WorldWideScience

Sample records for classical mechanics

  1. On Noncommutative Classical Mechanics

    CERN Document Server

    Djemai, A E F

    2003-01-01

    In this work, I investigate the noncommutative Poisson algebra of classical observables corresponding to a proposed general Noncommutative Quantum Mechanics, \\cite{1}. I treat some classical systems with various potentials and some Physical interpretations are given concerning the presence of noncommutativity at large scales (Celeste Mechanics) directly tied to the one present at small scales (Quantum Mechanics) and its possible relation with UV/IR mixing.

  2. Mecanica Clasica (Classical Mechanics)

    CERN Document Server

    Rosu, H C

    1999-01-01

    First Internet undergraduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031

  3. Mecanica Clasica (Classical Mechanics)

    OpenAIRE

    H. C. Rosu

    1999-01-01

    First Internet graduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031

  4. Classical mechanics with Maxima

    CERN Document Server

    Timberlake, Todd Keene

    2016-01-01

    This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.

  5. Classical Mechanics Laboratory

    Science.gov (United States)

    Brosing, Juliet W.

    2006-12-01

    At Pacific University we have included a lab with our upper division Classical Mechanics class. We do a combination of physical labs (air resistance, harmonic motion, amusement park physics), Maple labs (software), and projects. Presentation of some of the labs, results and challenges with this course will be included.

  6. Mechanical Systems, Classical Models

    CERN Document Server

    Teodorescu, Petre P

    2009-01-01

    This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...

  7. Mechanics classical and quantum

    CERN Document Server

    Taylor, T T

    2015-01-01

    Mechanics: Classical and Quantum explains the principles of quantum mechanics via the medium of analytical mechanics. The book describes Schrodinger's formulation, the Hamilton-Jacobi equation, and the Lagrangian formulation. The author discusses the Harmonic Oscillator, the generalized coordinates, velocities, as well as the application of the Lagrangian formulation to systems that are partially or entirely electromagnetic in character under certain conditions. The book examines waves on a string under tension, the isothermal cavity radiation, and the Rayleigh-Jeans result pertaining to the e

  8. Computation in Classical Mechanics

    CERN Document Server

    Timberlake, Todd

    2007-01-01

    There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss the ways we have used computation in our classical mechanics courses, focusing on how computational work can improve students' understanding of physics as well as their computational skills. We present examples of computational problems that serve these two purposes. In addition, we provide information about resources for instructors who would like to include computation in their courses.

  9. Mechanical Systems, Classical Models

    CERN Document Server

    Teodorescu, Petre P

    2007-01-01

    All phenomena in nature are characterized by motion; this is an essential property of matter, having infinitely many aspects. Motion can be mechanical, physical, chemical or biological, leading to various sciences of nature, mechanics being one of them. Mechanics deals with the objective laws of mechanical motion of bodies, the simplest form of motion. In the study of a science of nature mathematics plays an important role. Mechanics is the first science of nature which was expressed in terms of mathematics by considering various mathematical models, associated to phenomena of the surrounding nature. Thus, its development was influenced by the use of a strong mathematical tool; on the other hand, we must observe that mechanics also influenced the introduction and the development of many mathematical notions. In this respect, the guideline of the present book is precisely the mathematical model of mechanics. A special accent is put on the solving methodology as well as on the mathematical tools used; vectors, ...

  10. Classical Mechanics and Symplectic Integration

    DEFF Research Database (Denmark)

    Nordkvist, Nikolaj; Hjorth, Poul G.

    2005-01-01

    Content: Classical mechanics: Calculus of variations, Lagrange’s equations, Symmetries and Noether’s theorem, Hamilton’s equations, cannonical transformations, integrable systems, pertubation theory. Symplectic integration: Numerical integrators, symplectic integrators, main theorem on symplectic...

  11. Quantum localization of classical mechanics

    Science.gov (United States)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-07-01

    Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.

  12. Teaching Classical Mechanics Using Smartphones

    Science.gov (United States)

    Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad

    2013-01-01

    A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf. Steve Jobs presented the iPhone as "perfect for gaming." Thanks to its microsensors connected in real time to the numerical world, physics…

  13. Supersymmetric classical mechanics: free case

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza]. E-mail: rafael@cfp.ufpb.br; Almeida, W. Pires de [Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza; Fonseca Neto, I. [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica

    2001-06-01

    We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, {phi}(t;{theta}). (author)

  14. Functional Techniques in Classical Mechanics

    CERN Document Server

    Gozzi, E

    2001-01-01

    In 1931 Koopman and von Neumann extended previous work of Liouville and provided an operatorial version of Classical Mechanics (CM). In this talk we will review a path-integral formulation of this operatorial version of CM. In particular we will study the geometrical nature of the many auxiliary variables present and of the unexpected universal symmetries generated by the functional technique.

  15. Supersymmetric classical mechanics: free case

    International Nuclear Information System (INIS)

    We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, φ(t;Θ). (author)

  16. Teaching Classical Mechanics using Smartphones

    CERN Document Server

    Chevrier, Joel; Ledenmat, Simon; Bsiesy, Ahmad

    2012-01-01

    Using a personal computer and a smartphone, iMecaProf is a software that provides a complete teaching environment for practicals associated to a Classical Mechanics course. iMecaProf proposes a visual, real time and interactive representation of data transmitted by a smartphone using the formalism of Classical Mechanics. Using smartphones is more than using a set of sensors. iMecaProf shows students that important concepts of physics they here learn, are necessary to control daily life smartphone operations. This is practical introduction to mechanical microsensors that are nowadays a key technology in advanced trajectory control. First version of iMecaProf can be freely downloaded. It will be tested this academic year in Universit\\'e Joseph Fourier (Grenoble, France)

  17. Theoretical physics 1 classical mechanics

    CERN Document Server

    Nolting, Wolfgang

    2016-01-01

    This textbook offers a clear and comprehensive introduction to classical mechanics, one of the core components of undergraduate physics courses. The book starts with a thorough introduction to the mathematical tools needed, to make this textbook self-contained for learning. The second part of the book introduces the mechanics of the free mass point and details conservation principles. The third part expands the previous to mechanics of many particle systems. Finally the mechanics of the rigid body is illustrated with rotational forces, inertia and gyroscope movement. Ideally suited to undergraduate students in their first year, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series...

  18. Collection of problems in classical mechanics

    CERN Document Server

    Kotkin, G L; ter Haar, D

    1971-01-01

    Collection of Problems in Classical Mechanics presents a set of problems and solutions in physics, particularly those involving mechanics. The coverage of the book includes 13 topics relevant to classical mechanics, such as integration of one-dimensional equations of motion; the Hamiltonian equations of motion; and adiabatic invariants. The book will be of great use to physics students studying classical mechanics.

  19. Dynamical Symmetries in Classical Mechanics

    Science.gov (United States)

    Boozer, A. D.

    2012-01-01

    We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…

  20. Quantum Mechanics As A Limiting Case of Classical Mechanics

    OpenAIRE

    Ghose, Partha

    2000-01-01

    In spite of its popularity, it has not been possible to vindicate the conventional wisdom that classical mechanics is a limiting case of quantum mechanics. The purpose of the present paper is to offer an alternative point of view in which quantum mechanics emerges as a limiting case of classical mechanics in which the classical system is decoupled from its environment.

  1. Emergence of classical theories from quantum mechanics

    CERN Document Server

    Hajicek, Petr

    2012-01-01

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is ...

  2. Hidden BRS invariance in classical mechanics

    International Nuclear Information System (INIS)

    We give in this paper a path integral formulation of classical mechanics. We do so by writing down the associated classical-generating functional. This functional exhibits an unexpected BRS-like and antiBRS-like invariance. This invariance allows for a simple expression, in term of superfields, of this generating functional. Associated to the BRS and antiBRS charges there is also a ghost charge whose conservation turns out to be nothing else than the well-known theorem of classical mechanics. (orig.)

  3. Bridging classical and quantum mechanics

    Science.gov (United States)

    Haddad, D.; Seifert, F.; Chao, L. S.; Li, S.; Newell, D. B.; Pratt, J. R.; Williams, C.; Schlamminger, S.

    2016-10-01

    Using a watt balance and a frequency comb, a mass-energy equivalence is derived. The watt balance compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. By using frequency combs to measure velocities and acceleration of gravity, the unit of mass can be realized from a set of three defining constants: the Planck constant h, the speed of light c, and the hyperfine splitting frequency of 133Cs.

  4. Classical statistical computation of the Schwinger mechanism

    CERN Document Server

    Gelis, F

    2013-01-01

    In this paper, we show how classical statistical field theory techniques can be used to efficiently perform the numerical evaluation of the non-perturbative Schwinger mechanism of particle production by quantum tunneling. In some approximation, we also consider the back-reaction of the produced particles on the external field, as well as the self-interactions of the produced particles.

  5. Scale symmetry in classical and quantum mechanics

    CERN Document Server

    Gozzi, E

    2005-01-01

    In this paper we address again the issue of the scale anomaly in quantum mechanical models with inverse square potential. In particular we examine the interplay between the classical and quantum aspects of the system using in both cases an operatorial approach.

  6. On the Relationship of Quantum Mechanics to Classical Electromagnetism and Classical Relativistic Mechanics

    OpenAIRE

    Field, J H.

    2004-01-01

    Some connections between quantum mechanics and classical physics are explored. The Planck-Einstein and De Broglie relations, the wavefunction and its probabilistic interpretation, the Canonical Commutation Relations and the Maxwell--Lorentz Equation may be understood in a simple way by comparing classical electromagnetism and the photonic description of light provided by classical relativistic kinematics. The method used may be described as `inverse correspondence' since quantum phenomena bec...

  7. A modern approach to classical mechanics

    CERN Document Server

    Iro, Harald

    2002-01-01

    The approach to classical mechanics adopted in this book includes and stresses recent developments in nonlinear dynamical systems. The concepts necessary to formulate and understand chaotic behavior are presented. Besides the conventional topics (such as oscillators, the Kepler problem, spinning tops and the two centers problem) studied in the frame of Newtonian, Lagrangian, and Hamiltonian mechanics, nonintegrable systems (the Hénon-Heiles system, motion in a Coulomb force field together with a homogeneous magnetic field, the restricted three-body problem) are also discussed. The question of the integrability (of planetary motion, for example) leads finally to the KAM-theorem. This book is the result of lectures on 'Classical Mechanics' as the first part of a basic course in Theoretical Physics. These lectures were given by the author to undergraduate students in their second year at the Johannes Kepler University Linz, Austria. The book is also addressed to lecturers in this field and to physicists who wa...

  8. Hilbert Space Structure in Classical Mechanics (I)

    CERN Document Server

    Deotto, E; Mauro, D

    2003-01-01

    In this paper we study the Hilbert space structure underlying the Koopman-von Neumann operatorial formulation of classical mechanics. While the Hilbert space of zero-forms can be endowed with a positive definite scalar product and the evolution turns out to be unitary, we prove that this is not the case when we include higher forms. In this last case we explore all possible scalar products and prove that for those which are positive definite the evolution is not unitary and vice versa. This feature is due to the Grassmannian nature of the forms and it appears only in classical mechanics. It is known in fact that in a similar structure, which is supersymmetric quantum mechanics, this does not happen.

  9. Alternative perturbation approaches in classical mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima, Colima (Mexico); Raya, Alfredo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima, Colima (Mexico); Fernandez, Francisco M [INIFTA (Conicet, UNLP), Blvd. 113 y 64 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2005-11-01

    We discuss two alternative methods, based on the Lindstedt-Poincare technique, for the removal of secular terms from the equations of perturbation theory. We calculate the period of an anharmonic oscillator by means of both approaches and show that one of them is more accurate for all values of the coupling constant. We believe that present discussion and comparison may be a suitable exercise for teaching perturbation theory in advanced undergraduate courses on classical mechanics.

  10. Classical mechanical systems based on Poisson symmetry

    OpenAIRE

    Zakrzewski, S.

    1996-01-01

    The existence of the theory of `twisted cotangent bundles' (symplectic groupoids) allows to study classical mechanical systems which are generalized in the sense that their configurations form a Poisson manifold. It is natural to study from this point of view first such systems which arise in the context of some basic physical symmetry (space-time, rotations, etc.). We review results obtained so far in this direction.

  11. Classical mechanical systems based on Poisson symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewski, S. [Department of Mathematical Methods in Physics, University of Warsaw, Warsaw (Poland)

    1996-10-01

    The existence of the theory of ``twisted cotangent bundles`` (symplectic groupoids) allows to study classical mechanical systems which are generalized in the sense that their configurations form a Poisson manifold. It is natural to study from this point of view first such systems which arise in the context of some basic physical symmetry (space-time, rotations, etc.). We review results obtained so far in this direction. (author)

  12. A 4-vector formalism for classical mechanics

    CERN Document Server

    Güémez, Julio

    2014-01-01

    We present a matrix formalism, inspired by the Minkowski four-vectors of special relativity, useful to solve classical physics problems related to both mechanics and thermodynamics. The formalism turns out to be convenient to deal with exercises involving non-conservative forces and production or destruction of mechanical energy. On the other hand, it provides a framework to treat straightforwardly changes of inertial reference frames, since it embodies the Principle of Relativity. We apply the formalism to a few cases to better show how it works.

  13. The Possibility of Reconciling Quantum Mechanics with Classical Probability Theory

    OpenAIRE

    Slavnov, D. A.

    2007-01-01

    We describe a scheme for constructing quantum mechanics in which a quantum system is considered as a collection of open classical subsystems. This allows using the formal classical logic and classical probability theory in quantum mechanics. Our approach nevertheless allows completely reproducing the standard mathematical formalism of quantum mechanics and identifying its applicability limits. We especially attend to the quantum state reduction problem.

  14. A Continuous Transition Between Quantum and Classical Mechanics (I)

    OpenAIRE

    Ghose, Partha

    2001-01-01

    In spite of its popularity, it has not been possible to vindicate the conventional wisdom that classical mechanics is a limiting case of quantum mechanics. The purpose of the present paper is to offer an alternative formulation of classical mechanics which provides a continuous transition to quantum mechanics via environment-induced decoherence.

  15. Classical and Quantum-Mechanical State Reconstruction

    Science.gov (United States)

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  16. Classical Statistical Mechanics and Landau Damping

    OpenAIRE

    Buchmuller, W; Jakovac, A.

    1997-01-01

    We study the retarded response function in scalar $\\phi^4$-theory at finite temperature. We find that in the high-temperature limit the imaginary part of the self-energy is given by the classical theory to leading order in the coupling. In particular the plasmon damping rate is a purely classical effect to leading order, as shown by Aarts and Smit. The dominant contribution to Landau damping is given by the propagation of classical fields in a heat bath of non-interacting fields.

  17. Semi-classical approximations based on Bohmian mechanics

    CERN Document Server

    Struyve, Ward

    2015-01-01

    Semi-classical theories are approximations to quantum theory that treat some degrees of freedom classically and others quantum mechanically. In the usual approach, the quantum degrees of freedom are described by a wave function which evolves according to some Schr\\"odinger equation with a Hamiltonian that depends on the classical degrees of freedom. The classical degrees of freedom satisfy classical equations that depend on the expectation values of quantum operators. In this paper, we study an alternative approach based on Bohmian mechanics. In this approach the quantum system is not only described by the wave function, but with additional variables such as particle positions or fields. By letting the classical equations of motion depend on these variables, rather than the quantum expectation values, a semi-classical approximation is obtained that is closer to the exact quantum results than the usual approach. We discuss the Bohmian semi-classical approximation in various context, such as non-relativistic qu...

  18. Hidden BRS invariance in classical mechanics. Pt. 2

    International Nuclear Information System (INIS)

    In this paper we give more details of a path-integral formulation of classical mechanics previously proposed by this author. This formulation has an unexpected BRS and antiBRS invariance that helps in rewriting the classical generating functional in a compact and revealing form in term of superfields. In this paper we also try to bridge the gap between the usual formulation of classical mechanics and ours: in particular we study the meaning of the auxiliary fields and the ghost fields. These last turn out to be nothing else than the Jacobi fields of classical mechanics and the ghost-charge conservation the well-known Liouville theorem. Next we proceed from the path-integral to find the corresponding operatorial formalism. The operator formulation of classical mechanics that emerges is the one associated to the Liouville operator (liouvillian): a formulation proposed by Liouville long ago as equivalent to the Hamilton one and widely used in classical statistical mechanics. (orig.)

  19. On the Derivation of Conserved Quantities in Classical Mechanics

    CERN Document Server

    Tjiang, P C; Tjiang, Paulus C.; Sutanto, Sylvia H.

    2003-01-01

    We shall discuss a general way of deriving the conserved quantities associated with a given classical mechanical system, denoted by its Hamiltonian. Some examples are given to check the validity of the formulation.

  20. Hamilton's Principle and Approximate Solutions to Problems in Classical Mechanics

    Science.gov (United States)

    Schlitt, D. W.

    1977-01-01

    Shows how to use the Ritz method for obtaining approximate solutions to problems expressed in variational form directly from the variational equation. Application of this method to classical mechanics is given. (MLH)

  1. The Weyl representation in classical and quantum mechanics

    International Nuclear Information System (INIS)

    The position representation of the evolution operator in quantum mechanics is analogous to the generating function formalism of classical mechanics. Similarly, the Weyl representation is connected to new generating functions described by chords and centres. Both classical and quantal theories rely on the group of translations and reflections through a point in phase space. The composition of small time evolutions leads to new versions of the classical variational principle and to path integrals in quantum mechanics. The restriction of the motion to the energy shell in classical mechanics is the basis for a full review of the semiclassical Wigner function and the theory of scars of periodic orbits. By embedding the theory of scars in a fully uniform approximation, it is shown that the region in which the scar contribution is oscillatory is separated from a decaying region by a caustic that touches the shell along the periodic orbit and widens quadratically within the energy shell. (author). 56 refs., 35 figs

  2. Classical mechanics systems of particles and Hamiltonian dynamics

    CERN Document Server

    Greiner, Walter

    2010-01-01

    This textbook Classical Mechanics provides a complete survey on all aspects of classical mechanics in theoretical physics. An enormous number of worked examples and problems show students how to apply the abstract principles to realistic problems. The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics. The new edition is completely revised and updated. New exercises and new sections in canonical transformation and Hamiltonian theory have been added.

  3. A wave equation interpolating between classical and quantum mechanics

    Science.gov (United States)

    Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.

    2015-10-01

    We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.

  4. Quantum Mechanics as an Approximation to Classical Mechanics in Hilbert Space

    OpenAIRE

    Bracken, A. J.

    2002-01-01

    Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket, and a quasidensity operator. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Classical mechanics can now be viewed as a deformation of quantum mechanics. The forms of semiquantum approximations to classical mechanics are indicated.

  5. Quantum Mechanics as an Approximation to Classical Mechanics in Hilbert Space

    CERN Document Server

    Bracken, A J

    2003-01-01

    Classical mechanics is formulated in Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket, and a quasidensity operator. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Classical mechanics can now be viewed as a deformation of quantum mechanics. The forms of semiquantum approximations to classical mechanics are indicated.

  6. Losing energy in classical, relativistic and quantum mechanics

    NARCIS (Netherlands)

    Atkinson, David

    2007-01-01

    A Zenonian supertask involving an infinite number of colliding balls is considered, under the restriction that the total mass of all the balls is finite. Classical mechanics leads to the conclusion that momentum, but not necessarily energy, must be conserved. In relativistic mechanics, however, neit

  7. Classical mechanics from Newton to Einstein : a modern introduction

    CERN Document Server

    McCall, Martin

    2011-01-01

    This new edition of Classical Mechanics, aimed at undergraduate physics and engineering students, presents in a user-friendly style an authoritative approach to the complementary subjects of classical mechanics and relativity.   The text starts with a careful look at Newton's Laws, before applying them in one dimension to oscillations and collisions. More advanced applications - including gravitational orbits and rigid body dynamics - are discussed after the limitations of Newton's inertial frames have been highlighted through an exposition of Einstein's Special Relativity. Examples gi

  8. Classical and quantum mechanics via supermetrics in time

    CERN Document Server

    Gozzi, Ennio

    2009-01-01

    Koopman-von Neumann in the 30's gave an operatorial formululation of Classical Mechanics. It was shown later on that this formulation could also be written in a path-integral form. We will label this functional approach as CPI (for classical path-integral) to distinguish it from the quantum mechanical one, which we will indicate with QPI. In the CPI two Grassmannian partners of time make their natural appearance and in this manner time becomes something like a three dimensional supermanifold. Next we introduce a metric in this supermanifold and show that a particular choice of the supermetric reproduces the CPI while a different one gives the QPI.

  9. Non-Linear Canonical Transformations in Classical and Quantum Mechanics

    CERN Document Server

    Brodlie, A

    2004-01-01

    $p$-Mechanics is a consistent physical theory which describes both classical and quantum mechanics simultaneously through the representation theory of the Heisenberg group. In this paper we describe how non-linear canonical transformations affect $p$-mechanical observables and states. Using this we show how canonical transformations change a quantum mechanical system. We seek an operator on the set of $p$-mechanical observables which corresponds to the classical canonical transformation. In order to do this we derive a set of integral equations which when solved will give us the coherent state expansion of this operator. The motivation for these integral equations comes from the work of Moshinsky and a variety of collaborators. We consider a number of examples and discuss the use of these equations for non-bijective transformations.

  10. Assessing Learning Outcomes in Middle-Division Classical Mechanics: The Colorado Classical Mechanics/Math Methods Instrument

    CERN Document Server

    Caballero, Marcos D; Turnbull, Anna M; Pepper, Rachel E; Pollock, Steven J

    2016-01-01

    Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level Classical Mechanics and Math Methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper-division. The Colorado Classical Mechanics/Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post-test that probes student learning in the first half of a two-semester classical mechanics / math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  11. Novel Evasion Mechanisms of the Classical Complement Pathway.

    Science.gov (United States)

    Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2016-09-15

    Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules.

  12. Novel Evasion Mechanisms of the Classical Complement Pathway.

    Science.gov (United States)

    Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2016-09-15

    Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. PMID:27591336

  13. Analytical mechanics solutions to problems in classical physics

    CERN Document Server

    Merches, Ioan

    2014-01-01

    Fundamentals of Analytical Mechanics Constraints Classification Criteria for Constraints The Fundamental Dynamical Problem for a Constrained Particle System of Particles Subject to Constraints Lagrange Equations of the First KindElementary Displacements Generalities Real, Possible and Virtual Displacements Virtual Work and Connected Principles Principle of Virtual WorkPrinciple of Virtual Velocities Torricelli's Principle Principles of Analytical Mechanics D'alembert's Principle Configuration Space Generalized Forces Hamilton's Principle The Simple Pendulum Problem Classical (Newtonian) Formal

  14. Bohmian mechanics, collapse models and the emergence of classicality

    Science.gov (United States)

    Toroš, Marko; Donadi, Sandro; Bassi, Angelo

    2016-09-01

    We discuss the emergence of classical trajectories in Bohmian mechanics, when a macroscopic object interacts with an external environment. We show that in such a case the conditional wave function of the system follows a dynamics which, under reasonable assumptions, corresponds to that of the Ghirardi-Rimini-Weber (GRW) collapse model. As a consequence, Bohmian trajectories evolve classically. Our analysis also shows how the GRW (istantaneous) collapse process can be derived by an underlying continuous interaction of a quantum system with an external agent, thus throwing a light on how collapses can emerge from a deeper level theory.

  15. Quantum mechanics as an approximation to classical mechanics in Hilbert space

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, A J [DIFI, Universita di Genova, Via Dodecaneso 33, Genova 16146 (Italy)

    2003-06-13

    Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated. (letter to the editor)

  16. Quantum mechanics as an approximation to classical mechanics in Hilbert space

    International Nuclear Information System (INIS)

    Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated. (letter to the editor)

  17. Principles of maximally classical and maximally realistic quantum mechanics

    Indian Academy of Sciences (India)

    S M Roy

    2002-08-01

    Recently Auberson, Mahoux, Roy and Singh have proved a long standing conjecture of Roy and Singh: In 2-dimensional phase space, a maximally realistic quantum mechanics can have quantum probabilities of no more than + 1 complete commuting cets (CCS) of observables coexisting as marginals of one positive phase space density. Here I formulate a stationary principle which gives a nonperturbative definition of a maximally classical as well as maximally realistic phase space density. I show that the maximally classical trajectories are in fact exactly classical in the simple examples of coherent states and bound states of an oscillator and Gaussian free particle states. In contrast, it is known that the de Broglie–Bohm realistic theory gives highly nonclassical trajectories.

  18. Background Independent Quantum Mechanics, Classical Geometric Forms and Geometric Quantum Mechanics-I

    OpenAIRE

    Pandya, Aalok

    2008-01-01

    The geometry of the symplectic structures and Fubini-Study metric is discussed. Discussion in the paper addresses geometry of Quantum Mechanics in the classical phase space. Also, geometry of Quantum Mechanics in the projective Hilbert space has been discussed for the chosen Quantum states. Since the theory of classical gravity is basically geometric in nature and Quantum Mechanics is in no way devoid of geometry, the explorations pertaining to more and more geometry in Quantum Mechanics coul...

  19. Quantum mechanical version of the classical Liouville theorem

    Institute of Scientific and Technical Information of China (English)

    Xie Chuan-Mei; Fan Hong-Yi

    2013-01-01

    In terms of the coherent state evolution in phase space,we present a quantum mechanical version of the classical Liouville theorem.The evolution of the coherent state from | z> to | sz-rz*> corresponds to the motion from a point z (q,p)to another point sz-rz* with |s|2-|r|2 =1.The evolution is governed by the so-called Fresnel operator U(s,r) that was recently proposed in quantum optics theory,which classically corresponds to the matrix optics law and the optical Fresnel transformation,and obeys group product rules.In other words,we can recapitulate the Liouville theorem in the context of quantum mechanics by virtue of coherent state evolution in phase space,which seems to be a combination of quantum statistics and quantum optics.

  20. Noether-Lie Symmetry of Generalized Classical Mechanical Systems

    Institute of Scientific and Technical Information of China (English)

    JIA Wen-Zhi; ZHANG Xiao-Ni; WANG Shun-Jin; FANG Jian-Hui; WANG Peng; DING Ning

    2008-01-01

    In this paper, the Noether-Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general infinitesimal transformations of groups are given. The Noether conserved quantity and the Hojman conserved quantity deduced from the Noether-Lie symmetry are obtained. An example is given to illustrate the application of the results.

  1. Quantum mechanics classical results, modern systems, and visualized examples

    CERN Document Server

    Robinett, Richard W

    2006-01-01

    `Quantum Mechanics'' is a comprehensive introduction to quantum mechanics for advanced undergraduate students in physics. It provides the reader with a strong conceptual background in the subject, extensive experience with the necessary mathematical background, as well as numerous visualizations of quantum concepts and phenomena. - ;Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples is a comprehensive introduction to non-relativistic quantum mechanics for advanced undergraduate students in physics and related fields. It provides students with a strong conceptual background in the most important theoretical aspects of quantum mechanics, extensive experience with the mathematical tools required to solve problems, the opportunity to use quantum ideas to confront modern experimental. realizations of quantum systems, and numerous visualizations of quantum concepts and phenomena. Changes from the First Edition include many new discussions of modern quantum systems (such as Bose-Einstein c...

  2. Quantum mechanics, by itself, implies perception of a classical world

    CERN Document Server

    Blood, Casey

    2010-01-01

    Quantum mechanics, although highly successful, has two peculiarities. First, in many situations it gives more than one potential version of reality. And second, the wave function for a macroscopic object such as a baseball can be spread out over a macroscopic distance. In the first, quantum mechanics seems to imply that the observer will perceive more than one version of reality and in the second it seems to imply we should see spread-out, blurred objects instead of sharply delineated baseballs. But neither implication is true. Quantum mechanics, by itself, implies more than one version of reality will never be reportably perceived, and it implies the perceived position of a baseball will always be sharply defined. Further, two observers will never disagree on what they perceive. Thus quantum mechanics, by itself, with no assumption of particles or collapse, always leads to the perception of a classical-appearing universe.

  3. Gauge transformations and conserved quantities in classical and quantum mechanics

    Science.gov (United States)

    Berche, Bertrand; Malterre, Daniel; Medina, Ernesto

    2016-08-01

    We are taught that gauge transformations in classical and quantum mechanics do not change the physics of the problem. Nevertheless, here we discuss three broad scenarios where under gauge transformations: (i) conservation laws are not preserved in the usual manner; (ii) non-gauge-invariant quantities can be associated with physical observables; and (iii) there are changes in the physical boundary conditions of the wave function that render it non-single-valued. We give worked examples that illustrate these points, in contrast to general opinions from classic texts. We also give a historical perspective on the development of Abelian gauge theory in relation to our particular points. Our aim is to provide a discussion of these issues at the graduate level.

  4. Physics on the boundary between classical and quantum mechanics

    Science.gov (United States)

    't Hooft, Gerard

    2014-04-01

    Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?

  5. Manifestations of classical phase space structures in quantum mechanics

    International Nuclear Information System (INIS)

    Using two coupled quartic oscillators for illustration, the quantum mechanics of simple systems whose classical analogues have varying degrees of non-integrability is investigated. By taking advantage of discrete symmetries and dynamical quasidegeneracies it is shown that Percival's semiclassical classification scheme, i.e. eigenstates may be separated into a regular or an irregular group, basically works. Some observations of intermediate status states are made. Generalized ensembles are constructed which apply equally well to both spectral and eigenstate properties. They typically show non-universal, but nevertheless characteristic level fluctuations. In addition, they predict 'semiclassical localization' of eigenfunctions and 'quantum suppression of chaos' which are quantitatively borne out in the quantum systems. (author) 101 refs.; 27 figs.; 6 tabs

  6. Noncommutative Classical and Quantum Mechanics for Quadratic Lagrangians (Hamiltonians)

    CERN Document Server

    Dragovich, B; Dragovich, Branko; Rakic, Zoran

    2006-01-01

    We consider classical and quantum mechanics for an extended Heisenberg algebra with additional canonical commutation relations for position and momentum coordinates. In our approach this additional noncommutativity is removed from the algebra by linear transformation of coordinates and transmitted to the Hamiltonian (Lagrangian). Since linear transformations do not change the quadratic form of Hamiltonian (Lagrangian), and Feynman's path integral has well-known exact expression for quadratic models, we restricted our analysis to this class of physical systems. The compact general formalism presented here can be easily realized in any particular quadratic case. As an important example of phenomenological interest, we explored model of a charged particle in the noncommutative plane with perpendicular magnetic field. We also introduced an effective Planck constant $\\hbar_{eff}$ which depends on noncommutativity.

  7. On the "Universal" N=2 Supersymmetry of Classical Mechanics

    CERN Document Server

    Deotto, E

    2001-01-01

    In this paper we continue the study of the geometrical features of a functional approach to classical mechanics proposed some time ago. In particular we try to shed some light on a N=2 "universal" supersymmetry which seems to have an interesting interplay with the concept of ergodicity of the system. To study the geometry better we make this susy local and clarify pedagogically several issues present in the literature. Secondly, in order to prepare the ground for a better understanding of its relation to ergodicity, we study the system on constant energy surfaces. We find that the procedure of constraining the system on these surfaces injects in it some local grassmannian invariances and reduces the N=2 global susy to an N=1.

  8. Why classical mechanics cannot naturally accommodate consciousness but quantum mechanics can

    CERN Document Server

    Stapp, Henry P

    1995-01-01

    It is argued on the basis of certain mathematical characteristics that classical mechanics is not constitutionally suited to accomodate consciousness, whereas quantum mechanics is. These mathematical characteristics pertain to the nature of the information represented in the state of the brain, and the way this information enters into the dynamics.

  9. Semiclassical Aspects of Quantum Mechanics by Classical Fluctuations

    CERN Document Server

    De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De

    1998-01-01

    Building on a model recently proposed by F. Calogero, we postulate the existence of a coherent, long--range universal tremor affecting any stable and confined classical dynamical system. Deriving the characteristic fluctuative unit of action for each classical interaction, we obtain in all cases its numerical coincidence with the Planck action constant. We therefore suggest that quantum corrections to classical dynamics can be simulated by suitable classical stochastic fluctuations.

  10. Exact solution of the classical mechanical quadratic Zeeman effect

    Indian Academy of Sciences (India)

    Sambhu N Datta; Anshu Pandey

    2007-06-01

    We address the curious problem of quadratic Zeeman effect at the classical mechanical level. The problem has been very well understood for decades, but an analytical solution of the equations of motion is still to be found. This state of affairs persists because the simultaneous presence of the Coulombic and quadratic terms lowers the dynamical symmetry. Energy and orbital angular momentum are still constants of motion. We find the exact solutions by introducing the concept of an image ellipse. The quadratic effect leads to a dilation of space–time, and a one-to-one correspondence is observed for pairs of physical quantities like energy and angular momentum, and the maximum and minimum distances from the Coulomb center for the Zeeman orbit and the corresponding pairs for the image ellipse. Thus, instead of finding additional conserved quantities, we find constants of motion for an additional dynamics, namely, the image problem. The trajectory is open, in agreement with Bertrand's theorem, but necessarily bound. A stable unbound trajectory does not exist for real values of energy and angular momentum. The radial distance, the angle covered in the plane of the orbit, and the time are uniquely determined by introducing further the concept of an image circle. While the radial distance is defined in a closed form as a transcendental function of the image-circular angle, the corresponding orbit angle and time variables are found in the form of two convergent series expansions. The latter two variables are especially contracted, thereby leading to a precession of the open cycles around the Coulomb center. It is expected that the space–time dilation effect observed here would somehow influence the solution of the quantum mechanical problem at the non-relativistic level.

  11. Semi-classical limit of relativistic quantum mechanics

    Indian Academy of Sciences (India)

    L Kocis

    2005-07-01

    It is shown that the semi-classical limit of solutions to the Klein–Gordon equation gives the particle probability density that is in direct proportion to the inverse of the particle velocity. It is also shown that in the case of the Dirac equation a different result is obtained.

  12. Interpreting nonlinear vibrational spectroscopy with the classical mechanical analogs of double-sided Feynman diagrams.

    Science.gov (United States)

    Noid, W G; Loring, Roger F

    2004-10-15

    Observables in coherent, multiple-pulse infrared spectroscopy may be computed from a vibrational nonlinear response function. This response function is conventionally calculated quantum-mechanically, but the challenges in applying quantum mechanics to large, anharmonic systems motivate the examination of classical mechanical vibrational nonlinear response functions. We present an approximate formulation of the classical mechanical third-order vibrational response function for an anharmonic solute oscillator interacting with a harmonic solvent, which establishes a clear connection between classical and quantum mechanical treatments. This formalism permits the identification of the classical mechanical analog of the pure dephasing of a quantum mechanical degree of freedom, and suggests the construction of classical mechanical analogs of the double-sided Feynman diagrams of quantum mechanics, which are widely applied to nonlinear spectroscopy. Application of a rotating wave approximation permits the analytic extraction of signals obeying particular spatial phase matching conditions from a classical-mechanical response function. Calculations of the third-order response function for an anharmonic oscillator coupled to a harmonic solvent are compared to numerically correct classical mechanical results.

  13. Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures

    CERN Document Server

    Longhi, Stefano

    2011-01-01

    Spatial and/or temporal propagation of light waves in periodic optical structures offers a rather unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based on either spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair-production, the Dirac oscillator, the relativistic Kronig-Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.

  14. Inhomogeneous Quantum Mixmaster: from Classical toward Quantum Mechanics

    CERN Document Server

    Montani, R B G

    2006-01-01

    Starting from the Hamiltonian formulation for the inhomogeneous Mixmaster dynam- ics, we approach its quantum features through the link of the quasi-classical limit. We fix the proper operator-ordering which ensures that the WKB continuity equation overlaps the Liouville theorem as restricted to the configuration space. We describe the full quantum dynamics of the model in some details, providing a characterization of the (discrete) spectrum with analytic expressions for the limit of high occupation number. One of the main achievements of our analysis relies on the description of the ground state morphology, showing how it is characterized by a non-vanishing zero-point energy associated to the Universe anisotropy degrees of freedom

  15. Classical Mechanics in Hilbert Space: Path Integral Formulation, and a Quantum Correction

    CERN Document Server

    Shee, James

    2015-01-01

    While it is well-known that quantum mechanics can be reformulated in terms of a path integral representation, it will be shown that such a formulation is also possible in the case of classical mechanics. From Koopman-von Neumann theory, which recasts classical mechanics in terms of a Hilbert space wherein the Liouville operator acts as the generator of motion, we derive a path integral representation of the classical propagator and suggest an efficient numerical implementation using fast fourier transform techniques. We then include a first quantum correction to derive a revealing expression for the semi-classical path integral, which augments the classical picture of a single trajectory through phase space with additional wave-like spreading.

  16. Tumor cell survival and immune escape mechanisms in classical Hodgkin lymphoma

    NARCIS (Netherlands)

    Liang, Zheng

    2015-01-01

    Tumor cell survival and immune escape mechanisms in classical Hodgkin lymphoma The nature of classical Hodgkin lymphoma (HL), a minority of tumor cells in a reactive background and loss of B cell phenotype, decides its dependence on the microenvironment for signals to contribute to survival and prol

  17. A Comparison of Kinetic Energy and Momentum in Special Relativity and Classical Mechanics

    Science.gov (United States)

    Riggs, Peter J.

    2016-01-01

    Kinetic energy and momentum are indispensable dynamical quantities in both the special theory of relativity and in classical mechanics. Although momentum and kinetic energy are central to understanding dynamics, the differences between their relativistic and classical notions have not always received adequate treatment in undergraduate teaching.…

  18. DFT study on mechanism of the classical Biginelli reaction

    Institute of Scientific and Technical Information of China (English)

    Jin Guang Ma; Ji Ming Zhang; Hai Hui Jiang; Wan Yong Ma; Jian Hua Zhou

    2008-01-01

    The condensation of benzaldehyde, urea, and ethyl acetoacetate according to the procedure described by Biginelli was investigated at the B3LYP/6-31G(d), B3LYP/6-31+G(d,p), and B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) levels to explore the reaction mechanism. According to the mechanism proposed by Kappe, structures of five intermediates were optimized and four transition states were found. The calculation results proved that the mechanism proposed by Kappe is right.

  19. Classical mechanics in non-commutative phase space

    Institute of Scientific and Technical Information of China (English)

    WEI Gao-Feng; LONG Chao-Yun; LONG Zheng-Wen; QIN Shui-Jie; Fu Qiang

    2008-01-01

    In this paper the laws of motion of classical particles have been investigated in a non-commutative phase space.The corresponding non-commutative relations contain not only spatial non-commutativity but also momentum non-commutativity.First,new Poisson brackets have been defined in non-commutative phase space.They contain corrections due to the non-commutativity of coordinates and momenta.On the basis of this new Poisson brackets,a new modified second law of Newton has been obtained.For two cases,the free particle and the harmonic oscillator,the equations of motion are derived on basis of the modified second law of Newton and the linear transformation (Phys.Rev.D,2005,72:025010).The consistency between both methods is demonstrated.It is shown that a free particle in commutative space is not a free particle with zero-acceleration in the non-commutative phase space.but it remains a free particle with zero-acceleration in non-commutative space if only the coordinates are non-commutative.

