Gallavotti, Giovanni
1999-01-01
This is the English version of a friendly graduate course on Classical Mechanics, containing about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. For the Spanish version, see physics/9906066
Matzner, Richard A
1991-01-01
An advanced physics textbook that explains the mathematical and physical concepts of mechanics and their relationship to other branches of physics. Topics covered include tensor analysis, variational principles and Lagrangians, canonical transformations and estimation techniques.
Mecanica Clasica (Classical Mechanics)
Rosu, H. C.
1999-01-01
First Internet graduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031
Mecanica Clasica (Classical Mechanics)
Rosu, H C
1999-01-01
First Internet undergraduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031
Classical mechanics with Maxima
Timberlake, Todd Keene
2016-01-01
This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.
Mechanical Systems, Classical Models
Teodorescu, Petre P
2009-01-01
This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...
Mechanics classical and quantum
Taylor, T T
2015-01-01
Mechanics: Classical and Quantum explains the principles of quantum mechanics via the medium of analytical mechanics. The book describes Schrodinger's formulation, the Hamilton-Jacobi equation, and the Lagrangian formulation. The author discusses the Harmonic Oscillator, the generalized coordinates, velocities, as well as the application of the Lagrangian formulation to systems that are partially or entirely electromagnetic in character under certain conditions. The book examines waves on a string under tension, the isothermal cavity radiation, and the Rayleigh-Jeans result pertaining to the e
Computation in Classical Mechanics
Timberlake, Todd
2007-01-01
There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss the ways we have used computation in our classical mechanics courses, focusing on how computational work can improve students' understanding of physics as well as their computational skills. We present examples of computational problems that serve these two purposes. In addition, we provide information about resources for instructors who would like to include computation in their courses.
Computation in Classical Mechanics
Timberlake, Todd; Hasbun, Javier E.
2007-01-01
There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss th...
Mechanical Systems, Classical Models
Teodorescu, Petre P
2007-01-01
All phenomena in nature are characterized by motion; this is an essential property of matter, having infinitely many aspects. Motion can be mechanical, physical, chemical or biological, leading to various sciences of nature, mechanics being one of them. Mechanics deals with the objective laws of mechanical motion of bodies, the simplest form of motion. In the study of a science of nature mathematics plays an important role. Mechanics is the first science of nature which was expressed in terms of mathematics by considering various mathematical models, associated to phenomena of the surrounding nature. Thus, its development was influenced by the use of a strong mathematical tool; on the other hand, we must observe that mechanics also influenced the introduction and the development of many mathematical notions. In this respect, the guideline of the present book is precisely the mathematical model of mechanics. A special accent is put on the solving methodology as well as on the mathematical tools used; vectors, ...
Classical Mechanics and Symplectic Integration
DEFF Research Database (Denmark)
Nordkvist, Nikolaj; Hjorth, Poul G.
2005-01-01
Content: Classical mechanics: Calculus of variations, Lagrange’s equations, Symmetries and Noether’s theorem, Hamilton’s equations, cannonical transformations, integrable systems, pertubation theory. Symplectic integration: Numerical integrators, symplectic integrators, main theorem on symplectic...
Classical fracture mechanics methods
International Nuclear Information System (INIS)
Comprehensive Structural Integrity is a reference work which covers all activities involved in the assurance of structural integrity. It provides engineers and scientists with an unparalleled depth of knowledge in the disciplines involved. The new online Volume 11 is dedicated to the mechanical characteristics of materials. This paper contains the chapter 11.02 of this volume and is structured as follows: Test techniques; Analysis; Fracture behavior; Fracture toughness tests for nonmetals
Quantum localization of Classical Mechanics
Batalin, Igor A
2016-01-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Quantum localization of classical mechanics
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Teaching Classical Mechanics Using Smartphones
Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad
2013-01-01
A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf. Steve Jobs presented the iPhone as "perfect for gaming." Thanks to its microsensors connected in real time to the numerical world, physics…
Invariants in Supersymmetric Classical Mechanics
Alonso Izquierdo, Alberto; González León, Miguel Ángel; Mateos Guilarte, Juan
2000-01-01
[EN] The bosonic second invariant of SuperLiouville models in supersymmetric classical mechanics is described. [ES] El segundo campo cuántico de bosones invariante del modelo SuperLiouville es descrito en la mecanica clasica supersimétrica.
Functional Techniques in Classical Mechanics
Gozzi, E
2001-01-01
In 1931 Koopman and von Neumann extended previous work of Liouville and provided an operatorial version of Classical Mechanics (CM). In this talk we will review a path-integral formulation of this operatorial version of CM. In particular we will study the geometrical nature of the many auxiliary variables present and of the unexpected universal symmetries generated by the functional technique.
Supersymmetric classical mechanics: free case
International Nuclear Information System (INIS)
We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, φ(t;Θ). (author)
Teaching Classical Mechanics using Smartphones
Chevrier, Joel; Ledenmat, Simon; Bsiesy, Ahmad
2012-01-01
Using a personal computer and a smartphone, iMecaProf is a software that provides a complete teaching environment for practicals associated to a Classical Mechanics course. iMecaProf proposes a visual, real time and interactive representation of data transmitted by a smartphone using the formalism of Classical Mechanics. Using smartphones is more than using a set of sensors. iMecaProf shows students that important concepts of physics they here learn, are necessary to control daily life smartphone operations. This is practical introduction to mechanical microsensors that are nowadays a key technology in advanced trajectory control. First version of iMecaProf can be freely downloaded. It will be tested this academic year in Universit\\'e Joseph Fourier (Grenoble, France)
Theoretical physics 1 classical mechanics
Nolting, Wolfgang
2016-01-01
This textbook offers a clear and comprehensive introduction to classical mechanics, one of the core components of undergraduate physics courses. The book starts with a thorough introduction to the mathematical tools needed, to make this textbook self-contained for learning. The second part of the book introduces the mechanics of the free mass point and details conservation principles. The third part expands the previous to mechanics of many particle systems. Finally the mechanics of the rigid body is illustrated with rotational forces, inertia and gyroscope movement. Ideally suited to undergraduate students in their first year, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series...
Collection of problems in classical mechanics
Kotkin, G L; ter Haar, D
1971-01-01
Collection of Problems in Classical Mechanics presents a set of problems and solutions in physics, particularly those involving mechanics. The coverage of the book includes 13 topics relevant to classical mechanics, such as integration of one-dimensional equations of motion; the Hamiltonian equations of motion; and adiabatic invariants. The book will be of great use to physics students studying classical mechanics.
Dynamical Symmetries in Classical Mechanics
Boozer, A. D.
2012-01-01
We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…
Quantum Mechanics As A Limiting Case of Classical Mechanics
Ghose, Partha
2000-01-01
In spite of its popularity, it has not been possible to vindicate the conventional wisdom that classical mechanics is a limiting case of quantum mechanics. The purpose of the present paper is to offer an alternative point of view in which quantum mechanics emerges as a limiting case of classical mechanics in which the classical system is decoupled from its environment.
The Wigner representation of classical mechanics, quantization and classical limit
International Nuclear Information System (INIS)
Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2π → 0. (author)
Emergence of classical theories from quantum mechanics
Hajicek, Petr
2012-01-01
Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is ...
Limitations on Cloning in Classical Mechanics
Fenyes, Aaron
2010-01-01
In this paper, we show that a result precisely analogous to the traditional quantum no-cloning theorem holds in classical mechanics. This classical no-cloning theorem does not prohibit classical cloning, we argue, because it is based on a too-restrictive definition of cloning. Using a less popular, more inclusive definition of cloning, we give examples of classical cloning processes. We also prove that a cloning machine must be at least as complicated as the object it is supposed to clone.
Hidden BRS invariance in classical mechanics
International Nuclear Information System (INIS)
We give in this paper a path integral formulation of classical mechanics. We do so by writing down the associated classical-generating functional. This functional exhibits an unexpected BRS-like and antiBRS-like invariance. This invariance allows for a simple expression, in term of superfields, of this generating functional. Associated to the BRS and antiBRS charges there is also a ghost charge whose conservation turns out to be nothing else than the well-known theorem of classical mechanics. (orig.)
Bohmian mechanics and the emergence of classicality
International Nuclear Information System (INIS)
Bohmian mechanics is endowed with an ontological package that supposedly allows to solve the main interpretational problems of quantum mechanics. We are concerned in this work by the emergence of classicality from the quantum mechanical substrate. We will argue that although being superficially attractive, the de Broglie-Bohm interpretation does not shed new light on the quantum-to-classical transition. This is due to nature of the dynamical law of Bohmian mechanics by which the particles follow the streamlines of the probability flow. As a consequence, Bohmian trajectories can be highly non-classical even when the wavefunction propagates along classical trajectories, as happens in semiclassical systems. In order to account for classical dynamics, Bohmian mechanics needs non-spreading and non-interfering wave packets: this is achieved for practical purposes by having recourse to decoherence and dense measurements. However one then faces the usual fundamental problems associated with the meaning of reduced density matrices. Moreover the specific assets of the de Broglie-Bohm interpretation - in particular the existence of point-like particles pursuing well-defined trajectories - would play no role in accounting for the emergence of classical dynamics.
Bohmian mechanics and the emergence of classicality
Matzkin, A.
2009-06-01
Bohmian mechanics is endowed with an ontological package that supposedly allows to solve the main interpretational problems of quantum mechanics. We are concerned in this work by the emergence of classicality from the quantum mechanical substrate. We will argue that although being superficially attractive, the de Broglie-Bohm interpretation does not shed new light on the quantum-to-classical transition. This is due to nature of the dynamical law of Bohmian mechanics by which the particles follow the streamlines of the probability flow. As a consequence, Bohmian trajectories can be highly non-classical even when the wavefunction propagates along classical trajectories, as happens in semiclassical systems. In order to account for classical dynamics, Bohmian mechanics needs non-spreading and non-interfering wave packets: this is achieved for practical purposes by having recourse to decoherence and dense measurements. However one then faces the usual fundamental problems associated with the meaning of reduced density matrices. Moreover the specific assets of the de Broglie-Bohm interpretation - in particular the existence of point-like particles pursuing well-defined trajectories - would play no role in accounting for the emergence of classical dynamics.
Emergence of classical theories from quantum mechanics
International Nuclear Information System (INIS)
Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's 'first kind of dynamics', and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.
Emergence of classical theories from quantum mechanics
Hájíček, P.
2012-05-01
Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's "first kind of dynamics", and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.
Scale symmetry in classical and quantum mechanics
Gozzi, E
2005-01-01
In this paper we address again the issue of the scale anomaly in quantum mechanical models with inverse square potential. In particular we examine the interplay between the classical and quantum aspects of the system using in both cases an operatorial approach.
Field, J H.
2004-01-01
Some connections between quantum mechanics and classical physics are explored. The Planck-Einstein and De Broglie relations, the wavefunction and its probabilistic interpretation, the Canonical Commutation Relations and the Maxwell--Lorentz Equation may be understood in a simple way by comparing classical electromagnetism and the photonic description of light provided by classical relativistic kinematics. The method used may be described as `inverse correspondence' since quantum phenomena bec...
A modern approach to classical mechanics
Iro, Harald
2002-01-01
The approach to classical mechanics adopted in this book includes and stresses recent developments in nonlinear dynamical systems. The concepts necessary to formulate and understand chaotic behavior are presented. Besides the conventional topics (such as oscillators, the Kepler problem, spinning tops and the two centers problem) studied in the frame of Newtonian, Lagrangian, and Hamiltonian mechanics, nonintegrable systems (the Hénon-Heiles system, motion in a Coulomb force field together with a homogeneous magnetic field, the restricted three-body problem) are also discussed. The question of the integrability (of planetary motion, for example) leads finally to the KAM-theorem. This book is the result of lectures on 'Classical Mechanics' as the first part of a basic course in Theoretical Physics. These lectures were given by the author to undergraduate students in their second year at the Johannes Kepler University Linz, Austria. The book is also addressed to lecturers in this field and to physicists who wa...
Hilbert Space Structure in Classical Mechanics (I)
Deotto, E; Mauro, D
2003-01-01
In this paper we study the Hilbert space structure underlying the Koopman-von Neumann operatorial formulation of classical mechanics. While the Hilbert space of zero-forms can be endowed with a positive definite scalar product and the evolution turns out to be unitary, we prove that this is not the case when we include higher forms. In this last case we explore all possible scalar products and prove that for those which are positive definite the evolution is not unitary and vice versa. This feature is due to the Grassmannian nature of the forms and it appears only in classical mechanics. It is known in fact that in a similar structure, which is supersymmetric quantum mechanics, this does not happen.
Classical mechanical systems based on Poisson symmetry
Zakrzewski, S.
1996-01-01
The existence of the theory of `twisted cotangent bundles' (symplectic groupoids) allows to study classical mechanical systems which are generalized in the sense that their configurations form a Poisson manifold. It is natural to study from this point of view first such systems which arise in the context of some basic physical symmetry (space-time, rotations, etc.). We review results obtained so far in this direction.
Classical mechanical systems based on Poisson symmetry
Energy Technology Data Exchange (ETDEWEB)
Zakrzewski, S. [Department of Mathematical Methods in Physics, University of Warsaw, Warsaw (Poland)
1996-10-01
The existence of the theory of ``twisted cotangent bundles`` (symplectic groupoids) allows to study classical mechanical systems which are generalized in the sense that their configurations form a Poisson manifold. It is natural to study from this point of view first such systems which arise in the context of some basic physical symmetry (space-time, rotations, etc.). We review results obtained so far in this direction. (author)
A 4-vector formalism for classical mechanics
Güémez, Julio
2014-01-01
We present a matrix formalism, inspired by the Minkowski four-vectors of special relativity, useful to solve classical physics problems related to both mechanics and thermodynamics. The formalism turns out to be convenient to deal with exercises involving non-conservative forces and production or destruction of mechanical energy. On the other hand, it provides a framework to treat straightforwardly changes of inertial reference frames, since it embodies the Principle of Relativity. We apply the formalism to a few cases to better show how it works.
On the Galilean covariance of classical mechanics
International Nuclear Information System (INIS)
A Galilean covariant approach to classical mechanics of a single interacting particle is described. In this scheme constitutive relations defining forces are rejected and acting forces are determined by some fundamental differential equations. It is shown that total energy of the interacting particle transforms under Galilean transformations differently from the kinetic energy. The statement is illustrated on the exactly solvable examples of the harmonic oscillator and the case of constant forces and also, in the suitable version of the perturbation theory, for the anharmonic oscillator. (author)
Analogies between classical statistical mechanics and quantum mechanics
International Nuclear Information System (INIS)
Some analogies between nonequilibrium classical statistical mechanics and quantum mechanics, at the level of the Liouville equation and at the kinetic level, are commented on. A theorem, related to the Vlasov equation applied to a plasma, is proved. The theorem presents an analogy with Ehrenfest's theorem of quantum mechanics. An analogy between the plasma kinetic theory and Bohm's quantum theory with 'hidden variables' is also shown. (Author)
The Possibility of Reconciling Quantum Mechanics with Classical Probability Theory
Slavnov, D. A.
2007-01-01
We describe a scheme for constructing quantum mechanics in which a quantum system is considered as a collection of open classical subsystems. This allows using the formal classical logic and classical probability theory in quantum mechanics. Our approach nevertheless allows completely reproducing the standard mathematical formalism of quantum mechanics and identifying its applicability limits. We especially attend to the quantum state reduction problem.
Wave-Particle Duality in Classical Mechanics
Davydov, Alexander Y
2012-01-01
Until recently, wave-particle duality has been thought of as quantum principle without a counterpart in classical physics. This belief was challenged after surprising discovery of "walkers" - droplets that bounce on a vertically vibrating bath of the same fluid and can form wave-particle symbiotic structures with the surface waves they generate. Macroscopic walkers were shown experimentally to exhibit particle and wave properties simultaneously. This paper exposes a new family of objects that can display both particle and wave features all together while strictly obeying laws of the Newtonian mechanics. In contrast to walkers, no constant inflow of energy is required for their existence. These objects behave deterministically provided that all their degrees of freedom are known to an observer. If, however, some degrees of freedom are unknown, observer can describe such objects only probabilistically and they manifest weird features similar to that of quantum particles. We show that such quantum phenomena as p...
A Continuous Transition Between Quantum and Classical Mechanics (I)
Ghose, Partha
2001-01-01
In spite of its popularity, it has not been possible to vindicate the conventional wisdom that classical mechanics is a limiting case of quantum mechanics. The purpose of the present paper is to offer an alternative formulation of classical mechanics which provides a continuous transition to quantum mechanics via environment-induced decoherence.
Classical and Quantum-Mechanical State Reconstruction
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-01-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…
Classical Statistical Mechanics and Landau Damping
Buchmuller, W; Jakovac, A.
1997-01-01
We study the retarded response function in scalar $\\phi^4$-theory at finite temperature. We find that in the high-temperature limit the imaginary part of the self-energy is given by the classical theory to leading order in the coupling. In particular the plasmon damping rate is a purely classical effect to leading order, as shown by Aarts and Smit. The dominant contribution to Landau damping is given by the propagation of classical fields in a heat bath of non-interacting fields.
Semi-classical approximations based on Bohmian mechanics
Struyve, Ward
2015-01-01
Semi-classical theories are approximations to quantum theory that treat some degrees of freedom classically and others quantum mechanically. In the usual approach, the quantum degrees of freedom are described by a wave function which evolves according to some Schr\\"odinger equation with a Hamiltonian that depends on the classical degrees of freedom. The classical degrees of freedom satisfy classical equations that depend on the expectation values of quantum operators. In this paper, we study an alternative approach based on Bohmian mechanics. In this approach the quantum system is not only described by the wave function, but with additional variables such as particle positions or fields. By letting the classical equations of motion depend on these variables, rather than the quantum expectation values, a semi-classical approximation is obtained that is closer to the exact quantum results than the usual approach. We discuss the Bohmian semi-classical approximation in various context, such as non-relativistic qu...
Hidden BRS invariance in classical mechanics. Pt. 2
International Nuclear Information System (INIS)
In this paper we give more details of a path-integral formulation of classical mechanics previously proposed by this author. This formulation has an unexpected BRS and antiBRS invariance that helps in rewriting the classical generating functional in a compact and revealing form in term of superfields. In this paper we also try to bridge the gap between the usual formulation of classical mechanics and ours: in particular we study the meaning of the auxiliary fields and the ghost fields. These last turn out to be nothing else than the Jacobi fields of classical mechanics and the ghost-charge conservation the well-known Liouville theorem. Next we proceed from the path-integral to find the corresponding operatorial formalism. The operator formulation of classical mechanics that emerges is the one associated to the Liouville operator (liouvillian): a formulation proposed by Liouville long ago as equivalent to the Hamilton one and widely used in classical statistical mechanics. (orig.)
Noether conservation laws in classical mechanics
Sardanashvily, G.
2003-01-01
In Lagrangian mechanics, Noether conservation laws including the energy one are obtained similarly to those in field theory. In Hamiltonian mechanics, Noether conservation laws are issued from the invariance of the Poincare-Cartan integral invariant under one-parameter groups of diffeomorphisms of a configuration space. Lagrangian and Hamiltonian conservation laws need not be equivalent.
On the Derivation of Conserved Quantities in Classical Mechanics
Tjiang, P C; Tjiang, Paulus C.; Sutanto, Sylvia H.
2003-01-01
We shall discuss a general way of deriving the conserved quantities associated with a given classical mechanical system, denoted by its Hamiltonian. Some examples are given to check the validity of the formulation.
The Weyl representation in classical and quantum mechanics
International Nuclear Information System (INIS)
The position representation of the evolution operator in quantum mechanics is analogous to the generating function formalism of classical mechanics. Similarly, the Weyl representation is connected to new generating functions described by chords and centres. Both classical and quantal theories rely on the group of translations and reflections through a point in phase space. The composition of small time evolutions leads to new versions of the classical variational principle and to path integrals in quantum mechanics. The restriction of the motion to the energy shell in classical mechanics is the basis for a full review of the semiclassical Wigner function and the theory of scars of periodic orbits. By embedding the theory of scars in a fully uniform approximation, it is shown that the region in which the scar contribution is oscillatory is separated from a decaying region by a caustic that touches the shell along the periodic orbit and widens quadratically within the energy shell. (author). 56 refs., 35 figs
The Weyl representation in classical and quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Almeida, Alfredo M.O. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Paris-6 Univ., 75 (France). Inst. Henri Poincare
1996-09-01
The position representation of the evolution operator in quantum mechanics is analogous to the generating function formalism of classical mechanics. Similarly, the Weyl representation is connected to new generating functions described by chords and centres. Both classical and quantal theories rely on the group of translations and reflections through a point in phase space. The composition of small time evolutions leads to new versions of the classical variational principle and to path integrals in quantum mechanics. The restriction of the motion to the energy shell in classical mechanics is the basis for a full review of the semiclassical Wigner function and the theory of scars of periodic orbits. By embedding the theory of scars in a fully uniform approximation, it is shown that the region in which the scar contribution is oscillatory is separated from a decaying region by a caustic that touches the shell along the periodic orbit and widens quadratically within the energy shell. (author). 56 refs., 35 figs.
A remark on the classical mechanics of colored particles
International Nuclear Information System (INIS)
We analyze examples of the motion of a wave packet in external SU(2) gauge fields. We find that the classical mechanics of colored particles gives a wrong qualitative description of this motion. (orig.)
Another treatment of the relation between classical and quantum mechanics
International Nuclear Information System (INIS)
A model of field theory containing as its limits both the Schroedinger wave mechanics and the Newton classical mechanics is presented. All details are discussed explicitly on the example of the harmonic oscillator. A new fundamental constant connected with the distance of observation of physical phenomena is introduced. Its experimental value may be determined from the spectra of quantum mechanical systems. 8 refs. (author)
A wave equation interpolating between classical and quantum mechanics
Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.
2015-10-01
We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.
Quantum Mechanics as an Approximation to Classical Mechanics in Hilbert Space
Bracken, A. J.
2002-01-01
Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket, and a quasidensity operator. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Classical mechanics can now be viewed as a deformation of quantum mechanics. The forms of semiquantum approximations to classical mechanics are indicated.
Quantum Mechanics as an Approximation to Classical Mechanics in Hilbert Space
Bracken, A J
2003-01-01
Classical mechanics is formulated in Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket, and a quasidensity operator. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Classical mechanics can now be viewed as a deformation of quantum mechanics. The forms of semiquantum approximations to classical mechanics are indicated.
On quantization, the generalised Schroedinger equation and classical mechanics
International Nuclear Information System (INIS)
A ψ-dependent linear functional operator, was defined, which solves the problem of quantization in non-relativistic quantum mechanics. Weyl ordering is implemented automatically and permits derivation of many of the quantum to classical correspondences. The parameter λ presents a natural C∞ deformation of the dynamical structure of quantum mechanics via a non-linear integro-differential 'Generalised Schroedinger Equation', admitting an infinite family of soliton solutions. All these solutions are presented and it is shown that this equation gives an exact dynamic and energetic reproduction of classical mechanics with the correct measurement theoretic limit. 23 refs
Losing energy in classical, relativistic and quantum mechanics
Atkinson, David
2007-01-01
A Zenonian supertask involving an infinite number of colliding balls is considered, under the restriction that the total mass of all the balls is finite. Classical mechanics leads to the conclusion that momentum, but not necessarily energy, must be conserved. In relativistic mechanics, however, neit
Classical mechanics from Newton to Einstein : a modern introduction
McCall, Martin
2011-01-01
This new edition of Classical Mechanics, aimed at undergraduate physics and engineering students, presents in a user-friendly style an authoritative approach to the complementary subjects of classical mechanics and relativity. The text starts with a careful look at Newton's Laws, before applying them in one dimension to oscillations and collisions. More advanced applications - including gravitational orbits and rigid body dynamics - are discussed after the limitations of Newton's inertial frames have been highlighted through an exposition of Einstein's Special Relativity. Examples gi
Classical and quantum mechanics via supermetrics in time
Gozzi, Ennio
2009-01-01
Koopman-von Neumann in the 30's gave an operatorial formululation of Classical Mechanics. It was shown later on that this formulation could also be written in a path-integral form. We will label this functional approach as CPI (for classical path-integral) to distinguish it from the quantum mechanical one, which we will indicate with QPI. In the CPI two Grassmannian partners of time make their natural appearance and in this manner time becomes something like a three dimensional supermanifold. Next we introduce a metric in this supermanifold and show that a particular choice of the supermetric reproduces the CPI while a different one gives the QPI.
Non-Linear Canonical Transformations in Classical and Quantum Mechanics
Brodlie, A
2004-01-01
$p$-Mechanics is a consistent physical theory which describes both classical and quantum mechanics simultaneously through the representation theory of the Heisenberg group. In this paper we describe how non-linear canonical transformations affect $p$-mechanical observables and states. Using this we show how canonical transformations change a quantum mechanical system. We seek an operator on the set of $p$-mechanical observables which corresponds to the classical canonical transformation. In order to do this we derive a set of integral equations which when solved will give us the coherent state expansion of this operator. The motivation for these integral equations comes from the work of Moshinsky and a variety of collaborators. We consider a number of examples and discuss the use of these equations for non-bijective transformations.
Caballero, Marcos D; Turnbull, Anna M; Pepper, Rachel E; Pollock, Steven J
2016-01-01
Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level Classical Mechanics and Math Methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper-division. The Colorado Classical Mechanics/Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post-test that probes student learning in the first half of a two-semester classical mechanics / math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.
Novel Evasion Mechanisms of the Classical Complement Pathway.
Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V
2016-09-15
Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. PMID:27591336
A Primer on Elliptic Functions with Applications in Classical Mechanics
Brizard, Alain J.
2009-01-01
The Jacobi and Weierstrass elliptic functions used to be part of the standard mathematical arsenal of physics students. They appear as solutions of many important problems in classical mechanics: the motion of a planar pendulum (Jacobi), the motion of a force-free asymmetric top (Jacobi), the motion of a spherical pendulum (Weierstrass) and the…
Mathematica for Theoretical Physics Classical Mechanics and Nonlinear Dynamics
Baumann, Gerd
2005-01-01
Mathematica for Theoretical Physics: Classical Mechanics and Nonlinear Dynamics This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by students and researchers alike. A...
Analytical mechanics solutions to problems in classical physics
Merches, Ioan
2014-01-01
Fundamentals of Analytical Mechanics Constraints Classification Criteria for Constraints The Fundamental Dynamical Problem for a Constrained Particle System of Particles Subject to Constraints Lagrange Equations of the First KindElementary Displacements Generalities Real, Possible and Virtual Displacements Virtual Work and Connected Principles Principle of Virtual WorkPrinciple of Virtual Velocities Torricelli's Principle Principles of Analytical Mechanics D'alembert's Principle Configuration Space Generalized Forces Hamilton's Principle The Simple Pendulum Problem Classical (Newtonian) Formal
Quantum mechanics as an approximation to classical mechanics in Hilbert space
Energy Technology Data Exchange (ETDEWEB)
Bracken, A J [DIFI, Universita di Genova, Via Dodecaneso 33, Genova 16146 (Italy)
2003-06-13
Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated. (letter to the editor)
Quantum mechanics as an approximation to classical mechanics in Hilbert space
International Nuclear Information System (INIS)
Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated. (letter to the editor)
Principles of maximally classical and maximally realistic quantum mechanics
Indian Academy of Sciences (India)
S M Roy
2002-08-01
Recently Auberson, Mahoux, Roy and Singh have proved a long standing conjecture of Roy and Singh: In 2-dimensional phase space, a maximally realistic quantum mechanics can have quantum probabilities of no more than + 1 complete commuting cets (CCS) of observables coexisting as marginals of one positive phase space density. Here I formulate a stationary principle which gives a nonperturbative deﬁnition of a maximally classical as well as maximally realistic phase space density. I show that the maximally classical trajectories are in fact exactly classical in the simple examples of coherent states and bound states of an oscillator and Gaussian free particle states. In contrast, it is known that the de Broglie–Bohm realistic theory gives highly nonclassical trajectories.
Pandya, Aalok
2008-01-01
The geometry of the symplectic structures and Fubini-Study metric is discussed. Discussion in the paper addresses geometry of Quantum Mechanics in the classical phase space. Also, geometry of Quantum Mechanics in the projective Hilbert space has been discussed for the chosen Quantum states. Since the theory of classical gravity is basically geometric in nature and Quantum Mechanics is in no way devoid of geometry, the explorations pertaining to more and more geometry in Quantum Mechanics coul...
Quantum mechanical version of the classical Liouville theorem
Institute of Scientific and Technical Information of China (English)
Xie Chuan-Mei; Fan Hong-Yi
2013-01-01
In terms of the coherent state evolution in phase space,we present a quantum mechanical version of the classical Liouville theorem.The evolution of the coherent state from | z> to | sz-rz*> corresponds to the motion from a point z (q,p)to another point sz-rz* with |s|2-|r|2 =1.The evolution is governed by the so-called Fresnel operator U(s,r) that was recently proposed in quantum optics theory,which classically corresponds to the matrix optics law and the optical Fresnel transformation,and obeys group product rules.In other words,we can recapitulate the Liouville theorem in the context of quantum mechanics by virtue of coherent state evolution in phase space,which seems to be a combination of quantum statistics and quantum optics.
Noether-Lie Symmetry of Generalized Classical Mechanical Systems
Institute of Scientific and Technical Information of China (English)
JIA Wen-Zhi; ZHANG Xiao-Ni; WANG Shun-Jin; FANG Jian-Hui; WANG Peng; DING Ning
2008-01-01
In this paper, the Noether-Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general infinitesimal transformations of groups are given. The Noether conserved quantity and the Hojman conserved quantity deduced from the Noether-Lie symmetry are obtained. An example is given to illustrate the application of the results.
On q-deformed supersymmetric classical mechanical models
International Nuclear Information System (INIS)
Based on the idea of quantum groups and paragrassmann variables, we present a generalization of supersymmetric classical mechanics with a deformation parameter q=exp 2πi/k dealing with the k=3 case. The coordinates of the q-superspace are a commuting parameter t and a paragrassmann variable θ, where θ3=0. The generator and covariant derivative are obtained, as well as the action for some possible superfields. (author). 13 refs
Quantum mechanics classical results, modern systems, and visualized examples
Robinett, Richard W
2006-01-01
`Quantum Mechanics'' is a comprehensive introduction to quantum mechanics for advanced undergraduate students in physics. It provides the reader with a strong conceptual background in the subject, extensive experience with the necessary mathematical background, as well as numerous visualizations of quantum concepts and phenomena. - ;Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples is a comprehensive introduction to non-relativistic quantum mechanics for advanced undergraduate students in physics and related fields. It provides students with a strong conceptual background in the most important theoretical aspects of quantum mechanics, extensive experience with the mathematical tools required to solve problems, the opportunity to use quantum ideas to confront modern experimental. realizations of quantum systems, and numerous visualizations of quantum concepts and phenomena. Changes from the First Edition include many new discussions of modern quantum systems (such as Bose-Einstein c...
Quantum mechanics, by itself, implies perception of a classical world
Blood, Casey
2010-01-01
Quantum mechanics, although highly successful, has two peculiarities. First, in many situations it gives more than one potential version of reality. And second, the wave function for a macroscopic object such as a baseball can be spread out over a macroscopic distance. In the first, quantum mechanics seems to imply that the observer will perceive more than one version of reality and in the second it seems to imply we should see spread-out, blurred objects instead of sharply delineated baseballs. But neither implication is true. Quantum mechanics, by itself, implies more than one version of reality will never be reportably perceived, and it implies the perceived position of a baseball will always be sharply defined. Further, two observers will never disagree on what they perceive. Thus quantum mechanics, by itself, with no assumption of particles or collapse, always leads to the perception of a classical-appearing universe.
Gauge transformations and conserved quantities in classical and quantum mechanics
Berche, Bertrand; Malterre, Daniel; Medina, Ernesto
2016-08-01
We are taught that gauge transformations in classical and quantum mechanics do not change the physics of the problem. Nevertheless, here we discuss three broad scenarios where under gauge transformations: (i) conservation laws are not preserved in the usual manner; (ii) non-gauge-invariant quantities can be associated with physical observables; and (iii) there are changes in the physical boundary conditions of the wave function that render it non-single-valued. We give worked examples that illustrate these points, in contrast to general opinions from classic texts. We also give a historical perspective on the development of Abelian gauge theory in relation to our particular points. Our aim is to provide a discussion of these issues at the graduate level.
Some studies on arithmetical chaos in classical and quantum mechanics
International Nuclear Information System (INIS)
Several aspects of classical and quantum mechanics applied to a class of strongly chaotic systems are studied. The latter consists of single particles moving without external forces on surfaces of constant negative Gaussian curvature whose corresponding fundamental groups are supplied with an arithmetic structure. It is shown that the arithmetical features of the considered systems lead to exceptional properties of the corresponding spectra of lengths of closed geodesics (periodic orbits). The most significant one is an exponential growth of degeneracies in these geodesic length spectra. Furthermore, the arithmetical systems are distinguished by a structure that appears as a generalization of geometric symmetries. These pseudosymmetries occur in the quantization of the classical arithmetic systems as Hecke operators, which form an infinite algebra of self-adjoint operators commuting with the Hamiltonian. The statistical properties of quantum energies in the arithmetical systems have previously been identified as exceptional. They do not fit into the general scheme of random matrix theory. It is shown with the help of a simplified model for the spectral form factor how the spectral statistics in arithmetical quantum chaos can be understood by the properties of the corresponding classical geodesic length spectra. A decisive role is played by the exponentially increasing multiplicities of lengths. The model developed for the level spacings distribution and for the number variance is compared to the corresponding quantities obtained from quantum energies for a specific arithmetical system. Finally, the convergence properties of a representation for the Selberg zeta function as a Dirichlet series are studied. It turns out that the exceptional classical and quantum mechanical properties shared by the arithmetical systems prohibit a convergence of this important function in the physically interesting domain. (orig.)
Oldofredi, Andrea; Deckert, Dirk-André; Esfeld, Michael
2016-01-01
By means of the examples of classical and Bohmian quantum mechanics, we illustrate the well-known ideas of Boltzmann as to how one gets from laws defined for the universe as a whole to dynamical relations describing the evolution of subsystems. We explain how probabilities enter into this process, what quantum and classical probabilities have in common and where exactly their difference lies.
Physics on the boundary between classical and quantum mechanics
't Hooft, Gerard
2014-04-01
Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?
Physics on the boundary between classical and quantum mechanics
International Nuclear Information System (INIS)
Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the 'Standard Model'. So now the question is asked: how can this model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations?
