a century. Pinning down exactly which quantum phenomena are responsible for this has proved to be a tricky and controversial question, but a lot of progress has been made in the past few decades. We now have a range of precise statements showing that whatever the ultimate laws of Nature are, they cannot be classical. In this article, we review results on the fundamental phenomena of quantum theory that cannot be understood in classical terms. We proceed by first granting quite a broad notion of classicality, describe a range of quantum phenomena (such as randomness, discreteness, the indistinguishability of states, measurement-uncertainty, measurement-disturbance, complementarity, noncommutativity, interference, the no-cloning theorem, and the collapse of the wave-packet) that do fall under its liberal scope, and then finally describe some aspects of quantum physics that can never admit a classical understandi...
PES fabric plasma modification
Vatuňa, T.; Špatenka, P.; Píchal, J.; Koller, J.; Aubrecht, L.; Wiener, J.
2004-03-01
Polyester ranks the upper position in the world fiber production — nearly 54% of the total production of synthetic fibers. Troubles connected with minimizing of the textile hydrophobicity are usually being solved by the textile fibers’ surface chemical modification, but from ecological point of view modification of fabric with low temperature plasma is superior to classical chemical wet processes. Application of various plasmas for PES treatment has been already described. To compare the effectiveness of different plasma sources we performed a series of experiment both in RF and MW plasmas. For working gas nitrogen, oxygen and their mixtures were employed. Internal plasma control was provided by measurement of optical emission spectra. The hydrophilicity degree was determined by the drop test. Paper discusses optimal conditions of the PES fabric plasma treatment.
Classical isodual theory of antimatter
Santilli, R M
1997-01-01
An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatments of matter and antimatter in due time, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with expected images at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is anti-automorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also anti-automorphic, yet it is applicable beginning at the classical level and then persists at the quantum level. As part of our study, we present novel anti-isomorphic isodual images of the Galilean, special and general relativities and show the compatibility of their representation of antimatter with all available classical experi...
Casimir Effect The Classical Limit
Feinberg, J; Revzen, M
2001-01-01
We analyze the high temperature limit of the Casimir effect. A simple physical argument suggests that the Casimir energy (as opposed to the Casimir free energy) should vanish in the classical limit. We check the validity of this argument for massless scalar field confined in a cavity with boundaries of arbitrary shape, using path integral formalism. We are able to verify this suggestion only when the boundaries consist of disjoint pieces. Moreover, we find in these cases that the contribution to the Casimir entropy by field modes that depend on that separation, tends, in the classical limit, to a finite asymptotic value which depends only on the geometry of the cavity. Thus the Casimir force between disjoint pieces of the boundary in the classical limit is entropy driven and is governed by a dimensionless number characterizing the arbitrary geometry of the cavity. Contributions to the Casimir thermodynamical quantities due to each individual connected component of the boundary exhibit logarithmic deviations i...
Population in the classic economics
Directory of Open Access Journals (Sweden)
Adnan Doğruyol
2013-02-01
Full Text Available Growth subject in economics is an important factor of development. Classic economics ecole indicates the population as main variable which tender of growth. On the other hand T. R. Malthus is known as economist who regards population as a problem and brings up it among the classical economists. However, Adam Smith is an intellectual who discussed population problem earlier on the classic economics theory. According to Adam Smith one of the main factors that realise the growth is labour. In addition to population made it established. The aim of this study is analyzing the mental relationship between Malthus whose name has been identified with relation between population-growth and Smith who discussed this subject first time but put it off on process of theorisation.
Comparing classical and quantum equilibration
Malabarba, Artur S L; Short, Anthony J
2016-01-01
By using a physically-relevant and theory independent definition of measurement-based equilibration, we show quantitatively that equilibration is easier for quantum systems than for classical systems, in the situation where the initial state of the system is completely known (pure state). This shows that quantum equilibration is a fundamental, nigh unavoidable, aspect of physical systems, while classical equilibration relies on experimental ignorance. When the state is not completely known, a mixed state, this framework also shows quantum equilibration requires weaker conditions.
Classical planning and causal implicatures
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Benotti, Luciana
In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important for...... generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate the...
Classical analogy of Fano resonances
International Nuclear Information System (INIS)
We present an analogy of Fano resonances in quantum interference to classical resonances in the harmonic oscillator system. It has a manifestation as a coupled behaviour of two effective oscillators associated with propagating and evanescent waves. We illustrate this point by considering a classical system of two coupled oscillators and interfering electron waves in a quasi-one-dimensional narrow constriction with a quantum dot. Our approach provides a novel insight into Fano resonance physics and provides a helpful view in teaching Fano resonances
Principal bundles the classical case
Sontz, Stephen Bruce
2015-01-01
This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.