  20. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.

  1. On the classical limit of Bohmian mechanics for Hagedorn wave packets

    CERN Document Server

    Dürr, Detlef

    2010-01-01

    We consider the classical limit of quantum mechanics in terms of Bohmian trajectories. For wave packets as defined by Hagedorn we show that the Bohmian trajectories converge to Newtonian trajectories in probability.

  2. Entropic Fluctuations in Statistical Mechanics I. Classical Dynamical Systems

    CERN Document Server

    Jakšić, Vojkan; Rey-Bellet, Luc

    2010-01-01

    Within the abstract framework of dynamical system theory we describe a general approach to the Transient (or Evans-Searles) and Steady State (or Gallavotti-Cohen) Fluctuation Theorems of non-equilibrium statistical mechanics. Our main objective is to display the minimal, model independent mathematical structure at work behind fluctuation theorems. Besides its conceptual simplicity, another advantage of our approach is its natural extension to quantum statistical mechanics which will be presented in a companion paper. We shall discuss several examples including thermostated systems, open Hamiltonian systems, chaotic homeomorphisms of compact metric spaces and Anosov diffeomorphisms.

  3. Classical and quantum Fisher information in the geometrical formulation of quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, Paolo [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Kulkarni, Ravi [Vivekananda Yoga Research Foundation, Bangalore 560 080 (India); Man' ko, V.I., E-mail: manko@na.infn.i [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, Giuseppe [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Sudarshan, E.C.G. [Department of Physics, University of Texas, Austin, TX 78712 (United States); Ventriglia, Franco [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy)

    2010-11-01

    The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.

  4. Time Symmetric Quantum Mechanics and Causal Classical Physics

    CERN Document Server

    Bopp, Fritz W

    2016-01-01

    A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual "near future" macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.

  5. Classical and Quantum Mechanics of Free \\k Relativistic Systems

    OpenAIRE

    Lukierski, J.; Ruegg, H.; Zakrzewski, W. J.

    1993-01-01

    We consider the Hamiltonian and Lagrangian formalism describing free \\k-relativistic particles with their four-momenta constrained to the \\k-deformed mass shell. We study the modifications of the formalism which follow from the introduction of space coordinates with nonvanishing Poisson brackets and from the redefinitions of the energy operator. The quantum mechanics of free \\k-relativistic particles and of the free \\k-relativistic oscillator is also presented. It is shown that the \\k-relativ...

  6. Classical and quantum mechanics of free {kappa}-relativistic systems

    Energy Technology Data Exchange (ETDEWEB)

    Lukierski, J. [Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE (England); Ruegg, H. [Department de Physique Theorique, Universite de Geneve, 24 quai Ernest-Ansermet, 1211 Geneve 4 (Switzerland); Zakrzewski, W.J. [Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE (England)

    1995-10-01

    We consider the Hamiltonian and Lagrangian formalism describing free {kappa}-relativistic particles with their four-momenta constrained to the {kappa}-deformed mass shell. We study the formalism with commuting as well as noncommuting (i.e., with nonvanishing Poisson brackets) space-time coordinates; in particular a {kappa}-deformed phase space formalism leading to the {kappa}-deformed covariant Heisenberg algebra is presented. We also describe the dependence of the formalism on the various definitions of the energy operator corresponding to different choices of basic generators in the {kappa}-deformed Poincar{acute e} algebra. The quantum mechanics of free {kappa}-relativistic particles and of the free {kappa}-relativistic oscillator are also presented. It is shown that the {kappa}-relativistic oscillator describes a quantum statistical ensemble with a finite value of the Hagedorn temperature. The relation to a {kappa}-deformed Schr{umlt o}dinger quantum mechanics in which the time derivative is replaced by a finite difference is also discussed. {copyright} 1995 Academic Press, Inc.

  7. Alcohol Withdrawal and Brain Injuries: Beyond Classical Mechanisms

    Directory of Open Access Journals (Sweden)

    Marianna E. Jung

    2010-07-01

    Full Text Available Unmanaged sudden withdrawal from the excessive consumption of alcohol (ethanol adversely alters neuronal integrity in vulnerable brain regions such as the cerebellum, hippocampus, or cortex. In addition to well known hyperexcitatory neurotransmissions, ethanol withdrawal (EW provokes the intense generation of reactive oxygen species (ROS and the activation of stress-responding protein kinases, which are the focus of this review article. EW also inflicts mitochondrial membranes/membrane potential, perturbs redox balance, and suppresses mitochondrial enzymes, all of which impair a fundamental function of mitochondria. Moreover, EW acts as an age-provoking stressor. The vulnerable age to EW stress is not necessarily the oldest age and varies depending upon the target molecule of EW. A major female sex steroid, 17β-estradiol (E2, interferes with the EW-induced alteration of oxidative signaling pathways and thereby protects neurons, mitochondria, and behaviors. The current review attempts to provide integrated information at the levels of oxidative signaling mechanisms by which EW provokes brain injuries and E2 protects against it. Unmanaged sudden withdrawal from the excessive consumption of alcohol (ethanol adversely alters neuronal integrity in vulnerable brain regions such as the cerebellum, hippocampus, or cortex. In addition to well known hyperexcitatory neurotransmissions, ethanol withdrawal (EW provokes the intense generation of reactive oxygen species (ROS and the activation of stress-responding protein kinases, which are the focus of this review article. EW also inflicts mitochondrial membranes/membrane potential, perturbs redox balance, and suppresses mitochondrial enzymes, all of which impair a fundamental function of mitochondria. Moreover, EW acts as an age-provoking stressor. The vulnerable age to EW stress is not necessarily the oldest age and varies depending upon the target molecule of EW. A major female sex steroid, 17

  8. Classical Mechanics with Computational Physics in the Undergraduate Curriculum

    Science.gov (United States)

    Hasbun, J. E.

    2006-11-01

    Efforts to incorporate computational physics in the undergraduate curriculum have made use of Matlab, IDL, Maple, Mathematica, Fortran, and C^1 as well as Java.^2 The benefits of similar undertakings in our undergraduate curriculum are that students learn ways to go beyond what they learn in the classroom and use computational techniques to explore more realistic physics applications. Students become better prepared to perform research that will be useful throughout their scientific careers.^3 Undergraduate physics in general can benefit by building on such efforts. Recently, I have developed a draft of a textbook for the junior level mechanics physics course with computer applications.^4 The text uses the traditional analytical approach, yet it incorporates computational physics to build on it. The text does not intend to teach students how to program; instead, it makes use of students' abilities to use programming to go beyond the analytical approach and complement their understanding. An in-house computational environment, however, is strongly encouraged. Selected examples of representative lecture problems will be discussed. ^1 ''Computation and Problem Solving in Undergraduate Physics,'' David M. Cook, Lawrence University (2003). ^2 ''Simulations in Physics: Applications to Physical Systems,'' H. Gould, J. Tobochnik, and W Christian. ^3 R. Landau, APS Bull. Vol 50, 1069 (2005) ^4J. E. Hasbun, APS Bull. Vol. 51, 452 (2006)

  9. Integrating factors and conservation theorem for holonomic nonconservative dynamical systems in generalized classical mechanics

    Institute of Scientific and Technical Information of China (English)

    乔永芬; 张耀良; 韩广才

    2002-01-01

    In this paper, we present a general approach to the construction of conservation laws for generalized classical dynamical systems. Firstly, we give the definition of integrating factors and, secondly, we study in detail the necessary conditions for the existence of conserved quantities. Then we establish the conservation theorem and its inverse for the Hamilton's canonical equations of motion of holonomic nonconservative dynamical systems in generalized classical mechanics. Finally, we give an example to illustrate the application of the results.

  10. Classical mechanics

    CERN Document Server

    Corben, HC

    1994-01-01

    Applications not usually taught in physics courses include theory of space-charge limited currents, atmospheric drag, motion of meteoritic dust, variational principles in rocket motion, transfer functions, much more. 1960 edition.

  11. Assessing Student Learning in Middle-Division Classical Mechanics/Math Methods

    CERN Document Server

    Caballero, Marcos D

    2013-01-01

    Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level Classical Mechanics and Math Methods course (CM 1) at CU Boulder, we are developing a tool to assess student learning of CM 1 concepts in the upper-division. The Colorado Classical Mechanics/Math Methods Instrument (CCMI) builds on faculty-consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post-test that probes student learning in the first half of a two-semester classical mechanics / math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder.

  12. Quantum and classical control of single photon states via a mechanical resonator

    Science.gov (United States)

    Basiri-Esfahani, Sahar; Myers, Casey R.; Combes, Joshua; Milburn, G. J.

    2016-06-01

    Optomechanical systems typically use light to control the quantum state of a mechanical resonator. In this paper, we propose a scheme for controlling the quantum state of light using the mechanical degree of freedom as a controlled beam splitter. Preparing the mechanical resonator in non-classical states enables an optomechanical Stern-Gerlach interferometer. When the mechanical resonator has a small coherent amplitude it acts as a quantum control, entangling the optical and mechanical degrees of freedom. As the coherent amplitude of the resonator increases, we recover single photon and two-photon interference via a classically controlled beam splitter. The visibility of the two-photon interference is particularly sensitive to coherent excitations in the mechanical resonator and this could form the basis of an optically transduced weak-force sensor.

  13. Unconstrained SU(2) and SU(3) Yang-Mills classical mechanics

    International Nuclear Information System (INIS)

    A systematic study of contraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with spatial angular momenta they turn out to be nonholonomic. The complete elimination of the unphysical gauge and rotatinal degrees of freedom is achieved using Dirac's constraint formalism. We present an effective unconstrained formulation of the general SU(2) Yang-Mills classical mechanics as well as for SU(3) in the subspace of vanishing spatial angular momenta that is well suited for further explicit dynamical investigations. (orig.)

  14. Semi-classical mechanics in phase space: the quantum target of minimal strings

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Cesar [Instituto de Fisica Teorica CSIC/UAM, C-XVI Universidad Autonoma, E-28049 Madrid (Spain); Montanez, Sergio [Instituto de Fisica Teorica CSIC/UAM, C-XVI Universidad Autonoma, E-28049 Madrid (Spain); Resco, Pedro [Instituto de Fisica Teorica CSIC/UAM, C-XVI Universidad Autonoma, E-28049 Madrid (Spain)

    2005-11-15

    The target space M{sub p,q} of (p,q) minimal strings is embedded into the phase space of an associated integrable classical mechanical model. This map is derived from the matrix model representation of minimal strings. Quantum effects on the target space are obtained from the semiclassical mechanics in phase space as described by the Wigner function. In the classical limit the target space is a fold catastrophe of the Wigner function that is smoothed out by quantum effects. Double scaling limit is obtained by resolving the singularity of the Wigner function. The quantization rules for backgrounds with ZZ branes are also derived.

  15. Semi-Classical Mechanics in Phase Space: The Quantum Target of Minimal Strings

    CERN Document Server

    Gómez, C; Resco, P; Gomez, Cesar; Montanez, Sergio; Resco, Pedro

    2005-01-01

    The target space $M_{p,q}$ of $(p,q)$ minimal strings is embedded into the phase space of an associated integrable classical mechanical model. This map is derived from the matrix model representation of minimal strings. Quantum effects on the target space are obtained from the semiclassical mechanics in phase space as described by the Wigner function. In the classical limit the target space is a fold catastrophe of the Wigner function that is smoothed out by quantum effects. Double scaling limit is obtained by resolving the singularity of the Wigner function. The quantization rules for backgrounds with ZZ branes are also derived.

  16. A New Conservation Law Derived from Mei Symmetry for the System of Generalized Classical Mechanics

    Institute of Scientific and Technical Information of China (English)

    ZHANGYi

    2004-01-01

    A new conservation theorem derived directly from Mei symmetry of the generalized classical mechanical system is presented. First, the differential equations of motion of the system are established, and the definition and criterion of Mei symmetry for the system of generalized classical mechanics are given, which are based upon the invariance of dynamical functions under irdinitesimal transformations. Second, the condition under which a Mei symmetry can lead to a new conservation law is obtained and the form of the conservation law is presented. And finadly, an example is given to illustrate the application of the results.

  17. A New Conservation Law Derived from Mei Symmetry for the System of Generalized Classical Mechanics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi

    2004-01-01

    A new conservation theorem derived directly from Mei symmetry of the generalized classical mechanical system is presented. First, the differential equations of motion of the system are established, and the definition and criterion of Mei symmetry for the system of generalized classical mechanics are given, which are based upon the invariance of dynamical functions under infinitesimal transformations. Second, the condition under which a Mei symmetry can lead to a new conservation law is obtained and the form of the conservation law is presented. And finally, an example is given to illustrate the application of the results.

  18. Classical Yang-Mills Mechanics: Instant vs. Light-cone Form

    International Nuclear Information System (INIS)

    Two different forms of relativistic dynamics, the instant and the light-cone form, for the pure SU(2) Yang-Mills field theory in 4-dimensional Minkowski space are examined under the supposition that the gauge fields depend on the time evolution parameter only. The obtained under that restriction of gauge potential space homogeneity mechanical matrix model, sometimes called Yang-Mills classical mechanics, is systematically studied in its instant and light-cone form of dynamics using the Dirac's generalized Hamiltonian approach. In the both cases the constraint content of the obtained mechanical systems is found. In contrast to its well-known instant-time counterpart the light-cone version of SU(2) Yang-Mills classical mechanics has in addition to the constraints generating the SU(2) gauge transformations the new first and second class constraints also. On account of all of these constraints a complete reduction in number of the degrees of freedom is performed. In the instant form of dynamics it is shown that after elimination of the gauge degrees of freedom from the classical SU(2) Yang-Mills mechanics the resulting unconstrained system represents the ID3 Euler-Calogero-Moser model with a certain external fourth-order potential, whereas in the light-cone form it is argued that the classical evolution of the unconstrained degrees of freedom is equivalent to a free one-dimensional particle dynamics.

  19. Feeding Behavior of Aplysia: A Model System for Comparing Cellular Mechanisms of Classical and Operant Conditioning

    Science.gov (United States)

    Baxter, Douglas A.; Byrne, John H.

    2006-01-01

    Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…

  20. Is classical mechanics based on Newton's laws or Eulers analytical equations?

    Directory of Open Access Journals (Sweden)

    H.Iro

    2005-01-01

    Full Text Available In an example I illustrate how my picture of physics is enriched due to my frequent conversations with Reinhard Folk. The subject is: Who wrote down the basic equations of motion of classical mechanics for the first time? (To be sure, it was not Newton.

  1. Bosonic seesaw mechanism in a classically conformal extension of the Standard Model

    CERN Document Server

    Haba, Naoyuki; Okada, Nobuchika; Yamaguchi, Yuya

    2015-01-01

    We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal $U(1)_{B-L}$ extension of the Standard Model with two Higgs doublet fields. The $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. Analyzing the renormalization group evolutions for all model couplings, we find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. We identify the regions of model parameters which satisfy ...

  2. Electroweak symmetry breaking through bosonic seesaw mechanism in a classically conformal extension of the Standard Model

    CERN Document Server

    Haba, Naoyuki; Okada, Nobuchika; Yamaguchi, Yuya

    2015-01-01

    We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal $U(1)_{B-L}$ extension of the Standard Model with two Higgs doublet fields. The $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. We analyze the renormalization group evolutions for all model couplings, and find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. The requirements for the perturbativity of the running c...

  3. Theory of hybrid systems; 1, The operator formulation of classical mechanics and semiclassical limit

    CERN Document Server

    Prvanovic, S

    2001-01-01

    The algebra of polynomials in operators that represent generalized coordinate and momentum and depend on the Planck constant is defined. The Planck constant is treated as the parameter taking values between zero and some nonvanishing $h_0$. For the second of these two extreme values, introduced operatorial algebra becomes equivalent to the algebra of observables of quantum mechanical system defined in the standard manner by operators in the Hilbert space. For the vanishing Planck constant, the generalized algebra gives the operator formulation of classical mechanics since it is equivalent to the algebra of variables of classical mechanical system defined, as usually, by functions over the phase space. In this way, the semiclassical limit of kinematical part of quantum mechanics is established through the generalized operatorial framework.

  4. The basic paradoxes of statistical classical physics and the quantum mechanics

    OpenAIRE

    Kupervasser, Oleg

    2009-01-01

    Statistical classical mechanics and quantum mechanics are developed and well-known theories that represent a basis for modern physics. The two described theories are well known and have been well studied. As these theories contain numerous paradoxes, many scientists doubt their internal consistencies. However, these paradoxes can be resolved within the framework of the existing physics without the introduction of new laws. To clarify the paper for the inexperienced reader, we include certain ...

  5. Interpretation of the classical limits of quantum mechanics on a non-commutative configuration space

    CERN Document Server

    Benatti, Fabio

    2014-01-01

    The classical limits of quantum mechanics on a non-commutative configuration space has been recently studied through the possible ways of removing the non-commutativity based on the classical limit context known as anti-Wick quantization. The conclusion is that the removal of non-commutativity from the configuration space and from the canonical operators are not commuting operations. In order to give an interpretation to the non-exchangeability of the limits, we calculate the Wigner functions of the gaussian-like states of the non-commutative quantum harmonic oscillators and their limits when $\\hbar \\rightarrow 0$ and $\\theta\

  6. Statistical properties of 1D spin glasses from first principles of classical mechanics

    OpenAIRE

    Gevorkyan, A. S.; Sahakyan, V. V.

    2015-01-01

    We study the classical 1D Heisenberg spin glasses. Based on the Hamilton equations we obtained the system of recurrence equations which allows to perform node-by-node calculations of a spin-chain. It is shown that calculations from first principles of classical mechanics lead to NP hard problem, that however in the limit of the statistical equilibrium can be calculated by P algorithm. For the partition function of the ensemble a new representation is offered in the form of one-dimensional int...

  7. Spike-coding mechanisms of cerebellar temporal processing in classical conditioning and voluntary movements.

    Science.gov (United States)

    Yamaguchi, Kenji; Sakurai, Yoshio

    2014-10-01

    Time is a fundamental and critical factor in daily life. Millisecond timing, which is the underlying temporal processing for speaking, dancing, and other activities, is reported to rely on the cerebellum. In this review, we discuss the cerebellar spike-coding mechanisms for temporal processing. Although the contribution of the cerebellum to both classical conditioning and voluntary movements is well known, the difference of the mechanisms for temporal processing between classical conditioning and voluntary movements is not clear. Therefore, we review the evidence of cerebellar temporal processing in studies of classical conditioning and voluntary movements and report the similarities and differences between them. From some studies, which used tasks that can change some of the temporal properties (e.g., the duration of interstimulus intervals) with keeping identical movements, we concluded that classical conditioning and voluntary movements may share a common spike-coding mechanism because simple spikes in Purkinje cells decrease at predicted times for responses regardless of the intervals between responses or stimulation.

  8. Hannay Angle: Yet Another Symmetry-Protected Topological Order Parameter in Classical Mechanics

    Science.gov (United States)

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2016-04-01

    The topological way of thinking now goes beyond quantum solids, and topological characters of classical mechanical systems obeying Newton's law are attracting current interest. To provide a physical insight into the topological numbers in mechanics, we demonstrate the use of the Hannay angle, a "classical" Berry phase, as a symmetry-protected topological order parameter. The Hannay angle is derived using a canonical transformation that maps Newton's equation to a Schrödinger-type equation, and the condition for the quantization is discussed in connection with the symmetry in mechanics. Also, we demonstrate the use of the Hannay angle for a topological characterization of a spring-mass model focusing on the bulk-edge correspondence.

  9. Classical antiparticles

    Energy Technology Data Exchange (ETDEWEB)

    Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.

    1997-03-01

    We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors). 13 refs., 1 tab.

  10. Quantum epistemology from subquantum ontology: quantum mechanics from theory of classical random fields

    CERN Document Server

    Khrennikov, Andrei

    2016-01-01

    The scientific methodology based on two descriptive levels, ontic (reality as it is ) and epistemic (observational), is briefly presented. Following Schr\\"odinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be inaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity - the quantum state ("wave function"). The correspondence PCSFT to QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and th...

  11. Quantum Statistical Mechanics as an Exact Classical Expansion with Results for Lennard-Jones Helium

    CERN Document Server

    Attard, Phil

    2016-01-01

    The quantum states representing classical phase space are given, and these are used to formulate quantum statistical mechanics as a formally exact double perturbation expansion about classical statistical mechanics. One series of quantum contributions arises from the non-commutativity of the position and momentum operators. Although the formulation of the quantum states differs, the present results for separate averages of position operators and of momentum operators agree with Wigner (1932) and Kirkwood (1933). The second series arises from wave function symmetrization, and is given in terms of $l$-particle permutation loops in an infinite order re-summation. The series gives analytically the known exact result for the quantum ideal gas to all orders. The leading correction corrects a correction given by Kirkwood. The first four quantum corrections to the grand potential are calculated for a Lennard-Jones fluid using the hypernetted chain closure. For helium on liquid branch isotherms, the corrections range ...

  12. Classical limits of quantum mechanics on a non-commutative configuration space

    CERN Document Server

    Benatti, Fabio

    2013-01-01

    We consider a model of non-commutative Quantum Mechanics given by two harmonic oscillators over a non-commutative two dimensional configuration space. We study possible ways of removing the non-commutativity based on the classical limit context known as anti-Wick quantization. We show that removal of non-commutativity from the configuration space and from the canonical operators are not commuting operations.

  13. Theorem on the proportionality of inertial and gravitational masses in classical mechanics

    CERN Document Server

    Chubykalo, A E; Chubykalo, Andrew E.; Vlaev, Stoyan J.

    1998-01-01

    We considered the problem of the proportionality of inertial and gravitational masses in classical mechanics. We found that the kinetic energy of a material mass point m in a circular motion with a constant angular velocity around another material point M depends only on its gravitational mass. This fact, together with the known result that the straight line is a circumference with an infinite radius, allowed us to prove the proportionality between the inertial and gravitational masses.

  14. Development of classical boundary element analysis of fracture mechanics in gradient materials

    OpenAIRE

    Xiao, HT; Yue, QZQ

    2013-01-01

    Over the last decade, the authors have extended the classical boundary element methods (BEM) for analysis of the fracture mechanics in functionally gradient materials. This paper introduces the dual boundary element method associated with the generalized Kelvin fundamental solutions of multilayered elastic solids (or Yue’s solution). This dual BEM uses a pair of the displacement and traction boundary integral equations. The former is collocated exclusively on the uncracked boundary, and the l...

  15. A morphing approach to couple state-based peridynamics with classical continuum mechanics

    KAUST Repository

    Han, Fei

    2016-01-04

    A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.

  16. Peridynamic theory of solids from the perspective of classical statistical mechanics

    Science.gov (United States)

    Rahman, R.; Foster, J. T.

    2015-11-01

    In this paper the classical statistical mechanics has been explored in order to develop statistical mechanical framework for peridynamics. Peridynamic equation of motion is known as upscaled Newton's equation. The peridynamic system consists of finite number of nonlocally interacting particles at nano and meso scales. This particle representation of peridynamics can be treated in terms of classical statistical mechanics. Hence, in this work the phase space is constructed based on the PD particle from their evolving momentum pi and positions xi. The statistical ensembles are derived by defining appropriate partition functions. The algorithms for NVE and NPH implemented in the classical molecular dynamics are revisited for equilibrium peridynamic models. The current work introduces Langevin dynamics to the peridynamic theory through fluctuation-dissipation principle. This introduces a heat bath to the peridynamic system which eliminates the ambiguity with the role of temperature in a peridynamic system. Finally, it was seen that the homogenization of a peridynamic model with finite number of particles approaches to a conventional continuum model. The upscaled non-equilibrium peridynamics has potential applications in modeling wide variety of multiscale-multiphysics problems from nano to macro scale or vice versa.

  17. Foundations of mechanism design: A tutorial Part 1 – Key concepts and classical results

    Indian Academy of Sciences (India)

    Dinesh Garg; Y Narahari; Sujit Gujar

    2008-04-01

    Mechanism design, an important tool in microeconomics, has found widespread applications in modelling and solving decentralized design problems in many branches of engineering, notably computer science, electronic commerce, and network economics. Mechanism design is concerned with settings where a social planner faces the problem of aggregating the announced preferences of multiple agents into a collective decision when the agents exhibit strategic behaviour. The objective of this paper is to provide a tutorial introduction to the foundations and key results in mechanism design theory. The paper is in two parts. Part 1 focuses on basic concepts and classical results which form the foundation of mechanism design theory. Part 2 presents key advanced concepts and deeper results in mechanism design

  18. From physical principles to relativistic classical Hamiltonian and Lagrangian particle mechanics

    CERN Document Server

    Carcassi, Gabriele

    2015-01-01

    We show that classical particle mechanics (Hamiltonian and Lagrangian consistent with relativistic electromagnetism) can be derived from three fundamental assumptions: infinite reducibility, deterministic and reversible evolution, and kinematic equivalence. The core idea is that deterministic and reversible systems preserve the cardinality of a set of states, which puts considerable constraints on the equations of motion. This perspective links different concepts from different branches of math and physics (e.g. cardinality of a set, cotangent bundle for phase space, Hamiltonian flow, locally Minkowskian space-time manifold), providing new insights. The derivation strives to use definitions and mathematical concepts compatible with future extensions to field theories and quantum mechanics.

  19. Classical and Quantum Theory of Photothermal Cavity Cooling of a Mechanical Oscillator

    CERN Document Server

    Restrepo, Juan; Ciuti, Cristiano; Favero, Ivan

    2010-01-01

    Photothermal effects allow very efficient optomechanical coupling between mechanical degrees of freedom and photons. In the context of cavity cooling of a mechanical oscillator, the question of if the quantum ground state of the oscillator can be reached using photothermal back-action has been debated and remains an open question. Here we address this problem by complementary classical and quantum calculations. Both lead us to conclude that: first, the ground-state can indeed be reached using photothermal cavity cooling, second, it can be reached in a regime where the cavity detuning is small allowing a large amount of photons to enter the cavity.

  20. Bosonic seesaw mechanism in a classically conformal extension of the Standard Model

    Directory of Open Access Journals (Sweden)

    Naoyuki Haba

    2016-03-01

    Full Text Available We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal U(1B−L extension of the Standard Model with two Higgs doublet fields. The U(1B−L symmetry is radiatively broken via the Coleman–Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. Analyzing the renormalization group evolutions for all model couplings, we find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. We identify the regions of model parameters which satisfy the perturbativity of the running couplings and the electroweak vacuum stability as well as the naturalness of the electroweak scale.

  1. Bosonic seesaw mechanism in a classically conformal extension of the Standard Model

    Science.gov (United States)

    Haba, Naoyuki; Ishida, Hiroyuki; Okada, Nobuchika; Yamaguchi, Yuya

    2016-03-01

    We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal U(1) B - L extension of the Standard Model with two Higgs doublet fields. The U(1) B - L symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. Analyzing the renormalization group evolutions for all model couplings, we find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. We identify the regions of model parameters which satisfy the perturbativity of the running couplings and the electroweak vacuum stability as well as the naturalness of the electroweak scale.

  2. Frenkel-kontorova model: crossover from the classical to the quantum mechanical

    CERN Document Server

    Hu, B B

    1999-01-01

    The Frenkel-Kontorova (FK) model describes a chain of atoms connected by springs subject to an external potential. This simple classical model exhibits a wealth of complex behavior. It has also found applications in many condensed matter systems such as charge density waves, magnetic spirals, modulated phases and tribology. However, an in-depth understanding of some of these problems, for example, tribology in the nano-regime, demands an understanding of its quantum mechanical behavior. To achieve this goal, we use a squeezed-state approach first used in quantum optics. We found that quantum fluctuations renormalize the standard map, which governs the classical behavior of the FK model, to a sawtooth map. This result is borne out by Monte-Carlo simulations. We also found that the ground state wave function changes from an extended state to a localized state when the coupling constant increases. Although quantum fluctuations largely smear the transition by breaking of analyticity observed in the classical case...

  3. Non-classical correlations between single photons and phonons from a mechanical oscillator

    Science.gov (United States)

    Riedinger, Ralf; Hong, Sungkun; Norte, Richard A.; Slater, Joshua A.; Shang, Juying; Krause, Alexander G.; Anant, Vikas; Aspelmeyer, Markus; Gröblacher, Simon

    2016-02-01

    Interfacing a single photon with another quantum system is a key capability in modern quantum information science. It allows quantum states of matter, such as spin states of atoms, atomic ensembles or solids, to be prepared and manipulated by photon counting and, in particular, to be distributed over long distances. Such light-matter interfaces have become crucial to fundamental tests of quantum physics and realizations of quantum networks. Here we report non-classical correlations between single photons and phonons—the quanta of mechanical motion—from a nanomechanical resonator. We implement a full quantum protocol involving initialization of the resonator in its quantum ground state of motion and subsequent generation and read-out of correlated photon-phonon pairs. The observed violation of a Cauchy-Schwarz inequality is clear evidence for the non-classical nature of the mechanical state generated. Our results demonstrate the availability of on-chip solid-state mechanical resonators as light-matter quantum interfaces. The performance we achieved will enable studies of macroscopic quantum phenomena as well as applications in quantum communication, as quantum memories and as quantum transducers.

  4. Is classical mechanics a prerequisite for learning physics of the 20th century?

    Science.gov (United States)

    Walwema, Godfrey B.; French, Debbie A.; Verley, Jim D.; Burrows, Andrea C.

    2016-11-01

    Physics of the 20th century has contributed significantly to modern technology, and yet many physics students are never availed the opportunity to study it as part of the curriculum. One of the possible reasons why it is not taught in high school and introductory physics courses could be because curriculum designers believe that students need a solid background in classical mechanics and calculus in order to study physics of the 20th century such as the photoelectric effect, special and general relativity, the uncertainty principle, etc. This presumption may not be justifiable or valid. The authors of this paper contend that teaching physics of the 20th century aids students in relating physics to modern technology and the real world, making studying physics exciting. In this study, the authors correlated scores for matched questions in the Mechanics Baseline Test and a physics of the 20th century test in order to examine the trend of the scores. The participants included undergraduate students attending an introductory algebra-based physics course with no intention of taking physics at a higher level. The analysis of the scores showed no significant correlation for any of the matched pairs of questions. The purpose of this article is to recommend that even without a solid background in classical mechanics, teachers can introduce physics of the 20th century to their students for increased interest.

  5. Evolution of the Stability Work from Classic Retaining Walls to Mechanically Stabilized Earth Walls

    Directory of Open Access Journals (Sweden)

    Anghel Stanciu

    2008-01-01

    Full Text Available For the consolidation of soil mass and the construction of the stability works for roads infrastructure it was studied the evolution of these kinds of works from classical retaining walls - common concrete retaining walls, to the utilization in our days of the modern and competitive methods - mechanically stabilized earth walls. Like type of execution the variety of the reinforced soil is given by the utilization of different types of reinforcing inclusions (steel strips, geosynthetics, geogrids or facing (precast concrete panels, dry cast modular blocks, metal sheets and plates, gabions, and wrapped sheets of geosynthetics.

  6. Cartan-Calculus and its Generalizations via a Path-Integral Approach to Classical Mechanics

    CERN Document Server

    Gozzi, E

    1997-01-01

    In this paper we review the recently proposed path-integral counterpart of the Koopman-von Neumann operatorial approach to classical Hamiltonian mechanics. We identify in particular the geometrical variables entering this formulation and show that they are essentially a basis of the cotangent bundle to the tangent bundle to phase-space. In this space we introduce an extended Poisson brackets structure which allows us to re-do all the usual Cartan calculus on symplectic manifolds via these brackets. We also briefly sketch how the Schouten-Nijenhuis, the Frölicher- Nijenhuis and the Nijenhuis-Richardson brackets look in our formalism.

  7. Advances in classical and analytical mechanics: A reviews of author’s results

    Directory of Open Access Journals (Sweden)

    Hedrih-Stevanović Katica R.

    2013-01-01

    Full Text Available A review, in subjective choice, of author’s scientific results in area of: classical mechanics, analytical mechanics of discrete hereditary systems, analytical mechanics of discrete fractional order system vibrations, elastodynamics, nonlinear dynamics and hybrid system dynamics is presented. Main original author’s results were presented through the mathematical methods of mechanics with examples of applications for solving problems of mechanical real system dynamics abstracted to the theoretical models of mechanical discrete or continuum systems, as well as hybrid systems. Paper, also, presents serries of methods and scientific results authored by professors Mitropolyski, Andjelić and Rašković, as well as author’s of this paper original scientific research results obtained by methods of her professors. Vector method based on mass inertia moment vectors and corresponding deviational vector components for pole and oriented axis, defined in 1991 by K. Hedrih, is presented. Results in construction of analytical dynamics of hereditary discrete system obtained in collaboration with O. A. Gorosho are presented. Also, some selections of results author’s postgraduate students and doctorantes in area of nonlinear dynamics are presented. A list of scientific projects headed by author of this paper is presented with a list of doctoral dissertation and magister of sciences thesis which contain scientific research results obtained under the supervision by author of this paper or their fist doctoral candidates. [Projekat Ministarstva nauke Republike Srbije, br. ON174001: Dynamics of hybrid systems with complex structures

  8. Integrating Factors and Conservation Theorems of Lagrangian Equations for Nonconservative Mechanical System in Generalized Classical Mechanics

    Institute of Scientific and Technical Information of China (English)

    QIAO Yong-Fen; ZHAO Shu-Hong

    2006-01-01

    The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are given, and the definition of integrating factors is given. Next, the necessary conditions for the existence of the conserved quantity are studied in detail. Finally, the conservation theorem and its inverse for the system are established, and an example is given to illustrate the application of the result.

  9. Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem

    CERN Document Server

    Oltean, Marius; Spallicci, Alessandro D A M; Sopuerta, Carlos F

    2016-01-01

    In classical Hamiltonian theories, entropy may be understood either as a statistical property of canonical systems, or as a mechanical property, that is, as a monotonic function of the phase space along trajectories. In classical mechanics, there are theorems which have been proposed for proving the non-existence of entropy in the latter sense. We explicate, clarify and extend the proofs of these theorems to some standard matter (scalar and electromagnetic) field theories in curved spacetime, and then we show why these proofs fail in general relativity; due to properties of the gravitational Hamiltonian and phase space measures, the second law of thermodynamics holds. As a concrete application, we focus on the consequences of these results for the gravitational two-body problem, and in particular, we prove the non-compactness of the phase space of perturbed Schwarzschild-Droste spacetimes. We thus identify the lack of recurring orbits in phase space as a distinct sign of dissipation and hence entropy producti...

  10. Toward an Information-based Interpretation of Quantum Mechanics and the Quantum-Classical Transition

    CERN Document Server

    Roederer, Juan G

    2011-01-01

    I will show how an objective definition of the concept of information and the consideration of recent results about information-processing in the human brain help clarify some fundamental and often counter-intuitive aspects of quantum mechanics. In particular, I will discuss entanglement, teleportation, non-interaction measurements and decoherence in the light of the fact that pragmatic information, the one our brain handles, can only be defined in the classical macroscopic domain; it does not operate in the quantum domain. This justifies viewing quantum mechanics as a discipline dealing with mathematical models and procedures aimed exclusively at predicting possible macroscopic changes and their likelihood that a given quantum system may cause when it interacts with its environment, including man-made devices such as measurement instruments. I will discuss the informational and neurobiological reasons of why counter-intuitive aspects arise whenever we attempt to construct mental images of the "inner workings...

  11. A formal derivation of the Gibbs entropy for classical systems following the Schroedinger quantum mechanical approach

    Energy Technology Data Exchange (ETDEWEB)

    Santillan, M [Cinvestav-IPN, Unidad Monterrey, Parque de Investigacion e Innovacion Tecnologica, Autopista Monterrey-Aeropuerto Km 10, 66600 Apodaca NL (Mexico); Zeron, E S [Departamento de Matematicas, Cinvestav-IPN, 07000 Mexico DF (Mexico); Rio-Correa, J L del [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa, 09340 Mexico DF (Mexico)], E-mail: msantillan@cinvestav.mx, E-mail: eszeron@math.cinvestav.mx, E-mail: jlrc@xanum.uam.mx

    2008-05-15

    In the traditional statistical mechanics textbooks, the entropy concept is first introduced for the microcanonical ensemble and then extended to the canonical and grand-canonical cases. However, in the authors' experience, this procedure makes it difficult for the student to see the bigger picture and, although quite ingenuous, the subtleness of the demonstrations to pass from the microcanonical to the canonical and grand-canonical ensembles is hard to grasp. In the present work, we adapt the approach used by Schroedinger to introduce the entropy definition for quantum mechanical systems to derive a classical mechanical entropy definition, which is valid for all ensembles and is in complete agreement with the Gibbs entropy. Afterwards, we show how the specific probability densities for the microcanonical and canonical ensembles can be obtained from the system macrostate, the entropy definition and the second law of thermodynamics. After teaching the approach introduced in this paper for several years, we have found that it allows a better understanding of the statistical mechanics foundations. On the other hand, since it demands previous knowledge of thermodynamics and mathematical analysis, in our experience this approach is more adequate for final-year undergraduate and graduate physics students.

  12. Coupled discrete element and finite volume solution of two classical soil mechanics problems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng [University of Tennessee, Knoxville (UTK); Drumm, Eric [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2011-01-01

    One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAM for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.

  13. Classical Motion

    OpenAIRE

    Mould, Richard A

    2003-01-01

    Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previous...

  14. A Model for Integrating Computation in Undergraduate Physics: An example from middle-division classical mechanics

    CERN Document Server

    Caballero, Marcos D

    2013-01-01

    Much of the research done by modern physicists would be impossible without the use of computation. And yet, while computation is a crucial tool of practicing physicists, physics curricula do not generally reflect its importance and utility. To more tightly connect undergraduate preparation with professional practice, we integrated computational instruction into middle-division classical mechanics at the University of Colorado Boulder. Our model for integration includes the construction of computational learning goals, the design of computational activities consistent with those goals, and the assessment of students' computational fluency. To assess students' computational fluency, we used open-ended computational projects in which students prepared reports describing a physical problem of their choosing. Many students chose projects from outside the domain of the course, and therefore, had to employ mathematical and computational techniques they had not yet been taught. After completing the project, most stud...

  15. Conversion of the zero-point energy of the quantum vacuum into classical mechanical energy

    Energy Technology Data Exchange (ETDEWEB)

    Turtur, Claus Wilhelm

    2010-07-01

    A perpetual motion machine - this can never exist. But energy sources nearly disregarded up to now - they exist. These are energy sources, which have been hardly under investigation, so that mankind did not yet learn how to get benefit from them. Most part of the universe consists of such energy, which is still called 'invisible'. A part of this energy is to be found within the so called zero-point oscillations of the quantum vacuum, thus within the empty void from the perspective of quantum physics. The author of the book is physicist. He theoretically developed and then experimentally verified a method for the conversion of vacuum energy into classical mechanical energy. His technique is one of the very few approaches known up to know. The most prominent approaches to convert vacuum energy are described in this book in many scientific details, and they are compared with other known proposals for the use of vacuum energy. (orig.)

