The evolving Planck mass in classically scale-invariant theories
Energy Technology Data Exchange (ETDEWEB)
Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)
2017-04-05
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.
The evolving Planck mass in classically scale-invariant theories
Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.
2017-04-01
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.
Local gauge invariant Lagrangeans in classical field theories
International Nuclear Information System (INIS)
Grigore, D.R.
1982-07-01
We investigate the most general local gauge invariant Lagrangean in the framework of classical field theory. We rederive esentially Utiyama's result with a slight generalization. Our proof makes clear the importance of the so called current conditions, i.e. the requirement that the Noether currents are different from zero. This condition is of importance both in the general motivation for the introduction of the Yang-Mills fields and for the actual proof. Some comments are made about the basic mathematical structure of the problem - the gauge group. (author)
Geometrical phases from global gauge invariance of nonlinear classical field theories
International Nuclear Information System (INIS)
Garrison, J.C.; Chiao, R.Y.
1988-01-01
We show that the geometrical phases recently discovered in quantum mechanics also occur naturally in the theory of any classical complex multicomponent field satisfying nonlinear equations derived from a Lagrangean with is invariant under gauge transformations of the first kind. Some examples are the paraxial wave equation for nonlinear optics, and Ginzburg-Landau equations for complex order parameters in condensed-matter physics
International Nuclear Information System (INIS)
Brandt, R.A.; Neri, F.; Zwanziger, D.
1979-01-01
We establish the Lorentz invariance of the quantum field theory of electric and magnetic charge. This is a priori implausible because the theory is the second-quantized version of a classical field theory which is inconsistent if the minimally coupled charged fields are smooth functions. For our proof we express the generating functional for the gauge-invariant Green's functions of quantum electrodynamics: with or without magnetic charge: as a path integral over the trajectories of classical charged point particles. The electric-electric and electric-magnetic interactions contribute factors exp(JDJ) and exp(JD'K), where J and K are the electric and magnetic currents of classical point particles and D is the usual photon propagator. The propagator D' involves the Dirac string but exp(JD'K) depends on it only through a topological integer linking string and classical particle trajectories. The charge quantization condition e/sub i/g/sub j/ - g/sub i/e/sub j/ = integer then suffices to make the gauge-invariant Green's functions string independent. By implication our formulation shows that if the Green's functions of quantum electrodynamics are expressed as usual as functional integrals over classical charged fields, the smooth field configurations have measure zero and all the support of the Feynman measure lies on the trajectories of classical point particles
Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory
International Nuclear Information System (INIS)
Pons, Josep M.
2011-01-01
In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. With this baggage on board, we next discuss in detail, for Poincare invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincare symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincare. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincare invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved background.
International Nuclear Information System (INIS)
Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.; McDonald, Kristian L.
2008-01-01
If scale invariance is a classical symmetry then both the Planck scale and the weak scale should emerge as quantum effects. We show that this can be realized in simple scale invariant theories with a hidden sector. The weak/Planck scale hierarchy emerges in the (technically natural) limit in which the hidden sector decouples from the ordinary sector. In this limit, finite corrections to the weak scale are consequently small, while quadratic divergences are absent by virtue of classical scale invariance, so there is no hierarchy problem
Algorithms in invariant theory
Sturmfels, Bernd
2008-01-01
J. Kung and G.-C. Rota, in their 1984 paper, write: "Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics". The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.
Pure classical SU(2) Yang-Mills theory with potentials invariant under a U(1) gauge subgroup
International Nuclear Information System (INIS)
Bacry, H.
1978-07-01
The present article is devoted to pure SU(2) classical Yang-Mills theories whose potentials are invariant under a U(1) gauge subgroup. Such potentials are shown to be associated with classical Maxwell-like fields with magnetic sources as 't Hooft's monopole is associated with the Dirac magnetic monopole. Conversely, the authors give Yang-Mills potentials corresponding to some Maxwell-like fields, in particular static magnetic fields with emphasis on those with cylindrical symmetry (including the dipole and other multipoles) and the ephemerons corresponding to an instantaneous magnetic multipole
Computational invariant theory
Derksen, Harm
2015-01-01
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be ...
The invariant theory of matrices
Concini, Corrado De
2017-01-01
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...
Hidden invariance of the free classical particle
International Nuclear Information System (INIS)
Garcia, S.
1994-01-01
A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group G is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under G leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by U(1) leads to quantum mechanics
Mass generation within conformal invariant theories
International Nuclear Information System (INIS)
Flato, M.; Guenin, M.
1981-01-01
The massless Yang-Mills theory is strongly conformally invariant and renormalizable; however, when masses are introduced the theory becomes nonrenormalizable and weakly conformally invariant. Conditions which recover strong conformal invariance are discussed in the letter. (author)
The geometric Hopf invariant and surgery theory
Crabb, Michael
2017-01-01
Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new. .
Invariant Theory (IT) & Standard Monomial Theory (SMT)
Indian Academy of Sciences (India)
2013-07-06
Jul 6, 2013 ... Why invariant theory? (continued). Now imagine algebraic calculations being made, with the two different sets of co-ordinates, about something of geometrical or physical interest concerning the configuration of points, ...
Franklin, Joel
2017-01-01
Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...
Classical solutions in lattice gauge theories
International Nuclear Information System (INIS)
Mitrjushkin, V.K.
1996-08-01
The solutions of the classical equations of motion on a periodic lattice are found which correspond to abelian single and double Dirac sheets. These solutions exist also in non-abelian theories. Possible applications of these solutions to the calculation of gauge dependent and gauge invariant observables are discussed. (orig.)
Invariant relationships deriving from classical scaling transformations
International Nuclear Information System (INIS)
Bludman, Sidney; Kennedy, Dallas C.
2011-01-01
Because scaling symmetries of the Euler-Lagrange equations are generally not variational symmetries of the action, they do not lead to conservation laws. Instead, an extension of Noether's theorem reduces the equations of motion to evolutionary laws that prove useful, even if the transformations are not symmetries of the equations of motion. In the case of scaling, symmetry leads to a scaling evolutionary law, a first-order equation in terms of scale invariants, linearly relating kinematic and dynamic degrees of freedom. This scaling evolutionary law appears in dynamical and in static systems. Applied to dynamical central-force systems, the scaling evolutionary equation leads to generalized virial laws, which linearly connect the kinetic and potential energies. Applied to barotropic hydrostatic spheres, the scaling evolutionary equation linearly connects the gravitational and internal energy densities. This implies well-known properties of polytropes, describing degenerate stars and chemically homogeneous nondegenerate stellar cores.
Groups, generators, syzygies, and orbits in invariant theory
Popov, V L
2011-01-01
The history of invariant theory spans nearly a century and a half, with roots in certain problems from number theory, algebra, and geometry appearing in the work of Gauss, Jacobi, Eisenstein, and Hermite. Although the connection between invariants and orbits was essentially discovered in the work of Aronhold and Boole, a clear understanding of this connection had not been achieved until recently, when invariant theory was in fact subsumed by a general theory of algebraic groups. Written by one of the major leaders in the field, this book provides an excellent, comprehensive exposition of invariant theory. Its point of view is unique in that it combines both modern and classical approaches to the subject. The introductory chapter sets the historical stage for the subject, helping to make the book accessible to nonspecialists.
Topological excitations in U(1) -invariant theories
International Nuclear Information System (INIS)
Savit, R.
1977-01-01
A class of U(1) -invariant theories in d dimensions is introduced on a lattice. These theories are labeled by a simplex number s, with 1 < or = s < d. The case with s = 1 is the X-Y model; and s = 2 gives compact photodynamics. An exact duality transformation is applied to show that the U(1) -invariant theory in d dimensions with simplex number s is the same as a similar theory in d dimensions but which is Z /sub infinity/-invariant and has simplex number s = d-s. This dual theory describes the topological excitations of the original theory. These excitations are of dimension s - 1
On the Galilean Non-Invariance of Classical Electromagnetism
Preti, Giovanni; de Felice, Fernando; Masiero, Luca
2009-01-01
When asked to explain the Galilean non-invariance of classical electromagnetism on the basis of pre-relativistic considerations alone, students--and sometimes their teachers too--may face an impasse. Indeed, they often argue that a pre-relativistic physicist could most obviously have provided the explanation "at a glance", on the basis of the…
Isomorph invariance of the structure and dynamics of classical crystals
DEFF Research Database (Denmark)
Albrechtsen, Dan; Olsen, Andreas Elmerdahl; Pedersen, Ulf Rørbæk
2014-01-01
This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework...
Classical tokamak transport theory
International Nuclear Information System (INIS)
Nocentini, Aldo
1982-01-01
A qualitative treatment of the classical transport theory of a magnetically confined, toroidal, axisymmetric, two-species plasma is presented. The 'weakly collisional' ('banana' and 'plateau') and 'collision dominated' ('Pfirsch-Schlueter' and 'highly collisional') regimes, as well as the Ware effect are discussed. The method used to evaluate the diffusion coffieicnts of particles and heat in the weakly collisional regime is based on stochastic argument, that requires an analysis of the characteristic collision frequencies and lengths for particles moving in a tokamak-like magnetic field. The same method is used to evaluate the Ware effect. In the collision dominated regime on the other hand, the particle and heat fluxes across the magnetic field lines are dominated by macroscopic effects so that, although it is possible to present them as diffusion (in fact, the fluxes turn out to be proportional to the density and temperature gradients), a macroscopic treatment is more appropriate. Hence, fluid equations are used to inveatigate the collision dominated regime, to which particular attention is devoted, having been shown relatively recently that it is more complicated than the usual Pfirsch-Schlueter regime. The whole analysis presented here is qualitative, aiming to point out the relevant physical mechanisms involved in the various regimes more than to develop a rigorous mathematical derivation of the diffusion coefficients, for which appropriate references are given. (author)
Dark matter and leptogenesis linked by classical scale invariance
Energy Technology Data Exchange (ETDEWEB)
Khoze, Valentin V.; Plascencia, Alexis D. [Institute for Particle Physics Phenomenology, Department of Physics, Durham University,South Road, Durham, DH1 3LE United Kingdom (United Kingdom)
2016-11-07
In this work we study a classically scale invariant extension of the Standard Model that can explain simultaneously dark matter and the baryon asymmetry in the universe. In our set-up we introduce a dark sector, namely a non-Abelian SU(2) hidden sector coupled to the SM via the Higgs portal, and a singlet sector responsible for generating Majorana masses for three right-handed sterile neutrinos. The gauge bosons of the dark sector are mass-degenerate and stable, and this makes them suitable as dark matter candidates. Our model also accounts for the matter-anti-matter asymmetry. The lepton flavour asymmetry is produced during CP-violating oscillations of the GeV-scale right-handed neutrinos, and converted to the baryon asymmetry by the electroweak sphalerons. All the characteristic scales in the model: the electro-weak, dark matter and the leptogenesis/neutrino mass scales, are generated radiatively, have a common origin and related to each other via scalar field couplings in perturbation theory.
Anomalies and modular invariance in string theory
International Nuclear Information System (INIS)
Schellekens, A.N.; Warner, N.P.
1986-01-01
All known anomaly cancellations of heterotic string theories are derived directly from one-loop modular invariance, and are shown to be related to a property of modular functions of weight 2. Using modular invariance infinite classes of anomaly free field theories are constructed in (8m+2) dimensions for any m. A generating function is obtained for the anomalies of string-related field theories in (8m+2) dimensions. (orig.)
Nonlinear Lorentz-invariant theory of gravitation
International Nuclear Information System (INIS)
Petry, W.
1976-01-01
A nonlinear Lorentz-invariant theory of gravitation and a Lorentz-invariant Hamiltonian for a particle with spin in the gravitational field are developed. The equations of motions are studied. The theory is applied to the three well known tests of General Relativity. In the special case of the red shift of spectral lines and of the deflection of light, the theory gives the same results as the General Theory of Relativity, whereas in the case of the perihelion of the Mercury, the theory gives 40,3'', in good agreement with experimental results of Dicke. (author)
Consistent classical supergravity theories
International Nuclear Information System (INIS)
Muller, M.
1989-01-01
This book offers a presentation of both conformal and Poincare supergravity. The consistent four-dimensional supergravity theories are classified. The formulae needed for further modelling are included
Quantum field theory and link invariants
International Nuclear Information System (INIS)
Cotta-Ramusino, P.; Guadagnini, E.; Mintchev, M.; Martellini, M.
1990-01-01
A skein relation for the expectation values of Wilson line operators in three-dimensional SU(N) Chern-Simons gauge theory is derived at first order in the coupling constant. We use a variational method based on the properties of the three-dimensional field theory. The relationship between the above expectation values and the known link invariants is established. (orig.)
Classical theory of algebraic numbers
Ribenboim, Paulo
2001-01-01
Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...
Natarajan, P N
2017-01-01
This book presents results about certain summability methods, such as the Abel method, the Norlund method, the Weighted mean method, the Euler method and the Natarajan method, which have not appeared in many standard books. It proves a few results on the Cauchy multiplication of certain summable series and some product theorems. It also proves a number of Steinhaus type theorems. In addition, it introduces a new definition of convergence of a double sequence and double series and proves the Silverman-Toeplitz theorem for four-dimensional infinite matrices, as well as Schur's and Steinhaus theorems for four-dimensional infinite matrices. The Norlund method, the Weighted mean method and the Natarajan method for double sequences are also discussed in the context of the new definition. Divided into six chapters, the book supplements the material already discussed in G.H.Hardy's Divergent Series. It appeals to young researchers and experienced mathematicians who wish to explore new areas in Summability Theory.
Gauge bridges in classical field theory
International Nuclear Information System (INIS)
Jakobs, S.
2009-03-01
In this thesis Poisson structures of two classical gauge field theories (Maxwell-Klein-Gordon- and Maxwell-Dirac-system) are constructed using the parametrix construction of Green's functions. Parametrices for the Maxwell-Klein-Gordon- and Maxwell-Dirac-system are constructed in Minkowski space and this construction is later generalized to curved space times for the Maxwell-Klein-Gordon-system. With these Green's functions Poisson brackets will be defined as Peierls brackets. Finally non-local, gauge invariant observables, the so-called ''gauge bridges''are constructed. Gauge bridges are the matrix elements of holonomy operators. It is shown, that these emerge from Poisson brackets of local, gauge invariant observables. (orig.)
Gauge-fields and integrated quantum-classical theory
International Nuclear Information System (INIS)
Stapp, H.P.
1986-01-01
Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs
Nonlinear classical theory of electromagnetism
International Nuclear Information System (INIS)
Pisello, D.
1977-01-01
A topological theory of electric charge is given. Einstein's criteria for the completion of classical electromagnetic theory are summarized and their relation to quantum theory and the principle of complementarity is indicated. The inhibiting effect that this principle has had on the development of physical thought is discussed. Developments in the theory of functions on nonlinear spaces provide the conceptual framework required for the completion of electromagnetism. The theory is based on an underlying field which is a continuous mapping of space-time into points on the two-sphere. (author)
Classical theory of radiating strings
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Non-abelian gauge invariant classical Lagrangian formalism for point electric and magnetic charge
International Nuclear Information System (INIS)
Brandt, R.A.; Neri, F.
1978-01-01
The classical electrodynamics of electrically charged point particles has been generalized to include non-Abelian gauge groups and to include magnetically charged point particles. In this paper these two distinct generalizations are unified into a non-Abelian gauge theory of electric and magnetic charge. Just as the electrically charged particles constitute the generalized source of the gauge fields, the magnetically charged particles constitute the generalized source of the dual fields. The resultant equations of motion are invariant to the original 'electric' non-Abelian gauge group, but, because of the absence of a corresponding 'magnetic' gauge group, there is no 'duality' symmetry between electric and magnetic quantities. However, for a class of solutions to these equations, which includes all known point electric and magnetic monopole constructions, there is shown to exist an equivalent description based on a magnetic, rather than electric, gauge group. The gauge potentials in general are singular on strings extending from the particle position to infinity, but it is shown that the observables are without string singularities, and that the theory is Lorentz invariant, provided a charge quantization condition is satisfied. This condition, deduced from a stability analysis, is necessary for the consistency of the classical non-Abelian theory, in contrast to the Abelian case, where such a condition is necessary only for the consistency of the quantum theory. It is also shown that in the classical theory the strings cannot be removed by gauge transformations, as they sometimes can be in the quantum theory. (Auth.)
On diffeomorphism invariance for lattice theories
International Nuclear Information System (INIS)
Corichi, A.; Zapata, J.
1997-01-01
We consider the role of the diffeomorphism constraint in the quantization of lattice formulations of diffeomorphism invariant theories of connections. It has been argued that in working with abstract lattices one automatically takes care of the diffeomorphism constraint in the quantum theory. We use two systems in order to show that imposing the diffeomorphism constraint is imperative to obtain a physically acceptable quantum theory. First, we consider 2+1 gravity where an exact lattice formulation is available. Next, general theories of connections for compact gauge groups are treated, where the quantum theories are known - for both the continuum and the lattice - and can be compared. (orig.)
Invariant functionals in higher-spin theory
Directory of Open Access Journals (Sweden)
M.A. Vasiliev
2017-03-01
Full Text Available A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F⁎(B(x in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space–time points of the factors of B(x, which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.
Translationally invariant self-consistent field theories
International Nuclear Information System (INIS)
Shakin, C.M.; Weiss, M.S.
1977-01-01
We present a self-consistent field theory which is translationally invariant. The equations obtained go over to the usual Hartree-Fock equations in the limit of large particle number. In addition to deriving the dynamic equations for the self-consistent amplitudes we discuss the calculation of form factors and various other observables
General relativity invariance and string field theory
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Volovich, I.V.
1987-04-01
The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs
Fundamental theories of waves and particles formulated without classical mass
Fry, J. L.; Musielak, Z. E.
2010-12-01
Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called 'wave mass', which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.
Perturbative string theory in BRST invariant formalism
International Nuclear Information System (INIS)
Di Vecchia, P.; Hornfeck, K.; Frau, M.; Lerda, A.
1988-01-01
In this talk we present a constructive and very explicit way of calculating multiloop amplitudes in string theories. The main ingredients are the BRST invariant N String Vertex and the BRST invariant twisted propagator. This approach naturally leads to the Schottky parametrization of moduli space in terms of multipliers and fixed points of the g projective transformations which characterize a Riemann surface of genus g. The complete expression (including measure) of the multiloop corrections to the N String Vertex for the bosonic string is exhibited. (orig.)
Invariant structures in gauge theories and confinement
International Nuclear Information System (INIS)
Prokhorov, L.V.; Shabanov, S.V.
1991-01-01
The problem of finding all gauge invariants is considered in connection with the problem of confinement. Polylocal gauge tensors are introduced and studied. It is shown (both in physical and pure geometrical approaches) that the path-ordered exponent is the only fundamental bilocal gauge tensor, which means that any irreducible polylocal gauge tensor is built of P-exponents and local tensors (matter fields). The simplest invariant structures in electrodynamics, chromodynamics and a theory with the gauge group SU(2) are considered separately. 23 refs.; 2 figs
International Nuclear Information System (INIS)
Boyer, T.H.
1975-01-01
The theory of classical electrodynamics with classical electromagnetic zero-point radiation is outlined here under the title random electrodynamics. The work represents a reanalysis of the bounds of validity of classical electron theory which should sharpen the understanding of the connections and distinctions between classical and quantum theories. The new theory of random electrodynamics is a classical electron theory involving Newton's equations for particle motion due to the Lorentz force, and Maxwell's equations for the electromagnetic fields with point particles as sources. However, the theory departs from the classical electron theory of Lorentz in that it adopts a new boundary condition on Maxwell's equations. It is assumed that the homogeneous boundary condition involves random classical electromagnetic radiation with a Lorentz-invariant spectrum, classical electromagnetic zero-point radiation. The implications of random electrodynamics for atomic structure, atomic spectra, and particle-interference effects are discussed on an order-of-magnitude or heuristic level. Some detailed mathematical connections and some merely heuristic connections are noted between random electrodynamics and quantum theory. (U.S.)
International Nuclear Information System (INIS)
Thierry-Mieg, J.
1985-01-01
This paper discusses the reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity
International Nuclear Information System (INIS)
Thierry-Mieg, J.
1985-01-01
The reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity
Scale invariance in chaotic time series: Classical and quantum examples
Landa, Emmanuel; Morales, Irving O.; Stránský, Pavel; Fossion, Rubén; Velázquez, Victor; López Vieyra, J. C.; Frank, Alejandro
Important aspects of chaotic behavior appear in systems of low dimension, as illustrated by the Map Module 1. It is indeed a remarkable fact that all systems tha make a transition from order to disorder display common properties, irrespective of their exacta functional form. We discuss evidence for 1/f power spectra in the chaotic time series associated in classical and quantum examples, the one-dimensional map module 1 and the spectrum of 48Ca. A Detrended Fluctuation Analysis (DFA) method is applied to investigate the scaling properties of the energy fluctuations in the spectrum of 48Ca obtained with a large realistic shell model calculation (ANTOINE code) and with a random shell model (TBRE) calculation also in the time series obtained with the map mod 1. We compare the scale invariant properties of the 48Ca nuclear spectrum sith similar analyses applied to the RMT ensambles GOE and GDE. A comparison with the corresponding power spectra is made in both cases. The possible consequences of the results are discussed.
Origin of gauge invariance in string theory
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
International Nuclear Information System (INIS)
Berube, D.; Kroeger, H.; Lafrance, R.; Marleau, L.
1991-01-01
We discuss properties of a noncompact formulation of gauge theories with fermions on a momentum (k) lattice. (a) This formulation is suitable to build in Fourier acceleration in a direct way. (b) The numerical effort to compute the action (by fast Fourier transform) goes essentially like logV with the lattice volume V. (c) For the Yang-Mills theory we find that the action conserves gauge symmetry and chiral symmetry in a weak sense: On a finite lattice the action is invariant under infinitesimal transformations with compact support. Under finite transformations these symmetries are approximately conserved and they are restored on an infinite lattice and in the continuum limit. Moreover, these symmetries also hold on a finite lattice under finite transformations, if the classical fields, instead of being c-number valued, take values from a finite Galois field. (d) There is no fermion doubling. (e) For the φ 4 model we investigate the transition towards the continuum limit in lattice perturbation theory up to second order. We compute the two- and four-point functions and find local and Lorentz-invariant results. (f) In QED we compute a one-loop vacuum polarization and find in the continuum limit the standard result. (g) As a numerical application, we compute the propagator left-angle φ(k)φ(k')right-angle in the φ 4 model, investigate Euclidean invariance, and extract m R as well as Z R . Moreover we compute left-angle F μν (k)F μν (k')right-angle in the SU(2) model
Note on Weyl versus conformal invariance in field theory
Energy Technology Data Exchange (ETDEWEB)
Wu, Feng [Nanchang University, Department of Physics, Nanchang (China)
2017-12-15
It was argued recently that conformal invariance in flat spacetime implies Weyl invariance in a general curved background for unitary theories and possible anomalies in the Weyl variation of scalar operators are identified. We argue that generically unitarity alone is not sufficient for a conformal field theory to be Weyl invariant. Furthermore, we show explicitly that when a unitary conformal field theory couples to gravity in a Weyl-invariant way, each primary scalar operator that is either relevant or marginal in the unitary conformal field theory corresponds to a Weyl-covariant operator in the curved background. (orig.)
Norbury, John W.
1989-01-01
The invariance of classical electromagnetism under charge-conjugation, parity, and time-reversal (CPT) is studied by considering the motion of a charged particle in electric and magnetic fields. Upon applying CPT transformations to various physical quantities and noting that the motion still behaves physically demonstrates invariance.
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
Construction of superpotentials for two-dimensional classical super systems (for N. 2) is carried ... extensively used for the case of non-linear partial differential equation by various authors. [3,4–7,12 ..... found to be integrable just by accident.
Matricial theory in classical photoelasticity
International Nuclear Information System (INIS)
Apostol, D.
1980-01-01
The matrix calculus in classical photoelasticity is used. Transfer functions for different polariscope arrangements are calculated. Linear polariscopes, circular polariscopes, double-exposure method to obtain isochromatics and Tardy and Senarmont method of measuring fractional relative retardations are analysed using coherency matrix formalism. (author)
Gauge-invariant variational methods for Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Horn, D.; Weinstein, M.
1982-01-01
This paper develops variational methods for calculating the ground-state and excited-state spectrum of Hamiltonian lattice gauge theories defined in the A 0 = 0 gauge. The scheme introduced in this paper has the advantage of allowing one to convert more familiar tools such as mean-field, Hartree-Fock, and real-space renormalization-group approximation, which are by their very nature gauge-noninvariant methods, into fully gauge-invariant techniques. We show that these methods apply in the same way to both Abelian and non-Abelian theories, and that they are at least powerful enough to describe correctly the physics of periodic quantum electrodynamics (PQED) in (2+1) and (3+1) space-time dimensions. This paper formulates the problem for both Abelian and non-Abelian theories and shows how to reduce the Rayleigh-Ritz problem to that of computing the partition function of a classical spin system. We discuss the evaluation of the effective spin problem which one derives the PQED and then discuss ways of carrying out the evaluation of the partition function for the system equivalent to a non-Abelian theory. The explicit form of the effective partition function for the non-Abelian theory is derived, but because the evaluation of this function is considerably more complicated than the one derived in the Abelian theory no explicit evaluation of this function is presented. However, by comparing the gauge-projected Hartree-Fock wave function for PQED with that of the pure SU(2) gauge theory, we are able to show that extremely interesting differences emerge between these theories even at this simple level. We close with a discussion of fermions and a discussion of how one can extend these ideas to allow the computation of the glueball and hadron spectrum
Kinetic theory in maximal-acceleration invariant phase space
International Nuclear Information System (INIS)
Brandt, H.E.
1989-01-01
A vanishing directional derivative of a scalar field along particle trajectories in maximal acceleration invariant phase space is identical in form to the ordinary covariant Vlasov equation in curved spacetime in the presence of both gravitational and nongravitational forces. A natural foundation is thereby provided for a covariant kinetic theory of particles in maximal-acceleration invariant phase space. (orig.)
Modular invariants and fusion rule automorphisms from Galois theory
International Nuclear Information System (INIS)
Fuchs, J.; Gato-Rivera, B.; Schellekens, B.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica; Schweigert, C.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1994-05-01
We show that Galois theory of cyclotomic number fields provides a powerful tool to construct systematically integer-valued matrices commuting with the modular matrix S, as well as automorphisms of the fusion rules. Both of these prescriptions allow the construction of modular invariants and offer new insight in the structure of known exceptional invariants. (orig.)
Measurement Invariance: A Foundational Principle for Quantitative Theory Building
Nimon, Kim; Reio, Thomas G., Jr.
2011-01-01
This article describes why measurement invariance is a critical issue to quantitative theory building within the field of human resource development. Readers will learn what measurement invariance is and how to test for its presence using techniques that are accessible to applied researchers. Using data from a LibQUAL+[TM] study of user…
An empirical comparison of Item Response Theory and Classical Test Theory
Directory of Open Access Journals (Sweden)
Špela Progar
2008-11-01
Full Text Available Based on nonlinear models between the measured latent variable and the item response, item response theory (IRT enables independent estimation of item and person parameters and local estimation of measurement error. These properties of IRT are also the main theoretical advantages of IRT over classical test theory (CTT. Empirical evidence, however, often failed to discover consistent differences between IRT and CTT parameters and between invariance measures of CTT and IRT parameter estimates. In this empirical study a real data set from the Third International Mathematics and Science Study (TIMSS 1995 was used to address the following questions: (1 How comparable are CTT and IRT based item and person parameters? (2 How invariant are CTT and IRT based item parameters across different participant groups? (3 How invariant are CTT and IRT based item and person parameters across different item sets? The findings indicate that the CTT and the IRT item/person parameters are very comparable, that the CTT and the IRT item parameters show similar invariance property when estimated across different groups of participants, that the IRT person parameters are more invariant across different item sets, and that the CTT item parameters are at least as much invariant in different item sets as the IRT item parameters. The results furthermore demonstrate that, with regards to the invariance property, IRT item/person parameters are in general empirically superior to CTT parameters, but only if the appropriate IRT model is used for modelling the data.
Classical theory of electric and magnetic fields
Good, Roland H
1971-01-01
Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma
Knot invariants and higher representation theory
Webster, Ben
2018-01-01
The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for \\mathfrak{sl}_2 and \\mathfrak{sl}_3 and by Mazorchuk-Stroppel and Sussan for \\mathfrak{sl}_n. The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is \\mathfrak{sl}_n, the author shows that these categories agree with certain subcategories of parabolic category \\mathcal{O} for \\mathfrak{gl}_k.
A Classical Introduction to Galois Theory
Newman, Stephen C
2012-01-01
This book provides an introduction to Galois theory and focuses on one central theme - the solvability of polynomials by radicals. Both classical and modern approaches to the subject are described in turn in order to have the former (which is relatively concrete and computational) provide motivation for the latter (which can be quite abstract). The theme of the book is historically the reason that Galois theory was created, and it continues to provide a platform for exploring both classical and modern concepts. This book examines a number of problems arising in the area of classical mathematic
A quantization scheme for scale-invariant pure gauge theories
International Nuclear Information System (INIS)
Hortacsu, M.
1988-01-01
A scheme is suggested for the quantization of the recently proposed scale-invariant gauge theories in higher dimensions. The model is minimally coupled to a spinor field. Regularization algorithms are proposed. (orig.)
Z3 - invariant effective theory of deconfining phase transition
International Nuclear Information System (INIS)
So, Hiroto
1986-01-01
A Z 3 -invariant scalar model is proposed as an effective theory of deconfining phase transition of QCD. Coupling constants in the potential are determined by Monte Carlo methods. The structure of renormalization trajectories for coupling constants is investigated. (author)
Conformal invariant quantum field theory and composite field operators
International Nuclear Information System (INIS)
Kurak, V.
1976-01-01
The present status of conformal invariance in quantum field theory is reviewed from a non group theoretical point of view. Composite field operators dimensions are computed in some simple models and related to conformal symmetry
Generalizability Theory and Classical Test Theory
Brennan, Robert L.
2011-01-01
Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over…
Classical and non-classical effective medium theories: New perspectives
Energy Technology Data Exchange (ETDEWEB)
Tsukerman, Igor, E-mail: igor@uakron.edu
2017-05-18
Highlights: • Advanced non-asymptotic and nonlocal homogenization theories of metamaterials, valid in electrostatics and electrodynamics. • Classical theories (Clausius–Mossotti, Lorenz–Lorentz, Maxwell Garnett) fit well into the proposed framework. • Nonlocal effects can be included in the model, making order-of-magnitude accuracy improvements possible. • A challenging problem for future research is to determine what effective tensors are attainable for given constituents of a metamaterial. - Abstract: Future research in electrodynamics of periodic electromagnetic composites (metamaterials) can be expected to produce sophisticated homogenization theories valid for any composition and size of the lattice cell. The paper outlines a promising path in that direction, leading to non-asymptotic and nonlocal homogenization models, and highlights aspects of homogenization that are often overlooked: the finite size of the sample and the role of interface boundaries. Classical theories (e.g. Clausius–Mossotti, Maxwell Garnett), while originally derived from a very different set of ideas, fit well into the proposed framework. Nonlocal effects can be included in the model, making an order-of-magnitude accuracy improvements possible. One future challenge is to determine what effective parameters can or cannot be obtained for a given set of constituents of a metamaterial lattice cell, thereby delineating the possible from the impossible in metamaterial design.
Classical and non-classical effective medium theories: New perspectives
International Nuclear Information System (INIS)
Tsukerman, Igor
2017-01-01
Highlights: • Advanced non-asymptotic and nonlocal homogenization theories of metamaterials, valid in electrostatics and electrodynamics. • Classical theories (Clausius–Mossotti, Lorenz–Lorentz, Maxwell Garnett) fit well into the proposed framework. • Nonlocal effects can be included in the model, making order-of-magnitude accuracy improvements possible. • A challenging problem for future research is to determine what effective tensors are attainable for given constituents of a metamaterial. - Abstract: Future research in electrodynamics of periodic electromagnetic composites (metamaterials) can be expected to produce sophisticated homogenization theories valid for any composition and size of the lattice cell. The paper outlines a promising path in that direction, leading to non-asymptotic and nonlocal homogenization models, and highlights aspects of homogenization that are often overlooked: the finite size of the sample and the role of interface boundaries. Classical theories (e.g. Clausius–Mossotti, Maxwell Garnett), while originally derived from a very different set of ideas, fit well into the proposed framework. Nonlocal effects can be included in the model, making an order-of-magnitude accuracy improvements possible. One future challenge is to determine what effective parameters can or cannot be obtained for a given set of constituents of a metamaterial lattice cell, thereby delineating the possible from the impossible in metamaterial design.
Beam structures classical and advanced theories
Carrera, Erasmo; Petrolo, Marco
2011-01-01
Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc. Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for be
Classical diffusion: theory and simulation codes
International Nuclear Information System (INIS)
Grad, H.; Hu, P.N.
1978-03-01
A survey is given of the development of classical diffusion theory which arose from the observation of Grad and Hogan that the Pfirsch-Schluter and Neoclassical theories are very special and frequently inapplicable because they require that plasma mass flow be treated as transport rather than as a state variable of the plasma. The subsequent theory, efficient numerical algorithms, and results of various operating codes are described
Conformal invariance in quantum field theory
International Nuclear Information System (INIS)
Grensing, G.
1978-01-01
We study the transformation law of interacting fields under the universal covering group of the conformal group. It is defined with respect to the representations of the discrete series. These representations are field representations in the sense that they act on finite component fields defined over Minkowski space. The conflict with Einstein causality is avoided as in the case of free fields with canonical dimension. Furthermore, we determine the conformal invariant two-point function of arbitrary spin. Our result coincides with that obtained by Ruehl. In particular, we investigate the two-point function of symmetric and traceless tensor fields and give the explicit form of the trace terms
Lagrangian model of conformal invariant interacting quantum field theory
International Nuclear Information System (INIS)
Lukierski, J.
1976-01-01
A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3
Embedding inflation into the Standard Model — More evidence for classical scale invariance
International Nuclear Information System (INIS)
Kannike, Kristjan; Racioppi, Antonio; Raidal, Martti
2014-01-01
If cosmological inflation is due to a slowly rolling single inflation field taking trans-Planckian values as suggested by the BICEP2 measurement of primordial tensor modes in CMB, embedding inflation into the Standard Model challenges standard paradigm of effective field theories. Together with an apparent absence of Planck scale contributions to the Higgs mass and to the cosmological constant, BICEP2 provides further experimental evidence for the absence of large M_P induced operators. We show that classical scale invariance — the paradigm that all fundamental scales in Nature are induced by quantum effects — solves the problem and allows for a remarkably simple scale-free Standard Model extension with inflaton without extending the gauge group. Due to trans-Planckian inflaton values and vevs, a dynamically induced Coleman-Weinberg-type inflaton potential of the model can predict tensor-to-scalar ratio r in a large range, converging around the prediction of chaotic m"2ϕ"2 inflation for a large trans-Planckian value of the inflaton vev. Precise determination of r in future experiments will single out a unique scale-free inflation potential, allowing to test the proposed field-theoretic framework.
Another scheme for quantization of scale invariant gauge theories
International Nuclear Information System (INIS)
Hortacsu, M.
1987-10-01
A new scheme is proposed for the quantization of scale invariant gauge theories for all even dimensions when they are minimally coupled to a spinor field. A cut-off procedure suggests an algorithm which may regularize the theory. (author). 10 refs
Filtration of the classical knot concordance group and Casson-Gordon invariants
Kim, Taehee
2002-01-01
It is known that if any prime power branched cyclic cover of a knot in the 3-sphere is a homology sphere, then the knot has vanishing Casson-Gordon invariants. We construct infinitely many examples of (topologically) non-slice knots in the 3-sphere whose prime power branched cyclic covers are homology spheres. We show that these knots generate an infinite rank subgroup of F_(1.0)/F_(1.5) for which Casson-Gordon invariants vanish in Cochran-Orr-Teichner's filtration of the classical knot conco...
Lagrangian formulation of classical BMT-theory
International Nuclear Information System (INIS)
Pupasov-Maksimov, Andrey; Deriglazov, Alexei; Guzman, Walberto
2013-01-01
Full text: The most popular classical theory of electron has been formulated by Bargmann, Michel and Telegdi (BMT) in 1959. The BMT equations give classical relativistic description of a charged particle with spin and anomalous magnetic momentum moving in homogeneous electro-magnetic field. This allows to study spin dynamics of polarized beams in uniform fields. In particular, first experimental measurements of muon anomalous magnetic momentum were done using changing of helicity predicted by BMT equations. Surprisingly enough, a systematic formulation and the analysis of the BMT theory are absent in literature. In the present work we particularly fill this gap by deducing Lagrangian formulation (variational problem) for BMT equations. Various equivalent forms of Lagrangian will be discussed in details. An advantage of the obtained classical model is that the Lagrangian action describes a relativistic spinning particle without Grassmann variables, for both free and interacting cases. This implies also the possibility of canonical quantization. In the interacting case, an arbitrary electromagnetic background may be considered, which generalizes the BMT theory formulated to the case of homogeneous fields. The classical model has two local symmetries, which gives an interesting example of constrained classical dynamics. It is surprising, that the case of vanishing anomalous part of the magnetic momentum is naturally highlighted in our construction. (author)
Classical geometry from the quantum Liouville theory
Hadasz, Leszek; Jaskólski, Zbigniew; Piaţek, Marcin
2005-09-01
Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.