Characteristic behaviour of Kadomtsev-Petviashvili solitary waves and their stability in plasmas
International Nuclear Information System (INIS)
By employing the reductive perturbation technique, Kadomtsev-Petviashvili (K-P) equation has been derived with a view to know the salient features of soliton propagation in multi-component plasma. A proposed method called as tanh-method has been employed to find the soliton solution of the non-linear K-P wave equation and has shown successfully the existence of various soliton propagation in plasma. The main aim of using the formalism of tanh-method has been given to modify the non-linear wave equation into an ordinary differential equation which has been solved ultimately by Frobenius method. In contrast to the earlier predictions, it has been shown that the multi-component plasma might not always sustain the compressive or rarefactive soliton even though the plasma consists of multi-temperature electrons. The existence depends on the control of plasma configuration which might be the advanced knowledge to observe the soliton formation in laboratory and space plasmas. Moreover, because of the higher order non-linearity, the observations sieved various plasma acoustic modes which could be of interest to relate in space plasmas. Finally, it has been shown that the solitary wave propagation though suffers from the bifurcation due to the singularity in the propagation, despite all, the study, based on the perturbation procedure, confirmed the stability of the soliton propagation irrespective of their different natures. (author)
Chiral anomaly and classical negative magnetoresistance of Weyl metals
Son, D. T.; Spivak, B. Z.
2013-09-01
We consider the classical magnetoresistance of a Weyl metal in which the electron Fermi surface possesses nonzero fluxes of the Berry curvature. Such a system may exhibit large negative magnetoresistance with unusual anisotropy as a function of the angle between the electric and magnetic fields. In this case the system can support an additional type of plasma wave. These phenomena are consequences of the chiral anomaly in electron transport theory.
CLASSIC APPROACH TO BUSINESS COACHING
Żukowska, Joanna
2011-01-01
The purpose of this paper is to present business coaching in a classical way. An overview of coaching definitions will be provided. Attention will be drawn to coaching components and varieties. Moreover, a brief description of coach competences and tools supporting their work will be offered. Joanna Żukowska
Identity from classical invariant theory
International Nuclear Information System (INIS)
A simple derivation is given of a well-known relation involving the so-called Cayley Operator of classical invariant theory. The proof is induction-free and independent of Capelli's identity; it makes use only of a known-theorem in the theory of determinants and some elementary combinatorics
On classical and quantum liftings
Accardi, L.; Chruściński, Dariusz; Kossakowski, Andrzej; Matsuoka, T.; Ohya, Masanori
2011-01-01
We analyze the procedure of lifting in classical stochastic and quantum systems. It enables one to `lift' a state of a system into a state of `system+reservoir'. This procedure is important both in quantum information theory and the theory of open systems. We illustrate the general theory of liftings by a particular class related to so called circulant states.
Classical Virasoro irregular conformal block
Rim, Chaiho
2015-01-01
Virasoro irregular conformal block with arbitrary rank is obtained for the classical limit or equivalently Nekrasov-Shatashvili limit using the beta-deformed irregular matrix model (Penner-type matrix model for the irregular conformal block). The same result is derived using the generalized Mathieu equation which is equivalent to the loop equation of the irregular matrix model.
Teaching Classical Mechanics Using Smartphones
Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad
2013-01-01
A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf. Steve Jobs presented the iPhone as "perfect for gaming." Thanks to its microsensors connected in real time to the numerical world, physics…
Classical Music as Enforced Utopia
Leech-Wilkinson, Daniel
2016-01-01
In classical music composition, whatever thematic or harmonic conflicts may be engineered along the way, everything always turns out for the best. Similar utopian thinking underlies performance: performers see their job as faithfully carrying out their master's (the composer's) wishes. The more perfectly they represent them, the happier the…
Measurement-Based Classical Computation
Hoban, Matty J.; Wallman, Joel J.; Anwar, Hussain; Usher, Naïri; Raussendorf, Robert; Browne, Dan E.
2014-04-01
Measurement-based quantum computation (MBQC) is a model of quantum computation, in which computation proceeds via adaptive single qubit measurements on a multiqubit quantum state. It is computationally equivalent to the circuit model. Unlike the circuit model, however, its classical analog is little studied. Here we present a classical analog of MBQC whose computational complexity presents a rich structure. To do so, we identify uniform families of quantum computations [refining the circuits introduced by Bremner et al. Proc. R. Soc. A 467, 459 (2010)] whose output is likely hard to exactly simulate (sample) classically. We demonstrate that these circuit families can be efficiently implemented in the MBQC model without adaptive measurement and, thus, can be achieved in a classical analog of MBQC whose resource state is a probability distribution which has been created quantum mechanically. Such states (by definition) violate no Bell inequality, but, if widely held beliefs about computational complexity are true, they, nevertheless, exhibit nonclassicality when used as a computational resource—an imprint of their quantum origin.