  16. On Conservation Forms and Invariant Solutions for Classical Mechanics Problems of Liénard Type

    Directory of Open Access Journals (Sweden)

    Gülden Gün Polat

    2014-01-01

    Full Text Available In this study we apply partial Noether and λ-symmetry approaches to a second-order nonlinear autonomous equation of the form y′′+fyy′+g(y=0, called Liénard equation corresponding to some important problems in classical mechanics field with respect to f(y and g(y functions. As a first approach we utilize partial Lagrangians and partial Noether operators to obtain conserved forms of Liénard equation. Then, as a second approach, based on the λ-symmetry method, we analyze λ-symmetries for the case that λ-function is in the form of λ(x,y,y′=λ1(x,yy′+λ2(x,y. Finally, a classification problem for the conservation forms and invariant solutions are considered.

  17. Electro-mechanical engineering of non-classical photon emissions from single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, Bianca; Zallo, Eugenio; Zhang, Jiaxiang; Ding, Fei; Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW-Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Trotta, Rinaldo; Rastelli, Armando [Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz (Austria)

    2014-07-01

    Indistinguishable photons and entangled photon pairs are the key elements for quantum information applications, for example, building a quantum repeater. Self-assembled semiconductor quantum dots (QDs) are promising candidates for the creation of such non-classical photon emissions, and offer the possibility to be integrated into solid state devices. However, due to the random nature of the self-assembled growth process, post-growth treatments are required to engineer the exciton state in the QDs (e.g. energies, exciton lifetimes, and fine structure splittings). In this work, we study the electro-mechanical engineering of the exciton lifetime, emission energy in the QDs, with the aim to produce single photons with higher indistinguishability. Also we present a recent experimental study on the statistical properties of fine structure splittings in the QD ensemble, in order to gain a deeper understanding of how to generate entangled photon pairs using semiconductor QDs.

  18. Classical mechanics with calculus of variations and optimal control an intuitive introduction

    CERN Document Server

    Levi, Mark

    2014-01-01

    This is an intuitively motivated presentation of many topics in classical mechanics and related areas of control theory and calculus of variations. All topics throughout the book are treated with zero tolerance for unrevealing definitions and for proofs which leave the reader in the dark. Some areas of particular interest are: an extremely short derivation of the ellipticity of planetary orbits; a statement and an explanation of the "tennis racket paradox"; a heuristic explanation (and a rigorous treatment) of the gyroscopic effect; a revealing equivalence between the dynamics of a particle and statics of a spring; a short geometrical explanation of Pontryagin's Maximum Principle, and more. In the last chapter, aimed at more advanced readers, the Hamiltonian and the momentum are compared to forces in a certain static problem. This gives a palpable physical meaning to some seemingly abstract concepts and theorems. With minimal prerequisites consisting of basic calculus and basic undergraduate physics, this boo...

  19. Classical and quantum mechanics of complex Hamiltonian systems: An extended complex phase space approach

    Indian Academy of Sciences (India)

    R S Kaushal

    2009-08-01

    Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted $\\mathcal{PT}$ symmetry in the studies of complex power potentials as a particular case of the present general framework in which two additional degrees of freedom are produced by extending each coordinate and momentum into complex planes. With a view to account for the subjective component of physical reality inherent in the collected data, e.g., using a Chevreul (hand-held) pendulum, a generalization of the Hamilton’s principle of least action is suggested.

  20. Some reflections on the role of semi-classical atomic models in the teaching and learning of introductory quantum mechanics

    Science.gov (United States)

    O'Sullivan, Colm

    2016-03-01

    The role of "semi-classical" (Bohr-Sommerfeld) and "semi-quantum-mechanical" (atomic orbital) models in the context of the teaching of atomic theory is considered. It is suggested that an appropriate treatment of such models can serve as a useful adjunct to quantum mechanical study of atomic systems.

  1. The physical vulnerability of elements at risk: a methodology based on fluid and classical mechanics

    Science.gov (United States)

    Mazzorana, B.; Fuchs, S.; Levaggi, L.

    2012-04-01

    The impacts of the flood events occurred in autumn 2011 in the Italian regions Liguria and Tuscany revived the engagement of the public decision makers to enhance in synergy flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of both, the immobile and mobile elements at risk potentially exposed to flood hazards. Based on fluid and classical mechanics notions we developed computation schemes enabling for a dynamic vulnerability and risk analysis facing a broad typological variety of elements at risk. The methodological skeleton consists of (1) hydrodynamic computation of the time-varying flood intensities resulting for each element at risk in a succession of loading configurations; (2) modelling the mechanical response of the impacted elements through static, elasto-static and dynamic analyses; (3) characterising the mechanical response through proper structural damage variables and (4) economic valuation of the expected losses as a function of the quantified damage variables. From a computational perspective we coupled the description of the hydrodynamic flow behaviour and the induced structural modifications of the elements at risk exposed. Valuation methods, suitable to support a correct mapping from the value domains of the physical damage variables to the economic loss values are discussed. In such a way we target to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches to refine the conceptual framework of the cost-benefit analysis. Moreover, we aim to support the design of effective flood risk mitigation strategies by diminishing the main criticalities within the systems prone to flood risk.

  2. Scheme of motion as an action organizer in both classical and relativistic mechanics

    Directory of Open Access Journals (Sweden)

    Gabriel Dias de Carvalho Junior

    2015-12-01

    Full Text Available This paper reports our appropriation of the concept of scheme as one of the references for the analysis on the relative time process of signification. It has taken place within a current perspective that discusses the inclusion of modern physics in Brazilian high school, by the investigation of what are the conditions for such inclusion may occur. To do this, a didactic sequence was written placed in the transition between key concepts of classical mechanics and the theory of relativity, where one of the central points was the discussion on the influence of a frame of reference in the study of the movements. The research activities lasted 16 hours in a third grade high school and were quite diverse. We analyzed, in this work, episodes of verbal interaction and students written activities related to the concept of frame of reference and its relationship with relative time. It has been identified different epistemic content in the student’s scheme of movement. We conclude our research by the indication that there may be a reciprocal assimilation between time and motion schemes.

  3. Classical Motion

    CERN Document Server

    Mould, R A

    2003-01-01

    Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previously given rules support all of these cases. Key Words: brain states, conscious observer, detector, measurement, probability current, state reduction, von Neumann, wave collapse.

  4. Classical statistical mechanics of a few-body interacting spin model

    CERN Document Server

    Borgonovi, F

    1999-01-01

    We study the emergence of Boltzmann's law for the "single particle energy distribution" in a closed system of interacting classical spins. It is shown that for a large number of particles Boltzmann's law may occur, even if the interaction is very strong. Specific attention is paid to classical analogs of the average shape of quantum eigenstates and "local density of states", which are very important in quantum chaology. Analytical predictions are then compared with numerical data.

  5. Comparison of quantum mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative - and positive -ions for heavy ion fusion applications

    OpenAIRE

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2GeV I$^{-}$ and Cs$^{+}$ ions. A large difference in cross section, up to a factor of six, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stri...

  6. On the classical limit of quantum mechanics, fundamental graininess and chaos: Compatibility of chaos with the correspondence principle

    International Nuclear Information System (INIS)

    The aim of this paper is to review the classical limit of Quantum Mechanics and to precise the well known threat of chaos (and fundamental graininess) to the correspondence principle. We will introduce a formalism for this classical limit that allows us to find the surfaces defined by the constants of the motion in phase space. Then in the integrable case we will find the classical trajectories, and in the non-integrable one the fact that regular initial cells become “amoeboid-like”. This deformations and their consequences can be considered as a threat to the correspondence principle unless we take into account the characteristic timescales of quantum chaos. Essentially we present an analysis of the problem similar to the one of Omnès (1994,1999), but with a simpler mathematical structure

  7. Quantum-mechanical machinery for rational decision-making in classical guessing game

    Science.gov (United States)

    Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S.; Lee, Jinhyoung

    2016-02-01

    In quantum game theory, one of the most intriguing and important questions is, “Is it possible to get quantum advantages without any modification of the classical game?” The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call ‘reasoning’) to generate the best strategy, which may occur internally, e.g., in the player’s brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.

  8. Therapeutic mechanisms of classic hallucinogens in the treatment of addictions: from indirect evidence to testable hypotheses.

    Science.gov (United States)

    Bogenschutz, Michael P; Pommy, Jessica M

    2012-01-01

    Alcohol and drug addiction are major public health problems, and existing treatments are only moderately effective. Although there has been interest for over half a century in the therapeutic use of classic hallucinogens to treat addictions, clinical research with these drugs was halted at an early stage in the early 1970s, leaving many fundamental questions unanswered. In the past two decades, clinical research on classic hallucinogens has resumed, although addiction treatment trials are only now beginning. The purpose of this paper is to provide a targeted review of the research most relevant to the therapeutic potential of hallucinogens, and to integrate this information with current thinking about addiction and recovery. On the basis of this information, we present a heuristic model which organizes a number of hypotheses that may be tested in future research. We conclude that existing evidence provides a convincing rationale for further research on the effects of classic hallucinogens in the treatment of addiction. PMID:22761106

  9. The dynamics of the H(+) + D(2) reaction: a comparison of quantum mechanical wavepacket, quasi-classical and statistical-quasi-classical results.

    Science.gov (United States)

    Jambrina, P G; Aoiz, F J; Bulut, N; Smith, Sean C; Balint-Kurti, G G; Hankel, M

    2010-02-01

    A detailed study of the proton exchange reaction H(+) + D(2)(v = 0, j = 0) --> HD + D(+) on its ground 1(1)A' potential energy surface has been carried out using 'exact' close-coupled quantum mechanical wavepacket (WP-EQM), quasi-classical trajectory (QCT), and statistical quasi-classical trajectory (SQCT) calculations for a range of collision energies starting from the reaction threshold to 1.3 eV. The WP-EQM calculations include all total angular momenta up to J(max) = 50, and therefore the various dynamical observables are converged up to 0.6 eV. It has been found that it is necessary to include all Coriolis couplings to obtain reliable converged results. Reaction probabilities obtained using the different methods are thoroughly compared as a function of the total energy for a series of J values. Comparisons are also made of total reaction cross sections as function of the collision energy, and rate constants. In addition, opacity functions, integral cross sections (ICS) and differential cross sections (DCS) are presented at 102 meV, 201.3 meV and 524.6 meV collision energy. The agreement between the three sets of results is only qualitative. The QCT calculations fail to describe the overall reactivity and most of the dynamical observables correctly. At low collision energies, the QCT method is plagued by the lack of conservation of zero point energy, whilst at higher collision energies and/or total angular momenta, the appearance of an effective repulsive potential associated with the centrifugal motion "over" the well causes a substantial decrease of the reactivity. In turn, the statistical models overestimate the reactivity over the whole range of collision energies as compared with the WP-EQM method. Specifically, at sufficiently high collision energies the reaction cannot be deemed to be statistical and important dynamical effects seem to be present. In general the WP-EQM results lie in between those obtained using the QCT and SQCT methods. One of the main

  10. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  11. On the calculation of quantum mechanical ground states from classical geodesic motion on certain spaces of constant negative curvature

    International Nuclear Information System (INIS)

    We consider geodesic motion on three-dimensional Riemannian manifolds of constant negative curvature, topologically equivalent to S x ]0,1[, S a compact surface of genus two. To those trajectories which are recurrent in both directions of the time evolution t → +∞, t → -∞ a fractal limit set is associated whose Hausdorff dimension is intimately connected with the quantum mechanical energy ground state, determined by the Schroedinger operator on the manifold. We give a rather detailed and pictorial description of the hyperbolic spaces we have in mind, discuss various aspects of classical and quantum mechanical motion on them as far as they are needed to establish the connection between energy ground state and Hausdorff dimension and give finally some examples of ground state calculations in terms of Hausdorff dimensions of limit sets of classical trajectories. (orig.)

  12. Probabilities for time-dependent properties in classical and quantum mechanics

    Science.gov (United States)

    Losada, Marcelo; Vanni, Leonardo; Laura, Roberto

    2013-05-01

    We present a formalism which allows one to define probabilities for expressions that involve properties at different times for classical and quantum systems and we study its lattice structure. The formalism is based on the notion of time translation of properties. In the quantum case, the properties involved should satisfy compatibility conditions in order to obtain well-defined probabilities. The formalism is applied to describe the double-slit experiment.

  13. Positive-type functions on groups and new inequalities in classical and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Man' ko, V I [P. N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, G; Simoni, A; Ventriglia, F, E-mail: manko@na.infn.i, E-mail: marmo@na.infn.i, E-mail: simoni@na.infn.i, E-mail: ventriglia@na.infn.i [Dipartimento di Scienze Fisiche dell' Universita ' Federico II' e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo via Cintia, 80126 Naples (Italy)

    2010-09-15

    Out of any unitary representation of a group, positive-type functions on the group can be obtained. These functions allow one to construct positive semi-definite matrices that may be used to define new inequalities for higher moments of observables associated with classical probability distribution functions and density states of quantum systems. The inequalities stemming from the Heisenberg-Weyl group representations are considered in connection with Gaussian distributions. We obtain new inequalities for multi-variable Hermite polynomials.

  14. Positive-type functions on groups and new inequalities in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Out of any unitary representation of a group, positive-type functions on the group can be obtained. These functions allow one to construct positive semi-definite matrices that may be used to define new inequalities for higher moments of observables associated with classical probability distribution functions and density states of quantum systems. The inequalities stemming from the Heisenberg-Weyl group representations are considered in connection with Gaussian distributions. We obtain new inequalities for multi-variable Hermite polynomials.

  15. Positive-type functions on groups and new inequalities in classical and quantum mechanics

    Science.gov (United States)

    Man'ko, V. I.; Marmo, G.; Simoni, A.; Ventriglia, F.

    2010-09-01

    Out of any unitary representation of a group, positive-type functions on the group can be obtained. These functions allow one to construct positive semi-definite matrices that may be used to define new inequalities for higher moments of observables associated with classical probability distribution functions and density states of quantum systems. The inequalities stemming from the Heisenberg-Weyl group representations are considered in connection with Gaussian distributions. We obtain new inequalities for multi-variable Hermite polynomials.

  16. From Classical Mechanics with Doubled Degrees of Freedom to Quantum Field Theory for Nonconservative System

    OpenAIRE

    Kuwahara, Y; Nakamura, Y; Yamanaka, Y

    2013-01-01

    The $2 \\times 2$-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [Phys. Rev. Lett. 110, 174301 (2013)]. We show that the Galley's Hamilto...

  17. Gauge dependence of world lines and invariance of the S-matrix in relativistic classical mechanics

    International Nuclear Information System (INIS)

    The notion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend in general (in the presence of interaction) on the choice of the equal-time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a two-particle system and the (classical) S-matrix are indepent of this choice. (author)

  18. Growth of amorphous selenium thin films: classical versus quantum mechanical molecular dynamics simulation

    International Nuclear Information System (INIS)

    We present the first molecular dynamics simulation of the vacuum deposition of amorphous selenium films. We compare the classical, tight-binding and Hubbard-term corrected tight-binding molecular dynamics simulation methods. Densities, coordination defects, radial distribution functions, bond angles, dihedral angles, intrachain and interchain atomic correlations were investigated in the obtained amorphous films. Local atomic arrangements were compared to results of diffraction measurements

  19. From classical mechanics with doubled degrees of freedom to quantum field theory for nonconservative systems

    Science.gov (United States)

    Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.

    2013-12-01

    The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [1]. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.

  20. From classical mechanics with doubled degrees of freedom to quantum field theory for nonconservative systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Y., E-mail: a.kuwahara1224@asagi.waseda.jp; Nakamura, Y., E-mail: nakamura@aoni.waseda.jp; Yamanaka, Y., E-mail: yamanaka@waseda.jp

    2013-12-09

    The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.

  1. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Diogo Ricardo da [Instituto de Física da USP, Rua do Matão, Travessa R, 187, Cidade Universitária, CEP 05314-970 São Paulo, SP (Brazil); School of Mathematics, University of Bristol, Bristol (United Kingdom); Departamento de Física, UNESP-Univ Estadual Paulista, Av. 24A, 1515, 13506-900 Rio Claro, SP (Brazil); Dettmann, Carl P. [School of Mathematics, University of Bristol, Bristol (United Kingdom); Oliveira, Juliano A. de [UNESP-Univ Estadual Paulista, Câmpus de São João da Boa Vista, São João da Boa Vista, SP (Brazil); Leonel, Edson D. [Departamento de Física, UNESP-Univ Estadual Paulista, Av. 24A, 1515, 13506-900 Rio Claro, SP (Brazil)

    2015-03-15

    Some dynamical properties for an oval billiard with a scatterer in its interior are studied. The dynamics consists of a classical particle colliding between an inner circle and an external boundary given by an oval, elliptical, or circle shapes, exploring for the first time some natural generalizations. The billiard is indeed a generalization of the annular billiard, which is of strong interest for understanding marginally unstable periodic orbits and their role in the boundary between regular and chaotic regions in both classical and quantum (including experimental) systems. For the oval billiard, which has a mixed phase space, the presence of an obstacle is an interesting addition. We demonstrate, with details, how to obtain the equations of the mapping, and the changes in the phase space are discussed. We study the linear stability of some fixed points and show both analytically and numerically the occurrence of direct and inverse parabolic bifurcations. Lyapunov exponents and generalized bifurcation diagrams are obtained. Moreover, histograms of the number of successive iterations for orbits that stay in a cusp are studied. These histograms are shown to be scaling invariant when changing the radius of the scatterer, and they have a power law slope around −3. The results here can be generalized to other kinds of external boundaries.

  2. Classicalization of Quantum Variables

    CERN Document Server

    Koide, T

    2014-01-01

    A systematic procedure to extract classical degrees of freedom in quantum mechanics is formulated using the stochastic variational method. With this classicalization, a hybrid model constructed from quantum and classical variables (quantum-classical hybrids) is derived systematically. In this procedure, conservation laws such as energy are maintained, and Eherefest`s theorem is still satisfied with modification. The criterion for the applicability of quantum-classical hybrids is also investigated.

  3. Comparison of quantum mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative - and positive -ions for heavy ion fusion applications

    CERN Document Server

    Kaganovich, I D; Davidson, R C; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2GeV I$^{-}$ and Cs$^{+}$ ions. A large difference in cross section, up to a factor of six, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stripping cross sections at high energies for electron orbitals with low ionization potential.

  4. Magnetic trapping of neutral particles Classical and Quantum-mechanical study of a Ioffe-Pritchard type trap

    CERN Document Server

    Gov, S; Thomas, H

    1999-01-01

    Recently, we developed a method for calculating the lifetime of a particle inside a magnetic trap with respect to spin flips, as a first step in our efforts to understand the quantum-mechanics of magnetic traps. The 1D toy model that was used in this study was physically unrealistic because the magnetic field was not curl-free. Here, we study, both classically and quantum-mechanically, the problem of a neutral particle with spin S, mass m and magnetic moment mu, moving in 3D in an inhomogeneous magnetic field corresponding to traps of the Ioffe-Pritchard, `clover-leaf' and `baseball' type. Defining by omega_p, omega_z and omega_r the precessional, the axial and the lateral vibrational frequencies, respectively, of the particle in the adiabatic potential, we find classically the region in the $(ømega_{r}% (omega_r -- omega_z) plane where the particle is trapped. Quantum-mechanically, we study the problem of a spin-one particle in the same field. Treating omega_r / omega_p and omega_z / omega_p as small parame...

  5. Classical and Targeted Anticancer Drugs: An Appraisal of Mechanisms of Multidrug Resistance.

    Science.gov (United States)

    Baguley, Bruce C

    2016-01-01

    The mechanisms by which tumor cells resist the action of multiple anticancer drugs, often with widely different chemical structures, have been pursued for more than 30 years. The identification of P-glycoprotein (P-gp), a drug efflux transporter protein with affinity for multiple therapeutic drugs, provided an important potential mechanism and further work, which identified other members of ATP-binding cassette (ABC) family that act as drug transporters. Several observations, including results of clinical trials with pharmacological inhibitors of P-gp, have suggested that mechanisms other than efflux transporters should be considered as contributors to resistance, and in this review mechanisms of anticancer drug resistance are considered more broadly. Cells in human tumors exist is a state of continuous turnover, allowing ongoing selection and "survival of the fittest." Tumor cells die not only as a consequence of drug therapy but also by apoptosis induced by their microenvironment. Cell death can be mediated by host immune mechanisms and by nonimmune cells acting on so-called death receptors. The tumor cell proliferation rate is also important because it controls tumor regeneration. Resistance to therapy might therefore be considered to arise from a reduction of several distinct cell death mechanisms, as well as from an increased ability to regenerate. This review provides a perspective on these mechanisms, together with brief descriptions of some of the methods that can be used to investigate them in a clinical situation. PMID:26910066

  6. The problem of the motion of bodies a historical view of the development of classical mechanics

    CERN Document Server

    Capecchi, Danilo

    2014-01-01

    This book focuses on the way in which the problem of the motion of bodies has been viewed and approached over the course of human history. It is not another traditional history of mechanics but rather aims to enable the reader to fully understand the deeper ideas that inspired men, first in attempting to understand the mechanisms of motion and then in formulating theories with predictive as well as explanatory value. Given this objective, certain parts of the history of mechanics are neglected, such as fluid mechanics, statics, and astronomy after Newton. On the other hand, due attention is paid, for example, to the history of thermodynamics, which has its own particular point of view on motion. Inspired in part by historical epistemology, the book examines the various views and theories of a given historical period (synchronic analysis) and then makes comparisons between different periods (diachronic analysis). In each period, one or two of the most meaningful contributions are selected for particular attent...

  7. Advances in one-dimensional wave mechanics. Towards a unified classical view

    International Nuclear Information System (INIS)

    Introduces a completely new concept of the scattered sub-waves via the Analytical Transfer Matrix (ATM) method. Develops a relatively simple method to accurately solve one-dimensional problems in quantum mechanics. Based on the analogy between the Quantum Mechanics and Electromagnetism, several interesting issues in quantum mechanics, such as tunneling, quantum reflection and scattering time are restudied. Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.

  8. Advances in one-dimensional wave mechanics. Towards a unified classical view

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhuangqi [Shanghai Jiao Tong Univ., (China). Dept. of Physics and Astronomy; Yin, Cheng [Hohai Univ., Changzhou, Jiangsu (China). College of IoT Engineering

    2014-06-01

    Introduces a completely new concept of the scattered sub-waves via the Analytical Transfer Matrix (ATM) method. Develops a relatively simple method to accurately solve one-dimensional problems in quantum mechanics. Based on the analogy between the Quantum Mechanics and Electromagnetism, several interesting issues in quantum mechanics, such as tunneling, quantum reflection and scattering time are restudied. Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.

  9. Models of dark matter halos based on statistical mechanics: I. The classical King model

    CERN Document Server

    Chavanis, Pierre-Henri; Méhats, Florian

    2014-01-01

    We consider the possibility that dark matter halos are described by the Fermi-Dirac distribution at finite temperature. This is the case if dark matter is a self-gravitating quantum gas made of massive neutrinos at statistical equilibrium. This is also the case if dark matter can be treated as a self-gravitating collisionless gas experiencing Lynden-Bell's type of violent relaxation. In order to avoid the infinite mass problem and carry out a rigorous stability analysis, we consider the fermionic King model. In this paper, we study the non-degenerate limit leading to the classical King model. This model was initially introduced to describe globular clusters. We propose to apply it also to large dark matter halos where quantum effects are negligible. We determine the caloric curve and study the thermodynamical stability of the different configurations. Equilibrium states exist only above a critical energy $E_c$ in the microcanonical ensemble and only above a critical temperature $T_c$ in the canonical ensemble...

  10. Some Implications of a Scale-Invariant Model of Statistical Mechanics to Classical and Black Hole Thermodynamics

    Science.gov (United States)

    Sohrab, Siavash

    2016-03-01

    A scale-invariant model of statistical mechanics is applied to described modified forms of four laws of classical thermodynamics. Following de Broglie formula λrk = h /mkvrk , frequency of matter waves is defined as νrk = k /mkvrk leading to stochastic definitions of (Planck, Boltzmann) universal constants (h =mk c , k =mk c), λrkνrk = c , relating to spatiotemporal Casimir vacuum fluctuations. Invariant Mach number Maβ = v /vrβ is introduced leading to hierarchy of ``supersonic'' flow separated by shock front, viewed as ``event-horizon'' EHβ, from subsonic flow that terminates at surface of stagnant condensate of ``atoms'' defined as ``black-hole'' BHβ at scale β thus resulting in hierarchy of embedded ``black holes'' at molecular- atomic-, electron-, photon-, tachyon-. . . scales, ad infinitum. Classical black hole will correspond to solid phase photon or solid-light. It is argued that Bardeen-Carter-Hawking (1973) first law of black hole mechanics δM = (κ / 8 π) δA +ΩH δJ +ΦH δQ , instead of dE = TdS - PdV suggested by Bekenstein (1973), is analogous to first law of thermodynamics expressed as TdS = PdV + dE such that entropy of black hole, rather than to its horizon surface area, will be related to its total energy hence enthalpy H = TS leading to SBH = 4 kN in exact agreement with prediction of Major and Setter.

  11. Calculation of Bond-length, Bond-energy and Force Constant of Hydrogen Molecule by Classical Mechanics

    Institute of Scientific and Technical Information of China (English)

    ChenJing

    2004-01-01

    Until recently the hydrogen molecule structural parameters are calculated with the methods of quantum mechanics. To achieve results close to experimental values, the wave function used is complicated and has no clear physical meaning. Because the distribution of the electron probability density is a statistical rule, the macro-time has actually been used in the concept on a electron cloud graph. Here are obtained three formulas with a classical mechanics method on the bond-length re , bond-energy De and force constant k of the ground state hydrogen molecule, which have a clear physical meaning but no artificial parameters, and compared with experimental values, the relative errors are respectively less than 1% , 2% and 4% .

  12. Combining classical and molecular approaches elaborates on the complexity of mechanisms underpinning anterior regeneration.

    Directory of Open Access Journals (Sweden)

    Deborah J Evans

    Full Text Available The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi or Smed-ptc(RNAi lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new

  13. Classical conditioning mechanisms can differentiate between seeing and doing in rats.

    Science.gov (United States)

    Kutlu, Munir G; Schmajuk, Nestor A

    2012-01-01

    We show that the attentional-associative SLG model of classical conditioning, based on the 1996 research of Schmajuk, Lam, and Gray, correctly describes experimental results regarded as evidence of causal learning in rats: (a) interventions attenuate responding following common-cause training but do not interfere on subsequent responding during observation, and (b) interventions do not affect responding after direct-cause training or (c) causal-chain training. According to the model, responding to the weakly attended test stimulus is strongly inhibited by the intervention in the common-cause case. Instead, in the direct-cause and causal-chain cases, the strongly attended test stimulus becomes inhibitory, thereby overshadowing the inhibitory effect of interventions. Most importantly, the model predicted that with relatively few test trials (a) the 2008 results of Experiment 3 by Leising, Wong, Waldmann, and Blaisdell should be similar to those of Dwyer, Starns, and Honey's 2009 Experiment 1, showing that interventions equally affect responding after common-cause and direct-cause training; and (b) the 2006 results of Experiment 2a by Blaisdell, Sawa, Leising, and Waldmann should be similar to those of Dwyer, Starns, and Honey's 2009 Experiment 2, showing that interventions equally affect responding after common-cause and causal-chain training. When those data were made available to us, we confirmed those predictions. In agreement with the SLG associative model, but not with causal model theory, this evidence supports the notion that the attenuation of responding by interventions only following common-cause training is the consequence of well-known learning processes-latent inhibition, sensory preconditioning, conditioned inhibition, protection from extinction, and overshadowing. PMID:22229589

  14. Combining classical and molecular approaches elaborates on the complexity of mechanisms underpinning anterior regeneration.

    Science.gov (United States)

    Evans, Deborah J; Owlarn, Suthira; Tejada Romero, Belen; Chen, Chen; Aboobaker, A Aziz

    2011-01-01

    The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then

  15. Mechanics and analysis of beams, columns and cables. A modern introduction to the classic theories

    DEFF Research Database (Denmark)

    Krenk, Steen

    The book illustrates the use of simple mathematical analysis techniques within the area of basic structural mechanics, in particular the elementary theories of beams, columns and cables. The focus is on: i) Identification of the physical background of the theories and their particular mathematical...

  16. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling

    OpenAIRE

    Dzierlenga, Michael W.; Antoniou, Dimitri; Schwartz, Steven D.

    2015-01-01

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for obser...

  17. The road to matrix mechanics: I. Classical interpretation of the anomalous optical dispersion

    Science.gov (United States)

    Crivellari, Lucio

    2016-09-01

    This paper is the first one of a series of two on the role of the optical dispersion in the historical development of early quantum mechanics. As preparation for the successive paper on Ladenburg’s development of the phenomenological theory of radiative transitions between the stationary states of an atom by Einstein, we present here the current theories on optical dispersion between the second half of the 19th century and the beginning of the 20th century.

  18. True Variational Principles and Time-Space Finite Element Methods for Classical and Quantum Mechanics

    Science.gov (United States)

    Darrall, Bradley T.

    For the first time true variational principles are formulated for the analysis of the continuum problems of heat diffusion, dynamic thermoelasticity, poroelasticity, and time-dependent quantum mechanics. This is accomplished by considering the stationarity of a mixed convolved action, which can be seen as a modern counterpart to the original actions posed in Hamilton's principle and its many extensions. By including fractional derivatives, convolution integrals, and mixed variables into the definition of the action these new variational principles overcome the shortcomings of the many other variational methods based on Hamilton's principle, namely the inability to include dissipation in a consistent manner and the unjustified need to constrain variations on the primary unknowns of a system at the end of the time interval. These new variational principles then provide ideal weak forms from which novel time-space finite element methods having certain attractive properties are formulated.

  19. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    Science.gov (United States)

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-01

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  20. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation

    DEFF Research Database (Denmark)

    Leucci, E; Cocco, M; Onnis, A;

    2008-01-01

    at the standardization of FISH procedures in lymphoma diagnosis, we found that five cases out of 35 classic endemic BLs were negative for MYC translocations by using a split-signal as well as a dual-fusion probe. Here we investigated the expression pattern of miRNAs predicted to target c-Myc, in BL cases, to clarify...... whether alternative pathogenetic mechanisms may be responsible for lymphomagenesis in cases lacking the MYC translocation. miRNAs are a class of small RNAs that are able to regulate gene expression at the post-transcriptional level. Several studies have reported their involvement in cancer...... was observed in BL cases, compared to normal controls. More interestingly, hsa-mir-34b was found to be down-regulated only in BL cases that were negative for MYC translocation, suggesting that this event might be responsible for c-Myc deregulation in such cases. This hypothesis was further confirmed by our...

  1. A model for incorporating computation without changing the course: An example from middle-division classical mechanics

    Science.gov (United States)

    Caballero, Marcos D.; Pollock, Steven J.

    2014-03-01

    Although much of the research done by modern physicists would be impossible without the use of computers, today's physics curricula do not generally reflect their importance and utility. To more tightly connect undergraduate preparation with professional practice, we integrated computational instruction into middle-division classical mechanics at the University of Colorado Boulder. Our model for integration works with the constraints of faculty who do not specialize in computation by placing a strong emphasis on an adaptable curriculum. It also includes the construction of learning goals and the design of activities consistent with those goals, including assessment of student computational fluency. We present critiques of our model as we work to develop an effective and sustainable model for computational instruction in the undergraduate curriculum.

  2. Another Look at the Mechanisms of Hydride Transfer Enzymes from Quantum and Classical Transition Path Sampling

    Science.gov (United States)

    Dzierlenga, Michael; Antoniou, Dimitri; Schwartz, Steven

    2015-03-01

    The mechanisms involved in enzymatic hydride transfer have been studies for years but questions remain, due to the difficulty in determining the participation of protein dynamics and quantum effects, especially hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and lactate dehydrogenase (LDH). Calculation of the work applied to the hydride during the reaction allows for observation of the change in barrier height due to inclusion of quantum effects. Additionally, the same calculations were performed using deuterium as the transferring particle to validate our methods with experimentally measured kinetic isotope effects. The change in barrier height in YADH upon inclusion of quantum effects is indicative of a zero-point energy contribution, and is evidence that the protein mediates a near-barrierless transfer of the rate-limiting hydride. Calculation of kinetic isotope effects using the average difference in barrier between hydride and deuteride agreed well with experimental results. The authors acknowledge the support of the National Institutes of Health Grants GM068036 and GM102226.

  3. Power as the Cause of Motion and a New Foundation of Classical Mechanics

    Directory of Open Access Journals (Sweden)

    Harokopos E.

    2005-07-01

    Full Text Available Laws of motion are derived based on power rather than on force. I show how power extends the law of inertia to include curvilinear motion and I also show that the law of action-reaction can be expressed in terms of the mutual time rate of change of kinetic energies instead of mutual forces. I then compare the laws of motion based on power to Newton’s Laws of Motion and I investigate the relation of power to Leibniz’s notion of vis viva. I also discuss briefly how the metaphysics of power as the cause of motion can be grounded in a modern version of occasionalism for the purpose of establishing an alternative foundation of mechanics. The laws of motion derived in this paper along with the metaphysical foundation proposed come in defense of the hypotheses that time emerges as an ordered progression of now and that gravitation is the effect of energy transfer between an unobservable substance and all matter in the Universe.

  4. Duality and self-duality of action in classical and quantum mechanics. Energy spectrum reflection symmetry of quasi-exactly solvable models, revisited

    CERN Document Server

    Kreshchuk, Michael

    2016-01-01

    The phenomenon of duality reflects a link between the behaviour of a system in different regimes. The goal of this work is to expose the classical origins of such links, and to demonstrate how they come to life in some quasi-exactly solvable problems of quantum mechanics. By studying the global properties of the Riemannian surface of the classical momentum, we reveal that the abbreviated classical action possesses a symmetry which holds also at the quantum level and underlies the energy reflection symmetry of the quantum energy levels.

  5. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.

    Science.gov (United States)

    Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C

    2012-09-27

    Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS.

  6. Physical Vulnerability Assessment Based on Fluid and Classical Mechanics to Support Cost-Benefit Analysis of Flood Risk Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Claudio Volcan

    2012-02-01

    Full Text Available The impacts of flood events that occurred in autumn 2011 in the Italian regions of Liguria and Tuscany revived the engagement of the public decision-maker to enhance the synergy of flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of the fixed and mobile elements exposed to flood hazard. In this paper we develop computation schemes enabling dynamic vulnerability and risk analyses for a broad typological variety of elements at risk. To show their applicability, a series of prime examples are discussed in detail, e.g. a bridge deck impacted by the flood and a car, first displaced and subsequently exposed to collision with fixed objects. We hold the view that it is essential that the derivation of the computational schemes to assess the vulnerability of endangered objects should be based on classical and fluid mechanics. In such a way, we aim to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches and to support the design of effective flood risk mitigation strategies by defusing the main criticalities within the systems prone to flood risk.

  7. Approach to the classical radiation biology. Ionizing radiation effects and repair mechanism of DNA double strand breaks

    International Nuclear Information System (INIS)

    Split-dose recovery has been observed under a variety of experimental conditions in many cell systems and believed to be the recovery of sublethal damage (SLD). It is considered to be one of the most widespread and important cellular responses in clinical radiotherapy. To study the molecular mechanism of this recovery, we analyzed the knockout mutants KU70-/-, RAD54-/-, and KU70-/-/ RAD54-/- of the chicken B-cell line, DT40. Rad54 participates in the homologous recombinational (HR) repair of DNA double-strand breaks (DSB), while Ku proteins are involved in non-homologous end-joining (NHEJ). Split-dose recovery was observed in the parent DT40 and KU70-/- cells. Moreover the split-dose survival enhancement had all of the characteristics of SLD recovery that had been demonstrated earlier: e.g., the reappearance of the shoulder of the survival curve with dose fractionation; repair at 25degC; and inhibition by the antibiotic actinomycin D. These results strongly suggest that SLD recovery is due to DSB repair via or mediated by HR, and that these breaks constitute SLD. The tonicity-sensitive potentially lethal damage (PLD) recovery was also found only in DT40 and KU70 -/- cells. Delayed-plating PLD recovery may be controlled by NHEJ repair that works through the cell cycle. These results lead to the conclusion that the repair of DSBs could explain the classical operational recovery phenomena. We have also investigated RBE/LET using those mutants. (author)

  8. Classical tachyons

    International Nuclear Information System (INIS)

    A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author)

  9. Entanglement in Classical Optics

    CERN Document Server

    Ghose, Partha

    2013-01-01

    The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate between separable and nonseparable states in classical wave optics where no discreteness is involved. The influence of the Pancharatnam phase on a classical Bell-like state is deived. Finally, to what extent classical polarization optics can be used to simulate quantum information processing tasks is also discussed. This should be of great practical importance because coherence and entanglement are robust in classical optics but not in quantum systems.

  10. Entanglement in Classical Optics

    OpenAIRE

    Ghose, Partha; Mukherjee, Anirban

    2013-01-01

    The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate betw...

  11. Understanding the Mechanism of Human P450 CYP1A2 Using Coupled Quantum-Classical Simulations in a Dynamical Environment

    Energy Technology Data Exchange (ETDEWEB)

    Draeger, E W; Bennion, B; Gygi, F; Lightstone, F

    2006-02-10

    The reaction mechanism of the human P450 CYP1A2 enzyme plays a fundamental role in understanding the effects of environmental carcinogens and mutagens on humans. Despite extensive experimental research on this enzyme system, key questions regarding its catalytic cycle and oxygen activation mechanism remain unanswered. In order to elucidate the reaction mechanism in human P450, new computational methods are needed to accurately represent this system. To enable us to perform computational simulations of unprecedented accuracy on these systems, we developed a dynamic quantum-classical (QM/MM) hybrid method, in which ab initio molecular dynamics are coupled with classical molecular mechanics. This will provide the accuracy needed to address such a complex, large biological system in a fully dynamic environment. We also present detailed calculations of the P450 active site, including the relative charge transfer between iron porphine and tetraphenyl porphyrin.