A primer on elliptic functions with applications in classical mechanics
International Nuclear Information System (INIS)
The Jacobi and Weierstrass elliptic functions used to be part of the standard mathematical arsenal of physics students. They appear as solutions of many important problems in classical mechanics: the motion of a planar pendulum (Jacobi), the motion of a force-free asymmetric top (Jacobi), the motion of a spherical pendulum (Weierstrass) and the motion of a heavy symmetric top with one fixed point (Weierstrass). The planar pendulum can, in fact, be used to highlight an important connection between the Jacobi and Weierstrass elliptic functions. The easy access to mathematical software by physics students suggests that they might reappear as useful mathematical tools in the undergraduate curriculum
Classical and quantum mechanics of the relativistic particle
International Nuclear Information System (INIS)
It is shown that the standard actions of the relativistic point-like particle are adapted within the corresponding interpretation to describe particle and antiparticle at the same time. Special gauge in which this possibility realize naturally both in classical and in quantum theory is pointed out. A consistent procedure of canonical quantization of relativistic point-like particle without and with spin is considered. the operator formulation of the system in question is manifestly constructed. So built quantum mechanics proves to be equivalent for a spinless particle to Klein-Gordon theory and for spinning particle to Dirac theory. (author). 14 refs
Stochastic theory for classical and quantum mechanical systems
International Nuclear Information System (INIS)
From first principles a theory of stochastic processes in configuration space is formulated. The fundamental equations of the theory are an equation of motion which generalizes Newton's second law and an equation which expresses the condition of conservation of matter. Two types of stochastic motion are possible, both described by the same general equations, but leading in one case to classical Brownian motion behavior and in the other to quantum mechanical behavior. The Schroedinger equation, which is derived with no further assumption, is thus shown to describe a specific stochastic process. It is explicitly shown that only in the quantum mechanical process does the superposition of probability amplitudes give rise to interference phenomena; moreover, the presence of dissipative forces in the Brownian motion equations invalidates the superposition principle. At no point are any special assumptions made concerning the physical nature of the underlying stochastic medium, although some suggestions are discussed in the last section
On the "Universal" N=2 Supersymmetry of Classical Mechanics
Deotto, E
2001-01-01
In this paper we continue the study of the geometrical features of a functional approach to classical mechanics proposed some time ago. In particular we try to shed some light on a N=2 "universal" supersymmetry which seems to have an interesting interplay with the concept of ergodicity of the system. To study the geometry better we make this susy local and clarify pedagogically several issues present in the literature. Secondly, in order to prepare the ground for a better understanding of its relation to ergodicity, we study the system on constant energy surfaces. We find that the procedure of constraining the system on these surfaces injects in it some local grassmannian invariances and reduces the N=2 global susy to an N=1.
Manifestations of classical phase space structures in quantum mechanics
International Nuclear Information System (INIS)
Using two coupled quartic oscillators for illustration, the quantum mechanics of simple systems whose classical analogues have varying degrees of non-integrability is investigated. By taking advantage of discrete symmetries and dynamical quasidegeneracies it is shown that Percival's semiclassical classification scheme, i.e. eigenstates may be separated into a regular or an irregular group, basically works. Some observations of intermediate status states are made. Generalized ensembles are constructed which apply equally well to both spectral and eigenstate properties. They typically show non-universal, but nevertheless characteristic level fluctuations. In addition, they predict 'semiclassical localization' of eigenfunctions and 'quantum suppression of chaos' which are quantitatively borne out in the quantum systems. (author) 101 refs.; 27 figs.; 6 tabs
Noncommutative Classical and Quantum Mechanics for Quadratic Lagrangians (Hamiltonians)
Dragovich, B; Dragovich, Branko; Rakic, Zoran
2006-01-01
We consider classical and quantum mechanics for an extended Heisenberg algebra with additional canonical commutation relations for position and momentum coordinates. In our approach this additional noncommutativity is removed from the algebra by linear transformation of coordinates and transmitted to the Hamiltonian (Lagrangian). Since linear transformations do not change the quadratic form of Hamiltonian (Lagrangian), and Feynman's path integral has well-known exact expression for quadratic models, we restricted our analysis to this class of physical systems. The compact general formalism presented here can be easily realized in any particular quadratic case. As an important example of phenomenological interest, we explored model of a charged particle in the noncommutative plane with perpendicular magnetic field. We also introduced an effective Planck constant $\\hbar_{eff}$ which depends on noncommutativity.
Why classical mechanics cannot naturally accommodate consciousness but quantum mechanics can
Stapp, Henry P
1995-01-01
It is argued on the basis of certain mathematical characteristics that classical mechanics is not constitutionally suited to accomodate consciousness, whereas quantum mechanics is. These mathematical characteristics pertain to the nature of the information represented in the state of the brain, and the way this information enters into the dynamics.
Semiclassical Aspects of Quantum Mechanics by Classical Fluctuations
De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De
1998-01-01
Building on a model recently proposed by F. Calogero, we postulate the existence of a coherent, long--range universal tremor affecting any stable and confined classical dynamical system. Deriving the characteristic fluctuative unit of action for each classical interaction, we obtain in all cases its numerical coincidence with the Planck action constant. We therefore suggest that quantum corrections to classical dynamics can be simulated by suitable classical stochastic fluctuations.
Some problems in classical mechanics and relativistic astrophysics
International Nuclear Information System (INIS)
The first part of this thesis is indirectly related to high energy astrophysics. It concerns the study of binary systems consisting of a normal star and a neutronstar or a black hole. To interpret the observations from such a system; in X-ray, UV, optical, infrared and radio wavelengths; it is helpful to have a general idea of the evolution of the orbital and rotational parameters. Here we enter the old field of classical mechanics, in the form of celestial mechanics. In particular the effects of tidal interaction, precession, and sudden mass loss are treated. The second part starts with an article on thought experiments with a charged black hole enclosed in a huge box and in equilibrium with its own radiation. In this way the thermodynamic aspects of the Hawking radiation are fully explored. The connection between physical and kinematical cosmological parameters, as predicted by general relativity are explored. It is shown how the standard big bang model of cosmology restricts the possible properties of some elementary particle types. The theory of white dwarf structure is compared with observations in order to put low-energy constraints on (super) gravity theories. (Auth.)
Fundamental Principles of Classical Mechanics: a Geometrical Perspectives
Lam, Kai S.
2014-07-01
Classical mechanics is the quantitative study of the laws of motion for oscopic physical systems with mass. The fundamental laws of this subject, known as Newton's Laws of Motion, are expressed in terms of second-order differential equations governing the time evolution of vectors in a so-called configuration space of a system (see Chapter 12). In an elementary setting, these are usually vectors in 3-dimensional Euclidean space, such as position vectors of point particles; but typically they can be vectors in higher dimensional and more abstract spaces. A general knowledge of the mathematical properties of vectors, not only in their most intuitive incarnations as directed arrows in physical space but as elements of abstract linear vector spaces, and those of linear operators (transformations) on vector spaces as well, is then indispensable in laying the groundwork for both the physical and the more advanced mathematical - more precisely topological and geometrical - concepts that will prove to be vital in our subject. In this beginning chapter we will review these properties, and introduce the all-important related notions of dual spaces and tensor products of vector spaces. The notational convention for vectorial and tensorial indices used for the rest of this book (except when otherwise specified) will also be established...
Exact solution of the classical mechanical quadratic Zeeman effect
Indian Academy of Sciences (India)
Sambhu N Datta; Anshu Pandey
2007-06-01
We address the curious problem of quadratic Zeeman effect at the classical mechanical level. The problem has been very well understood for decades, but an analytical solution of the equations of motion is still to be found. This state of affairs persists because the simultaneous presence of the Coulombic and quadratic terms lowers the dynamical symmetry. Energy and orbital angular momentum are still constants of motion. We find the exact solutions by introducing the concept of an image ellipse. The quadratic effect leads to a dilation of space–time, and a one-to-one correspondence is observed for pairs of physical quantities like energy and angular momentum, and the maximum and minimum distances from the Coulomb center for the Zeeman orbit and the corresponding pairs for the image ellipse. Thus, instead of finding additional conserved quantities, we find constants of motion for an additional dynamics, namely, the image problem. The trajectory is open, in agreement with Bertrand's theorem, but necessarily bound. A stable unbound trajectory does not exist for real values of energy and angular momentum. The radial distance, the angle covered in the plane of the orbit, and the time are uniquely determined by introducing further the concept of an image circle. While the radial distance is defined in a closed form as a transcendental function of the image-circular angle, the corresponding orbit angle and time variables are found in the form of two convergent series expansions. The latter two variables are especially contracted, thereby leading to a precession of the open cycles around the Coulomb center. It is expected that the space–time dilation effect observed here would somehow influence the solution of the quantum mechanical problem at the non-relativistic level.
Variational problems arising in classical mechanics and nonlinear elasticity
International Nuclear Information System (INIS)
In this thesis we consider two different classes of variational problems. First, one-dimensional problems arising from classical mechanics where the problem is to determine whether there is a unique function η0(x) which minimises the energy functional of the form I(η) = ∫ab L(x,η(x), η'(x)) dx. We will investigate uniqueness by making a change of dependent and independent variables and showing that for a class of integrands L with a particular kind of scaling invariance the resulting integrand is completely convex. The change of variables arises by applying results from Lie group theory as applied in the study of differential equations and this work is motivated by [60] and [68]. Second, the problem of minimising energy functionals of the form E(u) = ∫A W(∇u(x)) dx in the case of a nonlinear elastic body occupying an annular region A contains R2 with u : A-bar → A-bar. This work is motivated by [57] (in particular the example of paragraph 4). We will consider rotationally symmetric deformations satisfying prescribed boundary conditions. We will show the existence of minimisers for stored energy functions of the form W(F) = g-tilde(vertical bar-F-vertical bar, det(F)) in a class of general rotationally symmetric deformations of a compressible annulus and for stored energy functions of the form W(F) = g-bar(vertical bar-F-vertical bar) in a class of rotationally symmetric deformations of an incompressible annulus. We will also show that in each case the minimisers are solutions of the full equilibrium equations. A model problem will be considered where the energy functional is the Dirichlet integral and it will be shown that the rotationally symmetric solution obtained is a minimiser among admissible non-rotationally symmetric deformations. In the case of an incompressible annulus, we will consider the Dirichlet integral as the energy functional and show that the rotationally symmetric equilibrium solutions in this case are weak local minimisers in a
Semi-classical limit of relativistic quantum mechanics
Indian Academy of Sciences (India)
L Kocis
2005-07-01
It is shown that the semi-classical limit of solutions to the Klein–Gordon equation gives the particle probability density that is in direct proportion to the inverse of the particle velocity. It is also shown that in the case of the Dirac equation a different result is obtained.
International Nuclear Information System (INIS)
It is shown that the use of the Foldy-Wouthuysen representation allows one to reduce finding the classical limit of equations of the relativistic quantum mechanics to replacing operators in the Hamiltonian and quantum mechanical equations of motion with corresponding classical quantities when the conditions of the Wentzel-Kramers-Brillouin approximation are satisfied
Principles of classical statistical mechanics: A perspective from the notion of complementarity
Velazquez, L.
2012-01-01
Quantum mechanics and classical statistical mechanics are two physical theories that share several analogies in their mathematical apparatus and physical foundations. In particular, classical statistical mechanics is hallmarked by the complementarity between two descriptions that are unified in thermodynamics: (i) the parametrization of the system macrostate in terms of mechanical macroscopic observables $I=\\{I^{i}\\}$; and (ii) the dynamical description that explains the evolution of a system...
Pre-equilibrium nuclear reactions: An introduction to classical and quantum-mechanical models
International Nuclear Information System (INIS)
In studies of light-ion induced nuclear reactions one distinguishes three different mechanisms: direct, compound and pre-equilibrium nuclear reactions. These reaction processes can be subdivided according to time scales or, equivalently, the number of intranuclear collisions taking place before emission. Furthermore, each mechanism preferably excites certain parts of the nuclear level spectrum and is characterized by different types of angular distributions. This presentation includes description of the classical, exciton model, semi-classical models, with some selected results, and quantum mechanical models. A survey of classical versus quantum-mechanical pre-equilibrium reaction theory is presented including practical applications
Classical mechanics on noncommutative space with Lie-algebraic structure
International Nuclear Information System (INIS)
Highlights: → Suggest a useful method to look for new Lie-algebraic noncommutative spaces. → Find out two new Lie-algebraic noncommutative spaces. → Derive Newton and Hamilton equations that present unimaginable extra forces. → Analyse the source of unimaginable extra forces from space noncummutativity. → Provide various intriguing classical trajectories. - Abstract: We investigate the kinetics of a nonrelativistic particle interacting with a constant external force on a Lie-algebraic noncommutative space. The structure constants of a Lie algebra, also called noncommutative parameters, are constrained in general due to some algebraic properties, such as the antisymmetry and Jacobi identity. Through solving the constraint equations the structure constants satisfy, we obtain two new sorts of algebraic structures, each of which corresponds to one type of noncommutative spaces. Based on such types of noncommutative spaces as the starting point, we analyze the classical motion of the particle interacting with a constant external force by means of the Hamiltonian formalism on a Poisson manifold. Our results not only include that of a recent work as our special cases, but also provide new trajectories of motion governed mainly by marvelous extra forces. The extra forces with the unimaginable tx-dot-,(xx-dot)-, and (xx-double dot)-dependence besides with the usual t-, x-, and x-dot-dependence, originating from a variety of noncommutativity between different spatial coordinates and between spatial coordinates and momenta as well, deform greatly the particle's ordinary trajectories we are quite familiar with on the Euclidean (commutative) space.
On the relation between the second law of thermodynamics and classical and quantum mechanics
Drossel, Barbara
2014-01-01
In textbooks on statistical mechanics, one finds often arguments based on classical mechanics, phase space and ergodicity in order to justify the second law of thermodynamics. However, the basic equations of motion of classical mechanics are deterministic and reversible, while the second law of thermodynamics is irreversible and not deterministic, because it states that a system forgets its past when approaching equilibrium. I argue that all "derivations" of the second law of thermodynamics f...
Classical Mechanics in Hilbert Space: Path Integral Formulation, and a Quantum Correction
Shee, James
2015-01-01
While it is well-known that quantum mechanics can be reformulated in terms of a path integral representation, it will be shown that such a formulation is also possible in the case of classical mechanics. From Koopman-von Neumann theory, which recasts classical mechanics in terms of a Hilbert space wherein the Liouville operator acts as the generator of motion, we derive a path integral representation of the classical propagator and suggest an efficient numerical implementation using fast fourier transform techniques. We then include a first quantum correction to derive a revealing expression for the semi-classical path integral, which augments the classical picture of a single trajectory through phase space with additional wave-like spreading.
International Nuclear Information System (INIS)
We consider symmetry properties of differential equations in non-relativistic quantum mechanics and classical mechanics. Special emphasis is given to periodically driven systems. For a model system connections between symmetries of corresponding classical and quantal systems are established. The fundamental difference between variational symmetries and symmetries of the Euler-Lagrange-equations is discussed for the special case of classical mechanics. For nonintegrable systems with quasiregular regions in phase space we introduce the notion of approximate symmetry. As an example, we demonstrate the accuracy of such symmetry properties in certain domains of phase space for a periodically driven anharmonic oscillator. (orig.)
Tumor cell survival and immune escape mechanisms in classical Hodgkin lymphoma
Liang, Zheng
2015-01-01
Tumor cell survival and immune escape mechanisms in classical Hodgkin lymphoma The nature of classical Hodgkin lymphoma (HL), a minority of tumor cells in a reactive background and loss of B cell phenotype, decides its dependence on the microenvironment for signals to contribute to survival and prol
A Comparison of Kinetic Energy and Momentum in Special Relativity and Classical Mechanics
Riggs, Peter J.
2016-01-01
Kinetic energy and momentum are indispensable dynamical quantities in both the special theory of relativity and in classical mechanics. Although momentum and kinetic energy are central to understanding dynamics, the differences between their relativistic and classical notions have not always received adequate treatment in undergraduate teaching.…
Classical mechanics in non-commutative phase space
Institute of Scientific and Technical Information of China (English)
WEI Gao-Feng; LONG Chao-Yun; LONG Zheng-Wen; QIN Shui-Jie; Fu Qiang
2008-01-01
In this paper the laws of motion of classical particles have been investigated in a non-commutative phase space.The corresponding non-commutative relations contain not only spatial non-commutativity but also momentum non-commutativity.First,new Poisson brackets have been defined in non-commutative phase space.They contain corrections due to the non-commutativity of coordinates and momenta.On the basis of this new Poisson brackets,a new modified second law of Newton has been obtained.For two cases,the free particle and the harmonic oscillator,the equations of motion are derived on basis of the modified second law of Newton and the linear transformation (Phys.Rev.D,2005,72:025010).The consistency between both methods is demonstrated.It is shown that a free particle in commutative space is not a free particle with zero-acceleration in the non-commutative phase space.but it remains a free particle with zero-acceleration in non-commutative space if only the coordinates are non-commutative.
Classical mechanics in non-commutative phase space
International Nuclear Information System (INIS)
In this paper the laws of motion of classical particles have been investigated in a non-commutative phase space. The corresponding non-commutative relations contain not only spatial non-commutativity but also momentum non-commutativity. First, new Poisson brackets have been defined in non-commutative phase space. They contain corrections due to the non-commutativity of coordinates and momenta. On the basis of this new Poisson brackets, a new modified second law of Newton has been obtained. For two cases, the free particle and the harmonic oscillator, the equations of motion are derived on basis of the modified second law of Newton and the linear transformation (Phys. Rev. D, 2005, 72: 025010). The consistency between both methods is demonstrated. It is shown that a free particle in commutative space is not a free particle with zero-acceleration in the non-commutative phase space, but it remains a free particle with zero-acceleration in non-commutative space if only the coordinates are non-commutative. (authors)
International Nuclear Information System (INIS)
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover's and Kubo-Fox-Keizer's approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.
On the classical limit of Bohmian mechanics for Hagedorn wave packets
Dürr, Detlef
2010-01-01
We consider the classical limit of quantum mechanics in terms of Bohmian trajectories. For wave packets as defined by Hagedorn we show that the Bohmian trajectories converge to Newtonian trajectories in probability.
Classical and quantum Fisher information in the geometrical formulation of quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Facchi, Paolo [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Kulkarni, Ravi [Vivekananda Yoga Research Foundation, Bangalore 560 080 (India); Man' ko, V.I., E-mail: manko@na.infn.i [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, Giuseppe [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Sudarshan, E.C.G. [Department of Physics, University of Texas, Austin, TX 78712 (United States); Ventriglia, Franco [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy)
2010-11-01
The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.
Classical and quantum Fisher information in the geometrical formulation of quantum mechanics
International Nuclear Information System (INIS)
The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.
Time Symmetric Quantum Mechanics and Causal Classical Physics
Bopp, Fritz W
2016-01-01
A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual "near future" macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.
Introduction to relativistic statistical mechanics classical and quantum
Hakim, Rémi
2011-01-01
This is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statisti
Onida, Giovanni; Andreoni, Wanda
1995-09-01
A classical trajectory mapping method was developed to study chemical reactions in solution and in enzymes. In this method, the trajectories were calculated on a classical potential surface and the free energy profile was obtained by mapping the classical surface to the quantum mechanical surface obtained by the semiempirical AM1 method. There is no need to perform expensive quantum mechanical calculations at each iteration step. This method was applied to proton transfer reactions both in aqueous solution and in papain. The results are encouraging, indicating the applicability of this hybrid method to chemical reactions both in solution and in enzymes.
Classical and Quantum Mechanics of Free \\k Relativistic Systems
Lukierski, J.; Ruegg, H.; Zakrzewski, W. J.
1993-01-01
We consider the Hamiltonian and Lagrangian formalism describing free \\k-relativistic particles with their four-momenta constrained to the \\k-deformed mass shell. We study the modifications of the formalism which follow from the introduction of space coordinates with nonvanishing Poisson brackets and from the redefinitions of the energy operator. The quantum mechanics of free \\k-relativistic particles and of the free \\k-relativistic oscillator is also presented. It is shown that the \\k-relativ...
On the new notion of mass in classical mechanics
International Nuclear Information System (INIS)
Many textbooks in physics introduce the notion of momentum rvec p = m rvec v(1) where m is the inertial mass of a body and rvec p its velocity. Such treatment of momentum contradicts the general spirit of Newton mechanics, because the basic Newton equation of motion, d rvec p/dt = rvec F(2) requires from the momentum to be a primary physical quantity. As a matter of fact, relation (1) is not a general law of physics. It has to be considered as a kind of a constitutive relation valid or invalid for a given body and as such it has to be experimentally checked. Recently F. Herrmann and M. Schubert have proposed a new technique of measuring momentum without using the relation (1). Their experiment provides a clear operational definition of momentum independent form other mechanical quantities. The only assumption which they adopted without any comment is the requirement that momentum vanishes for bodies at rest. The aim of the present paper is to show that this assumption does not follow from any general law of physics and, independently from its wide use, it may not be valid under some condition
Classical and quantum mechanics of free {kappa}-relativistic systems
Energy Technology Data Exchange (ETDEWEB)
Lukierski, J. [Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE (England); Ruegg, H. [Department de Physique Theorique, Universite de Geneve, 24 quai Ernest-Ansermet, 1211 Geneve 4 (Switzerland); Zakrzewski, W.J. [Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE (England)
1995-10-01
We consider the Hamiltonian and Lagrangian formalism describing free {kappa}-relativistic particles with their four-momenta constrained to the {kappa}-deformed mass shell. We study the formalism with commuting as well as noncommuting (i.e., with nonvanishing Poisson brackets) space-time coordinates; in particular a {kappa}-deformed phase space formalism leading to the {kappa}-deformed covariant Heisenberg algebra is presented. We also describe the dependence of the formalism on the various definitions of the energy operator corresponding to different choices of basic generators in the {kappa}-deformed Poincar{acute e} algebra. The quantum mechanics of free {kappa}-relativistic particles and of the free {kappa}-relativistic oscillator are also presented. It is shown that the {kappa}-relativistic oscillator describes a quantum statistical ensemble with a finite value of the Hagedorn temperature. The relation to a {kappa}-deformed Schr{umlt o}dinger quantum mechanics in which the time derivative is replaced by a finite difference is also discussed. {copyright} 1995 Academic Press, Inc.
Principles of classical statistical mechanics: A perspective from the notion of complementarity
International Nuclear Information System (INIS)
Quantum mechanics and classical statistical mechanics are two physical theories that share several analogies in their mathematical apparatus and physical foundations. In particular, classical statistical mechanics is hallmarked by the complementarity between two descriptions that are unified in thermodynamics: (i) the parametrization of the system macrostate in terms of mechanical macroscopic observablesI=(Ii), and (ii) the dynamical description that explains the evolution of a system towards the thermodynamic equilibrium. As expected, such a complementarity is related to the uncertainty relations of classical statistical mechanics ΔIiΔηi≥k. Here, k is the Boltzmann constant, ηi=∂S(I|θ)/∂Ii are the restituting generalized forces derived from the entropy S(I|θ) of a closed system, which is found in an equilibrium situation driven by certain control parameters θ=(θα). These arguments constitute the central ingredients of a reformulation of classical statistical mechanics from the notion of complementarity. In this new framework, Einstein postulate of classical fluctuation theory dp(I|θ)∼exp[S(I|θ)/k]dI appears as the correspondence principle between classical statistical mechanics and thermodynamics in the limit k→0, while the existence of uncertainty relations can be associated with the non-commuting character of certain operators. - Highlights: ► There exists a direct analogy between quantum and classical statistical mechanics. ► Statistical form of Le Chatellier principle leads to the uncertainty principle. ► Einstein postulate is simply the correspondence principle. ► Complementary quantities are associated with non-commuting operators.
Alcohol Withdrawal and Brain Injuries: Beyond Classical Mechanisms
Directory of Open Access Journals (Sweden)
Marianna E. Jung
2010-07-01
Full Text Available Unmanaged sudden withdrawal from the excessive consumption of alcohol (ethanol adversely alters neuronal integrity in vulnerable brain regions such as the cerebellum, hippocampus, or cortex. In addition to well known hyperexcitatory neurotransmissions, ethanol withdrawal (EW provokes the intense generation of reactive oxygen species (ROS and the activation of stress-responding protein kinases, which are the focus of this review article. EW also inflicts mitochondrial membranes/membrane potential, perturbs redox balance, and suppresses mitochondrial enzymes, all of which impair a fundamental function of mitochondria. Moreover, EW acts as an age-provoking stressor. The vulnerable age to EW stress is not necessarily the oldest age and varies depending upon the target molecule of EW. A major female sex steroid, 17β-estradiol (E2, interferes with the EW-induced alteration of oxidative signaling pathways and thereby protects neurons, mitochondria, and behaviors. The current review attempts to provide integrated information at the levels of oxidative signaling mechanisms by which EW provokes brain injuries and E2 protects against it. Unmanaged sudden withdrawal from the excessive consumption of alcohol (ethanol adversely alters neuronal integrity in vulnerable brain regions such as the cerebellum, hippocampus, or cortex. In addition to well known hyperexcitatory neurotransmissions, ethanol withdrawal (EW provokes the intense generation of reactive oxygen species (ROS and the activation of stress-responding protein kinases, which are the focus of this review article. EW also inflicts mitochondrial membranes/membrane potential, perturbs redox balance, and suppresses mitochondrial enzymes, all of which impair a fundamental function of mitochondria. Moreover, EW acts as an age-provoking stressor. The vulnerable age to EW stress is not necessarily the oldest age and varies depending upon the target molecule of EW. A major female sex steroid, 17
Classical Mechanics with Computational Physics in the Undergraduate Curriculum
Hasbun, J. E.
2006-11-01
Efforts to incorporate computational physics in the undergraduate curriculum have made use of Matlab, IDL, Maple, Mathematica, Fortran, and C^1 as well as Java.^2 The benefits of similar undertakings in our undergraduate curriculum are that students learn ways to go beyond what they learn in the classroom and use computational techniques to explore more realistic physics applications. Students become better prepared to perform research that will be useful throughout their scientific careers.^3 Undergraduate physics in general can benefit by building on such efforts. Recently, I have developed a draft of a textbook for the junior level mechanics physics course with computer applications.^4 The text uses the traditional analytical approach, yet it incorporates computational physics to build on it. The text does not intend to teach students how to program; instead, it makes use of students' abilities to use programming to go beyond the analytical approach and complement their understanding. An in-house computational environment, however, is strongly encouraged. Selected examples of representative lecture problems will be discussed. ^1 ''Computation and Problem Solving in Undergraduate Physics,'' David M. Cook, Lawrence University (2003). ^2 ''Simulations in Physics: Applications to Physical Systems,'' H. Gould, J. Tobochnik, and W Christian. ^3 R. Landau, APS Bull. Vol 50, 1069 (2005) ^4J. E. Hasbun, APS Bull. Vol. 51, 452 (2006)
Corben, HC
1994-01-01
Applications not usually taught in physics courses include theory of space-charge limited currents, atmospheric drag, motion of meteoritic dust, variational principles in rocket motion, transfer functions, much more. 1960 edition.
Assessing Student Learning in Middle-Division Classical Mechanics/Math Methods
Caballero, Marcos D
2013-01-01
Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level Classical Mechanics and Math Methods course (CM 1) at CU Boulder, we are developing a tool to assess student learning of CM 1 concepts in the upper-division. The Colorado Classical Mechanics/Math Methods Instrument (CCMI) builds on faculty-consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post-test that probes student learning in the first half of a two-semester classical mechanics / math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder.
Nonrelativistic Quantum Mechanics with Spin in the Framework of a Classical Subquantum Kinetics
G. Kaniadakis
2002-01-01
Recently it has been shown that the spinnless one particle quantum mechanics can be obtained in the framework of entirely classical subquantum kinetics. In the present paper we argue that, within the same scheme and without any extra assumption, it is possible to obtain both the non relativistic quantum mechanics with spin, in the presence of an arbitrary external electromagnetic field, as well as the nonlinear quantum mechanics. Pacs: 03.65.Ta, 05.20.Dd KEY WORDS: monads, subquantum physics,...
Unconstrained SU(2) and SU(3) Yang-Mills classical mechanics
International Nuclear Information System (INIS)
A systematic study of contraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with spatial angular momenta they turn out to be nonholonomic. The complete elimination of the unphysical gauge and rotatinal degrees of freedom is achieved using Dirac's constraint formalism. We present an effective unconstrained formulation of the general SU(2) Yang-Mills classical mechanics as well as for SU(3) in the subspace of vanishing spatial angular momenta that is well suited for further explicit dynamical investigations. (orig.)
Classical Yang-Mills Mechanics: Instant vs. Light-cone Form
International Nuclear Information System (INIS)
Two different forms of relativistic dynamics, the instant and the light-cone form, for the pure SU(2) Yang-Mills field theory in 4-dimensional Minkowski space are examined under the supposition that the gauge fields depend on the time evolution parameter only. The obtained under that restriction of gauge potential space homogeneity mechanical matrix model, sometimes called Yang-Mills classical mechanics, is systematically studied in its instant and light-cone form of dynamics using the Dirac's generalized Hamiltonian approach. In the both cases the constraint content of the obtained mechanical systems is found. In contrast to its well-known instant-time counterpart the light-cone version of SU(2) Yang-Mills classical mechanics has in addition to the constraints generating the SU(2) gauge transformations the new first and second class constraints also. On account of all of these constraints a complete reduction in number of the degrees of freedom is performed. In the instant form of dynamics it is shown that after elimination of the gauge degrees of freedom from the classical SU(2) Yang-Mills mechanics the resulting unconstrained system represents the ID3 Euler-Calogero-Moser model with a certain external fourth-order potential, whereas in the light-cone form it is argued that the classical evolution of the unconstrained degrees of freedom is equivalent to a free one-dimensional particle dynamics.
Groessing, G
2004-01-01
Under the only assumptions that energy and momentum of a particle i) come in multiples of Planck's quantum of action, and ii) are subject to fluctuations related to the Huygens waves originating from the particle's embedded-ness in the surrounding "vacuum", one can derive the essentials of quantum physics from classical physics. In fact, the suggested classical Lagrangian can via a simple transformation law be "translated" into the familiar Lagrangian leading to the Schroedinger equation. Moreover, said transformation law is necessary and sufficient also to derive and explain the quantum mechanical superposition principle as well as Born's rule. Explicit examples are given which show that, at least in the cases discussed, the calculations within the language of classical physics are based on intuitively plausible modelling and are also done easier and faster than the corresponding ones due to orthodox quantum mechanics. This calls for the establishment of a more encompassing "dictionary" to provide more usefu...
An axiomatic framework for classical particle mechanics without space-time
San Sant'Adonai, A
1999-01-01
We present an axiomatic framework for non-relativistic classical particle mechanics, inspired on Tati's ideas about a non-space-time description for physics. The main advantage of our picture is that it allows us to describe causality without any reference to elapsed time intervals.
Is classical mechanics based on Newton's laws or Eulers analytical equations?
Directory of Open Access Journals (Sweden)
H.Iro
2005-01-01
Full Text Available In an example I illustrate how my picture of physics is enriched due to my frequent conversations with Reinhard Folk. The subject is: Who wrote down the basic equations of motion of classical mechanics for the first time? (To be sure, it was not Newton.
On the non-interaction theorems in relativistic classical and quantum mechanics
International Nuclear Information System (INIS)
The non-interaction theorem of Currie-Jordan-Sudarshan in relativistic classical mechanics and the non-interaction Haag theorem in relativistic quantum field theory are stated. It is shown explicitly that the consequences of the latter can be avoided in quantum electrodynamics by dispensing the condition of taking the field variables as canonical variables. (Author)
How to quantize forces (?): An academic essay on how the strings could enter classical mechanics
Czech Academy of Sciences Publication Activity Database
Kochan, Denis
2010-01-01
Roč. 60, č. 2 (2010), s. 219-229. ISSN 0393-0440 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : Line element contact bundle * Classical mechanics * Dissipative systems Subject RIV: BE - Theoretical Physics Impact factor: 0.652, year: 2010
Is classical mechanics based on Newton's laws or Eulers analytical equations?
Iro, H
2005-01-01
In an example I illustrate how my picture of physics is enriched due to my frequent conversations with Reinhard Folk. The subject is: Who wrote down the basic equations of motion of classical mechanics for the first time? (To be sure, it was not Newton.)
Theory of hybrid systems; 1, The operator formulation of classical mechanics and semiclassical limit
Prvanovic, S
2001-01-01
The algebra of polynomials in operators that represent generalized coordinate and momentum and depend on the Planck constant is defined. The Planck constant is treated as the parameter taking values between zero and some nonvanishing $h_0$. For the second of these two extreme values, introduced operatorial algebra becomes equivalent to the algebra of observables of quantum mechanical system defined in the standard manner by operators in the Hilbert space. For the vanishing Planck constant, the generalized algebra gives the operator formulation of classical mechanics since it is equivalent to the algebra of variables of classical mechanical system defined, as usually, by functions over the phase space. In this way, the semiclassical limit of kinematical part of quantum mechanics is established through the generalized operatorial framework.
Haba, Naoyuki; Okada, Nobuchika; Yamaguchi, Yuya
2015-01-01
We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal $U(1)_{B-L}$ extension of the Standard Model with two Higgs doublet fields. The $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. We analyze the renormalization group evolutions for all model couplings, and find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. The requirements for the perturbativity of the running c...
Bosonic seesaw mechanism in a classically conformal extension of the Standard Model
Haba, Naoyuki; Okada, Nobuchika; Yamaguchi, Yuya
2015-01-01
We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal $U(1)_{B-L}$ extension of the Standard Model with two Higgs doublet fields. The $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. Analyzing the renormalization group evolutions for all model couplings, we find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. We identify the regions of model parameters which satisfy ...
The basic paradoxes of statistical classical physics and the quantum mechanics
Kupervasser, Oleg
2009-01-01
Statistical classical mechanics and quantum mechanics are developed and well-known theories that represent a basis for modern physics. The two described theories are well known and have been well studied. As these theories contain numerous paradoxes, many scientists doubt their internal consistencies. However, these paradoxes can be resolved within the framework of the existing physics without the introduction of new laws. To clarify the paper for the inexperienced reader, we include certain ...
Interpretation of the classical limits of quantum mechanics on a non-commutative configuration space
Benatti, Fabio
2014-01-01
The classical limits of quantum mechanics on a non-commutative configuration space has been recently studied through the possible ways of removing the non-commutativity based on the classical limit context known as anti-Wick quantization. The conclusion is that the removal of non-commutativity from the configuration space and from the canonical operators are not commuting operations. In order to give an interpretation to the non-exchangeability of the limits, we calculate the Wigner functions of the gaussian-like states of the non-commutative quantum harmonic oscillators and their limits when $\\hbar \\rightarrow 0$ and $\\theta\
Hannay Angle: Yet Another Symmetry-Protected Topological Order Parameter in Classical Mechanics
Kariyado, Toshikaze; Hatsugai, Yasuhiro
2016-04-01
The topological way of thinking now goes beyond quantum solids, and topological characters of classical mechanical systems obeying Newton's law are attracting current interest. To provide a physical insight into the topological numbers in mechanics, we demonstrate the use of the Hannay angle, a "classical" Berry phase, as a symmetry-protected topological order parameter. The Hannay angle is derived using a canonical transformation that maps Newton's equation to a Schrödinger-type equation, and the condition for the quantization is discussed in connection with the symmetry in mechanics. Also, we demonstrate the use of the Hannay angle for a topological characterization of a spring-mass model focusing on the bulk-edge correspondence.
Energy Technology Data Exchange (ETDEWEB)
Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.
1997-03-01
We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors). 13 refs., 1 tab.
Khrennikov, Andrei
2016-01-01
The scientific methodology based on two descriptive levels, ontic (reality as it is ) and epistemic (observational), is briefly presented. Following Schr\\"odinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be inaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity - the quantum state ("wave function"). The correspondence PCSFT to QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and th...