Invariants in Supersymmetric Classical Mechanics
Alonso Izquierdo, Alberto; González León, Miguel Ángel; Mateos Guilarte, Juan
2000-01-01
[EN] The bosonic second invariant of SuperLiouville models in supersymmetric classical mechanics is described. [ES] El segundo campo cuántico de bosones invariante del modelo SuperLiouville es descrito en la mecanica clasica supersimétrica.
Quantum Proofs for Classical Theorems
Drucker, A.; Wolf,
2009-01-01
Alongside the development of quantum algorithms and quantum complexity theory in recent years, quantum techniques have also proved instrumental in obtaining results in classical (non-quantum) areas. In this paper we survey these results and the quantum toolbox they use.
Functional Techniques in Classical Mechanics
Gozzi, E
2001-01-01
In 1931 Koopman and von Neumann extended previous work of Liouville and provided an operatorial version of Classical Mechanics (CM). In this talk we will review a path-integral formulation of this operatorial version of CM. In particular we will study the geometrical nature of the many auxiliary variables present and of the unexpected universal symmetries generated by the functional technique.
Agglomeration Economies in Classical Music
DEFF Research Database (Denmark)
Borowiecki, Karol Jan
2015-01-01
This study investigates agglomeration effects for classical music production in a wide range of cities for a global sample of composers born between 1750 and 1899. Theory suggests a trade-off between agglomeration economies (peer effects) and diseconomies (peer crowding). I test this hypothesis...
On Classical and Quantum Cryptography
I. V. Volovich; Volovich, Ya. I.
2001-01-01
Lectures on classical and quantum cryptography. Contents: Private key cryptosystems. Elements of number theory. Public key cryptography and RSA cryptosystem. Shannon`s entropy and mutual information. Entropic uncertainty relations. The no cloning theorem. The BB84 quantum cryptographic protocol. Security proofs. Bell`s theorem. The EPRBE quantum cryptographic protocol.
Supersymmetric classical mechanics: free case
International Nuclear Information System (INIS)
We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, φ(t;Θ). (author)
Wakes in inhomogeneous plasmas
Kompaneets, Roman; Nosenko, Vladimir; Morfill, Gregor E
2014-01-01
The Debye shielding of a charge immersed in a flowing plasma is an old classic problem in plasma physics. It has been given renewed attention in the last two decades in view of experiments with complex plasmas, where charged dust particles are often levitated in a region with strong ion flow. Efforts to describe the shielding of the dust particles in such conditions have been focused on the homogeneous plasma approximation, which ignores the substantial inhomogeneity of the levitation region. We address the role of the plasma inhomogeneity by rigorously calculating the point charge potential in the collisionless Bohm sheath. We demonstrate that the inhomogeneity can dramatically modify the wake, making it non-oscillatory and weaker.
Teaching Classical Mechanics using Smartphones
Chevrier, Joel; Ledenmat, Simon; Bsiesy, Ahmad
2012-01-01
Using a personal computer and a smartphone, iMecaProf is a software that provides a complete teaching environment for practicals associated to a Classical Mechanics course. iMecaProf proposes a visual, real time and interactive representation of data transmitted by a smartphone using the formalism of Classical Mechanics. Using smartphones is more than using a set of sensors. iMecaProf shows students that important concepts of physics they here learn, are necessary to control daily life smartphone operations. This is practical introduction to mechanical microsensors that are nowadays a key technology in advanced trajectory control. First version of iMecaProf can be freely downloaded. It will be tested this academic year in Universit\\'e Joseph Fourier (Grenoble, France)
Classical databases and knowledge organization
DEFF Research Database (Denmark)
Hjørland, Birger
2015-01-01
) in the design and use of classical databases. An underlying issue is the kind of retrieval system for which one should aim. Warner’s (2010) differentiation between the computer science traditions and an older library-oriented tradition seems important; the former aim to transform queries......This paper considers classical bibliographic databases based on the Boolean retrieval model (such as MEDLINE and PsycInfo). This model is challenged by modern search engines and information retrieval (IR) researchers, who often consider Boolean retrieval a less efficient approach. The paper...... examines this claim and argues for the continued value of Boolean systems, which suggests two further considerations: (1) the important role of human expertise in searching (expert searchers and “information literate” users) and (2) the role of library and information science and knowledge organization (KO...
Classical Concepts in Quantum Programming
Oemer, B
2002-01-01
The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control and structured programming can be used in quantum computing. The experimental language QCL will be introduced as an example, how elements like irreversible functions, local variables and conditional branching, which have no direct quantum counterparts, can be implemented, and how non-classical features like the reversibility of unitary transformation or the non-observability of quantum states can be accounted for within the framework of a procedural programming language.