Classical geometry from the quantum Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl
2005-09-26
Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.
Classical geometry from the quantum Liouville theory
International Nuclear Information System (INIS)
Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin
2005-01-01
Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere
Hilbert space theory of classical electrodynamics
Indian Academy of Sciences (India)
Hilbert space; Koopman–von Neumann theory; classical electrodynamics. PACS No. 03.50. ... The paper is divided into four sections. Section 2 .... construction of Sudarshan is to be contrasted with that of Koopman and von Neumann. ..... ture from KvN and [16] in this formulation is to define new momentum and coordinate.
Classical quantum theory of wobbling modes
International Nuclear Information System (INIS)
Onishi, Naoki
1986-01-01
Wobbling modes are studied extensively in terms of time-dependent variational theory. Quantum states and their energies are determined by the Bohr-Sommerfeld rule of classical quantization. Numerical calculations are performed for states of 166 Er with vertical strokejvertical stroke=30-40 (h/2π). (orig.)
"Scars" connect classical and quantum theory
Monteiro, T
1990-01-01
Chaotic systems are unstable and extremely sensitive to initial condititions. So far, scientists have been unable to demonstrate that the same kind of behaviour exists in quantum or microscopic systems. New connections have been discovered though between classical and quantum theory. One is the phenomena of 'scars' which cut through the wave function of a particle (1 page).
The classical theory of fields electromagnetism
Helrich, Carl S
2012-01-01
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...
Embedded graph invariants in Chern-Simons theory
International Nuclear Information System (INIS)
Major, Seth A.
1999-01-01
Chern-Simons gauge theory, since its inception as a topological quantum field theory, has proved to be a rich source of understanding for knot invariants. In this work the theory is used to explore the definition of the expectation value of a network of Wilson lines -- an embedded graph invariant. Using a generalization of the variational method, lowest-order results for invariants for graphs of arbitrary valence and general vertex tangent space structure are derived. Gauge invariant operators are introduced. Higher order results are found. The method used here provides a Vassiliev-type definition of graph invariants which depend on both the embedding of the graph and the group structure of the gauge theory. It is found that one need not frame individual vertices. However, without a global projection of the graph there is an ambiguity in the relation of the decomposition of distinct vertices. It is suggested that framing may be seen as arising from this ambiguity -- as a way of relating frames at distinct vertices
Filtration of the classical knot concordance group and Casson-Gordon invariants
Kim, Taehee
2004-09-01
It is known that if every prime power branched cyclic cover of a knot in S(3) is a homology sphere, then the knot has vanishing Casson-Gordon invariants. We construct infinitely many examples of (topologically) non-slice knots in S(3) whose prime power branched cyclic covers are homology spheres. We show that these knots generate an infinite rank subgroup of scrf_{(1.0)}/scrf_{(1.5)} for which Casson-Gordon invariants vanish in Cochran-Orr-Teichner's filtration of the classical knot concordance group. As a corollary, it follows that Casson-Gordon invariants are not a complete set of obstructions to a second layer of Whitney disks.
Dualities and signatures of G++-invariant theories
International Nuclear Information System (INIS)
Buyl, Sophie de; Houart, Laurent; Tabti, Nassiba
2005-01-01
The G ++ -content of the formulation of gravity and M-theories as very-extended Kac-Moody invariant theories is further analysed. The different exotic phases of all the G ++ B -theories, which admit exact solutions describing intersecting branes smeared in all directions but one, are derived. This is achieved by analysing for all G ++ the signatures which are related to the conventional one (1,D-1) by 'dualities' generated by the Weyl reflections
Direct detection of singlet dark matter in classically scale-invariant standard model
Directory of Open Access Journals (Sweden)
Kazuhiro Endo
2015-10-01
Full Text Available Classical scale invariance is one of the possible solutions to explain the origin of the electroweak scale. The simplest extension is the classically scale-invariant standard model augmented by a multiplet of gauge singlet real scalar. In the previous study it was shown that the properties of the Higgs potential deviate substantially, which can be observed in the International Linear Collider. On the other hand, since the multiplet does not acquire vacuum expectation value, the singlet components are stable and can be dark matter. In this letter we study the detectability of the real singlet scalar bosons in the experiment of the direct detection of dark matter. It is shown that a part of this model has already been excluded and the rest of the parameter space is within the reach of the future experiment.
String theory constructions and conformal invariance
International Nuclear Information System (INIS)
Govaerts, J.
1990-01-01
This paper reports that as is rather well known, string theories are regarded nowadays by theoretical physicists as a possible framework for the Theory of Everything, or more correctly, for a consistent unified quantum theory of all particles and all their interactions, including gravity. One of the many fascinating facets of these theories is that they could make a centuries old dream come true in a most unique way. Indeed, string theories could well provide the ultimate unification of Nature: the Universe and all that it contains being made of only one fundamental object, with dynamics so rich that it leads to this infinitely large variety of physical phenomena that we observe at all energy scales in our Universe. Moreover, the mathematical structures involved in these theories are so profound and beautiful that they bring together so far unrelated fields in pure mathematics, and have led to important developments in other fields of physics as well. All of physics and all of mathematics coming together in our understanding of the world: was that not the ultimate dream of the Ancient Greeks? But, what are string theories? In the first qualitative approach of this introduction, it may be useful to contrast these theories against the more familiar description of relativistic point-particles. When a single particle propagates freely in space-time, it describes a one- dimensional manifold: its world line. In a quantum description, we associate to this process a quantum amplitude: the Feynman propagator. It is also possible to describe interactions between such particles, by defining probability amplitudes for the splitting and joining of the corresponding world-lines (a priori, the number of particles involved in any such single interaction could be arbitrary but finite)
Quantum scattering from classical field theory
International Nuclear Information System (INIS)
Gould, T.M.; Poppitz, E.R.
1995-01-01
We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies. ((orig.))
Classically scale-invariant B–L model and conformal gravity
International Nuclear Information System (INIS)
Oda, Ichiro
2013-01-01
We consider a coupling of conformal gravity to the classically scale-invariant B–L extended standard model which has been recently proposed as a phenomenologically viable model realizing the Coleman–Weinberg mechanism of breakdown of the electroweak symmetry. As in a globally scale-invariant dilaton gravity, it is also shown in a locally scale-invariant conformal gravity that without recourse to the Coleman–Weinberg mechanism, the B–L gauge symmetry is broken in the process of spontaneous symmetry breakdown of the local scale invariance (Weyl invariance) at the tree level and as a result the B–L gauge field becomes massive via the Higgs mechanism. As a bonus of conformal gravity, the massless dilaton field does not appear and the parameters in front of the non-minimal coupling of gravity are completely fixed in the present model. This observation clearly shows that the conformal gravity has a practical application even if the scalar field does not possess any dynamical degree of freedom owing to the local scale symmetry
Renormalization of a distorted gauge: invariant theory
International Nuclear Information System (INIS)
Hsu, J.P.; Underwood, J.A.
1976-02-01
A new type of renormalizable theory involving massive Yang-Mills fields whose mass is generated by an intrinsic breakdown of the usual local gauge symmetry is considered. However, the Lagrangian has a distorted gauge symmetry which leads to the Ward-Takahashi (W-T) identities. Also, the theory is independent of the gauge parameter xi. An explicit renormalization at the oneloop level is completely carried out by exhibiting counter terms, defining the physical parameters and computing all renormalization constants to check the W-T identities
In what sense the canonical perturbation theory is gauge-invariant
International Nuclear Information System (INIS)
Chen, C.Y.
1992-07-01
It is shown that the time-dependent canonical perturbation theory in classical mechanics has unsatisfactory features when dealing with electromagnetic perturbed fields (the perturbed vector potential A-tilde ≠ 0). As a numerical apparatus, the theory relates to gauge-dependent vectors larger than expected. As an analytic apparatus, the theory is involved in unphysical concepts and yields inherently non-gauge-invariant formalisms. By defining the root cause of the problem, an alternative approach is accordingly introduced. (author). 8 refs, 2 figs
Optimal search behavior and classic foraging theory
International Nuclear Information System (INIS)
Bartumeus, F; Catalan, J
2009-01-01
Random walk methods and diffusion theory pervaded ecological sciences as methods to analyze and describe animal movement. Consequently, statistical physics was mostly seen as a toolbox rather than as a conceptual framework that could contribute to theory on evolutionary biology and ecology. However, the existence of mechanistic relationships and feedbacks between behavioral processes and statistical patterns of movement suggests that, beyond movement quantification, statistical physics may prove to be an adequate framework to understand animal behavior across scales from an ecological and evolutionary perspective. Recently developed random search theory has served to critically re-evaluate classic ecological questions on animal foraging. For instance, during the last few years, there has been a growing debate on whether search behavior can include traits that improve success by optimizing random (stochastic) searches. Here, we stress the need to bring together the general encounter problem within foraging theory, as a mean for making progress in the biological understanding of random searching. By sketching the assumptions of optimal foraging theory (OFT) and by summarizing recent results on random search strategies, we pinpoint ways to extend classic OFT, and integrate the study of search strategies and its main results into the more general theory of optimal foraging.
Modular invariants for affine SU(3) theories at prime heights
International Nuclear Information System (INIS)
Ruelle, P.; Thiran, E.; Weyers, J.
1990-01-01
A proof is given for the existence of two and only two modular invariant partition functions in affine SU(3) k theories at heights n=k+3 which are prime numbers. Arithmetic properties of the ring of algabraic integers Z(ω) which is related to SU(3) weights are extensively used. (orig.)
Global operator expansions in conformally invariant relativistic quantum field theory
International Nuclear Information System (INIS)
Schoer, B.; Swieca, J.A.; Voelkel, A.H.
1974-01-01
A global conformal operator expansions in the Minkowski region in several models and their formulation in the general theory is presented. Whereas the vacuum expansions are termwise manisfestly conformal invariant, the expansions away from the vacuum do not share this property
Residual gauge invariance of Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Ryang, S.; Saito, T.; Shigemoto, K.
1984-01-01
The time-independent residual gauge invariance of Hamiltonian lattice gauge theories is considered. Eigenvalues and eigenfunctions of the unperturbed Hamiltonian are found in terms of Gegengauer's polynomials. Physical states which satisfy the subsidiary condition corresponding to Gauss' law are constructed systematically. (orig.)
Non-singular cosmologies in the conformally invariant gravitation theory
International Nuclear Information System (INIS)
Kembhavi, A.K.
1976-01-01
It is shown that in the framework of a conformally invariant gravitation theory, the singularity which is present in some anisotropic universes in general relativity is due to a wrong choice of conformal frame. Frames exist in which these models can be made singularity free. (author)
Emergence of classical theories from quantum mechanics
International Nuclear Information System (INIS)
Hájícek, P
2012-01-01
Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's 'first kind of dynamics', and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.
Special relativity and classical field theory
Susskind, Leonard
2017-01-01
Physicist Leonard Susskind and data engineer Art Friedman are back. This time, they introduce readers to Einstein's special relativity and Maxwell's classical field theory. Using their typical brand of real math, enlightening drawings, and humor, Susskind and Friedman walk us through the complexities of waves, forces, and particles by exploring special relativity and electromagnetism. It's a must-read for both devotees of the series and any armchair physicist who wants to improve their knowledge of physics' deepest truths.
Globally conformal invariant gauge field theory with rational correlation functions
Nikolov, N M; Todorov, I T; CERN. Geneva; Todorov, Ivan T.
2003-01-01
Operator product expansions (OPE) for the product of a scalar field with its conjugate are presented as infinite sums of bilocal fields $V_{\\kappa} (x_1, x_2)$ of dimension $(\\kappa, \\kappa)$. For a {\\it globally conformal invariant} (GCI) theory we write down the OPE of $V_{\\kappa}$ into a series of {\\it twist} (dimension minus rank) $2\\kappa$ symmetric traceless tensor fields with coefficients computed from the (rational) 4-point function of the scalar field. We argue that the theory of a GCI hermitian scalar field ${\\cal L} (x)$ of dimension 4 in $D = 4$ Minkowski space such that the 3-point functions of a pair of ${\\cal L}$'s and a scalar field of dimension 2 or 4 vanish can be interpreted as the theory of local observables of a conformally invariant fixed point in a gauge theory with Lagrangian density ${\\cal L} (x)$.
Chern-Simons invariants on hyperbolic manifolds and topological quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Bonora, L. [International School for Advanced Studies (SISSA/ISAS), Trieste (Italy); INFN, Sezione di Trieste (Italy); Bytsenko, A.A.; Goncalves, A.E. [Universidade Estadual de Londrina, Departamento de Fisica, Londrina-Parana (Brazil)
2016-11-15
We derive formulas for the classical Chern-Simons invariant of irreducible SU(n)-flat connections on negatively curved locally symmetric three-manifolds. We determine the condition for which the theory remains consistent (with basic physical principles). We show that a connection between holomorphic values of Selberg-type functions at point zero, associated with R-torsion of the flat bundle, and twisted Dirac operators acting on negatively curved manifolds, can be interpreted by means of the Chern-Simons invariant. On the basis of the Labastida-Marino-Ooguri-Vafa conjecture we analyze a representation of the Chern-Simons quantum partition function (as a generating series of quantum group invariants) in the form of an infinite product weighted by S-functions and Selberg-type functions. We consider the case of links and a knot and use the Rogers approach to discover certain symmetry and modular form identities. (orig.)
Baryon non-invariant couplings in Higgs effective field theory
International Nuclear Information System (INIS)
Merlo, Luca; Saa, Sara; Sacristan-Barbero, Mario
2017-01-01
The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B - L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique. (orig.)
Aspects of the quantization of theories with a gauge invariance
International Nuclear Information System (INIS)
Siopsis, G.
1987-01-01
First, we identify the Gribov problem that is encountered when the Faddeev-Popov procedure of fixing the gauge is employed to define a perturbation expansion. The author propose a modification of the procedure that takes this problem into account. We then apply this method to two-dimensional gauge theories where the exact answer is known. Second, we try to build chiral theories that are consistent in the presence of anomalies, without making use of additional degrees of freedom. We are able to solve the model exactly in two dimensions, arriving at a gauge-invariant theory. We discuss the four-dimensional case and also the application of this method to string theory. In the latter, we obtain a model that lives in arbitrary dimensions. However, we do not compute the spectrum of the model. Third, we investigate the possibility of compactifying the unwanted dimensions of superstrings on a group manifold. We give a complete list of conformally invariant models. We also discuss one-loop modular invariance. We consider both type-II and heterotic superstring theories. Fourth, we discuss quantization of string field theory. We start by presenting the lagrangian approach, to demonstrate the non-uniqueness of the measure in the path- integral. It is fixed by demanding unitarity, which manifests itself in the hamiltonian formulation, studied next
A survey on classical minimal surface theory
Meeks, William H
2012-01-01
Meeks and Pérez present a survey of recent spectacular successes in classical minimal surface theory. The classification of minimal planar domains in three-dimensional Euclidean space provides the focus of the account. The proof of the classification depends on the work of many currently active leading mathematicians, thus making contact with much of the most important results in the field. Through the telling of the story of the classification of minimal planar domains, the general mathematician may catch a glimpse of the intrinsic beauty of this theory and the authors' perspective of what is happening at this historical moment in a very classical subject. This book includes an updated tour through some of the recent advances in the theory, such as Colding-Minicozzi theory, minimal laminations, the ordering theorem for the space of ends, conformal structure of minimal surfaces, minimal annular ends with infinite total curvature, the embedded Calabi-Yau problem, local pictures on the scale of curvature and t...
Engelhard, George, Jr.
1992-01-01
A historical perspective is provided of the concept of invariance in measurement theory, describing sample-invariant item calibration and item-invariant measurement of individuals. Invariance as a key measurement concept is illustrated through the measurement theories of E. L. Thorndike, L. L. Thurstone, and G. Rasch. (SLD)
[Taxonomic theory for non-classical systematics].
Pavlinov, I Ia
2012-01-01
Outlined briefly are basic principles of construing general taxonomic theory for biological systematics considered in the context of non-classical scientific paradigm. The necessity of such kind of theory is substantiated, and some key points of its elaboration are exposed: its interpretation as a framework concept for the partial taxonomic theories in various schools of systematics; elaboration of idea of cognitive situation including three interrelated components, namely subject, object, and epistemic ones; its construing as a content-wisely interpreted quasi-axiomatics, with strong structuring of its conceptual space including demarcation between axioms and inferring rules; its construing as a "conceptual pyramid" of concepts of various levels of generality; inclusion of a basic model into definition of the taxonomic system (classification) regulating its content. Two problems are indicated as fundamental: definition of taxonomic diversity as a subject domain for the systematics as a whole; definition of onto-epistemological status of taxonomic system (classification) in general and of taxa in particular.
Classical trajectories and quantum field theory
International Nuclear Information System (INIS)
Vitiello, Giuseppe; Istituto Nazionale di Fisica Nucleare, Salerno
2005-01-01
The density matrix and the Wigner function formalism requires the doubling of the degrees of freedom in quantum mechanics (QM) and quantum field theory (QFT). The doubled degrees of freedom play the role of the thermal bath or environment degrees of freedom and are entangled with the system degrees of freedom. They also account for quantum noise in the fluctuating random forces in the system-environment coupling. The algebraic structure of QFT turns out to be the one of the deformed Hopf algebra. In such a frame, the trajectories in the space of the unitarily inequivalent representations of the canonical commutation relations turn out to be classical trajectories and, under convenient conditions, they may exhibit properties typical of classical chaotic trajectories in nonlinear dynamics. The quantum Brownian motion and the two-slit experiment in QM are discussed in connection with the doubling of the degrees of freedom. (author)
Gravitation in the 'quasi-classical' theory
International Nuclear Information System (INIS)
Wignall, J.W.G.; Zangari, M.
1990-01-01
The 'quasi-classical' picture of particles as extendend periodic disturbances in a classical nonlinear field, previously shown to imply all the equations of Maxwell electrodynamics with very little formal input, is here applied to the other known long-range force, gravitation. It is shown that the picture's absolute interpretation of inertial mass and four-potential as measures of the local spacing between equal-phase hypersurfaces, together with the empirically established proportionality of gravitational 'charge' to inertial mass, leads naturally to the gravitational red-shift formula, and it thus provides a physical basis for the spacetime curvature that is the central idea of Einstein's general theory of relativity. 16 refs., 1 fig
Introduction to classical and quantum field theory
International Nuclear Information System (INIS)
Ng, Tai-Kai
2009-01-01
This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)
Differential formalism aspects of the gauge classical theories
International Nuclear Information System (INIS)
Stedile, E.
1982-01-01
The classical aspects of the gauge theories are shown using differential geometry as fundamental tool. Somme comments are done about Maxwell Electro-dynamics, classical Yang-Mills and gravitation theories. (L.C.) [pt
Relativistic classical limit of quantum theory
International Nuclear Information System (INIS)
Shin, G.R.; Rafelski, J.
1993-01-01
We study the classical limit of the equal-time relativistic quantum transport theory. We discuss in qualitative terms the need to fold first the Wigner function with a coarse-graining function. Only then does the singularity at ℎ→0 seem to be manageable. In the limit ℎ→0, we obtain the relativistic Vlasov equations for the particle and the antiparticle sector of the Fock space. Similarly, we address the evolution equations of the spin and the magnetic-moment density
A gauge invariant theory for time dependent heat current
International Nuclear Information System (INIS)
Chen, Jian; ShangGuan, Minhui; Wang, Jian
2015-01-01
In this work, we develop a general gauge-invariant theory for AC heat current through multi-probe systems. Using the non-equilibrium Green’s function, a general expression for time-dependent electrothermal admittance is obtained where we include the internal potential due to the Coulomb interaction explicitly. We show that the gauge-invariant condition is satisfied for heat current if the self-consistent Coulomb interaction is considered. It is known that the Onsager relation holds for dynamic charge conductance. We show in this work that the Onsager relation for electrothermal admittance is violated, except for a special case of a quantum dot system with a single energy level. We apply our theory to a nano capacitor where the Coulomb interaction plays an essential role. We find that, to the first order in frequency, the heat current is related to the electrochemical capacitance as well as the phase accumulated in the scattering event. (paper)
International Nuclear Information System (INIS)
Zha Xin-Wei; Ma Gang-Long
2011-01-01
It is a recent observation that entanglement classification for qubits is closely related to stochastic local operations and classical communication (SLOCC) invariants. Verstraete et al.[Phys. Rev. A 65 (2002) 052112] showed that for pure states of four qubits there are nine different degenerate SLOCC entanglement classes. Li et al.[Phys. Rev. A 76 (2007) 052311] showed that there are at feast 28 distinct true SLOCC entanglement classes for four qubits by means of the SLOCC invariant and semi-invariant. We give 16 different entanglement classes for four qubits by means of basic SLOCC invariants. (general)
On the invariant theory of Weingarten surfaces in Euclidean space
International Nuclear Information System (INIS)
Ganchev, Georgi; Mihova, Vesselka
2010-01-01
On any Weingarten surface in Euclidean space (strongly regular or rotational), we introduce locally geometric principal parameters and prove that such a surface is determined uniquely up to a motion by a special invariant function, which satisfies a natural nonlinear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for Weingarten surfaces in Euclidean space. We apply this theory to fractional-linear Weingarten surfaces and obtain the nonlinear partial differential equations describing them.
Invariant class operators in the decoherent histories analysis of timeless quantum theories
International Nuclear Information System (INIS)
Halliwell, J. J.; Wallden, P.
2006-01-01
The decoherent histories approach to quantum theory is applied to a class of reparametrization-invariant models whose state is an energy eigenstate. A key step in this approach is the construction of class operators characterizing the questions of physical interest, such as the probability of the system entering a given region of configuration space without regard to time. In nonrelativistic quantum mechanics these class operators are given by time-ordered products of projection operators. But in reparametrization-invariant models, where there is no time, the construction of the class operators is more complicated, the main difficulty being to find operators which commute with the Hamiltonian constraint (and so respect the invariance of the theory). Here, inspired by classical considerations, we put forward a proposal for the construction of such class operators for a class of reparametrization-invariant systems. They consist of continuous infinite temporal products of Heisenberg picture projection operators. We investigate the consequences of this proposal in a number of simple models and also compare with the evolving constants method. The formalism developed here is ultimately aimed at cosmological models described by a Wheeler-DeWitt equation, but the specific features of such models are left to future papers
Flat connections in three-manifolds and classical ChernâSimons invariant
Directory of Open Access Journals (Sweden)
Enore Guadagnini
2017-12-01
Full Text Available A general method for the construction of smooth flat connections on 3-manifolds is introduced. The procedure is strictly connected with the deduction of the fundamental group of a manifold M by means of a Heegaard splitting presentation of M. For any given matrix representation of the fundamental group of M, a corresponding flat connection A on M is specified. It is shown that the associated classical ChernâSimons invariant assumes then a canonical form which is given by the sum of two contributions: the first term is determined by the intersections of the curves in the Heegaard diagram, and the second term is the volume of a region in the representation group which is determined by the representation of Ï1(M and by the Heegaard gluing homeomorphism. Examples of flat connections in topologically nontrivial manifolds are presented and the computations of the associated classical ChernâSimons invariants are illustrated.
The algebraic construction of the scale-invariant asymtotic theory
International Nuclear Information System (INIS)
Gatto, R.; Sartori, G.
1975-01-01
The procedure proposed in the preceding paper to construct the asymptotic scale-invariant theory is applied to massive free fields. The contracted fields (of the asymptotic theory) are calculated in terms of the original fields by two different procedures. The contracted charges are calculated and their general relation to the original charges is verified. The problem of defining a vacuum state for the contracted fields and charges is solved. The relation to the problem of non-equivalent representations of the commutator relations is pointed out
Path-integral invariants in abelian Chern–Simons theory
International Nuclear Information System (INIS)
Guadagnini, E.; Thuillier, F.
2014-01-01
We consider the U(1) Chern–Simons gauge theory defined in a general closed oriented 3-manifold M; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent U(1) principal bundles over M; the different sectors of configuration space are labelled by the elements of the first homology group of M and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the non-perturbative contributions to the mean values. The functional integration is carried out in any 3-manifold M, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin–Turaev surgery invariants
Knot invariants and M-theory: Proofs and derivations
Errasti Díez, Verónica
2018-01-01
We construct two distinct yet related M-theory models that provide suitable frameworks for the study of knot invariants. We then focus on the four-dimensional gauge theory that follows from appropriately compactifying one of these M-theory models. We show that this theory has indeed all required properties to host knots. Our analysis provides a unifying picture of the various recent works that attempt an understanding of knot invariants using techniques of four-dimensional physics. This is a companion paper to K. Dasgupta, V. Errasti Díez, P. Ramadevi, and R. Tatar, Phys. Rev. D 95, 026010 (2017), 10.1103/PhysRevD.95.026010, covering all but Sec. III C. It presents a detailed mathematical derivation of the main results there, as well as additional material. Among the new insights, those related to supersymmetry and the topological twist are highlighted. This paper offers an alternative, complementary formulation of the contents in the first paper, but is self-contained and can be read independently.
Classical radiation zeros in gauge-theory amplitudes
International Nuclear Information System (INIS)
Brown, R.W.; Kowalski, K.L.; Brodsky, S.J.
1983-01-01
The electromagnetic radiation from classical convection currents in relativistic n-particle collisions is shown to vanish in certain kinematical zones, due to complete destructive interference of the classical radiation patterns of the incoming and outgoing charged lines. We prove that quantum tree photon amplitudes vanish in the same zones, at arbitrary photon momenta including spin, seagull, and internal-line currents, provided only that the electromagnetic couplings and any other derivative couplings are as prescribed by renormalizable local gauge theory (spins + #betta# is thus explained and examples with more particles are discussed. Conditions for the null zones to lie in physical regions are established. A new radiation representation, with the zeros manifest and of practical utility independently of whether the null zones are in physical regions is derived for the complete single-photon amplitude in tree approximation, using a gauge-invariant vertex expansion stemming from new internal-radiation decomposition identities. The question of whether amplitudes with closed loops can vanish in null zones is addressed. The null zone and these relations are discussed in terms of the Bargmann-Michel-Telegdi equation. The extension from photons to general massless gauge bosons is carried out
Noncommutative field theory and violation of translation invariance
International Nuclear Information System (INIS)
Bertolami, Orfeu; Guisado, Luis
2003-01-01
Noncommutative field theories with commutator of the coordinates of the form [x μ , x ν ] = i Λ μν ω x ω with nilpotent structure constants are studied and shown that a free quantum field theory is not affected. Invariance under translations is broken and the conservation of energy-momentum is violated, obeying a new law which is expressed by a Poincare-invariant equation. The resulting new kinematics is studied and applied to simple examples and to astrophysical puzzles, such as the observed violation of the GZK cutoff. The λΦ 4 quantum field theory is also considered in this context. In particular, self interaction terms violate the usual conservation of energy-momentum and, hence, the radiative correction to the propagator is altered. The correction to first order in λ is calculated. The usual UV divergent terms are still present, but a new type of term also emerges, which is IR divergent, violates momentum conservation and implies a correction to the dispersion relation. (author)
On Conservation Forms and Invariant Solutions for Classical Mechanics Problems of Liénard Type
Directory of Open Access Journals (Sweden)
Gülden Gün Polat
2014-01-01
Full Text Available In this study we apply partial Noether and λ-symmetry approaches to a second-order nonlinear autonomous equation of the form y′′+fyy′+g(y=0, called Liénard equation corresponding to some important problems in classical mechanics field with respect to f(y and g(y functions. As a first approach we utilize partial Lagrangians and partial Noether operators to obtain conserved forms of Liénard equation. Then, as a second approach, based on the λ-symmetry method, we analyze λ-symmetries for the case that λ-function is in the form of λ(x,y,y′=λ1(x,yy′+λ2(x,y. Finally, a classification problem for the conservation forms and invariant solutions are considered.
The role of instantons in scale-invariant gauge theories
International Nuclear Information System (INIS)
Affleck, I.
1980-01-01
Instanton calculations in scale-invariant gauge theories, such as QCD, have long been plagued by divergences at large distances where strong coupling effects are important. Furthermore, Witten has argued that quantum effects may cause the instanton gas to disappear and has displayed this phenomenon in the CPsup(N-1) model at large N. It is argued here that instantons can play a role in calculations involving an inherent infrared cut-off, and this is demonstrated in the CPsup(N-1) model for large N at a finite temperature. Some results on finite-temperature QED are also obtained in passing. (orig.)
The energy–momentum tensor(s in classical gauge theories
Directory of Open Access Journals (Sweden)
Daniel N. Blaschke
2016-11-01
Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.
Pseudo-classical theory of Majorana-Weyl particle
International Nuclear Information System (INIS)
Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.
1996-01-01
A pseudo-classical theory of Weyl particle in the space-time dimensions D = 2 n is constructed. The canonical quantization of that pseudo-classical theory is carried out and it results in the theory of the D = 2 n dimensional Weyl particle in the Foldy-Wouthuysen representation. 28 refs
Topological Field Theory of Time-Reversal Invariant Insulators
Energy Technology Data Exchange (ETDEWEB)
Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.
On the construction of classical superstring field theories
Energy Technology Data Exchange (ETDEWEB)
Konopka, Sebastian Johann Hermann
2016-07-01
This thesis describes the construction of classical superstring field theories based on the small Hilbert space. First we describe the traditional construction of perturbative superstring theory as an integral over the supermoduli space of type II world sheets. The geometry of supermoduli space dictates many algebraic properties of the string field theory action. In particular it allows for an algebraisation of the construction problem for classical superstring field theories in terms of homotopy algebras. Next, we solve the construction problem for open superstrings based on Witten's star product. The construction is recursive and involves a choice of homotopy operator for the zero mode of the η-ghost. It turns out that the solution can be extended to the Neveu-Schwarz subsectors of all superstring field theories. The recursive construction involves a hierarchy of string products at various picture deficits. The construction is not entirely natural, but it is argued that different choices give rise to solutions related by a field redefinition. Due to the presence of odd gluing parameters for Ramond states the extension to full superstring field theory is non-trivial. Instead, we construct gauge-invariant equations of motion for all superstring field theories. The realisation of spacetime supersymmetry in the open string sector is highly non-trivial and is described explicitly for the solution based on Witten's star product. After a field redefinition the non-polynomial equations of motion and the small Hilbert space constraint become polynomial. This polynomial system is shown to be supersymmetric. Quite interestingly, the supersymmetry algebra closes only up to gauge transformations. This indicates that only the physical phase space realizes N=1 supersymmetry. Apart from the algebraic constraints dictated by the geometry of supermoduli space the equations of motion or action should reproduce the traditional string S-matrix. The S-matrix of a field
A combinatorial approach to diffeomorphism invariant quantum gauge theories
International Nuclear Information System (INIS)
Zapata, J.A.
1997-01-01
Quantum gauge theory in the connection representation uses functions of holonomies as configuration observables. Physical observables (gauge and diffeomorphism invariant) are represented in the Hilbert space of physical states; physical states are gauge and diffeomorphism invariant distributions on the space of functions of the holonomies of the edges of a certain family of graphs. Then a family of graphs embedded in the space manifold (satisfying certain properties) induces a representation of the algebra of physical observables. We construct a quantum model from the set of piecewise linear graphs on a piecewise linear manifold, and another manifestly combinatorial model from graphs defined on a sequence of increasingly refined simplicial complexes. Even though the two models are different at the kinematical level, they provide unitarily equivalent representations of the algebra of physical observables in separable Hilbert spaces of physical states (their s-knot basis is countable). Hence, the combinatorial framework is compatible with the usual interpretation of quantum field theory. copyright 1997 American Institute of Physics
Fernández-Sánchez, Jesús; Casanellas, Marta
2016-03-01
One reason why classical phylogenetic reconstruction methods fail to correctly infer the underlying topology is because they assume oversimplified models. In this article, we propose a quartet reconstruction method consistent with the most general Markov model of nucleotide substitution, which can also deal with data coming from mixtures on the same topology. Our proposed method uses phylogenetic invariants and provides a system of weights that can be used as input for quartet-based methods. We study its performance on real data and on a wide range of simulated 4-taxon data (both time-homogeneous and nonhomogeneous, with or without among-site rate heterogeneity, and with different branch length settings). We compare it to the classical methods of neighbor-joining (with paralinear distance), maximum likelihood (with different underlying models), and maximum parsimony. Our results show that this method is accurate and robust, has a similar performance to maximum likelihood when data satisfies the assumptions of both methods, and outperform the other methods when these are based on inappropriate substitution models. If alignments are long enough, then it also outperforms other methods when some of its assumptions are violated. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Geometric invariant theory over the real and complex numbers
Wallach, Nolan R
2017-01-01
Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry. Throughout the book, examples are emphasized. Exercises add to the reader’s understanding of the material; most are enhanced with hints. The exposition is divided into two parts. The first part, ‘Background Theory’, is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic ...
Directory of Open Access Journals (Sweden)
J. Buitrago
Full Text Available A new classical 2-spinor approach to U(1 gauge theory is presented in which the usual four-potential vector field is replaced by a symmetric second rank spinor. Following a lagrangian formulation, it is shown that the four-rank spinor representing the Maxwell field tensor has a U(1 local gauge invariance in terms of the electric and magnetic field strengths. When applied to the magnetic field of a monopole, this formulation, via the irreducible representation condition for the gauge group, leads to a quantization condition differing by a factor 2 of the one predicted by Dirac without relying on any kind of singular vector potentials. Finally, the U(1 invariant spinor equations, are applied to electron magnetic resonance which has many applications in the study of materials. Keywords: Weyl 2-spinor lenguage, Dirac equation, Gauge theories, Charge quantization
International Nuclear Information System (INIS)
Rindani, S.D.
1989-03-01
A gauge-invariant theory of a massive spin-3/2 particle interaction with external electromagnetic and gravitational fields, obtained earlier by Kaluza-Klein reduction of a massless Rarita-Schwinger theory, is quantized using Dirac's procedure. The field anticommutators are found to be positive definite. The theory, which was earlier shown to be free from the classical Velo-Zwanziger problem of noncausal propagation modes, is thus also free from the problem of negative-norm states, a long-standing problem associated with massive spin-3/2 theories with external interaction. (author). 19 refs
Classical and semi-classical solutions of the Yang--Mills theory
International Nuclear Information System (INIS)
Jackiw, R.; Nohl, C.; Rebbi, C.
1977-12-01
This review summarizes what is known at present about classical solutions to Yang-Mills theory both in Euclidean and Minkowski space. The quantal meaning of these solutions is also discussed. Solutions in Euclidean space expose multiple vacua and tunnelling of the quantum theory. Those in Minkowski space-time provide a semi-classical spectrum for a conformal generator
International Nuclear Information System (INIS)
Remler, E.A.
1977-01-01
A gauge-invariant version of the Wigner representation is used to relate relativistic mechanics, statistical mechanics, and quantum field theory in the context of the electrodynamics of scalar particles. A unified formulation of quantum field theory and statistical mechanics is developed which clarifies the physics interpretation of the single-particle Wigner function. A covariant form of Ehrenfest's theorem is derived. Classical electrodynamics is derived from quantum field theory after making a random-phase approximation. The validity of this approximation is discussed
On the Foundational Equations of the Classical Theory of ...
Indian Academy of Sciences (India)
IAS Admin
... Equations of the Classical. Theory of Electrodynamics ... most cherished notions of the Maxwell{Lorentz theory .... dia in the presence of the fields, in which case a self- consistent ..... could benefit from further experimental verification, we.
Hilbert space theory of classical electrodynamics
Indian Academy of Sciences (India)
Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.
Gauge invariance and radiative corrections in an extra dimensional theory
International Nuclear Information System (INIS)
Novales-Sanchez, H; Toscano, J J
2011-01-01
The gauge structure of the four dimensional effective theory originated in a pure five dimensional Yang-Mills theory compactified on the orbifold S 1 /Z 2 , is discussed on the basis of the BRST symmetry. If gauge parameters propagate in the bulk, the excited Kaluza-Klein (KK) modes are gauge fields and the four dimensional theory is gauge invariant only if the compactification is carried out by using curvatures as fundamental objects. The four dimensional theory is governed by two types of gauge transformations, one determined by the KK zero modes of the gauge parameters and the other by the excited ones. Within this context, a gauge-fixing procedure to quantize the KK modes that is covariant under the first type of gauge transformations is shown and the ghost sector induced by the gauge-fixing functions is presented. If the gauge parameters are confined to the usual four dimensional space-time, the known result in the literature is reproduced with some minor variants, although it is emphasized that the excited KK modes are not gauge fields, but matter fields transforming under the adjoint representation of SU 4 (N). A calculation of the one-loop contributions of the excited KK modes of the SU L (2) gauge group on the off-shell W + W - V, with V a photon or a Z boson, is exhibited. Such contributions are free of ultraviolet divergences and well-behaved at high energies.