The use of numerical methods in the solution of academic problems of classic mechanics
International Nuclear Information System (INIS)
In this work the use of numerical methods in the solution of physics academic problems is discussed, particularly those on classical mechanics. Frequently the solution of academic problems is limited to finding a differential equation which is left unsolved for having no analytical solution. However, by means of numerical methods we can solve these equations and enrich the physical analysis of the problem. This approach also makes the academic process a little closer to modern physical research, where numerical methods have increasingly been used in almost every field. In the present paper we discuss a classical mechanics problem using these methods. We start from both Newton's and Lagrange's formulations and apply different numerical algorithms in the solution of the obtained equations. During last academic semester, recently concluded, we tested the ideas of this work with students of Nuclear Physics career of the Higher Institute of Nuclear Sciences and technologies, at Havana, cuba. The results were encouraging. (Author) 7 refs
Classical limits of quantum mechanics on a non-commutative configuration space
Benatti, Fabio
2013-01-01
We consider a model of non-commutative Quantum Mechanics given by two harmonic oscillators over a non-commutative two dimensional configuration space. We study possible ways of removing the non-commutativity based on the classical limit context known as anti-Wick quantization. We show that removal of non-commutativity from the configuration space and from the canonical operators are not commuting operations.
Theorem on the proportionality of inertial and gravitational masses in classical mechanics
Chubykalo, A E; Chubykalo, Andrew E.; Vlaev, Stoyan J.
1998-01-01
We considered the problem of the proportionality of inertial and gravitational masses in classical mechanics. We found that the kinetic energy of a material mass point m in a circular motion with a constant angular velocity around another material point M depends only on its gravitational mass. This fact, together with the known result that the straight line is a circumference with an infinite radius, allowed us to prove the proportionality between the inertial and gravitational masses.
Development of classical boundary element analysis of fracture mechanics in gradient materials
Xiao, HT; Yue, QZQ
2013-01-01
Over the last decade, the authors have extended the classical boundary element methods (BEM) for analysis of the fracture mechanics in functionally gradient materials. This paper introduces the dual boundary element method associated with the generalized Kelvin fundamental solutions of multilayered elastic solids (or Yue’s solution). This dual BEM uses a pair of the displacement and traction boundary integral equations. The former is collocated exclusively on the uncracked boundary, and the l...
A morphing approach to couple state-based peridynamics with classical continuum mechanics
Han, Fei
2016-01-04
A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.
Foundations of mechanism design: A tutorial Part 1 – Key concepts and classical results
Indian Academy of Sciences (India)
Dinesh Garg; Y Narahari; Sujit Gujar
2008-04-01
Mechanism design, an important tool in microeconomics, has found widespread applications in modelling and solving decentralized design problems in many branches of engineering, notably computer science, electronic commerce, and network economics. Mechanism design is concerned with settings where a social planner faces the problem of aggregating the announced preferences of multiple agents into a collective decision when the agents exhibit strategic behaviour. The objective of this paper is to provide a tutorial introduction to the foundations and key results in mechanism design theory. The paper is in two parts. Part 1 focuses on basic concepts and classical results which form the foundation of mechanism design theory. Part 2 presents key advanced concepts and deeper results in mechanism design
Bosonic seesaw mechanism in a classically conformal extension of the Standard Model
Haba, Naoyuki; Ishida, Hiroyuki; Okada, Nobuchika; Yamaguchi, Yuya
2016-03-01
We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal U(1) B - L extension of the Standard Model with two Higgs doublet fields. The U(1) B - L symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. Analyzing the renormalization group evolutions for all model couplings, we find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. We identify the regions of model parameters which satisfy the perturbativity of the running couplings and the electroweak vacuum stability as well as the naturalness of the electroweak scale.
The basic paradoxes of statistical classical physics and the quantum mechanics
Kupervasser, Oleg
2013-01-01
The statistical classical mechanics and the quantum mechanics are two developed and well-known theories. The described two theories are known and well studied for a long time. Nevertheless, they contain a number of paradoxes. It forces many scientists to doubt internal consistency of these theories. However the given paradoxes can be resolved within the framework of the existing physics, without introduction of new laws .Further in the paper the paradoxes underlying thermodynamics and the quantum mechanics are discussed. The approaches to solution of these paradoxes are suggested. The first one relies on the influence of the external observer (environment), which disrupts the correlations in the system. The second one is based on the limits of self-knowledge of the system in case of both the external observer and the environment is included in the considered system. The concepts of Observable Dynamics, Ideal Dynamics, and Unpredictable dynamics are introduced. The phenomenon of complex (living) systems is con...
Frenkel-kontorova model: crossover from the classical to the quantum mechanical
Hu, B B
1999-01-01
The Frenkel-Kontorova (FK) model describes a chain of atoms connected by springs subject to an external potential. This simple classical model exhibits a wealth of complex behavior. It has also found applications in many condensed matter systems such as charge density waves, magnetic spirals, modulated phases and tribology. However, an in-depth understanding of some of these problems, for example, tribology in the nano-regime, demands an understanding of its quantum mechanical behavior. To achieve this goal, we use a squeezed-state approach first used in quantum optics. We found that quantum fluctuations renormalize the standard map, which governs the classical behavior of the FK model, to a sawtooth map. This result is borne out by Monte-Carlo simulations. We also found that the ground state wave function changes from an extended state to a localized state when the coupling constant increases. Although quantum fluctuations largely smear the transition by breaking of analyticity observed in the classical case...
Non-classical correlations between single photons and phonons from a mechanical oscillator
Riedinger, Ralf; Hong, Sungkun; Norte, Richard A.; Slater, Joshua A.; Shang, Juying; Krause, Alexander G.; Anant, Vikas; Aspelmeyer, Markus; Gröblacher, Simon
2016-02-01
Interfacing a single photon with another quantum system is a key capability in modern quantum information science. It allows quantum states of matter, such as spin states of atoms, atomic ensembles or solids, to be prepared and manipulated by photon counting and, in particular, to be distributed over long distances. Such light-matter interfaces have become crucial to fundamental tests of quantum physics and realizations of quantum networks. Here we report non-classical correlations between single photons and phonons—the quanta of mechanical motion—from a nanomechanical resonator. We implement a full quantum protocol involving initialization of the resonator in its quantum ground state of motion and subsequent generation and read-out of correlated photon-phonon pairs. The observed violation of a Cauchy-Schwarz inequality is clear evidence for the non-classical nature of the mechanical state generated. Our results demonstrate the availability of on-chip solid-state mechanical resonators as light-matter quantum interfaces. The performance we achieved will enable studies of macroscopic quantum phenomena as well as applications in quantum communication, as quantum memories and as quantum transducers.
Evolution of the Stability Work from Classic Retaining Walls to Mechanically Stabilized Earth Walls
Directory of Open Access Journals (Sweden)
Anghel Stanciu
2008-01-01
Full Text Available For the consolidation of soil mass and the construction of the stability works for roads infrastructure it was studied the evolution of these kinds of works from classical retaining walls - common concrete retaining walls, to the utilization in our days of the modern and competitive methods - mechanically stabilized earth walls. Like type of execution the variety of the reinforced soil is given by the utilization of different types of reinforcing inclusions (steel strips, geosynthetics, geogrids or facing (precast concrete panels, dry cast modular blocks, metal sheets and plates, gabions, and wrapped sheets of geosynthetics.
From N=2 supersymmetric classical to quantum mechanics and back: the SUSY WKB approximation
González León, Miguel Ángel; Mateos Guilarte, Juan; Torre Mayado, Marina de la
2006-01-01
[EN] Links between supersymmetric classical and quantum mechanics are explored. Diagrammatic representations for \\hbar-expansions of norms of ground states are provided. The WKB spectra of supersymmetric non harmonic oscillators are found. [ES] Se exploran los vínculos entre supersimétrica clásica y la mecánica cuántica. Se ofrecen representaciones esquemáticas de \\hbar-expansiones de las normas de estados fundamentales. Los espectros WKB de supersimétricas osciladores armónicos no se encuent...
Finding way to bridge the gap between quantum and classical mechanics
Guowen, W
2005-01-01
We have calculated the momentum distributions of nanoparticles in diffraction and interference dependent on the effective screening mass parameter or size parameter and presented the calculations for a nanoparticle inside an infinite square potential well and for a tunnelling nanoparticle through a square potential barrier. These results display the transition from quantum to classical mechanics and the simultaneous wave-particle duality of nanoparticles. The concept that the effective screening effect increases with increasing size of an object paves way for development of nanomechanics and nanotechnology.
Cartan-Calculus and its Generalizations via a Path-Integral Approach to Classical Mechanics
Gozzi, E
1997-01-01
In this paper we review the recently proposed path-integral counterpart of the Koopman-von Neumann operatorial approach to classical Hamiltonian mechanics. We identify in particular the geometrical variables entering this formulation and show that they are essentially a basis of the cotangent bundle to the tangent bundle to phase-space. In this space we introduce an extended Poisson brackets structure which allows us to re-do all the usual Cartan calculus on symplectic manifolds via these brackets. We also briefly sketch how the Schouten-Nijenhuis, the Frölicher- Nijenhuis and the Nijenhuis-Richardson brackets look in our formalism.
Auletta, G
2001-01-01
As it is well known, classical mechanics consists of several basic features like determinism, reductionism, completeness of knowledge and mechanicism. In this article the basic assumptions are discussed which underlie those features. It is shown that these basic assumptions - though universally assumed up the beginnings of the XX century - are far from being obvious. Finally it is shown that - to a certain extent - there is nothing wrong in assuming these basic postulates. Rather, the error lies in the epistemological absolutization of the theory, which was considered as a mirroring of Nature.
Advances in classical and analytical mechanics: A reviews of author’s results
Directory of Open Access Journals (Sweden)
Hedrih-Stevanović Katica R.
2013-01-01
Full Text Available A review, in subjective choice, of author’s scientific results in area of: classical mechanics, analytical mechanics of discrete hereditary systems, analytical mechanics of discrete fractional order system vibrations, elastodynamics, nonlinear dynamics and hybrid system dynamics is presented. Main original author’s results were presented through the mathematical methods of mechanics with examples of applications for solving problems of mechanical real system dynamics abstracted to the theoretical models of mechanical discrete or continuum systems, as well as hybrid systems. Paper, also, presents serries of methods and scientific results authored by professors Mitropolyski, Andjelić and Rašković, as well as author’s of this paper original scientific research results obtained by methods of her professors. Vector method based on mass inertia moment vectors and corresponding deviational vector components for pole and oriented axis, defined in 1991 by K. Hedrih, is presented. Results in construction of analytical dynamics of hereditary discrete system obtained in collaboration with O. A. Gorosho are presented. Also, some selections of results author’s postgraduate students and doctorantes in area of nonlinear dynamics are presented. A list of scientific projects headed by author of this paper is presented with a list of doctoral dissertation and magister of sciences thesis which contain scientific research results obtained under the supervision by author of this paper or their fist doctoral candidates. [Projekat Ministarstva nauke Republike Srbije, br. ON174001: Dynamics of hybrid systems with complex structures
Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem
Oltean, Marius; Spallicci, Alessandro D A M; Sopuerta, Carlos F
2016-01-01
In classical Hamiltonian theories, entropy may be understood either as a statistical property of canonical systems, or as a mechanical property, that is, as a monotonic function of the phase space along trajectories. In classical mechanics, there are theorems which have been proposed for proving the non-existence of entropy in the latter sense. We explicate, clarify and extend the proofs of these theorems to some standard matter (scalar and electromagnetic) field theories in curved spacetime, and then we show why these proofs fail in general relativity; due to properties of the gravitational Hamiltonian and phase space measures, the second law of thermodynamics holds. As a concrete application, we focus on the consequences of these results for the gravitational two-body problem, and in particular, we prove the non-compactness of the phase space of perturbed Schwarzschild-Droste spacetimes. We thus identify the lack of recurring orbits in phase space as a distinct sign of dissipation and hence entropy producti...
Toward an Information-based Interpretation of Quantum Mechanics and the Quantum-Classical Transition
Roederer, Juan G
2011-01-01
I will show how an objective definition of the concept of information and the consideration of recent results about information-processing in the human brain help clarify some fundamental and often counter-intuitive aspects of quantum mechanics. In particular, I will discuss entanglement, teleportation, non-interaction measurements and decoherence in the light of the fact that pragmatic information, the one our brain handles, can only be defined in the classical macroscopic domain; it does not operate in the quantum domain. This justifies viewing quantum mechanics as a discipline dealing with mathematical models and procedures aimed exclusively at predicting possible macroscopic changes and their likelihood that a given quantum system may cause when it interacts with its environment, including man-made devices such as measurement instruments. I will discuss the informational and neurobiological reasons of why counter-intuitive aspects arise whenever we attempt to construct mental images of the "inner workings...
International Nuclear Information System (INIS)
In the traditional statistical mechanics textbooks, the entropy concept is first introduced for the microcanonical ensemble and then extended to the canonical and grand-canonical cases. However, in the authors' experience, this procedure makes it difficult for the student to see the bigger picture and, although quite ingenuous, the subtleness of the demonstrations to pass from the microcanonical to the canonical and grand-canonical ensembles is hard to grasp. In the present work, we adapt the approach used by Schroedinger to introduce the entropy definition for quantum mechanical systems to derive a classical mechanical entropy definition, which is valid for all ensembles and is in complete agreement with the Gibbs entropy. Afterwards, we show how the specific probability densities for the microcanonical and canonical ensembles can be obtained from the system macrostate, the entropy definition and the second law of thermodynamics. After teaching the approach introduced in this paper for several years, we have found that it allows a better understanding of the statistical mechanics foundations. On the other hand, since it demands previous knowledge of thermodynamics and mathematical analysis, in our experience this approach is more adequate for final-year undergraduate and graduate physics students
Energy Technology Data Exchange (ETDEWEB)
Santillan, M [Cinvestav-IPN, Unidad Monterrey, Parque de Investigacion e Innovacion Tecnologica, Autopista Monterrey-Aeropuerto Km 10, 66600 Apodaca NL (Mexico); Zeron, E S [Departamento de Matematicas, Cinvestav-IPN, 07000 Mexico DF (Mexico); Rio-Correa, J L del [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa, 09340 Mexico DF (Mexico)], E-mail: msantillan@cinvestav.mx, E-mail: eszeron@math.cinvestav.mx, E-mail: jlrc@xanum.uam.mx
2008-05-15
In the traditional statistical mechanics textbooks, the entropy concept is first introduced for the microcanonical ensemble and then extended to the canonical and grand-canonical cases. However, in the authors' experience, this procedure makes it difficult for the student to see the bigger picture and, although quite ingenuous, the subtleness of the demonstrations to pass from the microcanonical to the canonical and grand-canonical ensembles is hard to grasp. In the present work, we adapt the approach used by Schroedinger to introduce the entropy definition for quantum mechanical systems to derive a classical mechanical entropy definition, which is valid for all ensembles and is in complete agreement with the Gibbs entropy. Afterwards, we show how the specific probability densities for the microcanonical and canonical ensembles can be obtained from the system macrostate, the entropy definition and the second law of thermodynamics. After teaching the approach introduced in this paper for several years, we have found that it allows a better understanding of the statistical mechanics foundations. On the other hand, since it demands previous knowledge of thermodynamics and mathematical analysis, in our experience this approach is more adequate for final-year undergraduate and graduate physics students.
Coupled discrete element and finite volume solution of two classical soil mechanics problems
Energy Technology Data Exchange (ETDEWEB)
Chen, Feng [University of Tennessee, Knoxville (UTK); Drumm, Eric [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL
2011-01-01
One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAM for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.
Mould, Richard A
2003-01-01
Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previous...
Electro-mechanical engineering of non-classical photon emissions from single quantum dots
International Nuclear Information System (INIS)
Indistinguishable photons and entangled photon pairs are the key elements for quantum information applications, for example, building a quantum repeater. Self-assembled semiconductor quantum dots (QDs) are promising candidates for the creation of such non-classical photon emissions, and offer the possibility to be integrated into solid state devices. However, due to the random nature of the self-assembled growth process, post-growth treatments are required to engineer the exciton state in the QDs (e.g. energies, exciton lifetimes, and fine structure splittings). In this work, we study the electro-mechanical engineering of the exciton lifetime, emission energy in the QDs, with the aim to produce single photons with higher indistinguishability. Also we present a recent experimental study on the statistical properties of fine structure splittings in the QD ensemble, in order to gain a deeper understanding of how to generate entangled photon pairs using semiconductor QDs.
Caballero, Marcos D
2013-01-01
Much of the research done by modern physicists would be impossible without the use of computation. And yet, while computation is a crucial tool of practicing physicists, physics curricula do not generally reflect its importance and utility. To more tightly connect undergraduate preparation with professional practice, we integrated computational instruction into middle-division classical mechanics at the University of Colorado Boulder. Our model for integration includes the construction of computational learning goals, the design of computational activities consistent with those goals, and the assessment of students' computational fluency. To assess students' computational fluency, we used open-ended computational projects in which students prepared reports describing a physical problem of their choosing. Many students chose projects from outside the domain of the course, and therefore, had to employ mathematical and computational techniques they had not yet been taught. After completing the project, most stud...
Indian Academy of Sciences (India)
R S Kaushal
2009-08-01
Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted $\\mathcal{PT}$ symmetry in the studies of complex power potentials as a particular case of the present general framework in which two additional degrees of freedom are produced by extending each coordinate and momentum into complex planes. With a view to account for the subjective component of physical reality inherent in the collected data, e.g., using a Chevreul (hand-held) pendulum, a generalization of the Hamilton’s principle of least action is suggested.
International Nuclear Information System (INIS)
A perpetuum mobile - that doesn't exist. But hitherto less noticed energy sources - they exist nevertheless. Meaned are energy sources, which are hitherto such scarcely explored tha mankind has not yet learnt to use them. The largest part of the universe consists of such energy. A par of this is found in the zero-point oscillations of the quantum vacuum, so the ''empty'' space from the view of quantum physics. The author of the present book is physicist and has one of the few today discussed procedures for the conversion ov vacuum energy into classical mechanical energy first theoretically developed and in the following experimentally detected. The ways of proceeding to use vacuum energy are in the present book detailedly scientifically described and compared with other known proposals for possible procedures.
Entropy production in quantum Yang-Mills mechanics in semi-classical approximation
Tsukiji, Hidekazu; Kunihiro, Teiji; Ohnishi, Akira; Takahashi, Toru T
2015-01-01
We discuss thermalization of isolated quantum systems by using the Husimi-Wehrl entropy evaluated in the semiclassical treatment. The Husimi-Wehrl entropy is the Wehrl entropy obtained by using the Husimi function for the phase space distribution. The time evolution of the Husimi function is given by smearing the Wigner function, whose time evolution is obtained in the semiclassical approximation. We show the efficiency and usefullness of this semiclassical treatment in describing entropy production of a couple of quantum mechanical systems, whose classical counter systems are known to be chaotic. We propose two methods to evaluate the time evolution of the Husimi-Wehrl entropy, the test-particle method and the two-step Monte-Carlo method. We demonstrate the characteristics of the two methods by numerical calculations, and show that the simultaneous application of the two methods ensures the reliability of the results of the Husimi-Wehrl entropy at a given time.
Classical mechanics with calculus of variations and optimal control an intuitive introduction
Levi, Mark
2014-01-01
This is an intuitively motivated presentation of many topics in classical mechanics and related areas of control theory and calculus of variations. All topics throughout the book are treated with zero tolerance for unrevealing definitions and for proofs which leave the reader in the dark. Some areas of particular interest are: an extremely short derivation of the ellipticity of planetary orbits; a statement and an explanation of the "tennis racket paradox"; a heuristic explanation (and a rigorous treatment) of the gyroscopic effect; a revealing equivalence between the dynamics of a particle and statics of a spring; a short geometrical explanation of Pontryagin's Maximum Principle, and more. In the last chapter, aimed at more advanced readers, the Hamiltonian and the momentum are compared to forces in a certain static problem. This gives a palpable physical meaning to some seemingly abstract concepts and theorems. With minimal prerequisites consisting of basic calculus and basic undergraduate physics, this boo...
International Nuclear Information System (INIS)
We present the classical and the quantum mechanical descriptions of surface-state-electrons which are perturbed by a periodic force F(t)=eepsilonΣsub(n) delta(t- T). The numerical results are supported by analytical estimates which indicate that the stochastic behaviour which characterizes the classical treatment, and which is manifested by the energy diffusion and ionization rates is suppressed in the quantum treatment. (author)
Classical and quantum mechanics of the nonrelativistic Snyder model in curved space
International Nuclear Information System (INIS)
The Snyder–de Sitter (SdS) model is a generalization of the Snyder model to a spacetime background of constant curvature. It is an example of noncommutative spacetime admitting two fundamental scales besides the speed of light, and is invariant under the action of the de Sitter group. Here, we consider its nonrelativistic counterpart, i.e. the Snyder model restricted to a three-dimensional sphere, and the related model obtained by considering the anti-Snyder model on a pseudosphere, that we call anti-Snyder–de Sitter (aSdS). By means of a nonlinear transformation relating the SdS phase-space variables to canonical ones, we are able to investigate the classical and the quantum mechanics of a free particle and of an oscillator in this framework. In their flat space limit, the SdS and aSdS models exhibit rather different properties. In the SdS case, a lower bound on the localization in position and momentum spaces arises, which is not present in the aSdS model. In the aSdS case, instead, a specific combination of position and momentum coordinates cannot exceed a constant value. We explicitly solve the classical and the quantum equations for the motion of the free particle and of the harmonic oscillator. In both the SdS and aSdS cases, the frequency of the harmonic oscillator acquires a dependence on the energy. Moreover, in the aSdS model only a finite number of states is present. (paper)
Superconducting-magnatic proximity systems and mathematical analogies to classical mechanics
Baker, Thomas E.
We present a model of a magnetic thin film that accurately replicates the features of exchange springs and use it to study the superconducting proximity effects when placed between two superconductors. The exchange spring is found to possess a mathematical analogy to the frictionless spherical pendulum at constant azimuthal frequency, also known as the bead on a hoop, which is occasionally used in introductory classical mechanics courses as an example of Least Action Principles. We provide the exact closed form, analytic solution of the bead and hoop through the use of Jacobi elliptic functions to this nearly 200 year old problem. The general solution strategy used to solve the mechanics problem is used to obtain the order parameter of a wide, dirty superconductor-ferromagnet-superconductor (SFS) trilayer to find the Green's functions analytically in the case of a uniform exchange field. The exchange spring is then substituted for the homogeneous ferromagnet and used to numerically investigate the emergence of long range triplet pairing as a function of the twisting magnetization profile.
Classical and quantum mechanics of the nonrelativistic Snyder model in curved space
Mignemi, S
2011-01-01
The Snyder-de Sitter (SdS) model is a generalization of the Snyder model to a spacetime background of constant curvature. It is an example of noncommutative spacetime admitting two fundamental scales beside the speed of light, and is invariant under the action of the de Sitter group. Here, we consider its nonrelativistic counterpart, i.e. the Snyder model restricted to a three-dimensional sphere, and the related model obtained by considering the anti-Snyder model on a pseudosphere, that we call anti-Snyder-de Sitter (aSdS). We discuss the classical and the quantum mechanics of a free particle and of an oscillator in this framework. In analogy with the flat case, the properties of the SdS and aSdS model are rather different. In the SdS case, a lower bound on the localization in position and momentum space exists, which does not arise in the aSdS model. In both cases the energy of the harmonic oscillator acquires a dependence on the frequency, but the quantum mechanical aSdS oscillator admits only a finite numb...
The physical vulnerability of elements at risk: a methodology based on fluid and classical mechanics
Mazzorana, B.; Fuchs, S.; Levaggi, L.
2012-04-01
The impacts of the flood events occurred in autumn 2011 in the Italian regions Liguria and Tuscany revived the engagement of the public decision makers to enhance in synergy flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of both, the immobile and mobile elements at risk potentially exposed to flood hazards. Based on fluid and classical mechanics notions we developed computation schemes enabling for a dynamic vulnerability and risk analysis facing a broad typological variety of elements at risk. The methodological skeleton consists of (1) hydrodynamic computation of the time-varying flood intensities resulting for each element at risk in a succession of loading configurations; (2) modelling the mechanical response of the impacted elements through static, elasto-static and dynamic analyses; (3) characterising the mechanical response through proper structural damage variables and (4) economic valuation of the expected losses as a function of the quantified damage variables. From a computational perspective we coupled the description of the hydrodynamic flow behaviour and the induced structural modifications of the elements at risk exposed. Valuation methods, suitable to support a correct mapping from the value domains of the physical damage variables to the economic loss values are discussed. In such a way we target to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches to refine the conceptual framework of the cost-benefit analysis. Moreover, we aim to support the design of effective flood risk mitigation strategies by diminishing the main criticalities within the systems prone to flood risk.
Scheme of motion as an action organizer in both classical and relativistic mechanics
Directory of Open Access Journals (Sweden)
Gabriel Dias de Carvalho Junior
2015-12-01
Full Text Available This paper reports our appropriation of the concept of scheme as one of the references for the analysis on the relative time process of signification. It has taken place within a current perspective that discusses the inclusion of modern physics in Brazilian high school, by the investigation of what are the conditions for such inclusion may occur. To do this, a didactic sequence was written placed in the transition between key concepts of classical mechanics and the theory of relativity, where one of the central points was the discussion on the influence of a frame of reference in the study of the movements. The research activities lasted 16 hours in a third grade high school and were quite diverse. We analyzed, in this work, episodes of verbal interaction and students written activities related to the concept of frame of reference and its relationship with relative time. It has been identified different epistemic content in the student’s scheme of movement. We conclude our research by the indication that there may be a reciprocal assimilation between time and motion schemes.
Mould, R A
2003-01-01
Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previously given rules support all of these cases. Key Words: brain states, conscious observer, detector, measurement, probability current, state reduction, von Neumann, wave collapse.
Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.
2003-01-01
Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2GeV I$^{-}$ and Cs$^{+}$ ions. A large difference in cross section, up to a factor of six, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stri...
International Nuclear Information System (INIS)
The aim of this paper is to review the classical limit of Quantum Mechanics and to precise the well known threat of chaos (and fundamental graininess) to the correspondence principle. We will introduce a formalism for this classical limit that allows us to find the surfaces defined by the constants of the motion in phase space. Then in the integrable case we will find the classical trajectories, and in the non-integrable one the fact that regular initial cells become “amoeboid-like”. This deformations and their consequences can be considered as a threat to the correspondence principle unless we take into account the characteristic timescales of quantum chaos. Essentially we present an analysis of the problem similar to the one of Omnès (1994,1999), but with a simpler mathematical structure
Quantum-mechanical machinery for rational decision-making in classical guessing game
Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S.; Lee, Jinhyoung
2016-02-01
In quantum game theory, one of the most intriguing and important questions is, “Is it possible to get quantum advantages without any modification of the classical game?” The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call ‘reasoning’) to generate the best strategy, which may occur internally, e.g., in the player’s brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.
Quantum-mechanical machinery for rational decision-making in classical guessing game.
Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S; Lee, Jinhyoung
2016-01-01
In quantum game theory, one of the most intriguing and important questions is, "Is it possible to get quantum advantages without any modification of the classical game?" The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call 'reasoning') to generate the best strategy, which may occur internally, e.g., in the player's brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences. PMID:26875685
Bogenschutz, Michael P; Pommy, Jessica M
2012-01-01
Alcohol and drug addiction are major public health problems, and existing treatments are only moderately effective. Although there has been interest for over half a century in the therapeutic use of classic hallucinogens to treat addictions, clinical research with these drugs was halted at an early stage in the early 1970s, leaving many fundamental questions unanswered. In the past two decades, clinical research on classic hallucinogens has resumed, although addiction treatment trials are only now beginning. The purpose of this paper is to provide a targeted review of the research most relevant to the therapeutic potential of hallucinogens, and to integrate this information with current thinking about addiction and recovery. On the basis of this information, we present a heuristic model which organizes a number of hypotheses that may be tested in future research. We conclude that existing evidence provides a convincing rationale for further research on the effects of classic hallucinogens in the treatment of addiction. PMID:22761106
How is an optimized path of classical mechanics affected by random noise?
International Nuclear Information System (INIS)
The variational principle is one of important guiding principles in physics. Classical equations of motion of particle can be formulated so as to give the optimized path of an action. However, when there exist uncontrollable degrees of freedom such as noise, the optimized path is affected and the original classical equations of motion may not correspond to the optimized path. The stochastic variational method (SVM) is a framework to calculate the modified optimized path by the effect of noise. This method has been developed to show that the Schrödinger equation can be derived from the classical action which leads to Newton's equation of motion by taking into account the modification of the optimized path due to noise. In this work, we will extend this idea to the case of the continuum media and show that the Euler equation of the ideal fluid is converted to the Navier-Stokes equation or the Gross-Pitaevskii equation in SVM.
International Nuclear Information System (INIS)
Bohmian mechanics is a quantum theory about particles in motion (i.e. about particle trajectories) that is empirically equivalent to orthodox quantum mechanics. Since also Newtonian mechanics is about particle trajectories, in Bohmian mechanics the question of the classical limit is as simple as it can possibly be: When do Bohmian trajectories look like Newtonian trajectories? As a first step towards an answer to this question we show, that the Bohmian trajectories belonging to a particular class of semiclassical wave packets become classical in an appropriate scaling limit. Furthermore, also the Bohmian trajectories of particles scattered on a short range potential become free in the classical sense: For large times their velocities tend to constants. We use this result to deduce the scattering cross section (the probability of detecting particles in a given solid angle) from first principles. In particular we show that, in the case of many particles, the collapse of the wave function due to the detection of one particle does not alter the remaining particles' detection statistics. (orig.)
Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment
Marcus, R. A.
1964-01-01
In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.
Non-Noetherian symmetries for oscillators in classical mechanics and in field theory
Hojman, Sergio A.; Delajara, Jamie; Pena, Leda
1995-01-01
Infinitely many new conservation laws both for free fields as well as for test fields evolving on a given gravitational background are presented. The conserved currents are constructed using the field theoretical counterpart of a recently discovered non-Noetherian symmetry which gives rise to a new way of solving the classical small oscillations problem. Several examples are discussed.
Rath, P K; Chaturvedi, K; Lohani, P; Raina, P K; Hirsch, J G
2013-01-01
In the PHFB model, uncertainties in the nuclear transition matrix elements for the neutrinoless double-$\\beta $ decay of $\\ ^{94,96}$Zr, $^{98,100}$Mo, $^{104}$Ru, $^{110}$Pd, $^{128,130}$Te and $^{150}$Nd isotopes within mechanisms involving light Majorana neutrinos, classical Majorons and sterile neutrinos are statistically estimated by considering sets of sixteen (twenty-four) matrix elements calculated with four different parametrization of the pairing plus multipolar type of effective two-body interaction, two sets of form factors and two (three) different parameterizations of Jastrow type of short range correlations. In the mechanisms involving the light Majorana neutrinos and classical Majorons, the maximum uncertainty is about 15% and in the scenario of sterile neutrinos, it varies in between approximately 4 (9)%--20 (36)% without(with) Jastrow short range correlations with Miller-Spencer parametrization, depending on the considered mass of the sterile neutrinos.
International Nuclear Information System (INIS)
We consider geodesic motion on three-dimensional Riemannian manifolds of constant negative curvature, topologically equivalent to S x ]0,1[, S a compact surface of genus two. To those trajectories which are recurrent in both directions of the time evolution t → +∞, t → -∞ a fractal limit set is associated whose Hausdorff dimension is intimately connected with the quantum mechanical energy ground state, determined by the Schroedinger operator on the manifold. We give a rather detailed and pictorial description of the hyperbolic spaces we have in mind, discuss various aspects of classical and quantum mechanical motion on them as far as they are needed to establish the connection between energy ground state and Hausdorff dimension and give finally some examples of ground state calculations in terms of Hausdorff dimensions of limit sets of classical trajectories. (orig.)
Alonso Izquierdo, Alberto; González León, Miguel Ángel; Torre Mayado, Marina de la; Mateos Guilarte, Juan
2004-01-01
[EN ] Superpotentials in {\\cal N}=2 supersymmetric classical mechanics are no more than the Hamilton characteristic function of the Hamilton–Jacobi theory for the associated purely bosonic dynamical system. Modulo a global sign, there are several superpotentials ruling Hamilton–Jacobi separable supersymmetric systems, with a number of degrees of freedom greater than 1. Here, we explore how supersymmetry and separability are entangled in the quantum version of this kind of system. We also show...
Danforth, Douglas G.
2001-01-01
Classical systems can be entangled. Entanglement is defined by coincidence correlations. Quantum entanglement experiments can be mimicked by a mechanical system with a single conserved variable and 77.8% conditional efficiency. Experiments are replicated for four particle entanglement swapping and GHZ entanglement.
Positive-type functions on groups and new inequalities in classical and quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Man' ko, V I [P. N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, G; Simoni, A; Ventriglia, F, E-mail: manko@na.infn.i, E-mail: marmo@na.infn.i, E-mail: simoni@na.infn.i, E-mail: ventriglia@na.infn.i [Dipartimento di Scienze Fisiche dell' Universita ' Federico II' e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo via Cintia, 80126 Naples (Italy)
2010-09-15
Out of any unitary representation of a group, positive-type functions on the group can be obtained. These functions allow one to construct positive semi-definite matrices that may be used to define new inequalities for higher moments of observables associated with classical probability distribution functions and density states of quantum systems. The inequalities stemming from the Heisenberg-Weyl group representations are considered in connection with Gaussian distributions. We obtain new inequalities for multi-variable Hermite polynomials.
Positive-type functions on groups and new inequalities in classical and quantum mechanics
International Nuclear Information System (INIS)
Out of any unitary representation of a group, positive-type functions on the group can be obtained. These functions allow one to construct positive semi-definite matrices that may be used to define new inequalities for higher moments of observables associated with classical probability distribution functions and density states of quantum systems. The inequalities stemming from the Heisenberg-Weyl group representations are considered in connection with Gaussian distributions. We obtain new inequalities for multi-variable Hermite polynomials.
Positive-type functions on groups and new inequalities in classical and quantum mechanics
Man'ko, V. I.; Marmo, G.; Simoni, A.; Ventriglia, F.
2010-09-01
Out of any unitary representation of a group, positive-type functions on the group can be obtained. These functions allow one to construct positive semi-definite matrices that may be used to define new inequalities for higher moments of observables associated with classical probability distribution functions and density states of quantum systems. The inequalities stemming from the Heisenberg-Weyl group representations are considered in connection with Gaussian distributions. We obtain new inequalities for multi-variable Hermite polynomials.
Kuwahara, Y; Nakamura, Y; Yamanaka, Y
2013-01-01
The $2 \\times 2$-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [Phys. Rev. Lett. 110, 174301 (2013)]. We show that the Galley's Hamilto...
Schomerus, H
1997-01-01
We investigate classical and semiclassical aspects of codimension--two bifurcations of periodic orbits in Hamiltonian systems. A classification of these bifurcations in autonomous systems with two degrees of freedom or time-periodic systems with one degree of freedom is presented. We derive uniform approximations to be used in semiclassical trace formulas and determine also certain global bifurcations in conjunction with Stokes transitions that become important in the ensuing diffraction catastrophe integrals.