Classical theory of algebraic numbers
Ribenboim, Paulo
2001-01-01
Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...
Classical Probability and Quantum Outcomes
Directory of Open Access Journals (Sweden)
James D. Malley
2014-05-01
Full Text Available There is a contact problem between classical probability and quantum outcomes. Thus, a standard result from classical probability on the existence of joint distributions ultimately implies that all quantum observables must commute. An essential task here is a closer identification of this conflict based on deriving commutativity from the weakest possible assumptions, and showing that stronger assumptions in some of the existing no-go proofs are unnecessary. An example of an unnecessary assumption in such proofs is an entangled system involving nonlocal observables. Another example involves the Kochen-Specker hidden variable model, features of which are also not needed to derive commutativity. A diagram is provided by which user-selected projectors can be easily assembled into many new, graphical no-go proofs.
From classical to quantum physics
Stehle, Philip
2017-01-01
Suitable for lay readers as well as students, this absorbing survey explores the twentieth-century transition from classical to quantum physics. Author Philip Stehle traces the shift in the scientific worldview from the work of Galileo, Newton, and Darwin to the modern-day achievements of Max Planck, Albert Einstein, Ernest Rutherford, Niels Bohr, and others of their generation. His insightful overview examines not only the history of quantum physics but also the ways that progress in the discipline changed our understanding of the physical world and forces of nature. This chronicle of the second revolution in the physical sciences conveys the excitement and suspense that new developments produced in the scientific community. The narrative ranges from the classical physics of the seventeenth-century to the emergence of quantum mechanics with the entrance of the electron, the rise of relativity theory, the development of atomic theory, and the recognition of wave-particle duality. Relevant mathematical details...
Classical Models of Subatomic Particles
Mann, R. B.; Morris, M. S.
1993-01-01
We look at the program of modelling a subatomic particle---one having mass, charge, and angular momentum---as an interior solution joined to a classical general-relativistic Kerr-Newman exterior spacetime. We find that the assumption of stationarity upon which the validity of the Kerr-Newman exterior solution depends is in fact violated quantum mechanically for all known subatomic particles. We conclude that the appropriate stationary spacetime matched to any known subatomic particle is flat ...
Classical models of subatomic particles
International Nuclear Information System (INIS)
We look at the program of modelling a subatomic particle - one having mass, charge, and angular momentum - as an interior solution joined to a classical general-relativistic Kerr-Newman exterior spacetime. We find that the assumption of stationarity upon which the validity of the Kerr-Newman exterior solution depends is in fact violated quantum mechanically for all known subatomic particles. We conclude that the appropriate stationary spacetime matched to any known subatomic particle is flat space. (orig.)
Semi-classical signal analysis
Laleg-Kirati, Taous-Meriem; Sorine, Michel
2010-01-01
This study introduces a new signal analysis method called SCSA, based on a semi-classical approach. The main idea in the SCSA is to interpret a pulse-shaped signal as a potential of a Schr\\"odinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms.
Classic ballet dancers postural patterns
Joseani Paulini Neves Simas; Sebastião Iberes Lopes Melo
2008-01-01
The aim of this study was to evaluate classic ballet practice and its influence on postural patterns and (a) identify the most frequent postural changes; (b) determine the postural pattern; (c) verify the existence of association of practice time and postural changes. The investigation was carried out in two stages: one, description in which 106 dancers participated; the other, causal comparative in which 50 dancers participated; and (a) questionnaire; (b) a checkerboard; (c) postural chart; ...
Classical Concepts in Quantum Programming
Oemer, Bernhard
2002-01-01
The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control and structured programming can be used in quantum comput...
Semi-classical signal analysis
Laleg-Kirati, Taous-Meriem
2012-09-30
This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.
Gauge Invariance in Classical Electrodynamics
Engelhardt, W
2005-01-01
The concept of gauge invariance in classical electrodynamics assumes tacitly that Maxwell's equations have unique solutions. By calculating the electromagnetic field of a moving particle both in Lorenz and in Coulomb gauge and directly from the field equations we obtain, however, contradicting solutions. We conclude that the tacit assumption of uniqueness is not justified. The reason for this failure is traced back to the inhomogeneous wave equations which connect the propagating fields and their sources at the same time.
To Foundations of Classical Electrodynamics
Bessonov, E. G.
1997-01-01
In the present work foundations of the law of the energy conservation and the introduction of particles in the classical electrodynamics are discussed. We pay attention to a logic error which takes place at an interpretation of the Poynting's theorem as the law of conservation of energy. It was shown that the laws of conservation of energy and momentum of the system of electromagnetic fields and charged particles does not follow from the equations of electrodynamics and the violation of these...