Kim, Ju-Lee; Zhu, Chen-Bo
2017-01-01
This book contains selected papers based on talks given at the "Representation Theory, Number Theory, and Invariant Theory" conference held at Yale University from June 1 to June 5, 2015. The meeting and this resulting volume are in honor of Professor Roger Howe, on the occasion of his 70th birthday, whose work and insights have been deeply influential in the development of these fields. The speakers who contributed to this work include Roger Howe's doctoral students, Roger Howe himself, and other world renowned mathematicians. Topics covered include automorphic forms, invariant theory, representation theory of reductive groups over local fields, and related subjects.
Perturbation theory via Feynman diagrams in classical mechanics
Penco, R.; Mauro, D.
2006-01-01
In this paper we show how Feynman diagrams, which are used as a tool to implement perturbation theory in quantum field theory, can be very useful also in classical mechanics, provided we introduce also at the classical level concepts like path integrals and generating functionals.
A gauge-invariant reorganization of thermal gauge theory
Energy Technology Data Exchange (ETDEWEB)
Su, Nan
2010-07-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
A gauge-invariant reorganization of thermal gauge theory
International Nuclear Information System (INIS)
Su, Nan
2010-01-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m D /T, m f /T and e 2 , where m D and m f are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ∝ 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m D /T and g 2 , where m D is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T ∝ 2 - 3 T c . The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
Axiomatics of Galileo-invariant quantum field theory
International Nuclear Information System (INIS)
Dadashev, L.A.
1986-01-01
The aim of this paper is to construct the axiomatics of Galileo-invariant quantum field theory. The importance of this problem is demonstrated from various points of view: general properties that the fields and observables must satisfy are considered; S-matrix nontriviality of one such model is proved; and the differences from the relativistic case are discussed. The proposed system of axioms is in many respects analogous to Wightman axiomatics, but is less general. The main result is contained in theorems which describe the admissible set of initial fields and total Hamiltonians, i.e., precisely the two entities that completely determine interacting fields. The author considers fields that prove the independence of some axioms
Theories of Matter, Space and Time; Classical theories
Evans, N.; King, S. F.
2017-12-01
This book and its sequel ('Theories of Matter Space and Time: Quantum Theories') are taken from third and fourth year undergraduate Physics courses at Southampton University, UK. The aim of both books is to move beyond the initial courses in classical mechanics, special relativity, electromagnetism, and quantum theory to more sophisticated views of these subjects and their interdependence. The goal is to guide undergraduates through some of the trickier areas of theoretical physics with concise analysis while revealing the key elegance of each subject. The first chapter introduces the key areas of the principle of least action, an alternative treatment of Newtownian dynamics, that provides new understanding of conservation laws. In particular, it shows how the formalism evolved from Fermat's principle of least time in optics. The second introduces special relativity leading quickly to the need and form of four-vectors. It develops four-vectors for all kinematic variables and generalize Newton's second law to the relativistic environment; then returns to the principle of least action for a free relativistic particle. The third chapter presents a review of the integral and differential forms of Maxwell's equations before massaging them to four-vector form so that the Lorentz boost properties of electric and magnetic fields are transparent. Again, it then returns to the action principle to formulate minimal substitution for an electrically charged particle.
S-duality invariant perturbation theory improved by holography
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Abhishek [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Honda, Masazumi [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel); Thakur, Somyadip [Tata Institute of Fundamental Research,Mumbai 400005 (India)
2017-04-26
We study anomalous dimensions of unprotected low twist operators in the four-dimensional SU (N)N=4 supersymmetric Yang-Mills theory. We construct a class of interpolating functions to approximate the dimensions of the leading twist operators for arbitrary gauge coupling τ. The interpolating functions are consistent with previous results on the perturbation theory, holographic computation and full S-duality. We use our interpolating functions to test a recent conjecture by the N=4 superconformal bootstrap that upper bounds on the dimensions are saturated at one of the duality-invariant points τ=i and τ=e{sup iπ/3}. It turns out that our interpolating functions have maximum at τ=e{sup iπ/3}, which are close to the conjectural values by the conformal bootstrap. In terms of the interpolating functions, we draw the image of conformal manifold in the space of the dimensions. We find that the image is almost a line despite the conformal manifold is two-dimensional. We also construct interpolating functions for the subleading twist operator and study level crossing phenomenon between the leading and subleading twist operators. Finally we study the dimension of the Konishi operator in the planar limit. We find that our interpolating functions match with numerical result obtained by Thermodynamic Bethe Ansatz very well. It turns out that analytic properties of the interpolating functions reflect an expectation on a radius of convergence of the perturbation theory.
Energy Technology Data Exchange (ETDEWEB)
Múnera, Héctor A., E-mail: hmunera@hotmail.com [Centro Internacional de Física (CIF), Apartado Aéreo 4948, Bogotá, Colombia, South America (Colombia); Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America (Colombia)
2016-07-07
It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.
Asymptotic Conservation Laws in Classical Field Theory
International Nuclear Information System (INIS)
Anderson, I.M.; Torre, C.G.
1996-01-01
A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation laws, such as the Arnowitt-Deser-Misner energy in general relativity. copyright 1996 The American Physical Society
Spectral and scattering theory for translation invariant models in quantum field theory
DEFF Research Database (Denmark)
Rasmussen, Morten Grud
This thesis is concerned with a large class of massive translation invariant models in quantum field theory, including the Nelson model and the Fröhlich polaron. The models in the class describe a matter particle, e.g. a nucleon or an electron, linearly coupled to a second quantised massive scalar...... by the physically relevant choices. The translation invariance implies that the Hamiltonian may be decomposed into a direct integral over the space of total momentum where the fixed momentum fiber Hamiltonians are given by , where denotes total momentum and is the Segal field operator. The fiber Hamiltonians...
International Nuclear Information System (INIS)
Johansen, A.A.
1992-01-01
It is shown, that under the certain constraints the generating functional for the Donaldson invariants in the D=4 topological Yang-Mills theory can be interpreted as a partition function for the renormalizable theory. 20 refs
Experimental assessment of unvalidated assumptions in classical plasticity theory.
Energy Technology Data Exchange (ETDEWEB)
Brannon, Rebecca Moss (University of Utah, Salt Lake City, UT); Burghardt, Jeffrey A. (University of Utah, Salt Lake City, UT); Bauer, Stephen J.; Bronowski, David R.
2009-01-01
This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data, thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.
Classical confining solutions of a tensor gauge theory incorporating colour
International Nuclear Information System (INIS)
Salam, A.; Strathdee, J.
1977-04-01
A mass-modified Einstein-Weyl gauge theory of colour carrying spin-two mesons is formulated. A classical solution is exhibited for the case of internal SU(2) symmetry which may confine quarks in colour singlets
The semi classical laser theory and some applications of laser
International Nuclear Information System (INIS)
Abdalla, Abbaker Ali
1995-04-01
The semi classical laser theory is concerned with the interaction between light and matter in such a way that the matter is treated quantum-mechanically whereas light is treated in terms of the classical electromagnetic equations. In this work the Maxwell-Bloch equations are employed to describe the interaction between light and matter. Applications of the theory as well as different types of lasers are reviewed. (Author)
Strong coupling in a gauge invariant field theory
Energy Technology Data Exchange (ETDEWEB)
Johnson, K. [Physics Department, Massachusetts Institute of Technology, Cambridge, MA (United States)
1963-01-15
I would like to discuss some approximations which may be significant in the domain of strong coupling in a field system analogous to quantum electrodynamics. The motivation of this work is the idea that the strong couplings and elementary particle spectrum may be the consequence of the dynamics of a system whose underlying description is in terms of a set of Fermi fields gauge invariantly coupled to a single (''bare'') massless neutral vector field. The basis of this gauge invariance would of course be the exact conservation law of baryons or ''nucleonic charge''. It seems to me that a coupling scheme based on an invariance principle is most attractive if that invariance is an exact one. It would then be nice to try to account for the approximate invariance principles in the same way one would describe ''accidental degeneracies'' in any quantum system.
Strongly first-order electroweak phase transition and classical scale invariance
Farzinnia, Arsham; Ren, Jing
2014-10-01
In this work, we examine the possibility of realizing a strongly first-order electroweak phase transition within the minimal classically scale-invariant extension of the standard model (SM), previously proposed and analyzed as a potential solution to the hierarchy problem. By introducing one complex gauge-singlet scalar and three (weak scale) right-handed Majorana neutrinos, the scenario was successfully rendered capable of achieving a radiative breaking of the electroweak symmetry (by means of the Coleman-Weinberg mechanism), inducing nonzero masses for the SM neutrinos (via the seesaw mechanism), presenting a pseudoscalar dark matter candidate (protected by the CP symmetry of the potential), and predicting the existence of a second CP-even boson (with suppressed couplings to the SM content) in addition to the 125 GeV scalar. In the present treatment, we construct the full finite-temperature one-loop effective potential of the model, including the resummed thermal daisy loops, and demonstrate that finite-temperature effects induce a first-order electroweak phase transition. Requiring the thermally driven first-order phase transition to be sufficiently strong at the onset of the bubble nucleation (corresponding to nucleation temperatures TN˜100-200 GeV) further constrains the model's parameter space; in particular, an O(0.01) fraction of the dark matter in the Universe may be simultaneously accommodated with a strongly first-order electroweak phase transition. Moreover, such a phase transition disfavors right-handed Majorana neutrino masses above several hundreds of GeV, confines the pseudoscalar dark matter masses to ˜1-2 TeV, predicts the mass of the second CP-even scalar to be ˜100-300 GeV, and requires the mixing angle between the CP-even components of the SM doublet and the complex singlet to lie within the range 0.2≲sinω ≲0.4. The obtained results are displayed in comprehensive exclusion plots, identifying the viable regions of the parameter space
Chance, determinism and the classical theory of probability.
Vasudevan, Anubav
2018-02-01
This paper situates the metaphysical antinomy between chance and determinism in the historical context of some of the earliest developments in the mathematical theory of probability. Since Hacking's seminal work on the subject, it has been a widely held view that the classical theorists of probability were guilty of an unwitting equivocation between a subjective, or epistemic, interpretation of probability, on the one hand, and an objective, or statistical, interpretation, on the other. While there is some truth to this account, I argue that the tension at the heart of the classical theory of probability is not best understood in terms of the duality between subjective and objective interpretations of probability. Rather, the apparent paradox of chance and determinism, when viewed through the lens of the classical theory of probability, manifests itself in a much deeper ambivalence on the part of the classical probabilists as to the rational commensurability of causal and probabilistic reasoning. Copyright © 2017 Elsevier Ltd. All rights reserved.
Functional methods underlying classical mechanics, relativity and quantum theory
International Nuclear Information System (INIS)
Kryukov, A
2013-01-01
The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.
Constrained variational calculus for higher order classical field theories
Energy Technology Data Exchange (ETDEWEB)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn, E-mail: cedricmc@icmat.e, E-mail: mdeleon@icmat.e, E-mail: david.martin@icmat.e [Instituto de Ciencias Matematicas, CSIC-UAM-UC3M-UCM, Serrano 123, 28006 Madrid (Spain)
2010-11-12
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Constrained variational calculus for higher order classical field theories
International Nuclear Information System (INIS)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn
2010-01-01
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Assessing difference between classical test theory and item ...
African Journals Online (AJOL)
Assessing difference between classical test theory and item response theory methods in scoring primary four multiple choice objective test items. ... All research participants were ranked on the CTT number correct scores and the corresponding IRT item pattern scores from their performance on the PRISMADAT. Wilcoxon ...
The significance of classical structures in quantum theories
International Nuclear Information System (INIS)
Lowe, M.J.
1978-09-01
The implications for the quantum theory of the presence of non-linear classical solutions of the equations of motion are investigated in various model systems under the headings: (1) Canonical quantisation of the soliton in lambdaphi 4 theory in two dimensions. (2) Bound for soliton masses in two dimensional field theories. (3) The canonical quantisation of a soliton like solution in the non-linear schrodinger equation. (4) The significance of the instanton classical solution in a quantum mechanical system. (U.K.)
Lectures on classical and quantum theory of fields
Arodz, Henryk
2017-01-01
This textbook addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. It aims to deliver a unique combination of classical and quantum field theory in one compact course.
Lectures on classical and quantum theory of fields
Energy Technology Data Exchange (ETDEWEB)
Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics
2010-07-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Lectures on classical and quantum theory of fields
International Nuclear Information System (INIS)
Arodz, Henryk; Hadasz, Leszek
2010-01-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Lectures on Classical and Quantum Theory of Fields
Arodź, Henryk
2010-01-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course.
Conformal field theory on surfaces with boundaries and nondiagonal modular invariants
International Nuclear Information System (INIS)
Bern, Z.; Dunbar, D.C.
1990-01-01
This paper shows that the operator content of a conformal field theory defined on surfaces with boundaries and crosscaps is more restricted when the periodic sector is described by nondiagonal modular invariants than in the case of diagonal modular invariants. By tensoring, the restrictions can be alleviated, leading to a rich structure. Such constrictions are useful, for example, in lower- dimensional open superstring models
Gauge bridges in classical field theory; Eichbruecken in der klassischen Feldtheorie
Energy Technology Data Exchange (ETDEWEB)
Jakobs, S.
2009-03-15
In this thesis Poisson structures of two classical gauge field theories (Maxwell-Klein-Gordon- and Maxwell-Dirac-system) are constructed using the parametrix construction of Green's functions. Parametrices for the Maxwell-Klein-Gordon- and Maxwell-Dirac-system are constructed in Minkowski space and this construction is later generalized to curved space times for the Maxwell-Klein-Gordon-system. With these Green's functions Poisson brackets will be defined as Peierls brackets. Finally non-local, gauge invariant observables, the so-called 'gauge bridges'are constructed. Gauge bridges are the matrix elements of holonomy operators. It is shown, that these emerge from Poisson brackets of local, gauge invariant observables. (orig.)
Nonrelativistic Schroedinger equation in quasi-classical theory
International Nuclear Information System (INIS)
Wignall, J.W.G.
1987-01-01
The author has recently proposed a quasi-classical theory of particles and interactions in which particles are pictured as extended periodic disturbances in a universal field chi(x,t), interacting with each other via nonlinearity in the equation of motion for chi. The present paper explores the relationship of this theory to nonrelativistic quantum mechanics; as a first step, it is shown how it is possible to construct from chi a configuration-space wave function Psi(x 1 , X 2 , t), and that the theory requires that Psi satisfy the two-particle Schroedinger equation in the case where the two particles are well separated from each other. This suggests that the multiparticle Schroedinger equation can be obtained as a direct consequence of the quasi-classical theory without any use of the usual formalism (Hilbert space, quantization rules, etc.) of conventional quantum theory and in particular without using the classical canonical treatment of a system as a crutch theory which has subsequently to be quantized. The quasi-classical theory also suggests the existence of a preferred absolute gauge for the electromagnetic potentials
Classical Solutions in Quantum Field Theory
International Nuclear Information System (INIS)
Mann, Robert
2013-01-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons-–kinks, vortices, and magnetic monopoles-–and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is
International Nuclear Information System (INIS)
Matsyuk, R.Ya.
1985-01-01
The problem on the existence of the invariant third-order Euler-Poisson equations in the pseudo-Euclidean space is investigated. The locally variational problem is determined by the Lagrangian density over the space of the second-order jets. The one - parameter family of the invariant third-order Euler-Poisson equations is groved to be the only one in the three-dimensional pseudo-Euclidean space. No invariant third-order Euler-Poisson equations exist in the four-dimensional pseudo-Euclidean space. It is shown that the Mathisson equation and the equation of geodesic circles in particular cases may be considered in the context of the Ostrogradiskij mechanics and the Kavaguchi geometry
Does general relativity theory possess the classical newtonian limit
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.
1980-01-01
A detailed comparison of newtonian approximation of the Einstein theory and the Newton theory of gravity is made. A difference of principle between these two theories is clarified at the stage of obtaining integrals of motion. Exact eqautions of motion and Einstein equations shows the existence only zero integrals of motion as well as in the newtonian approximation. A conclusion is that GRT has no classical newtonian limit, since the integrals of motion in the Newton theory of gravity and in the newtonian approximation of the Einstein theory do not coincide [ru
Quantum fermions and quantum field theory from classical statistics
International Nuclear Information System (INIS)
Wetterich, Christof
2012-01-01
An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schrödinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.
E7 type modular invariant Wess-Zumino theory and Gepner's string compactification
International Nuclear Information System (INIS)
Kato, Akishi; Kitazawa, Yoshihisa
1989-01-01
The report addresses the development of a general procedure to study the structure of operator algebra in off-diagonal modular invariant theories. An effort is made to carry out this procedure in E 7 type modular invariant Wess-Zumino-Witten theory and explicitly check the closure of operator product algebra, which is required for any consistent conformal field theory. The conformal field theory is utilized to construct perturbative vacuum in string theory. Apparently quite nontrivial vacuums can be constructed out of minimal models of the N = 2 superconformal theory. Here, an investigation made of the Yukawa couplings of such a model which uses E 7 type off-diagonal modular invariance. Phenomenological properties of this model is also discussed. Although off-diagonal modular invariant theories are rather special, realistic models seem to require very special manifolds. Therefore they may enhance the viability of string theory to describe real world. A study is also made on Verlinde's fusion algebra in E 7 modular invariant theory. It is determined in the holomorphic sector only. Furthermore the indicator is given by the modular transformation matrix. A pair of operators which operate on the characters play a crucial role in this theory. (Nogami, K.)
Deducing T, C, and P invariance for strong interactions in topological particle theory
International Nuclear Information System (INIS)
Jones, C.E.
1985-01-01
It is shown here how the separate discrete invariances [time reversal (T), charge conjugation (C), and parity (P)] in strong interactions can be deduced as consequences of other S-matrix requirements in topological particle theory
The invariant charges of the Nambu-Goto theory: Their geometric origin and their completeness
International Nuclear Information System (INIS)
Pohlmeyer, K.; Rehren, K.H.
1988-01-01
We give an alternative construction of the reparametrization invariant 'non-local' conserved charges of the Nambu-Goto theory which elucidates their geometric nature and their completeness property. (orig.)
Directory of Open Access Journals (Sweden)
Tim Palmer
2015-11-01
Full Text Available Invariant Set (IS theory is a locally causal ontic theory of physics based on the Cosmological Invariant Set postulate that the universe U can be considered a deterministic dynamical system evolving precisely on a (suitably constructed fractal dynamically invariant set in U's state space. IS theory violates the Bell inequalities by violating Measurement Independence. Despite this, IS theory is not fine tuned, is not conspiratorial, does not constrain experimenter free will and does not invoke retrocausality. The reasons behind these claims are discussed in this paper. These arise from properties not found in conventional ontic models: the invariant set has zero measure in its Euclidean embedding space, has Cantor Set structure homeomorphic to the p-adic integers (p>>0 and is non-computable. In particular, it is shown that the p-adic metric encapulates the physics of the Cosmological Invariant Set postulate, and provides the technical means to demonstrate no fine tuning or conspiracy. Quantum theory can be viewed as the singular limit of IS theory when when p is set equal to infinity. Since it is based around a top-down constraint from cosmology, IS theory suggests that gravitational and quantum physics will be unified by a gravitational theory of the quantum, rather than a quantum theory of gravity. Some implications arising from such a perspective are discussed.
International Nuclear Information System (INIS)
Santilli, R.M.
2006-01-01
It was generally believed throughout the 20th century that irreversibility is a purely classical event without operator counterpart. however, a classical irreversible system cannot be consistently decomposed into a finite number of reversible quantum particles (and. vive versa), thus establishing that the origin of irreversibility is basically unknown at the dawn of the 21-st century. To resolve this problem. we adopt the historical analytical representation of irreversibility by Lagrange and Hamilton, that with external terms in their analytic equations; we show that, when properly written, the brackets of the time evolution characterize covering Lie-admissible algebras; we prove that the formalism has fully consistent operator counterpart given by the Lie-admissible branch of hadronic mechanics; we identify mathematical and physical inconsistencies when irreversible formulations are treated with the conventional mathematics used for reversible systems; we show that when the dynamical equations are treated with a novel irreversible mathematics, Lie-admissible formulations are fully consistent because invariant at both the classical and operator levels; and we complete our analysis with a number of explicit applications to irreversible processes in classical mechanics, particle physics and thermodynamics. The case of closed-isolated systems verifying conventional total conservation laws, yet possessing an irreversible structure, is treated via the simpler Lie-isotopic branch of hadronic mechanics. The analysis is conducted for both matter and antimatter at the classical and operator levels to prevent insidious inconsistencies occurring for the sole study of matter or, separately, antimatter
Conformally invariant amplitudes and field theory in a space-time of constant curvature
International Nuclear Information System (INIS)
Drummond, I.T.
1977-02-01
The problem of calculating the ultra violet divergences of a field theory in a spherical space-time is reduced to analysing the pole structure of conformally invariant integrals which are analogous to amplitudes which occur in the theory of dual models. The calculations are illustrated with phi 3 -theory in six-dimensions. (author)
Conformally invariant amplitudes and field theory in a spacetime of constant curvature
International Nuclear Information System (INIS)
Drummond, I.T.
1979-01-01
The problem of calculating the ultraviolet divergences of a field theory in a spherical spacetime is reduced to analyzing the pole structure of conformally invariant integrals which are analogous to amplitudes which occur in the theory of dual models. The calculations are illustrated with phi 3 theory in six dimensions
Comparison of Classical Test Theory and Item Response Theory in Individual Change Assessment
Jabrayilov, Ruslan; Emons, Wilco H. M.; Sijtsma, Klaas
2016-01-01
Clinical psychologists are advised to assess clinical and statistical significance when assessing change in individual patients. Individual change assessment can be conducted using either the methodologies of classical test theory (CTT) or item response theory (IRT). Researchers have been optimistic
Characterization of particle states in relativistic classical quantum theory
International Nuclear Information System (INIS)
Horwitz, L.P.; Rabin, Y.
1977-02-01
Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given
Classical electromagnetic field theory in the presence of magnetic sources
Chen, Wen-Jun; Li, Kang; Naón, Carlos
2001-01-01
Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.
Scale-invariant entropy-based theory for dynamic ordering
International Nuclear Information System (INIS)
Mahulikar, Shripad P.; Kumari, Priti
2014-01-01
Dynamically Ordered self-organized dissipative structure exists in various forms and at different scales. This investigation first introduces the concept of an isolated embedding system, which embeds an open system, e.g., dissipative structure and its mass and/or energy exchange with its surroundings. Thereafter, scale-invariant theoretical analysis is presented using thermodynamic principles for Order creation, existence, and destruction. The sustainability criterion for Order existence based on its structured mass and/or energy interactions with the surroundings is mathematically defined. This criterion forms the basis for the interrelationship of physical parameters during sustained existence of dynamic Order. It is shown that the sufficient condition for dynamic Order existence is approached if its sustainability criterion is met, i.e., its destruction path is blocked. This scale-invariant approach has the potential to unify the physical understanding of universal dynamic ordering based on entropy considerations
Supersymmetric gauge theories with classical groups via M theory fivebrane
International Nuclear Information System (INIS)
Terashima, S.
1998-01-01
We study the moduli space of vacua of four-dimensional N=1 and N=2 supersymmetric gauge theories with the gauge groups Sp(2N c ), SO(2N c ) and SO(2N c +1) using the M theory fivebrane. Higgs branches of the N=2 supersymmetric gauge theories are interpreted in terms of the M theory fivebrane and the type IIA s-rule is realized in it. In particular, we construct the fivebrane configuration which corresponds to a special Higgs branch root. This root is analogous to the baryonic branch root in the SU(N c ) theory which remains as a vacuum after the adjoint mass perturbation to break N=2 to N=1. Furthermore, we obtain the monopole condensations and the meson vacuum expectation values in the confining phase of N=1 supersymmetric gauge theories using the fivebrane technique. These are in complete agreement with the field theory results for the vacua in the phase with a single confined photon. (orig.)
Zurek, Wojciech Hubert
2018-07-13
The emergence of the classical world from the quantum substrate of our Universe is a long-standing conundrum. In this paper, I describe three insights into the transition from quantum to classical that are based on the recognition of the role of the environment. I begin with the derivation of preferred sets of states that help to define what exists-our everyday classical reality. They emerge as a result of the breaking of the unitary symmetry of the Hilbert space which happens when the unitarity of quantum evolutions encounters nonlinearities inherent in the process of amplification-of replicating information. This derivation is accomplished without the usual tools of decoherence, and accounts for the appearance of quantum jumps and the emergence of preferred pointer states consistent with those obtained via environment-induced superselection, or einselection The pointer states obtained in this way determine what can happen-define events-without appealing to Born's Rule for probabilities. Therefore, p k =| ψ k | 2 can now be deduced from the entanglement-assisted invariance, or envariance -a symmetry of entangled quantum states. With probabilities at hand, one also gains new insights into the foundations of quantum statistical physics. Moreover, one can now analyse the information flows responsible for decoherence. These information flows explain how the perception of objective classical reality arises from the quantum substrate: the effective amplification that they represent accounts for the objective existence of the einselected states of macroscopic quantum systems through the redundancy of pointer state records in their environment-through quantum Darwinism This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Aesthetic Creativity: Insights from Classical Literary Theory on Creative Learning
Hellstrom, Tomas Georg
2011-01-01
This paper addresses the subject of textual creativity by drawing on work done in classical literary theory and criticism, specifically new criticism, structuralism and early poststructuralism. The question of how readers and writers engage creatively with the text is closely related to educational concerns, though they are often thought of as…
Generalized force in classical field theory. [Euler-Lagrange equations
Energy Technology Data Exchange (ETDEWEB)
Krause, J [Universidad Central de Venezuela, Caracas
1976-02-01
The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are heuristically interpreted as generalized forces. The canonical form of the energy-momentum tensor thus consistently appears, without recourse to space-time symmetry arguments. A concept of 'conservative' generalized force in classical field theory is also briefly discussed.
Classically integrable boundary conditions for affine Toda field theories
International Nuclear Information System (INIS)
Bowcock, P.; Corrigan, E.; Dorey, P.E.; Rietdijk, R.H.
1995-01-01
Boundary conditions compatible with classical integrability are studied both directly, using an approach based on the explicit construction of conserved quantities, and indirectly by first developing a generalisation of the Lax pair idea. The latter approach is closer to the spirit of earlier work by Sklyanin and yields a complete set of conjectures for permissible boundary conditions for any affine Toda field theory. (orig.)
Electromagnetic field and the theory of conformal and biholomorphic invariants
International Nuclear Information System (INIS)
Lawrynowicz, J.
1976-01-01
This paper contains sections on: 1. Conformal invariance and variational principles in electrodynamics. 2. The principles of Dirichlet and Thomson as a physical motivation for the methods of conformal capacities and extremal lengths. 3. Extension to pseudoriemannian manifolds. 4. Extension to hermitian manifolds. 5. An extension of Schwarz's lemma for hermitian manifolds and its physical significance. 6. Variation of ''complex'' capacities within the admissible class of plurisubharmonic functions. The author concentrates on motivations and interpretations connected with the electromagnetic field. (author)
Gauge invariance of the Rayleigh--Schroedinger time-independent perturbation theory
International Nuclear Information System (INIS)
Yang, K.H.
1977-08-01
It is shown that the Rayleigh-Schroedinger time-independent perturbation theory is gauge invariant when the operator concerned is the particle's instantaneous energy operator H/sub B/ = (1/2m)[vector p - (e/c) vector A] 2 + eV 0 . More explicitly, it is shown that the energy perturbation corrections of each individual order of every state is gauge invariant. When the vector potential is curlless, the energy corrections of all orders are shown to vanish identically regardless of the explicit form of the vector potential. The relation between causality and gauge invariance is investigated. It is shown that gauge invariance guarantees conformity with causality and violation of gauge invariance implies violation of causality
Mathematical theories of classical particle channeling in perfect crystals
International Nuclear Information System (INIS)
Dumas, H. Scott
2005-01-01
We present an overview of our work on rigorous mathematical theories of channeling for highly energetic positive particles moving in classical perfect crystal potentials. Developed over the last two decades, these theories include: (i) a comprehensive, highly mathematical theory based on Nekhoroshev's theorem which embraces both axial and planar channeling as well as certain non-channeling particle motions (ii) a theory of axial channeling for relativistic particles based on a single-phase averaging method for ordinary differential equations and (iii) a theory of planar channeling for relativistic particles based on a two-phase averaging method for ordinary differential equations. Here we touch briefly on (i) and (ii), then focus on (iii). Together these theories place Lindhard's continuum model approximations on a firm mathematical foundation, and should serve as the starting point for more refined mathematical treatments of channeling
Darvas, Gyrgy
2009-01-01
The paper discusses the mathematical consequences of the application of derived variables in gauge fields. Physics is aware of several phenomena, which depend first of all on velocities (like e.g., the force caused by charges moving in a magnetic field, or the Lorentz transformation). Applying the property of the second Noether theorem, that allowed generalised variables, this paper extends the article by Al-Kuwari and Taha (1991) with a new conclusion. They concluded that there are no extra conserved currents associated with local gauge invariance. We show, that in a more general case, there are further conserved Noether currents. In its method the paper reconstructs the clue introduced by Utiyama (1956, 1959) and followed by Al-Kuwari and Taha (1991) in the presence of a gauge field that depends on the co-ordinates of the velocity space. In this course we apply certain (but not full) analogies with Mills (1989). We show, that handling the space-time coordinates as implicit variables in the gauge field, reproduces the same results that have been derived in the configuration space (i.e., we do not lose information), while the proposed new treatment gives additional information extending those. The result is an extra conserved Noether current.
Geometric function theory: a modern view of a classical subject
International Nuclear Information System (INIS)
Crowdy, Darren
2008-01-01
Geometric function theory is a classical subject. Yet it continues to find new applications in an ever-growing variety of areas such as modern mathematical physics, more traditional fields of physics such as fluid dynamics, nonlinear integrable systems theory and the theory of partial differential equations. This paper surveys, with a view to modern applications, open problems and challenges in this subject. Here we advocate an approach based on the use of the Schottky–Klein prime function within a Schottky model of compact Riemann surfaces. (open problem)
On the mathematical theory of classical fields and general relativity
Klainerman, S
1993-01-01
From the perspective of an analyst, like myself, the General Theory of Relativity provides an extrordinary rich and vastly virgin territory. It is the aim of my lecture to provide, ﬁrst, an account of those aspects of the theory which attract me most and second a perspective of what has been accomplished so far in that respect. In trying to state our main objectives it helps to view General Relativity in the broader context of Classical Field Theory. EinsteiniVacuum equations, or shortly E—V, is already sufﬁciently complicated. I will thus restrict my attention to them.
Basic Theory of Fractional Conformal Invariance of Mei Symmetry and its Applications to Physics
Luo, Shao-Kai; Dai, Yun; Yang, Ming-Jing; Zhang, Xiao-Tian
2018-04-01
In this paper, we present a basic theory of fractional dynamics, i.e., the fractional conformal invariance of Mei symmetry, and find a new kind of conserved quantity led by fractional conformal invariance. For a dynamical system that can be transformed into fractional generalized Hamiltonian representation, we introduce a more general kind of single-parameter fractional infinitesimal transformation of Lie group, the definition and determining equation of fractional conformal invariance are given. And then, we reveal the fractional conformal invariance of Mei symmetry, and the necessary and sufficient condition whether the fractional conformal invariance would be the fractional Mei symmetry is found. In particular, we present the basic theory of fractional conformal invariance of Mei symmetry and it is found that, using the new approach, we can find a new kind of conserved quantity; as a special case, we find that an autonomous fractional generalized Hamiltonian system possesses more conserved quantities. Also, as the new method's applications, we, respectively, find the conserved quantities of a fractional general relativistic Buchduhl model and a fractional Duffing oscillator led by fractional conformal invariance of Mei symmetry.
On conformal invariance in gauge theories. Quantum electrodynamics
International Nuclear Information System (INIS)
Zaikov, R.P.
1983-01-01
In the present paper another nontrivial model of the conformal quantum electrodynamics is proposed. The main hypothesis is that the electromagnetic potential together with an additional zero scale, dimensional scalar field is transformed by a nonbasic and, consequently, nondecomposable representation of the conformal group. There are found nontrivial conformal covariant two-point functions and an invariant action from which equations of motion are derived. There is considered the covariant procedure of quantization and it is shown that the norm of one-particle physical states is positive definite
Towards a manifestly gauge invariant and universal calculus for Jang-Mills theory
International Nuclear Information System (INIS)
Arnone, S.; Gatti, A.; Morris, T.R.
2002-01-01
A manifestly gauge invariant exact renormalization group for pure SU (N) Jang-Mills theory is proposed, along with the necessary gauge invariant regularisation which implements the effective cutoff. The latter is naturally incorporated by embedding the theory into a spontaneously broken SU(N/N) super-gauge theory, which guarantees finiteness to all orders in perturbation theory. The effective action, from which one extracts the physics, can be computed whilst manifestly preserving gauge invariance at each and every step. As an example, we give an elegant computation of the one-loop SU(N) Jang-Mills beta function, for the first time at finite N without any gauge fixing or ghosts. It is also completely independent of the details put in by hand, e.g. the choice of covariantisation and the cutoff profile, and, therefore, guides us to a procedure for streamlined calculations (Authors)
Modular invariance and (quasi)-Galois symmetry in conformal field theory
International Nuclear Information System (INIS)
Schellekens, A.N.
1995-01-01
A brief heuristic explanation is given of recent work with Juergen Fuchs, Beatriz Gato-Rivera and Christoph Schweigert on the construction of modular invariant partition functions from Galois symmetry in conformal field theory. A generalization, which we call quasi-Galois symmetry, is also described. As an application of the latter, the invariants of the exceptional algebras at level g (for example E s level 30) expected from conformal embeddings are presented. (orig.)
Foundations of quantum theory from classical concepts to operator algebras
Landsman, Klaas
2017-01-01
This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.
The Poisson algebra of the invariant charges of the Nambu-Goto theory: Casimir elements
International Nuclear Information System (INIS)
Pohlmeyer, K.
1988-01-01
The reparametrization invariant ''non-local'' conserved charges of the Nambu-Goto theory form an algebra under Poisson bracket operation. The center of the formal closure of this algebra is determined. The relation of the central elements to the constraints of the Nambu-Goto theory is clarified. (orig.)
International Nuclear Information System (INIS)
Senjanovic, G.
1982-07-01
It is demonstrated that the spontaneous breakdown of CP invariance in grand unified theories requires the presence of intermediate mass scales. The simplest realization is provided by weakly broken left-right symmetry in the context of SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) model embedded in grand unified theories. (author)
Classic Grounded Theory to Analyse Secondary Data: Reality and Reflections
Directory of Open Access Journals (Sweden)
Lorraine Andrews
2012-06-01
Full Text Available This paper draws on the experiences of two researchers and discusses how they conducted a secondary data analysis using classic grounded theory. The aim of the primary study was to explore first-time parents’ postnatal educational needs. A subset of the data from the primary study (eight transcripts from interviews with fathers was used for the secondary data analysis. The objectives of the secondary data analysis were to identify the challenges of using classic grounded theory with secondary data and to explore whether the re-analysis of primary data using a different methodology would yield a different outcome. Through the process of re-analysis a tentative theory emerged on ‘developing competency as a father’. Challenges encountered during this re-analysis included the small dataset, the pre-framed data, and limited ability for theoretical sampling. This re-analysis proved to be a very useful learning tool for author 1(LA, who was a novice with classic grounded theory.
Classical theory of atom-surface scattering: The rainbow effect
Miret-Artés, Salvador; Pollak, Eli
2012-07-01
The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the “washboard model” in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.
The spin-statistics connection in classical field theory
International Nuclear Information System (INIS)
Morgan, J A
2006-01-01
The spin-statistics connection is obtained for a simple formulation of a classical field theory containing even and odd Grassmann variables. To that end, the construction of irreducible canonical realizations of the rotation group corresponding to general causal fields is reviewed. The connection is obtained by imposing local commutativity on the fields and exploiting the parity operation to exchange spatial coordinates in the scalar product of classical field evaluated at one spatial location with the same field evaluated at a distinct location. The spin-statistics connection for irreducible canonical realizations of the Poincare group of spin j is obtained in the form: classical fields and their conjugate momenta satisfy fundamental field-theoretic Poisson bracket relations for 2j even and fundamental Poisson antibracket relations for 2j odd
Energy Technology Data Exchange (ETDEWEB)
Kubo, Jisuke [Institute for Theoretical Physics, Kanazawa University,Kanazawa 920-1192 (Japan); Yamada, Masatoshi [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan); Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, 69120 Heidelberg (Germany)
2016-12-01
We assume that the origin of the electroweak (EW) scale is a gauge-invariant scalar-bilinear condensation in a strongly interacting non-abelian gauge sector, which is connected to the standard model via a Higgs portal coupling. The dynamical scale genesis appears as a phase transition at finite temperature, and it can produce a gravitational wave (GW) background in the early Universe. We find that the critical temperature of the scale phase transition lies above that of the EW phase transition and below few O(100) GeV and it is strongly first-order. We calculate the spectrum of the GW background and find the scale phase transition is strong enough that the GW background can be observed by DECIGO.