  12. Approach to the classical radiation biology. Ionizing radiation effects and repair mechanism of DNA double strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Utsumi, Hiroshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst

    2000-09-01

    Split-dose recovery has been observed under a variety of experimental conditions in many cell systems and believed to be the recovery of sublethal damage (SLD). It is considered to be one of the most widespread and important cellular responses in clinical radiotherapy. To study the molecular mechanism of this recovery, we analyzed the knockout mutants KU70{sup -/-}, RAD54{sup -/-}, and KU70{sup -/-}/ RAD54{sup -/-} of the chicken B-cell line, DT40. Rad54 participates in the homologous recombinational (HR) repair of DNA double-strand breaks (DSB), while Ku proteins are involved in non-homologous end-joining (NHEJ). Split-dose recovery was observed in the parent DT40 and KU70{sup -/-} cells. Moreover the split-dose survival enhancement had all of the characteristics of SLD recovery that had been demonstrated earlier: e.g., the reappearance of the shoulder of the survival curve with dose fractionation; repair at 25degC; and inhibition by the antibiotic actinomycin D. These results strongly suggest that SLD recovery is due to DSB repair via or mediated by HR, and that these breaks constitute SLD. The tonicity-sensitive potentially lethal damage (PLD) recovery was also found only in DT40 and KU70 {sup -/-} cells. Delayed-plating PLD recovery may be controlled by NHEJ repair that works through the cell cycle. These results lead to the conclusion that the repair of DSBs could explain the classical operational recovery phenomena. We have also investigated RBE/LET using those mutants. (author)

  13. Is Classical Statistical Mechanics Self-Consistent? (A paper in honor of C. F. von Weizsäcker, 1912-2007

    Directory of Open Access Journals (Sweden)

    Enders P.

    2007-07-01

    Full Text Available In addition to his outstanding achievements in physics and activities in policy, C.-F. von Weizsäcker is famous for his talks, given as a member of the Academy Leopoldina. Due to the latter, I could learn quite a lot from his methodological writings. In particular, he is the only modern thinker I’m aware of who has pointed to the difference between Newton’s and Laplace’s notions of state. But this difference is essential for the relationship between classical and quantum physics. Moreover it is the clue to overcoming Gibbs’ paradox within classical statistical mechanics itself.

  14. Lewis pair polymerization by classical and frustrated Lewis pairs: Acid, base and monomer scope and polymerization mechanism

    KAUST Repository

    Zhang, Yuetao

    2012-01-01

    Classical and frustrated Lewis pairs (LPs) of the strong Lewis acid (LA) Al(C 6F 5) 3 with several Lewis base (LB) classes have been found to exhibit exceptional activity in the Lewis pair polymerization (LPP) of conjugated polar alkenes such as methyl methacrylate (MMA) as well as renewable α-methylene-γ-butyrolactone (MBL) and γ-methyl- α-methylene-γ-butyrolactone (γ-MMBL), leading to high molecular weight polymers, often with narrow molecular weight distributions. This study has investigated a large number of LPs, consisting of 11 LAs as well as 10 achiral and 4 chiral LBs, for LPP of 12 monomers of several different types. Although some more common LAs can also be utilized for LPP, Al(C 6F 5) 3-based LPs are far more active and effective than other LA-based LPs. On the other hand, several classes of LBs, when paired with Al(C 6F 5) 3, can render highly active and effective LPP of MMA and γ-MMBL; such LBs include phosphines (e.g., P tBu 3), chiral chelating diphosphines, N-heterocyclic carbenes (NHCs), and phosphazene superbases (e.g., P 4- tBu). The P 4- tBu/Al(C 6F 5) 3 pair exhibits the highest activity of the LP series, with a remarkably high turn-over frequency of 9.6 × 10 4 h -1 (0.125 mol% catalyst, 100% MMA conversion in 30 s, M n = 2.12 × 10 5 g mol -1, PDI = 1.34). The polymers produced by LPs at RT are typically atactic (P γMMBL with ∼47% mr) or syndio-rich (PMMA with ∼70-75% rr), but highly syndiotactic PMMA with rr ∼91% can be produced by chiral or achiral LPs at -78 °C. Mechanistic studies have identified and structurally characterized zwitterionic phosphonium and imidazolium enolaluminates as the active species of the current LPP system, which are formed by the reaction of the monomer·Al(C 6F 5) 3 adduct with P tBu 3 and NHC bases, respectively. Kinetic studies have revealed that the MMA polymerization by the tBu 3P/ Al(C 6F 5) 3 pair is zero-order in monomer concentration after an initial induction period, and the polymerization

  15. Classics Online.

    Science.gov (United States)

    Clayman, Dee L.

    1995-01-01

    Appraises several databases devoted to classical literature. Thesaurus Linguae Graecae (TLG) contains the entire extant corpus of ancient Greek literature, including works on lexicography and historiography, extending into the 15th century. Other works awaiting completion are the Database of Classical Bibliography and a CD-ROM pictorial dictionary…

  16. Classical integrability

    Science.gov (United States)

    Torrielli, Alessandro

    2016-08-01

    We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin–Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand–Levitan–Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.

  17. Classical Physics and Quantum Loops

    Energy Technology Data Exchange (ETDEWEB)

    Barry R. Holstein; John F. Donoghue

    2004-05-01

    The standard picture of the loop expansion associates a factor of h-bar with each loop, suggesting that the tree diagrams are to be associated with classical physics, while loop effects are quantum mechanical in nature. We discuss examples wherein classical effects arise from loop contributions and display the relationship between the classical terms and the long range effects of massless particles.

  18. Classical electrodynamics

    CERN Document Server

    Schwinger, Julian Seymour; Milton, K A; Tsai, W Y

    1998-01-01

    This text for the graduate classical electrodynamics course was left unfinished upon Julian Schwinger's death in 1994, but was completed by his coauthors, who have brilliantly recreated the excitement of Schwinger's novel approach. Classical Electrodynamics captures Schwinger's inimitable lecturing style, in which everything flows inexorably from what has gone before. An essential resource for both physicists and their students, the book includes a "Reader's Guide", which describes the major themes in each chapter, suggests a possible path through the book, and identifies topics for inclusion

  19. Wave Mechanics or Wave Statistical Mechanics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.

  20. Comparison of quantum-mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative and positive ions for heavy-ion fusion applications

    International Nuclear Information System (INIS)

    Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2 GeV I- and Cs+ ions. A large difference in cross section, up to a factor of 6, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stripping cross sections at high energies for electron orbitals with low ionization potential

  1. The use of numerical methods in the solution of academic problems of classic mechanics; Empleo de metodos numericos en la solucion de problemas academicos de Mecanica Clasica

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Gonzalez, A.; Rubayo Soneira, J.; Portuondo Campa, E.

    2001-07-01

    In this work the use of numerical methods in the solution of physics academic problems is discussed, particularly those on classical mechanics. Frequently the solution of academic problems is limited to finding a differential equation which is left unsolved for having no analytical solution. However, by means of numerical methods we can solve these equations and enrich the physical analysis of the problem. This approach also makes the academic process a little closer to modern physical research, where numerical methods have increasingly been used in almost every field. In the present paper we discuss a classical mechanics problem using these methods. We start from both Newton's and Lagrange's formulations and apply different numerical algorithms in the solution of the obtained equations. During last academic semester, recently concluded, we tested the ideas of this work with students of Nuclear Physics career of the Higher Institute of Nuclear Sciences and technologies, at Havana, cuba. The results were encouraging. (Author) 7 refs.

  2. InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models

    Energy Technology Data Exchange (ETDEWEB)

    Smets, Quentin; Verreck, Devin; Vandervorst, Wilfried; Groeseneken, Guido; Heyns, Marc M. [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); KULeuven, 3001 Leuven (Belgium); Verhulst, Anne S.; Rooyackers, Rita; Merckling, Clément; Simoen, Eddy; Collaert, Nadine; Thean, Voon Y. [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); Van De Put, Maarten; Sorée, Bart [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); Universiteit Antwerpen, 2020 Antwerpen (Belgium)

    2014-05-14

    Promising predictions are made for III-V tunnel-field-effect transistor (FET), but there is still uncertainty on the parameters used in the band-to-band tunneling models. Therefore, two simulators are calibrated in this paper; the first one uses a semi-classical tunneling model based on Kane's formalism, and the second one is a quantum mechanical simulator implemented with an envelope function formalism. The calibration is done for In{sub 0.53}Ga{sub 0.47}As using several p+/intrinsic/n+ diodes with different intrinsic region thicknesses. The dopant profile is determined by SIMS and capacitance-voltage measurements. Error bars are used based on statistical and systematic uncertainties in the measurement techniques. The obtained parameters are in close agreement with theoretically predicted values and validate the semi-classical and quantum mechanical models. Finally, the models are applied to predict the input characteristics of In{sub 0.53}Ga{sub 0.47}As n- and p-lineTFET, with the n-lineTFET showing competitive performance compared to MOSFET.

  3. InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models

    International Nuclear Information System (INIS)

    Promising predictions are made for III-V tunnel-field-effect transistor (FET), but there is still uncertainty on the parameters used in the band-to-band tunneling models. Therefore, two simulators are calibrated in this paper; the first one uses a semi-classical tunneling model based on Kane's formalism, and the second one is a quantum mechanical simulator implemented with an envelope function formalism. The calibration is done for In0.53Ga0.47As using several p+/intrinsic/n+ diodes with different intrinsic region thicknesses. The dopant profile is determined by SIMS and capacitance-voltage measurements. Error bars are used based on statistical and systematic uncertainties in the measurement techniques. The obtained parameters are in close agreement with theoretically predicted values and validate the semi-classical and quantum mechanical models. Finally, the models are applied to predict the input characteristics of In0.53Ga0.47As n- and p-lineTFET, with the n-lineTFET showing competitive performance compared to MOSFET

  4. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  5. Collaborative Simulation Grid: Multiscale Quantum-Mechanical/Classical Atomistic Simulations on Distributed PC Clusters in the US and Japan

    Science.gov (United States)

    Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash; Biegel, Bryan (Technical Monitor)

    2002-01-01

    A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.

  6. Classical and quantum effective theories

    CERN Document Server

    Polonyi, Janos

    2014-01-01

    A generalization of the action principle of classical mechanics, motivated by the Closed Time Path (CTP) scheme of quantum field theory, is presented to deal with initial condition problems and dissipative forces. The similarities of the classical and the quantum cases are underlined. In particular, effective interactions which describe classical dissipative forces represent the system-environment entanglement. The relation between the traditional effective theories and their CTP extension is briefly discussed and few qualitative examples are mentioned.

  7. Deriving time dependent Schrödinger equation from Wave-Mechanics, Schrödinger time independent equation, Classical and Hamilton-Jacobi equations

    Directory of Open Access Journals (Sweden)

    Nilesh P. BARDE

    2015-05-01

    Full Text Available The concept of time dependent Schrödinger equation (TDSE illustrated in literature and even during class room teaching is mostly either complex or meant for advanced learners. This article is intended to enlighten the concept to the beginners in the field and further to improve knowledge about detailed steps for abstract mathematical formulation used which helps in understanding to derive TDSE using various tools and in more comprehensible manner. It is shown that TDSE may be derived using wave mechanics, time independent equation, classical & Hamilton-Jacobi’s equations. Similar attempts have been done earlier by some researchers. However, this article provides a comprehensive, lucid and well derived derivation, derived using various approaches, which would make this article unique.

  8. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations

    Science.gov (United States)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash

    2003-01-01

    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  9. The nature of free electrons in superfluid helium - a test of quantum mechanics and a basis to review its foundations and make a comparison to classical theory

    Energy Technology Data Exchange (ETDEWEB)

    Mills, R.L. [BlackLight Power, Inc., Cranbury, NJ (United States)

    2001-10-01

    addressed. It is time for the physical rather than the mathematical nature of the wave function to be determined. A theory of classical quantum mechanics (CQM) was derived from first principles by Mills (The grand unified theory of classical quantum mechanics. January 2000 ed; Cranbury, NJ, 2000, BlackLight Power, Inc., (Distributed by Amazon.com; Posted at www.blacklightpower.com)) that successfully applies physical laws on all scales. Using the classical wave equation with the constraint of nonradiation based on Maxwell's equations, CQM gives closed form physical solutions for the electron in atoms, the free electron, and the free electron in superfluid helium. The prediction of fractional principal quantum energy states of the electron in liquid helium match the photoconductivity and mobility observations without requiring that the electron is divisible. (author)

  10. Heterolysis of H2 Across a Classical Lewis Pair, 2,6-Lutidine-BCl3: Synthesis, Characterization, and Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ginovska-Pangovska, Bojana; Autrey, Thomas; Parab, Kshitij K.; Bowden, Mark E.; Potter, Robert G.; Camaioni, Donald M.

    2015-09-10

    We report on a combined computational and experimental study of the activation of hydrogen using for 2,6-lutidine (Lut)/BCl3 Lewis pairs. Herein we describe the synthetic approach used to obtain a new FLP, Lut-BCl3 that activates molecular H2 at ~10 bar, 100 °C in toluene or lutidine as the solvent. The resulting compound is an unexpected neutral hydride, LutBHCl2, rather than the ion pair, which we attribute to ligand redistribution. The mechanism for activation was modeled with density functional theory and accurate G3(MP2)B3 theory. The dative bond in Lut-BCl3 is calculated to have a bond enthalpy of 15 kcal/mol. The separated pair is calculated to react with H2 and form the [LutH+][HBCl3–] ion pair with a barrier of 13 kcal/mol. Metathesis with LutBCl3 produces LutBHCl2 and [LutH][BCl4]. The overall reaction is exothermic by 8.5 kcal/mol. An alternative pathway was explored involving lutidine–borenium cation pair activating H2. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences, and was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.

  11. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Nav Nidhi; Qu, Xiaohuui; Sa, Niya; Burrell, Anthony K.; Persson, Kristin A.

    2015-03-11

    In this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectric constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg2+ -> Mg+), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI exhibits a significant bond weakening while paired with the transient, partially reduced Mg+. In contrast, BH4 and BF4 are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.

  12. Randomness: quantum versus classical

    CERN Document Server

    Khrennikov, Andrei

    2015-01-01

    Recent tremendous development of quantum information theory led to a number of quantum technological projects, e.g., quantum random generators. This development stimulates a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is elaboration of a consistent and commonly accepted interpretation of quantum state. Closely related problem is clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. The second part of this review is devoted to the information interpretation of quantum mechanics (QM) in the spirit of Zeilinger and Brukner (and QBism of Fuchs et al.) and physics in general (e.g., Wheeler's "it from bit") as well as digital philosophy of Chaitin (with historical coupling to ideas of Leibnitz). Finally, w...

  13. The many classical faces of quantum structures

    OpenAIRE

    Heunen, Chris

    2014-01-01

    Interpretational problems with quantum mechanics can be phrased precisely by only talking about empirically accessible information. This prompts a mathematical reformulation of quantum mechanics in terms of classical mechanics. We survey this programme in terms of algebraic quantum theory.

  14. Quantum electrodynamics in a classical approximation, 1

    International Nuclear Information System (INIS)

    Quantum electrodynamics is formulated in a classical approximation. A quantum mechanical proper-time is employed as a useful parameter, which enables us to elucidate the relationship between quantum electrodynamics and classical electrodynamics. The classical motion of a charged particle is realized as an asymptotic limit of quantum electrodynamics. (author)

  15. A Quantum of Solace: Guzman on the Classical Mechanics of International Law - Book Review: Andrew Guzman, How International Law Works. A Rational Choice Theory (2008

    Directory of Open Access Journals (Sweden)

    Matthias Goldmann

    2009-02-01

    class="ArticleText">Compared to the discipline of international law, scholars of physics are blessed. While the principles of classical mechanics were theorized several centuries ago, quantum theory and the theory of relativity offer supplementary ways for describing how material objects and energy interact where classical mechanics does not provide an explanation. Thus, even in the absence of an all-comprising “world theory”, physicists have a wide array of workable theories at their service. By contrast, the “classical mechanics” of international law, i.e. the explanation of the most basic causal relationships between international legal norms and the behaviour of states as the main subjects of international law, are still subject to deep theoretical controversies. International legal doctrine presupposes that international law does have an impact and does not aim at questioning or further explaining this assumption. Traditional legal theories that see the essence of legal normativity in the possibility to trigger mechanisms of physical constraint often come to the conclusion that international law, in the absence of central enforcement mechanisms, is at best a primitive form of law. More recent enquiries into international legal theory from very different theoretical angles come to even less uplifting conclusions. Some argue that international legal norms are either entirely devoid of content because of their inherent indeterminacy and therefore prone to be captured by special interests. Others consider international law to be merely epiphenomenal because rational states would only consent to legal norms if, and as long as, they describe a behaviour they would choose anyway because it promises higher payoffs. In particular the latter critique put forward so forcefully by Jack Goldsmith and Eric Posner sent considerable shock waves through the invisible college of international lawyers. This is the background that needs to be kept

  16. Testing the Palma-Clary Reduced Dimensionality Model Using Classical Mechanics on the CH4 + H → CH3 + H2 Reaction.

    Science.gov (United States)

    Vikár, Anna; Nagy, Tibor; Lendvay, György

    2016-07-14

    Application of exact quantum scattering methods in theoretical reaction dynamics of bimolecular reactions is limited by the complexity of the equations of nuclear motion to be solved. Simplification is often achieved by reducing the number of degrees of freedom to be explicitly handled by freezing the less important spectator modes. The reaction cross sections obtained in reduced-dimensionality (RD) quantum scattering methods can be used in the calculation of rate coefficients, but their physical meaning is limited. The accurate test of the performance of a reduced-dimensionality method would be a comparison of the RD cross sections with those obtained in accurate full-dimensional (FD) calculations, which is not feasible because of the lack of complete full-dimensional results. However, classical mechanics allows one to perform reaction dynamics calculations using both the RD and the FD model. In this paper, an RD versus FD comparison is made for the 8-dimensional Palma-Clary model on the example of four isotopologs of the CH4 + H → CH3 + H2 reaction, which has 12 internal dimensions. In the Palma-Clary model, the only restriction is that the methyl group is confined to maintain C3v symmetry. Both RD and FD opacity and excitation functions as well as differential cross sections were calculated using the quasiclassical trajectory method. The initial reactant separation has been handled according to our one-period averaging method [ Nagy et al. J. Chem. Phys. 2016, 144, 014104 ]. The RD and FD excitation functions were found to be close to each other for some isotopologs, but in general, the RD reactivity parameters are lower than the FD reactivity parameters beyond statistical error, and for one of the isotopologs, the deviation is significant. This indicates that the goodness of RD cross sections cannot be taken for granted. PMID:26918703

  17. Probabilities for classically forbidden transitions using classical and classical path methods

    International Nuclear Information System (INIS)

    Limits are established for the applicability of purely classical methods for calculating nonreactive, inelastic transition probabilities in collinear collisions of a structureless atom and a harmonic oscillator. These limits, obtained by comparison with previous exact quantum mechanical results, indicate that such methods are inappropriate not only for ''classically forbidden'' but for many ''classically allowed'' transitions (in spite of the fact that they are widely used to calculate probabilities for such processes). A classical path method in the context of infinite-order time-dependent perturbation theory is described which yields extremely accurate transition probabilities even for the most classically forbidden transitions in the collinear atom--harmonic oscillator system. The essential features of this method are: (1) the use of the expectation value of the total interaction potential in determining the atom--oscillator (central force) trajectory, and (2) the use of the arithmetic mean of the initial and final velocities of relative motion in the (elastic) central force trajectory. This choice of interaction potential allows the relative motion to be coupled to changes in the internal state of the oscillator. The present classical method is further applied to three-dimensional atom-breathing sphere collisions, and exact quantum mechanical calculations are also carried out. Comparison of the classical path and exact quantum results shows excellent agreement both in the specific inelastic cross section and in the individual partial-wave contributions

  18. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  19. Evolution operator equation: Integration with algebraic and finite difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado

    1997-10-01

    The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.

  20. Hilbert space theory of classical electrodynamics

    Indian Academy of Sciences (India)

    RAJAGOPAL A K; GHOSE PARTHA

    2016-06-01

    Classical electrodynamics is reformulated in terms of wave functions in the classical phase space of electrodynamics, following the Koopman–von Neumann–Sudarshan prescription for classical mechanics on Hilbert spaces sans the superselection rule which prohibits interference effects in classical mechanics. This is accomplished by transforming from a set of commutingobservables in one Hilbert space to another set of commuting observables in a larger Hilbert space. This is necessary to clarify the theoretical basis of the much recent work on quantum-like features exhibited by classical optics. Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.

  1. What classicality? Decoherence and Bohr's classical concepts

    CERN Document Server

    Schlosshauer, Maximilian

    2010-01-01

    Niels Bohr famously insisted on the indispensability of what he termed "classical concepts." In the context of the decoherence program, on the other hand, it has become fashionable to talk about the "dynamical emergence of classicality" from the quantum formalism alone. Does this mean that decoherence challenges Bohr's dictum and signifies a break with the Copenhagen interpretation-for example, that classical concepts do not need to be assumed but can be derived? In this paper we'll try to shine some light down the murky waters where formalism and philosophy cohabitate. To begin, we'll clarify the notion of classicality in the decoherence description. We'll then discuss Bohr's and Heisenberg's take on the quantum-classical problem and reflect on different meanings of the terms "classicality" and "classical concepts" in the writings of Bohr and his followers. This analysis will allow us to put forward some tentative suggestions for how we may better understand the relation between decoherence-induced classical...

  2. Tensor calculus and analytical dynamics a classical introduction to holonomic and nonholonomic tensor calculus ; and its principal applications to the Lagrangean dynamics of constrained mechanical systems : for engineers, physicists, and mathematicians

    CERN Document Server

    Papastavridis, John G

    1999-01-01

    Tensor Calculus and Analytical Dynamics provides a concise, comprehensive, and readable introduction to classical tensor calculus - in both holonomic and nonholonomic coordinates - as well as to its principal applications to the Lagrangean dynamics of discrete systems under positional or velocity constraints. The thrust of the book focuses on formal structure and basic geometrical/physical ideas underlying most general equations of motion of mechanical systems under linear velocity constraints.

  3. Minimum signals in classical physics

    Institute of Scientific and Technical Information of China (English)

    邓文基; 许基桓; 刘平

    2003-01-01

    The bandwidth theorem for Fourier analysis on any time-dependent classical signal is shown using the operator approach to quantum mechanics. Following discussions about squeezed states in quantum optics, the problem of minimum signals presented by a single quantity and its squeezing is proposed. It is generally proved that all such minimum signals, squeezed or not, must be real Gaussian functions of time.

  4. Quantum computing classical physics.

    Science.gov (United States)

    Meyer, David A

    2002-03-15

    In the past decade, quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice-gas automata--and show how to implement them efficiently on standard quantum computers.

  5. Time, classical and quantum

    Science.gov (United States)

    Aniello, P.; Ciaglia, F. M.; Di Cosmo, F.; Marmo, G.; Pérez-Pardo, J. M.

    2016-10-01

    We propose a new point of view regarding the problem of time in quantum mechanics, based on the idea of replacing the usual time operator T with a suitable real-valued function T on the space of physical states. The proper characterization of the function T relies on a particular relation with the dynamical evolution of the system rather than with the infinitesimal generator of the dynamics (Hamiltonian). We first consider the case of classical hamiltonian mechanics, where observables are functions on phase space and the tools of differential geometry can be applied. The idea is then extended to the case of the unitary evolution of pure states of finite-level quantum systems by means of the geometric formulation of quantum mechanics. It is found that T is a function on the space of pure states which is not associated with any self-adjoint operator. The link between T and the dynamical evolution is interpreted as defining a simultaneity relation for the states of the system with respect to the dynamical evolution itself. It turns out that different dynamical evolutions lead to different notions of simultaneity, i.e., the notion of simultaneity is a dynamical notion.

  6. Classical Underpinnings of Gravitationally Induced Quantum Interference

    CERN Document Server

    Mannheim, P D

    1996-01-01

    We show that the gravitational modification of the phase of a neutron beam (the COW experiment) has a classical origin, being due to the time delay which classical particles experience in traversing a background gravitational field. Similarly, we show that classical light waves also undergo a phase shift in traversing a gravitational field. We show that the COW experiment respects the equivalence principle even in the presence of quantum mechanics.

  7. The radio afterglow from the giant flare of SGR 1900+14: The same mechanism as afterglows from classic gamma-ray bursts?

    OpenAIRE

    Cheng, KS; Wang, XY

    2003-01-01

    A radio afterglow was detected following the 1998 August 27 giant flare from the soft gamma repeater (SGR) 1900+14. Its short-lived behavior is quite different from the radio nebula of SGR 1806-20, but very similar to radio afterglows from classic gamma-ray bursts (GRBs). Motivated by this, we attempt to explain it with the external shock model as invoked in the standard theory of GRB afterglows. We find that the light curve of this radio afterglow is not consistent with the forward shock emi...

  8. Classical Hamiltonian Dynamics and Lie Group Algebras

    CERN Document Server

    Aycock, B; Silverberg, J L; Widom, A

    2008-01-01

    The classical Hamilton equations of motion yield a structure sufficiently general to handle an almost arbitrary set of ordinary differential equations. Employing elementary algebraic methods, it is possible within the Hamiltonian structure to describe many physical systems exhibiting Lie group symmetries. Elementary examples include magnetic moment precession and the mechanical orbits of color charged particles in classical non-abelian chromodynamics.

  9. Classical decoherence in a nanomechanical resonator

    Science.gov (United States)

    Maillet, O.; Vavrek, F.; Fefferman, A. D.; Bourgeois, O.; Collin, E.

    2016-07-01

    Decoherence is an essential mechanism that defines the boundary between classical and quantum behaviours, while imposing technological bounds for quantum devices. Little is known about quantum coherence of mechanical systems, as opposed to electromagnetic degrees of freedom. But decoherence can also be thought of in a purely classical context, as the loss of phase coherence in the classical phase space. Indeed the bridge between quantum and classical physics is under intense investigation, using, in particular, classical nanomechanical analogues of quantum phenomena. In the present work, by separating pure dephasing from dissipation, we quantitatively model the classical decoherence of a mechanical resonator: through the experimental control of frequency fluctuations, we engineer artificial dephasing. Building on the fruitful analogy introduced between spins/quantum bits and nanomechanical modes, we report on the methods available to define pure dephasing in these systems, while demonstrating the intrinsic almost-ideal properties of silicon nitride beams. These experimental and theoretical results, at the boundary between classical nanomechanics and quantum information fields, are prerequisite in the understanding of decoherence processes in mechanical devices, both classical and quantum.

  10. Bidirectional coherent classical communication

    OpenAIRE

    Harrow, Aram W.; Leung, Debbie W.

    2005-01-01

    A unitary interaction coupling two parties enables quantum or classical communication in both the forward and backward directions. Each communication capacity can be thought of as a tradeoff between the achievable rates of specific types of forward and backward communication. Our first result shows that for any bipartite unitary gate, bidirectional coherent classical communication is no more difficult than bidirectional classical communication — they have the same achievable rate regions. ...

  11. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  12. Teleportation via classical entanglement

    CERN Document Server

    Rafsanjani, Seyed Mohammad Hashemi; Magaña-Loaiza, Omar S; Boyd, Robert W

    2015-01-01

    We present a classical counterpart to quantum teleportation that uses classical entanglement instead of quantum entanglement. In our implementation we take advantage of classical entanglement among three parties: orbital angular momentum (OAM), polarization, and the radial degrees of freedom of a beam of light. We demonstrate the teleportation of arbitrary OAM states, in the subspace spanned by any two OAM states, to the polarization of the same beam. Our letter presents the first classical demonstration of a commonly-perceived--quantum phenomenon that requires entanglement among more than two parties.

  13. Interpretation and Revision of Classic Saturated Soil Mechanics with New Concept of Soil Mechanics%用土力学的新概念解读和修正经典饱和土力学

    Institute of Scientific and Technical Information of China (English)

    蒙理明

    2015-01-01

    This paper discusses that it should use the new concept of effective stress instead of classical effective stress principle.Curves of total stress compression modulus and the seepage water equivalent compression modulus are similar;effective stress compression modulus is stiffening effect,rather than a decisive role.Using the principle of ef-fective stress is wrong in the soil compression deformation calculation .For the initial hydraulic gradient,this paper in-troduced a concept of the free water pressure attenuation of saturated cohesive soil.In saturated cohesive soil,free wa-ter channel rate reduction is not large,relatively free water pressure attenuation is zero through certain thickness.So the new concept of soil mechanics algorithm is close to our specification:"cohesive soil should be calculated on soil and water economical".Also the basement uplift reduction,shifting sand traps and so on are introduced.%论述了应该用有效应力的新概念代替经典有效应力原理。总应力压缩模量与渗流水等效压缩模量的曲线相似;有效应力压缩模量起加劲作用,而不是起决定性作用。土的压缩变形计算中应用有效应力原理是错误的。对于起始水力坡降,引入饱和粘性土的自由水压力衰减概念。在饱和粘性土中,自由水通道率折减不大,相对自由水压力通过一定厚度后衰减为零。所以,新概念土力学的算法接近我国规范:“对粘性土宜按水土合算计算”。还解读了地下室浮力折减、流沙陷阱等等。

  14. Quantum manifolds with classical limit

    CERN Document Server

    Hohmann, Manuel; Wohlfarth, Mattias N R

    2008-01-01

    We propose a mathematical model of quantum spacetime as an infinite-dimensional manifold locally homeomorphic to an appropriate Schwartz space. This extends and unifies both the standard function space construction of quantum mechanics and the manifold structure of spacetime. In this picture we demonstrate that classical spacetime emerges as a finite-dimensional manifold through the topological identification of all quantum points with identical position expectation value. We speculate on the possible relevance of this geometry to quantum field theory and gravity.

  15. Lectures on Classical Integrability

    CERN Document Server

    Torrielli, Alessandro

    2016-01-01

    We review some essential aspects of classically integrable systems. The detailed outline of the lectures consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schroedinger model, principal chiral field); 4. Features of classical r-matrices: Belavin-Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel'fand-Levitan-Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.

  16. A course in classical physics

    CERN Document Server

    Bettini, Alessandro

    2016-01-01

    This first volume covers the mechanics of point particles, gravitation, extended systems (starting from the two-body system), the basic concepts of relativistic mechanics and the mechanics of rigid bodies and fluids. The four-volume textbook, which covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Writings by the founders of classical mechanics, G. Galilei and I. Newton, are reproduced, encouraging students to consult them. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in modern physics are included. Each chapter b...

  17. Advances In Classical Field Theory

    CERN Document Server

    Yahalom, Asher

    2011-01-01

    Classical field theory is employed by physicists to describe a wide variety of physical phenomena. These include electromagnetism, fluid dynamics, gravitation and quantum mechanics. The central entity of field theory is the field which is usually a multi component function of space and time. Those multi component functions are usually grouped together as vector fields as in the case in electromagnetic theory and fluid dynamics, in other cases they are grouped as tensors as in theories of gravitation and yet in other cases they are grouped as complex functions as in the case of quantum mechanic

  18. Quantum flesh on classical bones: Semiclassical bridges across the quantum-classical divide

    Energy Technology Data Exchange (ETDEWEB)

    Bokulich, Alisa [Center for Philosophy and History of Science, Boston University, Boston, MA (United States)

    2014-07-01

    Traditionally quantum mechanics is viewed as having made a sharp break from classical mechanics, and the concepts and methods of these two theories are viewed as incommensurable with one another. A closer examination of the history of quantum mechanics, however, reveals that there is a strong sense in which quantum mechanics was built on the backbone of classical mechanics. As a result, there is a considerable structural continuity between these two theories, despite their important differences. These structural continuities provide a ground for semiclassical methods in which classical structures, such as trajectories, are used to investigate and model quantum phenomena. After briefly tracing the history of semiclassical approaches, I show how current research in semiclassical mechanics is revealing new bridges across the quantum-classical divide.

  19. From classical psychodynamics to evidence synthesis: the motif of repression and a contemporary understanding of a key mediatory mechanism in psychosis.

    Science.gov (United States)

    Fleming, Mick P; Martin, Colin R

    2012-06-01

    The stress vulnerability model has proven to be a politically important model for two reasons. It has provided the framework that defines a temporal and dynamic process whereby a person's uniquely determined biopsychosocial vulnerability to schizophrenia symptoms interacts with his or her capacity to manage stress and the amount and type of stress experienced in such a way that the person experiences schizophrenia symptoms. Second, the development of this framework promoted the notion of inherited and acquired vulnerability. Implicit was that vulnerability was individually determined and that there was a role for psychosocial factors in the development/maintenance of schizophrenia symptoms. This proved to be a catalyst for the development of studies implicating psychosocial factors in the etiology of schizophrenia symptoms. Studies derived from cognitive-behavioral theories have proven the most successful in identifying thinking patterns, emotional disturbances, and neurocognitive and defensive vulnerability factors inherent in the development of schizophrenia symptoms. Historically, within the psychoanalytic school there has been debate regarding the role of repressive coping mechanisms in schizophrenia development. Psychoanalytic theories have always appeared incapable of providing etiologic explanations of schizophrenia symptoms, with the possible exception of Melanie Klein, than other more salient psychosocial schools. Mechanisms within the process of repressive coping are consistent with evidence and mechanisms supporting the stress vulnerability models and existing cognitive-behavioral theories regarding development of paranoid delusions. These mechanisms are less consistent with social cognitive explanations of schizophrenia symptoms.

  20. Classical and semiclassical aspects of chemical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K.

    1982-08-01

    Tunneling in the unimolecular reactions H/sub 2/C/sub 2/ ..-->.. HC/sub 2/H, HNC ..-->.. HCN, and H/sub 2/CO ..-->.. H/sub 2/ + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I ..-->.. Na /sup +/ + I/sup -/ is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features. (WHM)

  1. Davidson and classical pragmatism

    Directory of Open Access Journals (Sweden)

    Paula Rossi

    2007-06-01

    Full Text Available In this paper I wish to trace some connections between Donald Davidson's work (1917-2003 and two major representatives of the classical pragmatist movement: Charles S. Peirce (1839-1914 and William James (1842-1910. I will start with a basic characterization of classical pragmatism; then, I shall examine certain conceptions in Peirce's and James' pragmatism, in order to establish affinities with Davidson´s thought. Finally, and bearing in mind the previous con-nections, I will reflect briefly on the relevance –often unrecognized- of classical pragmatist ideas in the context of contemporary philosophi-cal discussions.

  2. No return to classical reality

    Science.gov (United States)

    Jennings, David; Leifer, Matthew

    2016-01-01

    At a fundamental level, the classical picture of the world is dead, and has been dead now for almost a century. Pinning down exactly which quantum phenomena are responsible for this has proved to be a tricky and controversial question, but a lot of progress has been made in the past few decades. We now have a range of precise statements showing that whatever the ultimate laws of nature are, they cannot be classical. In this article, we review results on the fundamental phenomena of quantum theory that cannot be understood in classical terms. We proceed by first granting quite a broad notion of classicality, describe a range of quantum phenomena (such as randomness, discreteness, the indistinguishability of states, measurement-uncertainty, measurement-disturbance, complementarity, non-commutativity, interference, the no-cloning theorem and the collapse of the wave-packet) that do fall under its liberal scope, and then finally describe some aspects of quantum physics that can never admit a classical understanding - the intrinsically quantum mechanical aspects of nature. The most famous of these is Bell's theorem, but we also review two more recent results in this area. Firstly, Hardy's theorem shows that even a finite-dimensional quantum system must contain an infinite amount of information, and secondly, the Pusey-Barrett-Rudolph theorem shows that the wave function must be an objective property of an individual quantum system. Besides being of foundational interest, results of this sort now find surprising practical applications in areas such as quantum information science and the simulation of quantum systems.

  3. From classical to quantum physics

    CERN Document Server

    Stehle, Philip

    2017-01-01

    Suitable for lay readers as well as students, this absorbing survey explores the twentieth-century transition from classical to quantum physics. Author Philip Stehle traces the shift in the scientific worldview from the work of Galileo, Newton, and Darwin to the modern-day achievements of Max Planck, Albert Einstein, Ernest Rutherford, Niels Bohr, and others of their generation. His insightful overview examines not only the history of quantum physics but also the ways that progress in the discipline changed our understanding of the physical world and forces of nature. This chronicle of the second revolution in the physical sciences conveys the excitement and suspense that new developments produced in the scientific community. The narrative ranges from the classical physics of the seventeenth-century to the emergence of quantum mechanics with the entrance of the electron, the rise of relativity theory, the development of atomic theory, and the recognition of wave-particle duality. Relevant mathematical details...

  4. Classical Equations for Quantum Systems

    CERN Document Server

    Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James B.

    1993-01-01

    The origin of the phenomenological deterministic laws that approximately govern the quasiclassical domain of familiar experience is considered in the context of the quantum mechanics of closed systems such as the universe as a whole. We investigate the requirements for coarse grainings to yield decoherent sets of histories that are quasiclassical, i.e. such that the individual histories obey, with high probability, effective classical equations of motion interrupted continually by small fluctuations and occasionally by large ones. We discuss these requirements generally but study them specifically for coarse grainings of the type that follows a distinguished subset of a complete set of variables while ignoring the rest. More coarse graining is needed to achieve decoherence than would be suggested by naive arguments based on the uncertainty principle. Even coarser graining is required in the distinguished variables for them to have the necessary inertia to approach classical predictability in the presence of t...

  5. Davidson and classical pragmatism

    OpenAIRE

    Paula Rossi

    2007-01-01

    In this paper I wish to trace some connections between Donald Davidson's work (1917-2003) and two major representatives of the classical pragmatist movement: Charles S. Peirce (1839-1914) and William James (1842-1910). I will start with a basic characterization of classical pragmatism; then, I shall examine certain conceptions in Peirce's and James' pragmatism, in order to establish affinities with Davidson´s thought. Finally, and bearing in mind the previous con-nections, I will reflect brie...

  6. HIV-1 Reverse Transcriptase Still Remains a New Drug Target: Structure, Function, Classical Inhibitors, and New Inhibitors with Innovative Mechanisms of Actions

    Directory of Open Access Journals (Sweden)

    Francesca Esposito

    2012-01-01

    Full Text Available During the retrotranscription process, characteristic of all retroviruses, the viral ssRNA genome is converted into integration-competent dsDNA. This process is accomplished by the virus-coded reverse transcriptase (RT protein, which is a primary target in the current treatments for HIV-1 infection. In particular, in the approved therapeutic regimens two classes of drugs target RT, namely, nucleoside RT inhibitors (NRTIs and nonnucleoside RT inhibitors (NNRTIs. Both classes inhibit the RT-associated polymerase activity: the NRTIs compete with the natural dNTP substrate and act as chain terminators, while the NNRTIs bind to an allosteric pocket and inhibit polymerization noncompetitively. In addition to these two classes, other RT inhibitors (RTIs that target RT by distinct mechanisms have been identified and are currently under development. These include translocation-defective RTIs, delayed chain terminators RTIs, lethal mutagenesis RTIs, dinucleotide tetraphosphates, nucleotide-competing RTIs, pyrophosphate analogs, RT-associated RNase H function inhibitors, and dual activities inhibitors. This paper describes the HIV-1 RT function and molecular structure, illustrates the currently approved RTIs, and focuses on the mechanisms of action of the newer classes of RTIs.

  7. Quantum Chaos and Statistical Mechanics

    OpenAIRE

    Srednicki, Mark

    1994-01-01

    We briefly review the well known connection between classical chaos and classical statistical mechanics, and the recently discovered connection between quantum chaos and quantum statistical mechanics.