Applications of classical detonation theory
Energy Technology Data Exchange (ETDEWEB)
Davis, W.C.
1994-09-01
Classical detonation theory is the basis for almost all calculations of explosive systems. One common type of calculation is of the detailed behavior of inert parts driven by explosive, predicting pressures, velocities, positions, densities, energies, etc as functions of time. Another common application of the theory is predicting the detonation state and expansion isentrope of a new explosive or mixtures, perhaps an explosive that has not yet been made. Both types of calculations are discussed.
Rindler particles and classical radiation
International Nuclear Information System (INIS)
We describe the quantum and classical radiation emitted by a uniformly accelerating point source in terms of the elementary processes of absorption and emission of Rindler scalar photons of the Fulling-Davies-Unruh bath observed by a co-accelerating observer. To this end we compute the rate at which a DeWitt detector emits a Minkowski scalar particle with defined transverse momentum per unit of proper time of the source and we show that it corresponds to the induced absorption or spontaneous and induced emission of Rindler particles from the thermal bath. We then take what could be called the inert limit of the DeWitt detector by considering the limit of no energy gap. As suggested by DeWitt, we identify, in this limit, the detector with a classical point source and verify the consistency of our computation with the classical result. Finally, we study the behaviour of the emission rate in D spacetime dimensions in connection with the so-called apparent statistics inversion
Rindler Photons and Classical Radiation
Díaz, D E
2001-01-01
We describe the quantum and classical radiation by a uniformly accelerating point source in terms of the elementary processes of absorption and emission of Rindler scalar photons of the Fulling-Davies-Unruh bath observed by a co-accelerating observer.To this end we compute the emission rate by a DeWitt detector of a Minkowski scalar field particle with defined transverse momentum per unit of proper time of the source and we show that it corresponds to the induced absorption or spontaneous and induced emission of Rindler photons from the thermal bath. We then take what could be called the inert limit of the DeWitt detector by considering the limit of zero gap energy. As suggested by DeWitt, we identify in this limit the detector with a classical point source and verify the consistency of our computation with the classical result. Finally, we study the behavior of the emission rate in D space-time dimensions in connection with the so called apparent statistics inversion.
Quantum systems as classical systems
Cassa, A
2001-01-01
A characteristical property of a classical physical theory is that the observables are real functions taking an exact outcome on every (pure) state; in a quantum theory, at the contrary, a given observable on a given state can take several values with only a predictable probability. However, even in the classical case, when an observer is intrinsically unable to distinguish between some distinct states he can convince himself that the measure of its ''observables'' can have several values in a random way with a statistical character. What kind of statistical theory is obtainable in this way? It is possible, for example, to obtain exactly the statistical previsions of quantum mechanics? Or, in other words, can a physical system showing a classical behaviour appear to be a quantum system to a confusing observer? We show that from a mathematical viewpoint it is not difficult to produce a theory with hidden variables having this property. We don't even try to justify in physical terms the artificial construction ...
Quantum to Classical Randomness Extractors
Berta, Mario; Wehner, Stephanie
2011-01-01
Even though randomness is an essential resource for many information processing tasks, it is not easily found in nature. The goal of randomness extraction is to distill (almost) perfect randomness from a weak source of randomness. When the source yields a classical string X, many extractor constructions are known. Yet, when considering a physical randomness source, X is itself ultimately the result of a measurement on an underlying quantum system. When characterizing the power of a source to supply randomness it is hence a natural question to ask, how much classical randomness we can extract from a quantum state. To tackle this question we here take on the study of quantum-to-classical randomness extractors (QC-extractors). We provide constructions of QC-extractors based on measurements in a full set of mutually unbiased bases (MUBs), and certain single qubit measurements. As the first application, we show that any QC-extractor gives rise to entropic uncertainty relations with respect to quantum side informat...
Suresh, S.; Narendrudu, T.; Yusub, S.; Suneel Kumar, A.; Ravi Kumar, V.; Veeraiah, N.; Krishna Rao, D.
2016-01-01
Multi-component CaF2-Bi2O3-P2O5-B2O3 glasses doped with different concentrations of Cr2O3 were crystallized through heat treatment. The prepared glass ceramic samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and differential thermal analysis (DTA). Spectroscopic studies viz., optical absorption, Fourier transform infrared (FTIR), Raman and electron paramagnetic resonance (EPR) were carried out. The XRD, SEM and DTA studies indicated that the samples contain different crystalline phases. Results of optical absorption and EPR studies pointed out the gradual conversion of chromium ions from Cr3 + state to Cr6 + state with an increase of Cr2O3 content from 0.1 to 0.5 mol%. The results of FTIR, Raman and EPR studies revealed that Cr6 + ions participate in the glass network in tetrahedral positions and seemed to increase the polymerization of the glass ceramics. The quantitative analysis of results of the spectroscopic studies further indicated that the glasses crystallized with low concentration of Cr2O3 are favourable for solid state laser devices.