Gauge dependence of world lines and invariance of the S-matrix in relativistic classical mechanics
International Nuclear Information System (INIS)
Molotkov, V.V.; Todorov, I.T.
1980-07-01
The notion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend in general (in the presence of interaction) on the choice of the equal-time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a two-particle system and the (classical) S-matrix are indepent of this choice. (author)
Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation
Scheck, Florian
2012-01-01
The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...
Representational Realism, Closed Theories and the Quantum to Classical Limit
de Ronde, Christian
In this chapter, we discuss the representational realist stance as a pluralistontic approach to inter-theoretic relationships. Our stance stresses the fact that physical theories require the necessary consideration of a conceptual level of discourse which determines and configures the specific field of phenomena discussed by each particular theory. We will criticize the orthodox line of research which has grounded the analysis about QM in two (Bohrian) metaphysical presuppositions - accepted in the present as dogmas that all interpretations must follow. We will also examine how the orthodox project of "bridging the gap" between the quantum and the classical domains has constrained the possibilities of research, producing only a limited set of interpretational problems which only focus in the justification of "classical reality" and exclude the possibility of analyzing the possibilities of non-classical conceptual representations of QM. The representational realist stance introduces two new problems, namely, the superposition problem and the contextuality problem, which consider explicitly the conceptual representation of orthodox QM beyond the mere reference to mathematical structures and measurement outcomes. In the final part of the chapter, we revisit, from representational realist perspective, the quantum to classical limit and the orthodox claim that this inter-theoretic relation can be explained through the principle of decoherence.
Gauge invariance and anomalous theories at finite fermionic density
International Nuclear Information System (INIS)
Roberge, A.
1990-01-01
We investigate the issue of stability of anomalous matter at finite fermionic density using a two-dimensional toy model. In particular, we pay careful attention to the issue of gauge invariance. We find that, contrary to some recent claims, the effective free energy (obtained by integrating out the fermions) cannot be obtained by the simple inclusion of a Chern-Simons term multiplying the fermionic chemical potential. We obtain some conditions for stability of anomalous charges when some finite density of conserved charge is present as well as for the neutral case. We also show that, under reasonable conditions, no sphaleron-type solution can exist in the toy model unless the anomalous charge density vanishes. We argue that this could be the case for more realistic models as well
A classical density functional theory of ionic liquids.
Forsman, Jan; Woodward, Clifford E; Trulsson, Martin
2011-04-28
We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.
Second quantization of classical nonlinear relativistic field theory. Pt. 2
International Nuclear Information System (INIS)
Balaban, T.
1976-01-01
The construction of a relativistic interacting local quantum field is given in two steps: first the classical nonlinear relativistic field theory is written down in terms of Poisson brackets, with initial conditions as canonical variables: next a representation of Poisson bracket Lie algebra by means of linear operators in the topological vector space is given and an explicit form of a local interacting relativistic quantum field PHI is obtained. (orig./BJ) [de
Directory of Open Access Journals (Sweden)
J. Buitrago
Full Text Available In a new classical Weyl 2-spinor approach to non abelian gauge theories, starting with the U(1 gauge group in a previous work, we study now the SU(3 case corresponding to quarks (antiquarks interacting with color fields. The principal difference with the conventional approach is that particle-field interactions are not described by means of potentials but by the field strength magnitudes. Some analytical expressions showing similarities with electrodynamics are obtained. Classical equations that describe the behavior of quarks under gluon fields might be in principle applied to the quark–gluon plasma phase existing during the first instants of the Universe.
Outline of a classical theory of quantum physics and gravitation
International Nuclear Information System (INIS)
Gallop, J.W.
1975-01-01
It is argued that in the manner in which the Galilean-Newtonian physics may be said to have explained the Ptolemaic-Copernican theories in terms which have since been called classical, so also Milner's theories of the structure of matter may be said to explain present day quantum and relativistic theory. In both cases the former employ the concept of force and the latter, by contrast, are geometrical theories. Milner envisaged space as being stressed, whereas Einstein thought of it as strained. Development of Milner's theory from criticisms and suggestions made by Kilmister has taken it further into the realms of quantum and gravitational physics, where it is found to give a more physically comprehensible explanation of the phenomena. Further, it shows why present day quantum theory is cast in a statistical form. The theory is supported by many predictions such as the ratio of Planck's constant to the mass of the electron, the value of the fine structure constant and reason for apparent variations in past measurements, the magnetic moment of the electron and proton of the stable particles such as the neutron Λ and Σ together with the kaon, and a relation between the universal gravitational constant and Hubble's constant - all within published experimental accuracy. The latest results to be accounted for by the theory are the masses of the newly discovered psi particles and confirmation of the value of the decay of Newton's gravitational constant obtained from lunar measurements. (author)
The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup
Lehrer, G. I.; Zhang, R. B.
2017-01-01
We give an elementary and explicit proof of the first fundamental theorem of invariant theory for the orthosymplectic supergroup by generalising the geometric method of Atiyah, Bott and Patodi to the supergroup context. We use methods from super-algebraic geometry to convert invariants of the orthosymplectic supergroup into invariants of the corresponding general linear supergroup on a different space. In this way, super Schur-Weyl-Brauer duality is established between the orthosymplectic supergroup of superdimension ( m|2 n) and the Brauer algebra with parameter m - 2 n. The result may be interpreted either in terms of the group scheme OSp( V) over C, where V is a finite dimensional super space, or as a statement about the orthosymplectic Lie supergroup over the infinite dimensional Grassmann algebra {Λ}. We take the latter point of view here, and also state a corresponding theorem for the orthosymplectic Lie superalgebra, which involves an extra invariant generator, the super-Pfaffian.
Power suppressed operators and gauge invariance in soft-collinear effective theory
International Nuclear Information System (INIS)
Bauer, Christian W.; Pirjol, Dan; Stewart, Iain W.
2003-01-01
The form of collinear gauge invariance for power suppressed operators in the soft-collinear effective theory (SCET) is discussed. Using a field redefinition we show that it is possible to make any power suppressed ultrasoft-collinear operators invariant under the original leading order gauge transformations. Our manipulations avoid gauge fixing. The Lagrangians to O(λ 2 ) are given in terms of these new fields. We then give a simple procedure for constructing power suppressed soft-collinear operators in SCET II by using an intermediate theory SCET I
Hairy black hole solutions in U(1) gauge-invariant scalar-vector-tensor theories
Heisenberg, Lavinia; Tsujikawa, Shinji
2018-05-01
In U (1) gauge-invariant scalar-vector-tensor theories with second-order equations of motion, we study the properties of black holes (BH) on a static and spherically symmetric background. In shift-symmetric theories invariant under the shift of scalar ϕ → ϕ + c, we show the existence of new hairy BH solutions where a cubic-order scalar-vector interaction gives rise to a scalar hair manifesting itself around the event horizon. In the presence of a quartic-order interaction besides the cubic coupling, there are also regular BH solutions endowed with scalar and vector hairs.
The method of finite-gap integration in classical and semi-classical string theory
International Nuclear Information System (INIS)
Vicedo, Benoit
2011-01-01
In view of proving the AdS/CFT correspondence one day, a deeper understanding of string theory on certain curved backgrounds such as AdS 5 x S 5 is required. In this review we make a step in this direction by focusing on RxS 3 . It was discovered in recent years that string theory on AdS 5 x S 5 admits a Lax formulation. However, the complete statement of integrability requires not only the existence of a Lax formulation but also that the resulting integrals of motion are in pairwise involution. This idea is central to the first part of this review. Exploiting this integrability we apply algebro-geometric methods to string theory on RxS 3 and obtain the general finite-gap solution. The construction is based on an invariant algebraic curve previously found in the AdS 5 x S 5 case. However, encoding the dynamics of the solution requires specification of additional marked points. By restricting the symplectic structure of the string to these algebro-geometric data we derive the action-angle variables of the system. We then perform a first-principle semiclassical quantization of string theory on RxS 3 as a toy model for strings on AdS 5 x S 5 . The result is exactly what one expects from the dual gauge theory perspective, namely the underlying algebraic curve discretizes in a natural way. We also derive a general formula for the fluctuation energies around the generic finite-gap solution. The ideas used can be generalized to AdS 5 x S 5 . (review)
Duality and modular invariance in rational conformal field theories
International Nuclear Information System (INIS)
Li Miao.
1990-03-01
We investigate the polynomial equations which should be satisfied by the duality data for a rational conformal field theory. We show that by these duality data we can construct some vector spaces which are isomorphic to the spaces of conformal blocks. One can construct explicitly the inner product for the former if one deals with a unitary theory. These vector spaces endowed with an inner product are the algebraic reminiscences of the Hilbert spaces in a Chern-Simons theory. As by-products, we show that the polynomial equations involving the modular transformations for the one-point blocks on the torus are not independent. And along the way, we discuss the reconstruction of the quantum group in a rational conformal theory. Finally, we discuss the solution of structure constants for a physical theory. Making some assumption, we obtain a neat solution. And this solution in turn implies that the quantum groups of the left sector and of the right sector must be the same, although the chiral algebras need not to be the same. Some examples are given. (orig.)
Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models
Nojiri, Shin'Ichi; Odintsov, Sergei D.
2011-08-01
The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.
Topologically massive gauge theories and their dual factorized gauge-invariant formulation
International Nuclear Information System (INIS)
Bertrand, Bruno; Govaerts, Jan
2007-01-01
There exists a well-known duality between the Maxwell-Chern-Simons theory and the 'self-dual' massive model in (2 + 1) dimensions. This dual description may be extended to topologically massive gauge theories (TMGT) for forms of arbitrary rank and in any dimension. This communication introduces the construction of this type of duality through a reparametrization of the 'master' theory action. The dual action thereby obtained preserves the full gauge symmetry structure of the original theory. Furthermore, the dual action is factorized into a propagating sector of massive gauge-invariant variables and a decoupled sector of gauge-variant variables defining a pure topological field theory. Combining the results obtained within the Lagrangian and Hamiltonian formulations, a completed structure for a gauge-invariant dual factorization of TMGT is thus achieved. (fast track communication)
On some classical problems of descriptive set theory
International Nuclear Information System (INIS)
Kanovei, Vladimir G; Lyubetskii, Vasilii A
2003-01-01
The centenary of P.S. Novikov's birth provides an inspiring motivation to present, with full proofs and from a modern standpoint, the presumably definitive solutions of some classical problems in descriptive set theory which were formulated by Luzin [Lusin] and, to some extent, even earlier by Hadamard, Borel, and Lebesgue and relate to regularity properties of point sets. The solutions of these problems began in the pioneering works of Aleksandrov [Alexandroff], Suslin [Souslin], and Luzin (1916-17) and evolved in the fundamental studies of Goedel, Novikov, Cohen, and their successors. Main features of this branch of mathematics are that, on the one hand, it is an ordinary mathematical theory studying natural properties of point sets and functions and rather distant from general set theory or intrinsic problems of mathematical logic like consistency or Goedel's theorems, and on the other hand, it has become a subject of applications of the most subtle tools of modern mathematical logic
On the consistency of classical and quantum supergravity theories
Energy Technology Data Exchange (ETDEWEB)
Hack, Thomas-Paul [II. Institute for Theoretical Physics, University of Hamburg (Germany); Makedonski, Mathias [Department of Mathematical Sciences, University of Copenhagen (Denmark); Schenkel, Alexander [Department of Stochastics, University of Wuppertal (Germany)
2012-07-01
It is known that pure N=1 supergravity in d=4 spacetime dimensions is consistent at a classical and quantum level, i.e. that in a particular gauge the field equations assume a hyperbolic form - ensuring causal propagation of the degrees of freedom - and that the associated canonical quantum field theory satisfies unitarity. It seems, however, that it is yet unclear whether these properties persist if one considers the more general and realistic case of N=1, d=4 supergravity theories including arbitrary matter fields. We partially clarify the issue by introducing novel hyperbolic gauges for the gravitino field and proving that they commute with the resulting equations of motion. Moreover, we review recent partial results on the unitarity of these general supergravity theories and suggest first steps towards a comprehensive unitarity proof.
Implications of conformal invariance for quantum field theories in d>2
International Nuclear Information System (INIS)
Osborn, H.
1994-01-01
Recently obtained results for two and three point functions for quasi-primary operators in conformally invariant theories in arbitrary dimensions d are described. As a consequence the three point function for the energy momentum tensor has three linearly independent forms for general d compatible with conformal invariance. The corresponding coefficients may be regarded as possible generalisations of the Virasoro central charge to d larger than 2. Ward identities which link two linear combinations of the coefficients to terms appearing in the energy momentum tensor trace anomaly on curved space are discussed. The requirement of positivity for expectation values of the energy density is also shown to lead to positivity conditions which are simple for a particular choice of the three coefficients. Renormalisation group like equations which express the constraints of broken conformal invariance for quantum field theories away from critical points are postulated and applied to two point functions. (orig.)
Four-dimensional Yang-Mills theory, gauge invariant mass and fluctuating three-branes
International Nuclear Information System (INIS)
Niemi, Antti J; Slizovskiy, Sergey
2010-01-01
We are interested in a gauge invariant coupling between four-dimensional Yang-Mills field and a three-brane that can fluctuate into higher dimensions. For this we interpret the Yang-Mills theory as a higher dimensional bulk gravity theory with dynamics that is governed by the Einstein action, and with a metric tensor constructed from the gauge field in a manner that displays the original gauge symmetry as an isometry. The brane moves in this higher dimensional spacetime under the influence of its bulk gravity, with dynamics determined by the Nambu action. This introduces the desired interaction between the brane and the gauge field in a way that preserves the original gauge invariance as an isometry of the induced metric. After a prudent change of variables the result can be interpreted as a gauge invariant and massive vector field that propagates in the original spacetime R 4 . The presence of the brane becomes entirely invisible, expect for the mass.
Classical Bianchi Type I Cosmology in K-Essence Theory
International Nuclear Information System (INIS)
Pimentel, Luis O.; Socorro, J.; Espinoza-García, Abraham
2014-01-01
We use one of the simplest forms of the K-essence theory and we apply it to the classical anisotropic Bianchi type I cosmological model, with a barotropic perfect fluid (p=γρ) modeling the usual matter content and with cosmological constant Λ. Classical exact solutions for any γ≠1 and Λ=0 are found in closed form, whereas solutions for Λ≠0 are found for particular values in the barotropic parameter. We present the possible isotropization of the cosmological model Bianchi I using the ratio between the anisotropic parameters and the volume of the universe. We also include a qualitative analysis of the analog of the Friedmann equation.
Remarks on the classical limit of quantum field theories
International Nuclear Information System (INIS)
Eckmann, J.P.
1977-01-01
Recently, there has been an increasing interest in computing quantum mechanical corrections to solutions of classical field equations. In this note, proceeding in the opposite way, theorems about the classical limit of relativistic quantum field models are summarized. These results are a byproduct of the so called 'constructive' approach to quantum field theory. Section 1 deals with generalities; in Section 2 the situation where no phase transitions occur is discussed in the limit h→0; and in Section 3 one result in the case where such a transition occurs is reformulated (Glimm et al). The validity of the loop expansion is discussed. It seems however that the tools to show the rigorous validity of soliton calculations are not yet prepared. (Auth.)
Quantum properties of double kicked systems with classical translational invariance in momentum
Dana, Itzhack
2015-01-01
Double kicked rotors (DKRs) appear to be the simplest nonintegrable Hamiltonian systems featuring classical translational symmetry in phase space (i.e., in angular momentum) for an infinite set of values (the rational ones) of a parameter η . The experimental realization of quantum DKRs by atom-optics methods motivates the study of the double kicked particle (DKP). The latter reduces, at any fixed value of the conserved quasimomentum β ℏ , to a generalized DKR, the "β -DKR ." We determine general quantum properties of β -DKRs and DKPs for arbitrary rational η . The quasienergy problem of β -DKRs is shown to be equivalent to the energy eigenvalue problem of a finite strip of coupled lattice chains. Exact connections are then obtained between quasienergy spectra of β -DKRs for all β in a generically infinite set. The general conditions of quantum resonance for β -DKRs are shown to be the simultaneous rationality of η ,β , and a scaled Planck constant ℏS. For rational ℏS and generic values of β , the quasienergy spectrum is found to have a staggered-ladder structure. Other spectral structures, resembling Hofstadter butterflies, are also found. Finally, we show the existence of particular DKP wave-packets whose quantum dynamics is free, i.e., the evolution frequencies of expectation values in these wave-packets are independent of the nonintegrability. All the results for rational ℏS exhibit unique number-theoretical features involving η ,ℏS, and β .
Weak values in a classical theory with an epistemic restriction
International Nuclear Information System (INIS)
Karanjai, Angela; Cavalcanti, Eric G; Bartlett, Stephen D; Rudolph, Terry
2015-01-01
Weak measurement of a quantum system followed by postselection based on a subsequent strong measurement gives rise to a quantity called the weak value: a complex number for which the interpretation has long been debated. We analyse the procedure of weak measurement and postselection, and the interpretation of the associated weak value, using a theory of classical mechanics supplemented by an epistemic restriction that is known to be operationally equivalent to a subtheory of quantum mechanics. Both the real and imaginary components of the weak value appear as phase space displacements in the postselected expectation values of the measurement device's position and momentum distributions, and we recover the same displacements as in the quantum case by studying the corresponding evolution in our theory of classical mechanics with an epistemic restriction. By using this epistemically restricted theory, we gain insight into the appearance of the weak value as a result of the statistical effects of post selection, and this provides us with an operational interpretation of the weak value, both its real and imaginary parts. We find that the imaginary part of the weak value is a measure of how much postselection biases the mean phase space distribution for a given amount of measurement disturbance. All such biases proportional to the imaginary part of the weak value vanish in the limit where disturbance due to measurement goes to zero. Our analysis also offers intuitive insight into how measurement disturbance can be minimized and the limits of weak measurement. (paper)
Classical Noether theory with application to the linearly damped particle
International Nuclear Information System (INIS)
Leone, Raphaël; Gourieux, Thierry
2015-01-01
This paper provides a modern presentation of Noether’s theory in the realm of classical dynamics, with application to the problem of a particle submitted to both a potential and a linear dissipation. After a review of the close relationships between Noether symmetries and first integrals, we investigate the variational point symmetries of the Lagrangian introduced by Bateman, Caldirola and Kanai. This analysis leads to the determination of all the time-independent potentials allowing such symmetries, in the one-dimensional and the radial cases. Then we develop a symmetry-based transformation of Lagrangians into autonomous others, and apply it to our problem. To be complete, we enlarge the study to Lie point symmetries which we associate logically to the Noether ones. Finally, we succinctly address the issue of a ‘weakened’ Noether’s theory, in connection with ‘on-flows’ symmetries and non-local constant of motions, because it has a direct physical interpretation in our specific problem. Since the Lagrangian we use gives rise to simple calculations, we hope that this work will be of didactic interest to graduate students, and give teaching material as well as food for thought for physicists regarding Noether’s theory and the recent developments around the idea of symmetry in classical mechanics. (paper)
BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory
Mann, Robert
2013-02-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is
Blazevski, Daniel; Franklin, Jennifer
2012-12-01
Scattering theory is a convenient way to describe systems that are subject to time-dependent perturbations which are localized in time. Using scattering theory, one can compute time-dependent invariant objects for the perturbed system knowing the invariant objects of the unperturbed system. In this paper, we use scattering theory to give numerical computations of invariant manifolds appearing in laser-driven reactions. In this setting, invariant manifolds separate regions of phase space that lead to different outcomes of the reaction and can be used to compute reaction rates.
Theory of quark mixing matrix and invariant functions of mass matrices
International Nuclear Information System (INIS)
Jarlskog, C.
1987-10-01
The outline of this talk is as follows: The origin of the quark mixing matrix. Super elementary theory of flavour projection operators. Equivalences and invariances. The commutator formalism and CP violation. CP conditions for any number of families. The 'angle' between the quark mass matrices. Application to Fritzsch and Stech matrices. References. (author)
An introduction to conformal invariance in quantum field theory and statistical mechanics
International Nuclear Information System (INIS)
Boyanovsky, D.; Naon, C.M.
1990-01-01
The subject of conformal invariance provides an extraordinarly successful and productive symbiosis between statistical mechanics and quantum field theory. The main goal of this paper, which is tailored to a wide audience, is to give an introduction to such vast subject (C.P.)
Gauge-invariant metric fluctuations from NKK theory of gravity: de Sitter expansion
International Nuclear Information System (INIS)
Aguilar, Jose Edgar Madriz; Anabitarte, Mariano; Bellini, Mauricio
2006-01-01
In this Letter we study gauge-invariant metric fluctuations from a noncompact Kaluza-Klein (NKK) theory of gravity in de Sitter expansion. We recover the well-known result δρ/ρ∼2Φ, obtained from the standard 4D semiclassical approach to inflation. The spectrum for these fluctuations should be dependent of the fifth (spatial-like) coordinate
Motion of small bodies in classical field theory
International Nuclear Information System (INIS)
Gralla, Samuel E.
2010-01-01
I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body's composition (and, e.g., black holes are allowed). The worldline 'left behind' by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the 'Bianchi identity' for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the ''monopoles'' of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of 'chameleon' bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.
A possibilistic uncertainty model in classical reliability theory
International Nuclear Information System (INIS)
De Cooman, G.; Capelle, B.
1994-01-01
The authors argue that a possibilistic uncertainty model can be used to represent linguistic uncertainty about the states of a system and of its components. Furthermore, the basic properties of the application of this model to classical reliability theory are studied. The notion of the possibilistic reliability of a system or a component is defined. Based on the concept of a binary structure function, the important notion of a possibilistic function is introduced. It allows to calculate the possibilistic reliability of a system in terms of the possibilistic reliabilities of its components
Kohli, Nidhi; Koran, Jennifer; Henn, Lisa
2015-01-01
There are well-defined theoretical differences between the classical test theory (CTT) and item response theory (IRT) frameworks. It is understood that in the CTT framework, person and item statistics are test- and sample-dependent. This is not the perception with IRT. For this reason, the IRT framework is considered to be theoretically superior…
The Prediction of Item Parameters Based on Classical Test Theory and Latent Trait Theory
Anil, Duygu
2008-01-01
In this study, the prediction power of the item characteristics based on the experts' predictions on conditions try-out practices cannot be applied was examined for item characteristics computed depending on classical test theory and two-parameters logistic model of latent trait theory. The study was carried out on 9914 randomly selected students…
Super-BMS{sub 3} invariant boundary theory from three-dimensional flat supergravity
Energy Technology Data Exchange (ETDEWEB)
Barnich, Glenn; Donnay, Laura [Physique Théorique et Mathématique, Université Libre de Bruxelles andInternational Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Matulich, Javier; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Casilla 1469, Valdivia (Chile)
2017-01-09
The two-dimensional super-BMS{sub 3} invariant theory dual to three-dimensional asymptotically flat N=1 supergravity is constructed. It is described by a constrained or gauged chiral Wess-Zumino-Witten action based on the super-Poincaré algebra in the Hamiltonian, respectively the Lagrangian formulation, whose reduced phase space description corresponds to a supersymmetric extension of flat Liouville theory.
Stochastic theory for classical and quantum mechanical systems
International Nuclear Information System (INIS)
Pena, L. de la; Cetto, A.M.
1975-01-01
From first principles a theory of stochastic processes in configuration space is formulated. The fundamental equations of the theory are an equation of motion which generalizes Newton's second law and an equation which expresses the condition of conservation of matter. Two types of stochastic motion are possible, both described by the same general equations, but leading in one case to classical Brownian motion behavior and in the other to quantum mechanical behavior. The Schroedinger equation, which is derived with no further assumption, is thus shown to describe a specific stochastic process. It is explicitly shown that only in the quantum mechanical process does the superposition of probability amplitudes give rise to interference phenomena; moreover, the presence of dissipative forces in the Brownian motion equations invalidates the superposition principle. At no point are any special assumptions made concerning the physical nature of the underlying stochastic medium, although some suggestions are discussed in the last section
Marshaling Resources: A Classic Grounded Theory Study of Online Learners
Directory of Open Access Journals (Sweden)
Barbara Yalof
2014-06-01
Full Text Available Classic grounded theory (CGT was used to identify a main concern of online students in higher education. One of the main impediments to studying online is a sense of isolation and lack of access to support systems as students navigate through complex requirements of their online programs. Hypothetical probability statements illustrate the imbalance between heightened needs of virtual learners and perceived inadequate support provided by educational institutions. The core variable, marshaling resources, explains how peer supports sustain motivation toward successful program completion. Understanding the critical contribution virtual interpersonal networks make towards maximizing resources by group problem solving is a significant aspect of this theory. Keywords: Online learning, e-learning, personal learning networks, peer networks
An application of information theory to stochastic classical gravitational fields
Angulo, J.; Angulo, J. C.; Angulo, J. M.
2018-06-01
The objective of this study lies on the incorporation of the concepts developed in the Information Theory (entropy, complexity, etc.) with the aim of quantifying the variation of the uncertainty associated with a stochastic physical system resident in a spatiotemporal region. As an example of application, a relativistic classical gravitational field has been considered, with a stochastic behavior resulting from the effect induced by one or several external perturbation sources. One of the key concepts of the study is the covariance kernel between two points within the chosen region. Using this concept and the appropriate criteria, a methodology is proposed to evaluate the change of uncertainty at a given spatiotemporal point, based on available information and efficiently applying the diverse methods that Information Theory provides. For illustration, a stochastic version of the Einstein equation with an added Gaussian Langevin term is analyzed.
Classical theory of rotational rainbow scattering from uncorrugated surfaces
International Nuclear Information System (INIS)
Khodorkovsky, Yuri; Averbukh, Ilya Sh; Pollak, Eli
2010-01-01
A classical perturbation theory is developed to study rotational rainbow scattering of molecules from uncorrugated frozen surfaces. Considering the interaction of the rigid rotor with the translational motion towards the surface to be weak allows for a perturbative treatment, in which the known zeroth order motion is that of a freely rotating molecule hitting a surface. Using perturbation theory leads to explicit expressions for the angular momentum deflection function with respect to the initial orientational angle of the rotor that are valid for any magnitude of the initial angular momentum. The rotational rainbows appear as peaks both in the final angular momentum and rotational energy distributions, as well as peaks in the angular distribution, although the surface is assumed to be uncorrugated. The derived analytic expressions are compared with numerical simulation data. Even when the rotational motion is significantly coupled to the translational motion, the predictions of the perturbative treatment remain qualitatively correct.
International Nuclear Information System (INIS)
Rund, H.
1984-01-01
A certain class of geometric objects is considered against the background of a classical gauge field associated with an arbitrary structural Lie group. It is shown that the necessary and sufficient conditions for the invariance of the given objects under a finite gauge transformation are embodied in a set of three relations involving the derivatives of their components. As a special case these so-called invariance identities indicate that there cannot exist a gauge-invariant Lagrangian that depends on the gauge potentials, the interaction parameters, and the 4-velocity components of a test particle. However, the requirement that the equations of motion that result from such a lagrangian be gauge-invariant, uniquely determines the structure of these equations. (author)
Entropy Spectrum of Black Holes of Heterotic String Theory via Adiabatic Invariance
Institute of Scientific and Technical Information of China (English)
Alexis Larra？ aga; Luis Cabarique; Manuel Londo？ o
2012-01-01
Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.
Classical field theory on electrodynamics, non-abelian gauge theories and gravitation
Scheck, Florian
2018-01-01
Scheck’s successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary...
Radjavi, Heydar
2003-01-01
This broad survey spans a wealth of studies on invariant subspaces, focusing on operators on separable Hilbert space. Largely self-contained, it requires only a working knowledge of measure theory, complex analysis, and elementary functional analysis. Subjects include normal operators, analytic functions of operators, shift operators, examples of invariant subspace lattices, compact operators, and the existence of invariant and hyperinvariant subspaces. Additional chapters cover certain results on von Neumann algebras, transitive operator algebras, algebras associated with invariant subspaces,
Relativistic and nonrelativistic classical field theory on fivedimensional space-time
International Nuclear Information System (INIS)
Kunzle, H.P.; Duval, C.
1985-07-01
This paper is a sequel to earlier ones in which, on the one hand, classical field theories were described on a curved Newtonian space-time, and on the other hand, the Newtonian gravitation theory was formulated on a fivedimensional space-time with a metric of signature and a covariantly constant vector field. Here we show that Lagrangians for matter fields are easily formulated on this extended space-time from simple invariance arguments and that stress-energy tensors can be derived from them in the usual manner so that four-dimensional space-time expressions are obtained that are consistent in the relativistic as well as in the Newtonian case. In the former the theory is equivalent to General Relativity. When the magnitude of the distinguished vector field vanishes equations for the (covariant) Newtonian limit follow. We demonstrate this here explicity in the case of the Klein-Gordon/Schroedinger and the Dirac field and its covariant nonrelativistic analogue, the Levy-Leblond field. Especially in the latter example the covariant Newtonian theory simplifies dramatically in this fivedimensional form
Quasiperiodical orbits in the scalar classical lambdaphi4 field theory
International Nuclear Information System (INIS)
Belova, T.I.; Kudryavtsev, A.E.
1985-01-01
New numerical and theoretical results of resonance kink-antikink (Kanti K) interactions in the classical one-dimentional space Higgs theory are presented. Earlier studies of these interactions revealed nine initial relative velocity-intervals with two-bounce Kanti K-collisions followed by the escape of kinks to infinite separations, the breathing solution was formed outside those intervals. Two-bounce Kanti K-interactions with the number of small oscillations between Kanti K-bounces up to 35 in the initial kink velocity interval 0.18 <= Vsub(infinite) <= 0.26 were found. Several examples for n-bounces Kanti K-interaction (n <= 6) are also found. The observed phenomenon can be explaned by the existence of quasi-two-periodical solutions of the nonlinear wave equation. The simple Hamiltonian with two degrees of freedom is studied. This model supplies quantitative descrtiptions of all numerical results for the field theory considered above. The considered phenomenon may be called ''autoquantization'' of a nonlinear classical scalar selfinteracting field
International Nuclear Information System (INIS)
Mackrodt, C.; Reeh, H.
1997-01-01
General summational invariants, i.e., conservation laws acting additively on asymptotic particle states, are investigated within a classical framework for point particles with nontrivial scattering. copyright 1997 American Institute of Physics
Bulk and boundary invariants for complex topological insulators from K-theory to physics
Prodan, Emil
2016-01-01
This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetries or with just a chiral symmetry. Particular focus is on the stability of the topological invariants in the presence of strong disorder, on the interplay between the bulk and boundary invariants and on their dependence on magnetic fields. The first part presents motivating examples and the conjectures put forward by the physics community, together with a brief review of the experimental achievements. The second part develops an operator algebraic approach for the study of disordered topological insulators. This leads naturally to use analysis tools from K-theory and non-commutative geometry, such as cyclic cohomology, quantized calculus with Fredholm modules and index pairings. New results include a generalized Streda formula and a proof of the delocalized nature of surface states in topological insulators with non-trivial invariants. The concluding chapter connect...
Anthropology and social theory: renewing dialogue via the classics
DEFF Research Database (Denmark)
Thomassen, Bjørn
2011-01-01
Agnes Horvath, Bjørn Thomassen, & Dr Harald Wydra, editors of the Journal,International Political Anthropology “Anthropology and social theory: renewing dialogue via the classics” This paper argues that anthropology may represent a perspective from where social theory can renew itself. The presen......Agnes Horvath, Bjørn Thomassen, & Dr Harald Wydra, editors of the Journal,International Political Anthropology “Anthropology and social theory: renewing dialogue via the classics” This paper argues that anthropology may represent a perspective from where social theory can renew itself...... simply representing a view from "below", a politically correct appreciation of cultural diversity, or a taste for the exotic and marginal. It involves, we argue, attention towards key theoretical concepts developed within "classical" anthropology that uniquely facilitate a proper understanding...... in mechanical rationalisation on the one hand, and the mere stimulation of the senses on the other, guided by an exclusively materialistic and utilitarian vision of the human being and its social environment, it is possible to take inspiration from Antiquity in order to spark a renewal badly needed...
Directory of Open Access Journals (Sweden)
O.A. Awopeju
2017-12-01
Full Text Available The study investigated the invariance properties of one, two and three parame-ter logistic item response theory models. It examined the best fit among one parameter logistic (1PL, two-parameter logistic (2PL and three-parameter logistic (3PL IRT models for SSCE, 2008 in Mathematics. It also investigated the degree of invariance of the IRT models based item difficulty parameter estimates in SSCE in Mathematics across different samples of examinees and examined the degree of invariance of the IRT models based item discrimination estimates in SSCE in Mathematics across different samples of examinees. In order to achieve the set objectives, 6000 students (3000 males and 3000 females were drawn from the population of 35262 who wrote the 2008 paper 1 Senior Secondary Certificate Examination (SSCE in Mathematics organized by National Examination Council (NECO. The item difficulty and item discrimination parameter estimates from CTT and IRT were tested for invariance using BLOG MG 3 and correlation analysis was achieved using SPSS version 20. The research findings were that two parameter model IRT item difficulty and discrimination parameter estimates exhibited invariance property consistently across different samples and that 2-parameter model was suitable for all samples of examinees unlike one-parameter model and 3-parameter model.
Classical field theory. On electrodynamics, non-Abelian gauge theories and gravitation. 2. ed.
Energy Technology Data Exchange (ETDEWEB)
Scheck, Florian
2018-04-01
Scheck's successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes with a discussion of the Schwarzschild solution of Einstein's equations and the classical tests of general relativity. The new concept of this edition presents the content divided into two tracks: the fast track for master's students, providing the essentials, and the intensive track for all wanting to get in depth knowledge of the field. Cleary labeled material and sections guide students through the preferred level of treatment. Numerous problems and worked examples will provide successful access to Classical Field Theory.
Duality invariance of non-anticommutative N = 1/2 supersymmetric U(1) gauge theory
International Nuclear Information System (INIS)
Dayi, Oemer F.; Kelleyane, Lara T.; Uelker, Kayhan
2005-01-01
A parent action is introduced to formulate (S-) dual of non-anticommutative N = 1/2 supersymmetric U(1) gauge theory. Partition function for parent action in phase space is utilized to establish the equivalence of partition functions of the theories which this parent action produces. Thus, duality invariance of non-anticommutative N = 1/2 supersymmetric U(1) gauge theory follows. The results which we obtained are valid at tree level or equivalently at the first order in the nonanticommutativity parameter C μν
On the question of symmetries in nonrelativistic diffeomorphism-invariant theories
Banerjee, Rabin; Gangopadhyay, Sunandan; Mukherjee, Pradip
2017-07-01
A novel algorithm is provided to couple a Galilean-invariant model with curved spatial background by taking nonrelativistic limit of a unique minimally coupled relativistic theory, which ensures Galilean symmetry in the flat limit and canonical transformation of the original fields. That the twin requirements are fulfilled is ensured by a new field, the existence of which was demonstrated recently from Galilean gauge theory. The ambiguities and anomalies concerning the recovery of Galilean symmetry in the flat limit of spatial nonrelativistic diffeomorphic theories, reported in the literature, are focused and resolved from a new angle.
Classical and Quantum Nonlinear Integrable Systems: Theory and Application
International Nuclear Information System (INIS)
Brzezinski, Tomasz
2003-01-01
This is a very interesting collection of introductory and review articles on the theory and applications of classical and quantum integrable systems. The book reviews several integrable systems such as the KdV equation, vertex models, RSOS and IRF models, spin chains, integrable differential equations, discrete systems, Ising, Potts and other lattice models and reaction--diffusion processes, as well as outlining major methods of solving integrable systems. These include Lax pairs, Baecklund and Miura transformations, the inverse scattering method, various types of the Bethe Ansatz, Painleve methods, the dbar method and fusion methods to mention just a few. The book is divided into two parts, each containing five chapters. The first part is devoted to classical integrable systems and introduces the subject through the KdV equation, and then proceeds through Painleve analysis, discrete systems and two-dimensional integrable partial differential equations, to culminate in the review of solvable lattice models in statistical physics, solved through the coordinate and algebraic Bethe Ansatz methods. The second part deals with quantum integrable systems, and begins with an outline of unifying approaches to quantum, statistical, ultralocal and non-ultralocal systems. The theory and methods of solving quantum integrable spin chains are then described. Recent developments in applying Bethe Ansatz methods in condensed matter physics, including superconductivity and nanoscale physics, are reviewed. The book concludes with an introduction to diffusion-reaction processes. Every chapter is devoted to a different subject and is self-contained, and thus can be read separately. A reader interesting in classical methods of solitons, such as the methods of solving the KdV equation, can start from Chapter 1, while a reader interested in the Bethe Ansatz method can immediately proceed to Chapter 5, and so on. Thus the book should appeal and be useful to a wide range of theoretical
Classical nucleation theory in the phase-field crystal model.