Gauge dependence of world lines and invariance of the S-matrix in relativistic classical mechanics
International Nuclear Information System (INIS)
The notion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend in general (in the presence of interaction) on the choice of the equal-time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a two-particle system and the (classical) S-matrix are indepent of this choice. (author)
International Nuclear Information System (INIS)
We present the first molecular dynamics simulation of the vacuum deposition of amorphous selenium films. We compare the classical, tight-binding and Hubbard-term corrected tight-binding molecular dynamics simulation methods. Densities, coordination defects, radial distribution functions, bond angles, dihedral angles, intrachain and interchain atomic correlations were investigated in the obtained amorphous films. Local atomic arrangements were compared to results of diffraction measurements
The classical and quantum mechanics of a particle on a knot
Energy Technology Data Exchange (ETDEWEB)
Sreedhar, V.V., E-mail: sreedhar@cmi.ac.in
2015-08-15
A free particle is constrained to move on a knot obtained by winding around a putative torus. The classical equations of motion for this system are solved in a closed form. The exact energy eigenspectrum, in the thin torus limit, is obtained by mapping the time-independent Schrödinger equation to the Mathieu equation. In the general case, the eigenvalue problem is described by the Hill equation. Finite-thickness corrections are incorporated perturbatively by truncating the Hill equation. Comparisons and contrasts between this problem and the well-studied problem of a particle on a circle (planar rigid rotor) are performed throughout.
Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.
2013-12-01
The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [1]. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.
Energy Technology Data Exchange (ETDEWEB)
Kuwahara, Y., E-mail: a.kuwahara1224@asagi.waseda.jp; Nakamura, Y., E-mail: nakamura@aoni.waseda.jp; Yamanaka, Y., E-mail: yamanaka@waseda.jp
2013-12-09
The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.
Heat control in opto-mechanical system using quantum non-classicality
Sharma, Sushamana; Senwar, Subash
2016-05-01
Cooling of matter to the quantum ground state is a primary directive of quantum control. In other words, to extract entropy from a quantum system, efficient indirect quantum measurements may be implemented. The main objective is the cooling of the oscillator either to its motional ground state or to non-classical states, such as low-number Fock states, squeezed states or entangled states. It is shown that the use of quantum control procedure is better choice for even experimental realizations because it leads to a squeezed steady state with less than one phonon on average. The steady state of system corresponds to cooling of the system.
The role of self-induced decoherence in the problem of the classical limit of quantum mechanics
Castagnino, M A; Gadella, Manuel
2003-01-01
Our account of the problem of the classical limit of quantum mechanics involves two elements. The first one is self-induced decoherence, conceived as a process that depends on the own dynamics of a closed quantum system governed by a Hamiltonian with continuous spectrum; the study of decoherence is addressed by means of a formalism used to give meaning to the van Hove states with diagonal singularities. The second element is macroscopicity: when the macroscopic limit is applied to the Wigner transformation of the diagonal state resulting from decoherence, the description of the quantum system becomes equivalent to the description of an ensemble of classical trajectories on phase space weighted by their corresponding probabilities.
Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism
Energy Technology Data Exchange (ETDEWEB)
Costa, Diogo Ricardo da [Instituto de Física da USP, Rua do Matão, Travessa R, 187, Cidade Universitária, CEP 05314-970 São Paulo, SP (Brazil); School of Mathematics, University of Bristol, Bristol (United Kingdom); Departamento de Física, UNESP-Univ Estadual Paulista, Av. 24A, 1515, 13506-900 Rio Claro, SP (Brazil); Dettmann, Carl P. [School of Mathematics, University of Bristol, Bristol (United Kingdom); Oliveira, Juliano A. de [UNESP-Univ Estadual Paulista, Câmpus de São João da Boa Vista, São João da Boa Vista, SP (Brazil); Leonel, Edson D. [Departamento de Física, UNESP-Univ Estadual Paulista, Av. 24A, 1515, 13506-900 Rio Claro, SP (Brazil)
2015-03-15
Some dynamical properties for an oval billiard with a scatterer in its interior are studied. The dynamics consists of a classical particle colliding between an inner circle and an external boundary given by an oval, elliptical, or circle shapes, exploring for the first time some natural generalizations. The billiard is indeed a generalization of the annular billiard, which is of strong interest for understanding marginally unstable periodic orbits and their role in the boundary between regular and chaotic regions in both classical and quantum (including experimental) systems. For the oval billiard, which has a mixed phase space, the presence of an obstacle is an interesting addition. We demonstrate, with details, how to obtain the equations of the mapping, and the changes in the phase space are discussed. We study the linear stability of some fixed points and show both analytically and numerically the occurrence of direct and inverse parabolic bifurcations. Lyapunov exponents and generalized bifurcation diagrams are obtained. Moreover, histograms of the number of successive iterations for orbits that stay in a cusp are studied. These histograms are shown to be scaling invariant when changing the radius of the scatterer, and they have a power law slope around −3. The results here can be generalized to other kinds of external boundaries.
Coupling constant metamorphosis and Nth order symmetries in classical and quantum mechanics
Kalnins, E G; Post, S
2009-01-01
We review the fundamentals of coupling constant metamorphosis (CCM) and the St\\"ackel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which do preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature 3rd and 4th order superintegrable systems in 2 space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.
Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Kalnins, E G [Department of Mathematics and Statistics, University of Waikato, Hamilton (New Zealand); Miller, W Jr; Post, S [School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (United States)], E-mail: miller@ima.umn.edu
2010-01-22
We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.
Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics
International Nuclear Information System (INIS)
We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.
New foundations and unification of basic plasma physics by means of classical mechanics
Escande, Dominique F; Elskens, Yves
2013-01-01
The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas requires many pages of heavy kinetic calculations in classical textbooks and is done in distinct, unrelated chapters. Using Newton's second law for the $N$-body system, we perform this derivation in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered on the way to Landau damping. The theory is extended to accommodate a correct description of trapping or chaos due to Langmuir waves, and to avoid the small amplitude assumption for the electrostatic potential. Using the shielded potential, collisional transport is computed for the first time by a convergent expression including the correct calculation of deflections for all impact parameters. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons.
Kaganovich, I D; Davidson, R C; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.
2003-01-01
Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2GeV I$^{-}$ and Cs$^{+}$ ions. A large difference in cross section, up to a factor of six, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stripping cross sections at high energies for electron orbitals with low ionization potential.
Gov, S; Thomas, H
1999-01-01
Recently, we developed a method for calculating the lifetime of a particle inside a magnetic trap with respect to spin flips, as a first step in our efforts to understand the quantum-mechanics of magnetic traps. The 1D toy model that was used in this study was physically unrealistic because the magnetic field was not curl-free. Here, we study, both classically and quantum-mechanically, the problem of a neutral particle with spin S, mass m and magnetic moment mu, moving in 3D in an inhomogeneous magnetic field corresponding to traps of the Ioffe-Pritchard, `clover-leaf' and `baseball' type. Defining by omega_p, omega_z and omega_r the precessional, the axial and the lateral vibrational frequencies, respectively, of the particle in the adiabatic potential, we find classically the region in the $(ømega_{r}% (omega_r -- omega_z) plane where the particle is trapped. Quantum-mechanically, we study the problem of a spin-one particle in the same field. Treating omega_r / omega_p and omega_z / omega_p as small parame...
Probing wave function collapse models with a classically driven mechanical oscillator
Ho, Melvyn; Lafont, Ambroise; Sangouard, Nicolas; Sekatski, Pavel
2016-03-01
We show that the interaction of a pulsed laser light with a mechanical oscillator through the radiation pressure results in an opto-mechanical entangled state in which the photon number is correlated with the oscillator position. Interestingly, the mechanical oscillator can be delocalized over a large range of positions when driven by an intense laser light. This provides a simple yet sensitive method to probe hypothetical post-quantum theories including an explicit wave function collapse model, like the Diosi & Penrose model. We propose an entanglement witness to reveal the quantum nature of this opto-mechanical state as well as an optical technique to record the decoherence of the mechanical oscillator. We also report on a detailed feasibility study giving the experimental challenges that need to be overcome in order to confirm or rule out predictions from explicit wave function collapse models.
Mechanics and analysis of beams, columns and cables. A modern introduction to the classic theories
DEFF Research Database (Denmark)
Krenk, Steen
The book illustrates the use of simple mathematical analysis techniques within the area of basic structural mechanics, in particular the elementary theories of beams, columns and cables. The focus is on: i) Identification of the physical background of the theories and their particular mathematical...... properties. ii) Demonstration of mathematical techniques for analysis of simple problems in structural mechanics, and identification of the relevant parameters and properties of the solution. iii) Derivation of the solutions to a number of basic problems of structural mechanics in a form suitable for later...
Advances in one-dimensional wave mechanics. Towards a unified classical view
Energy Technology Data Exchange (ETDEWEB)
Cao, Zhuangqi [Shanghai Jiao Tong Univ., (China). Dept. of Physics and Astronomy; Yin, Cheng [Hohai Univ., Changzhou, Jiangsu (China). College of IoT Engineering
2014-06-01
Introduces a completely new concept of the scattered sub-waves via the Analytical Transfer Matrix (ATM) method. Develops a relatively simple method to accurately solve one-dimensional problems in quantum mechanics. Based on the analogy between the Quantum Mechanics and Electromagnetism, several interesting issues in quantum mechanics, such as tunneling, quantum reflection and scattering time are restudied. Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.
Advances in one-dimensional wave mechanics. Towards a unified classical view
International Nuclear Information System (INIS)
Introduces a completely new concept of the scattered sub-waves via the Analytical Transfer Matrix (ATM) method. Develops a relatively simple method to accurately solve one-dimensional problems in quantum mechanics. Based on the analogy between the Quantum Mechanics and Electromagnetism, several interesting issues in quantum mechanics, such as tunneling, quantum reflection and scattering time are restudied. Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.
Classical conditioning mechanisms can differentiate between seeing and doing in rats.
Kutlu, Munir G; Schmajuk, Nestor A
2012-01-01
We show that the attentional-associative SLG model of classical conditioning, based on the 1996 research of Schmajuk, Lam, and Gray, correctly describes experimental results regarded as evidence of causal learning in rats: (a) interventions attenuate responding following common-cause training but do not interfere on subsequent responding during observation, and (b) interventions do not affect responding after direct-cause training or (c) causal-chain training. According to the model, responding to the weakly attended test stimulus is strongly inhibited by the intervention in the common-cause case. Instead, in the direct-cause and causal-chain cases, the strongly attended test stimulus becomes inhibitory, thereby overshadowing the inhibitory effect of interventions. Most importantly, the model predicted that with relatively few test trials (a) the 2008 results of Experiment 3 by Leising, Wong, Waldmann, and Blaisdell should be similar to those of Dwyer, Starns, and Honey's 2009 Experiment 1, showing that interventions equally affect responding after common-cause and direct-cause training; and (b) the 2006 results of Experiment 2a by Blaisdell, Sawa, Leising, and Waldmann should be similar to those of Dwyer, Starns, and Honey's 2009 Experiment 2, showing that interventions equally affect responding after common-cause and causal-chain training. When those data were made available to us, we confirmed those predictions. In agreement with the SLG associative model, but not with causal model theory, this evidence supports the notion that the attenuation of responding by interventions only following common-cause training is the consequence of well-known learning processes-latent inhibition, sensory preconditioning, conditioned inhibition, protection from extinction, and overshadowing. PMID:22229589
Evans, Deborah J; Owlarn, Suthira; Tejada Romero, Belen; Chen, Chen; Aboobaker, A Aziz
2011-01-01
The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then
Directory of Open Access Journals (Sweden)
Deborah J Evans
Full Text Available The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi or Smed-ptc(RNAi lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new
The Hamilton--Jacobi Theory and the Analogy between Classical and Quantum Mechanics
G. Marmo(Università di Napoli and INFN, Napoli, Italy); Morandi, G.; Mukunda, N.
2009-01-01
We review here some conventional as well as less conventional aspects of the time-independent and time-dependent Hamilton-Jacobi (HJ) theory and of its connections with Quantum Mechanics. Less conventional aspects involve the HJ theory on the tangent bundle of a configuration manifold, the quantum HJ theory, HJ problems for general differential operators and the HJ problem for Lie groups.
Santillan, M.; Zeron, E. S.; Del Rio-Correa, J. L.
2008-01-01
In the traditional statistical mechanics textbooks, the entropy concept is first introduced for the microcanonical ensemble and then extended to the canonical and grand-canonical cases. However, in the authors' experience, this procedure makes it difficult for the student to see the bigger picture and, although quite ingenuous, the subtleness of…
Czech Academy of Sciences Publication Activity Database
Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, E. E.; Jakubík, Jan
2015-01-01
Roč. 97, Jul 2015 (2015), s. 27-39. ISSN 1043-6618 R&D Projects: GA ČR(CZ) GA305/09/0681; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : muscarinic acetylcholine receptors * atypical agonists * xanomeline * activation mechanism Subject RIV: ED - Physiology Impact factor: 4.408, year: 2014
Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D
2015-04-01
The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results. PMID:26262969
Darrall, Bradley T.
For the first time true variational principles are formulated for the analysis of the continuum problems of heat diffusion, dynamic thermoelasticity, poroelasticity, and time-dependent quantum mechanics. This is accomplished by considering the stationarity of a mixed convolved action, which can be seen as a modern counterpart to the original actions posed in Hamilton's principle and its many extensions. By including fractional derivatives, convolution integrals, and mixed variables into the definition of the action these new variational principles overcome the shortcomings of the many other variational methods based on Hamilton's principle, namely the inability to include dissipation in a consistent manner and the unjustified need to constrain variations on the primary unknowns of a system at the end of the time interval. These new variational principles then provide ideal weak forms from which novel time-space finite element methods having certain attractive properties are formulated.
Directory of Open Access Journals (Sweden)
George Stylos
2008-01-01
Full Text Available This paper presents results of an empirical research study on Newton’s laws classical mechanics and its perceptions on freshman students at the Physics Department, University of Ioannina, Greece. Results and outcome measures reveal misconceptions on students’ perceptions in consideration of the fundamental concepts in freshman Physics education. The findings showed that the students continue to have the same misconceptions on concepts, such as the students of the high school. The research indicates that the students’ misconceptions remain largely throughout secondary education, which is a proof that there is no effort, where appropriate for conceptual change, according to the constructive model of learning and teaching physics. The objective intended to be reached in this communication is to provide an exchange forum of ideas that would help instructors originate the cause, and subsequently avoid misconceptions in freshman Physics education.
Dzierlenga, Michael; Antoniou, Dimitri; Schwartz, Steven
2015-03-01
The mechanisms involved in enzymatic hydride transfer have been studies for years but questions remain, due to the difficulty in determining the participation of protein dynamics and quantum effects, especially hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and lactate dehydrogenase (LDH). Calculation of the work applied to the hydride during the reaction allows for observation of the change in barrier height due to inclusion of quantum effects. Additionally, the same calculations were performed using deuterium as the transferring particle to validate our methods with experimentally measured kinetic isotope effects. The change in barrier height in YADH upon inclusion of quantum effects is indicative of a zero-point energy contribution, and is evidence that the protein mediates a near-barrierless transfer of the rate-limiting hydride. Calculation of kinetic isotope effects using the average difference in barrier between hydride and deuteride agreed well with experimental results. The authors acknowledge the support of the National Institutes of Health Grants GM068036 and GM102226.
Power as the Cause of Motion and a New Foundation of Classical Mechanics
Directory of Open Access Journals (Sweden)
Harokopos E.
2005-07-01
Full Text Available Laws of motion are derived based on power rather than on force. I show how power extends the law of inertia to include curvilinear motion and I also show that the law of action-reaction can be expressed in terms of the mutual time rate of change of kinetic energies instead of mutual forces. I then compare the laws of motion based on power to Newton’s Laws of Motion and I investigate the relation of power to Leibniz’s notion of vis viva. I also discuss briefly how the metaphysics of power as the cause of motion can be grounded in a modern version of occasionalism for the purpose of establishing an alternative foundation of mechanics. The laws of motion derived in this paper along with the metaphysical foundation proposed come in defense of the hypotheses that time emerges as an ordered progression of now and that gravitation is the effect of energy transfer between an unobservable substance and all matter in the Universe.
Peón, Alberto N; Terrazas, Luis I
2016-01-01
Multiple sclerosis (MS) is the most prevalent autoimmune disease affecting the central nervous system (CNS). Its pathophysiology is centered on neuron myelin sheath destruction in a manner largely dependent upon CD4+/CD8+ T-cell autoreactivity against myelin antigens, inducing Th1/Th17 pathogenic responses with the resulting production of free radicals and soluble mediators that exhibit the effector mechanisms of neurodegeneration. The immune response responsible for this disease is complex and challenges modern medicine. Consequently, many experimental therapies have been proposed in addition to the classical array of immunoregulatory/ immunosuppressive drugs that are normally used to treat MS. In this review, we will describe the effects and mechanisms of action of widely used disease-modifying MS drugs as well as those of select treatments that are currently in the experimental phase. Special emphasis is placed on helminth-derived immunoregulators, as some of them have shown promising results. Additionally, we will compare the mechanisms of action of both the MS drugs and the helminth-derived treatments to discuss the potential importance of some signaling pathways in the control of MS. PMID:26947777
Kreshchuk, Michael
2016-01-01
The phenomenon of duality reflects a link between the behaviour of a system in different regimes. The goal of this work is to expose the classical origins of such links, and to demonstrate how they come to life in some quasi-exactly solvable problems of quantum mechanics. By studying the global properties of the Riemannian surface of the classical momentum, we reveal that the abbreviated classical action possesses a symmetry which holds also at the quantum level and underlies the energy reflection symmetry of the quantum energy levels.
Quantum emulation of classical dynamics
Margolus, Norman
2011-01-01
In statistical mechanics, it is well known that finite-state classical lattice models can be recast as quantum models, with distinct classical configurations identified with orthogonal basis states. This mapping makes classical statistical mechanics on a lattice a special case of quantum statistical mechanics, and classical combinatorial entropy a special case of quantum entropy. In a similar manner, finite-state classical dynamics can be recast as finite-energy quantum dynamics. This mapping...
Directory of Open Access Journals (Sweden)
Claudio Volcan
2012-02-01
Full Text Available The impacts of flood events that occurred in autumn 2011 in the Italian regions of Liguria and Tuscany revived the engagement of the public decision-maker to enhance the synergy of flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of the fixed and mobile elements exposed to flood hazard. In this paper we develop computation schemes enabling dynamic vulnerability and risk analyses for a broad typological variety of elements at risk. To show their applicability, a series of prime examples are discussed in detail, e.g. a bridge deck impacted by the flood and a car, first displaced and subsequently exposed to collision with fixed objects. We hold the view that it is essential that the derivation of the computational schemes to assess the vulnerability of endangered objects should be based on classical and fluid mechanics. In such a way, we aim to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches and to support the design of effective flood risk mitigation strategies by defusing the main criticalities within the systems prone to flood risk.
International Nuclear Information System (INIS)
Split-dose recovery has been observed under a variety of experimental conditions in many cell systems and believed to be the recovery of sublethal damage (SLD). It is considered to be one of the most widespread and important cellular responses in clinical radiotherapy. To study the molecular mechanism of this recovery, we analyzed the knockout mutants KU70-/-, RAD54-/-, and KU70-/-/ RAD54-/- of the chicken B-cell line, DT40. Rad54 participates in the homologous recombinational (HR) repair of DNA double-strand breaks (DSB), while Ku proteins are involved in non-homologous end-joining (NHEJ). Split-dose recovery was observed in the parent DT40 and KU70-/- cells. Moreover the split-dose survival enhancement had all of the characteristics of SLD recovery that had been demonstrated earlier: e.g., the reappearance of the shoulder of the survival curve with dose fractionation; repair at 25degC; and inhibition by the antibiotic actinomycin D. These results strongly suggest that SLD recovery is due to DSB repair via or mediated by HR, and that these breaks constitute SLD. The tonicity-sensitive potentially lethal damage (PLD) recovery was also found only in DT40 and KU70 -/- cells. Delayed-plating PLD recovery may be controlled by NHEJ repair that works through the cell cycle. These results lead to the conclusion that the repair of DSBs could explain the classical operational recovery phenomena. We have also investigated RBE/LET using those mutants. (author)
International Nuclear Information System (INIS)
A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author)
Entanglement in Classical Optics
Ghose, Partha; Mukherjee, Anirban
2013-01-01
The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate betw...
Energy Technology Data Exchange (ETDEWEB)
Draeger, E W; Bennion, B; Gygi, F; Lightstone, F
2006-02-10
The reaction mechanism of the human P450 CYP1A2 enzyme plays a fundamental role in understanding the effects of environmental carcinogens and mutagens on humans. Despite extensive experimental research on this enzyme system, key questions regarding its catalytic cycle and oxygen activation mechanism remain unanswered. In order to elucidate the reaction mechanism in human P450, new computational methods are needed to accurately represent this system. To enable us to perform computational simulations of unprecedented accuracy on these systems, we developed a dynamic quantum-classical (QM/MM) hybrid method, in which ab initio molecular dynamics are coupled with classical molecular mechanics. This will provide the accuracy needed to address such a complex, large biological system in a fully dynamic environment. We also present detailed calculations of the P450 active site, including the relative charge transfer between iron porphine and tetraphenyl porphyrin.
Energy Technology Data Exchange (ETDEWEB)
Utsumi, Hiroshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst
2000-09-01
Split-dose recovery has been observed under a variety of experimental conditions in many cell systems and believed to be the recovery of sublethal damage (SLD). It is considered to be one of the most widespread and important cellular responses in clinical radiotherapy. To study the molecular mechanism of this recovery, we analyzed the knockout mutants KU70{sup -/-}, RAD54{sup -/-}, and KU70{sup -/-}/ RAD54{sup -/-} of the chicken B-cell line, DT40. Rad54 participates in the homologous recombinational (HR) repair of DNA double-strand breaks (DSB), while Ku proteins are involved in non-homologous end-joining (NHEJ). Split-dose recovery was observed in the parent DT40 and KU70{sup -/-} cells. Moreover the split-dose survival enhancement had all of the characteristics of SLD recovery that had been demonstrated earlier: e.g., the reappearance of the shoulder of the survival curve with dose fractionation; repair at 25degC; and inhibition by the antibiotic actinomycin D. These results strongly suggest that SLD recovery is due to DSB repair via or mediated by HR, and that these breaks constitute SLD. The tonicity-sensitive potentially lethal damage (PLD) recovery was also found only in DT40 and KU70 {sup -/-} cells. Delayed-plating PLD recovery may be controlled by NHEJ repair that works through the cell cycle. These results lead to the conclusion that the repair of DSBs could explain the classical operational recovery phenomena. We have also investigated RBE/LET using those mutants. (author)
Directory of Open Access Journals (Sweden)
Enders P.
2007-07-01
Full Text Available In addition to his outstanding achievements in physics and activities in policy, C.-F. von Weizsäcker is famous for his talks, given as a member of the Academy Leopoldina. Due to the latter, I could learn quite a lot from his methodological writings. In particular, he is the only modern thinker I’m aware of who has pointed to the difference between Newton’s and Laplace’s notions of state. But this difference is essential for the relationship between classical and quantum physics. Moreover it is the clue to overcoming Gibbs’ paradox within classical statistical mechanics itself.
Zhang, Yuetao
2012-01-01
Classical and frustrated Lewis pairs (LPs) of the strong Lewis acid (LA) Al(C 6F 5) 3 with several Lewis base (LB) classes have been found to exhibit exceptional activity in the Lewis pair polymerization (LPP) of conjugated polar alkenes such as methyl methacrylate (MMA) as well as renewable α-methylene-γ-butyrolactone (MBL) and γ-methyl- α-methylene-γ-butyrolactone (γ-MMBL), leading to high molecular weight polymers, often with narrow molecular weight distributions. This study has investigated a large number of LPs, consisting of 11 LAs as well as 10 achiral and 4 chiral LBs, for LPP of 12 monomers of several different types. Although some more common LAs can also be utilized for LPP, Al(C 6F 5) 3-based LPs are far more active and effective than other LA-based LPs. On the other hand, several classes of LBs, when paired with Al(C 6F 5) 3, can render highly active and effective LPP of MMA and γ-MMBL; such LBs include phosphines (e.g., P tBu 3), chiral chelating diphosphines, N-heterocyclic carbenes (NHCs), and phosphazene superbases (e.g., P 4- tBu). The P 4- tBu/Al(C 6F 5) 3 pair exhibits the highest activity of the LP series, with a remarkably high turn-over frequency of 9.6 × 10 4 h -1 (0.125 mol% catalyst, 100% MMA conversion in 30 s, M n = 2.12 × 10 5 g mol -1, PDI = 1.34). The polymers produced by LPs at RT are typically atactic (P γMMBL with ∼47% mr) or syndio-rich (PMMA with ∼70-75% rr), but highly syndiotactic PMMA with rr ∼91% can be produced by chiral or achiral LPs at -78 °C. Mechanistic studies have identified and structurally characterized zwitterionic phosphonium and imidazolium enolaluminates as the active species of the current LPP system, which are formed by the reaction of the monomer·Al(C 6F 5) 3 adduct with P tBu 3 and NHC bases, respectively. Kinetic studies have revealed that the MMA polymerization by the tBu 3P/ Al(C 6F 5) 3 pair is zero-order in monomer concentration after an initial induction period, and the polymerization
Directory of Open Access Journals (Sweden)
Seidl Kelly M
2010-03-01
Full Text Available Abstract Background The success of anti-TNF biologics for the treatment of rheumatoid arthritis has highlighted the importance of understanding the intracellular pathways that regulate TNF production in the quest for an orally-available small molecule inhibitor. p38 is known to strongly regulate TNF production via MK2. The failure of several p38 inhibitors in the clinic suggests the importance of other downstream pathways in normal cell function. Recent work has described a 'substrate-selective' p38 inhibitor that is able to preferentially block the activity of p38 against one substrate (MK2 versus another (ATF2. Using a combined experimental and computational approach, we have examined this mechanism in greater detail for two p38 substrates, MK2 and ATF2. Results We found that in a dual (MK2 and ATF2 substrate assay, MK2-p38 interaction reduced the activity of p38 against ATF2. We further constructed a detailed kinetic mechanistic model of p38 phosphorylation in the presence of multiple substrates and successfully predicted the performance of classical and so-called 'substrate-selective' p38 inhibitors in the dual substrate assay. Importantly, it was found that excess MK2 results in a stoichiometric effect in which the formation of p38-MK2-inhibitor complex prevents the phosphorylation of ATF2, despite the preference of the compound for the p38-MK2 complex over the p38-ATF2 complex. MK2 and p38 protein expression levels were quantified in U937, Thp-1 and PBMCs and found that [MK2] > [p38]. Conclusion Our integrated mechanistic modeling and experimental validation provides an example of how systems biology approaches can be applied to drug discovery and provide a basis for decision-making with limited chemical matter. We find that, given our current understanding, it is unlikely that 'substrate-selective' inhibitors of p38 will work as originally intended when placed in the context of more complex cellular environments, largely due to a
Notes on Collective Field Theory of Large N Vector Models as Classical Mechanics on the Siegel Disc
Agarwal, A
2004-01-01
We use deformation quantization to construct the large N limits of Bosonic vector models as classical dynamical systems on the Siegel disc and study the relation of this formulation to standard results of collective field theory. Special emphasis is paid to relating the collective potential of the large N theory to a particular cocycle of the symplectic group.
Torrielli, Alessandro
2016-08-01
We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin–Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand–Levitan–Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.
International Nuclear Information System (INIS)
Quantum Hamiltonians that are fine-tuned to their so-called Rokhsar-Kivelson (RK) points, first presented in the context of quantum dimer models, are defined by their representations in preferred bases in which their ground state wave functions are intimately related to the partition functions of combinatorial problems of classical statistical physics. We show that all the known examples of quantum Hamiltonians, when fine-tuned to their RK points, belong to a larger class of real, symmetric, and irreducible matrices that admit what we dub a Stochastic Matrix Form (SMF) decomposition. Matrices that are SMF decomposable are shown to be in one-to-one correspondence with stochastic classical systems described by a Master equation of the matrix type, hence their name. It then follows that the equilibrium partition function of the stochastic classical system partly controls the zero-temperature quantum phase diagram, while the relaxation rates of the stochastic classical system coincide with the excitation spectrum of the quantum problem. Given a generic quantum Hamiltonian construed as an abstract operator defined on some Hilbert space, we prove that there exists a continuous manifold of bases in which the representation of the quantum Hamiltonian is SMF decomposable, i.e., there is a (continuous) manifold of distinct stochastic classical systems related to the same quantum problem. Finally, we illustrate with three examples of Hamiltonians fine-tuned to their RK points, the triangular quantum dimer model, the quantum eight-vertex model, and the quantum three-coloring model on the honeycomb lattice, how they can be understood within our framework, and how this allows for immediate generalizations, e.g., by adding non-trivial interactions to these models
Cohn, A G; Rabinowitz, Mario
2003-01-01
A classical representation of an extended body over barriers of height greater than the energy of the incident body is shown to have many features in common with quantum tunneling as the center-of-mass literally goes through the barrier. It is even classically possible to penetrate any finite barrier with a body of arbitrarily low energy if the body is sufficiently long. A distribution of body lengths around the de Broglie wavelength leads to reasonable agreement with the quantum transmission coefficient.
Cohn, Arthur; Rabinowitz, Mario
2003-01-01
A classical representation of an extended body over barriers of height greater than the energy of the incident body is shown to have many features in common with quantum tunneling as the center-of-mass literally goes through the barrier. It is even classically possible to penetrate any finite barrier with a body of arbitrarily low energy if the body is sufficiently long. A distribution of body lengths around the de Broglie wavelength leads to reasonable agreement with the quantum transmission...
Horzela, Andrzej; Kapuscik, Edward
1993-01-01
An alternative picture of classical many body mechanics is proposed. In this picture particles possess individual kinematics but are deprived from individual dynamics. Dynamics exists only for the many particle system as a whole. The theory is complete and allows to determine the trajectories of each particle. It is proposed to use our picture as a classical prototype for a realistic theory of confined particles.
Wave Mechanics or Wave Statistical Mechanics
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.
International Nuclear Information System (INIS)
Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2 GeV I- and Cs+ ions. A large difference in cross section, up to a factor of 6, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stripping cross sections at high energies for electron orbitals with low ionization potential
PEREA CÓRDOBA, MILTÓN HENRY
2015-01-01
[EN] Motivated by the conceptual problems concerning the quantisation of gravity, the Dutch theoretical physicist G. 't Hooft (1999 Nobel prize in physics) put forward the notion that quantum mechanics must be the emergent theory of some underlying, deterministic theory. This proposal usually goes by the name quantum mechanics as an emergent phenomenon. This research line, initiated by 't Hooft in the late 1990's, has been the subject of intense research over the last 15 years,...
International Nuclear Information System (INIS)
Promising predictions are made for III-V tunnel-field-effect transistor (FET), but there is still uncertainty on the parameters used in the band-to-band tunneling models. Therefore, two simulators are calibrated in this paper; the first one uses a semi-classical tunneling model based on Kane's formalism, and the second one is a quantum mechanical simulator implemented with an envelope function formalism. The calibration is done for In0.53Ga0.47As using several p+/intrinsic/n+ diodes with different intrinsic region thicknesses. The dopant profile is determined by SIMS and capacitance-voltage measurements. Error bars are used based on statistical and systematic uncertainties in the measurement techniques. The obtained parameters are in close agreement with theoretically predicted values and validate the semi-classical and quantum mechanical models. Finally, the models are applied to predict the input characteristics of In0.53Ga0.47As n- and p-lineTFET, with the n-lineTFET showing competitive performance compared to MOSFET
Energy Technology Data Exchange (ETDEWEB)
Gonzalez Gonzalez, A.; Rubayo Soneira, J.; Portuondo Campa, E.
2001-07-01
In this work the use of numerical methods in the solution of physics academic problems is discussed, particularly those on classical mechanics. Frequently the solution of academic problems is limited to finding a differential equation which is left unsolved for having no analytical solution. However, by means of numerical methods we can solve these equations and enrich the physical analysis of the problem. This approach also makes the academic process a little closer to modern physical research, where numerical methods have increasingly been used in almost every field. In the present paper we discuss a classical mechanics problem using these methods. We start from both Newton's and Lagrange's formulations and apply different numerical algorithms in the solution of the obtained equations. During last academic semester, recently concluded, we tested the ideas of this work with students of Nuclear Physics career of the Higher Institute of Nuclear Sciences and technologies, at Havana, cuba. The results were encouraging. (Author) 7 refs.
Esposito, Fabrizio; Coppola, Carla Maria; De Fazio, Dario
2015-12-24
In this work we present a dynamical study of the H + HeH+ → H2+ + He reaction in a collision energy range from 0.1 meV to 10 eV, suitable to be used in applicative models. The paper extends and complements a recent work [ Phys. Chem. Chem. Phys. 2014, 16, 11662] devoted to the characterization of the reactivity from the ultracold regime up to the three-body dissociation breakup. In particular, the accuracy of the quasi-classical trajectory method below the three-body dissociation threshold has been assessed by a detailed comparison with previous calculations performed with different reaction dynamics methods, whereas the reliability of the results in the high energy range has been checked by a direct comparison with the available experimental data. Integral cross sections for several HeH+ roto-vibrational states have been analyzed and used to understand the extent of quantum effects in the reaction dynamics. By using the quasi-classical trajectory method and quantum mechanical close coupling data, respectively, in the high and low collision energy ranges, we obtain highly accurate thermal rate costants until 15 000 K including all (178) the roto-vibrational bound and quasi-bound states of HeH+. The role of the collision-induced dissociation is also discussed and explicitly calculated for the ground roto-vibrational state of HeH+. PMID:26583384
Elementary classical hydrodynamics
Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C
1967-01-01
Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c
DEFF Research Database (Denmark)
Leucci, E; Cocco, M; Onnis, A;
2008-01-01
, to clarify whether alternative pathogenetic mechanisms may be responsible for lymphomagenesis in cases lacking the MYC translocation. miRNAs are a class of small RNAs that are able to regulate gene expression at the post-transcriptional level. Several studies have reported their involvement in cancer...... and their association with fragile sites in the genome. They have also been shown to control cell growth, differentiation, and apoptosis, suggesting that these molecules could act as tumour suppressors or oncogenes. Our results demonstrated a modulation of specific miRNAs. In particular, down-regulation...... of hsa-let-7c was observed in BL cases, compared to normal controls. More interestingly, hsa-mir-34b was found to be down-regulated only in BL cases that were negative for MYC translocation, suggesting that this event might be responsible for c-Myc deregulation in such cases. This hypothesis was...
Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash; Biegel, Bryan (Technical Monitor)
2002-01-01
A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.
Classical and quantum effective theories
Polonyi, Janos
2014-01-01
A generalization of the action principle of classical mechanics, motivated by the Closed Time Path (CTP) scheme of quantum field theory, is presented to deal with initial condition problems and dissipative forces. The similarities of the classical and the quantum cases are underlined. In particular, effective interactions which describe classical dissipative forces represent the system-environment entanglement. The relation between the traditional effective theories and their CTP extension is briefly discussed and few qualitative examples are mentioned.
Directory of Open Access Journals (Sweden)
Nilesh P. BARDE
2015-05-01
Full Text Available The concept of time dependent Schrödinger equation (TDSE illustrated in literature and even during class room teaching is mostly either complex or meant for advanced learners. This article is intended to enlighten the concept to the beginners in the field and further to improve knowledge about detailed steps for abstract mathematical formulation used which helps in understanding to derive TDSE using various tools and in more comprehensible manner. It is shown that TDSE may be derived using wave mechanics, time independent equation, classical & Hamilton-Jacobi’s equations. Similar attempts have been done earlier by some researchers. However, this article provides a comprehensive, lucid and well derived derivation, derived using various approaches, which would make this article unique.
Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash
2003-01-01
Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.
Energy Technology Data Exchange (ETDEWEB)
Mills, R.L. [BlackLight Power, Inc., Cranbury, NJ (United States)
2001-10-01
addressed. It is time for the physical rather than the mathematical nature of the wave function to be determined. A theory of classical quantum mechanics (CQM) was derived from first principles by Mills (The grand unified theory of classical quantum mechanics. January 2000 ed; Cranbury, NJ, 2000, BlackLight Power, Inc., (Distributed by Amazon.com; Posted at www.blacklightpower.com)) that successfully applies physical laws on all scales. Using the classical wave equation with the constraint of nonradiation based on Maxwell's equations, CQM gives closed form physical solutions for the electron in atoms, the free electron, and the free electron in superfluid helium. The prediction of fractional principal quantum energy states of the electron in liquid helium match the photoconductivity and mobility observations without requiring that the electron is divisible. (author)
Classicalization of quantum variables and quantum–classical hybrids
International Nuclear Information System (INIS)
The extraction of classical degrees of freedom in quantum mechanics is studied in the stochastic variational method. By using this classicalization, a hybrid model constructed from quantum and classical variables (quantum–classical hybrids) is derived. In this procedure, conservation laws such as energy are maintained, and Ehrenfest's theorem is still satisfied with modification. The criterion for the applicability of quantum–classical hybrids is also discussed. - Highlights: • The new derivation of a quantum–classical hybrid (QCH) model is discussed based on a variational principle. • Any conserved quantities are automatically defined as the invariant transforms of a stochastic action. • The quantitative criterion to determine the validity of QCH is proposed. • Ehrenfest's theorem is satisfied in a modified way
Are superparamagnetic spins classical?
Garanin, D. A.
2008-01-01
Effective giant spins of magnetic nanoparticles are considered classically in the conventional theory of superparamagnetism based on the Landau-Lifshitz-Langevin equation. However, microscopic calculations for a large spin with uniaxial anisotropy, coupled to the lattice via the simplest generic mechanism, show that the results of the conventional theory are not reproduced in the limit S ->\\infty. In particular, the prefactor Gamma_0 in the Arrhenius escape rate over the barrier Gamma =Gamma_...
Isynchronous motion in classical mechanics
International Nuclear Information System (INIS)
Those oscillatory motions for which the period is independent of the total energy are investigated. There is only one corresponding symmetric potential, the quadratic potential of the simple harmonic motion but infinite classes of asymmetric potentials must be considered. Geometric and analytic requirements of isochronism are discussed and several specific examples are given
Two problems in Classical Mechanics
Rosinger, E. E.
2004-01-01
A problem about the present structure of dimensional analysis, and another one about the differences between solids and fluids are suggested. Both problems appear to have certain foundational aspects.
Energy Technology Data Exchange (ETDEWEB)
Rajput, Nav Nidhi; Qu, Xiaohuui; Sa, Niya; Burrell, Anthony K.; Persson, Kristin A.
2015-03-11
In this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectric constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg2+ -> Mg+), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI exhibits a significant bond weakening while paired with the transient, partially reduced Mg+. In contrast, BH4 and BF4 are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.
Randomness: quantum versus classical
Khrennikov, Andrei
2015-01-01
Recent tremendous development of quantum information theory led to a number of quantum technological projects, e.g., quantum random generators. This development stimulates a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is elaboration of a consistent and commonly accepted interpretation of quantum state. Closely related problem is clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. The second part of this review is devoted to the information interpretation of quantum mechanics (QM) in the spirit of Zeilinger and Brukner (and QBism of Fuchs et al.) and physics in general (e.g., Wheeler's "it from bit") as well as digital philosophy of Chaitin (with historical coupling to ideas of Leibnitz). Finally, w...
Akibue, Seiseki; Owari, Masaki; Kato, Go; Murao, Mio
2016-01-01
Phenomena induced by the existence of entanglement, such as nonlocal correlations, exhibit characteristic properties of quantum mechanics distinguishing from classical theories. When entanglement is accompanied by classical communication, it enhances the power of quantum operations jointly performed by two spatially separated parties. Such a power has been analyzed by the gap between the performances of joint quantum operations implementable by local operations at each party connected by clas...
The many classical faces of quantum structures
Heunen, Chris
2014-01-01
Interpretational problems with quantum mechanics can be phrased precisely by only talking about empirically accessible information. This prompts a mathematical reformulation of quantum mechanics in terms of classical mechanics. We survey this programme in terms of algebraic quantum theory.
Directory of Open Access Journals (Sweden)
Matthias Goldmann
2009-02-01
class="ArticleText">Compared to the discipline of international law, scholars of physics are blessed. While the principles of classical mechanics were theorized several centuries ago, quantum theory and the theory of relativity offer supplementary ways for describing how material objects and energy interact where classical mechanics does not provide an explanation. Thus, even in the absence of an all-comprising “world theory”, physicists have a wide array of workable theories at their service. By contrast, the “classical mechanics” of international law, i.e. the explanation of the most basic causal relationships between international legal norms and the behaviour of states as the main subjects of international law, are still subject to deep theoretical controversies. International legal doctrine presupposes that international law does have an impact and does not aim at questioning or further explaining this assumption. Traditional legal theories that see the essence of legal normativity in the possibility to trigger mechanisms of physical constraint often come to the conclusion that international law, in the absence of central enforcement mechanisms, is at best a primitive form of law. More recent enquiries into international legal theory from very different theoretical angles come to even less uplifting conclusions. Some argue that international legal norms are either entirely devoid of content because of their inherent indeterminacy and therefore prone to be captured by special interests. Others consider international law to be merely epiphenomenal because rational states would only consent to legal norms if, and as long as, they describe a behaviour they would choose anyway because it promises higher payoffs. In particular the latter critique put forward so forcefully by Jack Goldsmith and Eric Posner sent considerable shock waves through the invisible college of international lawyers. This is the background that needs to be kept
Classical approximations of relativistic quantum physics
Johnson, Glenn Eric
2016-01-01
A correspondence of classical to quantum physics studied by Schr\\"{o}\\-dinger and Ehrenfest applies without the necessity of technical conjecture that classical observables are associated with Hermitian Hilbert space operators. This correspondence provides appropriate nonrelativistic classical interpretations to realizations of relativistic quantum physics that are incompatible with the canonical formalism. Using this correspondence, Newtonian mechanics for a $1/r$ potential provides approxim...
Quantum electrodynamics in a classical approximation, 1
International Nuclear Information System (INIS)
Quantum electrodynamics is formulated in a classical approximation. A quantum mechanical proper-time is employed as a useful parameter, which enables us to elucidate the relationship between quantum electrodynamics and classical electrodynamics. The classical motion of a charged particle is realized as an asymptotic limit of quantum electrodynamics. (author)
Vikár, Anna; Nagy, Tibor; Lendvay, György
2016-07-14
Application of exact quantum scattering methods in theoretical reaction dynamics of bimolecular reactions is limited by the complexity of the equations of nuclear motion to be solved. Simplification is often achieved by reducing the number of degrees of freedom to be explicitly handled by freezing the less important spectator modes. The reaction cross sections obtained in reduced-dimensionality (RD) quantum scattering methods can be used in the calculation of rate coefficients, but their physical meaning is limited. The accurate test of the performance of a reduced-dimensionality method would be a comparison of the RD cross sections with those obtained in accurate full-dimensional (FD) calculations, which is not feasible because of the lack of complete full-dimensional results. However, classical mechanics allows one to perform reaction dynamics calculations using both the RD and the FD model. In this paper, an RD versus FD comparison is made for the 8-dimensional Palma-Clary model on the example of four isotopologs of the CH4 + H → CH3 + H2 reaction, which has 12 internal dimensions. In the Palma-Clary model, the only restriction is that the methyl group is confined to maintain C3v symmetry. Both RD and FD opacity and excitation functions as well as differential cross sections were calculated using the quasiclassical trajectory method. The initial reactant separation has been handled according to our one-period averaging method [ Nagy et al. J. Chem. Phys. 2016, 144, 014104 ]. The RD and FD excitation functions were found to be close to each other for some isotopologs, but in general, the RD reactivity parameters are lower than the FD reactivity parameters beyond statistical error, and for one of the isotopologs, the deviation is significant. This indicates that the goodness of RD cross sections cannot be taken for granted. PMID:26918703
Probabilities for classically forbidden transitions using classical and classical path methods
International Nuclear Information System (INIS)
Limits are established for the applicability of purely classical methods for calculating nonreactive, inelastic transition probabilities in collinear collisions of a structureless atom and a harmonic oscillator. These limits, obtained by comparison with previous exact quantum mechanical results, indicate that such methods are inappropriate not only for ''classically forbidden'' but for many ''classically allowed'' transitions (in spite of the fact that they are widely used to calculate probabilities for such processes). A classical path method in the context of infinite-order time-dependent perturbation theory is described which yields extremely accurate transition probabilities even for the most classically forbidden transitions in the collinear atom--harmonic oscillator system. The essential features of this method are: (1) the use of the expectation value of the total interaction potential in determining the atom--oscillator (central force) trajectory, and (2) the use of the arithmetic mean of the initial and final velocities of relative motion in the (elastic) central force trajectory. This choice of interaction potential allows the relative motion to be coupled to changes in the internal state of the oscillator. The present classical method is further applied to three-dimensional atom-breathing sphere collisions, and exact quantum mechanical calculations are also carried out. Comparison of the classical path and exact quantum results shows excellent agreement both in the specific inelastic cross section and in the individual partial-wave contributions
Hartog, J P Den
1961-01-01
First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e
International Nuclear Information System (INIS)
The five laws of relativistic quantum mechanics, according to Feynman's path integral formulation, are concisely stated and applied to experiments. Reflection–diffraction-grating experiments for both photons and electrons are analysed, in particular, the Davisson–Germer experiment in which the wave-like property of electrons was first established. It is shown how classical, purely spatial, effective wave theories for both photons and electrons are predicted by the path integral formulation of quantum mechanics. The standard Copenhagen interpretation of wave mechanics is critically discussed in the light of the described experimental applications of the path integral formulation. (paper)
Hilbert space theory of classical electrodynamics
Indian Academy of Sciences (India)
RAJAGOPAL A K; GHOSE PARTHA
2016-06-01
Classical electrodynamics is reformulated in terms of wave functions in the classical phase space of electrodynamics, following the Koopman–von Neumann–Sudarshan prescription for classical mechanics on Hilbert spaces sans the superselection rule which prohibits interference effects in classical mechanics. This is accomplished by transforming from a set of commutingobservables in one Hilbert space to another set of commuting observables in a larger Hilbert space. This is necessary to clarify the theoretical basis of the much recent work on quantum-like features exhibited by classical optics. Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.
What classicality? Decoherence and Bohr's classical concepts
Schlosshauer, Maximilian
2010-01-01
Niels Bohr famously insisted on the indispensability of what he termed "classical concepts." In the context of the decoherence program, on the other hand, it has become fashionable to talk about the "dynamical emergence of classicality" from the quantum formalism alone. Does this mean that decoherence challenges Bohr's dictum and signifies a break with the Copenhagen interpretation-for example, that classical concepts do not need to be assumed but can be derived? In this paper we'll try to shine some light down the murky waters where formalism and philosophy cohabitate. To begin, we'll clarify the notion of classicality in the decoherence description. We'll then discuss Bohr's and Heisenberg's take on the quantum-classical problem and reflect on different meanings of the terms "classicality" and "classical concepts" in the writings of Bohr and his followers. This analysis will allow us to put forward some tentative suggestions for how we may better understand the relation between decoherence-induced classical...
Papastavridis, John G
1999-01-01
Tensor Calculus and Analytical Dynamics provides a concise, comprehensive, and readable introduction to classical tensor calculus - in both holonomic and nonholonomic coordinates - as well as to its principal applications to the Lagrangean dynamics of discrete systems under positional or velocity constraints. The thrust of the book focuses on formal structure and basic geometrical/physical ideas underlying most general equations of motion of mechanical systems under linear velocity constraints.
Cheng, KS; Wang, XY
2003-01-01
A radio afterglow was detected following the 1998 August 27 giant flare from the soft gamma repeater (SGR) 1900+14. Its short-lived behavior is quite different from the radio nebula of SGR 1806-20, but very similar to radio afterglows from classic gamma-ray bursts (GRBs). Motivated by this, we attempt to explain it with the external shock model as invoked in the standard theory of GRB afterglows. We find that the light curve of this radio afterglow is not consistent with the forward shock emi...
Classical Dynamics as Constrained Quantum Dynamics
Bartlett, Stephen D.; Rowe, David J.
2002-01-01
We show that the classical mechanics of an algebraic model are implied by its quantizations. An algebraic model is defined, and the corresponding classical and quantum realizations are given in terms of a spectrum generating algebra. Classical equations of motion are then obtained by constraining the quantal dynamics of an algebraic model to an appropriate coherent state manifold. For the cases where the coherent state manifold is not symplectic, it is shown that there exist natural projectio...
Classical isodual theory of antimatter
Santilli, R M
1997-01-01
An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatments of matter and antimatter in due time, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with expected images at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is anti-automorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also anti-automorphic, yet it is applicable beginning at the classical level and then persists at the quantum level. As part of our study, we present novel anti-isomorphic isodual images of the Galilean, special and general relativities and show the compatibility of their representation of antimatter with all available classical experi...
Classical Hamiltonian Dynamics and Lie Group Algebras
Aycock, B; Silverberg, J L; Widom, A
2008-01-01
The classical Hamilton equations of motion yield a structure sufficiently general to handle an almost arbitrary set of ordinary differential equations. Employing elementary algebraic methods, it is possible within the Hamiltonian structure to describe many physical systems exhibiting Lie group symmetries. Elementary examples include magnetic moment precession and the mechanical orbits of color charged particles in classical non-abelian chromodynamics.
Classical decoherence in a nanomechanical resonator
Maillet, O.; Vavrek, F.; Fefferman, A. D.; Bourgeois, O.; Collin, E.
2016-07-01
Decoherence is an essential mechanism that defines the boundary between classical and quantum behaviours, while imposing technological bounds for quantum devices. Little is known about quantum coherence of mechanical systems, as opposed to electromagnetic degrees of freedom. But decoherence can also be thought of in a purely classical context, as the loss of phase coherence in the classical phase space. Indeed the bridge between quantum and classical physics is under intense investigation, using, in particular, classical nanomechanical analogues of quantum phenomena. In the present work, by separating pure dephasing from dissipation, we quantitatively model the classical decoherence of a mechanical resonator: through the experimental control of frequency fluctuations, we engineer artificial dephasing. Building on the fruitful analogy introduced between spins/quantum bits and nanomechanical modes, we report on the methods available to define pure dephasing in these systems, while demonstrating the intrinsic almost-ideal properties of silicon nitride beams. These experimental and theoretical results, at the boundary between classical nanomechanics and quantum information fields, are prerequisite in the understanding of decoherence processes in mechanical devices, both classical and quantum.
Connecting Blackbody Radiation, Relativity, and Discrete Charge in Classical Electrodynamics
Boyer, Timothy H.
2006-01-01
It is suggested that an understanding of blackbody radiation within classical physics requires the presence of classical electromagnetic zero-point radiation, the restriction to relativistic (Coulomb) scattering systems, and the use of discrete charge. The contrasting scaling properties of nonrelativistic classical mechanics and classical electrodynamics are noted, and it is emphasized that the solutions of classical electrodynamics found in nature involve constants which connect together the...
Bidirectional coherent classical communication
Harrow, Aram W.; Leung, Debbie W.
2005-01-01
A unitary interaction coupling two parties enables quantum or classical communication in both the forward and backward directions. Each communication capacity can be thought of as a tradeoff between the achievable rates of specific types of forward and backward communication. Our first result shows that for any bipartite unitary gate, bidirectional coherent classical communication is no more difficult than bidirectional classical communication — they have the same achievable rate regions. ...
Classical, Semi-classical and Quantum Noise
Poor, H; Scully, Marlan
2012-01-01
David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...
Teleportation via classical entanglement
Rafsanjani, Seyed Mohammad Hashemi; Magaña-Loaiza, Omar S; Boyd, Robert W
2015-01-01
We present a classical counterpart to quantum teleportation that uses classical entanglement instead of quantum entanglement. In our implementation we take advantage of classical entanglement among three parties: orbital angular momentum (OAM), polarization, and the radial degrees of freedom of a beam of light. We demonstrate the teleportation of arbitrary OAM states, in the subspace spanned by any two OAM states, to the polarization of the same beam. Our letter presents the first classical demonstration of a commonly-perceived--quantum phenomenon that requires entanglement among more than two parties.
DEFF Research Database (Denmark)
Anderson, J. Edgar; Heki, Katsuhiko; Hirota, Minoru; Jørgensen, Flemming Steen
1987-01-01
N.m.r. parameters for a series of simple aliphatic acetals indicate that the preferred conformation changes from the anomeric one found in formaldehyde dimethyl acetal (formal), to a new one whose structure is suggested by molecular mechanics calculations.......N.m.r. parameters for a series of simple aliphatic acetals indicate that the preferred conformation changes from the anomeric one found in formaldehyde dimethyl acetal (formal), to a new one whose structure is suggested by molecular mechanics calculations....
Interaction between classical and quantum systems
International Nuclear Information System (INIS)
An unconventional approach to the measurement problem in quantum mechanics is considered--the apparatus is treated as a classical system, belonging to the macro-world. In order to have a measurement the apparatus must interact with the quantum system. As a first step, the classical apparatus is embedded into a large quantum mechanical structure, making use of a superselection principle. The apparatus and system are coupled such that the apparatus remains classical (principle of integrity), and unambiguous information of the values of a quantum observable are transferred to the variables of the apparatus. Further measurement of the classical apparatus can be done, causing no problems of principle. Thus interactions causing pointers to move (which are not treated) can be added. The restrictions placed by the principle of integrity on the form of the interaction between classical and quantum systems are examined and illustration is given by means of a simple example in which one sees the principle of integrity at work
Classical Models of Subatomic Particles
Mann, R. B.; Morris, M. S.
1993-01-01
We look at the program of modelling a subatomic particle---one having mass, charge, and angular momentum---as an interior solution joined to a classical general-relativistic Kerr-Newman exterior spacetime. We find that the assumption of stationarity upon which the validity of the Kerr-Newman exterior solution depends is in fact violated quantum mechanically for all known subatomic particles. We conclude that the appropriate stationary spacetime matched to any known subatomic particle is flat ...
Classical models of subatomic particles
International Nuclear Information System (INIS)
We look at the program of modelling a subatomic particle - one having mass, charge, and angular momentum - as an interior solution joined to a classical general-relativistic Kerr-Newman exterior spacetime. We find that the assumption of stationarity upon which the validity of the Kerr-Newman exterior solution depends is in fact violated quantum mechanically for all known subatomic particles. We conclude that the appropriate stationary spacetime matched to any known subatomic particle is flat space. (orig.)
Lectures on Classical Integrability
Torrielli, Alessandro
2016-01-01
We review some essential aspects of classically integrable systems. The detailed outline of the lectures consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schroedinger model, principal chiral field); 4. Features of classical r-matrices: Belavin-Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel'fand-Levitan-Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.
Bettini, Alessandro
2016-01-01
This first volume covers the mechanics of point particles, gravitation, extended systems (starting from the two-body system), the basic concepts of relativistic mechanics and the mechanics of rigid bodies and fluids. The four-volume textbook, which covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Writings by the founders of classical mechanics, G. Galilei and I. Newton, are reproduced, encouraging students to consult them. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in modern physics are included. Each chapter b...
Measurement-Based Classical Computation
Hoban, Matty J.; Wallman, Joel J.; Anwar, Hussain; Usher, Naïri; Raussendorf, Robert; Browne, Dan E.
2014-04-01
Measurement-based quantum computation (MBQC) is a model of quantum computation, in which computation proceeds via adaptive single qubit measurements on a multiqubit quantum state. It is computationally equivalent to the circuit model. Unlike the circuit model, however, its classical analog is little studied. Here we present a classical analog of MBQC whose computational complexity presents a rich structure. To do so, we identify uniform families of quantum computations [refining the circuits introduced by Bremner et al. Proc. R. Soc. A 467, 459 (2010)] whose output is likely hard to exactly simulate (sample) classically. We demonstrate that these circuit families can be efficiently implemented in the MBQC model without adaptive measurement and, thus, can be achieved in a classical analog of MBQC whose resource state is a probability distribution which has been created quantum mechanically. Such states (by definition) violate no Bell inequality, but, if widely held beliefs about computational complexity are true, they, nevertheless, exhibit nonclassicality when used as a computational resource—an imprint of their quantum origin.
Advances In Classical Field Theory
Yahalom, Asher
2011-01-01
Classical field theory is employed by physicists to describe a wide variety of physical phenomena. These include electromagnetism, fluid dynamics, gravitation and quantum mechanics. The central entity of field theory is the field which is usually a multi component function of space and time. Those multi component functions are usually grouped together as vector fields as in the case in electromagnetic theory and fluid dynamics, in other cases they are grouped as tensors as in theories of gravitation and yet in other cases they are grouped as complex functions as in the case of quantum mechanic
Quantum flesh on classical bones: Semiclassical bridges across the quantum-classical divide
Energy Technology Data Exchange (ETDEWEB)
Bokulich, Alisa [Center for Philosophy and History of Science, Boston University, Boston, MA (United States)
2014-07-01
Traditionally quantum mechanics is viewed as having made a sharp break from classical mechanics, and the concepts and methods of these two theories are viewed as incommensurable with one another. A closer examination of the history of quantum mechanics, however, reveals that there is a strong sense in which quantum mechanics was built on the backbone of classical mechanics. As a result, there is a considerable structural continuity between these two theories, despite their important differences. These structural continuities provide a ground for semiclassical methods in which classical structures, such as trajectories, are used to investigate and model quantum phenomena. After briefly tracing the history of semiclassical approaches, I show how current research in semiclassical mechanics is revealing new bridges across the quantum-classical divide.
Quantum flesh on classical bones: Semiclassical bridges across the quantum-classical divide
International Nuclear Information System (INIS)
Traditionally quantum mechanics is viewed as having made a sharp break from classical mechanics, and the concepts and methods of these two theories are viewed as incommensurable with one another. A closer examination of the history of quantum mechanics, however, reveals that there is a strong sense in which quantum mechanics was built on the backbone of classical mechanics. As a result, there is a considerable structural continuity between these two theories, despite their important differences. These structural continuities provide a ground for semiclassical methods in which classical structures, such as trajectories, are used to investigate and model quantum phenomena. After briefly tracing the history of semiclassical approaches, I show how current research in semiclassical mechanics is revealing new bridges across the quantum-classical divide.
Classical and semiclassical aspects of chemical dynamics
International Nuclear Information System (INIS)
Tunneling in the unimolecular reactions H2C2 → HC2H, HNC → HCN, and H2CO → H2 + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I → Na + + I- is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features
Grassmannians of classical buildings
Pankov, Mark
2010-01-01
Buildings are combinatorial constructions successfully exploited to study groups of various types. The vertex set of a building can be naturally decomposed into subsets called Grassmannians. The book contains both classical and more recent results on Grassmannians of buildings of classical types. It gives a modern interpretation of some classical results from the geometry of linear groups. The presented methods are applied to some geometric constructions non-related to buildings - Grassmannians of infinite-dimensional vector spaces and the sets of conjugate linear involutions. The book is self
Davidson and classical pragmatism
Directory of Open Access Journals (Sweden)
Paula Rossi
2007-06-01
Full Text Available In this paper I wish to trace some connections between Donald Davidson's work (1917-2003 and two major representatives of the classical pragmatist movement: Charles S. Peirce (1839-1914 and William James (1842-1910. I will start with a basic characterization of classical pragmatism; then, I shall examine certain conceptions in Peirce's and James' pragmatism, in order to establish affinities with Davidson´s thought. Finally, and bearing in mind the previous con-nections, I will reflect briefly on the relevance –often unrecognized- of classical pragmatist ideas in the context of contemporary philosophi-cal discussions.
From classical to quantum physics
Stehle, Philip
2017-01-01
Suitable for lay readers as well as students, this absorbing survey explores the twentieth-century transition from classical to quantum physics. Author Philip Stehle traces the shift in the scientific worldview from the work of Galileo, Newton, and Darwin to the modern-day achievements of Max Planck, Albert Einstein, Ernest Rutherford, Niels Bohr, and others of their generation. His insightful overview examines not only the history of quantum physics but also the ways that progress in the discipline changed our understanding of the physical world and forces of nature. This chronicle of the second revolution in the physical sciences conveys the excitement and suspense that new developments produced in the scientific community. The narrative ranges from the classical physics of the seventeenth-century to the emergence of quantum mechanics with the entrance of the electron, the rise of relativity theory, the development of atomic theory, and the recognition of wave-particle duality. Relevant mathematical details...
Physics of classical electromagnetism
Fujimoto, Minoru
2007-01-01
The classical electromagnetism described by the Maxwell equations constitutes a fundamental law in contemporary physics. Even with the advent of sophisticated new materials, the principles of classical electromagnetism are still active in various applied areas in today’s advanced communication techniques. Physics of Classical Electromagnetism, by Minoru Fujimoto, is written with concise introductory arguments emphasizing the original field concept, with an aim at understanding objectives in modern information technology. Following basic discussions of electromagnetism with a modernized approach, this book will provide readers with an overview of current problems in high-frequency physics. To further the reader’s understanding of the concepts and applications discussed, each illustration within the book shows the location of all active charges, and the author has provided many worked-out examples throughout the book. Physics of Classical Electromagnetism is intended for students in physics and engineering ...
Quirk, R
1984-11-01
The specialised medical knowledge about dancers' injuries is negligible compared with that which surrounds sports medicine. The author discusses his experience in the management of more than 2000 injuries sustained by dancers of classical ballet. PMID:6151832
Classical and Quantum Intertwine
Blanchard, Ph.; Jadczyk, A.
1993-01-01
Model interactions between classical and quantum systems are briefly discussed. These include: general measurement-like couplings, Stern-Gerlach experiment, model of a counter, quantum Zeno effect, SQUID-tank model.
Davidson and classical pragmatism
Paula Rossi
2007-01-01
In this paper I wish to trace some connections between Donald Davidson's work (1917-2003) and two major representatives of the classical pragmatist movement: Charles S. Peirce (1839-1914) and William James (1842-1910). I will start with a basic characterization of classical pragmatism; then, I shall examine certain conceptions in Peirce's and James' pragmatism, in order to establish affinities with Davidson´s thought. Finally, and bearing in mind the previous con-nections, I will reflect brie...
Directory of Open Access Journals (Sweden)
Francesca Esposito
2012-01-01
Full Text Available During the retrotranscription process, characteristic of all retroviruses, the viral ssRNA genome is converted into integration-competent dsDNA. This process is accomplished by the virus-coded reverse transcriptase (RT protein, which is a primary target in the current treatments for HIV-1 infection. In particular, in the approved therapeutic regimens two classes of drugs target RT, namely, nucleoside RT inhibitors (NRTIs and nonnucleoside RT inhibitors (NNRTIs. Both classes inhibit the RT-associated polymerase activity: the NRTIs compete with the natural dNTP substrate and act as chain terminators, while the NNRTIs bind to an allosteric pocket and inhibit polymerization noncompetitively. In addition to these two classes, other RT inhibitors (RTIs that target RT by distinct mechanisms have been identified and are currently under development. These include translocation-defective RTIs, delayed chain terminators RTIs, lethal mutagenesis RTIs, dinucleotide tetraphosphates, nucleotide-competing RTIs, pyrophosphate analogs, RT-associated RNase H function inhibitors, and dual activities inhibitors. This paper describes the HIV-1 RT function and molecular structure, illustrates the currently approved RTIs, and focuses on the mechanisms of action of the newer classes of RTIs.
Understanding the Planck Blackbody Spectrum and Diamagnetism within Classical Electromagnetism
Boyer, Timothy H
2016-01-01
Electromagnetism is a \\textit{relativistic} theory and one must exercise care in coupling this theory with \\textit{nonrelativistic} classical mechanics and with \\textit{nonrelativistic} classical statistical mechanics. Indeed historically, both the blackbody radiation spectrum and diamagnetism within classical theory have been misunderstood because of two crucial failures: 1)the neglect of classical electromagnetic zero-point radiation, and 2) the use of erroneous combinations of nonrelativistic mechanics with relativistic electrodynamics. Here we show that the use of Lorentz-invariant classical electromagnetic zero-point radiation can be used to explain both the Planck blackbody spectrum and diamagnetism at thermal equilibrium within classical electromagnetic theory. The analysis requires that relativistic electromagnetism is joined appropriately with simple nonrelativistic mechanical systems which can be regarded as the zero-velocity limits of relativistic systems, and that nonrelativistic classical statist...
Quantum Chaos and Statistical Mechanics
Srednicki, Mark
1994-01-01
We briefly review the well known connection between classical chaos and classical statistical mechanics, and the recently discovered connection between quantum chaos and quantum statistical mechanics.
A Quantum is a Complex Structure on Classical Phase Space
Isidro, J. M.
2004-01-01
Duality transformations within the quantum mechanics of a finite number of degrees of freedom can be regarded as the dependence of the notion of a quantum, i.e., an elementary excitation of the vacuum, on the observer on classical phase space. Under an observer we understand, as in general relativity, a local coordinate chart. While classical mechanics can be formulated using a symplectic structure on classical phase space, quantum mechanics requires a complex-differentiable structure on that...
Spin dynamics of quantum and classical Heisenberg dimers
Mentrup, D.; Schnack, J.; Luban, Marshall
1999-01-01
Analytical solutions for the time-dependent autocorrelation function of the classical and quantum mechanical spin dimer with arbitrary spin are presented and compared. For large spin quantum numbers or high temperature the classical and the quantum dimer become more and more similar, yet with the major difference that the quantum autocorrelation function is periodic in time whereas the classical is not.
Ning, Pengbo; Zhou, Yulu; Liang, Wulong; Zhang, Yanming
2016-01-01
Molecular mechanisms underlying RNA splicing regulation in response to viral infection are poorly understood. Classical swine fever (CSF), one of the most economically important and highly contagious swine diseases worldwide, is caused by classical swine fever virus (CSFV). Here, we used high-throughput sequencing to obtain the digital gene expression (DGE) profile in swine umbilical vein endothelial cells (SUVEC) to identify different response genes for CSFV by using both Shimen and C strains. The numbers of clean tags obtained from the libraries of the control and both CSFV-infected libraries were 3,473,370, 3,498,355, and 3,327,493 respectively. In the comparison among the control, CSFV-C, and CSFV-Shimen groups, 644, 158, and 677 differentially expressed genes (DEGs) were confirmed in the three groups. Pathway enrichment analysis showed that many of these DEGs were enriched in spliceosome, ribosome, proteasome, ubiquitin-mediated proteolysis, cell cycle, focal adhesion, Wnt signalling pathway, etc., where the processes differ between CSFV strains of differing virulence. To further elucidate important mechanisms related to the differential infection by the CSFV Shimen and C strains, we identified four possible profiles to assess the significantly expressed genes only by CSFV Shimen or CSFV C strain. GO analysis showed that infection with CSFV Shimen and C strains disturbed 'RNA splicing' of SUVEC, resulting in differential 'gene expression' in SUVEC. Mammalian target of rapamycin (mTOR) was identified as a significant response regulator contributed to impact on SUVEC function for CSFV Shimen. This computational study suggests that CSFV of differing virulence could induce alterations in RNA splicing regulation in the host cell to change cell metabolism, resulting in acute haemorrhage and pathological damage or infectious tolerance. PMID:27330868
Classical-field theory of thermal radiation
Rashkovskiy, Sergey A
2016-01-01
In this paper, using the viewpoint that quantum mechanics can be constructed as a classical field theory without any quantization I build a fully classical theory of thermal radiation. Planck's law for the spectral energy density of thermal radiation and the Einstein A-coefficient for spontaneous emission are derived in the framework of classical field theory without using the concept of "photon". It is shown that the spectral energy density of thermal radiation is apparently not a universal function of frequency, as follows from the Planck's law, but depends weakly on the nature of atoms, while Planck's law is valid only as an approximation in the limit of weak excitation of atoms.
Bohmian measures and their classical limit
Markowich, Peter
2010-09-01
We consider a class of phase space measures, which naturally arise in the Bohmian interpretation of quantum mechanics. We study the classical limit of these so-called Bohmian measures, in dependence on the scale of oscillations and concentrations of the sequence of wave functions under consideration. The obtained results are consequently compared to those derived via semi-classical Wigner measures. To this end, we shall also give a connection to the theory of Young measures and prove several new results on Wigner measures themselves. Our analysis gives new insight on oscillation and concentration effects in the semi-classical regime. © 2010 Elsevier Inc.
Introduction to tomography, classical and quantum
International Nuclear Information System (INIS)
The tomographic approach to identify quantum states with fair probability distributions as alternatives to wave functions or density operators is reviewed. The tomographic-probability representation is shown also for classical states. The star-product formalism of quantizers and dequantizers associated with the tomographic picture of classical and quantum mechanics is presented and some kernels of star products are given in explicit forms. The inequalities for Shannon and Rényi entropies determined by tomographic-probability distributions are discussed.
FSH isoform pattern in classic galactosemia
Gubbels, Cynthia S.; Thomas, Chris M.G.; Wodzig, Will K. W. H.; Olthaar, André J.; Jaeken, Jaak; Sweep, Fred C. G. J.; Rubio-Gozalbo, M. Estela
2010-01-01
Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfunction. An earlier study showed less acidic isoforms of FSH in serum samples of two classic galactosemia patients compared to controls, indicating hypoglycosylation. In this study, FSH isoform patterns...
Quantum systems as classical systems
Cassa, A
2001-01-01
A characteristical property of a classical physical theory is that the observables are real functions taking an exact outcome on every (pure) state; in a quantum theory, at the contrary, a given observable on a given state can take several values with only a predictable probability. However, even in the classical case, when an observer is intrinsically unable to distinguish between some distinct states he can convince himself that the measure of its ''observables'' can have several values in a random way with a statistical character. What kind of statistical theory is obtainable in this way? It is possible, for example, to obtain exactly the statistical previsions of quantum mechanics? Or, in other words, can a physical system showing a classical behaviour appear to be a quantum system to a confusing observer? We show that from a mathematical viewpoint it is not difficult to produce a theory with hidden variables having this property. We don't even try to justify in physical terms the artificial construction ...
Classically-Controlled Quantum Computation
Perdrix, Simon; Jorrand, Philippe
2004-01-01
Quantum computations usually take place under the control of the classical world. We introduce a Classically-controlled Quantum Turing Machine (CQTM) which is a Turing Machine (TM) with a quantum tape for acting on quantum data, and a classical transition function for a formalized classical control. In CQTM, unitary transformations and measurements are allowed. We show that any classical TM is simulated by a CQTM without loss of efficiency. The gap between classical and quantum computations, ...