International Nuclear Information System (INIS)
The paper presents structure and properties of the newly developed multi component hot work steel of the 47CrMoWVTiCeZr16-26-8 type. It has been found out that the 47CrMoWVTiCeZr16-26-8 steel after quenching and tempering has the lath martensite structure, partially twinned, with alloy carbides of the MC and M2C3 type, partially dissolved in the solid solution, and also of the dispersive carbides of the M4C3 and M7C3 responsible for the secondary hardness effect during tempering. Results of the tests of mechanical properties, thermal fatigue resistance, and structural examinations have been referred in part to the X40CrMoV5-1 standard hot work tool steel. Both austenitizing temperature and tempering temperature have a great influence on structure and properties of investigated steel. The highest values of the ultimate tensile strength, impact strength, and hardness are attained by the investigated steel after quenching from the temperature of 1120 oC and tempering at 540 oC, where as the maximum thermal fatigue resistance - after quenching and tempering at 600 oC. (author)
Directory of Open Access Journals (Sweden)
Qingsong Wang
2016-05-01
Full Text Available To improve the safety of lithium ion batteries, a multi-component (MC additive (consisting of vinylene carbonate (VC, 1,3-propylene sulfite (PS and dimethylacetamide (DMAC is used in the baseline electrolyte (1.0 M LiPF6/ethylene carbonate (EC + diethyl carbonate (DEC. The electrolyte with the MC additive is named safety electrolyte. The thermal stabilities of fully charged Li(Ni1/3Co1/3Mn1/3O2 (NCM mixed with the baseline electrolyte and safety electrolyte, respectively, are investigated using a C80 micro-calorimeter. The electrochemical performances of the NCM/baseline electrolyte/Li and NCM/safety electrolyte/Li half cells are evaluated using galvanostatic charge/discharge, cyclic voltammetry and alternating current (AC impedance. The experimental results demonstrate that the fully charged NCM-safety electrolyte system releases less heat and reduces the main sharp exothermic peak value to a great extent, with a reduction of 40.6%. Moreover, the electrochemical performances of NCM/safety electrolyte/Li half cells are not worse, and are almost as good as that of the NCM/baseline electrolyte/Li half cells.
Ortiz-Martínez, Krisiam; Reddy, Pratap; Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J
2016-07-15
Pillared clay based composites containing transition metals and a surfactant, namely MAlOr-NaBt (Bt=bentonite; Or=surfactant; M=Ni(2+), Cu(2+)or Co(2+)), were prepared to study selectivity and capacity toward single and multiple-component adsorption of bisphenol A (BPA) and 2,4-diclorophenol (DCP) from water. Tests were also performed to account for the presence of natural organic matter in the form of humic acid (HA). Equilibrium adsorption capacities for single components increased as follows: NaBtmetal brought an increase of nearly two-fold in adsorption capacity over the materials modified only with surfactant. The MAlOr-NaBt adsorbents displayed remarkable selectivity for BPA. Multi-component fixed-bed tests, however, revealed competition between the adsorbates, with the exception of the CuAlOr-NaBt beds. Inclusion of HA, surprisingly, enhanced the phenols adsorption capacity. Preliminary regeneration tests suggested that the adsorbent capacity can be recovered via thermal treatment or by washing with alkaline solutions. The former strategy, however, requires surfactant replenishment. More complex schemes would be needed to deal with absorbed HA. PMID:27037481
Mathews, Catherine; Eggers, Sander M; Townsend, Loraine; Aarø, Leif E; de Vries, Petrus J; Mason-Jones, Amanda J; De Koker, Petra; McClinton Appollis, Tracy; Mtshizana, Yolisa; Koech, Joy; Wubs, Annegreet; De Vries, Hein
2016-09-01
Young South Africans, especially women, are at high risk of HIV. We evaluated the effects of PREPARE, a multi-component, school-based HIV prevention intervention to delay sexual debut, increase condom use and decrease intimate partner violence (IPV) among young adolescents. We conducted a cluster RCT among Grade eights in 42 high schools. The intervention comprised education sessions, a school health service and a school sexual violence prevention programme. Participants completed questionnaires at baseline, 6 and 12 months. Regression was undertaken to provide ORs or coefficients adjusted for clustering. Of 6244 sampled adolescents, 55.3 % participated. At 12 months there were no differences between intervention and control arms in sexual risk behaviours. Participants in the intervention arm were less likely to report IPV victimisation (35.1 vs. 40.9 %; OR 0.77, 95 % CI 0.61-0.99; t(40) = 2.14) suggesting the intervention shaped intimate partnerships into safer ones, potentially lowering the risk for HIV. PMID:27142057
The Relation between Classical and Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Mario Bacelar Valente
2011-01-01
Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.