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
Information flow, causality, and the classical theory of tachyons
International Nuclear Information System (INIS)
Basano, L.
1977-01-01
Causal paradoxes arising in the tachyon theory have been systematically solved by using the reinterpretation principle as a consequence of which cause and effect no longer retain an absolute meaning. However, even in the tachyon theory, a cause is always seen to chronologically precede its effect, but this is obtained at the price of allowing cause and effect to be interchanged when required. A recent result has shown that this interchange-ability of cause and effect must not be unlimited if heavy paradoxes are to be avoided. This partial recovery of the classical concept of causality has been expressed by the conjecture that transcendent tachyons cannot be absorbed by a tachyon detector. In this paper the directional properties of the flow of information between two observers in relative motion and its consequences on the logical self-consistency of the theory of superluminal particles are analyzed. It is shown that the above conjecture does not provide a satisfactory solution to the problem because it implies that tachyons of any speed cannot be intercepted by the same detector. (author)
Classical nucleation theory in the phase-field crystal model
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
International Nuclear Information System (INIS)
Bruneton, Jean-Philippe
2007-01-01
Field theories with Lorentz (or diffeomorphism invariant) action can exhibit superluminal behavior through the breaking of local Lorentz invariance. Quantum induced superluminal velocities are well-known examples of this effect. The issue of the causal behavior of such propagation is somewhat controversial in the literature and we intend to clarify it. We provide a careful analysis of the meaning of causality in classical relativistic field theories and stress the role played by the Cauchy problem and the notion of chronology. We show that, in general, superluminal behavior threatens causality only if one assumes that a prior chronology in spacetime exists. In the case where superluminal propagation occurs, however, there are at least two nonconformally related metrics in spacetime and thus two available notions of chronology. These two chronologies are on equal footing, and it would thus be misleading to choose ab initio one of them to define causality. Rather, we provide a formulation of causality in which no prior chronology is assumed. We argue that this is the only way to deal with the issue of causality in the case where some degrees of freedom propagate faster than others. In that framework, then, it is shown that superluminal propagation is not necessarily noncausal, the final answer depending on the existence of an initial data formulation. This also depends on global properties of spacetime that we discuss in detail. As an illustration of these conceptual issues, we consider two field theories, namely, k-essence scalar fields and bimetric theories of gravity, and we derive the conditions imposed by causality. We discuss various applications such as the dark energy problem, modified-Newtonian-dynamics-like theories of gravity, and varying speed of light theories
Energy Technology Data Exchange (ETDEWEB)
Ansel' m, A A; D' yakonov, D I [AN SSSR, Leningrad. Inst. Yadernoj Fiziki
1975-01-01
The mechanism of dynamic spontaneous breaking of the Coleman-Weinberg gauge invariance is discussed in which scalar fields assume nonzero mean values owing to quantum effects in higher orders of the perturbation theory. Group renormalization methods are used to study scalar electrodynamics and gauge theories similar to that of Yang and Mills; for these gauge theories it is established that by choosing proper constants it is possible to combine the acquisition of a mass by particles, owing to a dynamic violation of symmetry, with the asymptotic freedom of the theory. The symmetry violation is found to be closely related to infrared poles observed in effective charge for asymptotically free theories. The emerging masses of particles automatically cover these poles. It is proved that physical results due to symmetry violation do not depend, at least in the first non-trivial order of the perturbation theory, on the initial gauging of vector fields.
Geometry of Lagrangian first-order classical field theories
International Nuclear Information System (INIS)
Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N.
1996-01-01
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether's theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)
Complex analysis fundamentals of the classical theory of functions
Stalker, John
1998-01-01
This clear, concise introduction to the classical theory of one complex variable is based on the premise that "anything worth doing is worth doing with interesting examples." The content is driven by techniques and examples rather than definitions and theorems. This self-contained monograph is an excellent resource for a self-study guide and should appeal to a broad audience. The only prerequisite is a standard calculus course. The first chapter deals with a beautiful presentation of special functions. . . . The third chapter covers elliptic and modular functions. . . in much more detail, and from a different point of view, than one can find in standard introductory books. . . . For [the] subjects that are omitted, the author has suggested some excellent references for the reader who wants to go through these topics. The book is read easily and with great interest. It can be recommended to both students as a textbook and to mathematicians and physicists as a useful reference. ---Mathematical Reviews Mainly or...
Geometry of Lagrangian first-order classical field theories
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Enriquez, A. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Munoz-Lecanda, M.C. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Roman-Roy, N. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica
1996-10-01
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether`s theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)
Principles of physics from quantum field theory to classical mechanics
Jun, Ni
2014-01-01
This book starts from a set of common basic principles to establish the formalisms in all areas of fundamental physics, including quantum field theory, quantum mechanics, statistical mechanics, thermodynamics, general relativity, electromagnetic field, and classical mechanics. Instead of the traditional pedagogic way, the author arranges the subjects and formalisms in a logical-sequential way, i.e. all the formulas are derived from the formulas before them. The formalisms are also kept self-contained. Most of the required mathematical tools are also given in the appendices. Although this book covers all the disciplines of fundamental physics, the book is concise and can be treated as an integrated entity. This is consistent with the aphorism that simplicity is beauty, unification is beauty, and thus physics is beauty. The book may be used as an advanced textbook by graduate students. It is also suitable for physicists who wish to have an overview of fundamental physics. Readership: This is an advanced gradua...
Classical mechanics including an introduction to the theory of elasticity
Hentschke, Reinhard
2017-01-01
This textbook teaches classical mechanics as one of the foundations of physics. It describes the mechanical stability and motion in physical systems ranging from the molecular to the galactic scale. Aside from the standard topics of mechanics in the physics curriculum, this book includes an introduction to the theory of elasticity and its use in selected modern engineering applications, e.g. dynamic mechanical analysis of viscoelastic materials. The text also covers many aspects of numerical mechanics, ranging from the solution of ordinary differential equations, including molecular dynamics simulation of many particle systems, to the finite element method. Attendant Mathematica programs or parts thereof are provided in conjunction with selected examples. Numerous links allow the reader to connect to related subjects and research topics. Among others this includes statistical mechanics (separate chapter), quantum mechanics, space flight, galactic dynamics, friction, and vibration spectroscopy. An introductory...
A two-parameter extension of classical nucleation theory
Lutsko, James F.; Durán-Olivencia, Miguel A.
2015-06-01
A two-variable stochastic model for diffusion-limited nucleation is developed using a formalism derived from fluctuating hydrodynamics. The model is a direct generalization of the standard classical nucleation theory (CNT). The nucleation rate and pathway are calculated in the weak-noise approximation and are shown to be in good agreement with direct numerical simulations for the weak-solution/strong-solution transition in globular proteins. We find that CNT underestimates the time needed for the formation of a critical cluster by two orders of magnitude and that this discrepancy is due to the more complex dynamics of the two variable model and not, as often is assumed, a result of errors in the estimation of the free energy barrier.
A two-parameter extension of classical nucleation theory
International Nuclear Information System (INIS)
Lutsko, James F; Durán-Olivencia, Miguel A
2015-01-01
A two-variable stochastic model for diffusion-limited nucleation is developed using a formalism derived from fluctuating hydrodynamics. The model is a direct generalization of the standard classical nucleation theory (CNT). The nucleation rate and pathway are calculated in the weak-noise approximation and are shown to be in good agreement with direct numerical simulations for the weak-solution/strong-solution transition in globular proteins. We find that CNT underestimates the time needed for the formation of a critical cluster by two orders of magnitude and that this discrepancy is due to the more complex dynamics of the two variable model and not, as often is assumed, a result of errors in the estimation of the free energy barrier. (paper)
Fundamental Elements and Interactions of Nature: A Classical Unification Theory
Directory of Open Access Journals (Sweden)
Tianxi Zhang
2010-04-01
Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are considered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interaction between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation-color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deepens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a
Fundamental Elements and Interactions of Nature: A Classical Unification Theory
Directory of Open Access Journals (Sweden)
Zhang T. X.
2010-04-01
Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are con- sidered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interac- tion between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation- color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deep- ens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a
Formulation of invariant functional integrals and applications to the quantization of gauge theories
International Nuclear Information System (INIS)
Botelho, L.C.L.
1985-01-01
Introducting a metrical structure into the Configuration Space of Quantum Field Theories with Infinite-Dimensional symetry group, a formulation of Invariant Functional Integrals suitable for their quantization, is obtained. It is apllied to Gauge Theories of Yang-Mills and Polyakov's Bosonic String; obtaining several new facts about them, as well as reproducing some well known results. By following the general idea of invariant functional measures; a fermionic (chiral) change of variables in the fermionic sector of two-dimensional massless Quantum-Chromodynamics is implemented obtaining by the first time, a pure gluonic effective action for the model. In adittion, the complete solution for the Rothe-Stamatesu Model, is obtained. (author) [pt
Carpentier, David
1998-01-01
Using the renormalisation group (RG) we study two dimensional electromagnetic coulomb gas and extended Sine-Gordon theories invariant under the modular group SL(2,Z). The flow diagram is established from the scaling equations, and we derive the critical behaviour at the various transition points of the diagram. Following proposal for a SL(2,Z) duality between different quantum Hall fluids, we discuss the analogy between this flow and the global quantum Hall phase diagram.
Properties of partial-wave amplitudes in conformal invariant field theories
Ferrara, Sergio; Grillo, A F
1975-01-01
Analyticity properties of partial-wave amplitudes of the conformal group O/sub D,2/ (D not necessarily integer) in configuration space are investigated. The presence of Euclidean singularities in the Wilson expansion in conformal invariant field theories is discussed, especially in connection with the program of formulating dynamical bootstrap conditions coming from the requirement of causality. The exceptional case of D-2 is discussed in detail. (18 refs).
On conformal-invariant behaviour of four-point theories in ultraviolet asymptotics
International Nuclear Information System (INIS)
Ushveridze, A.G.
1977-01-01
A method is presented to obtain scale- and conformal-invariant solutions of four-point field theories in the ultraviolet asymptotics by means of reduction to the three-point problem. To do this a supplementary sigma field without a kinetic term is introduced and the Lagrangian is modified correspondingly. For the three-point problems the equations in form of the generalized unitarity conditions are solved further
Renormalization-group-invariant 1/N corrections to nontrival φ4 theory
International Nuclear Information System (INIS)
Smekal, L.v.; Langfeld, K.; Reinhardt, H.; Langbein, R.F.
1994-01-01
In the framework of path integral linearization techniques, the effective potential and the master field equation for massless φ 4 theory, in the modified loop expansion around the mean field, are derived up to next to leading order. In the O(N)-symmetric theory, these equations are equivalent to a subsummation of O(N) and order 1 diagrams. A renormalization prescription is proposed which is manifestly renormalization group invariant. The numerical results for the potential in next to leading order agree qualitatively well with the leading order ones. In particular, the nontrivial phase structure remains unchanged. Quantitatively, the corrections ar small for N much-gt 8, but even for N as small as one their essential effect is to modify the scaling coefficient β 0 in the Callan-Symanzik β function, in accordance with conventional loop expansions. The numerical results are best parametrized by scaling improved mean field formulas. Dimensional transmutation renders the overall (physical) mass scale M 0 , generated by a dynamical breaking of scale invariance, the only adjustable parameter of the theory. Renormalization group invariance of the numerical results is explicitly verified
Unusual high-energy phenomenology of Lorentz-invariant noncommutative field theories
International Nuclear Information System (INIS)
Carone, Christopher D.; Kwee, Herry J.
2006-01-01
It has been suggested that one may construct a Lorentz-invariant noncommutative field theory by extending the coordinate algebra to additional, fictitious coordinates that transform nontrivially under the Lorentz group. Integration over these coordinates in the action produces a four-dimensional effective theory with Lorentz invariance intact. Previous applications of this approach, in particular, to a specific construction of noncommutative QED, have been studied only in a low-momentum approximation. Here we discuss Lorentz-invariant field theories in which the relevant physics can be studied without requiring an expansion in the inverse scale of noncommutativity. Qualitatively, we find that tree-level scattering cross sections are dramatically suppressed as the center-of-mass energy exceeds the scale of noncommutativity, that cross sections that are isotropic in the commutative limit can develop a pronounced angular dependence, and that nonrelativistic potentials (for example, the Coloumb potential) become nonsingular at the origin. We consider a number of processes in noncommutative QED that may be studied at a future linear collider. We also give an example of scattering via a four-fermion operator in which the noncommutative modifications of the interaction can unitarize the tree-level amplitude, without requiring any other new physics in the ultraviolet
International Nuclear Information System (INIS)
Kaku, M.
1988-01-01
We present an entirely new approach to closed-string field theory, called Igeometric string field theory R, which avoids the complications found in Becchi-Rouet-Stora-Tyutin string field theory (e.g., ghost counting, infinite overcounting of diagrams, midpoints, lack of modular invariance). Following the analogy with general relativity and Yang-Mills theory, we define a new infinite-dimensional local gauge group, called the unified string group, which uniquely specifies the connection fields, the curvature tensor, the measure and tensor calculus, and finally the action itself. Geometric field theory, when gauge fixed, yields an entirely new class of gauges called the interpolating gauge which allows us to smoothly interpolate between the midpoint gauge and the end-point gauge (''covariantized light-cone gauge''). We can show that geometric string field theory reproduces one copy of the Shapiro-Virasoro model. Surprisingly, after the gauge is broken, a new Iclosed four-string interactionR emerges as the counterpart of the instantaneous four-fermion Coulomb term in QED. This term restores modular invariance and precisely fills the missing region of the complex plane
A course in mathematical physics 2 classical field theory
Thirring, Walter
1978-01-01
In the past decade the language and methods ofmodern differential geometry have been increasingly used in theoretical physics. What seemed extravagant when this book first appeared 12 years ago, as lecture notes, is now a commonplace. This fact has strengthened my belief that today students of theoretical physics have to learn that language-and the sooner the better. Afterall, they willbe the professors ofthe twenty-first century and it would be absurd if they were to teach then the mathematics of the nineteenth century. Thus for this new edition I did not change the mathematical language. Apart from correcting some mistakes I have only added a section on gauge theories. In the last decade it has become evident that these theories describe fundamental interactions, and on the classical level their structure is suffi cientlyclear to qualify them for the minimum amount ofknowledge required by a theoretician. It is with much regret that I had to refrain from in corporating the interesting developments in Kal...
Wigner's dynamical transition state theory in phase space: classical and quantum
International Nuclear Information System (INIS)
Waalkens, Holger; Schubert, Roman; Wiggins, Stephen
2008-01-01
We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs the evolution from reactants to products in high dimensional systems. In the classical case this is the standard Poincaré–Birkhoff normal form. In the quantum case we develop a normal form based on the Weyl calculus and an explicit algorithm for computing this quantum normal form. The classical normal form allows us to discover and compute the phase space structures that govern classical reaction dynamics. From this knowledge we are able to provide a direct construction of an energy dependent dividing surface in phase space having the properties that trajectories do not locally 're-cross' the surface and the directional flux across the surface is minimal. Using this, we are able to give a formula for the directional flux through the dividing surface that goes beyond the harmonic approximation. We relate this construction to the flux–flux autocorrelation function which is a standard ingredient in the expression for the reaction rate in the chemistry community. We also give a classical mechanical interpretation of the activated complex as a normally hyperbolic invariant manifold (NHIM), and further describe the structure of the NHIM. The quantum normal form provides us with an efficient algorithm to compute quantum reaction rates and we relate this algorithm to the quantum version of the flux–flux autocorrelation function formalism. The significance of the classical phase space structures for the quantum mechanics of reactions is elucidated by studying the phase space distribution of scattering states. The quantum normal form also provides an efficient way of computing Gamov–Siegert resonances. We relate these resonances to the lifetimes of the quantum activated
Mimetic discretization of the Abelian Chern-Simons theory and link invariants
Energy Technology Data Exchange (ETDEWEB)
Di Bartolo, Cayetano; Grau, Javier [Departamento de Física, Universidad Simón Bolívar, Apartado Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Leal, Lorenzo [Departamento de Física, Universidad Simón Bolívar, Apartado Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Centro de Física Teórica y Computacional, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 47270, Caracas 1041-A (Venezuela, Bolivarian Republic of)
2013-12-15
A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.
International Nuclear Information System (INIS)
Castro Moreira, I. de.
1983-01-01
A method introduced by Lewis and Leach for the obtention of exact invariants of the form I = Σ p sup(n) F sub(n) (q,t) for hamiltonian systems, is generalized and applied directly on the equations of motion. It gives us a general procedure to generates exact invariants also for non hamiltonian systems. (Author) [pt
Raykov, Tenko; Marcoulides, George A.
2016-01-01
The frequently neglected and often misunderstood relationship between classical test theory and item response theory is discussed for the unidimensional case with binary measures and no guessing. It is pointed out that popular item response models can be directly obtained from classical test theory-based models by accounting for the discrete…
What is so ‘classical’ about Classical Reception? Theories, Methodologies and Future Prospects
Anastasia Bakogianni
2016-01-01
This paper delivered at the University of Rio on 3rd June 2015 seeks to explore different approaches to the most fundamental questions in classical reception studies. What is classical reception? And more particularly what is so ‘classical’ about classical reception? It discusses current trends in theory and methodology via an analysis of two cinematic receptions of the ancient story of Electra; one that proclaims its debt to a classical text while the other masks its classical connections.
What is so ‘classical’ about Classical Reception? Theories, Methodologies and Future Prospects
Directory of Open Access Journals (Sweden)
Anastasia Bakogianni
2016-06-01
Full Text Available This paper delivered at the University of Rio on 3rd June 2015 seeks to explore different approaches to the most fundamental questions in classical reception studies. What is classical reception? And more particularly what is so ‘classical’ about classical reception? It discusses current trends in theory and methodology via an analysis of two cinematic receptions of the ancient story of Electra; one that proclaims its debt to a classical text while the other masks its classical connections.
Invariant Theory for Dispersed Transverse Isotropy: An Efficient Means for Modeling Fiber Splay
Freed, alan D.; Einstein, Daniel R.; Vesely, Ivan
2004-01-01
Most soft tissues possess an oriented architecture of collagen fiber bundles, conferring both anisotropy and nonlinearity to their elastic behavior. Transverse isotropy has often been assumed for a subset of these tissues that have a single macroscopically-identifiable preferred fiber direction. Micro-structural studies, however, suggest that, in some tissues, collagen fibers are approximately normally distributed about a mean preferred fiber direction. Structural constitutive equations that account for this dispersion of fibers have been shown to capture the mechanical complexity of these tissues quite well. Such descriptions, however, are computationally cumbersome for two-dimensional (2D) fiber distributions, let alone for fully three-dimensional (3D) fiber populations. In this paper, we develop a new constitutive law for such tissues, based on a novel invariant theory for dispersed transverse isotropy. The invariant theory is based on a novel closed-form splay invariant that can easily handle 3D fiber populations, and that only requires a single parameter in the 2D case. The model is polyconvex and fits biaxial data for aortic valve tissue as accurately as the standard structural model. Modification of the fiber stress-strain law requires no re-formulation of the constitutive tangent matrix, making the model flexible for different types of soft tissues. Most importantly, the model is computationally expedient in a finite-element analysis.
International Nuclear Information System (INIS)
Bach, A.
1981-01-01
A representation of quantum mechanics in terms of classical probability theory by means of integration in Hilbert space is discussed. This formal hidden-variables representation is analysed in the context of impossibility proofs concerning hidden-variables theories. The structural analogy of this formulation of quantum theory with classical statistical mechanics is used to elucidate the difference between classical mechanics and quantum mechanics. (author)
International Nuclear Information System (INIS)
Namsrai, Kh.; Nyamtseren, N.
1994-09-01
A model of the extended electron is constructed by using definition of the d-operation. Gauge invariance of the nonlocal theory is proved. We use the Efimov approach to describe the nonlocal interaction of quantized fields. (author). 4 refs
Energy Technology Data Exchange (ETDEWEB)
Steinmann, O [Bielefeld Univ. (F.R. Germany). Fakultaet fuer Physik
1975-01-01
Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(..mu nu..) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(..mu..); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(..mu nu..) with the current Jsub(..mu..). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(..mu..) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely.
A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories
Li, Wenliang
2018-04-01
We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories.
Gauge-invariant charged, monopole and dyon fields in gauge theories
International Nuclear Information System (INIS)
Froehlich, J.; Marchetti, P.A.
1999-01-01
We propose explicit recipes to construct the Euclidean Green functions of gauge-invariant charged, monopole and dyon fields in four-dimensional gauge theories whose phase diagram contains phases with deconfined electric and/or magnetic charges. In theories with only either abelian electric or magnetic charges, our construction is an Euclidean version of Dirac's original proposal, the magnetic dual of his proposal, respectively. Rigorous mathematical control is achieved for a class of abelian lattice theories. In theories where electric and magnetic charges coexist, our construction of Green functions of electrically or magnetically charged fields involves taking an average over Mandelstam strings or the dual magnetic flux tubes, in accordance with Dirac's flux quantization condition. We apply our construction to 't Hooft-Polyakov monopoles and Julia-Zee dyons. Connections between our construction and the semiclassical approach are discussed
Invariant operator theory for the single-photon energy in time-varying media
International Nuclear Information System (INIS)
Jeong-Ryeol, Choi
2010-01-01
After the birth of quantum mechanics, the notion in physics that the frequency of light is the only factor that determines the energy of a single photon has played a fundamental role. However, under the assumption that the theory of Lewis–Riesenfeld invariants is applicable in quantum optics, it is shown in the present work that this widely accepted notion is valid only for light described by a time-independent Hamiltonian, i.e., for light in media satisfying the conditions, ε(i) = ε(0), μ(t) = μ(0), and σ(t) = 0 simultaneously. The use of the Lewis–Riesenfeld invariant operator method in quantum optics leads to a marvelous result: the energy of a single photon propagating through time-varying linear media exhibits nontrivial time dependence without a change of frequency. (general)
Translation-invariant global charges in a local scattering theory of massless particles
International Nuclear Information System (INIS)
Strube, D.
1989-01-01
The present thesis is dedicated to the study for specifically translation-invariant charges in the framework of a Wightman field theory without mass gap. The aim consists thereby in the determination of the effect of the charge operator on asymptotic scattering states of massless particles. In the first section the most important results in the massive case and of the present thesis in the massless case are presented. The object of the second section is the construction of asymptotic scattering states. In the third section the charge operator, which is first only defined on strictly local vectors, is extended to these scattering states, on which it acts additively. Finally an infinitesimal transformation of scalar asymptotic fields is determined. By this for the special case of translation-invariant generators and scalar massless asymptotic fields the same results is present as in the massive case. (orig./HSI) [de
On covariant Poisson brackets in classical field theory
International Nuclear Information System (INIS)
Forger, Michael; Salles, Mário O.
2015-01-01
How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra
On covariant Poisson brackets in classical field theory
Energy Technology Data Exchange (ETDEWEB)
Forger, Michael [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Salles, Mário O. [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN (Brazil)
2015-10-15
How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.
International Nuclear Information System (INIS)
Bertrand, Bruno; Govaerts, Jan
2007-01-01
Abelian topologically massive gauge theories (TMGT) provide a topological mechanism to generate mass for a bosonic p-tensor field in any spacetime dimension. These theories include the (2+1)-dimensional Maxwell-Chern-Simons and (3+1)-dimensional Cremmer-Scherk actions as particular cases. Within the Hamiltonian formulation, the embedded topological field theory (TFT) sector related to the topological mass term is not manifest in the original phase space. However, through an appropriate canonical transformation, a gauge-invariant factorization of phase space into two orthogonal sectors is feasible. The first of these sectors includes canonically conjugate gauge-invariant variables with free massive excitations. The second sector, which decouples from the total Hamiltonian, is equivalent to the phase-space description of the associated non-dynamical pure TFT. Within canonical quantization, a likewise factorization of quantum states thus arises for the full spectrum of TMGT in any dimension. This new factorization scheme also enables a definition of the usual projection from TMGT onto topological quantum field theories in a most natural and transparent way. None of these results rely on any gauge-fixing procedure whatsoever
Poincare invariant gravity with local supersymmetry as a gauge theory for the M-algebra
International Nuclear Information System (INIS)
Hassaine, Mokhtar; Troncoso, Ricardo; Zanelli, Jorge
2004-01-01
Here we consider a gravitational action having local Poincare invariance which is given by the dimensional continuation of the Euler density in ten dimensions. It is shown that the local supersymmetric extension of this action requires the algebra to be the maximal extension of the N=1 super-Poincare algebra. The resulting action is shown to describe a gauge theory for the M-algebra, and is not the eleven-dimensional supergravity theory of Cremmer-Julia-Scherk. The theory admits a class of vacuum solutions of the form S10-dxXd+1, where Xd+1 is a warped product of R with a d-dimensional spacetime. It is shown that a nontrivial propagator for the graviton exists only for d=4 and positive cosmological constant. Perturbations of the metric around this solution reproduce linearized General Relativity around four-dimensional de Sitter spacetime
Towards Noncommutative Topological Quantum Field Theory: New invariants for 3-manifolds
International Nuclear Information System (INIS)
Zois, I.P.
2016-01-01
We present some ideas for a possible Noncommutative Topological Quantum Field Theory (NCTQFT for short) and Noncommutative Floer Homology (NCFH for short). Our motivation is two-fold and it comes both from physics and mathematics: On the one hand we argue that NCTQFT is the correct mathematical framework for a quantum field theory of all known interactions in nature (including gravity). On the other hand we hope that a possible NCFH will apply to practically every 3-manifold (and not only to homology 3-spheres as ordinary Floer Homology currently does). The two motivations are closely related since, at least in the commutative case, Floer Homology Groups constitute the space of quantum observables of (3+1)-dim Topological Quantum Field Theory. Towards this goal we define some new invariants for 3-manifolds using the space of taut codim-1 foliations modulo coarse isotopy along with various techniques from noncommutative geometry. (paper)
International Nuclear Information System (INIS)
Bershtein, Mikhail; Bonelli, Giulio; Ronzani, Massimiliano; Tanzini, Alessandro
2016-01-01
We provide a contour integral formula for the exact partition function of N=2 supersymmetric U(N) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) N=2"∗ theory on ℙ"2 for all instanton numbers. In the zero mass case, corresponding to the N=4 supersymmetric gauge theory, we obtain the generating function of the Euler characteristics of instanton moduli spaces in terms of mock-modular forms. In the decoupling limit of infinite mass we find that the generating function of local and surface observables computes equivariant Donaldson invariants, thus proving in this case a long-standing conjecture by N. Nekrasov. In the case of vanishing first Chern class the resulting equivariant Donaldson polynomials are new.
Indian Academy of Sciences (India)
2013-11-11
Nov 11, 2013 ... Polanyi's classic paper, co-authored by Henry Eyring, reproduced in this ... spatial conf guration of the atoms in terms of the energy function of the diatomic .... The present communication deals with the construction of such .... These three contributions are complemented by a fourth term if one takes into.
Calculating corrections in F-theory from refined BPS invariants and backreacted geometries
Energy Technology Data Exchange (ETDEWEB)
Poretschkin, Maximilian
2015-07-01
This thesis presents various corrections to F-theory compactifications which rely on the computation of refined Bogomol'nyi-Prasad-Sommerfield (BPS) invariants and the analysis of backreacted geometries. Detailed information about rigid supersymmetric theories in five dimensions is contained in an index counting refined BPS invariants. These BPS states fall into representations of SU(2){sub L} x SU(2){sub R}, the little group in five dimensions, which has an induced action on the cohomology of the moduli space of stable pairs. In the first part of this thesis, we present the computation of refined BPS state multiplicities associated to M-theory compactifications on local Calabi-Yau manifolds whose base is given by a del Pezzo or half K3 surface. For geometries with a toric realization we use an algorithm which is based on the Weierstrass normal form of the mirror geometry. In addition we use the refined holomorphic anomaly equation and the gap condition at the conifold locus in the moduli space in order to perform the direct integration and to fix the holomorphic ambiguity. In a second approach, we use the refined Goettsche formula and the refined modular anomaly equation that govern the (refined) genus expansion of the free energy of the half K3 surface. By this procedure, we compute the refined BPS invariants of the half K3 from which the results of the remaining del Pezzo surfaces are obtained by flop transitions and blow-downs. These calculations also make use of the high symmetry of the del Pezzo surfaces whose homology lattice contains the root lattice of exceptional Lie algebras. In cases where both approaches are applicable, we successfully check the compatibility of these two methods. In the second part of this thesis, we apply the results obtained from the calculation of the refined invariants of the del Pezzo respectively the half K3 surfaces to count non-perturbative objects in F-theory. The first application is given by BPS states of the E
Dimension shifting operators and null states in 2D conformally invariant field theories
International Nuclear Information System (INIS)
Gervais, J.L.
1986-01-01
We discuss the existence and properties of differential operators which transform covariant operators into covariant operators of different weights in two-dimensional conformally invariant field theories. We relate them to null states and the vanishing of the Kac determinant in representations of the conformal algebra, and to the existence of differential equations for Green functions of covariant operators. In this framework, we rederive the essential features of our earlier work on dual models with shifted intercept, which in euclidean space-time gives explicit solutions of the conformal bootstrap equations where all operators are marginal. (orig.)
Towards a constructive approach of a gauge invariant, massive P(PHI)2 theory
International Nuclear Information System (INIS)
Schrader, R.
1978-01-01
As part of a possible constructive approach to a gauge invariant P(PHI) 2 theory, we consider massive, scalar, polynomially selfcoupled fields PHI in a fixed external Yang-Mills potential A in two dimensional euclidean space. For a large class of A's we show that the corresponding euclidean Green's functions for fields PHI have a lower mass gap for weak coupling which is uniform in A. The result is obtained by adapting the Glimm-Jaffe-Spencer cluster expansion to the present situation through Kato's inequality, which reflects the diamagnetic effect of the Yang-Mills potential. A dicussion of the corresponding gauge covariance is included. (orig.) [de
International Nuclear Information System (INIS)
Omel'yanchuk, L.V.
1997-01-01
D. Lea classic theory for chromosomal rearrangements formation was modified to account for local interaction of broken chromosome ends. This assumption makes it possible to drastically improve coincidence of the theory and experiment in the case of complex rearrangements
Influences on and Limitations of Classical Test Theory Reliability Estimates.
Arnold, Margery E.
It is incorrect to say "the test is reliable" because reliability is a function not only of the test itself, but of many factors. The present paper explains how different factors affect classical reliability estimates such as test-retest, interrater, internal consistency, and equivalent forms coefficients. Furthermore, the limits of classical test…
International Nuclear Information System (INIS)
Edery, Ariel; Graham, Noah
2015-01-01
We consider a massless conformally (Weyl) invariant classical action consisting of a magnetic monopole coupled to gravity in an anti-de Sitter background spacetime. We implement quantum corrections and this breaks the conformal (Weyl) symmetry, introduces a length scale via the process of renormalization and leads to the trace anomaly. We calculate the one-loop effective potential and determine from it the vacuum expectation value (VEV). Spontaneous symmetry breaking is radiatively induced a la Coleman-Weinberg and the scalar coupling constant is exchanged for the dimensionful VEV via dimensional transmutation. An important result is that the Ricci scalar of the AdS background spacetimeis determined entirely by the value of the VEV. (paper)
Using Classical Test Theory and Item Response Theory to Evaluate the LSCI
Schlingman, Wayne M.; Prather, E. E.; Collaboration of Astronomy Teaching Scholars CATS
2011-01-01
Analyzing the data from the recent national study using the Light and Spectroscopy Concept Inventory (LSCI), this project uses both Classical Test Theory (CTT) and Item Response Theory (IRT) to investigate the LSCI itself in order to better understand what it is actually measuring. We use Classical Test Theory to form a framework of results that can be used to evaluate the effectiveness of individual questions at measuring differences in student understanding and provide further insight into the prior results presented from this data set. In the second phase of this research, we use Item Response Theory to form a theoretical model that generates parameters accounting for a student's ability, a question's difficulty, and estimate the level of guessing. The combined results from our investigations using both CTT and IRT are used to better understand the learning that is taking place in classrooms across the country. The analysis will also allow us to evaluate the effectiveness of individual questions and determine whether the item difficulties are appropriately matched to the abilities of the students in our data set. These results may require that some questions be revised, motivating the need for further development of the LSCI. This material is based upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
International Nuclear Information System (INIS)
Galvao, C.A.P.; Mignaco, J.A.
1994-01-01
The classical electromagnetic theory is analysed which corresponds to the two-dimensional quantum electrodynamics with massless spinor fields (Schwinger model). The chiral anomaly is introduced as a currents property, which in the two-dimensional spinor fields are duality related. It is also shown that the resulting classical theory is consistent. (author). 5 refs
International Nuclear Information System (INIS)
Cai Yifu; Qiu Taotao; Brandenberger, Robert; Zhang Xinmin
2009-01-01
We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next, we analyze the spectrum of cosmological perturbations which result from this model. Unless either the potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain background solutions which have a sufficiently long period of inflation after the bounce. More interestingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created from quantum vacuum fluctuations in the contracting phase have the correct form to lead to a scale-invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is nonsingular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is also scale-invariant, and the tensor to scalar ratio is not suppressed.
International Nuclear Information System (INIS)
Kiritsis, E.B.
1987-01-01
N = 2 superconformal-invariant theories are studied and their general structure is analyzed. The geometry of N = 2 complex superspace is developed as a tool to study the correlation functions of the theories above. The Ward identities of the global N = 2 superconformal symmetry are solved, to restrict the form of correlation functions. Advantage is taken of the existence of the degenerate operators to derive the ''fusion'' rules for the unitary minimal systems with c<1. In particular, the closure of the operator algebra for such systems is shown. The c = (1/3 minimal system is analyzed and its two-, three-, and four-point functions as well as its operator algebra are calculated explicitly
Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations
International Nuclear Information System (INIS)
Orlenko, E. V.; Evstafev, A. V.; Orlenko, F. E.
2015-01-01
A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated
Vispoel, Walter P; Morris, Carrie A; Kilinc, Murat
2018-03-01
Although widely recognized as a comprehensive framework for representing score reliability, generalizability theory (G-theory), despite its potential benefits, has been used sparingly in reporting of results for measures of individual differences. In this article, we highlight many valuable ways that G-theory can be used to quantify, evaluate, and improve psychometric properties of scores. Our illustrations encompass assessment of overall reliability, percentages of score variation accounted for by individual sources of measurement error, dependability of cut-scores for decision making, estimation of reliability and dependability for changes made to measurement procedures, disattenuation of validity coefficients for measurement error, and linkages of G-theory with classical test theory and structural equation modeling. We also identify computer packages for performing G-theory analyses, most of which can be obtained free of charge, and describe how they compare with regard to data input requirements, ease of use, complexity of designs supported, and output produced. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic
International Nuclear Information System (INIS)
Kerner, Boris S; Schreckenberg, Michael; Klenov, Sergey L
2014-01-01
Physical reasons for a crucial difference between the results of a three-phase theory developed recently (Kerner 2011 Phys. Rev. E 84 045102(R); 2013 Europhys. Lett. 102 28010; 2014 Physica A 397 76) and the classical theory are explained. Microscopic characteristics of traffic passing a traffic signal during the green signal phase and their dependence on the duration of the green phase have been found. It turns out that a moving synchronized flow pattern (MSP), which occurs in under-saturated traffic at the signal, causes ‘compression’ of traffic flow: the rate of MSP discharge can be considerably larger than the saturation flow rate of the classical traffic theory of city traffic. This leads to a considerably larger rate of traffic passing the signal in comparison with the saturation flow rate. This effect together with traffic behavior at the upstream queue front explains the metastability of under-saturated traffic with respect to a random time-delayed traffic breakdown. (paper)
Fujitani, Y.; Sumino, Y.
2018-04-01
A classically scale invariant extension of the standard model predicts large anomalous Higgs self-interactions. We compute missing contributions in previous studies for probing the Higgs triple coupling of a minimal model using the process e+e- → Zhh. Employing a proper order counting, we compute the total and differential cross sections at the leading order, which incorporate the one-loop corrections between zero external momenta and their physical values. Discovery/exclusion potential of a future e+e- collider for this model is estimated. We also find a unique feature in the momentum dependence of the Higgs triple vertex for this class of models.