  8. Spin dynamics of quantum and classical Heisenberg dimers

    OpenAIRE

    Mentrup, D.; Schnack, J.; Luban, Marshall

    1999-01-01

    Analytical solutions for the time-dependent autocorrelation function of the classical and quantum mechanical spin dimer with arbitrary spin are presented and compared. For large spin quantum numbers or high temperature the classical and the quantum dimer become more and more similar, yet with the major difference that the quantum autocorrelation function is periodic in time whereas the classical is not.

  9. Classical-field theory of thermal radiation

    CERN Document Server

    Rashkovskiy, Sergey A

    2016-01-01

    In this paper, using the viewpoint that quantum mechanics can be constructed as a classical field theory without any quantization I build a fully classical theory of thermal radiation. Planck's law for the spectral energy density of thermal radiation and the Einstein A-coefficient for spontaneous emission are derived in the framework of classical field theory without using the concept of "photon". It is shown that the spectral energy density of thermal radiation is apparently not a universal function of frequency, as follows from the Planck's law, but depends weakly on the nature of atoms, while Planck's law is valid only as an approximation in the limit of weak excitation of atoms.

  10. Bohmian measures and their classical limit

    KAUST Repository

    Markowich, Peter

    2010-09-01

    We consider a class of phase space measures, which naturally arise in the Bohmian interpretation of quantum mechanics. We study the classical limit of these so-called Bohmian measures, in dependence on the scale of oscillations and concentrations of the sequence of wave functions under consideration. The obtained results are consequently compared to those derived via semi-classical Wigner measures. To this end, we shall also give a connection to the theory of Young measures and prove several new results on Wigner measures themselves. Our analysis gives new insight on oscillation and concentration effects in the semi-classical regime. © 2010 Elsevier Inc.

  11. Different RNA splicing mechanisms contribute to diverse infective outcome of classical swine fever viruses of differing virulence: insights from the deep sequencing data in swine umbilical vein endothelial cells.

    Science.gov (United States)

    Ning, Pengbo; Zhou, Yulu; Liang, Wulong; Zhang, Yanming

    2016-01-01

    Molecular mechanisms underlying RNA splicing regulation in response to viral infection are poorly understood. Classical swine fever (CSF), one of the most economically important and highly contagious swine diseases worldwide, is caused by classical swine fever virus (CSFV). Here, we used high-throughput sequencing to obtain the digital gene expression (DGE) profile in swine umbilical vein endothelial cells (SUVEC) to identify different response genes for CSFV by using both Shimen and C strains. The numbers of clean tags obtained from the libraries of the control and both CSFV-infected libraries were 3,473,370, 3,498,355, and 3,327,493 respectively. In the comparison among the control, CSFV-C, and CSFV-Shimen groups, 644, 158, and 677 differentially expressed genes (DEGs) were confirmed in the three groups. Pathway enrichment analysis showed that many of these DEGs were enriched in spliceosome, ribosome, proteasome, ubiquitin-mediated proteolysis, cell cycle, focal adhesion, Wnt signalling pathway, etc., where the processes differ between CSFV strains of differing virulence. To further elucidate important mechanisms related to the differential infection by the CSFV Shimen and C strains, we identified four possible profiles to assess the significantly expressed genes only by CSFV Shimen or CSFV C strain. GO analysis showed that infection with CSFV Shimen and C strains disturbed 'RNA splicing' of SUVEC, resulting in differential 'gene expression' in SUVEC. Mammalian target of rapamycin (mTOR) was identified as a significant response regulator contributed to impact on SUVEC function for CSFV Shimen. This computational study suggests that CSFV of differing virulence could induce alterations in RNA splicing regulation in the host cell to change cell metabolism, resulting in acute haemorrhage and pathological damage or infectious tolerance.

  12. Different RNA splicing mechanisms contribute to diverse infective outcome of classical swine fever viruses of differing virulence: insights from the deep sequencing data in swine umbilical vein endothelial cells.

    Science.gov (United States)

    Ning, Pengbo; Zhou, Yulu; Liang, Wulong; Zhang, Yanming

    2016-01-01

    Molecular mechanisms underlying RNA splicing regulation in response to viral infection are poorly understood. Classical swine fever (CSF), one of the most economically important and highly contagious swine diseases worldwide, is caused by classical swine fever virus (CSFV). Here, we used high-throughput sequencing to obtain the digital gene expression (DGE) profile in swine umbilical vein endothelial cells (SUVEC) to identify different response genes for CSFV by using both Shimen and C strains. The numbers of clean tags obtained from the libraries of the control and both CSFV-infected libraries were 3,473,370, 3,498,355, and 3,327,493 respectively. In the comparison among the control, CSFV-C, and CSFV-Shimen groups, 644, 158, and 677 differentially expressed genes (DEGs) were confirmed in the three groups. Pathway enrichment analysis showed that many of these DEGs were enriched in spliceosome, ribosome, proteasome, ubiquitin-mediated proteolysis, cell cycle, focal adhesion, Wnt signalling pathway, etc., where the processes differ between CSFV strains of differing virulence. To further elucidate important mechanisms related to the differential infection by the CSFV Shimen and C strains, we identified four possible profiles to assess the significantly expressed genes only by CSFV Shimen or CSFV C strain. GO analysis showed that infection with CSFV Shimen and C strains disturbed 'RNA splicing' of SUVEC, resulting in differential 'gene expression' in SUVEC. Mammalian target of rapamycin (mTOR) was identified as a significant response regulator contributed to impact on SUVEC function for CSFV Shimen. This computational study suggests that CSFV of differing virulence could induce alterations in RNA splicing regulation in the host cell to change cell metabolism, resulting in acute haemorrhage and pathological damage or infectious tolerance. PMID:27330868

  13. Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra.

    Science.gov (United States)

    Mullin, Jonathan; Schatz, George C

    2012-03-01

    A multiscale method is presented that allows for evaluation of plasmon-enhanced optical properties of nanoparticle/molecule complexes with no additional cost compared to standard electrodynamics (ED) and linear response quantum mechanics (QM) calculations for the particle and molecule, respectively, but with polarization and orientation effects automatically described. The approach first calculates the total field of the nanoparticle by ED using the finite difference time domain (FDTD) method. The field intensity in the frequency domain as a function of distance from the nanoparticle is calculated via a Fourier transform. The molecular optical properties are then calculated with QM in the frequency domain in the presence of the total field of the nanoparticle. Back-coupling due to dipolar reradiation effects is included in the single-molecule plane wave approximation. The effects of polarization and partial orientation averaging are considered. The QM/ED method is evaluated for the well-characterized test case of surface-enhanced Raman scattering (SERS) of pyridine bound to silver, as well as for the resonant Raman chromophore rhodamine 6G. The electromagnetic contribution to the enhancement factor is 10(4) for pyridine and 10(2) for rhodamine 6G.

  14. Introduction to tomography, classical and quantum

    International Nuclear Information System (INIS)

    The tomographic approach to identify quantum states with fair probability distributions as alternatives to wave functions or density operators is reviewed. The tomographic-probability representation is shown also for classical states. The star-product formalism of quantizers and dequantizers associated with the tomographic picture of classical and quantum mechanics is presented and some kernels of star products are given in explicit forms. The inequalities for Shannon and Rényi entropies determined by tomographic-probability distributions are discussed.

  15. FSH isoform pattern in classic galactosemia

    OpenAIRE

    Gubbels, Cynthia S.; Thomas, Chris M.G.; Wodzig, Will K. W. H.; Olthaar, André J.; Jaeken, Jaak; Sweep, Fred C. G. J.; Rubio-Gozalbo, M. Estela

    2010-01-01

    Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfunction. An earlier study showed less acidic isoforms of FSH in serum samples of two classic galactosemia patients compared to controls, indicating hypoglycosylation. In this study, FSH isoform patterns...

  16. Definition and classification of singularities in GR: classical and quantum

    CERN Document Server

    Konkowski, D A

    2004-01-01

    We will briefly review the definition and classification of classical and quantum singularities in general relativity. Examples of classically singular spacetimes that do not have quantum singularities will be given. We will present results on quantum singularities in quasiregular spacetimes. We will also show that a strong repulsive "potential" near the classical singularity can turn a classically singular spacetime into a quantum mechanically nonsingular spacetime.

  17. Classically-Controlled Quantum Computation

    OpenAIRE

    Perdrix, Simon; Jorrand, Philippe

    2004-01-01

    Quantum computations usually take place under the control of the classical world. We introduce a Classically-controlled Quantum Turing Machine (CQTM) which is a Turing Machine (TM) with a quantum tape for acting on quantum data, and a classical transition function for a formalized classical control. In CQTM, unitary transformations and measurements are allowed. We show that any classical TM is simulated by a CQTM without loss of efficiency. The gap between classical and quantum computations, ...

  18. Classical equations for quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Gell-Mann, M. (Theoretical Astrophysics Group (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico 87545) (United States) (Santa Fe Institute, 1660 Old Pecos Trail, Santa Fe, New Mexico 87501); Hartle, J.B. (Department of Physics, University of California enSanta Barbara, Santa Barbara, (California) 93106)

    1993-04-15

    The origin of the phenomenological deterministic laws that approximately govern the quasiclassical domain of familiar experience is considered in the context of the quantum mechanics of closed systems such as the universe as a whole. A formulation of quantum mechanics is used that predicts probabilities for the individual members of a set of alternative coarse-grained histories that [ital decohere], which means that there is negligible quantum interference between the individual histories in the set. We investigate the requirements for coarse grainings to yield decoherent sets of histories that are quasiclassical, i.e., such that the individual histories obey, with high probability, effective classical equations of motion interrupted continually by small fluctuations and occasionally by large ones. We discuss these requirements generally but study them specifically for coarse grainings of the type that follows a distinguished subset of a complete set of variables while ignoring the rest. More coarse graining is needed to achieve decoherence than would be suggested by naive arguments based on the uncertainty principle. Even coarser graining is required in the distinguished variables for them to have the necessary inertia to approach classical predictability in the presence of the noise consisting of the fluctuations that typical mechanisms of decoherence produce. We describe the derivation of phenomenological equations of motion explicitly for a particular class of models.

  19. Classical trajectories and quantum tunneling

    CERN Document Server

    Ivlev, B I

    2003-01-01

    The problem of inter-band tunneling in a semiconductor (Zener breakdown) in a nonstationary and homogeneous electric field is solved exactly. Using the exact analytical solution, the approximation based on classical trajectories is studied. A new mechanism of enhanced tunneling through static non-one-dimensional barriers is proposed in addition to well known normal tunneling solely described by a trajectory in imaginary time. Under certain conditions on the barrier shape and the particle energy, the probability of enhanced tunneling is not exponentially small even for non-transparent barriers, in contrast to the case of normal tunneling.

  20. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description

    Science.gov (United States)

    Madsen, J. R.; Akabani, G.

    2014-05-01

    The present state of modeling radio-induced effects at the cellular level does not account for the microscopic inhomogeneity of the nucleus from the non-aqueous contents (i.e. proteins, DNA) by approximating the entire cellular nucleus as a homogenous medium of water. Charged particle track-structure calculations utilizing this approximation are therefore neglecting to account for approximately 30% of the molecular variation within the nucleus. To truly understand what happens when biological matter is irradiated, charged particle track-structure calculations need detailed knowledge of the secondary electron cascade, resulting from interactions with not only the primary biological component—water--but also the non-aqueous contents, down to very low energies. This paper presents our work on a generic approach for calculating low-energy interaction cross-sections between incident charged particles and individual molecules. The purpose of our work is to develop a self-consistent computational method for predicting molecule-specific interaction cross-sections, such as the component molecules of DNA and proteins (i.e. nucleotides and amino acids), in the very low-energy regime. These results would then be applied in a track-structure code and thereby reduce the homogenous water approximation. The present methodology—inspired by seeking a combination of the accuracy of quantum mechanics and the scalability, robustness, and flexibility of Monte Carlo methods—begins with the calculation of a solution to the many-body Schrödinger equation and proceeds to use Monte Carlo methods to calculate the perturbations in the internal electron field to determine the interaction processes, such as ionization and excitation. As a test of our model, the approach is applied to a water molecule in the same method as it would be applied to a nucleotide or amino acid and compared with the low-energy cross-sections from the GEANT4-DNA physics package of the Geant4 simulation toolkit

  1. Classical Holographic Codes

    CERN Document Server

    Brehm, Enrico M

    2016-01-01

    In this work, we introduce classical holographic codes. These can be understood as concatenated probabilistic codes and can be represented as networks uniformly covering hyperbolic space. In particular, classical holographic codes can be interpreted as maps from bulk degrees of freedom to boundary degrees of freedom. Interestingly, they are shown to exhibit features similar to those expected from the AdS/CFT correspondence. Among these are a version of the Ryu-Takayanagi formula and intriguing properties regarding bulk reconstruction and boundary representations of bulk operations. We discuss the relation of our findings with expectations from AdS/CFT and, in particular, with recent results from quantum error correction.

  2. Classic Problems of Probability

    CERN Document Server

    Gorroochurn, Prakash

    2012-01-01

    "A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin

  3. Learning Classical Music Club

    CERN Multimedia

    Learning Classical Music Club

    2010-01-01

    There is a new CERN Club called “Learning Classical Music at CERN”. We are aiming to give classical music lessons for different instruments (see link) for students from 5 to 100 years old. We are now ready to start our activities in the CERN barracks. We are now in the enrollment phase and hope to start lessons very soon ! Club info can be found in the list of CERN Club: http://user.web.cern.ch/user/Communication/SocialLifeActivities/Clubs/Clubs.html Salvatore Buontempo Club President

  4. Strong Coupling and Classicalization

    CERN Document Server

    Dvali, Gia

    2016-01-01

    Classicalization is a phenomenon in which a theory prevents itself from entering into a strong-coupling regime, by redistributing the energy among many weakly-interacting soft quanta. In this way, the scattering process of some initial hard quanta splits into a large number of soft elementary processes. In short, the theory trades the strong coupling for a high-multiplicity of quanta. At very high energies, the outcome of such a scattering experiment is a production of soft states of high occupation number that are approximately classical. It is evident that black hole creation in particle collision at super-Planckian energies is a result of classicalization, but there is no a priory reason why this phenomenon must be limited to gravity. If the hierarchy problem is solved by classicalization, the LHC has a chance of detecting a tower of new resonances. The lowest-lying resonances must appear right at the strong coupling scale in form of short-lived elementary particles. The heavier members of the tower must b...

  5. Nuclear motion is classical

    CERN Document Server

    Frank, Irmgard

    2016-01-01

    The notion from ab-initio molecular dynamics simulations that nuclear motion is best described by classical Newton dynamics instead of the time-dependent Schr{\\"o}dinger equation is substantiated. In principle a single experiment should bring clarity. Caution is however necessary, as temperature dependent effects must be eliminated when trying to determine the existence of a zero-point energy.

  6. Classics in What Sense?

    Science.gov (United States)

    Camic, Charles

    2008-01-01

    They seem the perfect bookends for the social psychologist's collection of "classics" of the field. Two volumes, nearly identical in shape and weight and exactly a century old in 2008--each professing to usher "social psychology" into the world as they both place the hybrid expression square in their titles but then proceed to stake out the field…

  7. Classical galactosaemia revisited

    NARCIS (Netherlands)

    A.M. Bosch

    2006-01-01

    Classical galactosaemia (McKusick 230400) is an: autosomal recessive disorder of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712). Most patients present in the neonatal period, after ingestion of galactose, with jaundice, hepatospl

  8. The Classical Cake Problem

    Science.gov (United States)

    Nelson, Norman N.; Fisch, Forest N.

    1973-01-01

    Discussed are techniques of presentation and solution of the Classical Cake Problem. A frosted cake with a square base is to be cut into n pieces with the volume of cake and frosting the same for each piece. Needed are minimal geometric concepts and the formula for the volume of a prism. (JP)

  9. Classicism and Romanticism.

    Science.gov (United States)

    Huddleston, Gregory H.

    1993-01-01

    Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)

  10. Classical and quantum satisfiability

    CERN Document Server

    de Araújo, Anderson; 10.4204/EPTCS.81.6

    2012-01-01

    We present the linear algebraic definition of QSAT and propose a direct logical characterization of such a definition. We then prove that this logical version of QSAT is not an extension of classical satisfiability problem (SAT). This shows that QSAT does not allow a direct comparison between the complexity classes NP and QMA, for which SAT and QSAT are respectively complete.

  11. Classical Mythology. Fourth Edition.

    Science.gov (United States)

    Morford, Mark P. O.; Lenardon, Robert J.

    Designed for students with little or no background in classical literature, this book introduces the Greek and Roman myths of creation, myths of the gods, Greek sagas and local legends, and presents contemporary theories about the myths. Drawing on Homer, Hesiod, Pindar, Vergil, and others, the book provides many translations and paraphrases of…

  12. Children's Classics. Fifth Edition.

    Science.gov (United States)

    Jordan, Alice M.

    "Children's Classics," a 1947 article by Alice M. Jordan reprinted from "The Horn Book Magazine," examines the dynamics and appeal of some of the most famous books for young readers, including "Alice in Wonderland,""The Wind in the Willows,""Robinson Crusoe," and "Andersen's Fairy Tales." Paul Hein's annotated bibliography, a revision of Jordan's…

  13. Generalised Virial theorems in Classical and Quantum Physics

    OpenAIRE

    Sukumar, C V

    2014-01-01

    Generalisations of the virial theorm in Classical Mechanics and Quantum Mechanics are examined. It is shown that the generalised virial theorem in Quantum Mechanics leads to certain relations between matrix elements. The differences between the generalisations in Classical and Quantum Mechanics are identified. Some results arising from the radial Schr\\"odinger equation in Quantum Mechanics are discussed. It is also shown that the generalisations of the virial theorem may be extended to arbitr...

  14. 甲状腺激素非经典核受体作用途径的研究进展%Progress in the Study of Non-classical Nuclear Receptor Mediated Mechanism of Thyroid Hormone

    Institute of Scientific and Technical Information of China (English)

    王浩华

    2012-01-01

    甲状腺激素是维持机体功能活动的基础性激素,在机体产热、新陈代谢、组织分化和器官发育等方面具有重要的调节作用,一般认为甲状腺激素结合靶细胞核内甲状腺激素受体,启动特异性甲状腺激素应答基因的转录表达,发挥生物学效应.近年来研究发现,某些甲状腺激素引起的生物反应迅速,而且不受基因转录与翻译相关抑制剂的影响,提示甲状腺激素存在非经典核受体作用途径,甲状腺激素介导的非经典核受体作用途径在心肌细胞、人神经胶质细胞、人成纤维细胞和成骨细胞等已被证实.%Thyroid hormone( TH )is a basal hormone which maintains the body's functional activity and has a critical role in energy utilization, metabolism, tissue differentiation and organ growth. It's generally considered that most thyroid hormone effects are mediated by direct transcriptional effects of thyroid hormone bound to nuclear thyroid hormone receptors( TRs ). Recently, a new mechanism of thyroid hormone action is identified which is very rapid and not affected by RNA and protein synthesis inhibitor, indicating a non-classical nuclear receptor mediated action. Besides,the non-classical nuclear receptor mediated action of thyroid hormone has been verified in cardiomyocyte, human glioma,human fibroblasts, osteoblast and so on.

  15. Classical enhancement of quantum vacuum fluctuations

    CERN Document Server

    De Lorenci, V A

    2016-01-01

    We propose a mechanism for the enhancement of vacuum fluctuations by means of a classical field. The basic idea is that if an observable quantity depends quadratically upon a quantum field, such as the electric field, then the application of a classical field produces a cross term between the classical and quantum fields. This cross term may be significantly larger than the purely quantum part, but also undergoes fluctuations driven by the quantum field. We illustrate this effect in a model for lightcone fluctuations involving pulses in a nonlinear dielectric. Vacuum electric field fluctuations produce fluctuations in the speed of a probe pulse, and form an analog model for quantum gravity effects. If the material has a nonzero third-order susceptibility, then the fractional light speed fluctuations are proportional to the square of the fluctuating electric field. Hence the application of a classical electric field can enhance the speed fluctuations. We give an example where this enhancement can be an increas...

  16. The Text Type, the Formation Mechanism and the Acceptance Effect of the Classic Style in Chinese Pop Music%中国当代流行歌曲“古典风”探究--文本类型、生成机制与接受效果

    Institute of Scientific and Technical Information of China (English)

    周兴杰

    2014-01-01

    中国当代流行歌曲中的“古典风”可以分为旧词新曲、以旧翻新和取旧入新等三种文本类型。“古典风”的生成是基于两种需一是本土化,二是市场化。当代中国的多种文化力量围绕这两种需要进行协商、博弈,形成了“古典风”的生成机制。“古典风”的流行歌曲扩大了流行音乐在当代的接受范围,也有利于中国古典文学知识的传播与普及。%The classic style in Chinese pop music include three text types: classic poetry with new tune, old poetry renovation, using the classic poetry factors to create new lyric. The generation of the classic style was based on two needs: localization and marketization. Many kinds of cultural powers negotiated and played games with each other, which created the formation mechanism of the classic style. The classic style expands the range of acceptance of contemporary Chinese pop songs, and it is good at the communication and popularization of the Chinese classic literature.

  17. Quantum description of classical apparatus; Zeno effect and decoherence

    CERN Document Server

    Gurvitz, S A

    2003-01-01

    We study the measurement process by treating classical detectors entirely quantum mechanically. Transition to the classical description and the mechanism of decoherence is investigated. We concentrate on influence of continuous measurement on decay of unstable systems (quantum Zeno effect). We discuss the experimental consequences of our results and a role of the projection postulate in a measurement process.

  18. The classic project

    International Nuclear Information System (INIS)

    Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Class Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator design. It includes modules for building accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty

  19. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  20. Injuries in classical ballet

    Directory of Open Access Journals (Sweden)

    Adriana Coutinho de Azevedo Guimarães

    2008-06-01

    Full Text Available This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external rotation at hip level and to undue use of point ballet slippers. The commonest lesions are in feet and ankles, followed by knees and hips. The rarest ones are in the upper limbs. These injuries are caused by exercise excess, by repetitions always in the same side and by wrong and early use of point slippers. The study reached the conclusion that incorrect application of classical ballet technique predisposes the dancers to characteristic injuries.

  1. Classical Diophantine equations

    CERN Document Server

    1993-01-01

    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  2. Classical Weyl Transverse Gravity

    CERN Document Server

    Oda, Ichiro

    2016-01-01

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally-invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally-invariant scalar tensor gravity and the WTDiff gravity is a "fake" symmetry. We find it possible to extend this proof to all matter fields,...

  3. Concepts of classical optics

    CERN Document Server

    Strong, John

    2004-01-01

    An intermediate course in optics, this volume explores both experimental and theoretical concepts, offering practical knowledge of geometrical optics that will enhance students' comprehension of any relevant applied science. Its exposition of the concepts of classical optics is presented with a minimum of mathematical detail but presumes some knowledge of calculus, vectors, and complex numbers.Subjects include light as wave motion; superposition of wave motions; electromagnetic waves; interaction of light and matter; velocities and scattering of light; polarized light and dielectric boundarie

  4. Sociology and Classical Liberalism

    OpenAIRE

    KLEIN, Daniel; Stern, Lotta

    2005-01-01

    We advocate the development of a classical-liberal character within professional sociology. The American Sociological Association (ASA) is taken as representative of professional sociology in the United States. We review the ASA’s activities and organizational statements, to show the association’s leftist character. Internal criticism is often very uneasy about leftist domination of the field. We present survey results establishing that, in voting and in policy views, the ASA membership is mo...

  5. Revisiting a Classic

    Science.gov (United States)

    Rogers, Ibram

    2008-01-01

    As a 26-year-old English teacher in 1958, Chinua Achebe had no idea that the book he was writing would become a literary classic, not only in Africa but also throughout the world. He could only try to articulate the feelings he had for his countrymen and women. Achebe had a burning desire to tell the true story of Africa and African humanity. The…

  6. Injuries in classical ballet

    OpenAIRE

    Adriana Coutinho de Azevedo Guimarães; Joseani Paulini Neves Simas

    2008-01-01

    This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external ...

  7. A Classic's New Charm

    Institute of Scientific and Technical Information of China (English)

    WANG HAIRONG

    2010-01-01

    @@ North Korea's Phibada Opera Troupe arrived in Beijing on May3,bringing with it a Korean opera adapted from China's classic novel A Dream of Red Mansions written by Cao Xueqin(around 1715-63),a great novelist of the Qing Dynasty(1644-1911).The troupe,invited by the Chinese Ministry of Culture,is one of the largest performing groups having visited China in recent years.

  8. Diffusion of Classical Solitons

    OpenAIRE

    Dziarmaga, J.; Zakrzewski, W.

    1998-01-01

    We study the diffusion and deformation of classical solitons coupled to thermal noise. The diffusion coefficient for kinks in the $\\phi^4$ theory is predicted up to the second order in $kT$. The prediction is verified by numerical simulations. Multiskyrmions in the vector O(3) sigma model are studied within the same formalism. Thermal noise results in a diffusion on the multisoliton collective coordinate space (moduli space). There are entropic forces which tend, for example, to bind pairs of...

  9. Classical Maxwellian polarization entanglement

    CERN Document Server

    Carroll, John E

    2015-01-01

    An explanation of polarization entanglement is presented using Maxwells classical electromagnetic theory.Two key features are required to understand these classical origins.The first is that all waves diffract and weakly diffracting waves,with a principal direction of propagation in the laboratory frame, travel along that direction at speeds ever so slightly less than c.This allows nontrivial Lorentz transformations that can act on selected forward F waves or selected waves R traveling in the opposite direction to show that both can arise from a single zero momentum frame where all the waves are transverse to the original principal direction.Such F and R waves then both belong to a single relativistic entity where correlations between the two are unremarkable.The second feature requires the avoidance of using the Coulomb gauge.Waves, tending to plane waves in the limit of zero diffraction,can then be shown to be composed of two coupled sets of E and B fields that demonstrate the classical entanglement of F an...

  10. Gonadal function in male and female patients with classic galactosemia

    NARCIS (Netherlands)

    Rubio-Gozalbo, M. E.; Gubbels, C. S.; Bakker, J. A.; Menheere, P. P. C. A.; Wodzig, W. K. W. H.; Land, J. A.

    2010-01-01

    Hypergonadotropic hypoestrogenic infertility is the most burdensome complication for females suffering from classic galactosemia. In contrast, male gonadal function seems less affected. The underlying mechanism is not understood and several pathogenic mechanisms have been proposed. Timing of the les

  11. Quantum-Classical Correspondence: Dynamical Quantization and the Classical Limit

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-11-12

    In only 150 pages, not counting appendices, references, or the index, this book is one author's perspective of the massive theoretical and philosophical hurdles in the no-man's-land separating the classical and quantum domains of physics. It ends with him emphasizing his own theoretical contribution to this area. In his own words, he has attempted to answer: 1. How can we obtain the quantum dynamics of open systems initially described by the equations of motion of classical physics (quantization process) 2. How can we retrieve classical dynamics from the quantum mechanical equations of motion by means of a classical limiting process (dequantization process). However, this monograph seems overly ambitious. Although the publisher's description refers to this book as an accessible entre, we find that this author scrambles too hastily over the peaks of information that are contained in his large collection of 272 references. Introductory motivating discussions are lacking. Profound ideas are glossed over superficially and shoddily. Equations morph. But no new convincing understanding of the physical world results. The author takes the viewpoint that physical systems are always in interaction with their environment and are thus not isolated and, therefore, not Hamiltonian. This impels him to produce a method of quantization of these stochastic systems without the need of a Hamiltonian. He also has interest in obtaining the classical limit of the quantized results. However, this reviewer does not understand why one needs to consider open systems to understand quantum-classical correspondence. The author demonstrates his method using various examples of the Smoluchowski form of the Fokker--Planck equation. He then renders these equations in a Wigner representation, uses what he terms an infinitesimality condition, and associates with a constant having the dimensions of an action. He thereby claims to develop master equations, such as the Caldeira

  12. "Classical-ish": Negotiating the boundary between classical and quantum particles

    CERN Document Server

    Dreyfus, Benjamin W; Gupta, Ayush; Elby, Andrew

    2015-01-01

    Quantum mechanics can seem like a departure from everyday experience of the physical world, but constructivist theories assert that learners build new ideas from their existing ones. To explore how students can navigate this tension, we examine video of a focus group completing a tutorial about the "particle in a box." In reasoning about the properties of a quantum particle, the students bring in elements of a classical particle ontology, evidenced by students' language and gestures. This reasoning, however, is modulated by metacognitive moments when the group explicitly considers whether classical intuitions apply to the quantum system. The students find some cases where they can usefully apply classical ideas to quantum physics, and others where they explicitly contrast classical and quantum mechanics. Negotiating this boundary with metacognitive awareness is part of the process of building quantum intuitions. Our data suggest that (some) students bring productive intellectual resources to this negotiation.

  13. Classical Black Holes Are Hot

    CERN Document Server

    Curiel, Erik

    2014-01-01

    In the early 1970s it is was realized that there is a striking formal analogy between the Laws of black-hole mechanics and the Laws of classical thermodynamics. Before the discovery of Hawking radiation, however, it was generally thought that the analogy was only formal, and did not reflect a deep connection between gravitational and thermodynamical phenomena. It is still commonly held that the surface gravity of a stationary black hole can be construed as a true physical temperature and its area as a true entropy only when quantum effects are taken into account; in the context of classical general relativity alone, one cannot cogently construe them so. Does the use of quantum field theory in curved spacetime offer the only hope for taking the analogy seriously? I think the answer is `no'. To attempt to justify that answer, I shall begin by arguing that the standard argument to the contrary is not physically well founded, and in any event begs the question. Looking at the various ways that the ideas of "tempe...

  14. Arbitrated quantum signature of classical messages without using authenticated classical channels

    Science.gov (United States)

    Luo, Yi-Ping; Hwang, Tzonelih

    2014-01-01

    This paper points out design confusion existing in all the arbitrated quantum signatures (AQS) that require public discussions over authenticated classical channels. Instead, an AQS scheme of classical messages without using authenticated classical channels is proposed here. A cryptographic hash function is used in combine with quantum mechanics to check the existence of an eavesdropping or to verify a signature. In addition, by using only single photons, this scheme provides higher efficiency both in quantum transmissions and generations. The proposed AQS scheme is shown to be immune to several well-known attacks, i.e., the Trojan-horse attacks and the existential forgery attack.

  15. Semi-classical approximation and microcanonical ensemble

    International Nuclear Information System (INIS)

    For quantum mechanical systems with spherically symmetric potential the improved W.K.B. approximation of Elworthy and Truman corresponds to the classical microcanonical ensemble in the limit where (h/2π) goes to zero, at least for small time. (orig.)

  16. FSH isoform pattern in classic galactosemia

    NARCIS (Netherlands)

    Gubbels, C.S.; Thomas, C.M.G.; Wodzig, W.K.; Olthaar, A.J.; Jaeken, J.; Sweep, F.C.; Rubio-Gozalbo, M.E.

    2011-01-01

    Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfuncti

  17. On Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Laurent Chusseau

    2013-02-01

    Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.

  18. A Classic Through Eternity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    FIVE years ago, an ancient Chinese air was beamed to outer space as a PR exercise. To humankind, music is a universal language, so the tune seemed an ideal medium for communication with extraterrestrial intelligence. So far there has been no response, but it is believed that the tune will play for a billion years, and eventually be heard and understood. The melody is called High Mountain and Flowing Stream, and it is played on the guqin, a seven-stringed classical musical instrument similar to the zither.

  19. Introducing Newton and classical physics

    CERN Document Server

    Rankin, William

    2002-01-01

    The rainbow, the moon, a spinning top, a comet, the ebb and flood of the oceans ...a falling apple. There is only one universe and it fell to Isaac Newton to discover its secrets. Newton was arguably the greatest scientific genius of all time, and yet he remains a mysterious figure. Written and illustrated by William Rankin, "Introducting Newton and Classical Physics" explains the extraordinary ideas of a man who sifted through the accumulated knowledge of centuries, tossed out mistaken beliefs, and single-handedly made enormous advances in mathematics, mechanics and optics. By the age of 25, entirely self-taught, he had sketched out a system of the world. Einstein's theories are unthinkable without Newton's founding system. He was also a secret heretic, a mystic and an alchemist, the man of whom Edmund Halley said "Nearer to the gods may no man approach!". This is an ideal companion volume to "Introducing Einstein".

  20. Probability representation of classical states

    NARCIS (Netherlands)

    Man'ko, OV; Man'ko, [No Value; Pilyavets, OV

    2005-01-01

    Probability representation of classical states described by symplectic tomograms is discussed. Tomographic symbols of classical observables which are functions on phase-space are studied. Explicit form of kernel of commutative star-product of the tomographic symbols is obtained.

  1. Numerical calculation of classical and non-classical electrostatic potentials

    CERN Document Server

    Christensen, D; Neyenhuis, B; Christensen, Dan; Durfee, Dallin S.; Neyenhuis, Brian

    2006-01-01

    We present a numerical exercise in which classical and non-classical electrostatic potentials were calculated. The non-classical fields take into account effects due to a possible non-zero photon rest mass. We show that in the limit of small photon rest mass, both the classical and non-classical potential can be found by solving Poisson's equation twice, using the first calculation as a source term in the second calculation. Our results support the assumptions in a recent proposal to use ion interferometry to search for a non-zero photon rest mass.

  2. Quantum systems that follow classical dynamics

    CERN Document Server

    Manfredi, G; Feix, M R

    1993-01-01

    For a special class of potentials, the dynamical evolution of any quantum wavepacket is entirely determined by the laws of classical mechanics. Here, the properties of this class are investigated both from the viewpoint of the Ehrenfest theorem (which provides the evolution of the average position and momentum), and the Wigner representation (which expresses quantum mechanics in a phase space formalism). Finally, these results are extended to the case of a charged particle in a uniform magnetic field. (author)

  3. Fano Interference in Classical Oscillators

    Science.gov (United States)

    Satpathy, S.; Roy, A.; Mohapatra, A.

    2012-01-01

    We seek to illustrate Fano interference in a classical coupled oscillator by using classical analogues of the atom-laser interaction. We present an analogy between the dressed state picture of coherent atom-laser interaction and a classical coupled oscillator. The Autler-Townes splitting due to the atom-laser interaction is analogous to the…

  4. Decoherence, chaos, the quantum and the classical

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, W.H.; Paz, J.P.

    1994-04-01

    The key ideas of the environment-induced decoherence approach are reviewed. Application of decoherence to the transition from quantum to classical in open quantum systems with chaotic classical analogs is described. The arrow of time is, in this context, a result of the information loss to the correlations with the environment. The asymptotic rate of entropy production (which is reached quickly, on the dynamical timescale) is independent of the details of the coupling of the quantum system to the environment, and is set by the Lyapunov exponents. We also briefly outline the existential interpretation of quantum mechanics, justifying the slogan ``No information without representation.``

  5. Beam structures classical and advanced theories

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco

    2011-01-01

    Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc.  Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for be

  6. Hidden invariance of the free classical particle

    CERN Document Server

    García, S

    1993-01-01

    A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group $G$ is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under $G$ leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by $U(1)$ leads to quantum mechanics.

  7. Hidden invariance of the free classical particle

    International Nuclear Information System (INIS)

    A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group G is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under G leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by U(1) leads to quantum mechanics

  8. Can classical physics agree with quantum physics on quantum phenomena?

    OpenAIRE

    Marrocco, Michele

    2015-01-01

    Classical physics fails where quantum physics prevails. This common understanding applies to quantum phenomena that are acknowledged to be beyond the reach of classical physics. Here, we make an attempt at weakening this solid belief that classical physics is unfit to explain the quantum world. The trial run is the quantization of the free radiation field that will be addressed by following a strategy that is free from operators or quantum-mechanical concepts

  9. Functional Approach to Classical Yang-Mills Theories

    CERN Document Server

    Carta, P

    2002-01-01

    Sometime ago it was shown that the operatorial approach to classical mechanics, pioneered in the 30's by Koopman and von Neumann, can have a functional version. In this talk we will extend this functional approach to the case of classical field theories and in particular to the Yang-Mills ones. We shall show that the issues of gauge-fixing and Faddeev-Popov determinant arise also in this classical formalism.

  10. Temperature Dependences of the Quantum-Mechanical and Semi-Classical Spectral-Line Widths and the Separation 0 of the Impact and Non-Impact Regions for an Ar-Perturbed/K-Radiator System

    Directory of Open Access Journals (Sweden)

    W. C. Kreye

    2010-01-01

    Full Text Available Quantum-mechanical and semi-classical spectral-line shapes are computed at =400, 800, and 1000 K for the line core of the 5802 Å line of the Ar-Perturbed/K-Radiator system. HWHMs ('s are measured from computed full spectral-line shapes. The final-state pseudopotential is for the 721/2 state, and the initial-state potential is for the 423/2,3/2 state. Three high-pressure (P log(—versus—log( curves, corresponding to the non-impact region, intersect a similar set of low-P, impact-region curves at intersections, 0's. Similarly, for two sets of log(—versus—log( curves, which yield intersections, 0's, where is the perturber density. These 0's and 0's separate the two regions and represent the upper limits of the impact regions. A specific validity condition for the impact region is given by the equation ≤0. From an earlier spectroscopic, Fabry-Perot paper, expt=0.021 cm−1 at =400 K and =10 torr. Two theoretical values, theor=0.025 and 0.062 cm−1 corresponding to two different pseudo-potentials, are reported. Two -dependent figures are given, in which the first shows an increase in the impact region with , based on as the basic parameter, and the second which shows a decrease in the impact region with , based on as the basic parameter.

  11. Classical Analog of Quantum Interference Effects in Microstrip System Based on Phase-Coupling Mechanism%微带线系统中基于相位耦合机制的类量子干涉行为

    Institute of Scientific and Technical Information of China (English)

    王治国; 高童童; 谭为

    2012-01-01

    基于对相位耦合机制的旁路微带线结构中类量子干涉行为的理论研究.通过格林函数框架下的界面响应理论,解析、计算了该结构中的波传播特性,得出了3种具有代表性的类量子干涉现象:两个谐振结构之间的干涉增强导致的反射加强,两者的干涉相消导致的类电磁诱导透明行为,以及谐振结构与波导结构的干涉导致的类Fano共振现象.引入相位耦合机制为结构中的波传播特性提供了更加丰富的调控手段,有望设计成新型调控器件.%The paper theoretically demonstrates the classical analog of quantum interference effects in microstrip system containing phase-coupled side-branch components. By employing the Interface Response Theory which is in the framework of Green's function method, the propagation properties of the system are analytically obtained, and three typical phenomena are presented. The first is the enhancement of reflection resulting from the constructive interference between two resonances; the second is the analogous electromag-netically induced transparency effect due to the destructive interference; and the third is the analogous Fano resonance based on the interference between resonances and propagating waves. The introduction of phase-coupling mechanism provides us great flexibility in manipulating wave propagations, which may pave a way to novel devices.