Propagation and stability of perturbations in radiative plasmas
International Nuclear Information System (INIS)
Perturbations in multi-component collisional impurity seeded plasmas are studied. The influences of the thermal force, heavy ion inertia and finite time of the impurity relaxation over ionization states are taken into account. In the present paper it is shown that the relative species motion and the internal friction caused by the heavy ion inertia together with the thermal force increase the sound wave damping significantly. The damping mentioned above may exceed the viscous damping, sometimes, by factor ten or more. Hence, the sound waves in the multi-component radiative plasmas are significantly more stable than it has been supposed earlier. In the present paper it is shown that for the marginal stability the thermal force action on the impurity ions transforms the aperiodic character of the radiative-condensation mode into almost periodic one. The similar effect is connected with the finite relaxation time of the impurity distribution over ionization states. The ion inertia is not important for the radiation-condensation mode. The finite relaxation time of heavy ions over ionization states may also produce the nonlinear self-sustained oscillations. These oscillations are examined in compressible plasmas. (author)
Superadditivity of classical capacity revisited
Energy Technology Data Exchange (ETDEWEB)
Pilyavets, Oleg V.; Karpov, Evgueni A.; Schäfer, Joachim [QuIC, Ecole Polytechnique, Université Libre de Bruxelles, CP 165, 1050 Brussels (Belgium)
2014-12-04
We introduce new type of superadditivity for classical capacity of quantum channels, which involves the properties of channels’ environment. By imposing different restrictions on the total energy contained in channels’ environment we can consider different types of superadditivity. Using lossy bosonic and additive noise quantum channels as examples, we demonstrate that their capacities can be either additive or superadditive depending on the values of channels parameters. The parameters corresponding to transition between the additive and superadditive cases are related with recently found critical and supercritical parameters for Gaussian channels.
Lectures on classical differential geometry
Struik, Dirk J
1988-01-01
Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student.Writ
Solar Activity and Classical Physics
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This review of solar physics emphasizes several of the more conspicuous scientific puzzles posed by contemporary observational knowledge of the magnetic activity of the Sun. The puzzles emphasize how much classical physics we have yet to learn from the Sun. The physics of solar activity is based on the principles of Newton, Maxwell, Lorentz, Boltzmann, et. al., along with the principles of radiative transfer. In the large, these principles are expressed by magnetohydrodynamics. A brief derivation of the magnetohydrodynamic induction and momentum equations is provided, with a discussion of popular misconceptions.
CONTRIBUTION OF PLASMA IN PHYSIOLOGICAL SYSTEM
Sushil kumar ,; Yadav, A K
2016-01-01
The human plasma proteome holds the promise of a revolution in disease diagnosis and therapeutic monitoring provided that major challenges in proteomics and related disciplines can be addressed . Plasma is not only the primary clinical specimen but also represents the largest and deepest version of the human proteome present in any sample: in addition to the classical “plasma proteins” .A major part plasma membrane function is conducted by proteins, both integral and peripheral. Peripheral me...
The revision of classical stock model
Institute of Scientific and Technical Information of China (English)
YE Bai-qing; WANG Hong-li
2001-01-01
On the basis of the analysis of classical stock model, according to th e limitation of the model, the article puts forward the revision of classical mo del and enforces the applicability of the stock model.
Pseudoclassical fermionic model and classical solutions
International Nuclear Information System (INIS)
We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)
Classical Electron Theory and Conservation Laws
Kiessling, Michael K. -H.
1999-01-01
It is shown that the traditional conservation laws for total charge, energy, linear and angular momentum, hold jointly in classical electron theory if and only if classical electron spin is included as dynamical degree of freedom.
The revision of classical stock model
Institute of Scientific and Technical Information of China (English)
叶柏青; 王洪利
2001-01-01
On the basis of the analysis of classical stock model, according to the limitation of the model, the article puts forward the revision of classical model and enforces the applicability of the stock model.
Lagrangian formalism and retarded classical electrodynamics
Jan, Xavier; Llosa, Josep; Molina, Alfred
1989-01-01
Unlike the 1/c2 approximation, where classical electrodynamics is described by the Darwin Lagrangian, here there is no Lagrangian to describe retarded (resp., advanced) classical electrodynamics up to 1/c3 for two-point charges with different masses.