International Nuclear Information System (INIS)
The present state of modeling radio-induced effects at the cellular level does not account for the microscopic inhomogeneity of the nucleus from the non-aqueous contents (i.e. proteins, DNA) by approximating the entire cellular nucleus as a homogenous medium of water. Charged particle track-structure calculations utilizing this approximation are therefore neglecting to account for approximately 30% of the molecular variation within the nucleus. To truly understand what happens when biological matter is irradiated, charged particle track-structure calculations need detailed knowledge of the secondary electron cascade, resulting from interactions with not only the primary biological component—water-–but also the non-aqueous contents, down to very low energies. This paper presents our work on a generic approach for calculating low-energy interaction cross-sections between incident charged particles and individual molecules. The purpose of our work is to develop a self-consistent computational method for predicting molecule-specific interaction cross-sections, such as the component molecules of DNA and proteins (i.e. nucleotides and amino acids), in the very low-energy regime. These results would then be applied in a track-structure code and thereby reduce the homogenous water approximation. The present methodology—inspired by seeking a combination of the accuracy of quantum mechanics and the scalability, robustness, and flexibility of Monte Carlo methods—begins with the calculation of a solution to the many-body Schrödinger equation and proceeds to use Monte Carlo methods to calculate the perturbations in the internal electron field to determine the interaction processes, such as ionization and excitation. As a test of our model, the approach is applied to a water molecule in the same method as it would be applied to a nucleotide or amino acid and compared with the low-energy cross-sections from the GEANT4-DNA physics package of the Geant4 simulation toolkit
Madsen, J. R.; Akabani, G.
2014-05-01
The present state of modeling radio-induced effects at the cellular level does not account for the microscopic inhomogeneity of the nucleus from the non-aqueous contents (i.e. proteins, DNA) by approximating the entire cellular nucleus as a homogenous medium of water. Charged particle track-structure calculations utilizing this approximation are therefore neglecting to account for approximately 30% of the molecular variation within the nucleus. To truly understand what happens when biological matter is irradiated, charged particle track-structure calculations need detailed knowledge of the secondary electron cascade, resulting from interactions with not only the primary biological component—water--but also the non-aqueous contents, down to very low energies. This paper presents our work on a generic approach for calculating low-energy interaction cross-sections between incident charged particles and individual molecules. The purpose of our work is to develop a self-consistent computational method for predicting molecule-specific interaction cross-sections, such as the component molecules of DNA and proteins (i.e. nucleotides and amino acids), in the very low-energy regime. These results would then be applied in a track-structure code and thereby reduce the homogenous water approximation. The present methodology—inspired by seeking a combination of the accuracy of quantum mechanics and the scalability, robustness, and flexibility of Monte Carlo methods—begins with the calculation of a solution to the many-body Schrödinger equation and proceeds to use Monte Carlo methods to calculate the perturbations in the internal electron field to determine the interaction processes, such as ionization and excitation. As a test of our model, the approach is applied to a water molecule in the same method as it would be applied to a nucleotide or amino acid and compared with the low-energy cross-sections from the GEANT4-DNA physics package of the Geant4 simulation toolkit
Learning Classical Music Club
2010-01-01
There is a new CERN Club called “Learning Classical Music at CERN”. We are aiming to give classical music lessons for different instruments (see link) for students from 5 to 100 years old. We are now ready to start our activities in the CERN barracks. We are now in the enrollment phase and hope to start lessons very soon ! Club info can be found in the list of CERN Club: http://user.web.cern.ch/user/Communication/SocialLifeActivities/Clubs/Clubs.html Salvatore Buontempo Club President
Dzhunushaliev, V D
1997-01-01
The spherically symmetric solution in classical SU(3) Yang - Mills theory is found. It is supposed that such solution describes a classical quark. It is regular in origin and hence the interaction between two quarks is small on the small distance. The obtained solution has the singularity on infinity. It is possible that is the reason why the free quark cannot exist. Evidently, nonlocality of this object leads to the fact that in quantum chromodynamic the difficulties arise connected with investigation of quarks interaction on large distance.
Brehm, Enrico M
2016-01-01
In this work, we introduce classical holographic codes. These can be understood as concatenated probabilistic codes and can be represented as networks uniformly covering hyperbolic space. In particular, classical holographic codes can be interpreted as maps from bulk degrees of freedom to boundary degrees of freedom. Interestingly, they are shown to exhibit features similar to those expected from the AdS/CFT correspondence. Among these are a version of the Ryu-Takayanagi formula and intriguing properties regarding bulk reconstruction and boundary representations of bulk operations. We discuss the relation of our findings with expectations from AdS/CFT and, in particular, with recent results from quantum error correction.
Classic Problems of Probability
Gorroochurn, Prakash
2012-01-01
"A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin
International Nuclear Information System (INIS)
The classical nova outburst occurs on the white dwarf component in a close binary system. Nova systems are members of the general class of cataclysmic variables and other members of the class are the Dwarf Novae, AM Her variables, Intermediate Polars, Recurrent Novae, and some of the Symbiotic variables. Although multiwavelength observations have already provided important information about all of these systems, in this review I will concentrate on the outbursts of the classical and recurrent novae and refer to other members of the class only when necessary. 140 refs., 1 tab
Frank, Irmgard
2016-01-01
The notion from ab-initio molecular dynamics simulations that nuclear motion is best described by classical Newton dynamics instead of the time-dependent Schr{\\"o}dinger equation is substantiated. In principle a single experiment should bring clarity. Caution is however necessary, as temperature dependent effects must be eliminated when trying to determine the existence of a zero-point energy.
Strong Coupling and Classicalization
Dvali, Gia
2016-01-01
Classicalization is a phenomenon in which a theory prevents itself from entering into a strong-coupling regime, by redistributing the energy among many weakly-interacting soft quanta. In this way, the scattering process of some initial hard quanta splits into a large number of soft elementary processes. In short, the theory trades the strong coupling for a high-multiplicity of quanta. At very high energies, the outcome of such a scattering experiment is a production of soft states of high occupation number that are approximately classical. It is evident that black hole creation in particle collision at super-Planckian energies is a result of classicalization, but there is no a priory reason why this phenomenon must be limited to gravity. If the hierarchy problem is solved by classicalization, the LHC has a chance of detecting a tower of new resonances. The lowest-lying resonances must appear right at the strong coupling scale in form of short-lived elementary particles. The heavier members of the tower must b...
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe
1. Berlin, Heidelberg: Springer-Verlag, 2013 - (Björm, E.), s. 205-224 ISBN 978-3-540-70528-4 Institutional support: RVO:68145535 Keywords : classical iterative methods * applied computational mathematics * encyclopedia Subject RIV: BA - General Mathematics http://www.springerreference.com/docs/ navigation .do?m=Encyclopedia+of+Applied+and+Computational+Mathematics+%28Mathematics+and+Statistics%29-book224
Classical and quantum satisfiability
de Araújo, Anderson; 10.4204/EPTCS.81.6
2012-01-01
We present the linear algebraic definition of QSAT and propose a direct logical characterization of such a definition. We then prove that this logical version of QSAT is not an extension of classical satisfiability problem (SAT). This shows that QSAT does not allow a direct comparison between the complexity classes NP and QMA, for which SAT and QSAT are respectively complete.
Why Study Classical Languages?
Lieberman, Samuel
This speech emphasizes the significance of living literatures and living cultures which owe a direct debt to the Romans and the Greeks from whom they can trace their origins. After commenting on typical rejoinders to the question "Why study classical languages?" and poking fun at those who advance jaded, esoteric responses, the author dispels the…
Camic, Charles
2008-01-01
They seem the perfect bookends for the social psychologist's collection of "classics" of the field. Two volumes, nearly identical in shape and weight and exactly a century old in 2008--each professing to usher "social psychology" into the world as they both place the hybrid expression square in their titles but then proceed to stake out the field…
Classical galactosaemia revisited
A.M. Bosch
2006-01-01
Classical galactosaemia (McKusick 230400) is an: autosomal recessive disorder of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712). Most patients present in the neonatal period, after ingestion of galactose, with jaundice, hepatospl
Classical Mythology. Fourth Edition.
Morford, Mark P. O.; Lenardon, Robert J.
Designed for students with little or no background in classical literature, this book introduces the Greek and Roman myths of creation, myths of the gods, Greek sagas and local legends, and presents contemporary theories about the myths. Drawing on Homer, Hesiod, Pindar, Vergil, and others, the book provides many translations and paraphrases of…
Huddleston, Gregory H.
1993-01-01
Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)
Classical electromagnetic radiation
Heald, Mark A
2012-01-01
Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.
Nelson, Norman N.; Fisch, Forest N.
1973-01-01
Discussed are techniques of presentation and solution of the Classical Cake Problem. A frosted cake with a square base is to be cut into n pieces with the volume of cake and frosting the same for each piece. Needed are minimal geometric concepts and the formula for the volume of a prism. (JP)
Institute of Scientific and Technical Information of China (English)
王浩华
2012-01-01
甲状腺激素是维持机体功能活动的基础性激素,在机体产热、新陈代谢、组织分化和器官发育等方面具有重要的调节作用,一般认为甲状腺激素结合靶细胞核内甲状腺激素受体,启动特异性甲状腺激素应答基因的转录表达,发挥生物学效应.近年来研究发现,某些甲状腺激素引起的生物反应迅速,而且不受基因转录与翻译相关抑制剂的影响,提示甲状腺激素存在非经典核受体作用途径,甲状腺激素介导的非经典核受体作用途径在心肌细胞、人神经胶质细胞、人成纤维细胞和成骨细胞等已被证实.%Thyroid hormone( TH )is a basal hormone which maintains the body's functional activity and has a critical role in energy utilization, metabolism, tissue differentiation and organ growth. It's generally considered that most thyroid hormone effects are mediated by direct transcriptional effects of thyroid hormone bound to nuclear thyroid hormone receptors( TRs ). Recently, a new mechanism of thyroid hormone action is identified which is very rapid and not affected by RNA and protein synthesis inhibitor, indicating a non-classical nuclear receptor mediated action. Besides,the non-classical nuclear receptor mediated action of thyroid hormone has been verified in cardiomyocyte, human glioma,human fibroblasts, osteoblast and so on.
Generalised Virial theorems in Classical and Quantum Physics
Sukumar, C V
2014-01-01
Generalisations of the virial theorm in Classical Mechanics and Quantum Mechanics are examined. It is shown that the generalised virial theorem in Quantum Mechanics leads to certain relations between matrix elements. The differences between the generalisations in Classical and Quantum Mechanics are identified. Some results arising from the radial Schr\\"odinger equation in Quantum Mechanics are discussed. It is also shown that the generalisations of the virial theorem may be extended to arbitr...
Institute of Scientific and Technical Information of China (English)
周兴杰
2014-01-01
中国当代流行歌曲中的“古典风”可以分为旧词新曲、以旧翻新和取旧入新等三种文本类型。“古典风”的生成是基于两种需一是本土化，二是市场化。当代中国的多种文化力量围绕这两种需要进行协商、博弈，形成了“古典风”的生成机制。“古典风”的流行歌曲扩大了流行音乐在当代的接受范围，也有利于中国古典文学知识的传播与普及。%The classic style in Chinese pop music include three text types: classic poetry with new tune, old poetry renovation, using the classic poetry factors to create new lyric. The generation of the classic style was based on two needs: localization and marketization. Many kinds of cultural powers negotiated and played games with each other, which created the formation mechanism of the classic style. The classic style expands the range of acceptance of contemporary Chinese pop songs, and it is good at the communication and popularization of the Chinese classic literature.
The Statistical Interpretation of Classical Thermodynamic Heating and Expansion Processes
Cartier, Stephen F.
2011-01-01
A statistical model has been developed and applied to interpret thermodynamic processes typically presented from the macroscopic, classical perspective. Through this model, students learn and apply the concepts of statistical mechanics, quantum mechanics, and classical thermodynamics in the analysis of the (i) constant volume heating, (ii)…
Classical and statistical thermodynamics
Rizk, Hanna A
2016-01-01
This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.
International Nuclear Information System (INIS)
Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Class Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator design. It includes modules for building accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty
Directory of Open Access Journals (Sweden)
Adriana Coutinho de Azevedo Guimarães
2008-06-01
Full Text Available This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external rotation at hip level and to undue use of point ballet slippers. The commonest lesions are in feet and ankles, followed by knees and hips. The rarest ones are in the upper limbs. These injuries are caused by exercise excess, by repetitions always in the same side and by wrong and early use of point slippers. The study reached the conclusion that incorrect application of classical ballet technique predisposes the dancers to characteristic injuries.
Classical Diophantine equations
1993-01-01
The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...
Adriana Coutinho de Azevedo Guimarães; Joseani Paulini Neves Simas
2008-01-01
This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external ...
Institute of Scientific and Technical Information of China (English)
WANG HAIRONG
2010-01-01
@@ North Korea's Phibada Opera Troupe arrived in Beijing on May3,bringing with it a Korean opera adapted from China's classic novel A Dream of Red Mansions written by Cao Xueqin(around 1715-63),a great novelist of the Qing Dynasty(1644-1911).The troupe,invited by the Chinese Ministry of Culture,is one of the largest performing groups having visited China in recent years.
Sociology and Classical Liberalism
KLEIN, Daniel; Stern, Lotta
2005-01-01
We advocate the development of a classical-liberal character within professional sociology. The American Sociological Association (ASA) is taken as representative of professional sociology in the United States. We review the ASA’s activities and organizational statements, to show the association’s leftist character. Internal criticism is often very uneasy about leftist domination of the field. We present survey results establishing that, in voting and in policy views, the ASA membership is mo...
Rogers, Ibram
2008-01-01
As a 26-year-old English teacher in 1958, Chinua Achebe had no idea that the book he was writing would become a literary classic, not only in Africa but also throughout the world. He could only try to articulate the feelings he had for his countrymen and women. Achebe had a burning desire to tell the true story of Africa and African humanity. The…
Strong, John
2004-01-01
An intermediate course in optics, this volume explores both experimental and theoretical concepts, offering practical knowledge of geometrical optics that will enhance students' comprehension of any relevant applied science. Its exposition of the concepts of classical optics is presented with a minimum of mathematical detail but presumes some knowledge of calculus, vectors, and complex numbers.Subjects include light as wave motion; superposition of wave motions; electromagnetic waves; interaction of light and matter; velocities and scattering of light; polarized light and dielectric boundarie
Diffusion of Classical Solitons
Dziarmaga, J.; Zakrzewski, W.
1998-01-01
We study the diffusion and deformation of classical solitons coupled to thermal noise. The diffusion coefficient for kinks in the $\\phi^4$ theory is predicted up to the second order in $kT$. The prediction is verified by numerical simulations. Multiskyrmions in the vector O(3) sigma model are studied within the same formalism. Thermal noise results in a diffusion on the multisoliton collective coordinate space (moduli space). There are entropic forces which tend, for example, to bind pairs of...
Waters, C Kenneth
2004-12-01
I present an account of classical genetics to challenge theory-biased approaches in the philosophy of science. Philosophers typically assume that scientific knowledge is ultimately structured by explanatory reasoning and that research programs in well-established sciences are organized around efforts to fill out a central theory and extend its explanatory range. In the case of classical genetics, philosophers assume that the knowledge was structured by T. H. Morgan's theory of transmission and that research throughout the later 1920s, 30s, and 40s was organized around efforts to further validate, develop, and extend this theory, I show that classical genetics was structured by an integration of explanatory reasoning (associated with the transmission theory) and investigative strategies (such as the 'genetic approach'). The investigative strategies, which have been overlooked in historical and philosophical accounts, were as important as the so-called laws of Mendelian genetics. By the later 1920s, geneticists of the Morgan school were no longer organizing research around the goal of explaining inheritance patterns; rather, they were using genetics to investigate a range of biological phenomena that extended well beyond the explanatory domain of transmission theories. Theory-biased approaches in history and philosophy of science fail to reveal the overall structure of scientific knowledge and obscure the way it functions. PMID:15682554
Gonadal function in male and female patients with classic galactosemia
Rubio-Gozalbo, M. E.; Gubbels, C. S.; Bakker, J. A.; Menheere, P. P. C. A.; Wodzig, W. K. W. H.; Land, J. A.
2010-01-01
Hypergonadotropic hypoestrogenic infertility is the most burdensome complication for females suffering from classic galactosemia. In contrast, male gonadal function seems less affected. The underlying mechanism is not understood and several pathogenic mechanisms have been proposed. Timing of the les
"Classical-ish": Negotiating the boundary between classical and quantum particles
Dreyfus, Benjamin W; Gupta, Ayush; Elby, Andrew
2015-01-01
Quantum mechanics can seem like a departure from everyday experience of the physical world, but constructivist theories assert that learners build new ideas from their existing ones. To explore how students can navigate this tension, we examine video of a focus group completing a tutorial about the "particle in a box." In reasoning about the properties of a quantum particle, the students bring in elements of a classical particle ontology, evidenced by students' language and gestures. This reasoning, however, is modulated by metacognitive moments when the group explicitly considers whether classical intuitions apply to the quantum system. The students find some cases where they can usefully apply classical ideas to quantum physics, and others where they explicitly contrast classical and quantum mechanics. Negotiating this boundary with metacognitive awareness is part of the process of building quantum intuitions. Our data suggest that (some) students bring productive intellectual resources to this negotiation.
Curiel, Erik
2014-01-01
In the early 1970s it is was realized that there is a striking formal analogy between the Laws of black-hole mechanics and the Laws of classical thermodynamics. Before the discovery of Hawking radiation, however, it was generally thought that the analogy was only formal, and did not reflect a deep connection between gravitational and thermodynamical phenomena. It is still commonly held that the surface gravity of a stationary black hole can be construed as a true physical temperature and its area as a true entropy only when quantum effects are taken into account; in the context of classical general relativity alone, one cannot cogently construe them so. Does the use of quantum field theory in curved spacetime offer the only hope for taking the analogy seriously? I think the answer is `no'. To attempt to justify that answer, I shall begin by arguing that the standard argument to the contrary is not physically well founded, and in any event begs the question. Looking at the various ways that the ideas of "tempe...
Arbitrated quantum signature of classical messages without using authenticated classical channels
Luo, Yi-Ping; Hwang, Tzonelih
2014-01-01
This paper points out design confusion existing in all the arbitrated quantum signatures (AQS) that require public discussions over authenticated classical channels. Instead, an AQS scheme of classical messages without using authenticated classical channels is proposed here. A cryptographic hash function is used in combine with quantum mechanics to check the existence of an eavesdropping or to verify a signature. In addition, by using only single photons, this scheme provides higher efficiency both in quantum transmissions and generations. The proposed AQS scheme is shown to be immune to several well-known attacks, i.e., the Trojan-horse attacks and the existential forgery attack.
FSH isoform pattern in classic galactosemia
Gubbels, C.S.; Thomas, C.M.G.; Wodzig, W.K.; Olthaar, A.J.; Jaeken, J.; Sweep, F.C.; Rubio-Gozalbo, M.E.
2011-01-01
Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfuncti
Half-classical three-body problem
International Nuclear Information System (INIS)
A three-body system consisting of two heavy and one light particles is considered. The relative motion of the heavy particles is treated classically, while the light particle motion is described quantum mechanically. The interaction of these two degrees of freedom is self-consistently taken into account by the Feynman path-integral method. (author)
Semi-classical approximation and microcanonical ensemble
International Nuclear Information System (INIS)
For quantum mechanical systems with spherically symmetric potential the improved W.K.B. approximation of Elworthy and Truman corresponds to the classical microcanonical ensemble in the limit where (h/2π) goes to zero, at least for small time. (orig.)
Directory of Open Access Journals (Sweden)
Laurent Chusseau
2013-02-01
Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.
Institute of Scientific and Technical Information of China (English)
2002-01-01
FIVE years ago, an ancient Chinese air was beamed to outer space as a PR exercise. To humankind, music is a universal language, so the tune seemed an ideal medium for communication with extraterrestrial intelligence. So far there has been no response, but it is believed that the tune will play for a billion years, and eventually be heard and understood. The melody is called High Mountain and Flowing Stream, and it is played on the guqin, a seven-stringed classical musical instrument similar to the zither.
Introducing Newton and classical physics
Rankin, William
2002-01-01
The rainbow, the moon, a spinning top, a comet, the ebb and flood of the oceans ...a falling apple. There is only one universe and it fell to Isaac Newton to discover its secrets. Newton was arguably the greatest scientific genius of all time, and yet he remains a mysterious figure. Written and illustrated by William Rankin, "Introducting Newton and Classical Physics" explains the extraordinary ideas of a man who sifted through the accumulated knowledge of centuries, tossed out mistaken beliefs, and single-handedly made enormous advances in mathematics, mechanics and optics. By the age of 25, entirely self-taught, he had sketched out a system of the world. Einstein's theories are unthinkable without Newton's founding system. He was also a secret heretic, a mystic and an alchemist, the man of whom Edmund Halley said "Nearer to the gods may no man approach!". This is an ideal companion volume to "Introducing Einstein".
Numerical calculation of classical and non-classical electrostatic potentials
Christensen, D; Neyenhuis, B; Christensen, Dan; Durfee, Dallin S.; Neyenhuis, Brian
2006-01-01
We present a numerical exercise in which classical and non-classical electrostatic potentials were calculated. The non-classical fields take into account effects due to a possible non-zero photon rest mass. We show that in the limit of small photon rest mass, both the classical and non-classical potential can be found by solving Poisson's equation twice, using the first calculation as a source term in the second calculation. Our results support the assumptions in a recent proposal to use ion interferometry to search for a non-zero photon rest mass.
Quantum systems that follow classical dynamics
Manfredi, G; Feix, M R
1993-01-01
For a special class of potentials, the dynamical evolution of any quantum wavepacket is entirely determined by the laws of classical mechanics. Here, the properties of this class are investigated both from the viewpoint of the Ehrenfest theorem (which provides the evolution of the average position and momentum), and the Wigner representation (which expresses quantum mechanics in a phase space formalism). Finally, these results are extended to the case of a charged particle in a uniform magnetic field. (author)
Fano Interference in Classical Oscillators
Satpathy, S.; Roy, A.; Mohapatra, A.
2012-01-01
We seek to illustrate Fano interference in a classical coupled oscillator by using classical analogues of the atom-laser interaction. We present an analogy between the dressed state picture of coherent atom-laser interaction and a classical coupled oscillator. The Autler-Townes splitting due to the atom-laser interaction is analogous to the…
Decoherence, chaos, the quantum and the classical
Zurek, W. H.; Paz, J. P.
The key ideas of the environment-induced decoherence approach are reviewed. Application of decoherence to the transition from quantum to classical in open quantum systems with chaotic classical analogs is described. The arrow of time is, in this context, a result of the information loss to the correlations with the environment. The asymptotic rate of entropy production (which is reached quickly, on the dynamical timescale) is independent of the details of the coupling of the quantum system to the environment, and is set by the Lyapunov exponents. We also briefly outline the existential interpretation of quantum mechanics, justifying the slogan, no information without representation.
Hidden invariance of the free classical particle
International Nuclear Information System (INIS)
A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group G is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under G leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by U(1) leads to quantum mechanics
Beam structures classical and advanced theories
Carrera, Erasmo; Petrolo, Marco
2011-01-01
Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc. Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for be
Can classical physics agree with quantum physics on quantum phenomena?
Marrocco, Michele
2015-01-01
Classical physics fails where quantum physics prevails. This common understanding applies to quantum phenomena that are acknowledged to be beyond the reach of classical physics. Here, we make an attempt at weakening this solid belief that classical physics is unfit to explain the quantum world. The trial run is the quantization of the free radiation field that will be addressed by following a strategy that is free from operators or quantum-mechanical concepts
Functional Approach to Classical Yang-Mills Theories
Carta, P
2002-01-01
Sometime ago it was shown that the operatorial approach to classical mechanics, pioneered in the 30's by Koopman and von Neumann, can have a functional version. In this talk we will extend this functional approach to the case of classical field theories and in particular to the Yang-Mills ones. We shall show that the issues of gauge-fixing and Faddeev-Popov determinant arise also in this classical formalism.
Directory of Open Access Journals (Sweden)
W. C. Kreye
2010-01-01
Full Text Available Quantum-mechanical and semi-classical spectral-line shapes are computed at =400, 800, and 1000 K for the line core of the 5802 Å line of the Ar-Perturbed/K-Radiator system. HWHMs ('s are measured from computed full spectral-line shapes. The final-state pseudopotential is for the 721/2 state, and the initial-state potential is for the 423/2,3/2 state. Three high-pressure (P log(—versus—log( curves, corresponding to the non-impact region, intersect a similar set of low-P, impact-region curves at intersections, 0's. Similarly, for two sets of log(—versus—log( curves, which yield intersections, 0's, where is the perturber density. These 0's and 0's separate the two regions and represent the upper limits of the impact regions. A specific validity condition for the impact region is given by the equation ≤0. From an earlier spectroscopic, Fabry-Perot paper, expt=0.021 cm−1 at =400 K and =10 torr. Two theoretical values, theor=0.025 and 0.062 cm−1 corresponding to two different pseudo-potentials, are reported. Two -dependent figures are given, in which the first shows an increase in the impact region with , based on as the basic parameter, and the second which shows a decrease in the impact region with , based on as the basic parameter.
Institute of Scientific and Technical Information of China (English)
王治国; 高童童; 谭为
2012-01-01
基于对相位耦合机制的旁路微带线结构中类量子干涉行为的理论研究.通过格林函数框架下的界面响应理论,解析、计算了该结构中的波传播特性,得出了3种具有代表性的类量子干涉现象:两个谐振结构之间的干涉增强导致的反射加强,两者的干涉相消导致的类电磁诱导透明行为,以及谐振结构与波导结构的干涉导致的类Fano共振现象.引入相位耦合机制为结构中的波传播特性提供了更加丰富的调控手段,有望设计成新型调控器件.%The paper theoretically demonstrates the classical analog of quantum interference effects in microstrip system containing phase-coupled side-branch components. By employing the Interface Response Theory which is in the framework of Green's function method, the propagation properties of the system are analytically obtained, and three typical phenomena are presented. The first is the enhancement of reflection resulting from the constructive interference between two resonances; the second is the analogous electromag-netically induced transparency effect due to the destructive interference; and the third is the analogous Fano resonance based on the interference between resonances and propagating waves. The introduction of phase-coupling mechanism provides us great flexibility in manipulating wave propagations, which may pave a way to novel devices.
Grassmannization of classical models
Pollet, Lode; Prokof'ev, Nikolay V; Svistunov, Boris V
2016-01-01
Applying Feynman diagrammatics to non-fermionic strongly correlated models with local constraints might seem generically impossible for two separate reasons: (i) the necessity to have a Gaussian (non-interacting) limit on top of which the perturbative diagrammatic expansion is generated by Wick's theorem, and (ii) the Dyson's collapse argument implying that the expansion in powers of coupling constant is divergent. We show that for arbitrary classical lattice models both problems can be solved/circumvented by reformulating the high-temperature expansion (more generally, any discrete representation of the model) in terms of Grassmann integrals. Discrete variables residing on either links, plaquettes, or sites of the lattice are associated with the Grassmann variables in such a way that the partition function (and correlations) of the original system and its Grassmann-field counterpart are identical. The expansion of the latter around its Gaussian point generates Feynman diagrams. A proof-of-principle implement...
Directory of Open Access Journals (Sweden)
Maryann Wilson
2013-01-01
Full Text Available BACKGROUND: The impact of a scientific article is proportional to the citations it has received. In this study, we set out to identify the most cited works in epileptology in order to evaluate research trends in this field. METHODS: According to the Web of Science database, articles with more than 400 citations qualify as "citation classics". We conducted a literature search on the ISI Web of Science bibliometric database for scientific articles relevant to epilepsy. RESULTS: We retrieved 67 highly cited articles (400 or more citations, which were published in 31 journals: 17 clinical studies, 42 laboratory studies, 5 reviews and 3 classification articles. Clinical studies consisted of epidemiological analyses (n=3, studies on the clinical phenomenology of epilepsy (n=5 – including behavioral and prognostic aspects – and articles focusing on pharmacological (n=6 and non-pharmacological (n=3 treatment. The laboratory studies dealt with genetics (n=6, animal models (n=27, and neurobiology (n=9 – including both neurophysiology and neuropathology studies. The majority (61% of citation classics on epilepsy were published after 1986, possibly reflecting the expansion of research interest in laboratory studies driven by the development of new methodologies, specifically in the fields of genetics and animal models. Consequently, clinical studies were highly cited both before and after the mid 80s, whilst laboratory researches became widely cited after 1990. CONCLUSIONS: Our study indicates that the main drivers of scientific impact in the field of epileptology have increasingly become genetic and neurobiological studies, along with research on animal models of epilepsy. These articles are able to gain the highest numbers of citations in the time span of a few years and suggest potential directions for future research.
Quantum state smoothing for classical mixtures
Tan, D; Mølmer, K; Murch, K W
2016-01-01
In quantum mechanics, wave functions and density matrices represent our knowledge about a quantum system and give probabilities for the outcomes of measurements. If the combined dynamics and measurements on a system lead to a density matrix $\\rho(t)$ with only diagonal elements in a given basis $\\{|n\\rangle\\}$, it may be treated as a classical mixture, i.e., a system which randomly occupies the basis states $|n\\rangle$ with probabilities $\\rho_{nn}(t)$. Fully equivalent to so-called smoothing in classical probability theory, subsequent probing of the occupation of the states $|n\\rangle$ improves our ability to retrodict what was the outcome of a projective state measurement at time $t$. Here, we show with experiments on a superconducting qubit that the smoothed probabilities do not, in the same way as the diagonal elements of $\\rho$, permit a classical mixture interpretation of the state of the system at the past time $t$.
Quantum field theory from classical statistics
Wetterich, C
2011-01-01
An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...
Quantum and Classical Phases in Optomechanics
Armata, Federico; Pikovski, Igor; Vanner, Michael R; Brukner, Caslav; Kim, M S
2016-01-01
The control of quantum systems requires the ability to change and read-out the phase of a system. The non-commutativity of canonical conjugate operators can induce phases on quantum systems, which can be employed for implementing phase gates and for precision measurements. Here we study the phase acquired by a radiation field after its radiation pressure interaction with a mechanical oscillator, and compare the classical and quantum contributions. The classical description can reproduce the nonlinearity induced by the mechanical oscillator and the loss of correlations between mechanics and optical field at certain interaction times. Such features alone are therefore insufficient for probing the quantum nature of the interaction. Our results thus isolate genuine quantum contributions of the optomechanical interaction that could be probed in current experiments.
Classical theory of the hydrogen atom
Rashkovskiy, Sergey
2016-01-01
It is shown that all of the basic properties of the hydrogen atom can be consistently described in terms of classical electrodynamics instead of taking the electron to be a particle; we consider an electrically charged classical wave field, an "electron wave", which is held in a limited region of space by the electrostatic field of the proton. It is shown that quantum mechanics must be considered to be not a theory of particles but a classical field theory in the spirit of classical electrodynamics. In this case, we are not faced with difficulties in interpreting the results of the theory. In the framework of classical electrodynamics, all of the well-known regularities of the spontaneous emission of the hydrogen atom are obtained, which is usually derived in the framework of quantum electrodynamics. It is shown that there are no discrete states and discrete energy levels of the atom: the energy of the atom and its states change continuously. An explanation of the conventional corpuscular-statistical interpre...
Institute of Scientific and Technical Information of China (English)
周建梅
2013-01-01
经典文化是高效的德育利器和美育利器，任何人从中都会获益无穷，在五年制高职生的人格建设中经典文化同样可以发挥相当积极和高效的作用。但在国内五年制高职院校中经典文化教育氛围却很是淡薄。利用经典文化建设五年制高职生的理想人格可以采取如“开展传播经典文化的丰富活动、培养优秀师资力量，开设经典文化教育课程、请专家学者开设讲座、家校一体促动学生受容经典”等多项措施。%The classic culture is the efficient moral education and aesthetic education tool, anyone can benefit from infinite, also can play a positive and effective role in five year higher vocational students personality construction of classical culture. But the classical cultural education atmosphere is very weak in the five years higher vocational colleges .The ideal personality for five years vocational students of classical culture construction can be taken a number of measures such as"rich activities spread of classical culture, cultivate excellent teachers, open education courses of classical culture, scholars and experts lectures, home-school together to promote students to accept the classic".
Quantum-classical interactions through the path integral
Metaxas, D
2006-01-01
I consider the case of two interacting scalar fields, \\phi and \\psi, and use the path integral formalism in order to treat the first classically and the second quantum-mechanically. I derive the Feynman rules and the resulting equation of motion for the classical field, which should be an improvement of the usual semi-classical procedure. As an application, I use this method in order to enforce Gauss's law as a classical equation in a non-abelian gauge theory, and derive the corresponding Feynman rules.
Quantum-classical interactions through the path integral
Metaxas, Dimitrios
2006-01-01
I consider the case of two interacting scalar fields, \\phi and \\psi, and use the path integral formalism in order to treat the first classically and the second quantum-mechanically. I derive the Feynman rules and the resulting equation of motion for the classical field, which should be an improvement of the usual semi-classical procedure. As an application I use this method in order to enforce Gauss's law as a classical equation in a non-abelian gauge theory. I argue that the theory is renorm...
Crowder, Martin J
2001-01-01
If something can fail, it can often fail in one of several ways and sometimes in more than one way at a time. There is always some cause of failure, and almost always, more than one possible cause. In one sense, then, survival analysis is a lost cause. The methods of Competing Risks have often been neglected in the survival analysis literature. Written by a leading statistician, Classical Competing Risks thoroughly examines the probability framework and statistical analysis of data of Competing Risks. The author explores both the theory of the subject and the practicalities of fitting the models to data. In a coherent, self-contained, and sequential account, the treatment moves from the bare bones of the Competing Risks setup and the associated likelihood functions through survival analysis using hazard functions. It examines discrete failure times and the difficulties of identifiability, and concludes with an introduction to the counting-process approach and the associated martingale theory.With a dearth of ...
Grafakos, Loukas
2014-01-01
The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition. Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...
Sullivan, Woodruff Turner
1982-01-01
Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...
Population in the classic economics
Adnan Doğruyol
2013-01-01
Growth subject in economics is an important factor of development. Classic economics ecole indicates the population as main variable which tender of growth. On the other hand T. R. Malthus is known as economist who regards population as a problem and brings up it among the classical economists. However, Adam Smith is an intellectual who discussed population problem earlier on the classic economics theory. According to Adam Smith one of the main factors that realise the growth is labour. In ad...
Coherent Communication of Classical Messages
Harrow, Aram W.
2003-01-01
We define "coherent communication" in terms of a simple primitive, show it is equivalent to the ability to send a classical message with a unitary or isometric operation, and use it to relate other resources in quantum information theory. Using coherent communication, we are able to generalize super-dense coding to prepare arbitrary quantum states instead of only classical messages. We also derive single-letter formulae for the classical and quantum capacities of a bipartite unitary gate assi...
Connecting Blackbody Radiation, Relativity, and Discrete Charge in Classical Electrodynamics
Boyer, T H
2006-01-01
It is suggested that an understanding of blackbody radiation within classical physics requires the presence of classical electromagnetic zero-point radiation, the restriction to relativistic (Coulomb) scattering systems, and the use of discrete charge. The contrasting scaling properties of nonrelativistic classical mechanics and classical electrodynamics are noted, and it is emphasized that the solutions of classical electrodynamics found in nature involve constants which connect together the scales of length, time, and energy. Indeed, there are analogies between the electrostatic forces for groups of particles of discrete charge and the van der Waals forces in equilibrium thermal radiation. The differing Lorentz- or Galilean-transformation properties of the zero-point radiation spectrum and the Rayleigh-Jeans spectrum are noted in connection with their scaling properties. Also, the thermal effects of acceleration within classical electromagnetism are related to the existence of thermal equilibrium within a g...