A critical experimental study of the classical tactile threshold theory
Directory of Open Access Journals (Sweden)
Medina Leonel E
2010-06-01
Full Text Available Abstract Background The tactile sense is being used in a variety of applications involving tactile human-machine interfaces. In a significant number of publications the classical threshold concept plays a central role in modelling and explaining psychophysical experimental results such as in stochastic resonance (SR phenomena. In SR, noise enhances detection of sub-threshold stimuli and the phenomenon is explained stating that the required amplitude to exceed the sensory threshold barrier can be reached by adding noise to a sub-threshold stimulus. We designed an experiment to test the validity of the classical vibrotactile threshold. Using a second choice experiment, we show that individuals can order sensorial events below the level known as the classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance level. Nevertheless, our experimental results are above that chance level contradicting the definition of the classical tactile threshold. Results We performed a three alternative forced choice detection experiment on 6 subjects asking them first and second choices. In each trial, only one of the intervals contained a stimulus and the others contained only noise. According to the classical threshold assumptions, a correct second choice response corresponds to a guess attempt with a statistical frequency of 50%. Results show an average of 67.35% (STD = 1.41% for the second choice response that is not explained by the classical threshold definition. Additionally, for low stimulus amplitudes, second choice correct detection is above chance level for any detectability level. Conclusions Using a second choice experiment, we show that individuals can order sensorial events below the level known as a classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance
International Nuclear Information System (INIS)
Kulshreshtha, U.
1998-01-01
A chiral Schwinger model with the Faddeevian regularization a la Mitra is studied in the light-front frame. The front-form theory is found to be gauge-non-invariant. The Hamiltonian formulation of this gauge-non-invariant theory is first investigated and then the Stueckelberg term for this theory is constructed. Finally, the Hamiltonian and BRST formulations of the resulting gauge-invariant theory, obtained by the inclusion of the Stueckelberg term in the action of the above gauge-non-invariant theory, are investigated with some specific gauge choices. (orig.)
Currents and the energy-momentum tensor in classical field theory: a fresh look at an old problem
International Nuclear Information System (INIS)
Forger, Michael; Roemer, Hartmann
2004-01-01
We give a comprehensive review of various methods to define currents and the energy-momentum tensor in classical field theory, with emphasis on a geometric point of view. The necessity of 'improving' the expressions provided by the canonical Noether procedure is addressed and given an adequate geometric framework. The main new ingredient is the explicit formulation of a principle of 'ultralocality' with respect to the symmetry generators, which is shown to fix the ambiguity inherent in the procedure of improvement and guide it towards a unique answer: when combined with the appropriate splitting of the fields into sectors, it leads to the well-known expressions for the current as the variational derivative of the matter field Lagrangian with respect to the gauge field and for the energy-momentum tensor as the variational derivative of the matter field Lagrangian with respect to the metric tensor. In the second case, the procedure is shown to work even when the matter field Lagrangian depends explicitly on the curvature, thus establishing the correct relation between scale invariance, in the form of local Weyl invariance 'on shell', and tracelessness of the energy-momentum tensor, required for a consistent definition of the concept of a conformal field theory
"Pathos" Reconsidered from the Perspective of Classical Chinese Rhetorical Theories.
Garrett, Mary M.
1993-01-01
Proposes that cross-cultural rhetorical studies may provide insights into the sources of difficulties with "pathos." Presents an extensive case study that appeals to the emotions in classical Chinese rhetorics. Notes that the presuppositions of these rhetorics highlight the contingent nature of certain fundamental assumptions of many…
How some infinities cause problems in classical physical theories
Atkinson, David; Peijnenburg, Jeanne; Allo, P.; van Kerhove, B.
2014-01-01
In this paper we review a 1992 excursion of Jean Paul Van Bendegem into physics, ‘How Infinities Cause Problems in Classical Physical Theories’, in the light of two later models concerning colliding balls, of Pérez Laraudogoitia and of Alper and Bridger, respectively. We show that Van Bendegem
Anyons as spin particles: from classical mechanics to field theory
Plyushchay, Mikhail S.
1995-01-01
(2+1)-dimensional relativistic fractional spin particles are considered within the framework of the group-theoretical approach to anyons starting from the level of classical mechanics and concluding by the construction of the minimal set of linear differential field equations.
Augmented superfield approach to gauge-invariant massive 2-form theory
International Nuclear Information System (INIS)
Kumar, R.; Krishna, S.
2017-01-01
We discuss the complete sets of the off-shell nilpotent (i.e. s 2 (a)b = 0) and absolutely anticommuting (i.e. s b s ab + s ab s b = 0) Becchi-Rouet-Stora-Tyutin (BRST) (s b ) and anti-BRST (s ab ) symmetries for the (3 + 1)-dimensional (4D) gauge-invariant massive 2-form theory within the framework of an augmented superfield approach to the BRST formalism. In this formalism, we obtain the coupled (but equivalent) Lagrangian densities which respect both BRST and anti-BRST symmetries on the constrained hypersurface defined by the Curci-Ferrari type conditions. The absolute anticommutativity property of the (anti-) BRST transformations (and corresponding generators) is ensured by the existence of the Curci-Ferrari type conditions which emerge very naturally in this formalism. Furthermore, the gauge-invariant restriction plays a decisive role in deriving the proper(anti-) BRST transformations for the Stueckelberg-like vector field. (orig.)
Augmented superfield approach to gauge-invariant massive 2-form theory
Kumar, R.; Krishna, S.
2017-06-01
We discuss the complete sets of the off-shell nilpotent (i.e. s^2_{(a)b} = 0) and absolutely anticommuting (i.e. s_b s_{ab} + s_{ab} s_b = 0) Becchi-Rouet-Stora-Tyutin (BRST) (s_b) and anti-BRST (s_{ab}) symmetries for the (3+1)-dimensional (4D) gauge-invariant massive 2-form theory within the framework of an augmented superfield approach to the BRST formalism. In this formalism, we obtain the coupled (but equivalent) Lagrangian densities which respect both BRST and anti-BRST symmetries on the constrained hypersurface defined by the Curci-Ferrari type conditions. The absolute anticommutativity property of the (anti-) BRST transformations (and corresponding generators) is ensured by the existence of the Curci-Ferrari type conditions which emerge very naturally in this formalism. Furthermore, the gauge-invariant restriction plays a decisive role in deriving the proper (anti-) BRST transformations for the Stückelberg-like vector field.
Augmented superfield approach to gauge-invariant massive 2-form theory
Energy Technology Data Exchange (ETDEWEB)
Kumar, R. [University of Delhi, Department of Physics and Astrophysics, New Delhi (India); Krishna, S. [Indian Institute of Science Education and Research Mohali, Manauli, Punjab (India)
2017-06-15
We discuss the complete sets of the off-shell nilpotent (i.e. s{sup 2}{sub (a)b} = 0) and absolutely anticommuting (i.e. s{sub b}s{sub ab} + s{sub ab}s{sub b} = 0) Becchi-Rouet-Stora-Tyutin (BRST) (s{sub b}) and anti-BRST (s{sub ab}) symmetries for the (3 + 1)-dimensional (4D) gauge-invariant massive 2-form theory within the framework of an augmented superfield approach to the BRST formalism. In this formalism, we obtain the coupled (but equivalent) Lagrangian densities which respect both BRST and anti-BRST symmetries on the constrained hypersurface defined by the Curci-Ferrari type conditions. The absolute anticommutativity property of the (anti-) BRST transformations (and corresponding generators) is ensured by the existence of the Curci-Ferrari type conditions which emerge very naturally in this formalism. Furthermore, the gauge-invariant restriction plays a decisive role in deriving the proper(anti-) BRST transformations for the Stueckelberg-like vector field. (orig.)
One-loop divergences in chiral perturbation theory and right-invariant metrics on SU(3)
International Nuclear Information System (INIS)
Esposito-Farese, G.
1991-01-01
In the framework of chiral perturbation theory, we compute the one-loop divergences of the effective Lagrangian describing strong and non-leptonic weak interactions of pseudoscalar mesons. We use the background field method and the heat-kernel expansion, and underline the geometrical meaning of the different terms, showing how the right-invariance of the metrics on SU(3) allows to clarify and simplify the calculations. Our results are given in terms of a minimal set of independent counterterms, and shorten previous ones of the literature, in the particular case where the electromagnetic field is the only external source which is considered. We also show that a geometrical construction of the effective Lagrangian at order O(p 4 ) allows to derive some relations between the finite parts of the coupling constants. These relations do not depend on the scale μ used to renormalize. (orig.)
Classical gauge theories on the coadjoint orbits of infinite dimensional groups
International Nuclear Information System (INIS)
Grabowski, M.P.; Virginia Polytechnic Inst. and State Univ., Blacksburg; Tze Chiahsiung
1991-01-01
We reformulate several classical gauge theories on the coadjoint orbits of the semidirect product of the gauge group and the Weyl group. The construction is given for the Yang-Mills theories in arbitrary spacetime dimension d, Chern-Simons topological theory (d=3) and higher dimensional topological models of Horowitz (d≥4). (orig.)
Antigravity and classical solutions of five-dimensional Kaluza-Klein theory
Energy Technology Data Exchange (ETDEWEB)
Pollard, D. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)
1983-02-21
Classical solutions are exhibited of a graviton-graviphoton-graviscalar field theory which are antigravitating in the weak-field approximation. The theory itself is obtained by a Kaluza-Klein type reduction from five to four dimensions. The solutions are dyonic black holes with scalar charge. They share some similarities with the extreme Reissner-Nordstrom black holes of Einstein-Maxwell theory.
New solutions of a nonlinear classical field theory
International Nuclear Information System (INIS)
Marques, G.C.; Ventura, I.
1975-01-01
New solutions of a relativistic, classical, field theoretical model having logarithmic nonlinearities are obtained. Some of these solutions correspond to field not bounded in time but having finite energy and charge. There are no bounded solutions (bound states and resonances in particular) if the charge exceeds a certain value. This effect is due to the existance of a 'charge barrier' in this field theoretical model. All calculations are performed in a number of spatial dimensions [pt
Microscopic phenomenon in light of classical and quantum theory
International Nuclear Information System (INIS)
Mandal, C.R.
1999-01-01
Quantum mechanical boundary corrected continuum intermediate state (BCCIS) approximation and classical trajectory Monte Carlo (CTMC) simulation method have been employed to study total charge transfer cross sections in collisions of Be q+ (q = 2-4) and B q+ (q = 3-5) with atomic hydrogen in ground state in the energy range of 30 - 200 keV/amu. Results have been found to be in reasonable agreement with each other. Attempts have been made to find justifications for such resemblance. (author)
The classical theory of the bumpy torus relativistic annulus
International Nuclear Information System (INIS)
Hamasaki, S.; Krall, N.A.; Sperling, J.L.
1983-01-01
The relativistic electron annulus is a critical component of the bumpy torus magnetic fusion concept. An analysis of the annulus is presented in which the ring steady state is determined by the explicit balance of quasi-linear heating and classical losses, i.e. collisions and synchrotron radiation. Both anisotropy and loss-cone effects are included in the formalism. It is demonstrated that a large number of electron cyclotron harmonics, not just the first and second, contribute in an appreciable way to annulus steady state and power balance. Without a loss cone, the analysis reproduces the relativistic passing electron population observed in bumpy tori on confined drift surfaces near the centre of the bumpy torus cross-section. Loss-cone effects permit an annulus population with large perpendicular pressure to exist. It is shown that the balance between quasi-linear heating and the classical losses cannot account for the experimental scaling of bumpy torus annulus temperature; therefore, processes not included in the classical ring power balance model must contribute in a non-trivial way to observed annulus properties. (author)
N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant
International Nuclear Information System (INIS)
Blau, M.; Thompson, G.
1991-11-01
Gauge theory with a topological N=2 symmetry is discussed. This theory captures the de Rahm complex and Riemannian geometry of some underlying moduli space M and the partition function equals the Euler number χ (M) of M. Moduli spaces of instantons and of flat connections in 2 and 3 dimensions are explicitly dealt with. To motivate the constructions the relation between the Mathai-Quillen formalism and supersymmetric quantum mechanics are explained and a new kind of supersymmetric quantum mechanics is introduced, based on the Gauss-Codazzi equations. The gauge theory actions are interpreted from the Atiyah-Jeffrey point of view and related to super-symmetric quantum mechanics on spaces of connections. As a consequence of these considerations the Euler number χ (M) of the moduli space of flat connections as a generalization to arbitrary three-manifolds of the Casson invariant. The possibility of constructing a topological version of the Penner matrix model is also commented. (author). 63 refs
International Nuclear Information System (INIS)
French, Doug; Huang Zun; Pao, H.-Y.; Jovanovic, Igor
2009-01-01
A quantum phase amplifier operated in the spatial domain can improve the signal-to-noise ratio in imaging beyond the classical limit. The scaling of the signal-to-noise ratio with the gain of the quantum phase amplifier is derived from classical information theory
Lange, Elizabeth
2015-01-01
This article argues that sociology has been a foundational discipline for the field of adult education, but it has been largely implicit, until recently. This article contextualizes classical theories of sociology within contemporary critiques, reviews the historical roots of sociology and then briefly introduces the classical theories…
Multi-boundary entanglement in Chern-Simons theory and link invariants
Energy Technology Data Exchange (ETDEWEB)
Balasubramanian, Vijay [David Rittenhouse Laboratory, University of Pennsylvania,209 S.33rd Street, Philadelphia, PA 19104 (United States); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB) andInternational Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Fliss, Jackson R.; Leigh, Robert G. [Department of Physics, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States); Parrikar, Onkar [David Rittenhouse Laboratory, University of Pennsylvania,209 S.33rd Street, Philadelphia, PA 19104 (United States)
2017-04-11
We consider Chern-Simons theory for gauge group G at level k on 3-manifolds M{sub n} with boundary consisting of n topologically linked tori. The Euclidean path integral on M{sub n} defines a quantum state on the boundary, in the n-fold tensor product of the torus Hilbert space. We focus on the case where M{sub n} is the link-complement of some n-component link inside the three-sphere S{sup 3}. The entanglement entropies of the resulting states define framing-independent link invariants which are sensitive to the topology of the chosen link. For the Abelian theory at level k (G=U(1){sub k}) we give a general formula for the entanglement entropy associated to an arbitrary (m|n−m) partition of a generic n-component link into sub-links. The formula involves the number of solutions to certain Diophantine equations with coefficients related to the Gauss linking numbers (mod k) between the two sublinks. This formula connects simple concepts in quantum information theory, knot theory, and number theory, and shows that entanglement entropy between sublinks vanishes if and only if they have zero Gauss linking (mod k). For G=SU(2){sub k}, we study various two and three component links. We show that the 2-component Hopf link is maximally entangled, and hence analogous to a Bell pair, and that the Whitehead link, which has zero Gauss linking, nevertheless has entanglement entropy. Finally, we show that the Borromean rings have a “W-like' entanglement structure (i.e., tracing out one torus does not lead to a separable state), and give examples of other 3-component links which have “GHZ-like” entanglement (i.e., tracing out one torus does lead to a separable state).
Comparison of classical and modern theories of longitudinal wave propagation in elastic rods
CSIR Research Space (South Africa)
Shatalov, M
2009-07-01
Full Text Available are constructed for the classical, Rayleigh, Bishop, and Mindlin-Herrmann models in which the general solutions of the problem are obtained. The principles of construction of the multimode theories, corresponding equations and orthogonality conditions...
Classical Belief Conditioning and its Generalization to DSm Theory
Czech Academy of Sciences Publication Activity Database
Daniel, Milan
2008-01-01
Roč. 2, č. 4 (2008), s. 267-279 ISSN 1752-8917 R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : belief functions * Dempster-Shafer theory * belief conditioning * DSm theory * overlapping elements * hyper-power set * DSm model Subject RIV: BA - General Mathematics http://www.worldacademicunion.com/journal/jus/jusVol02No4paper04.pdf
Classical optics in generalized Maxwell Chern-Simons theory
International Nuclear Information System (INIS)
Burgess, M.; Leinaas, J.M.; Loevvik, O.M.
1993-03-01
The authors consider the propagation of electromagnetic waves in a two-dimensional polarizable medium endowed with Chern-Simons terms. The dispersion relation (refractive index) of the waves is computed and the existence of linear birefringence and anomalous dispersion is shown. When absorption is taken into account, the classic signature of a Voigt effect is found. In the case where linearly-polarized, three-dimensional waves pass through a two-dimensional plane, it is shown that there is optical activity, and the analogue of Verdet's constant is computed. 19 refs., 2 figs
All the mathematics in the world: logical validity and classical set theory
Directory of Open Access Journals (Sweden)
David Charles McCarty
2017-12-01
Full Text Available A recognizable topological model construction shows that any consistent principles of classical set theory, including the validity of the law of the excluded third, together with a standard class theory, do not suffice to demonstrate the general validity of the law of the excluded third. This result calls into question the classical mathematician's ability to offer solid justifications for the logical principles he or she favors.
A course in mathematical physics 1 and 2 classical dynamical systems and classical field theory
Thirring, Walter
1992-01-01
The last decade has seen a considerable renaissance in the realm of classical dynamical systems, and many things that may have appeared mathematically overly sophisticated at the time of the first appearance of this textbook have since become the everyday tools of working physicists. This new edition is intended to take this development into account. I have also tried to make the book more readable and to eradicate errors. Since the first edition already contained plenty of material for a one semester course, new material was added only when some of the original could be dropped or simplified. Even so, it was necessary to expand the chap ter with the proof of the K-A-M Theorem to make allowances for the cur rent trend in physics. This involved not only the use of more refined mathe matical tools, but also a reevaluation of the word "fundamental. " What was earlier dismissed as a grubby calculation is now seen as the consequence of a deep principle. Even Kepler's laws, which determine the radii of the ...
Orthogonal polynomials on the unit circle part 1 classical theory
2009-01-01
This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrodinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (SzegÅ‘'s theorems), limit theorems for the density of the zeros of orthogonal po
THE CONCEPT OF INTERNATIONAL TRADE AND MAIN CLASSIC THEORIES
Directory of Open Access Journals (Sweden)
Elena Ramona TERZEA
2016-07-01
Full Text Available Taking into account the major impact that international trade has on the economy and on the people’s lives, and considering its effects on the economic growth, the foreign commerce has to be well understood so that the commercial policies have to be well elaborated, implemented and followed. The theories of international trade are extremely important in order to determine the flows, but especially in the anticipation of the evolution of the forces that influences its dymanic. The theories regarding the foreign trade are used also by the big companies, by their managers, in their attempt to identify the most advantageous strategies of internationalizations, on the most promising markets.
Lower Bound on the Energy Density in Classical and Quantum Field Theories.
Wall, Aron C
2017-04-14
A novel method for deriving energy conditions in stable field theories is described. In a local classical theory with one spatial dimension, a local energy condition always exists. For a relativistic field theory, one obtains the dominant energy condition. In a quantum field theory, there instead exists a quantum energy condition, i.e., a lower bound on the energy density that depends on information-theoretic quantities. Some extensions to higher dimensions are briefly discussed.
Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang
2015-01-23
The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.
k-Cosymplectic Classical Field Theories: Tulczyjew and Skinner-Rusk Formulations
Rey, Angel M.; Román-Roy, Narciso; Salgado, Modesto; Vilariño, Silvia
2012-06-01
The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order classical field theories are reviewed and completed. In particular, they are stated for singular and almost-regular systems. Subsequently, several alternative formulations for k-cosymplectic first-order field theories are developed: First, generalizing the construction of Tulczyjew for mechanics, we give a new interpretation of the classical field equations. Second, the Lagrangian and Hamiltonian formalisms are unified by giving an extension of the Skinner-Rusk formulation on classical mechanics.
k-Cosymplectic Classical Field Theories: Tulczyjew and Skinner–Rusk Formulations
International Nuclear Information System (INIS)
Rey, Angel M.; Román-Roy, Narciso; Salgado, Modesto; Vilariño, Silvia
2012-01-01
The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order classical field theories are reviewed and completed. In particular, they are stated for singular and almost-regular systems. Subsequently, several alternative formulations for k-cosymplectic first-order field theories are developed: First, generalizing the construction of Tulczyjew for mechanics, we give a new interpretation of the classical field equations. Second, the Lagrangian and Hamiltonian formalisms are unified by giving an extension of the Skinner–Rusk formulation on classical mechanics.
Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in φ4-Theory
International Nuclear Information System (INIS)
Finster, Felix; Tolksdorf, Juergen
2012-01-01
Solutions of the classical φ 4 -theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a ''classical measurement process'' in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.
Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in ϕ4-Theory
Finster, Felix; Tolksdorf, Jürgen
2012-05-01
Solutions of the classical ϕ4-theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a "classical measurement process" in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.
Canonical Yang-Mills field theory with invariant gauge-families
International Nuclear Information System (INIS)
Yokoyama, Kan-ichi
1978-01-01
A canonical Yang-Mills field theory with indefinite metric is presented on the basis of a covariant gauge formalism for quantum electrodynamics. As the first step of the formulation, a many-gauge-field problem, in which many massless Abelian-gauge fields coexist, is treated from a new standpoint. It is shown that only a single pair of a gaugeon field and its associated one can govern the gauge structure of the whole system. The result obtained is further extended to cases of non-Abelian gauge theories. Gauge parameters for respective components of the Yang-Mills fields are introduced as a group vector. There exists a q-number local gauge transformation which connects relevant fields belonging to the same invariant gauge family with one another in a manifestly covariant way. In canonical quantization, the Faddeev-Popov ghosts are introduced in order to guarantee the existence of a desirable physical subspace with positive semi-definite metric. As to treatment of the Faddeev-Popov ghosts, Kugo and Ojima's approach is adopted. Three supplementary conditions which are consistent with one another constrain the physical subspace. (author)
Classical hair in string theory. II. Explicit calculations
International Nuclear Information System (INIS)
Larsen, F.
1997-01-01
For pt.I see ibid., vol.475, p.627-44, 1996. After emphasizing the importance of obtaining a space-time understanding of black hole entropy, we further elaborate our program to identify the degrees of freedom of black holes with classical space-time degrees of freedom. The Cvetic-Youm dyonic black holes are discussed in some detail as an example. In this example hair degrees of freedom transforming as an effective string can be identified explicitly. We discuss issues concerning charge quantization, identification of winding, and tension renormalization that arise in counting the associated degrees of freedom. The possibility of other forms of hair in this example, and the prospects for making contact with D-brane ideas, are briefly considered. (orig.)
Classical theory of thermal radiation from a solid.
Guo, Wei
2016-06-01
In this work, a solid at a finite temperature is modeled as an ensemble of identical atoms, each of which moves around a lattice site inside an isotropic harmonic potential. The motion of one such atom is studied first. It is found that the atom moves like a time-dependent current density and, thus, can emit electromagnetic radiation. Since all the atoms are identical, they can radiate, too. The resultant radiation from the atoms is the familiar thermal radiation from the solid. After its general expression is obtained, the intensity of the thermal radiation is discussed for its properties, and specifically calculated in the low-temperature limit. Both atomic motion and radiation are formulated in the classical domain.
Foundations of the classical theory of partial differential equations
Egorov, Yu V
1998-01-01
From the reviews of the first printing, published as volume 30 of the Encyclopaedia of Mathematical Sciences: "... I think the volume is a great success and an excellent preparation for future volumes in the series. ... the introductory style of Egorov and Shubin is .. attractive. ... a welcome addition to the literature and I am looking forward to the appearance of more volumes of the Encyclopedia in the near future. ..." The Mathematical Intelligencer, 1993 "... According to the authors ... the work was written for nonspecialists and physicists but in my opinion almost every specialist will find something new ... in the text. The style is clear, the notations are chosen luckily. The most characteristic feature of the work is the accurate emphasis on the fundamental notions ..." Acta Scientiarum Mathematicarum, 1993 "... On the whole, a thorough overview on the classical aspects of the topic may be gained from that volume." Monatshefte für Mathematik, 1993 "... It is comparable in scope with the great Coura...
Thermal and viscous effects on sound waves: revised classical theory.
Davis, Anthony M J; Brenner, Howard
2012-11-01
In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.
Progress in the application of classical S-matrix theory to inelastic collision processes
International Nuclear Information System (INIS)
McCurdy, C.W.; Miller, W.H.
1980-01-01
Methods are described which effectively solve two of the technical difficulties associated with applying classical S-matrix theory to inelastic/reactive scattering. Specifically, it is shown that rather standard numerical methods can be used to solve the ''root search'' problem (i.e., the nonlinear boundary value problem necessary to impose semiclassical quantum conditions at the beginning and the end of the classical trajectories) and also how complex classical trajectories, which are necessary to describe classically forbidden (i.e., tunneling) processes, can be computed in a numerically stable way. Application is made to vibrational relaxation of H 2 by collision with He (within the helicity conserving approximation). The only remaining problem with regard to applying classical S-matrix theory to complex collision processes has to do with the availability of multidimensional uniform asymptotic formulas for interpolating the ''primitive'' semiclassical expressions between their various regions of validity
Tensor algebra over Hilbert space: Field theory in classical phase space
International Nuclear Information System (INIS)
Matos Neto, A.; Vianna, J.D.M.
1984-01-01
It is shown using tensor algebras, namely Symmetric and Grassmann algebras over Hilbert Space that it is possible to introduce field operators, associated to the Liouville equation of classical statistical mechanics, which are characterized by commutation (for Symmetric) and anticommutation (for Grassmann) rules. The procedure here presented shows by construction that many-particle classical systems admit an algebraic structure similar to that of quantum field theory. It is considered explicitly the case of n-particle systems interacting with an external potential. A new derivation of Schoenberg's result about the equivalence between his field theory in classical phase space and the usual classical statistical mechanics is obtained as a consequence of the algebraic structure of the theory as introduced by our method. (Author) [pt
International Nuclear Information System (INIS)
Van de Wetering, J.F.W.H.
1992-01-01
Using perturbative Chern-Simons theory in the almost axial gauge on the euclidean manifold S 1 xR 2 , we give a prescription for the computation of knot invariants. The method gives the correct expectation value of the unknot to all orders in perturbation theory and gives the correct answer for the spectral-parameter-dependent universal R-matrix to second order. All results are derived for a general semi-simple Lie algebra. (orig.)
Classical scattering cross section in sputtering transport theory
International Nuclear Information System (INIS)
Zhang Zhulin
2002-01-01
For Lindhard scaling interaction potential scattering commonly used in sputtering theory, the authors analyzed the great difference between Sigmund's single power and the double power cross sections calculated. The double power cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m∼0.1). In particular, to solve the transport equations by K r -C potential interaction given by Urbassek few years ago, only the double power cross sections (m∼0.1) can yield better approximate results for the number of recoils. Therefore, the Sigmund's single power cross section might be replaced by the double power cross sections in low energy collision cascade theory
Generic f(R) theories and classicality of their scalarons
Energy Technology Data Exchange (ETDEWEB)
Gannouji, Radouane [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Sami, M., E-mail: samijamia@gmail.com [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Thongkool, I. [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad-211019 (India)
2012-09-19
We study quantum stability bound on the mass of scalaron in generic theories of f(R) gravity. We show that in these scenarios, the scalaron mass increases faster with local density of the environment than one-loop quantum correction to it thereby leading to violation of quantum bound on the chameleon mass. The introduction of quadratic curvature corrections in the action are shown to stabilize the model.
Twisted Poincare invariance, noncommutative gauge theories and UV-IR mixing
Energy Technology Data Exchange (ETDEWEB)
Balachandran, A.P. [Department of Physics, Syracuse University, Syracuse NY, 13244-1130 (United States)], E-mail: bal@physics.syr.edu; Pinzul, A. [Insituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)], E-mail: apinzul@fma.if.usp.br; Queiroz, A.R. [Centro Internacional de Fisica da Materia Condensada, Universidade de Brasilia, C.P. 04667, Brasilia, DF (Brazil); Universidade Federal de Goias, Campus Avancado de Catalao, Departamento de Fisica, St. Universitario - 75700-000, Catalao-GO (Brazil)], E-mail: amilcarq@gmail.com
2008-10-09
In the absence of gauge fields, quantum field theories on the Groenewold-Moyal (GM) plane are invariant under a twisted action of the Poincare group if they are formulated following [M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B 604 (2004) 98, (hep-th/0408069); P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp, J. Wess, Class. Quantum Grav. 22 (2005) 3511, (hep-th/0504183); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (hep-th/0608138); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.0069 [hep-th]); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.1379 [hep-th]); A.P. Balachandran, A. Pinzul, B.A. Qureshi, (arXiv: 0708.1779 [hep-th])]. In that formulation, such theories also have no UV-IR mixing [A.P. Balachandran, A. Pinzul, B.A. Qureshi, Phys. Lett. B 634 (2006) 434, (hep-th/0508151)]. Here we investigate UV-IR mixing in gauge theories with matter following the approach of [A.P. Balachandran, A. Pinzul, B. A. Qureshi, S. Vaidya, (hep-th/0608138); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.0069 [hep-th])]. We prove that there is UV-IR mixing in the one-loop diagram of the S-matrix involving a coupling between gauge and matter fields on the GM plane, the gauge field being non-Abelian. There is no UV-IR mixing if it is Abelian.
Microscopic aspects of wetting using classical density functional theory
Yatsyshin, P.; Durán-Olivencia, M.-A.; Kalliadasis, S.
2018-07-01
Wetting is a rather efficient mechanism for nucleation of a phase (typically liquid) on the interface between two other phases (typically solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid–fluid and fluid–substrate intermolecular interactions brings about an entire ‘zoo’ of possible fluid configurations, such as liquid films with a thickness of a few nanometers, liquid nanodrops and liquid bridges. These fluid configurations are often associated with phase transitions occurring at the solid–gas interface and at lengths of just several molecular diameters away from the substrate. In this special issue article, we demonstrate how a fully microscopic classical density-functional framework can be applied to the efficient, rational and systematic exploration of the rich phase space of wetting phenomena. We consider a number of model prototype systems such as wetting on a planar wall, a chemically patterned wall and a wedge. Through density-functional computations we demonstrate that for these simply structured substrates the behaviour of the solid–gas interface is already highly complex and non-trivial.
Semi-classical theory of fluctuations in nuclear matter
International Nuclear Information System (INIS)
Benhassine, B.
1994-01-01
At intermediate energies the heavy ion collisions can be studied within the framework of a semi-classical approach based on the Vlasov-Uehling-Uhlenbeck (VUU) equation. Such an approach reduces the N-body problem to its description in terms of the one-body distribution function and constitutes the basis of several successful simulation models. Our aim in this work is to extend these average approaches to treat fluctuations. Within the framework of a linear approximation, we derived a Fokker-Planck transport equation in the one-body phase space. When it is reduced to its first moments, one recovers the VUU equation for the average dynamics together with the time evolution equation for the correlations. The collective transport coefficients are then obtained by projection on the one-body collective space. Independently, using a projection method introduced by Van Kampen, based on the constants of motion, we deduce the stationary expressions for the covariance matrix in phase space. We extract then, the equilibrium dispersions of one-body observables in a homogeneous case and in a spherical symmetric one. These results are compared with two types of simulation models in a relaxation time approximation. In the first one which is of Lagrangian type, the collective transport coefficients are directly extracted from the simulation and consequently the numerical fluctuations are washed out. The second model, due to its Eulerian character, allows us to make a microscopical comparison. (author)
Opportunizing: A classic grounded theory study on business and management
Directory of Open Access Journals (Sweden)
Ólavur Christiansen
2006-11-01
Full Text Available Opportunizing emerged as the core variable of this classic GT study on business and management. Opportunizing is the recurrent main concern that businesses have to continually resolve, and it explains how companies recurrently create, identify, seize or exploit situations to maintain their growth or survival. Opportunizing is the recurrent creation and re-creation of opportunities in business. Opportunizing is basically what business managers do and do all the time. The problematic nature of opportunizing is resolved by a core social process ofopportunizing and its attached sub-processes that account for change over time and for the variations of the problematic nature of its resolution.Opportunizing has five main facets. These are conditional befriending (confidence building & modifying behavior,prospecting (e.g. information gaining, weighing up (information appraisal & decision-making, moment capturing (quick intervention for seizing strategic opportunities, andconfiguration matching (adjusting the business organization to abet the other activities of opportunizing.On a more abstract level, opportunizing has three more organizational facets: the physically boundary-less, the valuehierarchical, and the physically bounded. The first of these called perpetual opportunizing. This emerges from the conjunction of conditional befriending and prospecting. The second facet is called triggering opportunizing. It arises from the coming together of weighing up and moment capturing. The final facet is called spasmodic opportunizing. This happens when moment capturing and configuration matching unite.
The contrasting roles of Planck's constant in classical and quantum theories
Boyer, Timothy H.
2018-04-01
We trace the historical appearance of Planck's constant in physics, and we note that initially the constant did not appear in connection with quanta. Furthermore, we emphasize that Planck's constant can appear in both classical and quantum theories. In both theories, Planck's constant sets the scale of atomic phenomena. However, the roles played in the foundations of the theories are sharply different. In quantum theory, Planck's constant is crucial to the structure of the theory. On the other hand, in classical electrodynamics, Planck's constant is optional, since it appears only as the scale factor for the (homogeneous) source-free contribution to the general solution of Maxwell's equations. Since classical electrodynamics can be solved while taking the homogenous source-free contribution in the solution as zero or non-zero, there are naturally two different theories of classical electrodynamics, one in which Planck's constant is taken as zero and one where it is taken as non-zero. The textbooks of classical electromagnetism present only the version in which Planck's constant is taken to vanish.
On the classical origins of yangian symmetry in integrable field theory
International Nuclear Information System (INIS)
MacKay, N.J.
1992-01-01
We show that Drinfeld's yangian algebra, studied recently as the algebra of conserved charges in certain two-dimensional integrable quantum field theories, is also present in the classical theory as a Poisson-Hopf algebra, and exhibit explicitly the Serre relations, coproduct and antipode. (orig.)
Classical and quantum Liouville theory on the Riemann sphere with n>3 punctures (III)
International Nuclear Information System (INIS)
Shen Jianmin; Sheng Zhengmao; Wang Zhonghua
1992-02-01
We study the Classical and Quantum Liouville theory on the Riemann sphere with n>3 punctures. We get the quantum exchange algebra relations between the chiral components in the Liouville theory from our assumption on the principle of quantization. (author). 5 refs
Longitudinal vibration of isotropic solid rods: from classical to modern theories
CSIR Research Space (South Africa)
Shatalov, M
2011-12-01
Full Text Available Vibration of Isotropic Solid Rods: From Classical to Modern Theories Michael Shatalov1,2, Julian Marais2, Igor Fedotov2 and Michel Djouosseu Tenkam2 1Council for Scientific and Industrial Research 2Tshwane University of Technology South Africa 1...). The classical approximate theory of longitudinal vibration of rods was developed during the 18th century by J. D?Alembert, D. Bernoulli, L. Euler and J. Lagrange. This theory is based on the analysis of the one dimensional wave equation and is applicable...
Classical open-string field theory: A∞-algebra, renormalization group and boundary states
International Nuclear Information System (INIS)
Nakatsu, Toshio
2002-01-01
We investigate classical bosonic open-string field theory from the perspective of the Wilson renormalization group of world-sheet theory. The microscopic action is identified with Witten's covariant cubic action and the short-distance cut-off scale is introduced by length of open-string strip which appears in the Schwinger representation of open-string propagator. Classical open-string field theory in the title means open-string field theory governed by a classical part of the low energy action. It is obtained by integrating out suitable tree interactions of open-strings and is of non-polynomial type. We study this theory by using the BV formalism. It turns out to be deeply related with deformation theory of A ∞ -algebra. We introduce renormalization group equation of this theory and discuss it from several aspects. It is also discussed that this theory is interpreted as a boundary open-string field theory. Closed-string BRST charge and boundary states of closed-string field theory in the presence of open-string field play important roles
International Nuclear Information System (INIS)
Li Jiangfan; Jiang Zongfu; Xiao Fuliang; Huang Chunjia
2005-01-01
The dynamics of a generalized non-degenerate optical parametric down-conversion interaction whose Hamiltonian includes an arbitrary time-dependent driving part and a two-mode coupled part is studied by adopting the Lewis-Riesenfeld invariant theory. The closed formulae for the evolution of the quantum states and the evolution operators of the system are obtained. It is shown that various generalized squeezed states arise naturally in the process, and the two-mode squeezed effect is independent of the driving part. An explicitly analytical solution of the Schroedinger equation is further derived as the classical generalized force acting on each mode and the coupling of the two modes both have harmonic time dependences. This solution is found to be in agreement with previous research in special cases
Classical and modern numerical analysis theory, methods and practice
Ackleh, Azmy S; Kearfott, R Baker; Seshaiyer, Padmanabhan
2009-01-01
Mathematical Review and Computer Arithmetic Mathematical Review Computer Arithmetic Interval ComputationsNumerical Solution of Nonlinear Equations of One Variable Introduction Bisection Method The Fixed Point Method Newton's Method (Newton-Raphson Method) The Univariate Interval Newton MethodSecant Method and Müller's Method Aitken Acceleration and Steffensen's Method Roots of Polynomials Additional Notes and SummaryNumerical Linear Algebra Basic Results from Linear Algebra Normed Linear Spaces Direct Methods for Solving Linear SystemsIterative Methods for Solving Linear SystemsThe Singular Value DecompositionApproximation TheoryIntroduction Norms, Projections, Inner Product Spaces, and Orthogonalization in Function SpacesPolynomial ApproximationPiecewise Polynomial ApproximationTrigonometric ApproximationRational ApproximationWavelet BasesLeast Squares Approximation on a Finite Point SetEigenvalue-Eigenvector Computation Basic Results from Linear Algebra The Power Method The Inverse Power Method Deflation T...