Technics of classical and digital photography comparsion
Kvapilová, Kamila
2012-01-01
This bachelor work is aimed at basic principles of taking photos by classical and digital camera. Describes methods for achieving of required photos by digital way and also classical taking photos on cine-film. Compares the technology of classical and digital photography from the beginning, which is getting the camera and accessories. It also describes the construction and control of the camera. Processing of photo compares the quality of digital and classic photo.
Markkinointiviestintäsuunnitelma : Classic Coffee Oy
Eerola, Laura
2015-01-01
Opinnäytetyön aiheena oli laatia markkinointiviestintäsuunnitelma kalenterivuodelle 2016 vuosikellon muodossa, toimintansa jo vakiinnuttaneelle Classic Coffee Oy:lle. Classic Coffee Oy on vuonna 2011 perustettu, Tampereella toimiva kahvila-alan yritys joka tarjoaa lounaskahvilatoiminnan lisäksi laadukkaita konditoria-palveluita, yritys- ja kokoustarjoiluja sekä tilavuokrausta. Classic Coffee Oy:llä on yksi kahvila, Classic Coffee Tampella. Kahvila sijaitsee Tampellassa, Tampereen keskustan vä...
The new-classical contribution to macroeconomics
D. LAIDLER
2013-01-01
This work is devoted to assessing New-Classical ideas, and to asking what of lasting importance this school of macroeconomics has contributed since the early 1970s. It deals in turn with the relationship between New-Classical Economics and Monetarism, the relative explanatory power of these two bodies of doctrine over empirical evidence, and the claims of New-Classical Economics to embody a superior analytic method. The author argues that, although the particular ways in which New-Classical M...
Physiological characteristics of classical ballet.
Schantz, P G; Astrand, P O
1984-10-01
The aerobic and anaerobic energy yield during professional training sessions ("classes") of classical ballet as well as during rehearsed and performed ballets has been studied by means of oxygen uptake, heart rate, and blood lactate concentration determinations on professional ballet dancers from the Royal Swedish Ballet in Stockholm. The measured oxygen uptake during six different normal classes at the theatre averaged about 35-45% of the maximal oxygen uptake, and the blood lactate concentration averaged 3 mM (N = 6). During 10 different solo parts of choreographed dance (median length = 1.8 min) representative for moderately to very strenuous dance, an average oxygen uptake (measured during the last minute) of 80% of maximum and blood lactate concentration of 10 mM was measured (N = 10). In addition, heart rate registrations from soloists in different ballets during performance and final rehearsals frequently indicated a high oxygen uptake relative to maximum and an average blood lactate concentration of 11 mM (N = 5). Maximal oxygen uptake, determined in 1971 (N = 11) and 1983 (N = 13) in two different groups of dancers, amounted to on the average 51 and 56 ml X min-1 X kg-1 for the females and males, respectively. In conclusion, classical ballet is a predominantly intermittent type of exercise. In choreographed dance each exercise period usually lasts only a few minutes, but can be very demanding energetically, while during the dancers' basic training sessions, the energy yield is low. PMID:6513765
Curiel, Erik
2014-01-01
In the early 1970s it is was realized that there is a striking formal analogy between the Laws of black-hole mechanics and the Laws of classical thermodynamics. Before the discovery of Hawking radiation, however, it was generally thought that the analogy was only formal, and did not reflect a deep connection between gravitational and thermodynamical phenomena. It is still commonly held that the surface gravity of a stationary black hole can be construed as a true physical temperature and its area as a true entropy only when quantum effects are taken into account; in the context of classical general relativity alone, one cannot cogently construe them so. Does the use of quantum field theory in curved spacetime offer the only hope for taking the analogy seriously? I think the answer is `no'. To attempt to justify that answer, I shall begin by arguing that the standard argument to the contrary is not physically well founded, and in any event begs the question. Looking at the various ways that the ideas of "tempe...
Entanglement-Enhanced Classical Communication
Herrera-Martí, David A
2008-01-01
This thesis will be focused on the classical capacity of quantum channels, one of the first areas treated by quantum information theorists. The problem is fairly solved since some years. Nevertheless, this work will give me a reason to introduce a consistent formalism of the quantum theory, as well as to review fundamental facts about quantum non-locality and how it can be used to enhance communication. Moreover, this reflects my dwelling in the spirit of classical information theory, and it is intended to be a starting point towards a thorough study of how quantum technologies can help to shape the future of telecommunications. Whenever it was possible, heuristic reasonings were introduced instead of rigorous mathematical proofs. This finds an explanation in that I am a self-taught neophyte in the field, and just about every time I came across a new concept, physical arguments were always more compelling to me than just maths. The technical content of the thesis is twofold. On one hand, a quadratic classific...