  12. Nucleosynthesis in classical novae

    Science.gov (United States)

    José, Jordi; Hernanz, Margarita; Iliadis, Christian

    2006-10-01

    Classical novae are dramatic stellar explosions with an energy release that is only overcome by supernovae and gamma-ray bursts. These unique cataclysmic events constitute a crucible where different scientific disciplines merge, including astrophysics, nuclear and atomic physics, cosmochemistry, high-energy physics or computer science. In this review, we focus on the nucleosynthesis accompanying nova outbursts. Theoretical predictions are compared with the elemental abundances inferred from observations of the nova ejecta as well as with the isotopic abundance ratios measured in meteorites. Special emphasis is given to the interplay between nova outbursts and the Galactic abundance pattern and on the synthesis of radioactive nuclei for which γ-ray signals are expected. Finally, we analyze the key role played by nuclear physics in our understanding of the nova phenomenon by means of recent experiments and a thorough account of the impact of nuclear uncertainties.

  13. Grassmannization of classical models

    CERN Document Server

    Pollet, Lode; Prokof'ev, Nikolay V; Svistunov, Boris V

    2016-01-01

    Applying Feynman diagrammatics to non-fermionic strongly correlated models with local constraints might seem generically impossible for two separate reasons: (i) the necessity to have a Gaussian (non-interacting) limit on top of which the perturbative diagrammatic expansion is generated by Wick's theorem, and (ii) the Dyson's collapse argument implying that the expansion in powers of coupling constant is divergent. We show that for arbitrary classical lattice models both problems can be solved/circumvented by reformulating the high-temperature expansion (more generally, any discrete representation of the model) in terms of Grassmann integrals. Discrete variables residing on either links, plaquettes, or sites of the lattice are associated with the Grassmann variables in such a way that the partition function (and correlations) of the original system and its Grassmann-field counterpart are identical. The expansion of the latter around its Gaussian point generates Feynman diagrams. A proof-of-principle implement...

  14. Citation classics in epilepsy

    Directory of Open Access Journals (Sweden)

    Maryann Wilson

    2013-01-01

    Full Text Available BACKGROUND: The impact of a scientific article is proportional to the citations it has received. In this study, we set out to identify the most cited works in epileptology in order to evaluate research trends in this field. METHODS: According to the Web of Science database, articles with more than 400 citations qualify as "citation classics". We conducted a literature search on the ISI Web of Science bibliometric database for scientific articles relevant to epilepsy. RESULTS: We retrieved 67 highly cited articles (400 or more citations, which were published in 31 journals: 17 clinical studies, 42 laboratory studies, 5 reviews and 3 classification articles. Clinical studies consisted of epidemiological analyses (n=3, studies on the clinical phenomenology of epilepsy (n=5 – including behavioral and prognostic aspects – and articles focusing on pharmacological (n=6 and non-pharmacological (n=3 treatment. The laboratory studies dealt with genetics (n=6, animal models (n=27, and neurobiology (n=9 – including both neurophysiology and neuropathology studies. The majority (61% of citation classics on epilepsy were published after 1986, possibly reflecting the expansion of research interest in laboratory studies driven by the development of new methodologies, specifically in the fields of genetics and animal models. Consequently, clinical studies were highly cited both before and after the mid 80s, whilst laboratory researches became widely cited after 1990. CONCLUSIONS: Our study indicates that the main drivers of scientific impact in the field of epileptology have increasingly become genetic and neurobiological studies, along with research on animal models of epilepsy. These articles are able to gain the highest numbers of citations in the time span of a few years and suggest potential directions for future research.

  15. Quantum field theory from classical statistics

    CERN Document Server

    Wetterich, C

    2011-01-01

    An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...

  16. Quantum state smoothing for classical mixtures

    CERN Document Server

    Tan, D; Mølmer, K; Murch, K W

    2016-01-01

    In quantum mechanics, wave functions and density matrices represent our knowledge about a quantum system and give probabilities for the outcomes of measurements. If the combined dynamics and measurements on a system lead to a density matrix $\\rho(t)$ with only diagonal elements in a given basis $\\{|n\\rangle\\}$, it may be treated as a classical mixture, i.e., a system which randomly occupies the basis states $|n\\rangle$ with probabilities $\\rho_{nn}(t)$. Fully equivalent to so-called smoothing in classical probability theory, subsequent probing of the occupation of the states $|n\\rangle$ improves our ability to retrodict what was the outcome of a projective state measurement at time $t$. Here, we show with experiments on a superconducting qubit that the smoothed probabilities do not, in the same way as the diagonal elements of $\\rho$, permit a classical mixture interpretation of the state of the system at the past time $t$.

  17. Classical Ergodicity and Modern Portfolio Theory

    Directory of Open Access Journals (Sweden)

    Geoffrey Poitras

    2015-01-01

    Full Text Available What role have theoretical methods initially developed in mathematics and physics played in the progress of financial economics? What is the relationship between financial economics and econophysics? What is the relevance of the “classical ergodicity hypothesis” to modern portfolio theory? This paper addresses these questions by reviewing the etymology and history of the classical ergodicity hypothesis in 19th century statistical mechanics. An explanation of classical ergodicity is provided that establishes a connection to the fundamental empirical problem of using nonexperimental data to verify theoretical propositions in modern portfolio theory. The role of the ergodicity assumption in the ex post/ex ante quandary confronting modern portfolio theory is also examined.

  18. Classical theory of the hydrogen atom

    CERN Document Server

    Rashkovskiy, Sergey

    2016-01-01

    It is shown that all of the basic properties of the hydrogen atom can be consistently described in terms of classical electrodynamics instead of taking the electron to be a particle; we consider an electrically charged classical wave field, an "electron wave", which is held in a limited region of space by the electrostatic field of the proton. It is shown that quantum mechanics must be considered to be not a theory of particles but a classical field theory in the spirit of classical electrodynamics. In this case, we are not faced with difficulties in interpreting the results of the theory. In the framework of classical electrodynamics, all of the well-known regularities of the spontaneous emission of the hydrogen atom are obtained, which is usually derived in the framework of quantum electrodynamics. It is shown that there are no discrete states and discrete energy levels of the atom: the energy of the atom and its states change continuously. An explanation of the conventional corpuscular-statistical interpre...

  19. Classical system boundaries cannot be determined within quantum Darwinism

    Science.gov (United States)

    Fields, Chris

    Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.

  20. 也谈经典文化在五年制高职生人格建设中的影响机制%The influence mechanism of classical culture in the construction of five years vocational students personality

    Institute of Scientific and Technical Information of China (English)

    周建梅

    2013-01-01

      经典文化是高效的德育利器和美育利器,任何人从中都会获益无穷,在五年制高职生的人格建设中经典文化同样可以发挥相当积极和高效的作用。但在国内五年制高职院校中经典文化教育氛围却很是淡薄。利用经典文化建设五年制高职生的理想人格可以采取如“开展传播经典文化的丰富活动、培养优秀师资力量,开设经典文化教育课程、请专家学者开设讲座、家校一体促动学生受容经典”等多项措施。%The classic culture is the efficient moral education and aesthetic education tool, anyone can benefit from infinite, also can play a positive and effective role in five year higher vocational students personality construction of classical culture. But the classical cultural education atmosphere is very weak in the five years higher vocational colleges .The ideal personality for five years vocational students of classical culture construction can be taken a number of measures such as"rich activities spread of classical culture, cultivate excellent teachers, open education courses of classical culture, scholars and experts lectures, home-school together to promote students to accept the classic".

  1. Transition from Quantum to Classical Information in a Superfluid

    CERN Document Server

    Granik, A

    2003-01-01

    Whereas the entropy of any deterministic classical system described by a principle of least action is zero, one can assign a "carry quantum information" to quantum mechanical degree of freedom equal to Hausdorff area of the deviation from a classical path. This raises the question whether superfluids have a quantum information. We show that in general the transition from the classical to quantum behavior depends on the probing length scale, and occurs for microscopic length scales, except when the interactions between the particles are very weak. This transition explains why, on macroscopic length scales, physics is described by classical equations.

  2. Quantum-classical interactions through the path integral

    CERN Document Server

    Metaxas, D

    2006-01-01

    I consider the case of two interacting scalar fields, \\phi and \\psi, and use the path integral formalism in order to treat the first classically and the second quantum-mechanically. I derive the Feynman rules and the resulting equation of motion for the classical field, which should be an improvement of the usual semi-classical procedure. As an application, I use this method in order to enforce Gauss's law as a classical equation in a non-abelian gauge theory, and derive the corresponding Feynman rules.

  3. Quantum-classical interactions through the path integral

    OpenAIRE

    Metaxas, Dimitrios

    2006-01-01

    I consider the case of two interacting scalar fields, \\phi and \\psi, and use the path integral formalism in order to treat the first classically and the second quantum-mechanically. I derive the Feynman rules and the resulting equation of motion for the classical field, which should be an improvement of the usual semi-classical procedure. As an application I use this method in order to enforce Gauss's law as a classical equation in a non-abelian gauge theory. I argue that the theory is renorm...

  4. Classical Fourier analysis

    CERN Document Server

    Grafakos, Loukas

    2014-01-01

    The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition.  Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...

  5. The Classical Electron Problem

    CERN Document Server

    Gill, T L; Lindesay, J

    2001-01-01

    In this paper, we construct a parallel image of the conventional Maxwell theory by replacing the observer-time by the proper-time of the source. This formulation is mathematically, but not physically, equivalent to the conventional form. The change induces a new symmetry group which is distinct from, but closely related to the Lorentz group, and fixes the clock of the source for all observers. The new wave equation contains an additional term (dissipative), which arises instantaneously with acceleration. This shows that the origin of radiation reaction is not the action of a "charge" on itself but arises from inertial resistance to changes in motion. This dissipative term is equivalent to an effective mass so that classical radiation has both a massless and a massive part. Hence, at the local level the theory is one of particles and fields but there is no self-energy divergence (nor any of the other problems). We also show that, for any closed system of particles, there is a global inertial frame and unique (...

  6. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner

    1982-01-01

    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  7. Extended symmetrical classical electrodynamics.

    Science.gov (United States)

    Fedorov, A V; Kalashnikov, E G

    2008-03-01

    In this paper, we discuss a modification of classical electrodynamics in which "ordinary" point charges are absent. The modified equations contain additional terms describing the induced charges and currents. The densities of the induced charges and currents depend on the vector k and the vectors of the electromagnetic field, E and B . It is shown that the vectors E and B can be defined in terms of two four-potentials and the components of k are the components of a four-tensor of the third rank. The Lagrangian of the modified electrodynamics is defined. The conditions are derived at which only one four-potential determines the behavior of the electromagnetic field. It is also shown that static modified electrodynamics can describe the electromagnetic field in the inner region of an electric monopole. In the outer region of the electric monopole the electric field is governed by the Maxwell equations. It follows from boundary conditions at the interface between the inner and outer regions of the monopole that the vector k has a discrete spectrum. The electric and magnetic fields, energy, and angular momentum of the monopole are found for different eigenvalues of k .

  8. Classical competing risks

    CERN Document Server

    Crowder, Martin J

    2001-01-01

    If something can fail, it can often fail in one of several ways and sometimes in more than one way at a time. There is always some cause of failure, and almost always, more than one possible cause. In one sense, then, survival analysis is a lost cause. The methods of Competing Risks have often been neglected in the survival analysis literature. Written by a leading statistician, Classical Competing Risks thoroughly examines the probability framework and statistical analysis of data of Competing Risks. The author explores both the theory of the subject and the practicalities of fitting the models to data. In a coherent, self-contained, and sequential account, the treatment moves from the bare bones of the Competing Risks setup and the associated likelihood functions through survival analysis using hazard functions. It examines discrete failure times and the difficulties of identifiability, and concludes with an introduction to the counting-process approach and the associated martingale theory.With a dearth of ...

  9. Population in the classic economics

    OpenAIRE

    Adnan Doğruyol

    2013-01-01

    Growth subject in economics is an important factor of development. Classic economics ecole indicates the population as main variable which tender of growth. On the other hand T. R. Malthus is known as economist who regards population as a problem and brings up it among the classical economists. However, Adam Smith is an intellectual who discussed population problem earlier on the classic economics theory. According to Adam Smith one of the main factors that realise the growth is labour. In ad...

  10. The classic: Bone morphogenetic protein.

    Science.gov (United States)

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406.

  11. The classic: Bone morphogenetic protein.

    Science.gov (United States)

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406. PMID:19727989

  12. A Classic Beauty

    Science.gov (United States)

    2007-01-01

    M51, whose name comes from being the 51st entry in Charles Messier's catalog, is considered to be one of the classic examples of a spiral galaxy. At a distance of about 30 million light-years from Earth, it is also one of the brightest spirals in the night sky. A composite image of M51, also known as the Whirlpool Galaxy, shows the majesty of its structure in a dramatic new way through several of NASA's orbiting observatories. X-ray data from NASA's Chandra X-ray Observatory reveals point-like sources (purple) that are black holes and neutron stars in binary star systems. Chandra also detects a diffuse glow of hot gas that permeates the space between the stars. Optical data from the Hubble Space Telescope (green) and infrared emission from the Spitzer Space Telescope (red) both highlight long lanes in the spiral arms that consist of stars and gas laced with dust. A view of M51 with the Galaxy Evolution Explorer telescope shows hot, young stars that produce lots of ultraviolet energy (blue). The textbook spiral structure is thought be the result of an interaction M51 is experiencing with its close galactic neighbor, NGC 5195, which is seen just above. Some simulations suggest M51's sharp spiral shape was partially caused when NGC 5195 passed through its main disk about 500 million years ago. This gravitational tug of war may also have triggered an increased level of star formation in M51. The companion galaxy's pull would be inducing extra starbirth by compressing gas, jump-starting the process by which stars form.

  13. Innovation: the classic traps.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2006-11-01

    Never a fad, but always in or out of fashion, innovation gets rediscovered as a growth enabler every half dozen years. Too often, though, grand declarations about innovation are followed by mediocre execution that produces anemic results, and innovation groups are quietly disbanded in cost-cutting drives. Each managerial generation embarks on the same enthusiastic quest for the next new thing. And each generation faces the same vexing challenges- most of which stem from the tensions between protecting existing revenue streams critical to current success and supporting new concepts that may be crucial to future success. In this article, Harvard Business School professor Rosabeth Moss Kanter reflects on the four major waves of innovation enthusiasm she's observed over the past 25 years. She describes the classic mistakes companies make in innovation strategy, process, structure, and skills assessment, illustrating her points with a plethora of real-world examples--including AT&T Worldnet, Timberland, and Ocean Spray. A typical strategic blunder is when managers set their hurdles too high or limit the scope of their innovation efforts. Quaker Oats, for instance, was so busy in the 1990s making minor tweaks to its product formulas that it missed larger opportunities in distribution. A common process mistake is when managers strangle innovation efforts with the same rigid planning, budgeting, and reviewing approaches they use in their existing businesses--thereby discouraging people from adapting as circumstances warrant. Companies must be careful how they structure fledgling entities alongside existing ones, Kanter says, to avoid a clash of cultures and agendas--which Arrow Electronics experienced in its attempts to create an online venture. Finally, companies commonly undervalue and underinvest in the human side of innovation--for instance, promoting individuals out of innovation teams long before their efforts can pay off. Kanter offers practical advice for avoiding

  14. Crossover from quantum to classical transport

    Science.gov (United States)

    Morr, Dirk K.

    2016-01-01

    Understanding the crossover from quantum to classical transport has become of fundamental importance not only for technological applications due to the creation of sub-10-nm transistors - an important building block of our modern life - but also for elucidating the role played by quantum mechanics in the evolutionary fitness of biological complexes. This article provides a basic introduction into the nature of charge and energy transport in the quantum and classical regimes. It discusses the characteristic transport properties in both limits and demonstrates how they can be connected through the loss of quantum mechanical coherence. The salient features of the crossover physics are identified, and their importance in opening new transport regimes and in understanding efficient and robust energy transport in biological complexes are demonstrated.

  15. Particles and Events in Classical Off-Shell Electrodynamics

    CERN Document Server

    Land, M C

    1997-01-01

    Despite the many successes of the relativistic quantum theory developed by Horwitz, et. al., certain difficulties persist in the associated covariant classical mechanics. In this paper, we explore these difficulties through an examination of the classical Coulomb problem in the framework of off-shell electrodynamics. As the local gauge theory of a covariant quantum mechanics with evolution parameter $\\tau$, off-shell electrodynamics constitutes a dynamical theory of spacetime events, interacting through five $\\tau$-dependent pre-Maxwell potentials. We present a straightforward solution of the classical equations of motion, which is seen to be unsatisfactory, and reveals the essential difficulties in the formalism at the classical level. We then offer a new model of the particle current -- as a certain distribution of the event currents on the worldline -- which eliminates these difficulties and permits comparison of classical off-shell electrodynamics with the standard Maxwell theory. In this model, the ``fix...

  16. Relaxation properties in classical diamagnetism

    Science.gov (United States)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  17. Pembrolizumab in classical Hodgkin's lymphoma.

    Science.gov (United States)

    Maly, Joseph; Alinari, Lapo

    2016-09-01

    Pembrolizumab is a humanized monoclonal antibody directed against programmed cell death protein 1 (PD-1), a key immune-inhibitory molecule expressed on T cells and implicated in CD4+ T-cell exhaustion and tumor immune-escape mechanisms. Classical Hodgkin's lymphoma (cHL) is a unique B-cell malignancy in the sense that malignant Reed-Sternberg (RS) cells represent a small percentage of cells within an extensive immune cell infiltrate. PD-1 ligands are upregulated on RS cells as a consequence of both chromosome 9p24.1 amplification and Epstein-Barr virus infection and by interacting with PD-1 promote an immune-suppressive effect. By augmenting antitumor immune response, pembrolizumab and nivolumab, another monoclonal antibody against PD-1, have shown significant activity in patients with relapsed/refractory cHL as well as an acceptable toxicity profile with immune-related adverse events that are generally manageable. In this review, we explore the rationale for targeting PD-1 in cHL, review the clinical trial results supporting the use of checkpoint inhibitors in this disease, and present future directions for investigation in which this approach may be used.

  18. Classic writings on instructional technology

    NARCIS (Netherlands)

    Ely, Donald P.; Plomp, Tjeerd

    1996-01-01

    This paper describes the selection process of 17 articles for inclusion in the book, "Classic Writings on Instructional Technology." The book brings together original "classic" educational technology articles into one volume to document the history of the field through its literature. It is also an

  19. Teaching and Demonstrating Classical Conditioning.

    Science.gov (United States)

    Sparrow, John; Fernald, Peter

    1989-01-01

    Discusses classroom demonstrations of classical conditioning and notes tendencies to misrepresent Pavlov's procedures. Describes the design and construction of the conditioner that is used for demonstrating classical conditioning. Relates how students experience conditioning, generalization, extinction, discrimination, and spontaneous recovery.…

  20. Classical Music Fan Chen Li

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The heyday of Beijing’s classical music beganin 1993, when top-quality sound equipment andrecords were imported. Also in that year, BeijingMusic Radio presented a classical music programtitled "Fan’s Club" and founded the "Music and

  1. Classic African American Children's Literature

    Science.gov (United States)

    McNair, Jonda C.

    2010-01-01

    The purpose of this article is to assert that there are classic African American children's books and to identify a sampling of them. The author presents multiple definitions of the term classic based on the responses of children's literature experts and relevant scholarship. Next, the manner in which data were collected and analyzed in regard to…

  2. Classical models of the spin 1/2 system

    Science.gov (United States)

    Salazar-Lazaro, Carlos H.

    We proposed a Quaternionic mechanical system motivated by the Foucault pendulum as a classical model for the dynamics of the spin ½ system. We showed that this mechanical system contains the dynamics of the spin state of the electron under a uniform magnetic field as it is given by the Schrodinger-Pauli-Equation (SPE). We closed with a characterization of the dynamics of this generalized classical system by showing that it is equivalent with the dynamics of the Schrodinger Pauli Equation as long as the solutions to the generalized classical system are roots of the Lagrangian, that is the condition L = 0 holds.

  3. Comparison of quantum and classical relaxation in spin dynamics.

    Science.gov (United States)

    Wieser, R

    2013-04-01

    The classical Landau-Lifshitz equation with a damping term has been derived from the time evolution of a quantum mechanical wave function under the assumption of a non-Hermitian Hamilton operator. Further, the trajectory of a classical spin (S) has been compared with the expectation value of the spin operator (Ŝ). A good agreement between classical and quantum mechanical trajectories can be found for Hamiltonians linear in Ŝ or S, respectively. Quadratic or higher order terms in the Hamiltonian result in a disagreement.

  4. Classical dynamics a modern perspective

    CERN Document Server

    Sudarshan, Ennackal Chandy George

    2016-01-01

    Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of ...

  5. Classical or equilibrium thermodynamics: basic conceptual aspects

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Calvo Tiritan

    2008-08-01

    Full Text Available The Classical or Equilibrium Thermodynamics is one of the most consolidated fields of Physics. It is synthesized by a well-known and self coherent knowledge structure. The essence of the Classical Thermodynamics theoretical structure consists of a set of natural laws that rule the macroscopic physical systems behavior. These laws were formulated based on observations generalizations and are mostly independent of any hypotheses concerning the microscopic nature of the matter. In general, the approaches established for the Classical Thermodynamics follow one of the following alternatives: the historical approach that describes chronologically the evolution of ideas, concepts and facts, and the postulational approach in which postulates are formulated but are not demonstrated a priori but can be confirmed a posteriori. In this work, a brief review of the pre-classical historical approach conceptual evolution is elaborated, from the beginning of the seventeenth century to the middle of the nineteenth century. As for this, the following themes are dealt with in an evolutionary and phenomenological way: heat nature, thermometry, calorimetry, Carnot’s heat engine, heat mechanical equivalent and the first and second laws. The Zeroth law that was formulated afterwards is included in the discussion.

  6. Fisher Information of Wavefunctions: Classical and Quantum

    Institute of Scientific and Technical Information of China (English)

    LUO Shun-Long

    2006-01-01

    A parametric quantum mechanical wavefunction naturally induces parametric probability distributions by taking absolute square, and we can consider its classical Fisher information. On the other hand, it also induces parametric rank-one projections which may be viewed as density operators, and we can talk about its quantum Fisher information. Among many versions of quantum Fisher information, there are two prominent ones. The first,deiined via a quantum score function, was introduced by Helstrom in 1967 and is well known. The second,defined via the square root of the density operator, has its origin in the skew information introduced by Wigner and Yanase in 1963 and remains relatively unnoticed. This study is devoted to investigating the relationships between the classical Fisher information and these two versions of quantum Fisher information for wavefunctions.It is shown that the two versions of quantum Fisher information differ by a factor 2 and that they dominate the classical Fisher information. The non-coincidence of these two versions of quantum Fisher information may be interpreted as a manifestation of quantum discord. We further calculate the difference between the Helstrom quantum Fisher information and the classical Fisher information, and show that it is precisely the instantaneous phase fluctuation of the wavefunctions.

  7. Classic hallucinogens in the treatment of addictions.

    Science.gov (United States)

    Bogenschutz, Michael P; Johnson, Matthew W

    2016-01-01

    Addictive disorders are very common and have devastating individual and social consequences. Currently available treatment is moderately effective at best. After many years of neglect, there is renewed interest in potential clinical uses for classic hallucinogens in the treatment of addictions and other behavioral health conditions. In this paper we provide a comprehensive review of both historical and recent clinical research on the use of classic hallucinogens in the treatment of addiction, selectively review other relevant research concerning hallucinogens, and suggest directions for future research. Clinical trial data are very limited except for the use of LSD in the treatment of alcoholism, where a meta-analysis of controlled trials has demonstrated a consistent and clinically significant beneficial effect of high-dose LSD. Recent pilot studies of psilocybin-assisted treatment of nicotine and alcohol dependence had strikingly positive outcomes, but controlled trials will be necessary to evaluate the efficacy of these treatments. Although plausible biological mechanisms have been proposed, currently the strongest evidence is for the role of mystical or other meaningful experiences as mediators of therapeutic effects. Classic hallucinogens have an excellent record of safety in the context of clinical research. Given our limited understanding of the clinically relevant effects of classic hallucinogens, there is a wealth of opportunities for research that could contribute important new knowledge and potentially lead to valuable new treatments for addiction. PMID:25784600

  8. Classic hallucinogens in the treatment of addictions.

    Science.gov (United States)

    Bogenschutz, Michael P; Johnson, Matthew W

    2016-01-01

    Addictive disorders are very common and have devastating individual and social consequences. Currently available treatment is moderately effective at best. After many years of neglect, there is renewed interest in potential clinical uses for classic hallucinogens in the treatment of addictions and other behavioral health conditions. In this paper we provide a comprehensive review of both historical and recent clinical research on the use of classic hallucinogens in the treatment of addiction, selectively review other relevant research concerning hallucinogens, and suggest directions for future research. Clinical trial data are very limited except for the use of LSD in the treatment of alcoholism, where a meta-analysis of controlled trials has demonstrated a consistent and clinically significant beneficial effect of high-dose LSD. Recent pilot studies of psilocybin-assisted treatment of nicotine and alcohol dependence had strikingly positive outcomes, but controlled trials will be necessary to evaluate the efficacy of these treatments. Although plausible biological mechanisms have been proposed, currently the strongest evidence is for the role of mystical or other meaningful experiences as mediators of therapeutic effects. Classic hallucinogens have an excellent record of safety in the context of clinical research. Given our limited understanding of the clinically relevant effects of classic hallucinogens, there is a wealth of opportunities for research that could contribute important new knowledge and potentially lead to valuable new treatments for addiction.

  9. Power dissipation in nanoscale conductors: classical, semi-classical and quantum dynamics

    International Nuclear Information System (INIS)

    Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested

  10. Non-classical paths in interference experiments

    CERN Document Server

    Sawant, Rahul; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi

    2014-01-01

    In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well known text books in quantum mechanics implicitly and/or explicitly use this assumption which is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from non-classical paths in quantum interference experiments which provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these non-classical paths is hard. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.

  11. Demonstration of local teleportation using classical entanglement

    CERN Document Server

    Guzman-Silva, Diego; Zimmermann, Felix; Vetter, Christian; Gräfe, Markus; Heinrich, Matthias; Nolte, Stefan; Duparré, Michael; Aiello, Andrea; Ornigotti, Marco; Szameit, Alexander

    2015-01-01

    Teleportation is the most widely discussed application of the basic principles of quantum mechanics. Fundamentally, this process describes the transmission of information, which involves transport of neither matter nor energy. The implicit assumption, however, is that this scheme is of inherently nonlocal nature, and therefore exclusive to quantum systems. Here, we show that the concept can be readily generalized beyond the quantum realm. We present an optical implementation of the teleportation protocol solely based on classical entanglement between spatial and modal degrees of freedom, entirely independent of nonlocality. Our findings could enable novel methods for distributing information between different transmission channels and may provide the means to leverage the advantages of both quantum and classical systems to create a robust hybrid communication infrastructure.

  12. Global aspects of classical integrable systems

    CERN Document Server

    Cushman, Richard H

    2015-01-01

    This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.

  13. From Classical to Quantum Transistor

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar

    2009-05-01

    Full Text Available In this article the classical transistor and the basic physics underlying the operation of single electron transistor are presented; a brief history of transistor and current technological issues are discussed.

  14. Fano interference in classical oscillators

    International Nuclear Information System (INIS)

    We seek to illustrate Fano interference in a classical coupled oscillator by using classical analogues of the atom-laser interaction. We present an analogy between the dressed state picture of coherent atom-laser interaction and a classical coupled oscillator. The Autler-Townes splitting due to the atom-laser interaction is analogous to the splitting of normal-mode frequencies of a coupled oscillator. Using this analogy, we simulate and experimentally demonstrate Fano interference and the associated phenomena in three-level atoms in a coupled electrical resonator circuit. This work aims to highlight analogies between classical and quantum systems for students at the postgraduate and graduate levels. Also, the reported technique can be easily realized in undergraduate laboratories. (paper)

  15. New perspectives on classical electromagnetism

    OpenAIRE

    Cote, Paul J.

    2009-01-01

    The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.

  16. Elementary charges in classical electrodynamics

    OpenAIRE

    KAPU'{S}CIK, Edward

    1999-01-01

    In the framework of classical electrodynamics elementary particles are treated as capacitors. The electrostatic potentials satisfy equations of the Schrödinger type. An interesting "quantization condition" for elementary charges is derived.

  17. Lack of dispersion cancellation with classical phase-sensitive light

    CERN Document Server

    Franson, J D

    2009-01-01

    J.H. Shapiro recently argued that nonlocal dispersion cancellation using entangled pairs of photons is essentially classical in nature, based on a comparison with a classical model in which two stationary, chaotic beams of light have phases and frequencies that are anti-correlated, which he refers to as "phase-sensitive" light (arXiv:0909.2514). It is shown here that there is no dispersion cancellation for classical light of this kind, and that the origin of the cross-correlations between the intensities of the two beams is completely different in the classical and quantum-mechanical cases. Shapiro's assertion that classical electromagnetism can produce nonlocal effects is inconsistent with the usual definition of nonlocality.

  18. Classical Transitions for Flux Vacua

    CERN Document Server

    Deskins, J Tate; Yang, I-Sheng

    2012-01-01

    We present the simplest model for classical transitions in flux vacua. A complex field with a spontaneously broken U(1) symmetry is embedded in $M_2\\times S_1$. We numerically construct different winding number vacua, the vortices interpolating between them, and simulate the collisions of these vortices. We show that classical transitions are generic at large boosts, independent of whether or not vortices miss each other in the compact $S_1$.

  19. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  20. Gaussian Dynamics is Classical Dynamics

    OpenAIRE

    Habib, Salman

    2004-01-01

    A direct comparison of quantum and classical dynamical systems can be accomplished through the use of distribution functions. This is useful for both fundamental investigations such as the nature of the quantum-classical transition as well as for applications such as quantum feedback control. By affording a clear separation between kinematical and dynamical quantum effects, the Wigner distribution is particularly valuable in this regard. Here we discuss some consequences of the fact that when...

  1. Anderson localization from classical trajectories

    OpenAIRE

    Brouwer, Piet W.; Altland, Alexander

    2008-01-01

    We show that Anderson localization in quasi-one dimensional conductors with ballistic electron dynamics, such as an array of ballistic chaotic cavities connected via ballistic contacts, can be understood in terms of classical electron trajectories only. At large length scales, an exponential proliferation of trajectories of nearly identical classical action generates an abundance of interference terms, which eventually leads to a suppression of transport coefficients. We quantitatively descri...

  2. Path Integral Approach to 't Hooft's Derivation of Quantum from Classical Physics

    OpenAIRE

    Blasone, Massimo; Jizba, Petr; Kleinert, Hagen

    2004-01-01

    We present a path-integral formulation of 't Hooft's derivation of quantum from classical physics. The crucial ingredient of this formulation is Gozzi et al.'s supersymmetric path integral of classical mechanics. We quantize explicitly two simple classical systems: the planar mathematical pendulum and the Roessler dynamical system.

  3. Planck's radiation law: is a quantum-classical perspective possible?

    Science.gov (United States)

    Marrocco, Michele

    2016-05-01

    Planck's radiation law provides the solution to the blackbody problem that marks the decline of classical physics and the rise of the quantum theory of the radiation field. Here, we venture to suggest the possibility that classical physics might be equally suitable to deal with the blackbody problem. A classical version of the Planck's radiation law seems to be achievable if we learn from the quantum-classical correspondence between classical Mie theory and quantum-mechanical wave scattering from spherical scatterers (partial wave analysis). This correspondence designs a procedure for countable energy levels of the radiation trapped within the blackbody treated within the multipole approach of classical electrodynamics (in place of the customary and problematic expansion in terms of plane waves that give rise to the ultraviolet catastrophe). In turn, introducing the Boltzmann discretization of energy levels, the tools of classical thermodynamics and statistical theory become available for the task. On the other hand, the final result depends on a free parameter whose physical units are those of an action. Tuning this parameter on the value given by the Planck constant makes the classical result agree with the canonical Planck's radiation law.

  4. Non-Classicality Criteria in Multi-port Interferometry

    CERN Document Server

    Rigovacca, Luca; Metcalf, Benjamin J; Walmsley, Ian A; Kim, M S

    2016-01-01

    Quantum interference lies at the basis of fundamental differences between quantum and classical behaviors. It is thus crucial to understand the boundaries between what interference patterns can be described by classical wave mechanics and what, on the other hand, can only be understood with a proper quantum mechanical description. While a lot of work has already been done for the simple case of two-mode interference, the multi-mode case has not been fully explored yet. Here we derive bounds for classical models of light fields in a general scenario of intensity interferometry, and we show how they can be violated in a quantum framework. As a consequence, this violation acts as a non-classicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also derive a criterion for certifying the indivisibility of a quantum interferometer and obtain a method to simultaneously measure the average pairwise distinguishability of the input sources.

  5. Violation of classical physics by a mesoscopic system

    CERN Document Server

    Hu, Jiazhong; Chen, Wenlan; Zhang, Hao; McConnell, Robert; Sørensen, Anders S; Vuletić, Vladan

    2016-01-01

    We experimentally demonstrate the violation of classical physics in a many-atom system using a recently derived criterion [E. Kot et al., Phys. Rev. Lett. 108, 233601 (2013)] that explicitly does not make use of quantum mechanics. We thereby show that the magnetic moment distribution measured by McConnell et al. [R. McConnell et al., Nature 519, 439 (2015)] in a system with a total mass of $2.6\\times 10^5$ atomic mass units is inconsistent with classical physics. Notably, the violation of classical physics affects an area in phase space $10^3$ times larger than the Planck quantum $\\hbar$.

  6. 猪瘟病毒分子生物学与致病机制研究进展%Research advance in molecular biology and pathogenetic mechanism for classical swine fever virus

    Institute of Scientific and Technical Information of China (English)

    南文金; 胡鸿惠; 彭国良; 娄高明

    2011-01-01

    猪瘟是由猪瘟病毒感染导致的高度接触性传染病,家猪和野猪对该病原易感.该病主要特征是高热、微血管变性而引起实质器官出血、坏死,是世界上危害最严重猪病之一,给养猪业带来重大损失.综述了猪瘟病毒基因组、蛋白质功能以及致病机理的最新研究进展,为相关研究人员参考.%Classical swine fever (CSF) is a highly contagious disease of domestic and wild pigs. The causative agent of this disease is classical swine fever virus (CSFV), the disease of pig characterized by high fever, microvascular denaturalization hemorrhages and necrosis of parenchymatous argans. It is considered to be one of the most devastating diseases and causes significant economic loss for the pig industry throughout the word. The paper introduces the research progresses on genome, function of protein and pathogenesis of CFSV.

  7. Unbiased estimators for spatial distribution functions of classical fluids.

    Science.gov (United States)

    Adib, Artur B; Jarzynski, Christopher

    2005-01-01

    We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density rho(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions. PMID:15638649

  8. Unbiased estimators for spatial distribution functions of classical fluids.

    Science.gov (United States)

    Adib, Artur B; Jarzynski, Christopher

    2005-01-01

    We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density rho(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.

  9. Classical vs. crowdsourcing surveys for eliciting geographic relevance criteria

    OpenAIRE

    De Sabbata, Stefano; Alonso, Omar; Mizzaro, Stefano

    2012-01-01

    Geographic relevance aims to assess the relevance of physical entities (e.g., shops and museums) in geographic space for a mobile user in a given context, thereby shifting the focus from the digital world (the realm of classical information retrieval) to the physical world. We study the elicitation of geographic relevance criteria by means of both a classical survey and an Amazon Mechanical Turk (a crowdsourcing platform) survey. This allows us to obtain three results: first, we gather a set ...

  10. Does classical liberalism imply democracy?

    Directory of Open Access Journals (Sweden)

    David Ellerman

    2015-12-01

    Full Text Available There is a fault line running through classical liberalism as to whether or not democratic self-governance is a necessary part of a liberal social order. The democratic and non-democratic strains of classical liberalism are both present today—particularly in the United States. Many contemporary libertarians and neo-Austrian economists represent the non-democratic strain in their promotion of non-democratic sovereign city-states (start-up cities or charter cities. We will take the late James M. Buchanan as a representative of the democratic strain of classical liberalism. Since the fundamental norm of classical liberalism is consent, we must start with the intellectual history of the voluntary slavery contract, the coverture marriage contract, and the voluntary non-democratic constitution (or pactum subjectionis. Next we recover the theory of inalienable rights that descends from the Reformation doctrine of the inalienability of conscience through the Enlightenment (e.g. Spinoza and Hutcheson in the abolitionist and democratic movements. Consent-based governments divide into those based on the subjects’ alienation of power to a sovereign and those based on the citizens’ delegation of power to representatives. Inalienable rights theory rules out that alienation in favor of delegation, so the citizens remain the ultimate principals and the form of government is democratic. Thus the argument concludes in agreement with Buchanan that the classical liberal endorsement of sovereign individuals acting in the marketplace generalizes to the joint action of individuals as the principals in their own organizations.

  11. Classical approach in atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Solov' ev, E.A. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2011-12-15

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincare section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormalization group symmetry, criterion of accuracy and so on are reviewed as well. (author)

  12. No Return to Classical Reality

    CERN Document Server

    Jennings, David

    2015-01-01

    At a fundamental level, the classical picture of the world is dead, and has been dead now for almost a century. Pinning down exactly which quantum phenomena are responsible for this has proved to be a tricky and controversial question, but a lot of progress has been made in the past few decades. We now have a range of precise statements showing that whatever the ultimate laws of Nature are, they cannot be classical. In this article, we review results on the fundamental phenomena of quantum theory that cannot be understood in classical terms. We proceed by first granting quite a broad notion of classicality, describe a range of quantum phenomena (such as randomness, discreteness, the indistinguishability of states, measurement-uncertainty, measurement-disturbance, complementarity, noncommutativity, interference, the no-cloning theorem, and the collapse of the wave-packet) that do fall under its liberal scope, and then finally describe some aspects of quantum physics that can never admit a classical understandi...

  13. Classical limit for semirelativistic Hartree systems

    KAUST Repository

    Aki, Gonca L.

    2008-01-01

    We consider the three-dimensional semirelativistic Hartree model for fast quantum mechanical particles moving in a self-consistent field. Under appropriate assumptions on the initial density matrix as a (fully) mixed quantum state we prove by using Wigner transformation techniques that its classical limit yields the well known relativistic Vlasov-Poisson system. The result holds for the case of attractive and repulsive mean-field interactions, with an additional size constraint in the attractive case. © 2008 American Institute of Physics.

  14. Imaging learning and memory: classical conditioning.

    Science.gov (United States)

    Schreurs, B G; Alkon, D L

    2001-12-15

    The search for the biological basis of learning and memory has, until recently, been constrained by the limits of technology to classic anatomic and electrophysiologic studies. With the advent of functional imaging, we have begun to delve into what, for many, was a "black box." We review several different types of imaging experiments, including steady state animal experiments that image the functional labeling of fixed tissues, and dynamic human studies based on functional imaging of the intact brain during learning. The data suggest that learning and memory involve a surprising conservation of mechanisms and the integrated networking of a number of structures and processes.