The classic: Bone morphogenetic protein.
Urist, Marshall R; Strates, Basil S
2009-12-01
This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406. PMID:19727989
2007-01-01
M51, whose name comes from being the 51st entry in Charles Messier's catalog, is considered to be one of the classic examples of a spiral galaxy. At a distance of about 30 million light-years from Earth, it is also one of the brightest spirals in the night sky. A composite image of M51, also known as the Whirlpool Galaxy, shows the majesty of its structure in a dramatic new way through several of NASA's orbiting observatories. X-ray data from NASA's Chandra X-ray Observatory reveals point-like sources (purple) that are black holes and neutron stars in binary star systems. Chandra also detects a diffuse glow of hot gas that permeates the space between the stars. Optical data from the Hubble Space Telescope (green) and infrared emission from the Spitzer Space Telescope (red) both highlight long lanes in the spiral arms that consist of stars and gas laced with dust. A view of M51 with the Galaxy Evolution Explorer telescope shows hot, young stars that produce lots of ultraviolet energy (blue). The textbook spiral structure is thought be the result of an interaction M51 is experiencing with its close galactic neighbor, NGC 5195, which is seen just above. Some simulations suggest M51's sharp spiral shape was partially caused when NGC 5195 passed through its main disk about 500 million years ago. This gravitational tug of war may also have triggered an increased level of star formation in M51. The companion galaxy's pull would be inducing extra starbirth by compressing gas, jump-starting the process by which stars form.
Crossover from quantum to classical transport
Morr, Dirk K.
2016-01-01
Understanding the crossover from quantum to classical transport has become of fundamental importance not only for technological applications due to the creation of sub-10-nm transistors - an important building block of our modern life - but also for elucidating the role played by quantum mechanics in the evolutionary fitness of biological complexes. This article provides a basic introduction into the nature of charge and energy transport in the quantum and classical regimes. It discusses the characteristic transport properties in both limits and demonstrates how they can be connected through the loss of quantum mechanical coherence. The salient features of the crossover physics are identified, and their importance in opening new transport regimes and in understanding efficient and robust energy transport in biological complexes are demonstrated.
Particles and Events in Classical Off-Shell Electrodynamics
Land, M C
1997-01-01
Despite the many successes of the relativistic quantum theory developed by Horwitz, et. al., certain difficulties persist in the associated covariant classical mechanics. In this paper, we explore these difficulties through an examination of the classical Coulomb problem in the framework of off-shell electrodynamics. As the local gauge theory of a covariant quantum mechanics with evolution parameter $\\tau$, off-shell electrodynamics constitutes a dynamical theory of spacetime events, interacting through five $\\tau$-dependent pre-Maxwell potentials. We present a straightforward solution of the classical equations of motion, which is seen to be unsatisfactory, and reveals the essential difficulties in the formalism at the classical level. We then offer a new model of the particle current -- as a certain distribution of the event currents on the worldline -- which eliminates these difficulties and permits comparison of classical off-shell electrodynamics with the standard Maxwell theory. In this model, the ``fix...
Institute of Scientific and Technical Information of China (English)
2002-01-01
The heyday of Beijing’s classical music beganin 1993, when top-quality sound equipment andrecords were imported. Also in that year, BeijingMusic Radio presented a classical music programtitled "Fan’s Club" and founded the "Music and
Semi-classical expansion for a charged particle on a curved space background
International Nuclear Information System (INIS)
We give the semi-classical expansion, with remainder to any order in h, for the wave function of a nonrelativistic quantum particle in a classical external magnetic field on a curved space background. The basic assumption is of a ''no caustics condition'' on the underlying classical mechanics, at least up to the time in question. The gauge invariance of the result is emphasized together with a discussion of the geometric meaning of the classical mechanical quantities involved
Classical models of the spin 1/2 system
Salazar-Lazaro, Carlos H.
We proposed a Quaternionic mechanical system motivated by the Foucault pendulum as a classical model for the dynamics of the spin ½ system. We showed that this mechanical system contains the dynamics of the spin state of the electron under a uniform magnetic field as it is given by the Schrodinger-Pauli-Equation (SPE). We closed with a characterization of the dynamics of this generalized classical system by showing that it is equivalent with the dynamics of the Schrodinger Pauli Equation as long as the solutions to the generalized classical system are roots of the Lagrangian, that is the condition L = 0 holds.
Classical dynamics a modern perspective
Sudarshan, Ennackal Chandy George
2016-01-01
Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of ...
Fisher Information of Wavefunctions: Classical and Quantum
Institute of Scientific and Technical Information of China (English)
LUO Shun-Long
2006-01-01
A parametric quantum mechanical wavefunction naturally induces parametric probability distributions by taking absolute square, and we can consider its classical Fisher information. On the other hand, it also induces parametric rank-one projections which may be viewed as density operators, and we can talk about its quantum Fisher information. Among many versions of quantum Fisher information, there are two prominent ones. The first,deiined via a quantum score function, was introduced by Helstrom in 1967 and is well known. The second,defined via the square root of the density operator, has its origin in the skew information introduced by Wigner and Yanase in 1963 and remains relatively unnoticed. This study is devoted to investigating the relationships between the classical Fisher information and these two versions of quantum Fisher information for wavefunctions.It is shown that the two versions of quantum Fisher information differ by a factor 2 and that they dominate the classical Fisher information. The non-coincidence of these two versions of quantum Fisher information may be interpreted as a manifestation of quantum discord. We further calculate the difference between the Helstrom quantum Fisher information and the classical Fisher information, and show that it is precisely the instantaneous phase fluctuation of the wavefunctions.
Classical or equilibrium thermodynamics: basic conceptual aspects
Directory of Open Access Journals (Sweden)
Luiz Augusto Calvo Tiritan
2008-08-01
Full Text Available The Classical or Equilibrium Thermodynamics is one of the most consolidated fields of Physics. It is synthesized by a well-known and self coherent knowledge structure. The essence of the Classical Thermodynamics theoretical structure consists of a set of natural laws that rule the macroscopic physical systems behavior. These laws were formulated based on observations generalizations and are mostly independent of any hypotheses concerning the microscopic nature of the matter. In general, the approaches established for the Classical Thermodynamics follow one of the following alternatives: the historical approach that describes chronologically the evolution of ideas, concepts and facts, and the postulational approach in which postulates are formulated but are not demonstrated a priori but can be confirmed a posteriori. In this work, a brief review of the pre-classical historical approach conceptual evolution is elaborated, from the beginning of the seventeenth century to the middle of the nineteenth century. As for this, the following themes are dealt with in an evolutionary and phenomenological way: heat nature, thermometry, calorimetry, Carnot’s heat engine, heat mechanical equivalent and the first and second laws. The Zeroth law that was formulated afterwards is included in the discussion.
Classic hallucinogens in the treatment of addictions.
Bogenschutz, Michael P; Johnson, Matthew W
2016-01-01
Addictive disorders are very common and have devastating individual and social consequences. Currently available treatment is moderately effective at best. After many years of neglect, there is renewed interest in potential clinical uses for classic hallucinogens in the treatment of addictions and other behavioral health conditions. In this paper we provide a comprehensive review of both historical and recent clinical research on the use of classic hallucinogens in the treatment of addiction, selectively review other relevant research concerning hallucinogens, and suggest directions for future research. Clinical trial data are very limited except for the use of LSD in the treatment of alcoholism, where a meta-analysis of controlled trials has demonstrated a consistent and clinically significant beneficial effect of high-dose LSD. Recent pilot studies of psilocybin-assisted treatment of nicotine and alcohol dependence had strikingly positive outcomes, but controlled trials will be necessary to evaluate the efficacy of these treatments. Although plausible biological mechanisms have been proposed, currently the strongest evidence is for the role of mystical or other meaningful experiences as mediators of therapeutic effects. Classic hallucinogens have an excellent record of safety in the context of clinical research. Given our limited understanding of the clinically relevant effects of classic hallucinogens, there is a wealth of opportunities for research that could contribute important new knowledge and potentially lead to valuable new treatments for addiction. PMID:25784600
Beyond quantum-classical analogies: high time for agreement?
Marrocco, Michele
Lately, many quantum-classical analogies have been investigated and published in many acknowledged journals. Such a surge of research on conceptual connections between quantum and classical physics forces us to ask whether the correspondence between the quantum and classical interpretation of the reality is deeper than the correspondence principle stated by Bohr. Here, after a short introduction to quantum-classical analogies from the recent literature, we try to examine the question from the perspective of a possible agreement between quantum and classical laws. A paradigmatic example is given in the striking equivalence between the classical Mie theory of electromagnetic scattering from spherical scatterers and the corresponding quantum-mechanical wave scattering analyzed in terms of partial waves. The key features that make the correspondence possible are examined and finally employed to deal with the fundamental blackbody problem that marks the initial separation between classical and quantum physics. The procedure allows us to recover the blackbody spectrum in classical terms and the proof is rich in consequences. Among them, the strong analogy between the quantum vacuum and its classical counterpart.
Computational quantum-classical boundary of noisy commuting quantum circuits
Fujii, Keisuke; Tamate, Shuhei
2016-01-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039
Computational quantum-classical boundary of noisy commuting quantum circuits.
Fujii, Keisuke; Tamate, Shuhei
2016-01-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039
Power dissipation in nanoscale conductors: classical, semi-classical and quantum dynamics
International Nuclear Information System (INIS)
Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested
There is no quantum ontology without classical ontology
International Nuclear Information System (INIS)
The relation between quantum physics and classical physics is still under debate. In his recent book ''Rational Reconstructions of Modern Physics'', Peter Mittelstaedt explores a route from classical to quantum mechanics by reduction and elimination of (some of) the ontological hypotheses underlying classical mechanics. While, according to Mittelstaedt, classical mechanics describes a fictitious world that does not exist in reality, he claims to achieve a universal quantum ontology that can be improved by incorporating unsharp properties and equipped with Planck's constant without any need to refer to classical concepts. In this talk, we argue that quantum ontology in Mittelstaedt's sense is not enough. Quantum ontology can never be universal as long as the difference between potential and real properties is not represented adequately. Quantum properties are potential, not (yet) real, be they sharp or unsharp. Hence, preparation and measurement presuppose classical concepts, even in quantum theory. We end up with a classical-quantum sandwich ontology, which is still less extravagant than Bohmian or many-worlds ontologies are.
Demonstration of local teleportation using classical entanglement
Guzman-Silva, Diego; Zimmermann, Felix; Vetter, Christian; Gräfe, Markus; Heinrich, Matthias; Nolte, Stefan; Duparré, Michael; Aiello, Andrea; Ornigotti, Marco; Szameit, Alexander
2015-01-01
Teleportation is the most widely discussed application of the basic principles of quantum mechanics. Fundamentally, this process describes the transmission of information, which involves transport of neither matter nor energy. The implicit assumption, however, is that this scheme is of inherently nonlocal nature, and therefore exclusive to quantum systems. Here, we show that the concept can be readily generalized beyond the quantum realm. We present an optical implementation of the teleportation protocol solely based on classical entanglement between spatial and modal degrees of freedom, entirely independent of nonlocality. Our findings could enable novel methods for distributing information between different transmission channels and may provide the means to leverage the advantages of both quantum and classical systems to create a robust hybrid communication infrastructure.
Non-classical paths in interference experiments
Sawant, Rahul; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-01-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well known text books in quantum mechanics implicitly and/or explicitly use this assumption which is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from non-classical paths in quantum interference experiments which provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these non-classical paths is hard. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.
Global aspects of classical integrable systems
Cushman, Richard H
2015-01-01
This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.
Classical and stochastic Laplacian growth
Gustafsson, Björn; Vasil’ev, Alexander
2014-01-01
This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Löwner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive biblio...
New perspectives on classical electromagnetism
Cote, Paul J.
2009-01-01
The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.
Fano interference in classical oscillators
International Nuclear Information System (INIS)
We seek to illustrate Fano interference in a classical coupled oscillator by using classical analogues of the atom-laser interaction. We present an analogy between the dressed state picture of coherent atom-laser interaction and a classical coupled oscillator. The Autler-Townes splitting due to the atom-laser interaction is analogous to the splitting of normal-mode frequencies of a coupled oscillator. Using this analogy, we simulate and experimentally demonstrate Fano interference and the associated phenomena in three-level atoms in a coupled electrical resonator circuit. This work aims to highlight analogies between classical and quantum systems for students at the postgraduate and graduate levels. Also, the reported technique can be easily realized in undergraduate laboratories. (paper)
Elementary charges in classical electrodynamics
KAPU'{S}CIK, Edward
1999-01-01
In the framework of classical electrodynamics elementary particles are treated as capacitors. The electrostatic potentials satisfy equations of the Schrödinger type. An interesting "quantization condition" for elementary charges is derived.
Anderson localization from classical trajectories
Brouwer, Piet W.; Altland, Alexander
2008-01-01
We show that Anderson localization in quasi-one dimensional conductors with ballistic electron dynamics, such as an array of ballistic chaotic cavities connected via ballistic contacts, can be understood in terms of classical electron trajectories only. At large length scales, an exponential proliferation of trajectories of nearly identical classical action generates an abundance of interference terms, which eventually leads to a suppression of transport coefficients. We quantitatively descri...
Gaussian Dynamics is Classical Dynamics
Habib, Salman
2004-01-01
A direct comparison of quantum and classical dynamical systems can be accomplished through the use of distribution functions. This is useful for both fundamental investigations such as the nature of the quantum-classical transition as well as for applications such as quantum feedback control. By affording a clear separation between kinematical and dynamical quantum effects, the Wigner distribution is particularly valuable in this regard. Here we discuss some consequences of the fact that when...
Quantum systems as classical systems
Cassa, Antonio
2001-01-01
A characteristical property of a classical physical theory is that the observables are real functions taking an exact outcome on every (pure) state; in a quantum theory, at the contrary, a given observable on a given state can take several values with only a predictable probability. However, even in the classical case, when an observer is intrinsically unable to distinguish between some distinct states he can convince himself that the measure of its ''observables'' can have several values in ...
Quantum money with classical verification
International Nuclear Information System (INIS)
We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it
Classical theory of radiating strings
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Quantum money with classical verification
Energy Technology Data Exchange (ETDEWEB)
Gavinsky, Dmitry [NEC Laboratories America, Princeton, NJ (United States)
2014-12-04
We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.
Path Integral Approach to 't Hooft's Derivation of Quantum from Classical Physics
Blasone, Massimo; Jizba, Petr; Kleinert, Hagen
2004-01-01
We present a path-integral formulation of 't Hooft's derivation of quantum from classical physics. The crucial ingredient of this formulation is Gozzi et al.'s supersymmetric path integral of classical mechanics. We quantize explicitly two simple classical systems: the planar mathematical pendulum and the Roessler dynamical system.
Classical theory of atomic collisions - The first hundred years
Grujić, Petar V.
2012-05-01
Classical calculations of the atomic processes started in 1911 with famous Rutherford's evaluation of the differential cross section for α particles scattered on foil atoms [1]. The success of these calculations was soon overshadowed by the rise of Quantum Mechanics in 1925 and its triumphal success in describing processes at the atomic and subatomic levels. It was generally recognized that the classical approach should be inadequate and it was neglected until 1953, when the famous paper by Gregory Wannier appeared, in which the threshold law for the single ionization cross section behaviour by electron impact was derived. All later calculations and experimental studies confirmed the law derived by purely classical theory. The next step was taken by Ian Percival and collaborators in 60s, who developed a general classical three-body computer code, which was used by many researchers in evaluating various atomic processes like ionization, excitation, detachment, dissociation, etc. Another approach was pursued by Michal Gryzinski from Warsaw, who started a far reaching programme for treating atomic particles and processes as purely classical objects [2]. Though often criticized for overestimating the domain of the classical theory, results of his group were able to match many experimental data. Belgrade group was pursuing the classical approach using both analytical and numerical calculations, studying a number of atomic collisions, in particular near-threshold processes. Riga group, lead by Modris Gailitis [3], contributed considerably to the field, as it was done by Valentin Ostrovsky and coworkers from Sanct Petersbourg, who developed powerful analytical methods within purely classical mechanics [4]. We shall make an overview of these approaches and show some of the remarkable results, which were subsequently confirmed by semiclassical and quantum mechanical calculations, as well as by the experimental evidence. Finally we discuss the theoretical and
Planck's radiation law: is a quantum-classical perspective possible?
Marrocco, Michele
2016-05-01
Planck's radiation law provides the solution to the blackbody problem that marks the decline of classical physics and the rise of the quantum theory of the radiation field. Here, we venture to suggest the possibility that classical physics might be equally suitable to deal with the blackbody problem. A classical version of the Planck's radiation law seems to be achievable if we learn from the quantum-classical correspondence between classical Mie theory and quantum-mechanical wave scattering from spherical scatterers (partial wave analysis). This correspondence designs a procedure for countable energy levels of the radiation trapped within the blackbody treated within the multipole approach of classical electrodynamics (in place of the customary and problematic expansion in terms of plane waves that give rise to the ultraviolet catastrophe). In turn, introducing the Boltzmann discretization of energy levels, the tools of classical thermodynamics and statistical theory become available for the task. On the other hand, the final result depends on a free parameter whose physical units are those of an action. Tuning this parameter on the value given by the Planck constant makes the classical result agree with the canonical Planck's radiation law.
Non-Classicality Criteria in Multi-port Interferometry
Rigovacca, Luca; Metcalf, Benjamin J; Walmsley, Ian A; Kim, M S
2016-01-01
Quantum interference lies at the basis of fundamental differences between quantum and classical behaviors. It is thus crucial to understand the boundaries between what interference patterns can be described by classical wave mechanics and what, on the other hand, can only be understood with a proper quantum mechanical description. While a lot of work has already been done for the simple case of two-mode interference, the multi-mode case has not been fully explored yet. Here we derive bounds for classical models of light fields in a general scenario of intensity interferometry, and we show how they can be violated in a quantum framework. As a consequence, this violation acts as a non-classicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also derive a criterion for certifying the indivisibility of a quantum interferometer and obtain a method to simultaneously measure the average pairwise distinguishability of the input sources.
Violation of classical physics by a mesoscopic system
Hu, Jiazhong; Chen, Wenlan; Zhang, Hao; McConnell, Robert; Sørensen, Anders S; Vuletić, Vladan
2016-01-01
We experimentally demonstrate the violation of classical physics in a many-atom system using a recently derived criterion [E. Kot et al., Phys. Rev. Lett. 108, 233601 (2013)] that explicitly does not make use of quantum mechanics. We thereby show that the magnetic moment distribution measured by McConnell et al. [R. McConnell et al., Nature 519, 439 (2015)] in a system with a total mass of $2.6\\times 10^5$ atomic mass units is inconsistent with classical physics. Notably, the violation of classical physics affects an area in phase space $10^3$ times larger than the Planck quantum $\\hbar$.
Institute of Scientific and Technical Information of China (English)
南文金; 胡鸿惠; 彭国良; 娄高明
2011-01-01
猪瘟是由猪瘟病毒感染导致的高度接触性传染病,家猪和野猪对该病原易感.该病主要特征是高热、微血管变性而引起实质器官出血、坏死,是世界上危害最严重猪病之一,给养猪业带来重大损失.综述了猪瘟病毒基因组、蛋白质功能以及致病机理的最新研究进展,为相关研究人员参考.%Classical swine fever （CSF） is a highly contagious disease of domestic and wild pigs. The causative agent of this disease is classical swine fever virus （CSFV）, the disease of pig characterized by high fever, microvascular denaturalization hemorrhages and necrosis of parenchymatous argans. It is considered to be one of the most devastating diseases and causes significant economic loss for the pig industry throughout the word. The paper introduces the research progresses on genome, function of protein and pathogenesis of CFSV.
The semi classical laser theory and some applications of laser
International Nuclear Information System (INIS)
The semi classical laser theory is concerned with the interaction between light and matter in such a way that the matter is treated quantum-mechanically whereas light is treated in terms of the classical electromagnetic equations. In this work the Maxwell-Bloch equations are employed to describe the interaction between light and matter. Applications of the theory as well as different types of lasers are reviewed. (Author)
Classical vs. crowdsourcing surveys for eliciting geographic relevance criteria
De Sabbata, Stefano; Alonso, Omar; Mizzaro, Stefano
2012-01-01
Geographic relevance aims to assess the relevance of physical entities (e.g., shops and museums) in geographic space for a mobile user in a given context, thereby shifting the focus from the digital world (the realm of classical information retrieval) to the physical world. We study the elicitation of geographic relevance criteria by means of both a classical survey and an Amazon Mechanical Turk (a crowdsourcing platform) survey. This allows us to obtain three results: first, we gather a set ...
Implementation of classical communication in a quantum world
Chris Fields
2012-01-01
Observations of quantum systems carried out by finite observers who subsequently communicate their results using classical data structures can be described as "local operations, classical communication" (LOCC) observations. The implementation of LOCC observations by the Hamiltonian dynamics prescribed by minimal quantum mechanics is investigated. It is shown that LOCC observations cannot be described using decoherence considerations alone, but rather require the \\textit{a priori} stipulation ...
Unbiased estimators for spatial distribution functions of classical fluids.
Adib, Artur B; Jarzynski, Christopher
2005-01-01
We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density rho(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions. PMID:15638649
Analysing a complementarity experiment on the quantum-classical boundary
Cunha, M. O. Terra; Nemes, M. C.
2002-01-01
The complementarity experiment reported in Bertet [{\\it{et al.}} (2001), {\\it{Nature}} {\\bf{411}}, 166.] is discussed. The role played by entanglement in reaching the classical limit is pointed out. Dissipative and thermal effects of the cavity are calculated and a simple modification of the experiment is proposed in order to observe the progressive loss of the capacity of ``quantum erasing''as a manifestation of the classical limit of quantum mechanics.
Analysing a complementarity experiment on the quantum-classical boundary
International Nuclear Information System (INIS)
The complementarity experiment reported in [Bertet et al., Nature 411 (2001) 166] is discussed. The role played by entanglement in reaching the classical limit is pointed out. Dissipative and thermal effects of the cavity are calculated and a simple modification of the experiment is proposed in order to observe the progressive loss of the capacity of 'quantum erasing' as a manifestation of the classical limit of quantum mechanics
Does classical liberalism imply democracy?
Directory of Open Access Journals (Sweden)
David Ellerman
2015-12-01
Full Text Available There is a fault line running through classical liberalism as to whether or not democratic self-governance is a necessary part of a liberal social order. The democratic and non-democratic strains of classical liberalism are both present today—particularly in the United States. Many contemporary libertarians and neo-Austrian economists represent the non-democratic strain in their promotion of non-democratic sovereign city-states (start-up cities or charter cities. We will take the late James M. Buchanan as a representative of the democratic strain of classical liberalism. Since the fundamental norm of classical liberalism is consent, we must start with the intellectual history of the voluntary slavery contract, the coverture marriage contract, and the voluntary non-democratic constitution (or pactum subjectionis. Next we recover the theory of inalienable rights that descends from the Reformation doctrine of the inalienability of conscience through the Enlightenment (e.g. Spinoza and Hutcheson in the abolitionist and democratic movements. Consent-based governments divide into those based on the subjects’ alienation of power to a sovereign and those based on the citizens’ delegation of power to representatives. Inalienable rights theory rules out that alienation in favor of delegation, so the citizens remain the ultimate principals and the form of government is democratic. Thus the argument concludes in agreement with Buchanan that the classical liberal endorsement of sovereign individuals acting in the marketplace generalizes to the joint action of individuals as the principals in their own organizations.
No Return to Classical Reality
Jennings, David
2015-01-01
At a fundamental level, the classical picture of the world is dead, and has been dead now for almost a century. Pinning down exactly which quantum phenomena are responsible for this has proved to be a tricky and controversial question, but a lot of progress has been made in the past few decades. We now have a range of precise statements showing that whatever the ultimate laws of Nature are, they cannot be classical. In this article, we review results on the fundamental phenomena of quantum theory that cannot be understood in classical terms. We proceed by first granting quite a broad notion of classicality, describe a range of quantum phenomena (such as randomness, discreteness, the indistinguishability of states, measurement-uncertainty, measurement-disturbance, complementarity, noncommutativity, interference, the no-cloning theorem, and the collapse of the wave-packet) that do fall under its liberal scope, and then finally describe some aspects of quantum physics that can never admit a classical understandi...
Integrability and chaos: the classical uncertainty
International Nuclear Information System (INIS)
In recent years there has been a considerable increase in the publishing of textbooks and monographs covering what was formerly known as random or irregular deterministic motion, now referred to as deterministic chaos. There is still substantial interest in a matter that is included in many graduate and even undergraduate courses on classical mechanics. Based on the Hamiltonian formalism, the main objective of this paper is to provide, from the physicist's point of view, an overall and intuitive review of this broad subject (with some emphasis on the Kolmogorov-Arnold-Moser theorem and the stability of planetary motions) which may be useful to both students and instructors.
Non Breakable Data Encryption With Classical Information?
Kish, Laszlo B.; Sethuraman, Swaminathan; Heszler, Peter
2005-11-01
With the Kish-Sethuraman (KS) cipher an attempt was made, by using special operators and communication, to reach absolutely secure classical communication. First the message is bounced back with additional encryption by the Receiver and then the original encryption is removed and the message is resent by the Sender. The mechanical analogy of this operation is using two padlocks; one by the Sender and one by the Receiver. Klappenecker has pointed out that finding an efficient software realization of the operators is equivalent of proving the P ≠ NP problem. Various open problems are discussed.
Observables and States, Reduction, Quantumness and Classicality.
Ferro, Leonardo
2014-01-01
The main objective of this dissertation is the study of the theory of Lie-Jordan Banach algebras, their role in the framework of classical and quantum mechanics, and their applications to different aspects of quantum systems. One of the main results of this thesis is the novel proof of a theorem which characterizes the Jordan (-Banach) algebras that are in a unique correspondence with C*-algebras. The novelty lies in the introduction of a Lie structure on the algebra, which is required to...
Classical limit for semirelativistic Hartree systems
Aki, Gonca L.
2008-01-01
We consider the three-dimensional semirelativistic Hartree model for fast quantum mechanical particles moving in a self-consistent field. Under appropriate assumptions on the initial density matrix as a (fully) mixed quantum state we prove by using Wigner transformation techniques that its classical limit yields the well known relativistic Vlasov-Poisson system. The result holds for the case of attractive and repulsive mean-field interactions, with an additional size constraint in the attractive case. © 2008 American Institute of Physics.
Casimir Effect The Classical Limit
Feinberg, J; Revzen, M
2001-01-01
We analyze the high temperature limit of the Casimir effect. A simple physical argument suggests that the Casimir energy (as opposed to the Casimir free energy) should vanish in the classical limit. We check the validity of this argument for massless scalar field confined in a cavity with boundaries of arbitrary shape, using path integral formalism. We are able to verify this suggestion only when the boundaries consist of disjoint pieces. Moreover, we find in these cases that the contribution to the Casimir entropy by field modes that depend on that separation, tends, in the classical limit, to a finite asymptotic value which depends only on the geometry of the cavity. Thus the Casimir force between disjoint pieces of the boundary in the classical limit is entropy driven and is governed by a dimensionless number characterizing the arbitrary geometry of the cavity. Contributions to the Casimir thermodynamical quantities due to each individual connected component of the boundary exhibit logarithmic deviations i...
Population in the classic economics
Directory of Open Access Journals (Sweden)
Adnan Doğruyol
2013-02-01
Full Text Available Growth subject in economics is an important factor of development. Classic economics ecole indicates the population as main variable which tender of growth. On the other hand T. R. Malthus is known as economist who regards population as a problem and brings up it among the classical economists. However, Adam Smith is an intellectual who discussed population problem earlier on the classic economics theory. According to Adam Smith one of the main factors that realise the growth is labour. In addition to population made it established. The aim of this study is analyzing the mental relationship between Malthus whose name has been identified with relation between population-growth and Smith who discussed this subject first time but put it off on process of theorisation.
Comparing classical and quantum equilibration
Malabarba, Artur S L; Short, Anthony J
2016-01-01
By using a physically-relevant and theory independent definition of measurement-based equilibration, we show quantitatively that equilibration is easier for quantum systems than for classical systems, in the situation where the initial state of the system is completely known (pure state). This shows that quantum equilibration is a fundamental, nigh unavoidable, aspect of physical systems, while classical equilibration relies on experimental ignorance. When the state is not completely known, a mixed state, this framework also shows quantum equilibration requires weaker conditions.
Classical planning and causal implicatures
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Benotti, Luciana
In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important for...... generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate the...
Classical analogy of Fano resonances
International Nuclear Information System (INIS)
We present an analogy of Fano resonances in quantum interference to classical resonances in the harmonic oscillator system. It has a manifestation as a coupled behaviour of two effective oscillators associated with propagating and evanescent waves. We illustrate this point by considering a classical system of two coupled oscillators and interfering electron waves in a quasi-one-dimensional narrow constriction with a quantum dot. Our approach provides a novel insight into Fano resonance physics and provides a helpful view in teaching Fano resonances
Principal bundles the classical case
Sontz, Stephen Bruce
2015-01-01
This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.
Research on Network Digital Game with the Classic Cultural Transmission Mechanism%网络数字游戏与经典文化传播机制研究
Institute of Scientific and Technical Information of China (English)
徐谨力
2014-01-01
Impact of network digital games on people becomes increasingly apparent, as a product of popular culture, both the property itself and dissemination of cultural heritage. This article from the network digital game in the dissemination of culture should adhere to the authenticity of the epidemic, entertainment and other principles, the classical cultural heritage in order to better play the role of educational enlightenment games, online digital games should select the game from the cultural background visual design elements, language composition, the game is set trigger settings and virtual identities five aspects, in order to complete the subtle spread of classical culture.%网络数字游戏对人们的影响日益显现，其作为大众文化的产物，本身也兼具文化传承与传播的属性。本文从网络数字游戏在传播文化中应坚持的真实性、流行性、娱乐性等原则出发，为了使其更好传承经典文化，发挥游戏的教育教化作用，网络数字游戏应当从游戏背景文化的选择、视觉要素的设计、语言文字的构成、游戏触发因素的设置与虚拟身份的设定等五个方面入手，借以完成经典文化潜移默化的传播。
CLASSIC APPROACH TO BUSINESS COACHING
Żukowska, Joanna
2011-01-01
The purpose of this paper is to present business coaching in a classical way. An overview of coaching definitions will be provided. Attention will be drawn to coaching components and varieties. Moreover, a brief description of coach competences and tools supporting their work will be offered. Joanna Żukowska
Identity from classical invariant theory
International Nuclear Information System (INIS)
A simple derivation is given of a well-known relation involving the so-called Cayley Operator of classical invariant theory. The proof is induction-free and independent of Capelli's identity; it makes use only of a known-theorem in the theory of determinants and some elementary combinatorics
On classical and quantum liftings
Accardi, L.; Chruściński, Dariusz; Kossakowski, Andrzej; Matsuoka, T.; Ohya, Masanori
2011-01-01
We analyze the procedure of lifting in classical stochastic and quantum systems. It enables one to `lift' a state of a system into a state of `system+reservoir'. This procedure is important both in quantum information theory and the theory of open systems. We illustrate the general theory of liftings by a particular class related to so called circulant states.
Classical Virasoro irregular conformal block
Rim, Chaiho
2015-01-01
Virasoro irregular conformal block with arbitrary rank is obtained for the classical limit or equivalently Nekrasov-Shatashvili limit using the beta-deformed irregular matrix model (Penner-type matrix model for the irregular conformal block). The same result is derived using the generalized Mathieu equation which is equivalent to the loop equation of the irregular matrix model.
Classical Music as Enforced Utopia
Leech-Wilkinson, Daniel
2016-01-01
In classical music composition, whatever thematic or harmonic conflicts may be engineered along the way, everything always turns out for the best. Similar utopian thinking underlies performance: performers see their job as faithfully carrying out their master's (the composer's) wishes. The more perfectly they represent them, the happier the…
Quantum Proofs for Classical Theorems
Drucker, A.; Wolf,
2009-01-01
Alongside the development of quantum algorithms and quantum complexity theory in recent years, quantum techniques have also proved instrumental in obtaining results in classical (non-quantum) areas. In this paper we survey these results and the quantum toolbox they use.
Agglomeration Economies in Classical Music
DEFF Research Database (Denmark)
Borowiecki, Karol Jan
2015-01-01
This study investigates agglomeration effects for classical music production in a wide range of cities for a global sample of composers born between 1750 and 1899. Theory suggests a trade-off between agglomeration economies (peer effects) and diseconomies (peer crowding). I test this hypothesis...
Neo-classical impurity transport
International Nuclear Information System (INIS)
The neo-classical theory for impurity transport in a toroidal plasma is outlined, and the results discussed. A general account is given of the impurity behaviour and its dependence on collisionality. The underlying physics is described with special attention to the role of the poloidal rotation
On Classical and Quantum Cryptography
I. V. Volovich; Volovich, Ya. I.
2001-01-01
Lectures on classical and quantum cryptography. Contents: Private key cryptosystems. Elements of number theory. Public key cryptography and RSA cryptosystem. Shannon`s entropy and mutual information. Entropic uncertainty relations. The no cloning theorem. The BB84 quantum cryptographic protocol. Security proofs. Bell`s theorem. The EPRBE quantum cryptographic protocol.
The Quantum-Classical Transition: The Fate of the Complex Structure
Marmo, G; Simoni, A; Ventriglia, F
2005-01-01
According to Dirac, fundamental laws of Classical Mechanics should be recovered by means of an "appropriate limit" of Quantum Mechanics. In the same spirit it is reasonable to enquire about the fundamental geometric structures of Classical Mechanics which will survive the appropriate limit of Quantum Mechanics. This is the case for the symplectic structure. On the contrary, such geometric structures as the metric tensor and the complex structure, which are necessary for the formulation of the Quantum theory, may not survive the Classical limit, being not relevant in the Classical theory. Here we discuss the Classical limit of those geometric structures mainly in the Ehrenfest and Heisenberg pictures, i.e. at the level of observables rather than at the level of states. A brief discussion of the fate of the complex structure in the Quantum-Classical transition in the Schroedinger picture is also mentioned.
Chester, W
1979-01-01
When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How ever, the presentation is more sophisticated than might be considered appropri ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...