International Nuclear Information System (INIS)
Zeng, G.L.; Gullberg, G.T.
1995-01-01
It is common practice to estimate kinetic parameters from dynamically acquired tomographic data by first reconstructing a dynamic sequence of three-dimensional reconstructions and then fitting the parameters to time activity curves generated from the time-varying reconstructed images. However, in SPECT, the pharmaceutical distribution can change during the acquisition of a complete tomographic data set, which can bias the estimated kinetic parameters. It is hypothesized that more accurate estimates of the kinetic parameters can be obtained by fitting to the projection measurements instead of the reconstructed time sequence. Estimation from projections requires the knowledge of their relationship between the tissue regions of interest or voxels with particular kinetic parameters and the project measurements, which results in a complicated nonlinear estimation problem with a series of exponential factors with multiplicative coefficients. A technique is presented in this paper where the exponential decay parameters are estimated separately using linear time-invariant system theory. Once the exponential factors are known, the coefficients of the exponentials can be estimated using linear estimation techniques. Computer simulations demonstrate that estimation of the kinetic parameters directly from the projections is more accurate than the estimation from the reconstructed images
Methods of geometric function theory in classical and modern problems for polynomials
International Nuclear Information System (INIS)
Dubinin, Vladimir N
2012-01-01
This paper gives a survey of classical and modern theorems on polynomials, proved using methods of geometric function theory. Most of the paper is devoted to results of the author and his students, established by applying majorization principles for holomorphic functions, the theory of univalent functions, the theory of capacities, and symmetrization. Auxiliary results and the proofs of some of the theorems are presented. Bibliography: 124 titles.
Antigravity and classical solutions of five-dimensional Kaluza-Klein theory
International Nuclear Information System (INIS)
Pollard, D.
1983-01-01
Classical solutions are exhibited of a graviton-graviphoton-graviscalar field theory which are antigravitating in the weak-field approximation. The theory itself is obtained by a Kaluza-Klein type reduction from five to four dimensions. The solutions are dyonic black holes with scalar charge. They share some similarities with the extreme Reissner-Nordstrom black holes of Einstein-Maxwell theory. (author)
Treatise on classical elasticity theory and related problems
Teodorescu, Petre P
2013-01-01
Deformable solids have a particularly complex character; mathematical modeling is not always simple and often leads to inextricable difficulties of computation. One of the simplest mathematical models and, at the same time, the most used model, is that of the elastic body – especially the linear one. But, notwithstanding its simplicity, even this model of a real body may lead to great difficulties of computation. The practical importance of a work about the theory of elasticity, which is also an introduction to the mechanics of deformable solids, consists of the use of scientific methods of computation in a domain in which simplified methods are still used. This treatise takes into account the consideration made above, with special attention to the theoretical study of the state of strain and stress of a deformable solid. The book draws on the known specialized literature, as well as the original results of the author and his 50+ years experience as Professor of Mechanics and Elasticity at the University o...
International Nuclear Information System (INIS)
Jalilian-Marian, Jamal; Jeon, Sangyong; Venugopalan, Raju; Wirstam, Jens
2000-01-01
The one loop effective action in quantum field theory can be expressed as a quantum mechanical path integral over world lines, with internal symmetries represented by Grassmanian variables. In this paper, we develop a real time, many body, world line formalism for the one loop effective action. In particular, we study hot QCD and obtain the classical transport equations which, as Litim and Manuel have shown, reduce in the appropriate limit to the non-Abelian Boltzmann-Langevin equation first obtained by Boedeker. In the Vlasov limit, the classical kinetic equations are those that correspond to the hard thermal loop effective action. We also discuss the imaginary time world line formalism for a hot φ 4 theory, and elucidate its relation to classical transport theory. (c) 2000 The American Physical Society
Comparison of classical and modern theories of longitudinal wave propagation in elastic rods
CSIR Research Space (South Africa)
Shatalov, M
2011-01-01
Full Text Available Conference on Computational and Applied Mechanics SACAM10 Pretoria, 10?13 January 2010 ? SACAM COMPARISON OF CLASSICAL AND MODERN THEORIES OF LONGITUDINAL WAVE PROPAGATION IN ELASTIC RODS M. Shatalov*,?,?? , I. Fedotov? 1 , HM. Tenkam? 2, J. Marais..., Pretoria, 0001 FIN-40014, South Africa 1fedotovi@tut.ac.za, 2djouosseutenkamhm@tut.ac.za ?? Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa Keywords: Elastic rod, wave propagation, classical...
Criticism of the Classical Theory of Macroeconomic Modeling
Directory of Open Access Journals (Sweden)
Konstantin K. Kumehov
2015-01-01
Full Text Available Abstract: Current approaches and methods of modeling of macroeconomic systems do not allow to generate research ideas that could be used in applications. This is largely due to the fact that the dominant economic schools and research directions are building their theories on misconceptions about the economic system as object modeling, and have no common methodological approaches in the design of macroeconomic models. All of them are focused on building a model aimed at establishing equilibrium parameters of supply and demand, production and consumption. At the same time as the underlying factors are not considered resource potential and the needs of society in material and other benefits. In addition, there is no unity in the choice of elements and mechanisms of interaction between them. Not installed, what are the criteria to determine the elements of the model: whether it is the institutions, whether the industry is whether the population, or banks, or classes, etc. From the methodological point of view, the design of the model all the most well-known authors extrapolated to the new models of the past state or past events. As a result, every time the model is ready by the time the situation changes, the last parameters underlying the model are losing relevance, so at best, the researcher may have to interpret the events and parameters that are not feasible in the future. In this paper, based on analysis of the works of famous authors, belonging to different schools and areas revealed weaknesses of their proposed macroeconomic models that do not allow you to use them to solve applied problems of economic development. A fundamentally new approaches and methods by which it is possible the construction of macroeconomic models that take into account the theoretical and applied aspects of modeling, as well as formulated the basic methodological requirements.
Gauge invariance properties and singularity cancellations in a modified PQCD
Cabo-Montes de Oca, Alejandro; Cabo, Alejandro; Rigol, Marcos
2006-01-01
The gauge-invariance properties and singularity elimination of the modified perturbation theory for QCD introduced in previous works, are investigated. The construction of the modified free propagators is generalized to include the dependence on the gauge parameter $\\alpha $. Further, a functional proof of the independence of the theory under the changes of the quantum and classical gauges is given. The singularities appearing in the perturbative expansion are eliminated by properly combining dimensional regularization with the Nakanishi infrared regularization for the invariant functions in the operator quantization of the $\\alpha$-dependent gauge theory. First-order evaluations of various quantities are presented, illustrating the gauge invariance-properties.
On possibility of agreement of quantum mechanics with classical probability theory
International Nuclear Information System (INIS)
Slavnov, D.A.
2006-01-01
Paper describes a scheme to carry out a construction of the quantum mechanics where the quantum system is assumed to be a pattern of the open classical subsystems. It enables to make use both of the formal classical logic and the classical probability theory in the quantum mechanics. On the other hand, in terms of the mentioned approach one manages to ensure complete reconstruction of the quantum mechanics standard mathematical tool specifying its application limits. The problem dealing with the quantum state reduction is scrutinized [ru
International Nuclear Information System (INIS)
Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S.
2000-01-01
Classical and quantum theories of polarization bremsstrahlung in a statistical (Thomas-Fermi) potential of complex atoms and ions are developed. The basic assumptions of the theories correspond to the approximations employed earlier in classical and quantum calculations of ordinary bremsstrahlung in a static potential. This makes it possible to study on a unified basis the contribution of both channels in the radiation taking account of their interference. The classical model makes it possible to obtain simple universal formulas for the spectral characteristics of the radiation. The theory is applied to electrons with moderate energies, which are characteristic for plasma applications, specifically, radiation from electrons on the argon-like ion KII at frequencies close to its ionization potential. The computational results show the importance of taking account of the polarization channel of the radiation for plasma with heavy ions
A post-classical theory of enamel biomineralization… and why we need one.
Simmer, James P; Richardson, Amelia S; Hu, Yuan-Yuan; Smith, Charles E; Ching-Chun Hu, Jan
2012-09-01
Enamel crystals are unique in shape, orientation and organization. They are hundreds of thousands times longer than they are wide, run parallel to each other, are oriented with respect to the ameloblast membrane at the mineralization front and are organized into rod or interrod enamel. The classical theory of amelogenesis postulates that extracellular matrix proteins shape crystallites by specifically inhibiting ion deposition on the crystal sides, orient them by binding multiple crystallites and establish higher levels of crystal organization. Elements of the classical theory are supported in principle by in vitro studies; however, the classical theory does not explain how enamel forms in vivo. In this review, we describe how amelogenesis is highly integrated with ameloblast cell activities and how the shape, orientation and organization of enamel mineral ribbons are established by a mineralization front apparatus along the secretory surface of the ameloblast cell membrane.
Classical and quantum contents of solvable game theory on Hilbert space
International Nuclear Information System (INIS)
Cheon, Taksu; Tsutsui, Izumi
2006-01-01
A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation
Neo-classical theory of competition or Adam Smith's hand as mathematized ideology
McCauley, Joseph L.
2001-10-01
Orthodox economic theory (utility maximization, rational agents, efficient markets in equilibrium) is based on arbitrarily postulated, nonempiric notions. The disagreement between economic reality and a key feature of neo-classical economic theory was criticized empirically by Osborne. I show that the orthodox theory is internally self-inconsistent for the very reason suggested by Osborne: lack of invertibility of demand and supply as functions of price to obtain price as functions of supply and demand. The reason for the noninvertibililty arises from nonintegrable excess demand dynamics, a feature of their theory completely ignored by economists.
Theory and computation of disturbance invariant sets for discrete-time linear systems
Directory of Open Access Journals (Sweden)
Kolmanovsky Ilya
1998-01-01
Full Text Available This paper considers the characterization and computation of invariant sets for discrete-time, time-invariant, linear systems with disturbance inputs whose values are confined to a specified compact set but are otherwise unknown. The emphasis is on determining maximal disturbance-invariant sets X that belong to a specified subset Γ of the state space. Such d-invariant sets have important applications in control problems where there are pointwise-in-time state constraints of the form χ ( t ∈ Γ . One purpose of the paper is to unite and extend in a rigorous way disparate results from the prior literature. In addition there are entirely new results. Specific contributions include: exploitation of the Pontryagin set difference to clarify conceptual matters and simplify mathematical developments, special properties of maximal invariant sets and conditions for their finite determination, algorithms for generating concrete representations of maximal invariant sets, practical computational questions, extension of the main results to general Lyapunov stable systems, applications of the computational techniques to the bounding of state and output response. Results on Lyapunov stable systems are applied to the implementation of a logic-based, nonlinear multimode regulator. For plants with disturbance inputs and state-control constraints it enlarges the constraint-admissible domain of attraction. Numerical examples illustrate the various theoretical and computational results.
a Classical Isodual Theory of Antimatter and its Prediction of Antigravity
Santilli, Ruggero Maria
An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatment of matter and antimatter in due time, and as the classical foundations of an axiomatically consistent inclusion of gravitation in unified gauge theories recently appeared elsewhere, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with corresponding formulations at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also antiautomorphic (and more generally, antiisomorphic), yet it is applicable beginning at the classical level and then persists at the quantum level where it becomes equivalent to charge conjugation. We therefore present, apparently for the first time, the classical isodual theory of antimatter, we identify the physical foundations of the theory as being the novel isodual Galilean, special and general relativities, and we show the compatibility of the theory with all available classical experimental data on antimatter. We identify the classical foundations of the prediction of antigravity for antimatter in the field of matter (or vice-versa) without any claim on its validity, and defer its resolution to specifically identified experiments. We identify the novel, classical, isodual electromagnetic waves which are predicted to be emitted by antimatter, the so-called space-time machine based on a novel non-Newtonian geometric propulsion, and other implications of the theory. We also introduce, apparently for the first time, the isodual space and time inversions and show that they are nontrivially different than the conventional ones, thus
Fluctuations around classical solutions for gauge theories in Lagrangian and Hamiltonian approach
International Nuclear Information System (INIS)
Miskovic, Olivera; Pons, Josep M
2006-01-01
We analyse the dynamics of gauge theories and constrained systems in general under small perturbations around a classical solution in both Lagrangian and Hamiltonian formalisms. We prove that a fluctuations theory, described by a quadratic Lagrangian, has the same constraint structure and number of physical degrees of freedom as the original non-perturbed theory, assuming the non-degenerate solution has been chosen. We show that the number of Noether gauge symmetries is the same in both theories, but that the gauge algebra in the fluctuations theory becomes Abelianized. We also show that the fluctuations theory inherits all functionally independent rigid symmetries from the original theory and that these symmetries are generated by linear or quadratic generators according to whether the original symmetry is preserved by the background or is broken by it. We illustrate these results with examples
Guillemin, Ernst A
2013-01-01
An eminent electrical engineer and authority on linear system theory presents this advanced treatise, which approaches the subject from the viewpoint of classical dynamics and covers Fourier methods. This volume will assist upper-level undergraduates and graduate students in moving from introductory courses toward an understanding of advanced network synthesis. 1963 edition.
Mahajan, Dhruv; Ramamoorthi, Ravi; Curless, Brian
2008-02-01
This paper develops a theory of frequency domain invariants in computer vision. We derive novel identities using spherical harmonics, which are the angular frequency domain analog to common spatial domain invariants such as reflectance ratios. These invariants are derived from the spherical harmonic convolution framework for reflection from a curved surface. Our identities apply in a number of canonical cases, including single and multiple images of objects under the same and different lighting conditions. One important case we consider is two different glossy objects in two different lighting environments. For this case, we derive a novel identity, independent of the specific lighting configurations or BRDFs, that allows us to directly estimate the fourth image if the other three are available. The identity can also be used as an invariant to detecttampering in the images. While this paper is primarily theoretical, it has the potential to lay the mathematical foundations for two important practical applications. First, we can develop more general algorithms for inverse rendering problems, which can directly relight and change material properties by transferring the BRDF or lighting from another object or illumination. Second, we can check the consistency of an image, to detect tampering or image splicing.
Wigner's dynamical transition state theory in phase space : classical and quantum
Waalkens, Holger; Schubert, Roman; Wiggins, Stephen
We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs
A superfield generalization of the classical action-at-a-distance theory
International Nuclear Information System (INIS)
Tugai, V.V.; Zheltukhin, A.A.
1994-07-01
A generalization of the Fokker-Schwarzschild-Tetrode-Wheeler-Feynman electromagnetic theory onto the superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace. (author). 9 refs
Uniting the Spheres: Modern Feminist Theory and Classic Texts in AP English
Drew, Simao J. A.; Bosnic, Brenda G.
2008-01-01
High school teachers Simao J. A. Drew and Brenda G. Bosnic help familiarize students with gender role analysis and feminist theory. Students examine classic literature and contemporary texts, considering characters' historical, literary, and social contexts while expanding their understanding of how patterns of identity and gender norms exist and…
Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment
Marcus, R. A.
1964-01-01
In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.
International Nuclear Information System (INIS)
Scheck, Florian
2010-01-01
Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [de
Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications
Energy Technology Data Exchange (ETDEWEB)
Sihvola, Ari [Helsinki University of Technology (Finland)
2005-03-11
'Good reasons must, of force, give place to better', observes Brutus to Cassius, according to William Shakespeare in Julius Caesar. Roger Raab and Owen de Lange seem to agree, as they cite this sentence in the concluding chapter of their new book on the importance of exact multipole analysis in macroscopic electromagnetics. Very true and essential to remember in our daily research work. The two scientists from the University of Natal in Pietermaritzburg, South Africa (presently University of KwaZulu-Natal) have been working for a very long time on the accurate description of electric and magnetic response of matter and have published much of their findings in various physics journals. The present book gives us a clear and coherent exposition of many of these results. The important message of Raab and de Lange is that in the macroscopic description of matter, a correct balance between the various orders of electric and magnetic multipole terms has to be respected. If the inclusion of magnetic dipole terms is not complemented with electric quadrupoles, there is a risk of losing the translational invariance of certain important quantities. This means that the values of these quantities depend on the choice of the origin{exclamation_point} 'It can't be Nature, for it is not sense' is another of the apt literary citations in the book. Often monographs written by researchers look like they have been produced using a cut-and-paste technique; earlier published articles are included in the same book but, unfortunately, too little additional effort is expended into moulding the totality into a unified story. This is not the case with Raab and de Lange. The structure and the text flow of the book serve perfectly its important message. After the obligatory introduction of material response to electromagnetic fields, constitutive relations, basic quantum theory and spacetime properties, a chapter follows with transmission and scattering effects where
Sihvola, Ari
2005-03-01
`Good reasons must, of force, give place to better', observes Brutus to Cassius, according to William Shakespeare in Julius Caesar. Roger Raab and Owen de Lange seem to agree, as they cite this sentence in the concluding chapter of their new book on the importance of exact multipole analysis in macroscopic electromagnetics. Very true and essential to remember in our daily research work. The two scientists from the University of Natal in Pietermaritzburg, South Africa (presently University of KwaZulu-Natal) have been working for a very long time on the accurate description of electric and magnetic response of matter and have published much of their findings in various physics journals. The present book gives us a clear and coherent exposition of many of these results. The important message of Raab and de Lange is that in the macroscopic description of matter, a correct balance between the various orders of electric and magnetic multipole terms has to be respected. If the inclusion of magnetic dipole terms is not complemented with electric quadrupoles, there is a risk of losing the translational invariance of certain important quantities. This means that the values of these quantities depend on the choice of the origin! `It canÂ't be Nature, for it is not sense' is another of the apt literary citations in the book. Often monographs written by researchers look like they have been produced using a cut-and-paste technique; earlier published articles are included in the same book but, unfortunately, too little additional effort is expended into moulding the totality into a unified story. This is not the case with Raab and de Lange. The structure and the text flow of the book serve perfectly its important message. After the obligatory introduction of material response to electromagnetic fields, constitutive relations, basic quantum theory and spacetime properties, a chapter follows with transmission and scattering effects where everything seems to work well with the `old
Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications
International Nuclear Information System (INIS)
Sihvola, Ari
2005-01-01
'Good reasons must, of force, give place to better', observes Brutus to Cassius, according to William Shakespeare in Julius Caesar. Roger Raab and Owen de Lange seem to agree, as they cite this sentence in the concluding chapter of their new book on the importance of exact multipole analysis in macroscopic electromagnetics. Very true and essential to remember in our daily research work. The two scientists from the University of Natal in Pietermaritzburg, South Africa (presently University of KwaZulu-Natal) have been working for a very long time on the accurate description of electric and magnetic response of matter and have published much of their findings in various physics journals. The present book gives us a clear and coherent exposition of many of these results. The important message of Raab and de Lange is that in the macroscopic description of matter, a correct balance between the various orders of electric and magnetic multipole terms has to be respected. If the inclusion of magnetic dipole terms is not complemented with electric quadrupoles, there is a risk of losing the translational invariance of certain important quantities. This means that the values of these quantities depend on the choice of the origin! 'It can't be Nature, for it is not sense' is another of the apt literary citations in the book. Often monographs written by researchers look like they have been produced using a cut-and-paste technique; earlier published articles are included in the same book but, unfortunately, too little additional effort is expended into moulding the totality into a unified story. This is not the case with Raab and de Lange. The structure and the text flow of the book serve perfectly its important message. After the obligatory introduction of material response to electromagnetic fields, constitutive relations, basic quantum theory and spacetime properties, a chapter follows with transmission and scattering effects where everything seems to work well with the 'old
International Nuclear Information System (INIS)
Orlenko, E. V.; Ershova, E. V.; Orlenko, F. E.
2013-01-01
The formalism of exchange perturbation theory is presented with regard to the general principles of constructing an antisymmetric vector with the use of the Young diagrams and tableaux in which the coordinate and spin parts are not separated. The form of the energy and wave function corrections coincides with earlier obtained expressions, which are reduced in the present paper to a simpler form of a symmetry-adapted perturbation operator, which preserves all intercenter exchange contributions. The exchange perturbation theory (EPT) formalism itself is presented in the standard form of invariant perturbation theory that takes into account intercenter electron permutations between overlapping nonorthogonal states. As an example of application of the formalism of invariant perturbation theory, we consider the magnetic properties of perovskite manganites La 1/3 Ca 2/3 MnO 3 that are associated with the charge and spin ordering in magnetic chains of manganese. We try to interpret the experimental results obtained from the study of the effect of doping the above alloys by the model of superexchange interaction in manganite chains that is constructed on the basis of the exchange perturbation theory (EPT) formalism. The model proposed makes it possible to carry out a quantitative analysis of the effect of substitution of manganese atoms by doping elements with different electron configurations on the electronic structure and short-range order in a magnetic chain of manganites
Amano, Shigeaki; Hirata, Y
2015-01-01
The theory of relational acoustic invariance claims that there are stable acoustic properties in speech signals that correspond to a phonological feature, and that the perception system utilizes these acoustic properties for stable perception of a phoneme. The present study examines whether such an invariance exists in native listeners' perception of Japanese singleton and geminate stops despite variability in speaking rate and word length, and whether this perception corresponds to production. Native Japanese listeners identified singleton and geminate stops in continua of 3- and 4-mora words spoken at different speaking rates. Results indicated that the perception boundary is well predicted by a linear function with two variables: durations of stop closure and the (C)V(C)CV portion (with the contrasting stops underlined) of the 3- and 4-mora words. In addition, these two variables were in a consistent relationship for both perception and production of words containing 2-4 moras. The results support the relational acoustic invariance theory. © 2015 S. Karger AG, Basel.
Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.
Lei, Wenwen; McKenzie, David R
2016-07-21
Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks.
Invariance Signatures: Characterizing contours by their departures from invariance
Squire, David; Caelli, Terry M.
1997-01-01
In this paper, a new invariant feature of two-dimensional contours is reported: the Invariance Signature. The Invariance Signature is a measure of the degree to which a contour is invariant under a variety of transformations, derived from the theory of Lie transformation groups. It is shown that the Invariance Signature is itself invariant under shift, rotation and scaling of the contour. Since it is derived from local properties of the contour, it is well-suited to a neural network implement...
On low rank classical groups in string theory, gauge theory and matrix models
International Nuclear Information System (INIS)
Intriligator, Ken; Kraus, Per; Ryzhov, Anton V.; Shigemori, Masaki; Vafa, Cumrun
2004-01-01
We consider N=1 supersymmetric U(N), SO(N), and Sp(N) gauge theories, with two-index tensor matter and added tree-level superpotential, for general breaking patterns of the gauge group. By considering the string theory realization and geometric transitions, we clarify when glueball superfields should be included and extremized, or rather set to zero; this issue arises for unbroken group factors of low rank. The string theory results, which are equivalent to those of the matrix model, refer to a particular UV completion of the gauge theory, which could differ from conventional gauge theory results by residual instanton effects. Often, however, these effects exhibit miraculous cancellations, and the string theory or matrix model results end up agreeing with standard gauge theory. In particular, these string theory considerations explain and remove some apparent discrepancies between gauge theories and matrix models in the literature
Plasmon mass scale in two-dimensional classical nonequilibrium gauge theory
Lappi, T.; Peuron, J.
2018-02-01
We study the plasmon mass scale in classical gluodynamics in a two-dimensional configuration that mimics the boost-invariant initial color fields in a heavy-ion collision. We numerically measure the plasmon mass scale using three different methods: a hard thermal loop (HTL) expression involving the quasiparticle spectrum constructed from Coulomb gauge field correlators, an effective dispersion relation, and the measurement of oscillations between electric and magnetic energies after introducing a spatially uniform perturbation to the electric field. We find that the HTL expression and the uniform electric field measurement are in rough agreement. The effective dispersion relation agrees with other methods within a factor of 2. We also study the dependence on time and occupation number, observing similar trends as in three spatial dimensions, where a power-law dependence sets in after an occupation-number-dependent transient time. We observe a decrease of the plasmon mass squared as t-1 / 3 at late times.
The classical limit of quantum theories: Particles in external metrics and with spin
International Nuclear Information System (INIS)
Hogreve, J.J.
1983-01-01
The intention of this work is to provide some further steps in this program, particullary the clarification of certain aspects of the classical limit of quantum theory. Here the classical limit is understood in the sense that we consider a family of quantum theories parametrized by (h/2π) > 0, and then take the limit (h/2π) -> 0. From a mathematical point of view we are thus in the area calles 'asymptotic perturbation theory'. In detail, we examine the canonical partition function Tr [esup(-x)] with x=tH((h/2π)) for Hamiltonians H ((h/2π)) involving the Laplace-Beltrami operator on manifolds, and show that after scaling it by (h/2π)sup(N) it converges to its corresponding classical counterpart. This is done in chapter I. In chapter II we prove the convergence to its classical limit of the partition function for Hamiltonians including spin degrees of freedom, i.e. Hamiltonians of Pauli type. In this case taking the classical limit includes also manipulation on the spin space in the sense that the weight of the representation of the spin operators has to tend to infinity simultanously as (h/2π) approaches zero. Under this procedure the spin space itself, that is the representation space of the spin operators, turn into certain coadjoint orbits of the respective Lie group. The main result of chapter III is a generalized Ehrenfest theorem; as (h/2π) -> 0 the quantum mechanical time evolution generated by Hamiltonians including external metrics and vector potentials becomes a solution of the corresponding classical canonical Hamiltonian equations. (orig./HSI) [de
International Nuclear Information System (INIS)
Edelen, D.G.B.
1986-01-01
Homogeneous scaling of the group space of the Poincare group, P 10 , is shown to induce scalings of all geometric quantities associated with the local action of P 10 . The field equations for both the translation and the Lorentz rotation compensating fields reduce to O(1) equations if the scaling parameter is set equal to the general relativistic gravitational coupling constant 8πGc -4 . Standard expansions of all field variables in power series in the scaling parameter give the following results. The zeroth-order field equations are exactly the classical field equations for matter fields on Minkowski space subject to local action of an internal symmetry group (classical gauge theory). The expansion process is shown to break P 10 -gauge covariance of the theory, and hence solving the zeroth-order field equations imposes an implicit system of P 10 -gauge conditions. Explicit systems of field equations are obtained for the first- and higher-order approximations. The first-order translation field equations are driven by the momentum-energy tensor of the matter and internal compensating fields in the zeroth order (classical gauge theory), while the first-order Lorentz rotation field equations are driven by the spin currents of the same classical gauge theory. Field equations for the first-order gravitational corrections to the matter fields and the gauge fields for the internal symmetry group are obtained. Direct Poincare gauge theory is thus shown to satisfy the first two of the three-part acid test of any unified field theory. Satisfaction of the third part of the test, at least for finite neighborhoods, seems probable
An analogue of the Heisenberg uncertainty relation in prequantum classical field theory
Energy Technology Data Exchange (ETDEWEB)
Khrennikov, Andrei, E-mail: Andrei.Khrennikov@vxu.s [International Center for Mathematical Modelling in Physics and Cognitive Sciences, University of Vaexjoe, Vaexjoe (Sweden) and Institute of Information Security, Russian State University for Humanities, Moscow (Russian Federation)
2010-02-01
Prequantum classical statistical field theory (PCSFT) is a model that provides the possibility of representing averages of quantum observables, including correlations of observables on subsystems of a composite system, as averages with respect to fluctuations of classical random fields. PCSFT is a classical model of wave type. For example, 'electron' is described by electronic field. In contrast to quantum mechanics (QM), this field is a real physical field and not a field of probabilities. An important point is that the prequantum field of , for example, an electron contains the irreducible contribution of the background field vacuum fluctuations. In principle, the traditional QM-formalism can be considered as a special regularization procedure: subtraction of averages with respect to vacuum fluctuations. In this paper, we derive a classical analogue of the Heisenberg-Robertson inequality for dispersions of functionals of classical (prequantum) fields. The PCSFT Robertson-like inequality provides a restriction on the product of classical dispersions. However, this restriction is not so rigid as in QM.
An analogue of the Heisenberg uncertainty relation in prequantum classical field theory
International Nuclear Information System (INIS)
Khrennikov, Andrei
2010-01-01
Prequantum classical statistical field theory (PCSFT) is a model that provides the possibility of representing averages of quantum observables, including correlations of observables on subsystems of a composite system, as averages with respect to fluctuations of classical random fields. PCSFT is a classical model of wave type. For example, 'electron' is described by electronic field. In contrast to quantum mechanics (QM), this field is a real physical field and not a field of probabilities. An important point is that the prequantum field of , for example, an electron contains the irreducible contribution of the background field vacuum fluctuations. In principle, the traditional QM-formalism can be considered as a special regularization procedure: subtraction of averages with respect to vacuum fluctuations. In this paper, we derive a classical analogue of the Heisenberg-Robertson inequality for dispersions of functionals of classical (prequantum) fields. The PCSFT Robertson-like inequality provides a restriction on the product of classical dispersions. However, this restriction is not so rigid as in QM.
Coherent states with classical motion: from an analytic method complementary to group theory
International Nuclear Information System (INIS)
Nieto, M.M.
1982-01-01
From the motivation of Schroedinger, that of finding states which follow the motion which a classical particle would have in a given potential, we discuss generalizations of the coherent states of the harmonic oscillator. We focus on a method which is the analytic complement to the group theory point of view. It uses a minimum uncertainty formalism as its basis. We discuss the properties and time evolution of these states, always keeping in mind the desire to find quantum states which follow the classical motion
Classical field theory in the space of reference frames. [Space-time manifold, action principle
Energy Technology Data Exchange (ETDEWEB)
Toller, M [Dipartimento di Matematica e Fisica, Libera Universita, Trento (Italy)
1978-03-11
The formalism of classical field theory is generalized by replacing the space-time manifold M by the ten-dimensional manifold S of all the local reference frames. The geometry of the manifold S is determined by ten vector fields corresponding to ten operationally defined infinitesimal transformations of the reference frames. The action principle is written in terms of a differential 4-form in the space S (the Lagrangian form). Densities and currents are represented by differential 3-forms in S. The field equations and the connection between symmetries and conservation laws (Noether's theorem) are derived from the action principle. Einstein's theory of gravitation and Maxwell's theory of electromagnetism are reformulated in this language. The general formalism can also be used to formulate theories in which charge, energy and momentum cannot be localized in space-time and even theories in which a space-time manifold cannot be defined exactly in any useful way.
Experimental Observation of Two Features Unexpected from the Classical Theories of Rubber Elasticity
Nishi, Kengo; Fujii, Kenta; Chung, Ung-il; Shibayama, Mitsuhiro; Sakai, Takamasa
2017-12-01
Although the elastic modulus of a Gaussian chain network is thought to be successfully described by classical theories of rubber elasticity, such as the affine and phantom models, verification experiments are largely lacking owing to difficulties in precisely controlling of the network structure. We prepared well-defined model polymer networks experimentally, and measured the elastic modulus G for a broad range of polymer concentrations and connectivity probabilities, p . In our experiment, we observed two features that were distinct from those predicted by classical theories. First, we observed the critical behavior G ˜|p -pc|1.95 near the sol-gel transition. This scaling law is different from the prediction of classical theories, but can be explained by analogy between the electric conductivity of resistor networks and the elasticity of polymer networks. Here, pc is the sol-gel transition point. Furthermore, we found that the experimental G -p relations in the region above C* did not follow the affine or phantom theories. Instead, all the G /G0-p curves fell onto a single master curve when G was normalized by the elastic modulus at p =1 , G0. We show that the effective medium approximation for Gaussian chain networks explains this master curve.
Manifestly gauge invariant discretizations of the Schrödinger equation
International Nuclear Information System (INIS)
Halvorsen, Tore Gunnar; Kvaal, Simen
2012-01-01
Grid-based discretizations of the time dependent Schrödinger equation coupled to an external magnetic field are converted to manifest gauge invariant discretizations. This is done using generalizations of ideas used in classical lattice gauge theory, and the process defined is applicable to a large class of discretized differential operators. In particular, popular discretizations such as pseudospectral discretizations using the fast Fourier transform can be transformed to gauge invariant schemes. Also generic gauge invariant versions of generic time integration methods are considered, enabling completely gauge invariant calculations of the time dependent Schrödinger equation. Numerical examples illuminating the differences between a gauge invariant discretization and conventional discretization procedures are also presented. -- Highlights: ► We investigate the Schrödinger equation coupled to an external magnetic field. ► Any grid-based discretization is made trivially gauge invariant. ► An extension of classical lattice gauge theory.
Classical testing particles and (4 + N)-dimensional theories of space-time
International Nuclear Information System (INIS)
Nieto-Garcia, J.A.
1986-01-01
The Lagrangian theory of a classical relativistic spinning test particle (top) developed by Hanson and Regge and by Hojman is briefly reviewed. Special attention is devoted to the constraints imposed on the dynamical variables associated with the system of this theory. The equations for a relativistic top are formulated in a way suitable for use in the study of geometrical properties of the 4 + N-dimensional Kaluza-Klein background. It is shown that the equations of motion of a top in five dimensions reduce to the Hanson-Regge generalization of the Bargmann-Michel-Telegdi equations of motion in four dimensions when suitable conditions on the spin tensor are imposed. The classical bosonic relativistic string theory is discussed and the connection of this theory with the top theory is examined. It is found that the relation between the string and the top leads naturally to the consideration of a 3-dimensional extended system (called terron) which sweeps out a 4-dimensional surface as it evolves in a space-time. By using a square root procedure based on ideas by Teitelboim a theory of a supersymmetric top is developed. The quantization of the new supersymmetric system is discussed. Conclusions and suggestions for further research are given
International Nuclear Information System (INIS)
Hart, C.F.
1981-01-01
A gauge invariant effective action which generalizes the usual background field method is applied to quantum non-Abelian gauge theories. The gauge properties of the theory as well as its equivalence to the conventional theory are presented. Solutions to the new effective field equations are found to be physical and it is shown how S-matrix elements may be computed in terms of this new effective action. Feynman rules are given and the renormalization theory is discussed using minimal subtraction and dimensional regularization. The resulting computation of counterterms is found to be simpler than that of the usual method. A complete two-loop calculation of the β function for pure Yang-Mills theory is given as a specific example of this approach
International Nuclear Information System (INIS)
Castro, A; Gross, E K U
2014-01-01
We derive the fundamental equations of an optimal control theory for systems containing both quantum electrons and classical ions. The system is modeled with Ehrenfest dynamics, a non-adiabatic variant of molecular dynamics. The general formulation, that needs the fully correlated many-electron wavefunction, can be simplified by making use of time-dependent density-functional theory. In this case, the optimal control equations require some modifications that we will provide. The abstract general formulation is complemented with the simple example of the H 2 + molecule in the presence of a laser field. (paper)
Theory and computation of disturbance invariant sets for discrete-time linear systems
Directory of Open Access Journals (Sweden)
Ilya Kolmanovsky
1998-01-01
. One purpose of the paper is to unite and extend in a rigorous way disparate results from the prior literature. In addition there are entirely new results. Specific contributions include: exploitation of the Pontryagin set difference to clarify conceptual matters and simplify mathematical developments, special properties of maximal invariant sets and conditions for their finite determination, algorithms for generating concrete representations of maximal invariant sets, practical computational questions, extension of the main results to general Lyapunov stable systems, applications of the computational techniques to the bounding of state and output response. Results on Lyapunov stable systems are applied to the implementation of a logic-based, nonlinear multimode regulator. For plants with disturbance inputs and state-control constraints it enlarges the constraint-admissible domain of attraction. Numerical examples illustrate the various theoretical and computational results.
Galilei-invariant theory of low energy pion-nucleus scattering
International Nuclear Information System (INIS)
Mach, R.
1980-01-01
The scattering of a particle by a system of bound scatterers is investigated and reasons are given why the optical model and other models based on the standard impulse approximation violate the Galilei invariance. It is shown how this deficiency can be removed. Further, the validity of factojzation approximation is studied. In the case of Galilei-invariant models, there exists a unique combination of effective target particle momenta in the initial and final states, by means of which the optical potential can be expressed in factorized form (elementary scattering matrix by form factor of the composed target) while the error caused by the factorization procedure is of the order of projectile over target particle mass squared
Theory of pseudo-classical confinement and transmutation to L-mode
International Nuclear Information System (INIS)
Itoh, K.; Itoh, S.; Yagi, M.; Fukuyama, A.; Azumi, M.