  15. New Approaches to Classical Liberalism

    Directory of Open Access Journals (Sweden)

    Nicolas Maloberti

    2012-01-01

    Full Text Available This article focuses on the following three novel and original philosophical approaches to classical liberalism: Den Uyl and Rasmussen's perfectionist argument from meta-norms, Gaus's justificatory model, and Kukathas's conscience-based theory of authority. None of these three approaches are utilitarian or consequentialist in character. Neither do they appeal to the notion of a rational bargain as it is typical within contractarianism. Furthermore, each of these theories rejects the idea that classical liberalism should be grounded on considerations of interpersonal justice such as those that are central to the Lockean tradition. It is argued that these three theories, despite their many attractive features, fail to articulate in a convincing manner some central classical liberal concerns.

  16. Population in the classic economics

    Directory of Open Access Journals (Sweden)

    Adnan Doğruyol

    2013-02-01

    Full Text Available Growth subject in economics is an important factor of development. Classic economics ecole indicates the population as main variable which tender of growth. On the other hand T. R. Malthus is known as economist who regards population as a problem and brings up it among the classical economists. However, Adam Smith is an intellectual who discussed population problem earlier on the classic economics theory. According to Adam Smith one of the main factors that realise the growth is labour. In addition to population made it established. The aim of this study is analyzing the mental relationship between Malthus whose name has been identified with relation between population-growth and Smith who discussed this subject first time but put it off on process of theorisation.

  17. Overview of Classical Swine Fever (Hog Cholera, Classical Swine fever)

    Science.gov (United States)

    Classical swine fever is a contagious often fatal disease of pigs clinically characterized by high body temperature, lethargy, yellowish diarrhea, vomits and purple skin discoloration of ears, lower abdomen and legs. It was first described in the early 19th century in the USA. Later, a condition i...

  18. Comparing classical and quantum equilibration

    CERN Document Server

    Malabarba, Artur S L; Short, Anthony J

    2016-01-01

    By using a physically-relevant and theory independent definition of measurement-based equilibration, we show quantitatively that equilibration is easier for quantum systems than for classical systems, in the situation where the initial state of the system is completely known (pure state). This shows that quantum equilibration is a fundamental, nigh unavoidable, aspect of physical systems, while classical equilibration relies on experimental ignorance. When the state is not completely known, a mixed state, this framework also shows quantum equilibration requires weaker conditions.

  19. Classical planning and causal implicatures

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Benotti, Luciana

    to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate......In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...

  20. Classical analogy of Fano resonances

    International Nuclear Information System (INIS)

    We present an analogy of Fano resonances in quantum interference to classical resonances in the harmonic oscillator system. It has a manifestation as a coupled behaviour of two effective oscillators associated with propagating and evanescent waves. We illustrate this point by considering a classical system of two coupled oscillators and interfering electron waves in a quasi-one-dimensional narrow constriction with a quantum dot. Our approach provides a novel insight into Fano resonance physics and provides a helpful view in teaching Fano resonances

  1. Principal bundles the classical case

    CERN Document Server

    Sontz, Stephen Bruce

    2015-01-01

    This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles.  While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.

  2. Research on Network Digital Game with the Classic Cultural Transmission Mechanism%网络数字游戏与经典文化传播机制研究

    Institute of Scientific and Technical Information of China (English)

    徐谨力

    2014-01-01

    Impact of network digital games on people becomes increasingly apparent, as a product of popular culture, both the property itself and dissemination of cultural heritage. This article from the network digital game in the dissemination of culture should adhere to the authenticity of the epidemic, entertainment and other principles, the classical cultural heritage in order to better play the role of educational enlightenment games, online digital games should select the game from the cultural background visual design elements, language composition, the game is set trigger settings and virtual identities five aspects, in order to complete the subtle spread of classical culture.%网络数字游戏对人们的影响日益显现,其作为大众文化的产物,本身也兼具文化传承与传播的属性。本文从网络数字游戏在传播文化中应坚持的真实性、流行性、娱乐性等原则出发,为了使其更好传承经典文化,发挥游戏的教育教化作用,网络数字游戏应当从游戏背景文化的选择、视觉要素的设计、语言文字的构成、游戏触发因素的设置与虚拟身份的设定等五个方面入手,借以完成经典文化潜移默化的传播。

  3. 论王国维“第二形式之美”说--兼论“古雅”说的发生机制与效用%Research on Wang Guowei’s “Second Form of Aesthetics”---With Additional Studies on the Generative Mechanism and Effect of “Classical Elegance”Theory

    Institute of Scientific and Technical Information of China (English)

    王倩

    2016-01-01

    王国维的“古雅”说是其美学理论体系的重要组成部分,他从形式主义美学观的角度对作为“第二形式”的古雅及其在美学上的意义与价值展开了论述。通过对作为“第一形式”表出之的“第二形式”———古雅发生机制进行探讨,并进一步论述“古雅”在审美创作中的作用,从而展示出中国古代美学向现代美学的转换过程。%Wang Guowei‘s “Classical Elegance”is an important part of his aesthetic theory.From the perspective of formalism aesthetics he discussed the significance and value of “Classical Elegance”to the aesthetics,explored the generative mechanism of “Classical Elegance”and its roles in aesthetic appreciation and creation,and presented the transformation of Chinese ancient aesthetics into modern aesthetics.

  4. CLASSIC APPROACH TO BUSINESS COACHING

    OpenAIRE

    Żukowska, Joanna

    2011-01-01

    The purpose of this paper is to present business coaching in a classical way. An overview of coaching definitions will be provided. Attention will be drawn to coaching components and varieties. Moreover, a brief description of coach competences and tools supporting their work will be offered. Joanna Żukowska

  5. On Classical and Quantum Cryptography

    CERN Document Server

    Volovich, I V; Volovich, Ya.I.

    2001-01-01

    Lectures on classical and quantum cryptography. Contents: Private key cryptosystems. Elements of number theory. Public key cryptography and RSA cryptosystem. Shannon`s entropy and mutual information. Entropic uncertainty relations. The no cloning theorem. The BB84 quantum cryptographic protocol. Security proofs. Bell`s theorem. The EPRBE quantum cryptographic protocol.

  6. Relative Clauses in Classical Nahuatl

    Science.gov (United States)

    Langacker, Ronald W.

    1975-01-01

    Jane Rosenthal's paper on relative clauses in Classical Nahuatl is discussed, and it is argued that she misses an important generalization. An alternative analysis to a class of relative pronouns and new rules for the distribution of relative pronouns are proposed. (SC)

  7. Classical Virasoro irregular conformal block

    CERN Document Server

    Rim, Chaiho

    2015-01-01

    Virasoro irregular conformal block with arbitrary rank is obtained for the classical limit or equivalently Nekrasov-Shatashvili limit using the beta-deformed irregular matrix model (Penner-type matrix model for the irregular conformal block). The same result is derived using the generalized Mathieu equation which is equivalent to the loop equation of the irregular matrix model.

  8. Neo-classical impurity transport

    International Nuclear Information System (INIS)

    The neo-classical theory for impurity transport in a toroidal plasma is outlined, and the results discussed. A general account is given of the impurity behaviour and its dependence on collisionality. The underlying physics is described with special attention to the role of the poloidal rotation

  9. Classical Music as Enforced Utopia

    Science.gov (United States)

    Leech-Wilkinson, Daniel

    2016-01-01

    In classical music composition, whatever thematic or harmonic conflicts may be engineered along the way, everything always turns out for the best. Similar utopian thinking underlies performance: performers see their job as faithfully carrying out their master's (the composer's) wishes. The more perfectly they represent them, the happier the…

  10. The Quantum-Classical Transition: The Fate of the Complex Structure

    CERN Document Server

    Marmo, G; Simoni, A; Ventriglia, F

    2005-01-01

    According to Dirac, fundamental laws of Classical Mechanics should be recovered by means of an "appropriate limit" of Quantum Mechanics. In the same spirit it is reasonable to enquire about the fundamental geometric structures of Classical Mechanics which will survive the appropriate limit of Quantum Mechanics. This is the case for the symplectic structure. On the contrary, such geometric structures as the metric tensor and the complex structure, which are necessary for the formulation of the Quantum theory, may not survive the Classical limit, being not relevant in the Classical theory. Here we discuss the Classical limit of those geometric structures mainly in the Ehrenfest and Heisenberg pictures, i.e. at the level of observables rather than at the level of states. A brief discussion of the fate of the complex structure in the Quantum-Classical transition in the Schroedinger picture is also mentioned.

  11. [Today's meaning of classical authors of political thinking].

    Science.gov (United States)

    Weinacht, Paul-Ludwig

    2005-01-01

    How can classical political authors be actualised? The question is asked in a discipline which is founded in old traditions: the political science. One of its great matters is the history of political ideas. Classic authors are treated in many books, but they are viewed in different perspectives; colleagues do not agree with shining and bad examples. For actualising classic we have to go a methodically reflected way: historic not historicistic, with sensibility for classic and christian norms without dogmatism or scepticism. Searching the permanent problems we try to translate the original concepts of the classic authors carefully in our time. For demonstrating our method of actualising, we choose the French classical author Montesquieu. His famous concept of division of powers is misunderstood as a "liberal" mechanism which works in itself in favour of freedom (such as Kant made work a "natural mechanism" in a people of devils in favour of their legality); in reality Montesquieu acknoledges that constitutional und organisational work cannot stabilise themselves but must be found in social character and in human virtues. PMID:17153317

  12. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  13. A new type of complementarity between quantum and classical information

    CERN Document Server

    Oppenheim, J; Horodecki, M; Horodecki, R; Horodecki, P; Oppenheim, Jonathan; Horodecki, Karol; Horodecki, Michal Horodecki Pawel; Horodecki, Ryszard

    2003-01-01

    Physical systems contain information which can be divided between classical and quantum information. Classical information is locally accessible and allows one to perform tasks such as physical work, while quantum information allows one to perform tasks such as teleportation. It is shown that these two kinds of information are complementarity in the sense that two parties can either gain access to the quantum information, or to the classical information but not both. This complementarity has a form very similar to the complementarities usually encountered in quantum mechanics. For pure states, the entanglement plays the role of Planck's constant. We also find another class of complementarity relations which applies to operators, and is induced when two parties can only perform local operations and communicate classical. In order to formalize this notion we define the restricted commutator. Observables such as the parity and phase of two qubits commute, but their restricted commutator is non-zero. It is also f...

  14. 猪瘟病毒的形态结构及侵染机理的研究%Preliminary study on the morphology and infectious mechanism of classical swine fever virus

    Institute of Scientific and Technical Information of China (English)

    聂玉春; 王镇; 周海霞; 邓宏魁; 丁明孝

    2002-01-01

    @@ 猪瘟病毒(classical swine fever virus,CSFV),属黄病毒科,瘟病毒属成员,是严重危害养猪生产的主要病原体之一.CSFV是具有囊膜的正链RNA病毒.除基因组RNA外,还有衣壳蛋白C和三种囊膜蛋白E0,E1和E2组成.一般认为病毒侵染细胞是通过囊膜蛋白与细胞表面受体相互作用形成Infecosome后进入宿主细胞.然而对CSFV感染细胞的细节当不甚明了.本项研究在观察CSFV形态结构与发生过程的基础上对其侵染细胞的机理进行了初步研究.

  15. Extending In Vitro Conditioning in "Aplysia" to Analyze Operant and Classical Processes in the Same Preparation

    Science.gov (United States)

    Brembs, Bjorn; Baxter, Douglas A.; Byrne, John H.

    2004-01-01

    Operant and classical conditioning are major processes shaping behavioral responses in all animals. Although the understanding of the mechanisms of classical conditioning has expanded significantly, the understanding of the mechanisms of operant conditioning is more limited. Recent developments in "Aplysia" are helping to narrow the gap in the…

  16. A derivation of the Derbenev-Kondratenko formula using semi-classical electrodynamics

    International Nuclear Information System (INIS)

    We present a detailed exposition of the mechanism for the build-up of polarization in electron storage rings. A semi-classical approach is used to derive the rate of growth and asymptotic degree of polarization in an electron storage ring (the Derbenev-Kondratenko formula). Statistical mechanical concepts used to obtain as classical an understanding as possible of this phenomenon. (orig.)

  17. Classical Probability and Quantum Outcomes

    Directory of Open Access Journals (Sweden)

    James D. Malley

    2014-05-01

    Full Text Available There is a contact problem between classical probability and quantum outcomes. Thus, a standard result from classical probability on the existence of joint distributions ultimately implies that all quantum observables must commute. An essential task here is a closer identification of this conflict based on deriving commutativity from the weakest possible assumptions, and showing that stronger assumptions in some of the existing no-go proofs are unnecessary. An example of an unnecessary assumption in such proofs is an entangled system involving nonlocal observables. Another example involves the Kochen-Specker hidden variable model, features of which are also not needed to derive commutativity. A diagram is provided by which user-selected projectors can be easily assembled into many new, graphical no-go proofs.

  18. Coupled Classical and Quantum Oscillators

    CERN Document Server

    McDermott, R M; Dermott, Rachael M. Mc; Redmount, Ian H.

    2004-01-01

    Some of the most enduring questions in physics--including the quantum measurement problem and the quantization of gravity--involve the interaction of a quantum system with a classical environment. Two linearly coupled harmonic oscillators provide a simple, exactly soluble model for exploring such interaction. Even the ground state of a pair of identical oscillators exhibits effects on the quantum nature of one oscillator, e.g., a diminution of position uncertainty, and an increase in momentum uncertainty and uncertainty product, from their unperturbed values. Interaction between quantum and classical oscillators is simulated by constructing a quantum state with one oscillator initially in its ground state, the other in a coherent or Glauber state. The subsequent wave function for this state is calculated exactly, both for identical and distinct oscillators. The reduced probability distribution for the quantum oscillator, and its position and momentum expectation values and uncertainties, are obtained from thi...

  19. Classical theory of algebraic numbers

    CERN Document Server

    Ribenboim, Paulo

    2001-01-01

    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  20. Classical Concepts in Quantum Programming

    CERN Document Server

    Oemer, B

    2002-01-01

    The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control and structured programming can be used in quantum computing. The experimental language QCL will be introduced as an example, how elements like irreversible functions, local variables and conditional branching, which have no direct quantum counterparts, can be implemented, and how non-classical features like the reversibility of unitary transformation or the non-observability of quantum states can be accounted for within the framework of a procedural programming language.

  1. A Companion to Classical Receptions

    Directory of Open Access Journals (Sweden)

    A. De Villiers

    2012-03-01

    Full Text Available This recent addition to the excellent Blackwell Companions series looks at the various forms of classical reception currently being researched as well as those deemed to have future importance. The diversity and volume of the themes and approaches contained in this book are truly impressive. As Hardwick and Stray state in their introduction, this collection “has been constructed on the basis that the activators of reception are many and varied and that we all gain from encountering examples from outside our own immediate areas of knowledge” (p. 4. Throughout the book they stay true to this motto and traditional approaches to classical reception are not given prominence over more recent (sometimes contentious approaches such as film studies, cultural politics and photography. The same goes for the various cultures involved and there is even a chapter on Greek drama in South Africa.

  2. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2012-09-30

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.

  3. Logical, conditional, and classical probability

    OpenAIRE

    Quznetsov, G. A.

    2005-01-01

    The propositional logic is generalized on the real numbers field. the logical function with all properties of the classical probability function is obtained. The logical analog of the Bernoulli independent tests scheme is constructed. The logical analog of the Large Number Law is deduced from properties of these functions. The logical analog of thd conditional probability is defined. Consistency encured by a model on a suitable variant of the nonstandard analysis.

  4. Classic ballet dancers postural patterns

    OpenAIRE

    Joseani Paulini Neves Simas; Sebastião Iberes Lopes Melo

    2008-01-01

    The aim of this study was to evaluate classic ballet practice and its influence on postural patterns and (a) identify the most frequent postural changes; (b) determine the postural pattern; (c) verify the existence of association of practice time and postural changes. The investigation was carried out in two stages: one, description in which 106 dancers participated; the other, causal comparative in which 50 dancers participated; and (a) questionnaire; (b) a checkerboard; (c) postural chart; ...

  5. Gauge Invariance in Classical Electrodynamics

    CERN Document Server

    Engelhardt, W

    2005-01-01

    The concept of gauge invariance in classical electrodynamics assumes tacitly that Maxwell's equations have unique solutions. By calculating the electromagnetic field of a moving particle both in Lorenz and in Coulomb gauge and directly from the field equations we obtain, however, contradicting solutions. We conclude that the tacit assumption of uniqueness is not justified. The reason for this failure is traced back to the inhomogeneous wave equations which connect the propagating fields and their sources at the same time.

  6. Classical Concepts in Quantum Programming

    OpenAIRE

    Oemer, Bernhard

    2002-01-01

    The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control and structured programming can be used in quantum comput...

  7. Semi-classical signal analysis

    CERN Document Server

    Laleg-Kirati, Taous-Meriem; Sorine, Michel

    2010-01-01

    This study introduces a new signal analysis method called SCSA, based on a semi-classical approach. The main idea in the SCSA is to interpret a pulse-shaped signal as a potential of a Schr\\"odinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms.

  8. Rindler particles and classical radiation

    International Nuclear Information System (INIS)

    We describe the quantum and classical radiation emitted by a uniformly accelerating point source in terms of the elementary processes of absorption and emission of Rindler scalar photons of the Fulling-Davies-Unruh bath observed by a co-accelerating observer. To this end we compute the rate at which a DeWitt detector emits a Minkowski scalar particle with defined transverse momentum per unit of proper time of the source and we show that it corresponds to the induced absorption or spontaneous and induced emission of Rindler particles from the thermal bath. We then take what could be called the inert limit of the DeWitt detector by considering the limit of no energy gap. As suggested by DeWitt, we identify, in this limit, the detector with a classical point source and verify the consistency of our computation with the classical result. Finally, we study the behaviour of the emission rate in D spacetime dimensions in connection with the so-called apparent statistics inversion

  9. Rindler Photons and Classical Radiation

    CERN Document Server

    Díaz, D E

    2001-01-01

    We describe the quantum and classical radiation by a uniformly accelerating point source in terms of the elementary processes of absorption and emission of Rindler scalar photons of the Fulling-Davies-Unruh bath observed by a co-accelerating observer.To this end we compute the emission rate by a DeWitt detector of a Minkowski scalar field particle with defined transverse momentum per unit of proper time of the source and we show that it corresponds to the induced absorption or spontaneous and induced emission of Rindler photons from the thermal bath. We then take what could be called the inert limit of the DeWitt detector by considering the limit of zero gap energy. As suggested by DeWitt, we identify in this limit the detector with a classical point source and verify the consistency of our computation with the classical result. Finally, we study the behavior of the emission rate in D space-time dimensions in connection with the so called apparent statistics inversion.

  10. Quantum to Classical Randomness Extractors

    CERN Document Server

    Berta, Mario; Wehner, Stephanie

    2011-01-01

    Even though randomness is an essential resource for many information processing tasks, it is not easily found in nature. The goal of randomness extraction is to distill (almost) perfect randomness from a weak source of randomness. When the source yields a classical string X, many extractor constructions are known. Yet, when considering a physical randomness source, X is itself ultimately the result of a measurement on an underlying quantum system. When characterizing the power of a source to supply randomness it is hence a natural question to ask, how much classical randomness we can extract from a quantum state. To tackle this question we here take on the study of quantum-to-classical randomness extractors (QC-extractors). We provide constructions of QC-extractors based on measurements in a full set of mutually unbiased bases (MUBs), and certain single qubit measurements. As the first application, we show that any QC-extractor gives rise to entropic uncertainty relations with respect to quantum side informat...

  11. Controlling the sense of molecular rotation: classical vs quantum analysis

    CERN Document Server

    Khodorkovsky, Yuri; Hasegawa, Hirokazu; Ohshima, Yasuhiro; Averbukh, Ilya Sh

    2010-01-01

    Recently, it was predicted theoretically and verified experimentally that a pair of delayed and cross-polarized short laser pulses can create molecular ensembles with a well defined sense of rotation (clockwise or counterclockwise). Here we provide a comparative study of the classical and quantum aspects of the underlying mechanism for linear molecules and for symmetric tops, like benzene molecules, that were used for the first experimental demonstration of the effect. Very good quantitative agreement is found between the classical description of the process and the rigorous quantum mechanical analysis at the relevant experimental conditions. Both approaches predict the same optimal values for the delay between pulses and the angle between them, and deliver the same magnitude of the induced oriented angular momentum of the molecular ensemble. As expected, quantum and classical analysis substantially deviate when the delay between pulses is comparable with the period of quantum rotational revivals. However, ti...

  12. Decoherence and the quantum-to-classical transition

    CERN Document Server

    Schlosshauer, Maximilian

    2007-01-01

    The ultimate introduction, textbook, and reference on decoherence and the quantum-to-classical transition. This detailed but accessible text describes the concepts, formalism, interpretation, and experimental observation of decoherence and explains how decoherence is responsible for the emergence, from the realm of quantum mechanics, of the classical world of our experience. Topics include: • Foundational problems at the quantum–classical border; • The role of the environment and entanglement; • Environment-induced loss of coherence and superselection; • Scattering-induced decoherence and spatial localization; • Master equations; • Decoherence models; • Experimental realization of "Schrödinger kittens" and their decoherence; • Quantum computing, quantum error correction, and decoherence-free subspaces; • Implications of decoherence for interpretations of quantum mechanics and for the "measurement problem"; • Decoherence in the brain. Written in a lucid and concise style that is accessib...

  13. Ensembles on configuration space classical, quantum, and beyond

    CERN Document Server

    Hall, Michael J W

    2016-01-01

    This book describes a promising approach to problems in the foundations of quantum mechanics, including the measurement problem. The dynamics of ensembles on configuration space is shown here to be a valuable tool for unifying the formalisms of classical and quantum mechanics, for deriving and extending the latter in various ways, and for addressing the quantum measurement problem. A description of physical systems by means of ensembles on configuration space can be introduced at a very fundamental level: the basic building blocks are a configuration space, probabilities, and Hamiltonian equations of motion for the probabilities. The formalism can describe both classical and quantum systems, and their thermodynamics, with the main difference being the choice of ensemble Hamiltonian. Furthermore, there is a natural way of introducing ensemble Hamiltonians that describe the evolution of hybrid systems; i.e., interacting systems that have distinct classical and quantum sectors, allowing for consistent descriptio...

  14. Intuitionism vs. classicism a mathematical attack on classical logic

    CERN Document Server

    Haverkamp, Nick

    2015-01-01

    In the early twentieth century, the Dutch mathematician L.E.J. Brouwer launched a powerful attack on the prevailing mathematical methods and theories. He developed a new kind of constructive mathematics, called intuitionism, which seems to allow for a rigorous refutation of widely accepted mathematical assumptions including fundamental principles of classical logic. Following an intense mathematical debate esp. in the 1920s, Brouwer's revolutionary criticism became a central philosophical concern in the 1970s, when Michael Dummett tried to substantiate it with meaning-theoretic considerations.

  15. The Relation between Classical and Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Mario Bacelar Valente

    2011-01-01

    Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.

  16. Efficient Simulation of Quantum States Based on Classical Fields Modulated with Pseudorandom Phase Sequences

    CERN Document Server

    Fu, Jian

    2010-01-01

    We demonstrate that a tensor product structure could be obtained by introducing pseudorandom phase sequences into classical fields with two orthogonal modes. Using classical fields modulated with pseudorandom phase sequences, we discuss efficient simulation of several typical quantum states, including product state, Bell states, GHZ state, and W state. By performing quadrature demodulation scheme, we could obtain the mode status matrix of the simulating classical fields, based on which we propose a sequence permutation mechanism to reconstruct the simulated quantum states. The research on classical simulation of quantum states is important, for it not only enables potential practical applications in quantum computation, but also provides useful insights into fundamental concepts of quantum mechanics.

  17. Classical and quantum chaotic scattering in a muffin tin potential

    International Nuclear Information System (INIS)

    In this paper, we study the classical mechanics, the quantum mechanics and the semi-classical approximation of the 2-dimensional scattering from a muffin tin potential. The classical dynamical system for Coulombic muffin tins is proven to be chaotic by explicit construction of the exponentially increasing number of periodic orbits. These are all shown to be completely unstable (hyperbolic). By methods of the thermodynamic formalism we can determine the Hausdorff dimension, escape rate and Kolmogorov-Sinai-entropy of the system. An extended KKR-method is developed to determine the quantum mechanical S-matrix. We compare a few integrable scattering examples with the results of the muffin tin scattering. Characteristic features of the spectrum of eigenphases turn out to be the level repulsion and long range rigidity as compared to a completely random spectrum. In the semiclassical analysis we can rederive the regularized Gutzwiller trace formula directly from the exact KKR-determinant to prove that no further terms contribute in the case of the muffin tin potential. The periodic orbit sum allows to draw some qualitative conclusions about the effects of classical chaos on the quantum mechanics. In the context of scaling systems the theory of almost periodic functions is discussed as a possible mathematical foundation for the semiclassical periodic orbit sums. Some results that can be obtained from this analysis are developed in the context of autocorrelation functions and distribution functions for chaotic scattering systems. (orig.)

  18. A Simple Explanation of the Classic Hydrostatic Paradox

    Science.gov (United States)

    Kontomaris, Stylianos-Vasileios; Malamou, Anna

    2016-01-01

    An interesting problem in fluid mechanics, with significant educational importance, is the classic hydrostatic paradox. The hydrostatic paradox states the fact that in different shaped containers, with the same base area, which are filled with a liquid of the same height, the applied force by the liquid on the base of each container is exactly the…

  19. Classical Hodgkin lymphoma : population based studies on HLA and EBV

    NARCIS (Netherlands)

    Diepstra, Arjan

    2007-01-01

    Classical HL is a hematological malignancy in which immunological interactions are crucially involved. The neoplastic HRS cells use a variety of strategies to evade immune reactions, but also shape the immune response to their own benefit. Antigen presentation may be involved in both of these mechan

  20. Lectures on classical differential geometry

    CERN Document Server

    Struik, Dirk J

    1988-01-01

    Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student.Writ

  1. Agglomeration Economies in Classical Music

    DEFF Research Database (Denmark)

    Borowiecki, Karol Jan

    2015-01-01

    This study investigates agglomeration effects for classical music production in a wide range of cities for a global sample of composers born between 1750 and 1899. Theory suggests a trade-off between agglomeration economies (peer effects) and diseconomies (peer crowding). I test this hypothesis...... using historical data on composers and employ a unique instrumental variable – a measure of birth centrality, calculated as the average distance between a composer’s birthplace and the birthplace of his peers. I find a strong causal impact of peer group size on the number of important compositions...

  2. Solar Activity and Classical Physics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This review of solar physics emphasizes several of the more conspicuous scientific puzzles posed by contemporary observational knowledge of the magnetic activity of the Sun. The puzzles emphasize how much classical physics we have yet to learn from the Sun. The physics of solar activity is based on the principles of Newton, Maxwell, Lorentz, Boltzmann, et. al., along with the principles of radiative transfer. In the large, these principles are expressed by magnetohydrodynamics. A brief derivation of the magnetohydrodynamic induction and momentum equations is provided, with a discussion of popular misconceptions.

  3. Classical conditioned responses to absent tones

    Directory of Open Access Journals (Sweden)

    Häusler Udo

    2006-08-01

    Full Text Available Abstract Background Recent evidence for a tight coupling of sensorimotor processes in trained musicians led to the question of whether this coupling extends to preattentively mediated reflexes; particularly, whether a classically conditioned response in one of the domains (auditory is generalized to another (tactile/motor on the basis of a prior association in a second-order Pavlovian paradigm. An eyeblink conditioning procedure was performed in 17 pianists, serving as a model for overlearned audiomotor integration, and 14 non-musicians. Results: During the training session, subjects were conditioned to respond to auditory stimuli (piano tones. During a subsequent testing session, when subjects performed keystrokes on a silent piano, pianists showed significantly higher blink rates than non-musicians. Conclusion These findings suggest a tight coupling of the auditory and motor domains in musicians, pointing towards training-dependent mechanisms of strong cross-modal sensorimotor associations even on sub-cognitive processing levels.

  4. Innovations in classical hormonal targets for endometriosis.

    Science.gov (United States)

    Pluchino, Nicola; Freschi, Letizia; Wenger, Jean-Marie; Streuli, Isabelle

    2016-01-01

    Endometriosis is a chronic disease of unknown etiology that affects approximately 10% of women in reproductive age. Several evidences show that endometriosis lesions are associated to hormonal imbalance, including estrogen synthesis, metabolism and responsiveness and progesterone resistance. These hormonal alterations influence the ability of endometrial cells to proliferate, migrate and to infiltrate the mesothelium, causing inflammation, pain and infertility. Hormonal imbalance in endometriosis represents also a target for treatment. We provide an overview on therapeutic strategies based on innovations of classical hormonal mechanisms involved in the development of endometriosis lesions. The development phase of new molecules targeting these pathways is also discussed. Endometriosis is a chronic disease involving young women and additional biological targets of estrogen and progesterone pharmacological manipulation (brain, bone and cardiovascular tissue) need to be carefully considered in order to improve and overcome current limits of long-term medical management of endometriosis.

  5. Simulating Bell states with classical light

    CERN Document Server

    Shapiro, Jeffrey H

    2011-01-01

    Recently, Chen \\em et al\\rm.\\ [New J. Phys. {\\bf 13} (2011) 083018] presented experimental results, accompanied by quantum-mechanical analysis, showing that the quantum interference behavior of Bell states could be simulated in a modified Mach-Zehnder interferometer whose inputs are pseudothermal light beams obtained by passing laser light through a rotating ground-glass diffuser. Their experiments and their theory presumed low-flux operation in which the simulated quantum interference is observed via photon-coincidence counting. We first show that the Chen \\em et al\\rm.\\ photon-coincidence counting experiments can be fully explained with semiclassical photodetection theory, in which light is taken to be a classical electromagnetic wave, and the discreteness of the electron charge leads to shot noise as the fundamental photodetection noise. We then use semiclassical photodetection theory to show that the \\em same\\rm\\ simulated quantum interference pattern can be observed in high-flux operation, when photocurr...

  6. Eyeblink classical conditioning in the preweanling lamb.

    Science.gov (United States)

    Johnson, Timothy B; Stanton, Mark E; Goodlett, Charles R; Cudd, Timothy A

    2008-06-01

    Classical conditioning of eyeblink responses has been one of the most important models for studying the neurobiology of learning, with many comparative, ontogenetic, and clinical applications. The current study reports the development of procedures to conduct eyeblink conditioning in preweanling lambs and demonstrates successful conditioning using these procedures. These methods will permit application of eyeblink conditioning procedures in the analysis of functional correlates of cerebellar damage in a sheep model of fetal alcohol spectrum disorders, which has significant advantages over more common laboratory rodent models. Because sheep have been widely used for studies of pathogenesis and mechanisms of injury with many different prenatal or perinatal physiological insults, eyeblink conditioning can provide a well-studied method to assess postnatal behavioral outcomes, which heretofore have not typically been pursued with ovine models of developmental insults.

  7. Classical Electron Theory and Conservation Laws

    OpenAIRE

    Kiessling, Michael K. -H.

    1999-01-01

    It is shown that the traditional conservation laws for total charge, energy, linear and angular momentum, hold jointly in classical electron theory if and only if classical electron spin is included as dynamical degree of freedom.

  8. Pseudoclassical fermionic model and classical solutions

    International Nuclear Information System (INIS)

    We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)

  9. The revision of classical stock model

    Institute of Scientific and Technical Information of China (English)

    叶柏青; 王洪利

    2001-01-01

    On the basis of the analysis of classical stock model, according to the limitation of the model, the article puts forward the revision of classical model and enforces the applicability of the stock model.

  10. The revision of classical stock model

    Institute of Scientific and Technical Information of China (English)

    YE Bai-qing; WANG Hong-li

    2001-01-01

    On the basis of the analysis of classical stock model, according to th e limitation of the model, the article puts forward the revision of classical mo del and enforces the applicability of the stock model.

  11. Lagrangian formalism and retarded classical electrodynamics

    OpenAIRE

    Jan, Xavier; Llosa, Josep; Molina, Alfred

    1989-01-01

    Unlike the 1/c2 approximation, where classical electrodynamics is described by the Darwin Lagrangian, here there is no Lagrangian to describe retarded (resp., advanced) classical electrodynamics up to 1/c3 for two-point charges with different masses.

  12. About the modern house - and the classical

    DEFF Research Database (Denmark)

    Hauberg, Jørgen

    2010-01-01

    In text and illustrations describes the classical house and the classical city, represented by Andrea Palladio (1508-80), and the modern house, the modern city and building task, represented by Le Corbusier (1857-1965).......In text and illustrations describes the classical house and the classical city, represented by Andrea Palladio (1508-80), and the modern house, the modern city and building task, represented by Le Corbusier (1857-1965)....

  13. Technics of classical and digital photography comparsion

    OpenAIRE

    Kvapilová, Kamila

    2012-01-01

    This bachelor work is aimed at basic principles of taking photos by classical and digital camera. Describes methods for achieving of required photos by digital way and also classical taking photos on cine-film. Compares the technology of classical and digital photography from the beginning, which is getting the camera and accessories. It also describes the construction and control of the camera. Processing of photo compares the quality of digital and classic photo.

  14. The new-classical contribution to macroeconomics

    OpenAIRE

    D. LAIDLER

    2013-01-01

    This work is devoted to assessing New-Classical ideas, and to asking what of lasting importance this school of macroeconomics has contributed since the early 1970s. It deals in turn with the relationship between New-Classical Economics and Monetarism, the relative explanatory power of these two bodies of doctrine over empirical evidence, and the claims of New-Classical Economics to embody a superior analytic method. The author argues that, although the particular ways in which New-Classical M...

  15. Entanglement-Enhanced Classical Communication

    CERN Document Server

    Herrera-Martí, David A

    2008-01-01

    This thesis will be focused on the classical capacity of quantum channels, one of the first areas treated by quantum information theorists. The problem is fairly solved since some years. Nevertheless, this work will give me a reason to introduce a consistent formalism of the quantum theory, as well as to review fundamental facts about quantum non-locality and how it can be used to enhance communication. Moreover, this reflects my dwelling in the spirit of classical information theory, and it is intended to be a starting point towards a thorough study of how quantum technologies can help to shape the future of telecommunications. Whenever it was possible, heuristic reasonings were introduced instead of rigorous mathematical proofs. This finds an explanation in that I am a self-taught neophyte in the field, and just about every time I came across a new concept, physical arguments were always more compelling to me than just maths. The technical content of the thesis is twofold. On one hand, a quadratic classific...

  16. Fluctuations in classical sum rules.

    Science.gov (United States)

    Elton, John R; Lakshminarayan, Arul; Tomsovic, Steven

    2010-10-01

    Classical sum rules arise in a wide variety of physical contexts. Asymptotic expressions have been derived for many of these sum rules in the limit of long orbital period (or large action). Although sum-rule convergence may well be exponentially rapid for chaotic systems in a global phase-space sense with time, individual contributions to the sums may fluctuate with a width which diverges in time. Our interest is in the global convergence of sum rules as well as their local fluctuations. It turns out that a simple version of a lazy baker map gives an ideal system in which classical sum rules, their corrections, and their fluctuations can be worked out analytically. This is worked out in detail for the Hannay-Ozorio sum rule. In this particular case the rate of convergence of the sum rule is found to be governed by the Pollicott-Ruelle resonances, and both local and global boundaries for which the sum rule may converge are given. In addition, the width of the fluctuations is considered and worked out analytically, and it is shown to have an interesting dependence on the location of the region over which the sum rule is applied. It is also found that as the region of application is decreased in size the fluctuations grow. This suggests a way of controlling the length scale of the fluctuations by considering a time dependent phase-space volume, which for the lazy baker map decreases exponentially rapidly with time.

  17. Diminuendo: Classical Music and the Academy

    Science.gov (United States)

    Asia, Daniel

    2010-01-01

    How is the tradition of Western classical music faring on university campuses? Before answering this question, it is necessary to understand what has transpired with classical music in the wider culture, as the relationship between the two is so strong. In this article, the author discusses how classical music has taken a big cultural hit in…

  18. Recurrence in Quantum Mechanics

    OpenAIRE

    Duvenhage, Rocco

    2002-01-01

    We first compare the mathematical structure of quantum and classical mechanics when both are formulated in a C*-algebraic framework. By using finite von Neumann algebras, a quantum mechanical analogue of Liouville's theorem is then proposed. We proceed to study Poincare recurrence in C*-algebras by mimicking the measure theoretic setting. The results are interpreted as recurrence in quantum mechanics, similar to Poincare recurrence in classical mechanics.

  19. Classicality of the order parameter during a phase transition

    CERN Document Server

    Lombardo, F C; Monteoliva, D; Lombardo, Fernando C.; Mazzitelli, Francisco D.; Monteoliva, Diana

    2000-01-01

    We analize the quantum to classical transition of the order parameter insecond order phase transitions. We consider several toy models in nonrelativistic quantum mechanics. We study the dynamical evolution of a wavepacket initially peaked around a local maximum of the potential usingvariational approximations and also exact numerical results. The influence ofthe environment on the evolution of the density matrix and the Wigner functionis analized in great detail. We also discuss the relevance of our results tothe analysis of phase transitions in field theory. In particular, we argue thatprevious results about classicality of the order parameter in O(N) models maybe consequences of the large $N$ approximation.

  20. Classical dynamics of triatomic system: energized harmonic molecules

    International Nuclear Information System (INIS)

    The dynamical assumptions underlying the Slater and RRK classical-mechanical theories of unimolecular reaction rates are investigated. The predictions of these theories for several nonlinear, triatomic, harmonically-bonded molecular models are compared with the results obtained from the integration of the classical equations of motion. The accuracy of the small-vibration and weak-coupling assumptions are found to break down at energies above about one quarter of a bond dissociation energy. Nonetheless, the small-vibration approximation predicts reaction frequencies in good agreement with the exact results for the models. The effects of rotation on intramolecular energy exchange are examined and found to be significant

  1. Análise estrutural de ciclodextrinas: um estudo comparativo entre métodos teóricos clássicos e quânticos Structural analysis of cyclodextrins: a comparative study of classical and quantum mechanical methods

    Directory of Open Access Journals (Sweden)

    Marta A. F. O. Britto

    2004-12-01

    Full Text Available In the present work, we analyzed the accuracy of distinct theoretical methods to reproduce the solid state structures of cyclodextrins. The a, b and g-cyclodextrins (CD were considered and also their hydrates with included water molecules: a-CD.2H2O, b-CD.10H2O and g-CD.12H2O. The geometries were fully optimized using Molecular Mechanics (MM2, semiempirical (AM1 and PM3 and ab initio (HF/3-21G methods and quantitatively compared with experimental data from X ray diffraction. The results obtained from the classical MM2 method were in best agreement with the experiment. The semiempirical and ab initio structures were also in satisfactory accordance with the experimental data. In general, the PM3 method was found to be more suitable than the AM1 to describe the CD geometries, mainly when the intramolecular hydrogen bonds are considered.