Introduction to Classical and Quantum Harmonic Oscillators
International Nuclear Information System (INIS)
As the title aptly states, this book deals with harmonic oscillators of various kinds, from classical mechanical and electrical oscillations up to quantum oscillations. It is written in a lively language, and occasional interspersed anecdotes make the reading of an otherwise mathematically oriented text quite a pleasure. Although the author claims to have written an 'elementary introduction', it is certainly necessary to have a good deal of previous knowledge in physics (mechanics, electrodynamics, quantum theory), electrical engineering and, of course, mathematics in order to follow the general line of his arguments. The book begins with a thorough treatment of classical oscillators (free, damped, forced) that is followed by an elaboration on Fourier analysis. Lagrange and Hamilton formalisms are then introduced before the problem of coupled oscillations is attacked. A chapter on statistical perspectives leads over to the final discussion of quantum oscillations. With the book comes a diskette containing a number of worksheets (Microsoft Excel) that can be used by the reader for instant visualization to get a better qualitative and quantitative understanding of the material. To the reviewer it seems difficult to pinpoint exactly the range of prospective readership of the book. It can certainly not be intended as a textbook for students, but rather as a reference book for teachers of physics or researchers, who want to look up one or other aspect of harmonic oscillations, for which purpose the diskette represents a very valuable tool. (book review)
Tools for Verifying Classical and Quantum Superintegrability
Directory of Open Access Journals (Sweden)
Ernest G. Kalnins
2010-08-01
Full Text Available Recently many new classes of integrable systems in n dimensions occurring in classical and quantum mechanics have been shown to admit a functionally independent set of 2n−1 symmetries polynomial in the canonical momenta, so that they are in fact superintegrable. These newly discovered systems are all separable in some coordinate system and, typically, they depend on one or more parameters in such a way that the system is superintegrable exactly when some of the parameters are rational numbers. Most of the constructions to date are for n=2 but cases where n>2 are multiplying rapidly. In this article we organize a large class of such systems, many new, and emphasize the underlying mechanisms which enable this phenomena to occur and to prove superintegrability. In addition to proofs of classical superintegrability we show that the 2D caged anisotropic oscillator and a Stäckel transformed version on the 2-sheet hyperboloid are quantum superintegrable for all rational relative frequencies, and that a deformed 2D Kepler-Coulomb system is quantum superintegrable for all rational values of a parameter k in the potential.
[Today's meaning of classical authors of political thinking].
Weinacht, Paul-Ludwig
2005-01-01
How can classical political authors be actualised? The question is asked in a discipline which is founded in old traditions: the political science. One of its great matters is the history of political ideas. Classic authors are treated in many books, but they are viewed in different perspectives; colleagues do not agree with shining and bad examples. For actualising classic we have to go a methodically reflected way: historic not historicistic, with sensibility for classic and christian norms without dogmatism or scepticism. Searching the permanent problems we try to translate the original concepts of the classic authors carefully in our time. For demonstrating our method of actualising, we choose the French classical author Montesquieu. His famous concept of division of powers is misunderstood as a "liberal" mechanism which works in itself in favour of freedom (such as Kant made work a "natural mechanism" in a people of devils in favour of their legality); in reality Montesquieu acknoledges that constitutional und organisational work cannot stabilise themselves but must be found in social character and in human virtues. PMID:17153317
A new type of complementarity between quantum and classical information
Oppenheim, J; Horodecki, M; Horodecki, R; Horodecki, P; Oppenheim, Jonathan; Horodecki, Karol; Horodecki, Michal Horodecki Pawel; Horodecki, Ryszard
2003-01-01
Physical systems contain information which can be divided between classical and quantum information. Classical information is locally accessible and allows one to perform tasks such as physical work, while quantum information allows one to perform tasks such as teleportation. It is shown that these two kinds of information are complementarity in the sense that two parties can either gain access to the quantum information, or to the classical information but not both. This complementarity has a form very similar to the complementarities usually encountered in quantum mechanics. For pure states, the entanglement plays the role of Planck's constant. We also find another class of complementarity relations which applies to operators, and is induced when two parties can only perform local operations and communicate classical. In order to formalize this notion we define the restricted commutator. Observables such as the parity and phase of two qubits commute, but their restricted commutator is non-zero. It is also f...
Institute of Scientific and Technical Information of China (English)
聂玉春; 王镇; 周海霞; 邓宏魁; 丁明孝
2002-01-01
@@ 猪瘟病毒(classical swine fever virus,CSFV),属黄病毒科,瘟病毒属成员,是严重危害养猪生产的主要病原体之一.CSFV是具有囊膜的正链RNA病毒.除基因组RNA外,还有衣壳蛋白C和三种囊膜蛋白E0,E1和E2组成.一般认为病毒侵染细胞是通过囊膜蛋白与细胞表面受体相互作用形成Infecosome后进入宿主细胞.然而对CSFV感染细胞的细节当不甚明了.本项研究在观察CSFV形态结构与发生过程的基础上对其侵染细胞的机理进行了初步研究.
A derivation of the Derbenev-Kondratenko formula using semi-classical electrodynamics
International Nuclear Information System (INIS)
We present a detailed exposition of the mechanism for the build-up of polarization in electron storage rings. A semi-classical approach is used to derive the rate of growth and asymptotic degree of polarization in an electron storage ring (the Derbenev-Kondratenko formula). Statistical mechanical concepts used to obtain as classical an understanding as possible of this phenomenon. (orig.)
Classical databases and knowledge organization
DEFF Research Database (Denmark)
Hjørland, Birger
2015-01-01
) in the design and use of classical databases. An underlying issue is the kind of retrieval system for which one should aim. Warner’s (2010) differentiation between the computer science traditions and an older library-oriented tradition seems important; the former aim to transform queries......This paper considers classical bibliographic databases based on the Boolean retrieval model (such as MEDLINE and PsycInfo). This model is challenged by modern search engines and information retrieval (IR) researchers, who often consider Boolean retrieval a less efficient approach. The paper...... examines this claim and argues for the continued value of Boolean systems, which suggests two further considerations: (1) the important role of human expertise in searching (expert searchers and “information literate” users) and (2) the role of library and information science and knowledge organization (KO...
Classical Concepts in Quantum Programming
Oemer, B
2002-01-01
The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control and structured programming can be used in quantum computing. The experimental language QCL will be introduced as an example, how elements like irreversible functions, local variables and conditional branching, which have no direct quantum counterparts, can be implemented, and how non-classical features like the reversibility of unitary transformation or the non-observability of quantum states can be accounted for within the framework of a procedural programming language.
Classical theory of algebraic numbers
Ribenboim, Paulo
2001-01-01
Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...
Classical Probability and Quantum Outcomes
Directory of Open Access Journals (Sweden)
James D. Malley
2014-05-01
Full Text Available There is a contact problem between classical probability and quantum outcomes. Thus, a standard result from classical probability on the existence of joint distributions ultimately implies that all quantum observables must commute. An essential task here is a closer identification of this conflict based on deriving commutativity from the weakest possible assumptions, and showing that stronger assumptions in some of the existing no-go proofs are unnecessary. An example of an unnecessary assumption in such proofs is an entangled system involving nonlocal observables. Another example involves the Kochen-Specker hidden variable model, features of which are also not needed to derive commutativity. A diagram is provided by which user-selected projectors can be easily assembled into many new, graphical no-go proofs.
Semi-classical signal analysis
Laleg-Kirati, Taous-Meriem; Sorine, Michel
2010-01-01
This study introduces a new signal analysis method called SCSA, based on a semi-classical approach. The main idea in the SCSA is to interpret a pulse-shaped signal as a potential of a Schr\\"odinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms.
Classic ballet dancers postural patterns
Joseani Paulini Neves Simas; Sebastião Iberes Lopes Melo
2008-01-01
The aim of this study was to evaluate classic ballet practice and its influence on postural patterns and (a) identify the most frequent postural changes; (b) determine the postural pattern; (c) verify the existence of association of practice time and postural changes. The investigation was carried out in two stages: one, description in which 106 dancers participated; the other, causal comparative in which 50 dancers participated; and (a) questionnaire; (b) a checkerboard; (c) postural chart; ...
Classical Concepts in Quantum Programming
Oemer, Bernhard
2002-01-01
The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control and structured programming can be used in quantum comput...
Semi-classical signal analysis
Laleg-Kirati, Taous-Meriem
2012-09-30
This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.
Gauge Invariance in Classical Electrodynamics
Engelhardt, W
2005-01-01
The concept of gauge invariance in classical electrodynamics assumes tacitly that Maxwell's equations have unique solutions. By calculating the electromagnetic field of a moving particle both in Lorenz and in Coulomb gauge and directly from the field equations we obtain, however, contradicting solutions. We conclude that the tacit assumption of uniqueness is not justified. The reason for this failure is traced back to the inhomogeneous wave equations which connect the propagating fields and their sources at the same time.
To Foundations of Classical Electrodynamics
Bessonov, E. G.
1997-01-01
In the present work foundations of the law of the energy conservation and the introduction of particles in the classical electrodynamics are discussed. We pay attention to a logic error which takes place at an interpretation of the Poynting's theorem as the law of conservation of energy. It was shown that the laws of conservation of energy and momentum of the system of electromagnetic fields and charged particles does not follow from the equations of electrodynamics and the violation of these...
Applications of classical detonation theory
Energy Technology Data Exchange (ETDEWEB)
Davis, W.C.
1994-09-01
Classical detonation theory is the basis for almost all calculations of explosive systems. One common type of calculation is of the detailed behavior of inert parts driven by explosive, predicting pressures, velocities, positions, densities, energies, etc as functions of time. Another common application of the theory is predicting the detonation state and expansion isentrope of a new explosive or mixtures, perhaps an explosive that has not yet been made. Both types of calculations are discussed.
Rindler particles and classical radiation
International Nuclear Information System (INIS)
We describe the quantum and classical radiation emitted by a uniformly accelerating point source in terms of the elementary processes of absorption and emission of Rindler scalar photons of the Fulling-Davies-Unruh bath observed by a co-accelerating observer. To this end we compute the rate at which a DeWitt detector emits a Minkowski scalar particle with defined transverse momentum per unit of proper time of the source and we show that it corresponds to the induced absorption or spontaneous and induced emission of Rindler particles from the thermal bath. We then take what could be called the inert limit of the DeWitt detector by considering the limit of no energy gap. As suggested by DeWitt, we identify, in this limit, the detector with a classical point source and verify the consistency of our computation with the classical result. Finally, we study the behaviour of the emission rate in D spacetime dimensions in connection with the so-called apparent statistics inversion
Rindler Photons and Classical Radiation
Díaz, D E
2001-01-01
We describe the quantum and classical radiation by a uniformly accelerating point source in terms of the elementary processes of absorption and emission of Rindler scalar photons of the Fulling-Davies-Unruh bath observed by a co-accelerating observer.To this end we compute the emission rate by a DeWitt detector of a Minkowski scalar field particle with defined transverse momentum per unit of proper time of the source and we show that it corresponds to the induced absorption or spontaneous and induced emission of Rindler photons from the thermal bath. We then take what could be called the inert limit of the DeWitt detector by considering the limit of zero gap energy. As suggested by DeWitt, we identify in this limit the detector with a classical point source and verify the consistency of our computation with the classical result. Finally, we study the behavior of the emission rate in D space-time dimensions in connection with the so called apparent statistics inversion.
Quantum to Classical Randomness Extractors
Berta, Mario; Wehner, Stephanie
2011-01-01
Even though randomness is an essential resource for many information processing tasks, it is not easily found in nature. The goal of randomness extraction is to distill (almost) perfect randomness from a weak source of randomness. When the source yields a classical string X, many extractor constructions are known. Yet, when considering a physical randomness source, X is itself ultimately the result of a measurement on an underlying quantum system. When characterizing the power of a source to supply randomness it is hence a natural question to ask, how much classical randomness we can extract from a quantum state. To tackle this question we here take on the study of quantum-to-classical randomness extractors (QC-extractors). We provide constructions of QC-extractors based on measurements in a full set of mutually unbiased bases (MUBs), and certain single qubit measurements. As the first application, we show that any QC-extractor gives rise to entropic uncertainty relations with respect to quantum side informat...
Controlling the sense of molecular rotation: classical vs quantum analysis
Khodorkovsky, Yuri; Hasegawa, Hirokazu; Ohshima, Yasuhiro; Averbukh, Ilya Sh
2010-01-01
Recently, it was predicted theoretically and verified experimentally that a pair of delayed and cross-polarized short laser pulses can create molecular ensembles with a well defined sense of rotation (clockwise or counterclockwise). Here we provide a comparative study of the classical and quantum aspects of the underlying mechanism for linear molecules and for symmetric tops, like benzene molecules, that were used for the first experimental demonstration of the effect. Very good quantitative agreement is found between the classical description of the process and the rigorous quantum mechanical analysis at the relevant experimental conditions. Both approaches predict the same optimal values for the delay between pulses and the angle between them, and deliver the same magnitude of the induced oriented angular momentum of the molecular ensemble. As expected, quantum and classical analysis substantially deviate when the delay between pulses is comparable with the period of quantum rotational revivals. However, ti...
Decoherence and the quantum-to-classical transition
Schlosshauer, Maximilian
2007-01-01
The ultimate introduction, textbook, and reference on decoherence and the quantum-to-classical transition. This detailed but accessible text describes the concepts, formalism, interpretation, and experimental observation of decoherence and explains how decoherence is responsible for the emergence, from the realm of quantum mechanics, of the classical world of our experience. Topics include: • Foundational problems at the quantum–classical border; • The role of the environment and entanglement; • Environment-induced loss of coherence and superselection; • Scattering-induced decoherence and spatial localization; • Master equations; • Decoherence models; • Experimental realization of "Schrödinger kittens" and their decoherence; • Quantum computing, quantum error correction, and decoherence-free subspaces; • Implications of decoherence for interpretations of quantum mechanics and for the "measurement problem"; • Decoherence in the brain. Written in a lucid and concise style that is accessib...
Breakdown of the classical description of a local system
DEFF Research Database (Denmark)
Eran, Kot; Grønbech-Jensen, Niels; Nielsen, Bo Melholt; Neergaard-Nielsen, Jonas Schou; Polzik, Eugene Simon; Sørensen, Anders Søndberg
2012-01-01
We provide a straightforward demonstration of a fundamental difference between classical and quantum mechanics for a single local system: namely, the absence of a joint probability distribution of the position x and momentum p. Elaborating on a recently reported criterion by Bednorz and Belzig...... breakdown of a classical description of the underlying state. Most importantly, the criterion used does not rely on quantum mechanics and can thus be used to demonstrate nonclassicality of systems not immediately apparent to exhibit quantum behavior. The criterion is directly applicable to any system...... [ Phys. Rev. A 83 052113 (2011)] we derive a simple criterion that must be fulfilled for any joint probability distribution in classical physics. We demonstrate the violation of this criterion using the homodyne measurement of a single photon state, thus proving a straightforward signature of the...
Ensembles on configuration space classical, quantum, and beyond
Hall, Michael J W
2016-01-01
This book describes a promising approach to problems in the foundations of quantum mechanics, including the measurement problem. The dynamics of ensembles on configuration space is shown here to be a valuable tool for unifying the formalisms of classical and quantum mechanics, for deriving and extending the latter in various ways, and for addressing the quantum measurement problem. A description of physical systems by means of ensembles on configuration space can be introduced at a very fundamental level: the basic building blocks are a configuration space, probabilities, and Hamiltonian equations of motion for the probabilities. The formalism can describe both classical and quantum systems, and their thermodynamics, with the main difference being the choice of ensemble Hamiltonian. Furthermore, there is a natural way of introducing ensemble Hamiltonians that describe the evolution of hybrid systems; i.e., interacting systems that have distinct classical and quantum sectors, allowing for consistent descriptio...
The Relation between Classical and Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Mario Bacelar Valente
2011-01-01
Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.
Casimir effect: The classical limit
International Nuclear Information System (INIS)
We analyze the high temperature (or classical) limit of the Casimir effect. A useful quantity which arises naturally in our discussion is the 'relative Casimir energy', which we define for a configuration of disjoint conducting boundaries of arbitrary shapes, as the difference of Casimir energies between the given configuration and a configuration with the same boundaries infinitely far apart. Using path integration techniques, we show that the relative Casimir energy vanishes exponentially fast in temperature. This is consistent with a simple physical argument based on Kirchhoff's law. As a result the 'relative Casimir entropy', which we define in an obviously analogous manner, tends, in the classical limit, to a finite asymptotic value which depends only on the geometry of the boundaries. Thus the Casimir force between disjoint pieces of the boundary, in the classical limit, is entropy driven and is governed by a dimensionless number characterizing the geometry of the cavity. Contributions to the Casimir thermodynamical quantities due to each individual connected component of the boundary exhibit logarithmic deviations in temperature from the behavior just described. These logarithmic deviations seem to arise due to our difficulty to separate the Casimir energy (and the other thermodynamical quantities) from the 'electromagnetic' self-energy of each of the connected components of the boundary in a well defined manner. Our approach to the Casimir effect is not to impose sharp boundary conditions on the fluctuating field, but rather take into consideration its interaction with the plasma of 'charge carriers' in the boundary, with the plasma frequency playing the role of a physical UV cutoff. This also allows us to analyze deviations from a perfect conductor behavior
Classical and quantum chaotic scattering in a muffin tin potential
International Nuclear Information System (INIS)
In this paper, we study the classical mechanics, the quantum mechanics and the semi-classical approximation of the 2-dimensional scattering from a muffin tin potential. The classical dynamical system for Coulombic muffin tins is proven to be chaotic by explicit construction of the exponentially increasing number of periodic orbits. These are all shown to be completely unstable (hyperbolic). By methods of the thermodynamic formalism we can determine the Hausdorff dimension, escape rate and Kolmogorov-Sinai-entropy of the system. An extended KKR-method is developed to determine the quantum mechanical S-matrix. We compare a few integrable scattering examples with the results of the muffin tin scattering. Characteristic features of the spectrum of eigenphases turn out to be the level repulsion and long range rigidity as compared to a completely random spectrum. In the semiclassical analysis we can rederive the regularized Gutzwiller trace formula directly from the exact KKR-determinant to prove that no further terms contribute in the case of the muffin tin potential. The periodic orbit sum allows to draw some qualitative conclusions about the effects of classical chaos on the quantum mechanics. In the context of scaling systems the theory of almost periodic functions is discussed as a possible mathematical foundation for the semiclassical periodic orbit sums. Some results that can be obtained from this analysis are developed in the context of autocorrelation functions and distribution functions for chaotic scattering systems. (orig.)
Classical Hodgkin lymphoma : population based studies on HLA and EBV
Diepstra, Arjan
2007-01-01
Classical HL is a hematological malignancy in which immunological interactions are crucially involved. The neoplastic HRS cells use a variety of strategies to evade immune reactions, but also shape the immune response to their own benefit. Antigen presentation may be involved in both of these mechan
Superadditivity of classical capacity revisited
Energy Technology Data Exchange (ETDEWEB)
Pilyavets, Oleg V.; Karpov, Evgueni A.; Schäfer, Joachim [QuIC, Ecole Polytechnique, Université Libre de Bruxelles, CP 165, 1050 Brussels (Belgium)
2014-12-04
We introduce new type of superadditivity for classical capacity of quantum channels, which involves the properties of channels’ environment. By imposing different restrictions on the total energy contained in channels’ environment we can consider different types of superadditivity. Using lossy bosonic and additive noise quantum channels as examples, we demonstrate that their capacities can be either additive or superadditive depending on the values of channels parameters. The parameters corresponding to transition between the additive and superadditive cases are related with recently found critical and supercritical parameters for Gaussian channels.
Lectures on classical differential geometry
Struik, Dirk J
1988-01-01
Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student.Writ
Solar Activity and Classical Physics
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This review of solar physics emphasizes several of the more conspicuous scientific puzzles posed by contemporary observational knowledge of the magnetic activity of the Sun. The puzzles emphasize how much classical physics we have yet to learn from the Sun. The physics of solar activity is based on the principles of Newton, Maxwell, Lorentz, Boltzmann, et. al., along with the principles of radiative transfer. In the large, these principles are expressed by magnetohydrodynamics. A brief derivation of the magnetohydrodynamic induction and momentum equations is provided, with a discussion of popular misconceptions.
Directory of Open Access Journals (Sweden)
Hernán D Toro-Zapata
2010-12-01
Full Text Available Se modela la dinámica de transmisión del dengue clásico en una región endémica considerando el uso de medidas preventivas y de control mecánico en la reducción de la transmisión de la enfermedad. Se plantea un sistema de ecuaciones diferenciales ordinarias que describe la dinámica y mediante simulación numérica se determina su evolución en el tiempo. Se comparan diferentes estrategias de control mecánico y profilaxis con la situación sin control. Se determina el número básico de reproducción R0, mostrando que si R0 > 1 hay un alto riesgo de epidemia y que en caso contrario la enfermedad se mantiene en niveles de bajo impacto; estos resultados se contratan con los obtenidos numéricamente. Se concluye que si bien la profilaxis y el control mecánico por si solos brindan resultados efectivos en el control de la enfermedad, cuando se combinan ambos controles los niveles de infección se ven reducidos significativamente. Niveles de control mecánico y profilaxis cercanos al 60 % son los que brindan resultados adecuados en el control del brote de dengue.Dengue fever transmission dynamics were studied in an endemic region considering the use of preventative measures and mechanical control in reducing transmission of the disease. A system of ordinary differential equations was proposed, describing the dynamics and their evolution as determined by numerical simulation. Different mechanical control and prophylaxis strategies were compared to the situation without control. The basic reproduction number R0 was determined R0 to show that if R0 > 1 there would be a risk of an epidemic and otherwise the disease would have low impact levels. The basic reproduction number helps determine the dynamics' future pattern and contrast the results so obtained with those obtained numerically. It was concluded that although prophylaxis and mechanical control alone provide effective results in controlling the disease, if both controls are combined then
Determinantal correlations for classical projection processes
Forrester, Peter J.; Nagao, Taro
2011-08-01
Recent applications in queuing theory and statistical mechanics have isolated the process formed by the eigenvalues of successive sub-matrices of the GUE. Analogous eigenvalue processes, formed in general from the eigenvalues of nested sequences of matrices resulting from random corank-1 projections of classical random matrix ensembles, are identified for the LUE and JUE. The correlations for all these processes can be computed in a unified way. The resulting expressions can then be analyzed in various scaling limits. At the soft edge, with the rank of the sub-matrices differing by an amount proportional to N2/3, the scaled correlations coincide with those known from the soft edge scaling of the Dyson Brownian motion model.
The revision of classical stock model
Institute of Scientific and Technical Information of China (English)
YE Bai-qing; WANG Hong-li
2001-01-01
On the basis of the analysis of classical stock model, according to th e limitation of the model, the article puts forward the revision of classical mo del and enforces the applicability of the stock model.
Pseudoclassical fermionic model and classical solutions
International Nuclear Information System (INIS)
We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)
Classical Electron Theory and Conservation Laws
Kiessling, Michael K. -H.
1999-01-01
It is shown that the traditional conservation laws for total charge, energy, linear and angular momentum, hold jointly in classical electron theory if and only if classical electron spin is included as dynamical degree of freedom.
The revision of classical stock model
Institute of Scientific and Technical Information of China (English)
叶柏青; 王洪利
2001-01-01
On the basis of the analysis of classical stock model, according to the limitation of the model, the article puts forward the revision of classical model and enforces the applicability of the stock model.
Lagrangian formalism and retarded classical electrodynamics
Jan, Xavier; Llosa, Josep; Molina, Alfred
1989-01-01
Unlike the 1/c2 approximation, where classical electrodynamics is described by the Darwin Lagrangian, here there is no Lagrangian to describe retarded (resp., advanced) classical electrodynamics up to 1/c3 for two-point charges with different masses.
Technics of classical and digital photography comparsion
Kvapilová, Kamila
2012-01-01
This bachelor work is aimed at basic principles of taking photos by classical and digital camera. Describes methods for achieving of required photos by digital way and also classical taking photos on cine-film. Compares the technology of classical and digital photography from the beginning, which is getting the camera and accessories. It also describes the construction and control of the camera. Processing of photo compares the quality of digital and classic photo.
Markkinointiviestintäsuunnitelma : Classic Coffee Oy
Eerola, Laura
2015-01-01
Opinnäytetyön aiheena oli laatia markkinointiviestintäsuunnitelma kalenterivuodelle 2016 vuosikellon muodossa, toimintansa jo vakiinnuttaneelle Classic Coffee Oy:lle. Classic Coffee Oy on vuonna 2011 perustettu, Tampereella toimiva kahvila-alan yritys joka tarjoaa lounaskahvilatoiminnan lisäksi laadukkaita konditoria-palveluita, yritys- ja kokoustarjoiluja sekä tilavuokrausta. Classic Coffee Oy:llä on yksi kahvila, Classic Coffee Tampella. Kahvila sijaitsee Tampellassa, Tampereen keskustan vä...
The new-classical contribution to macroeconomics
D. LAIDLER
2013-01-01
This work is devoted to assessing New-Classical ideas, and to asking what of lasting importance this school of macroeconomics has contributed since the early 1970s. It deals in turn with the relationship between New-Classical Economics and Monetarism, the relative explanatory power of these two bodies of doctrine over empirical evidence, and the claims of New-Classical Economics to embody a superior analytic method. The author argues that, although the particular ways in which New-Classical M...
Physiological characteristics of classical ballet.
Schantz, P G; Astrand, P O
1984-10-01
The aerobic and anaerobic energy yield during professional training sessions ("classes") of classical ballet as well as during rehearsed and performed ballets has been studied by means of oxygen uptake, heart rate, and blood lactate concentration determinations on professional ballet dancers from the Royal Swedish Ballet in Stockholm. The measured oxygen uptake during six different normal classes at the theatre averaged about 35-45% of the maximal oxygen uptake, and the blood lactate concentration averaged 3 mM (N = 6). During 10 different solo parts of choreographed dance (median length = 1.8 min) representative for moderately to very strenuous dance, an average oxygen uptake (measured during the last minute) of 80% of maximum and blood lactate concentration of 10 mM was measured (N = 10). In addition, heart rate registrations from soloists in different ballets during performance and final rehearsals frequently indicated a high oxygen uptake relative to maximum and an average blood lactate concentration of 11 mM (N = 5). Maximal oxygen uptake, determined in 1971 (N = 11) and 1983 (N = 13) in two different groups of dancers, amounted to on the average 51 and 56 ml X min-1 X kg-1 for the females and males, respectively. In conclusion, classical ballet is a predominantly intermittent type of exercise. In choreographed dance each exercise period usually lasts only a few minutes, but can be very demanding energetically, while during the dancers' basic training sessions, the energy yield is low. PMID:6513765
Entanglement-Enhanced Classical Communication
Herrera-Martí, David A
2008-01-01
This thesis will be focused on the classical capacity of quantum channels, one of the first areas treated by quantum information theorists. The problem is fairly solved since some years. Nevertheless, this work will give me a reason to introduce a consistent formalism of the quantum theory, as well as to review fundamental facts about quantum non-locality and how it can be used to enhance communication. Moreover, this reflects my dwelling in the spirit of classical information theory, and it is intended to be a starting point towards a thorough study of how quantum technologies can help to shape the future of telecommunications. Whenever it was possible, heuristic reasonings were introduced instead of rigorous mathematical proofs. This finds an explanation in that I am a self-taught neophyte in the field, and just about every time I came across a new concept, physical arguments were always more compelling to me than just maths. The technical content of the thesis is twofold. On one hand, a quadratic classific...
Diminuendo: Classical Music and the Academy
Asia, Daniel
2010-01-01
How is the tradition of Western classical music faring on university campuses? Before answering this question, it is necessary to understand what has transpired with classical music in the wider culture, as the relationship between the two is so strong. In this article, the author discusses how classical music has taken a big cultural hit in…
Recurrence in Quantum Mechanics
Duvenhage, Rocco
2002-01-01
We first compare the mathematical structure of quantum and classical mechanics when both are formulated in a C*-algebraic framework. By using finite von Neumann algebras, a quantum mechanical analogue of Liouville's theorem is then proposed. We proceed to study Poincare recurrence in C*-algebras by mimicking the measure theoretic setting. The results are interpreted as recurrence in quantum mechanics, similar to Poincare recurrence in classical mechanics.
Classical dynamics of triatomic system: energized harmonic molecules
International Nuclear Information System (INIS)
The dynamical assumptions underlying the Slater and RRK classical-mechanical theories of unimolecular reaction rates are investigated. The predictions of these theories for several nonlinear, triatomic, harmonically-bonded molecular models are compared with the results obtained from the integration of the classical equations of motion. The accuracy of the small-vibration and weak-coupling assumptions are found to break down at energies above about one quarter of a bond dissociation energy. Nonetheless, the small-vibration approximation predicts reaction frequencies in good agreement with the exact results for the models. The effects of rotation on intramolecular energy exchange are examined and found to be significant
Classicality of the order parameter during a phase transition
Lombardo, F C; Monteoliva, D; Lombardo, Fernando C.; Mazzitelli, Francisco D.; Monteoliva, Diana
2000-01-01
We analize the quantum to classical transition of the order parameter insecond order phase transitions. We consider several toy models in nonrelativistic quantum mechanics. We study the dynamical evolution of a wavepacket initially peaked around a local maximum of the potential usingvariational approximations and also exact numerical results. The influence ofthe environment on the evolution of the density matrix and the Wigner functionis analized in great detail. We also discuss the relevance of our results tothe analysis of phase transitions in field theory. In particular, we argue thatprevious results about classicality of the order parameter in O(N) models maybe consequences of the large $N$ approximation.
Directory of Open Access Journals (Sweden)
Marta A. F. O. Britto
2004-12-01
Full Text Available In the present work, we analyzed the accuracy of distinct theoretical methods to reproduce the solid state structures of cyclodextrins. The a, b and g-cyclodextrins (CD were considered and also their hydrates with included water molecules: a-CD.2H2O, b-CD.10H2O and g-CD.12H2O. The geometries were fully optimized using Molecular Mechanics (MM2, semiempirical (AM1 and PM3 and ab initio (HF/3-21G methods and quantitatively compared with experimental data from X ray diffraction. The results obtained from the classical MM2 method were in best agreement with the experiment. The semiempirical and ab initio structures were also in satisfactory accordance with the experimental data. In general, the PM3 method was found to be more suitable than the AM1 to describe the CD geometries, mainly when the intramolecular hydrogen bonds are considered.
International Nuclear Information System (INIS)
This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics
International Nuclear Information System (INIS)
Quantum mechanical calculations are reported for probabilities and partial cross sections for the reaction H + p-H2 (ν = 0, j = 0.2, Erel = 1.1 eV, J = 0-4) → o-H2 (ν' = 0, 1) + H, where ν, j, and ν' are initial vibrational, initial rotational, and final vibrational quantum numbers, respectively, erel is the initial relative translations energy, and J is the conserved total angular momentum quantum number. The calculations involve three arrangements and 468-780 coupled channels, and they are converged to 0.1-1%. The corresponding quantities are also calculated by the quasiclassical trajectory method, and comparing these results provides a detailed test of the trajectory method. For most final states, the trajectory results agree with the quantal ones within a factor of 1.5 to 2, and the trajectory value for the (ν' = 1)/(ν' = 0) branching ratio is too high by a factor of 1.6. The authors also report trajectory results that are converged with respect to increasing J, and the converged value of the branching ratio is found to be 2.5 times larger than experiment. 49 refs., 5 figs., 9 tabs
Quantum healing of classical singularities in power-law spacetimes
Energy Technology Data Exchange (ETDEWEB)
Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)
2007-07-07
We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.
Quantum Spectra and Classical Orbits in Two-Dimensional Equilateral Triangular Billiards
Institute of Scientific and Technical Information of China (English)
LIN Sheng-Lu; GAO Feng; HONG Zheng-Pin; DU Meng-Li
2005-01-01
@@ We study the correspondence between quantum spectra and classical orbits in the equilateral triangular billiards. The eigenstates of such systems are not separable functions of two variables even though the problem is exactlysolvable. We calculate the Fourier transform of a quantum spectral function and find that the positions of thepeaks match well with the lengths of the classical orbits. This is another example showing that the quantum spectral function provides a bridge between quantum and classical mechanics.
Classical electromagnetism in a nutshell
Garg, Anupam
2012-01-01
This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.
Scientific Realism and Classical Physics
Singh, Virendra
2008-01-01
We recount the successful long career of classical physics, from Newton to Einstein, which was based on the philosophy of scientific realism. Special emphasis is given to the changing status and number of ontological entitities and arguments for their necessity at any time. Newton, initially, began with (i) point particles, (ii) aether, (iii) absolute space and (iv) absolute time. The electromagnetic theory of Maxwell and Faraday introduced `fields' as a new ontological entity not reducible to earlier ones. Their work also unified electricity, magnetism and optics. Repeated failure to observe the motion of earth through aether led Einstein to modify the Newtonian absolute space and time concepts to a fused Minkowski space-time and the removal of aether from basic ontological entities in his special theory of relativity. Later Einstein in his attempts to give a local theory of gravitation was led to further modify flat Minkowski space-time to the curved Riemannian space time. This reduced gravitational phenome...
Hydrogen: Beyond the Classic Approximation
International Nuclear Information System (INIS)
The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position
Classic ballet dancers postural patterns
Directory of Open Access Journals (Sweden)
Joseani Paulini Neves Simas
2008-06-01
Full Text Available The aim of this study was to evaluate classic ballet practice and its influence on postural patterns and (a identify the most frequent postural changes; (b determine the postural pattern; (c verify the existence of association of practice time and postural changes. The investigation was carried out in two stages: one, description in which 106 dancers participated; the other, causal comparative in which 50 dancers participated; and (a questionnaire; (b a checkerboard; (c postural chart; (d measure tape; (e camera and (f pedoscope were used as instrument. Descriptive and inferential statistics was used for analysis. The results revealed the most frequent postural changes such as hyperlordosis, unleveled shoulders and pronated ankles. Ballet seems to have negative implications in the postural development , affecting especially the vertebral spine, trunk and feet. The practice time was not a parameter to indicate the increase in postural changes. In conclusion, ballet may be associated with postural changes and determining a characteristic postural pattern.
DOE Fundamentals Handbook: Classical Physics
International Nuclear Information System (INIS)
The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment
Casimir Effect - The Classical Limit
International Nuclear Information System (INIS)
The temperature dependence of the Casimir effect for the radiation field confined between two conducting plates is analysed; The Casimir energy is shown to decline exponentially with temperature while the Casimir entropy which is defined in the text is shown to approach a limit which depends only on the geometry of the constraining plates. The result is shown to hold, for a scalar field, for arbitrary geometry. The high temperature (T) expansion is shown to be ''robust'', i.e. it does not have any nonvanishing correction to the ''classical' result where the latter is defined by the validity of the Rayleigh - Jeans law. We show that validity of the Rayleigh - Jeans law implies the vanishing of the Casimir energy, hence the high temperature Casimir force, for a wide variety of geometries, is purely entropic
Classical Concepts in Quantum Programming
Ömer, Bernhard
2005-07-01
The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control, and structured programming can be used in quantum computing. The experimental language QCL will be introduced as an example, how elements like irreversible functions, local variables, and conditional branching, which have no direct quantum counterparts, can be implemented, and how nonclassical features like the reversibility of unitary transformation or the nonobservability of quantum states can be accounted for within the framework of a procedural programming language.
Classical Syllogisms in Logic Teaching
DEFF Research Database (Denmark)
Øhrstrøm, Peter; Sandborg-Petersen, Ulrik; Thorvaldsen, Steinar;
2013-01-01
test persons have a tendency correctly to assess valid syllogisms as such more often than correctly assessing invalid syllogisms as such. It is also investigated to what extent the students have improved their skills in practical reasoning by attending the logic courses. Finally, some open questions......This paper focuses on the challenges of introducing classical syllogisms in university courses in elementary logic and human reasoning. Using a program written in Prolog+CG, some empirical studies have been carried out involving three groups of students in Denmark; one group of philosophy students...... and two groups of students of informatics. The skills of the students in syllogistic reasoning before and after the logic courses have been studied and are discussed. The empirical observations made with the program make it possible to identify syllogisms which are found difficult by the students, and...