  2. Quantum Spectra and Classical Orbits in Two-Dimensional Equilateral Triangular Billiards

    Institute of Scientific and Technical Information of China (English)

    LIN Sheng-Lu; GAO Feng; HONG Zheng-Pin; DU Meng-Li

    2005-01-01

    @@ We study the correspondence between quantum spectra and classical orbits in the equilateral triangular billiards. The eigenstates of such systems are not separable functions of two variables even though the problem is exactlysolvable. We calculate the Fourier transform of a quantum spectral function and find that the positions of thepeaks match well with the lengths of the classical orbits. This is another example showing that the quantum spectral function provides a bridge between quantum and classical mechanics.

  3. Quantum healing of classical singularities in power-law spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)

    2007-07-07

    We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.

  4. Comparison of classical simulations of the H + H2 reaction to accurate quantum mechanical state-to-state partial cross sections with total angular momenta J = 0-4 and to experiment for all J

    International Nuclear Information System (INIS)

    Quantum mechanical calculations are reported for probabilities and partial cross sections for the reaction H + p-H2 (ν = 0, j = 0.2, Erel = 1.1 eV, J = 0-4) → o-H2 (ν' = 0, 1) + H, where ν, j, and ν' are initial vibrational, initial rotational, and final vibrational quantum numbers, respectively, erel is the initial relative translations energy, and J is the conserved total angular momentum quantum number. The calculations involve three arrangements and 468-780 coupled channels, and they are converged to 0.1-1%. The corresponding quantities are also calculated by the quasiclassical trajectory method, and comparing these results provides a detailed test of the trajectory method. For most final states, the trajectory results agree with the quantal ones within a factor of 1.5 to 2, and the trajectory value for the (ν' = 1)/(ν' = 0) branching ratio is too high by a factor of 1.6. The authors also report trajectory results that are converged with respect to increasing J, and the converged value of the branching ratio is found to be 2.5 times larger than experiment. 49 refs., 5 figs., 9 tabs

  5. Hydrogen Beyond the Classic Approximation

    CERN Document Server

    Scivetti, I

    2003-01-01

    The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position

  6. Classical databases and knowledge organization

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2015-01-01

    examines this claim and argues for the continued value of Boolean systems, which suggests two further considerations: (1) the important role of human expertise in searching (expert searchers and “information literate” users) and (2) the role of library and information science and knowledge organization (KO......This paper considers classical bibliographic databases based on the Boolean retrieval model (such as MEDLINE and PsycInfo). This model is challenged by modern search engines and information retrieval (IR) researchers, who often consider Boolean retrieval a less efficient approach. The paper...... into (ranked) sets of relevant documents, whereas the latter aims to increase the “selection power” of users. The Boolean retrieval model is valuable in providing users with the power to make informed searches and have full control over what is found and what is not. These issues may have significant...

  7. Classical Concepts in Quantum Programming

    Science.gov (United States)

    Ömer, Bernhard

    2005-07-01

    The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control, and structured programming can be used in quantum computing. The experimental language QCL will be introduced as an example, how elements like irreversible functions, local variables, and conditional branching, which have no direct quantum counterparts, can be implemented, and how nonclassical features like the reversibility of unitary transformation or the nonobservability of quantum states can be accounted for within the framework of a procedural programming language.

  8. DOE Fundamentals Handbook: Classical Physics

    International Nuclear Information System (INIS)

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment

  9. Classic ballet dancers postural patterns

    Directory of Open Access Journals (Sweden)

    Joseani Paulini Neves Simas

    2008-06-01

    Full Text Available The aim of this study was to evaluate classic ballet practice and its influence on postural patterns and (a identify the most frequent postural changes; (b determine the postural pattern; (c verify the existence of association of practice time and postural changes. The investigation was carried out in two stages: one, description in which 106 dancers participated; the other, causal comparative in which 50 dancers participated; and (a questionnaire; (b a checkerboard; (c postural chart; (d measure tape; (e camera and (f pedoscope were used as instrument. Descriptive and inferential statistics was used for analysis. The results revealed the most frequent postural changes such as hyperlordosis, unleveled shoulders and pronated ankles. Ballet seems to have negative implications in the postural development , affecting especially the vertebral spine, trunk and feet. The practice time was not a parameter to indicate the increase in postural changes. In conclusion, ballet may be associated with postural changes and determining a characteristic postural pattern.

  10. Classical scattering from oscillating targets

    Energy Technology Data Exchange (ETDEWEB)

    Papachristou, P.K.; Diakonos, F.K.; Constantoudis, V.; Schmelcher, P.; Benet, L

    2002-12-30

    We study planar classical scattering from an oscillating heavy target whose dynamics defines a five-dimensional phase space. Although the system possesses no periodic orbits, and thus topological chaos is not present, the scattering functions display a variety of structures on different time scales. These structures are due to scattering events with a strong energy transfer from the projectile to the moving disk resulting in low-velocity peaks. We encounter initial conditions for which the projectile exhibits infinitely many bounces with the oscillating disk. Our numerical investigations are supported by analytical results on a specific model with a simple time-law. The observed properties possess universal character for scattering off oscillating targets.

  11. Inflation and classical scale invariance

    CERN Document Server

    Racioppi, Antonio

    2014-01-01

    BICEP2 measurement of primordial tensor modes in CMB suggests that cosmological inflation is due to a slowly rolling inflaton taking trans-Planckian values and provides further experimental evidence for the absence of large $M_{\\rm P}$ induced operators. We show that classical scale invariance solves the problem and allows for a remarkably simple scale-free inflaton model without any gauge group. Due to trans-Planckian inflaton values and VEVs, a dynamically induced Coleman-Weinberg-type inflaton potential of the model can predict tensor-to-scalar ratio $r$ in a large range. Precise determination of $r$ in future experiments will allow to test the proposed field-theoretic framework.

  12. Scientific Realism and Classical Physics

    CERN Document Server

    Singh, Virendra

    2008-01-01

    We recount the successful long career of classical physics, from Newton to Einstein, which was based on the philosophy of scientific realism. Special emphasis is given to the changing status and number of ontological entitities and arguments for their necessity at any time. Newton, initially, began with (i) point particles, (ii) aether, (iii) absolute space and (iv) absolute time. The electromagnetic theory of Maxwell and Faraday introduced `fields' as a new ontological entity not reducible to earlier ones. Their work also unified electricity, magnetism and optics. Repeated failure to observe the motion of earth through aether led Einstein to modify the Newtonian absolute space and time concepts to a fused Minkowski space-time and the removal of aether from basic ontological entities in his special theory of relativity. Later Einstein in his attempts to give a local theory of gravitation was led to further modify flat Minkowski space-time to the curved Riemannian space time. This reduced gravitational phenome...

  13. Hydrogen: Beyond the Classic Approximation

    International Nuclear Information System (INIS)

    The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position

  14. Classical electromagnetism in a nutshell

    CERN Document Server

    Garg, Anupam

    2012-01-01

    This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.

  15. From classical to quantum fields

    CERN Document Server

    Baulieu, Laurent; Sénéor, Roland

    2017-01-01

    Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a re...

  16. Classical Cosmology Through Animation Stories

    Science.gov (United States)

    Mijic, Milan; Kang, E. Y. E.; Longson, T.; State LA SciVi Project, Cal

    2010-05-01

    Computer animations are a powerful tool for explanation and communication of ideas, especially to a younger generation. Our team completed a three part sequence of short, computer animated stories about the insight and discoveries that lead to the understanding of the overall structure of the universe. Our principal characters are Immanuel Kant, Henrietta Leavitt, and Edwin Hubble. We utilized animations to model and visualize the physical concepts behind each discovery and to recreate the characters, locations, and flavor of the time. The animations vary in length from 6 to 11 minutes. The instructors or presenters may wish to utilize them separately or together. The animations may be used for learning classical cosmology in a visual way in GE astronomy courses, in pre-college science classes, or in public science education setting.

  17. Periodic orbits for classical particles having complex energy

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Alexander G., E-mail: aganders@wustl.edu [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Bender, Carl M., E-mail: cmb@wustl.edu [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Morone, Uriel I., E-mail: uimorone@wustl.edu [Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2011-09-12

    This Letter revisits earlier work on complex classical mechanics in which it was argued that when the energy of a classical particle in an analytic potential is real, the particle trajectories are closed and periodic, but that when the energy is complex, the classical trajectories are open. Here it is shown that there is a discrete set of eigencurves in the complex-energy plane for which the particle trajectories are closed and periodic. -- Highlights: → This Letter presents new previously unknown periodic complex-energy solutions. → Until this work it was thought that all complex-energy solutions were nonperiodic. → The new periodic solutions are a set of measure 0 of all complex-energy solutions. → However, they are crucial because they are dense in the set of all solutions.

  18. Introduction to Classical Density Functional Theory by Computational Experiment

    CERN Document Server

    Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2014-01-01

    We present here an introductory practical course to classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely largely on nonintuitive abstract concepts and applied mathematics. They are nevertheless a powerful tool and an active field of research in physics and chemistry that led to the 1998 Nobel prize in chemistry. We here illustrate the DFT in its most mathematically simple and yet physically relevant form: the classical density functional theory of an ideal fluid in an external field, as applied to the prediction of the structure of liquid neon at the molecular scale. This introductory course is built around the production of a cDFT code written by students using the Mathematica language. In this way, they are brought to deal with (i) the cDFT theory itself, (ii) some basic concepts around the statistical mechanics of simple fluids, (iii) the underlying mathematical and numerical problem of functional minimization, and (iv) a functional programming languag...

  19. Dynamics of classical and quantum fields an introduction

    CERN Document Server

    Setlur, Girish S

    2014-01-01

    Dynamics of Classical and Quantum Fields: An Introduction focuses on dynamical fields in non-relativistic physics. Written by a physicist for physicists, the book is designed to help readers develop analytical skills related to classical and quantum fields at the non-relativistic level, and think about the concepts and theory through numerous problems. In-depth yet accessible, the book presents new and conventional topics in a self-contained manner that beginners would find useful. A partial list of topics covered includes: Geometrical meaning of Legendre transformation in classical mechanics Dynamical symmetries in the context of Noether's theorem The derivation of the stress energy tensor of the electromagnetic field, the expression for strain energy in elastic bodies, and the Navier Stokes equation Concepts of right and left movers in case of a Fermi gas explained Functional integration is interpreted as a limit of a sequence of ordinary integrations Path integrals for one and two quantum particles and for...

  20. Quantum-classical interactions through the path integral

    Science.gov (United States)

    Metaxas, Dimitrios

    2007-03-01

    I consider the case of two interacting scalar fields, ϕ and ψ, and use the path integral formalism in order to treat the first classically and the second quantum-mechanically. I derive the Feynman rules and the resulting equation of motion for the classical field which should be an improvement of the usual semiclassical procedure. As an application I use this method in order to enforce Gauss’s law as a classical equation in a non-Abelian gauge theory. I argue that the theory is renormalizable and equivalent to the usual Yang-Mills theory as far as the gauge field terms are concerned. There are additional terms in the effective action that depend on the Lagrange multiplier field λ that is used to enforce the constraint. These terms and their relation to the confining properties of the theory are discussed.

  1. Generic emergence of classical features in quantum Darwinism

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Piani, Marco; Horodecki, Paweł

    2015-08-01

    Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics: observers who acquire information indirectly through the environment have effective access at most to classical information about one and the same measurement of the quantum system. Our analysis does not rely on a strict conceptual splitting between a system-of-interest and its environment, and allows one to interpret any system as part of the environment of any other system. Finally, our approach leads to a full operational characterization of quantum discord in terms of local redistribution of correlations.

  2. The Classical Isotropic bi-Dimensional Oscilator in the Eisenhart Formulation of Classical Mechanics

    Directory of Open Access Journals (Sweden)

    U. Percoco

    2007-01-01

    Full Text Available De acuerdo con la Teoría de la Relatividad General, el movimi en- to de partículas por acción de su inercia y la gravedad es desc rito por geodésicas en el espacio-tiempo. Utilizamos la formulació n Geométrica de Eisenhart de la Mecánica Clásica para establecer una corres pondencia en- tre geodésicas y trayectorias en el espacio de fases del osci lador clásico isótropo. Se presentan los vectores de Killing y las constan tes de movimien- to asociadas, se comparan con las constantes de movimiento n o noetheriano calculadas por S. Hojman y colaboradores.

  3. New developments in classical chaotic scattering.

    Science.gov (United States)

    Seoane, Jesús M; Sanjuán, Miguel A F

    2013-01-01

    Classical chaotic scattering is a topic of fundamental interest in nonlinear physics due to the numerous existing applications in fields such as celestial mechanics, atomic and nuclear physics and fluid mechanics, among others. Many new advances in chaotic scattering have been achieved in the last few decades. This work provides a current overview of the field, where our attention has been mainly focused on the most important contributions related to the theoretical framework of chaotic scattering, the fractal dimension, the basins boundaries and new applications, among others. Numerical techniques and algorithms, as well as analytical tools used for its analysis, are also included. We also show some of the experimental setups that have been implemented to study diverse manifestations of chaotic scattering. Furthermore, new theoretical aspects such as the study of this phenomenon in time-dependent systems, different transitions and bifurcations to chaotic scattering and a classification of boundaries in different types according to symbolic dynamics are also shown. Finally, some recent progress on chaotic scattering in higher dimensions is also described.

  4. Higgs Triplet Model with Classically Conformal Invariance

    CERN Document Server

    Okada, Hiroshi; Yagyu, Kei

    2015-01-01

    We discuss an extension of the minimal Higgs triplet model with a classically conformal invariance and with a gauged $U(1)_{B-L}$ symmetry. In our scenario, tiny masses of neutrinos are generated by a hybrid contribution from the type-I and type-II seesaw mechanisms. The shape of the Higgs potential at low energies is determined by solving one-loop renormalization group equations for all the scalar quartic couplings with a set of initial values of parameters at the Planck scale. We find a successful set of the parameters in which the $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism at the ${\\cal O}$(10) TeV scale, and the electroweak symmetry breaking is also triggered by the $U(1)_{B-L}$ breaking. Under this configuration, we can predict various low energy observables such as the mass spectrum of extra Higgs bosons, and the mixing angles. Furthermore, using these predicted mass parameters, we obtain upper limits on Yukawa couplings among an isospin triplet Higgs field and lepton...

  5. Indeterminism in Classical Dynamics of Particle Motion

    Science.gov (United States)

    Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Burns, Randal; Meneveau, Charles; Szalay, Alex

    2013-03-01

    We show that ``God plays dice'' not only in quantum mechanics but also in the classical dynamics of particles advected by turbulent fluids. With a fixed deterministic flow velocity and an exactly known initial position, the particle motion is nevertheless completely unpredictable! In analogy with spontaneous magnetization in ferromagnets which persists as external field is taken to zero, the particle trajectories in turbulent flow remain random as external noise vanishes. The necessary ingredient is a rough advecting field with a power-law energy spectrum extending to smaller scales as noise is taken to zero. The physical mechanism of ``spontaneous stochasticity'' is the explosive dispersion of particle pairs proposed by L. F. Richardson in 1926, so the phenomenon should be observable in laboratory and natural turbulent flows. We present here the first empirical corroboration of these effects in high Reynolds-number numerical simulations of hydrodynamic and magnetohydrodynamic fluid turbulence. Since power-law spectra are seen in many other systems in condensed matter, geophysics and astrophysics, the phenomenon should occur rather widely. Fast reconnection in solar flares and other astrophysical systems can be explained by spontaneous stochasticity of magnetic field-line motion

  6. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    Science.gov (United States)

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  7. The equation of motion of an electron: a debate in classical and quantum physics

    International Nuclear Information System (INIS)

    The current status of understanding of the equation of motion of an electron is summarized. Classically, a consistent, linearized theory exists for an electron of finite extent, as long as the size of the electron is larger than the classical electron radius. Nonrelativistic quantum mechanics seems to offer a tine theory even in the point-particle limit

  8. Quantum Electrodynamics Basis of Classical-Field High-Harmonic Generation Theory

    Institute of Scientific and Technical Information of China (English)

    王兵兵; 高靓辉; 傅盘铭; 郭东升; R. R. Freeman

    2001-01-01

    From the nonperturbative quantum electrodynamics theory, we derive the Landau-Dykhne formula which represents the quantum-mechanical formulation of the three-step model. These studies provide a basis for the classical-field approaches to high-order harmonic generation and justify some assumptions used in classical-field modelling.

  9. A Method for Choosing an Initial Time Eigenstate in Classical and Quantum Systems

    Directory of Open Access Journals (Sweden)

    Mónica Noemí Jiménez-García

    2013-06-01

    Full Text Available A subject of interest in classical and quantum mechanics is the development of the appropriate treatment of the time variable. In this paper we introduce a method of choosing the initial time eigensurface and how this method can be used to generate time-energy coordinates and, consequently, time-energy representations for classical and quantum systems.

  10. Classical and Quantum Vibration in a Nonseparable, Nonharmonic System

    Science.gov (United States)

    McDonald, Karen Marie

    Studies of vibrational dynamics have been performed on a two-dimensional model potential surface V(x,z; R), adapted from the ab initio surface previously used in this laboratory to analyze dynamics of the bifluoride ion (FHF) ^-. The model potential has C _{2v} symmetry, but is strongly anharmonic and nonseparable in the dynamical variables (x,z); its character changes as the parameter R is varied. Quantum and classical descriptions of vibrational states in this system are compared with corresponding Self-Consistent Field (SCF) approximations. Insights provided by each approach are assessed. Systematic Fermi resonances appear in the quantum mechanical states (at energies up to approximately 10,000 cm^{-1}) arising from crossings of quantum SCF levels with two quanta of vibration exchanged between x and z modes. The lowest quantum states of each symmetry are well described by the SCF approximation except near such crossings. Calculations using Configuration Interaction were done to obtain accurate eigenstates and examine correlations in the quantum mechanics. The Classical Self-Consistent Field (CSCF) method provides a description of the mechanics similar to that given by its quantum counterpart. Classical bound state methods based on semiclassical quantization of quasiperiodic trajectories are unable to give a corresponding description. At energies as low as the quantum ground state, the true classical dynamics is strongly disturbed by resonant interactions. At higher energies the number and strength of these disruptions is so great that the motion is largely irregular. The most prominent effect is a 1:1 frequency resonance associated with strong reorganization of the classical motion along pronounced valleys of the potential surface lying at +/-26^circ to the x-axis. This phenomenon has been studied by analysis of the true dynamics and by application of classical canonical perturbation theory to the zero-order CSCF description. It is found that the latter gives a

  11. Autonomous quantum to classical transitions and the generalized imaging theorem

    Science.gov (United States)

    Briggs, John S.; Feagin, James M.

    2016-03-01

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.

  12. Effect of geometry on the classical entanglement in a chaotic optical fiber.

    Science.gov (United States)

    Joseph, Sijo K; Sabuco, Juan; Chew, Lock Yue; Sanjuán, Miguel A F

    2015-12-14

    The effect of boundary deformation on the classical entanglement which appears in the classical electromagnetic field is considered. A chaotic billiard geometry is used to explore the influence of the mechanical modification of the optical fiber cross-sectional geometry on the production of classical entanglement within the electromagnetic fields. For the experimental realization of our idea, we propose an optical fiber with a cross section that belongs to the family of Robnik chaotic billiards. Our results show that a modification of the fiber geometry from a regular to a chaotic regime can enhance the transverse mode classical entanglement.

  13. Double ionization of helium interacting with elliptically polarized laser pulse by classical ensemble simulations

    International Nuclear Information System (INIS)

    This paper uses the classical ensemble method to study the double ionization of a 2-dimensional (2D) model helium atom interacting with an elliptically polarized laser pulse. The classical ensemble calculation demonstrates that the ratio of double to single ionization decreases with the increasing ellipticity of the driving field. The classical scenario shows that there are hardly any e–e recollisions with the circularly polarized laser pulse. The double ionization probability is studied for linearly and circularly polarized laser pulses. The classical numerical results are consistent with the semiclassical rescattering mechanism and in agreement with the experimental results and the quantum calculations qualitatively. (atomic and molecular physics)

  14. Classical universes are perfectly predictable!

    Science.gov (United States)

    Schmidt, Jan Hendrik

    I argue that in a classical universe, all the events that ever happen are encoded in each of the universe's parts. This conflicts with a statement which is widely believed to lie at the basis of relativity theory: that the events in a space-time region R determine only the events in R's domain of dependence but not those in other space-time regions. I show how, from this understanding, a new prediction method (which I call the 'Smoothness Method') can be obtained which allows us to predict future events on the basis of local observational data. Like traditional prediction methods, this method makes use of so-called ' ceteris paribus clauses', i.e. assumptions about the unobserved parts of the universe. However, these assumptions are used in a way which enables us to predict the behaviour of open systems with arbitrary accuracy, regardless of the influence of their environment-which has not been achieved by traditional methods. In a sequel to this paper (Schmidt, 1998), I will prove the Uniqueness and Predictability Theorems on which the Smoothness Method is based, and comment in more detail on its mathematical properties.

  15. Rebrightening Phenomenon in Classical Novae

    CERN Document Server

    Kato, Taichi; Maehara, Hiroyuki; Kiyota, Seiichiro

    2009-01-01

    Two classical novae V1493 Aql and V2362 Cyg were known to exhibit unprecedented large-amplitude rebrightening during the late stage of their evolution. We analyzed common properties in these two light curves. We show that these unusual light curves are very well expressed by a combination of power-law decline, omnipresent in fast novae, and exponential brightening. We propose a schematic interpretation of the properties common to these rebrightenings can be a consequence of a shock resulting from a secondary ejection and its breakout in the optically thick nova winds. This interpretation has an advantage in explaining the rapid fading following the rebrightening and the subsequent evolution of the light curve. The exponential rise might reflect emerging light from the shock front, analogous to a radiative precursor in a supernova shock breakout. The consequence of such a shock in the nova wind potentially explains many kinds of unusual phenomena in novae including early-stage variations and potentially dust f...

  16. Classical topology and quantum states

    Indian Academy of Sciences (India)

    A P Balachandran

    2001-02-01

    Any two infinite-dimensional (separable) Hilbert spaces are unitarily isomorphic. The sets of all their self-adjoint operators are also therefore unitarily equivalent. Thus if all self-adjoint operators can be observed, and if there is no further major axiom in quantum physics than those formulated for example in Dirac’s ‘quantum mechanics’, then a quantum physicist would not be able to tell a torus from a hole in the ground. We argue that there are indeed such axioms involving observables with smooth time evolution: they contain commutative subalgebras from which the spatial slice of spacetime with its topology (and with further refinements of the axiom, its - and ∞ - structures) can be reconstructed using Gel’fand–Naimark theory and its extensions. Classical topology is an attribute of only certain quantum observables for these axioms, the spatial slice emergent from quantum physics getting progressively less differentiable with increasingly higher excitations of energy and eventually altogether ceasing to exist. After formulating these axioms, we apply them to show the possibility of topology change and to discuss quantized fuzzy topologies. Fundamental issues concerning the role of time in quantum physics are also addressed.

  17. Equilibrium statistical mechanics

    CERN Document Server

    Jackson, E Atlee

    2000-01-01

    Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t

  18. Locking classical correlation in quantum states

    CERN Document Server

    Di Vincenzo, D P; Leung, D; Smolin, J A; Terhal, B M; Vincenzo, David Di; Horodecki, Michal; Leung, Debbie; Smolin, John; Terhal, Barbara

    2003-01-01

    We show that there exist bipartite quantum states which contain large hidden classical correlation that can be unlocked by a disproportionately small amount of classical communication. In particular, there are $(2n+1)$-qubit states for which a one bit message doubles the optimal classical mutual information between measurement results on the subsystems, from $n/2$ bits to $n$ bits. States exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.

  19. A Drosophila melanogaster model of classic galactosemia

    OpenAIRE

    Kushner, Rebekah F.; Ryan, Emily L.; Sefton, Jennifer M. I.; Rebecca D Sanders; Lucioni, Patricia Jumbo; Kenneth H Moberg; Fridovich-Keil, Judith L.

    2010-01-01

    Classic galactosemia is a potentially lethal disorder that results from profound impairment of galactose-1-phosphate uridylyltransferase (GALT). Despite decades of research, the underlying pathophysiology of classic galactosemia remains unclear, in part owing to the lack of an appropriate animal model. Here, we report the establishment of a Drosophila melanogaster model of classic galactosemia; this is the first whole-animal genetic model to mimic aspects of the patient phenotype. Analogous t...

  20. Delayed Choice Between Purely Classical States

    OpenAIRE

    Jason A. C. Gallas

    2006-01-01

    It is argued that Wheeler's insightful idea of delayed choice experiments may be explored at a classical level, arising naturally from number-theoretical conjugacies always necessarily present in the equations of motion. For simple and representative systems, we illustrate how to cast the equations of motion in a form encoding all classical states simultaneously through a ``state parameter''. By suitably selecting the parameter one may project the system into any desired classical state.

  1. The relation between classical and quantum electrodynamics

    OpenAIRE

    Mario Bacelar Valente

    2012-01-01

    Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an ex...

  2. On the tomographic description of classical fields

    International Nuclear Information System (INIS)

    After a general description of the tomographic picture for classical systems, a tomographic description of free classical scalar fields is proposed both in a finite cavity and the continuum. The tomographic description is constructed in analogy with the classical tomographic picture of an ensemble of harmonic oscillators. The tomograms of a number of relevant states such as the canonical distribution, the classical counterpart of quantum coherent states and a new family of so-called Gauss–Laguerre states, are discussed. Finally the Liouville equation for field states is described in the tomographic picture offering an alternative description of the dynamics of the system that can be extended naturally to other fields.

  3. On the tomographic description of classical fields

    Energy Technology Data Exchange (ETDEWEB)

    Ibort, A., E-mail: albertoi@math.uc3m.es [Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain); López-Yela, A., E-mail: alyela@math.uc3m.es [Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain); Man' ko, V.I., E-mail: manko@na.infn.it [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, G., E-mail: marmo@na.infn.it [Dipartimento di Scienze Fisiche dell' Università “Federico II” e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy); Simoni, A., E-mail: simoni@na.infn.it [Dipartimento di Scienze Fisiche dell' Università “Federico II” e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy); Sudarshan, E.C.G., E-mail: bhamathig@gmail.com [Physics Department, Center for Particle Physics, University of Texas, Austin, TX 78712 (United States); Ventriglia, F., E-mail: ventriglia@na.infn.it [Dipartimento di Scienze Fisiche dell' Università “Federico II” e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy)

    2012-03-26

    After a general description of the tomographic picture for classical systems, a tomographic description of free classical scalar fields is proposed both in a finite cavity and the continuum. The tomographic description is constructed in analogy with the classical tomographic picture of an ensemble of harmonic oscillators. The tomograms of a number of relevant states such as the canonical distribution, the classical counterpart of quantum coherent states and a new family of so-called Gauss–Laguerre states, are discussed. Finally the Liouville equation for field states is described in the tomographic picture offering an alternative description of the dynamics of the system that can be extended naturally to other fields.

  4. On the tomographic description of classical fields

    CERN Document Server

    Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Sudarshan, E C G; Ventriglia, F

    2012-01-01

    After a general description of the tomographic picture for classical systems, a tomographic description of free classical scalar fields is proposed both in a finite cavity and the continuum. The tomographic description is constructed in analogy with the classical tomographic picture of an ensemble of harmonic oscillators. The tomograms of a number of relevant states such as the canonical distribution, the classical counterpart of quantum coherent states and a new family of so called Gauss--Laguerre states, are discussed. Finally the Liouville equation for field states is described in the tomographic picture offering an alternative description of the dynamics of the system that can be extended naturally to other fields.

  5. Primary Mediastinal Classical Hodgkin Lymphoma.

    Science.gov (United States)

    Piña-Oviedo, Sergio; Moran, Cesar A

    2016-09-01

    Primary mediastinal Classical Hodgkin lymphoma (CHL) is rare. Nodular sclerosis CHL (NS-CHL) is the most common subtype involving the anterior mediastinum and/or mediastinal lymph nodes. Primary thymic CHL is exceedingly rare. The disease typically affects young women and is asymptomatic in 30% to 50% of patients. Common symptoms include fatigue, chest pain, dyspnea and cough, but vary depending on the location and size of the tumor. B-symptoms develop in 30% of cases. By imaging, primary mediastinal CHL presents as mediastinal widening/mediastinal mass that does not invade adjacent organs but may compress vital structures as bulky disease. Histopathology is the gold standard for diagnosis. Primary mediastinal NS-CHL consists of nodules of polymorphous inflammatory cells surrounded by broad fibrous bands extending from a thickened lymph node capsule. The cellular nodules contain variable numbers of large Hodgkin/Reed-Sternberg cells, required for diagnosis. Primary thymic CHL may exhibit prominent cystic changes. The histopathologic recognition of NS-CHL can be challenging in cases with prominent fibrosis, scant cellularity, artifactual cell distortion, or an exuberant granulomatous reaction. The differential diagnosis includes primary mediastinal non-HLs, mediastinal germ cell tumors, thymoma, and metastatic carcinoma or melanoma to the mediastinum. Distinction from primary mediastinal non-HLs is crucial for adequate therapeutic decisions. Approximately 95% of patients with primary mediastinal CHL will be alive and free of disease at 10 years after treatment with short courses of combined chemoradiotherapy. In this review, we discuss the history, classification, epidemiology, clinicoradiologic features, histopathology, immunohistochemistry, differential diagnosis, and treatment of primary mediastinal CHL. PMID:27441757

  6. Inference of Planck action constant by a classical fluctuative postulate holding for stable microscopic and macroscopic dynamical systems

    CERN Document Server

    De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1999-01-01

    The possibility is discussed of inferring or simulating some aspects of quantum dynamics by adding classical statistical fluctuations to classical mechanics. We introduce a general principle of mechanical stability and derive a necessary condition for classical chaotic fluctuations to affect confined dynamical systems, on any scale, ranging from microscopic to macroscopic domains. As a consequence we obtain, both for microscopic and macroscopic aggregates, dimensional relations defining the minimum unit of action of individual constituents, yielding in all cases Planck action constant.

  7. Inference of Planck action constant by a classical fluctuative postulate holding for stable microscopic and macroscopic dynamical systems

    OpenAIRE

    De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio

    1999-01-01

    The possibility is discussed of inferring or simulating some aspects of quantum dynamics by adding classical statistical fluctuations to classical mechanics. We introduce a general principle of mechanical stability and derive a necessary condition for classical chaotic fluctuations to affect confined dynamical systems, on any scale, ranging from microscopic to macroscopic domains. As a consequence we obtain, both for microscopic and macroscopic aggregates, dimensional relations defining the m...

  8. Pair production in classical Stueckelberg-Horwitz-Piron electrodynamics

    CERN Document Server

    Land, Martin

    2016-01-01

    In this paper we calculate pair production from bremsstrahlung as a classical effect in Stueckelberg-Horwitz-Piron electrodynamics. In this framework, worldlines are traced out dynamically through the evolution of events $x^\\mu(\\tau)$ parameterized by a chronological time $\\tau$ that is independent of the spacetime coordinates. These events, defined in an unconstrained 8D phase space, interact through five $\\tau$-dependent gauge fields induced by the event evolution. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. In particular, the total mass-energy-momentum of particles and fields is conserved, but the mass-shell constraint is lifted from individual interacting events, so that the standard Feynman-Stueckelberg interpretation of pair creation/annihilation is implemented in classical mechanics.

  9. Non-classical Measurement Theory: a Framework for Behavioral Sciences

    CERN Document Server

    Danilov, V I

    2006-01-01

    Instances of non-commutativity are pervasive in human behavior. In this paper, we suggest that psychological properties such as attitudes, values, preferences and beliefs may be suitably described in terms of the mathematical formalism of quantum mechanics. We expose the foundations of non-classical measurement theory building on a simple notion of orthospace and ortholattice (logic). Two axioms are formulated and the characteristic state-property duality is derived. A last axiom concerned with the impact of measurements on the state takes us with a leap toward the Hilbert space model of Quantum Mechanics. An application to behavioral sciences is proposed. First, we suggest an interpretation of the axioms and basic properties for human behavior. Then we explore an application to decision theory in an example of preference reversal. We conclude by formulating basic ingredients of a theory of actualized preferences based in non-classical measurement theory.

  10. Quantum and classical descriptions of a measuring apparatus

    CERN Document Server

    Hay, O; Hay, Ori; Peres, Asher

    1998-01-01

    A measuring apparatus is described by quantum mechanics while it interacts with the quantum system under observation, and then it must be given a classical description so that the result of the measurement appears as objective reality. Alternatively, the apparatus may always be treated by quantum mechanics, and be measured by a second apparatus which has such a dual description. This article examines whether these two different descriptions are mutually consistent. It is shown that if the dynamical variable used in the first apparatus is represented by an operator of the Weyl-Wigner type (for example, if it is a linear coordinate), then the conversion from quantum to classical terminology does not affect the final result. However, if the first apparatus encodes the measurement in a different type of operator (e.g., the phase operator), the two methods of calculation may give different results.

  11. Teaching classical mechanics using an applied example: Modelling and Software

    OpenAIRE

    García-March, M. A.; Isidro, J. M.; M. Zacarés; M. Arevalillo; J.L. González-Santander; Ll. Monreal; C.I. López-Javier

    2009-01-01

    Presentamos la experiencia docente obtenida al utilizar un mecanismo muy común en ingeniería, como el mecanismo biela-manivela-deslizadera, como un ejemplo práctico en la asignatura ”mecánica clásica” que se imparte en los grados de física e ingeniería. También presentamos una interfaz gráfica que permite al estudiante visualizar los resultados obtenidos al simular en el ordenador el movimiento de dicho mecanismo variando las condiciones en las que se realiza el experimento numérico....

  12. Quantum-mechanical aspects of classically chaotic driven systems

    International Nuclear Information System (INIS)

    This paper treats atoms and molecules in laser fields as periodically driven quantum systems. The paper concludes by determining that stochastic excitation is possible in quantum systems with quasiperiodic driving. 17 refs

  13. Teaching classical mechanics using an applied example: Modelling and Software

    Directory of Open Access Journals (Sweden)

    M.A. García-March

    2009-06-01

    Full Text Available Presentamos la experiencia docente obtenida al utilizar un mecanismo muy común en ingeniería, como el mecanismo biela-manivela-deslizadera, como un ejemplo práctico en la asignatura ”mecánica clásica” que se imparte en los grados de física e ingeniería. También presentamos una interfaz gráfica que permite al estudiante visualizar los resultados obtenidos al simular en el ordenador el movimiento de dicho mecanismo variando las condiciones en las que se realiza el experimento numérico.

  14. Lie Algebroids in Classical Mechanics and Optimal Control

    Directory of Open Access Journals (Sweden)

    Eduardo Martínez

    2007-03-01

    Full Text Available We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.

  15. Quantization, Classical and Quantum Field Theory and Theta - Functions

    OpenAIRE

    Tyurin, Andrey N.

    2002-01-01

    In the abelian case (the subject of several beautiful books) fixing some combinatorial structure (so called theta structure of level k) one obtains a special basis in the space of sections of canonical polarization powers over the jacobians. These sections can be presented as holomorphic functions on the "abelian Schottky space". This fact provides various applications of these concrete analytic formulas to the integrable systems, classical mechanics and PDE's. Our practical goal is to do the...

  16. Classical geometric resolution of the Einstein—Podolsky—Rosen paradox

    OpenAIRE

    Ne'eman, Yuval

    1983-01-01

    I show that, in the geometry of a fiber bundle describing a gauge theory, curvature and parallel transport ensure and impose nonseparability. The “Einstein—Podolsky—Rosen paradox” is thus resolved “classically.” I conjecture that the ostentatiously “implausible” features of the quantum treatment are due to the fact that space—time separability, a basic assumption of single-particle nonrelativistic quantum mechanics, does not fit the bundle geometry of the complete physics.

  17. Isomorph invariance of the structure and dynamics of classical crystals

    DEFF Research Database (Denmark)

    Albrechtsen, Dan; Olsen, Andreas Elmerdahl; Pedersen, Ulf Rørbæk;

    2014-01-01

    This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework...... for which isomorphs are only expected when the Coulomb interactions are relatively weak. We briefly discuss the consequences of the findings for theories of melting and crystallization...

  18. Classical limits of boot-rotation symmetric spacetimes

    CERN Document Server

    Kofron, David

    2010-01-01

    Boost-rotation symmetric spacetimes are exceptional as they are the only exact asymptotically flat solutions to the Einstein equations describing spatially bounded sources ("point-like" particles, black holes) undergoing non-trivial motion ("uniform acceleration") with radiation. We construct the Newtonian limit of these spacetimes: it yields fields of uniformly accelerated sources in classical mechanics. We also study the special-relativistic limit of the charged rotating C-metric and so find accelerating electromagnetic magic field.

  19. A magnetic condensate solution of the classical electroweak theory

    International Nuclear Information System (INIS)

    According to the electroweak theory a large homogeneous magnetic field exceeding m2w/e is unstable. We present a different solution of the classical electroweak field equations which is a condensate of magnetic fluxes induced by an anti-Lenz current of the charged vector bosons. The anti-Lenz mechanism is a consequence of asymptotic freedom. The range of validity of this solution depends on the Weinberg angle θ. (orig.)

  20. BOOK REVIEW: Quantum-Classical Correspondence: Dynamical Quantization and the Classical Limit

    Science.gov (United States)

    Turner, L.

    2004-11-01

    In only 150 pages, not counting appendices, references, or the index, this book is one author’s perspective of the massive theoretical and philosophical hurdles in the no-man’s-land separating the classical and quantum domains of physics. It ends with him emphasizing his own theoretical contribution to this area. In his own words, he has attempted to answer: 1. ‘How can we obtain the quantum dynamics of open systems initially described by the equations of motion of classical physics (quantization process)? 2. ‘How can we retrieve classical dynamics from the quantum mechanical equations of motion by means of a classical limiting process (dequantization process)?’ However, this monograph seems overly ambitious. Although the publisher’s description refers to this book as ‘an accessible entrée’, we find that this author scrambles too hastily over the peaks of information that are contained in his large collection of 272 references. Introductory motivating discussions are lacking. Profound ideas are glossed over superficially and shoddily. Equations morph. But no new convincing understanding of the physical world results. The author takes the viewpoint that physical systems are always in interaction with their environment and are thus not isolated and, therefore, not Hamiltonian. This impels him to produce a method of quantization of these stochastic systems without the need of a Hamiltonian. He also has interest in obtaining the classical limit of the quantized results. However, this reviewer does not understand why one needs to consider open systems to understand ‘quantum-classical correspondence’. The author demonstrates his method using various examples of the Smoluchowski form of the Fokker--Planck equation. He then renders these equations in a Wigner representation, uses what he terms ‘an infinitesimality condition’, and associates with a constant having the dimensions of an action. He thereby claims to develop master equations, such as