1993-05-01
Theory of the self-sustained turbulence is developed for resistive plasma in toroidal devices. Pseudo-classical confinement is obtained in the low temperature limit. As temperature increases, the current-diffusivity prevails upon resistivity, and the turbulence nature changes so as to recover the L-mode transport. Comparison with experimental observation on this transition is made. Hartmann number is also given. (author)
Calculation of the spin-isospin response functions in an extended semi-classical theory
International Nuclear Information System (INIS)
Chanfray, G.
1987-01-01
We present a semi-classical calculation of the spin isospin response-functions beyond Thomas-Fermi theory. We show that surface-peaked ℎ 2 corrections reduce the collective effects predicted by Thomas-Fermi calculations. These effects, small for a volume response, become important for surface responses probed by hadrons. This yields a considerable improvement of the agreement with the (p, p') Los Alamos data
Despina Hatzifotiadou: ALICE Master Class 1 - Theory: strange particles, V0 decays, invariant mass
CERN. Geneva
2016-01-01
This is the 1st of 4 short online videos. It contains an introduction to the first part of the exercise : what are strange particles, V0 decays, invariant mass. More details and related links on this indico event page. In more detail: What is Physics Master Classes Students after morning lectures, run programmes in the afternoon to do measurements. These tutorials are about how to use the software required to do these measurements. Background info and examples Looking for strange particles with ALICE http://aliceinfo.cern.ch/Public/MasterCL/MasterClassWebpage.html Introduction to first part of the exercise : what are strange particles, V0 decays, invariant mass. Demonstration of the software for the 1st part of the exercise - visual identification of V0s Introduction to second part of the exercise : strangeness enhancement; centrality of lead-lead collisions; explanation of efficiency, yield, background etc Demonstration of the software for the 2nd part of the exercise - invariant mass spec...
On the validity of the classical hydrodynamic lubrication theory applied to squeeze film dampers
International Nuclear Information System (INIS)
Danaila, S; Moraru, L
2010-01-01
Squeeze film dampers (SFD) are devices utilized to control vibrations of the shafts of high-speed rotating machinery. The SFD - squirrel cage combination is probably the most used system for tuning the stiffness and damping of the supports for rotors installed on ball bearings. Squeeze film dampers are essentially hydrodynamic bearings which contain the ball bearings housings of ball-bearings supported shafts. Consequently, the oil film within the SFD are influenced only by the precession and nutation of the shaft, that is the flow of the oil within the damper is not directly influenced by the spin of the rotor. However, in the classical theory, the flow in the thin film is also governed by the Reynolds equation. In this paper, some of the limits of the classical theory of the SFD are discussed and theoretical and experimental studies, which illustrate the ideas presented herein, are presented as well. The orbits of an unbalanced rotor that is supported by a ball-bearings-SFD-squirrel-cage assembly at one end and by rigidly mounted ball bearings at the other end are computed using the bearing forces provided by the classical short bearing theory. The numerical model also includes the properties of the squirrel cage. The parameters of the squirrel cage were measured, together with the effect of the friction within the assembly. Experimental unbalance responses were also collected for various rotation speeds and unbalances to validate the numerical simulations.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)
2014-01-14
A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.
International Nuclear Information System (INIS)
Hwang, Jai-chan; Noh, Hyerim
2005-01-01
We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others
Zhou, Yun; Pollak, Eli; Miret-Artés, Salvador
2014-01-14
A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to "soft" corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.
A High Order Theory for Linear Thermoelastic Shells: Comparison with Classical Theories
Directory of Open Access Journals (Sweden)
V. V. Zozulya
2013-01-01
Full Text Available A high order theory for linear thermoelasticity and heat conductivity of shells has been developed. The proposed theory is based on expansion of the 3-D equations of theory of thermoelasticity and heat conductivity into Fourier series in terms of Legendre polynomials. The first physical quantities that describe thermodynamic state have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby all equations of elasticity and heat conductivity including generalized Hooke's and Fourier's laws have been transformed to the corresponding equations for coefficients of the polynomial expansion. Then in the same way as in the 3D theories system of differential equations in terms of displacements and boundary conditions for Fourier coefficients has been obtained. First approximation theory is considered in more detail. The obtained equations for the first approximation theory are compared with the corresponding equations for Timoshenko's and Kirchhoff-Love's theories. Special case of plates and cylindrical shell is also considered, and corresponding equations in displacements are presented.
Quantum implications of a scale invariant regularization
Ghilencea, D. M.
2018-04-01
We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry. Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ ) by the associated Goldstone mode (dilaton σ ), which enables a scale-invariant regularization and whose vacuum expectation value ⟨σ ⟩ generates the subtraction scale (μ ). While the hidden (σ ) and visible sector (ϕ ) are classically decoupled in d =4 due to an enhanced Poincaré symmetry, they interact through (a series of) evanescent couplings ∝ɛ , dictated by the scale invariance of the action in d =4 -2 ɛ . At the quantum level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective operators ϕ2 n +4/σ2 n. These are comparable in size to "standard" loop corrections and are important for values of ϕ close to ⟨σ ⟩. For n =1 , 2, the beta functions of their coefficient are computed at three loops. In the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large ⟨σ ⟩, and the effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the DR scheme (of μ =constant).
Rotationally invariant correlation filtering
International Nuclear Information System (INIS)
Schils, G.F.; Sweeney, D.W.
1985-01-01
A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired
International Nuclear Information System (INIS)
Sbisà, Fulvio
2015-01-01
The aim of these notes is to provide a self-contained review of why it is generically a problem when a solution of a theory possesses ghost fields among the perturbation modes. We define what a ghost field is and we show that its presence is associated with a classical instability whenever the ghost field interacts with standard fields. We then show that the instability is more severe at quantum level, and that perturbative ghosts can exist only in low energy effective theories. However, if we do not consider very ad hoc choices, compatibility with observational constraints implies that low energy effective ghosts can exist only at the price of giving up Lorentz invariance or locality above the cut-off, in which case the cut-off has to be much lower that the energy scales we currently probe in particle colliders. We also comment on the possible role of extra degrees of freedom which break Lorentz invariance spontaneously. (paper)
Energy Technology Data Exchange (ETDEWEB)
Ahn, C.
1989-08-01
We study two aspects of one loop structures in quantum field theories which describe two different areas of particle physics: the one loop unitarity behavior of the Standard Model of electroweak interactions and modular invariance of string model theory. Loop expansion has its importance in that it contains quantum fluctuations due to all physical states in the theory. Therefore, by studying the various models to one loop, we can understand how the contents of the theory can contribute to physically measurable quantities and how the consistency at quantum level restricts the physical states of the theory, as well. In the first half of the thesis, we study one loop corrections to the process {ital e}{sup +}{ital e}{sup {minus}} {yields} {ital W}{sup +}{ital W}{sup {minus}}. In this process, there is a delicate unitarity-saving cancellation between s-channel and t-channel tree level Feynman diagrams. If the one loop contribution due to heavy particles corrects the channels asymmetrically, the cancellation, hence unitarity, will be delayed up to the mass scale of these heavy particles. We refer to this phenomena as the unitarity delay effect. Due to this effect, cross section below these mass scales can have significant radiative corrections which may provide an appropriate window through which we can see the high energy structure of the Standard Model from relatively low energy experiments. In the second half, we will show how quantum consistency can restrict the physical states in string theory. 53 refs., 13 figs.
Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory
International Nuclear Information System (INIS)
Nielsen, H.B.; Rugh, H.H.; Rugh, S.E.
1996-01-01
We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a open-quote no goclose quotes for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a open-quotes continuum limitclose quotes in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined
Classical Weyl transverse gravity
Energy Technology Data Exchange (ETDEWEB)
Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)
2017-05-15
We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)
Mischel, W; Shoda, Y
1995-04-01
A theory was proposed to reconcile paradoxical findings on the invariance of personality and the variability of behavior across situations. For this purpose, individuals were assumed to differ in (a) the accessibility of cognitive-affective mediating units (such as encodings, expectancies and beliefs, affects, and goals) and (b) the organization of relationships through which these units interact with each other and with psychological features of situations. The theory accounts for individual differences in predictable patterns of variability across situations (e.g., if A then she X, but if B then she Y), as well as for overall average levels of behavior, as essential expressions or behavioral signatures of the same underlying personality system. Situations, personality dispositions, dynamics, and structure were reconceptualized from this perspective.
Galileo-invariant theory of low energy pion-nucleus scattering. III
International Nuclear Information System (INIS)
Mach, R.
1983-01-01
Using two versions of the Galileo-invariant optical model, π - - 4 He elastic scattering cross sections were calculated in the energy interval 50 to 260 MeV. Level shifts and widths of several light π-mesoatoms were estimated in the Born approximation. Whereas the (A+1)-body model appears to be more suitable in the resonance region, the two-body model yields surprisingly good results for both the low-energy scattering and the characteristics of π-mesoatoms. (author)
Galileo-invariant theory of low energy pion-nucleus scattering
International Nuclear Information System (INIS)
Mach, R.
1980-01-01
Two classes of Galileo-invariant optical models are constructed for pion elastic scattering by nuclei. The first, the two-body model, has been obtained assuming that the pion-bound nucleon dynamics is determined by the pion-nucleon kinetic energy. In deriving the second model, the (A+1)-body dynamics has been taken into account. The technique of effective nucleon momenta maintains the nonlocal propagation of the pion-target nucleon subsystem through the nucleus in contrast with the standard static approximation
Galileo-invariant theory of low energy pion-nucleus scattering. II
International Nuclear Information System (INIS)
Mach, R.
1983-01-01
Two classes of Galileo-invariant optical models are constructed for pion elastic scattering by nuclei. The former, the two-body model, was obtained assuming that the pion-bound nucleon dynamics is determined by the pion-nucleon kinetic energy. In deriving the latter model, the (A+1)-body dynamics was taken into account. The technique of effective nucleon momenta maintains the nonlocal propagation of the pion-target nucleon subsystem through the nucleus in contrast with the standard static approximation. (author)
A theory of solving TAP equations for Ising models with general invariant random matrices
DEFF Research Database (Denmark)
Opper, Manfred; Çakmak, Burak; Winther, Ole
2016-01-01
We consider the problem of solving TAP mean field equations by iteration for Ising models with coupling matrices that are drawn at random from general invariant ensembles. We develop an analysis of iterative algorithms using a dynamical functional approach that in the thermodynamic limit yields...... the iteration dependent on a Gaussian distributed field only. The TAP magnetizations are stable fixed points if a de Almeida–Thouless stability criterion is fulfilled. We illustrate our method explicitly for coupling matrices drawn from the random orthogonal ensemble....
Variational calculations in gauge theories with approximate projection on gauge invariant states
International Nuclear Information System (INIS)
Heinemann, C.; Martin, C.; Vautherin, D.; Iancu, E.
1999-01-01
Variational calculations using Gaussian wave functionals combined with an approximate projection on gauge invariant states are presented. The minimization with respect to the kernel and center of the Gaussian leads to a gap type equation which is free of the difficulties generally encountered with negative modes. We show that the divergences in the expectation value of the energy density are only logarithmic and can be removed by a renormalization of the coupling constant. The renormalized energy density has a minimum which corresponds to a vanishing background magnetic field. We obtain an estimate for the gluon condensate. (authors)
A scale invariance criterion for LES parametrizations
Directory of Open Access Journals (Sweden)
Urs Schaefer-Rolffs
2015-01-01
Full Text Available Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance. However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint. So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check if the symmetries of the governing equations are correctly translated into the equations used in numerical models. By applying scaling transformations to the model equations, relations between the scaling factors are obtained by demanding that the mathematical structure of the equations does not change.The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling behaviour that is different from that derived for horizontal length scales.
Super-Galilei invariant field theories in 2+1 dimensions
International Nuclear Information System (INIS)
Bergman, O.; Thorn, C.B.
1995-01-01
The authors extend the Galilei group of space-time transformations by gradation, construct interacting field-theoretic representations of this algebra, and show that non-relativistic Super-Chern-Simons theory is a special case. They also study the generalization to matrix valued fields, which are relevant to the formulation of superstring theory as a 1/N c expansion of a field theory. The authors find that in the matrix case, the field theory is much more restricted by the supersymmetry
Is That a Real Theory or Did You Just Make It Up? Teaching Classic Grounded Theory
Directory of Open Access Journals (Sweden)
Odis E. Simmons, Ph.D.
2010-06-01
Full Text Available The title of this paper was derived from an incident I observed some years ago while accompanying a highly talented musician-songwriter friend to a performance. During a break, an audience member approached him to compliment the last song he had performed. He had written both the music and the lyrics to the song, one of many he had written. The audience member queried, “Is that a real song, or did you just make it up?” A touch amused, and not knowing whether he should be flattered or insulted, he politely replied, “It is a real song and I made it up.”This episode puts in mind a similar attitude in the social sciences that Glaser and Strauss (1967 noted, in which a small number of ’theoretical capitalists’ originate what are considered to be “real” theories and others are relegated to the role of “proletariat” testers. The means by which these theorists derived their theories remained largely mysterious. Unleashing proletariat testers was one of the chief rationales behind Glaser and Strauss’ development of grounded theory. It brought a democratic option into the social sciences that enabled anyone who learned the methodology to generate theory. The democratic ethos of the methodology may also have inadvertently unleashed an abundance of aspiring remodelers of the methodology, who unfortunately have eroded its primary purpose—to generate theories that are fully grounded in data rather than speculation or ideology.
Prequantum classical statistical field theory: background field as a source of everything?
International Nuclear Information System (INIS)
Khrennikov, Andrei
2011-01-01
Prequantum classical statistical field theory (PCSFT) is a new attempt to consider quantum mechanics (QM) as an emergent phenomenon, cf. with De Broglie's 'double solution' approach, Bohmian mechanics, stochastic electrodynamics (SED), Nelson's stochastic QM and its generalization by Davidson, 't Hooft's models and their development by Elze. PCSFT is a comeback to a purely wave viewpoint on QM, cf. with early Schrodinger. There is no quantum particles at all, only waves. In particular, photons are simply wave-pulses of the classical electromagnetic field, cf. SED. Moreover, even massive particles are special 'prequantum fields': the electron field, the neutron field, and so on. PCSFT claims that (sooner or later) people will be able to measure components of these fields: components of the 'photonic field' (the classical electromagnetic field of low intensity), electronic field, neutronic field, and so on. At the moment we are able to produce quantum correlations as correlations of classical Gaussian random fields. In this paper we are interested in mathematical and physical reasons of usage of Gaussian fields. We consider prequantum signals (corresponding to quantum systems) as composed of a huge number of wave-pulses (on very fine prequantum time scale). We speculate that the prequantum background field (the field of 'vacuum fluctuations') might play the role of a source of such pulses, i.e., the source of everything.
Force-Field Functor Theory: Classical Force-Fields which Reproduce Equilibrium Quantum Distributions
Directory of Open Access Journals (Sweden)
Ryan eBabbush
2013-10-01
Full Text Available Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.
[A non-classical approach to medical practices: Michel Foucault and Actor-Network Theory].
Bińczyk, E
2001-01-01
The text presents an analysis of medical practices stemming from two sources: Michel Foucault's conception and the research of Annemarie Mol and John Law, representatives of a trend known as Actor-Network Theory. Both approaches reveal significant theoretical kinship: they can be successfully consigned to the framework of non-classical sociology of science. I initially refer to the cited conceptions as a version of non-classical sociology of medicine. The identity of non-classical sociology of medicine hinges on the fact that it undermines the possibility of objective definitions of disease, health and body. These are rather approached as variable social and historical phenomena, co-constituted by medical practices. To both Foucault and Mol the main object of interest was not medicine as such, but rather the network of medical practices. Mol and Law sketch a new theoretical perspective for the analysis of medical practices. They attempt to go beyond the dichotomous scheme of thinking about the human body as an object of medical research and the subject of private experience. Research on patients suffering blood-sugar deficiency provide the empirical background for the thesis of Actor-Network Theory representatives. Michel Foucault's conceptions are extremely critical of medical practices. The French researcher describes the processes of 'medicalising' Western society as the emergence of a new type of power. He attempts to sensitise the reader to the ethical dimension of the processes of medicalising society.
International Nuclear Information System (INIS)
Garrett, B.C.; Truhlar, D.G.; Grev, R.S.
1981-01-01
Accurate classical dynamical fixed-energy reaction probabilities and fixed-temperature rate constants are calculated for the collinear reaction H + FH on a low-barrier model potential energy surface. The calculations cover energies from 0.1 to 100 kcal/mol above threshold and temperatures of 100 to 10,000 K. The accurate results are used to test five approximate theories: conventional transition-state theory (TST), canonical variational theory (CVT), improved canonical variational theory (ICVT), microcanonical variational theory (μVT), and the unified statistical model (US). The first four of these theories involve a single dividing surface in phase space, and the US theory involves three dividing surfaces. The tests are particularly interesting because the potential energy surface has two identical saddle points. At temperatures from 100 to 2000 K, the μVt is the most accurate theory, with errors in the range 11 to 14%; for temperatures from 2000 to 10,000 K, the US theory is the most successful, with errors in the range 3 to 14%. Over the whole range, a factor of 100 in temperature, both theories have errors of 35% or less. Even TST has errors of 47% or less over the whole factor-of-100 temperature range. Although the US model should become exact at threshold for this system, it already underestimates the reaction probability by a factor of 0.64 at 0.1 kcal/mol above threshold. TST and μVT agree with each other within 12% up to an energy 13 kcal/mol above the saddle point energy. 3 figures, 2 tables
A generalized Yang-Mills Theory I: general aspects of the classical theory
International Nuclear Information System (INIS)
Galvao, C.A.P.
1987-01-01
A generalized Yang-Mills theory which is the non-Abelian version of the generalized eletrodinamics proposed by Podolsky is analysed both in the Lagrangian an Hamiltonian formulation. A simple class of solutions to the Euler-Lagrange equations is presented and the structure of the Hamiltonian constraints is studied in details. (Author) [pt
Semenov, Alexander; Babikov, Dmitri
2014-01-16
For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.
Alfonso, Victor I.; Bejarano, Cecilia; Beltrán Jiménez, Jose; Olmo, Gonzalo J.; Orazi, Emanuele
2017-12-01
We study a large family of metric-affine theories with a projective symmetry, including non-minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly realised by imposing that the connection only enters through the symmetric part of the Ricci tensor, even in the matter sector. We leave the connection completely free (including torsion), and obtain its general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only appears as a projective mode. This result justifies the widely used condition of setting vanishing torsion in these theories as a simple gauge choice. We apply our results to some particular cases considered in the literature, including the so-called Eddington-inspired-Born-Infeld theories among others. We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible, and comment on the genuine character of the non-metricity in theories where the two metrics are not conformally related.
A direct derivation of polynomial invariants from perturbative Chern-Simons gauge theory
International Nuclear Information System (INIS)
Ochiai, Tomoshiro
2003-01-01
There have been several methods to show that the expectation values of Wilson loop operators in the SU(N) Chern-Simons gauge theory satisfy the HOMFLY skein relation. We shall give another method from the perturbative method of the SU(N) Chern-Simons gauge theory in the light-cone gauge, which is more direct than already known methods
The Manifestations of Positive Leader Roles in Classical Theories of Leadership
Directory of Open Access Journals (Sweden)
Joanna Wegner
2017-06-01
Full Text Available The aim of the paper is to identify the key functions performed by leaders in organisations, and to study how positive leaders affect their teams and the results achieved by subordinates. The paper analyses, through the lens of positive leadership, the importance of motivation, communication between organisational members, as well as delegation and transfer of responsibility manifested in classical theories of leadership. The literature survey is the main data collection technique applied to achieve the aim of the paper.
Energy Technology Data Exchange (ETDEWEB)
Srivastava, D. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India)]. E-mail: dsrivastavabarc@yahoo.co.in; Neogy, S. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Banerjee, S. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Ranganathan, S. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India)
2005-04-25
The crystallographic aspects associated with the formation of the {gamma} hydride phase (fct) from the {alpha} (hcp) phase and the {beta} (bcc) phase in Zr-Nb alloys have been studied in two distinct situations, viz., in the {alpha} matrix in pure Zr and Zr-2.5Nb and in the {beta} matrix in {beta} stabilized Zr-20Nb alloy. The {beta}-{gamma} formation can be treated primarily as a simple shear on the basal plane involving a change in the stacking sequence. A possible mechanism for {alpha}-{gamma} transformation has been presented in this paper. In this paper the {beta}->{gamma} transformation has been considered in terms of the invariant plane strain theory (IPS) in order to predict the crystallographic features of the {gamma} hydride formed. The lattice invariant shear (LIS) (110){sub {beta}}[1-bar 10]{sub {beta}}||(111){sub {gamma}}[12-bar 1]{sub {gamma}} has been considered and the crystallographic parameters associated with bcc->fct transformation, such as the habit plane and the magnitude of the LIS and the shape strain have been computed. The predictions made in the present analysis have been compared with experimentally observed habit planes. The {alpha}/{gamma} and {beta}/{gamma} interface has been examined by high resolution transmission electron microscopy (HRTEM) technique to compare with the interfaces observed in martensitic transformations.
Application of invariant plane strain (IPS) theory to γ hydride formation in dilute Zr-Nb alloys
International Nuclear Information System (INIS)
Srivastava, D.; Neogy, S.; Dey, G.K.; Banerjee, S.; Ranganathan, S.
2005-01-01
The crystallographic aspects associated with the formation of the γ hydride phase (fct) from the α (hcp) phase and the β (bcc) phase in Zr-Nb alloys have been studied in two distinct situations, viz., in the α matrix in pure Zr and Zr-2.5Nb and in the β matrix in β stabilized Zr-20Nb alloy. The β-γ formation can be treated primarily as a simple shear on the basal plane involving a change in the stacking sequence. A possible mechanism for α-γ transformation has been presented in this paper. In this paper the β->γ transformation has been considered in terms of the invariant plane strain theory (IPS) in order to predict the crystallographic features of the γ hydride formed. The lattice invariant shear (LIS) (110) β [1-bar 10] β ||(111) γ [12-bar 1] γ has been considered and the crystallographic parameters associated with bcc->fct transformation, such as the habit plane and the magnitude of the LIS and the shape strain have been computed. The predictions made in the present analysis have been compared with experimentally observed habit planes. The α/γ and β/γ interface has been examined by high resolution transmission electron microscopy (HRTEM) technique to compare with the interfaces observed in martensitic transformations
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, Kan-ichi; Kubo, Reijiro
1974-12-01
The framework of the Nakanishi-Lautrup formalism should be enlarged by introducing a scalar dipole ghost field B(x), which is called gauge on field, together with its pair field. By taking free Lagrangian density, Free-field equations can be described. The vacuum is defined by using a neutral vector field U..mu..(x). The state-vector space is generated by the adjoining conjugates of U..mu..sup((+))(x), and auxiliary fields B(x), B/sub 1/(x) and B/sub 2/(x), which were introduced in the form of the Lagrangian density. The physical states can be defined by the supplementary conditions of the form B/sub 1/sup((+))(x) 1 phys>=B/sub 2/sup((+))(x) 1 phys>=0. It is seen that all the field equations and all the commutators are kept form-invariant, and that the gauge parameter ..cap alpha.. is transformed into ..cap alpha..' given by ..cap alpha..'=..cap alpha..+lambda, with epsilon unchanged. The Lagrangian density is specified only by the gauge invariant parameter epsilon. The gauge structure of theory has universal meaning over whole Abelian-gauge field. C-number gauge transformation and the gauge structure in the presence of interaction are also discussed.
Status of time reversal invariance
International Nuclear Information System (INIS)
Henley, E.M.
1989-01-01
Time Reversal Invariance is introduced, and theories for its violation are reviewed. The present experimental and theoretical status of Time Reversal Invariance and tests thereof will be presented. Possible future tests will be discussed. 30 refs., 2 figs., 1 tab
Meisner, Jan; Markmeyer, Max N; Bohner, Matthias U; Kästner, Johannes
2017-08-30
Atom tunneling in the hydrogen atom transfer reaction of the 2,4,6-tri-tert-butylphenyl radical to 3,5-di-tert-butylneophyl, which has a short but strongly curved reaction path, was investigated using instanton theory. We found the tunneling path to deviate qualitatively from the classical intrinsic reaction coordinate, the steepest-descent path in mass-weighted Cartesian coordinates. To perform that comparison, we implemented a new variant of the predictor-corrector algorithm for the calculation of the intrinsic reaction coordinate. We used the reaction force analysis method as a means to decompose the reaction barrier into structural and electronic components. Due to the narrow energy barrier, atom tunneling is important in the abovementioned reaction, even above room temperature. Our calculated rate constants between 350 K and 100 K agree well with experimental values. We found a H/D kinetic isotope effect of almost 10 6 at 100 K. Tunneling dominates the protium transfer below 400 K and the deuterium transfer below 300 K. We compared the lengths of the tunneling path and the classical path for the hydrogen atom transfer in the reaction HCl + Cl and quantified the corner cutting in this reaction. At low temperature, the tunneling path is about 40% shorter than the classical path.
Sectors of solutions and minimal energies in classical Liouville theories for strings
International Nuclear Information System (INIS)
Johansson, L.; Kihlberg, A.; Marnelius, R.
1984-01-01
All classical solutions of the Liouville theory for strings having finite stable minimum energies are calculated explicitly together with their minimal energies. Our treatment automatically includes the set of natural solitonlike singularities described by Jorjadze, Pogrebkov, and Polivanov. Since the number of such singularities is preserved in time, a sector of solutions is not only characterized by its boundary conditions but also by its number of singularities. Thus, e.g., the Liouville theory with periodic boundary conditions has three different sectors of solutions with stable minimal energies containing zero, one, and two singularities. (Solutions with more singularities have no stable minimum energy.) It is argued that singular solutions do not make the string singular and therefore may be included in the string quantization
Theoretical equation of state for classical fluids. I. Test by perturbation theory
International Nuclear Information System (INIS)
Gil-Villegas, A.; Chavez, M.; Del Rio, F.
1993-01-01
This paper shows how to construct the theoretical equation of state (TEOS) of a classical simple fluid. The theory relies on the mean collisional diameter and range, and maps the thermodynamical properties of the fluid into those of an equivalent square-well (ESW) fluid of appropriate depth ε , diameter σ and range R. It is shown that the ESW has the same pressure as the fluid of interest. Hence the THEOS of any simple fluid takes the form of a SW EOS of the given ε , σ and R. The theory is applied to a Lennard-Jones (LJ) system in a first-order perturbation. The mapping equation have a physical solution for densities where the SW EOS is accurate; the resulting LJ TEOS agrees very well with the results of computer simulations, and compares favorably with the recent TEOS developed by Song and Mason. (Author). 17 refs, 7 figs, 1 tab
Turesson, Martin; Szparaga, Ryan; Ma, Ke; Woodward, Clifford E; Forsman, Jan
2014-05-14
A new classical density functional approach is developed to accurately treat a coarse-grained model of room temperature aromatic ionic liquids. Our major innovation is the introduction of charge-charge correlations, which are treated in a simple phenomenological way. We test this theory on a generic coarse-grained model for aromatic RTILs with oligomeric forms for both cations and anions, approximating 1-alkyl-3-methyl imidazoliums and BF₄⁻, respectively. We find that predictions by the new density functional theory for fluid structures at charged surfaces are very accurate, as compared with molecular dynamics simulations, across a range of surface charge densities and lengths of the alkyl chain. Predictions of interactions between charged surfaces are also presented.
Theory of the interface between a classical plasma and a hard wall
International Nuclear Information System (INIS)
Ballone, P.; Pastore, G.; Tosi, M.P.; Trieste Univ.
1983-09-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a 'contact theorem', fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile. (author)
Psychosocial Intervention Use in Long-Stay Dementia Care: A Classic Grounded Theory.
Hunter, Andrew; Keady, John; Casey, Dympna; Grealish, Annmarie; Murphy, Kathy
2016-12-01
The objective of this study was to develop a substantive grounded theory of staff psychosocial intervention use with residents with dementia in long-stay care. "Becoming a person again" emerged as the core category accounting for staffs' psychosocial intervention use within long-stay care. Interview data were collected from participants in nine Irish long-stay settings: 14 residents with dementia, 19 staff nurses, one clinical facilitator, seven nurse managers, 21 nursing assistants, and five relatives. Constant comparative method guided the data collection and analysis. The researcher's theoretical memos, based on unstructured observation, and applicable extant literature were also included as data. By identifying the mutuality of the participants' experiences, this classic grounded theory explains staff motivation toward psychosocial intervention use within long-stay care. It also explains how institutional factors interact with those personal factors that incline individuals toward psychosocial intervention use. © The Author(s) 2016.
Modalities of gene action predicted by the classical evolutionary biological theory of aging.
Martin, George M
2007-04-01
What might now be referred to as the "classical" evolutionary biological theory of why we age has had a number of serious challenges in recent years. While the theory might therefore have to be modified under certain circumstances, in the author's opinion, it still provides the soundest theoretical basis for thinking about how we age. Nine modalities of gene action that have the potential to modulate processes of aging are reviewed, including the two most widely reviewed and accepted concepts ("antagonistic pleiotropy" and "mutation accumulation"). While several of these nine mechanisms can be regarded as derivatives of the antagonistic pleiotropic concept, they frame more specific questions for future research. Such research should pursue what appears to be the dominant factor in the determination of intraspecific variations in longevity-stochastic mechanisms, most likely based upon epigenetics. This contrasts with the dominant factor in the determination of interspecific variations in longevity-the constitutional genome, most likely based upon variations in regulatory loci.
Energy Technology Data Exchange (ETDEWEB)
Lehnhart, B.C.
2007-05-15
This thesis is concerned with electromagnetic pion production within manifestly Lorentz-invariant chiral perturbation theory using the assumption of isospin symmetry. In a one-loop calculation up to the chiral order O(q{sup 4}), 105 Feynman diagrams contribute, consisting of 20 tree graphs and 85 loop diagrams. The tree graphs are classified as 16 pole diagrams and 4 contact graphs. Of the 85 loop diagrams, 50 diagrams are of order three and 35 diagrams are of fourth order. To calculate the pion production amplitude algorithms are developed on the basis of the Mathematica package FeynCalc. The one-photon-exchange approximation allows one to parametrise the pion production amplitude as the product of the polarisation vector of the (virtual) photon and the matrix element of the transition current. The polarisation vector is related to the leptonic vertex and the photon propagator and is well-known from QED. The dependence of the amplitude on the strong interaction is contained in the matrix element of the transition current, and we use chiral perturbation theory to describe this matrix element. The transition current can be expressed in terms of six gauge invariant amplitudes, each of which can again be decomposed into three isospin amplitudes. Linear combinations of these amplitudes allow us to describe the physical amplitudes. The one-loop integrals appearing within this calculation are determined numerically by the program LoopTools. In the case of tensorial integrals it is required to perform the method of Passarino and Veltman first. Furthermore, we apply the reformulated infrared regularisation which ensures that the results fulfill the chiral power counting. For this purpose algorithms are developed which determine the subtraction terms automatically. The obtained isospin amplitudes are integrated in the program MAID. As tests the s-wave multipoles E{sub 0+} and L{sub 0+} (using results up to chiral order O(q{sup 3})) are calculated in the threshold region
Test of gauge invariance and unitarity of the quantized Einstein theory of gravity
International Nuclear Information System (INIS)
Hsu, J.P.; Underwood, J.A.
1975-01-01
Explicit calculations at the 1-loop level verify that the usual quantized Einstein theory of gravity is indeed gauge independent and unitary for all values of the gauge parameter α. This lends nontrivial support to a general formal proof
Directory of Open Access Journals (Sweden)
Jesús García-de-Madariaga
2011-10-01
Full Text Available There has been a lot of discussion about corporate social responsibility (CSR during these last decades. Neoclassical authors support the idea that CSR is not compatible with the objective of profit maximization, and defenders of CSR argue that, in these times of globalization and network economies, the idea of a company managed just to meet shareholders’ interests does not support itself. However, beyond this discussion, how can CSR affect firms’ market value? If we found a positive relationship between these variables, we could conclude that the two theories are reconcilable and the objective of profit maximization, perhaps, should satisfy not only shareholders’ interests, but also stakeholders’. We review previous literature and propose a model to analyze how CSR affects firms’ market value.
Meson-baryon scattering in manifestly Lorentz invariant chiral perturbation theory
International Nuclear Information System (INIS)
Mai, Maxim; Bruns, Peter C.; Kubis, Bastian; Meissner, Ulf-G.
2011-01-01
We analyze meson-baryon scattering lengths in the framework of covariant baryon chiral perturbation theory at leading one-loop order. We compute the complete set of matching relations between the dimension-two low-energy constants in the two- and three-flavor formulations of the theory. We derive new two-flavor low-energy theorems for pion-hyperon scattering that can be tested in lattice simulations.
Three dimensional classical theory of rainbow scattering of atoms from surfaces
International Nuclear Information System (INIS)
Pollak, Eli; Miret-Artes, Salvador
2010-01-01
Graphical abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously. - Abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously.
Three dimensional classical theory of rainbow scattering of atoms from surfaces
Energy Technology Data Exchange (ETDEWEB)
Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovoth (Israel); Miret-Artes, Salvador [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)
2010-10-05
Graphical abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously. - Abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously.
International Nuclear Information System (INIS)
Moriyasu, K.
1978-01-01
A pedagogical approach to gauge invariance is presented which is based on the analogy between gauge transformations and relativity. By using the concept of an internal space, purely geometrical arguments are used to teach the physical ideas behind gauge invariance. Many of the results are applicable to general gauge theories
Conformal invariance from nonconformal gravity
International Nuclear Information System (INIS)
Meissner, Krzysztof A.; Nicolai, Hermann
2009-01-01
We discuss the conditions under which classically conformally invariant models in four dimensions can arise out of nonconformal (Einstein) gravity. As an 'existence proof' that this is indeed possible we show how to derive N=4 super Yang-Mills theory with any compact gauge group G from nonconformal gauged N=4 supergravity as a special flat space limit. We stress the role that the anticipated UV finiteness of the (so far unknown) underlying theory of quantum gravity would have to play in such a scheme, as well as the fact that the masses of elementary particles would have to arise via quantum gravitational effects which mimic the conformal anomalies of standard (flat space) UV divergent quantum field theory.
Piefke, Christoph; Lechermann, Frank
2018-03-01
The theory of correlated electron systems on a lattice proves notoriously complicated because of the exponential growth of Hilbert space. Mean-field approaches provide valuable insight when the self-energy has a dominant local structure. Additionally, the extraction of effective low-energy theories from the generalized many-body representation is highly desirable. In this respect, the rotational-invariant slave-boson (RISB) approach in its mean-field formulation enables versatile access to correlated lattice problems. However, in its original form, due to numerical complexity, the RISB approach is limited to about three correlated orbitals per lattice site. We thus present a thorough symmetry-adapted advancement of RISB theory, suited to efficiently deal with multiorbital Hubbard Hamiltonians for complete atomic-shell manifolds. It is utilized to study the intriguing problem of Hund's physics for three- and especially five-orbital manifolds on the correlated lattice, including crystal-field terms as well as spin-orbit interaction. The well-known Janus-face phenomenology, i.e., strengthening of correlations at smaller-to-intermediate Hubbard U accompanied by a shift of the Mott transition to a larger U value, has a stronger signature and more involved multiplet resolution for five-orbital problems. Spin-orbit interaction effectively reduces the critical local interaction strength and weakens the Janus-face behavior. Application to the realistic challenge of Fe chalcogenides underlines the subtle interplay of the orbital degrees of freedom in these materials.
International Nuclear Information System (INIS)
Oriols, X.
2016-01-01
Exact predictions for most quantum systems are computationally inaccessible. This is the so-called many body problem, which is present in most common interpretations of quantum mechanics. Therefore, predictions of natural quantum phenomena have to rely on some approximations (assumptions or simplifications). In the literature, there are different types of approximations, ranging from those whose justification is basically based on theoretical developments to those whose justification lies on the agreement with experiments. This last type of approximations can convert a quantum theory into an “unfalsifiable” quantum theory, true by construction. On the practical side, converting some part of a quantum theory into an “unfalsifiable” one ensures a successful modeling (i.e. compatible with experiments) for quantum engineering applications. An example of including irreversibility and dissipation in the Bohmian modeling of open systems is presented. On the ontological level, however, the present-day foundational problems related to controversial quantum phenomena have to avoid (if possible) being contaminated by the unfalsifiability originated from the many body problem. An original attempt to show how the Bohmian theory itself (minimizing the role of many body approximations) explains the transitions from a microscopic quantum system towards a macroscopic classical one is presented. (paper)
Lorentz invariance with an invariant energy scale.
Magueijo, João; Smolin, Lee
2002-05-13
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.
Flenady, Tracy; Dwyer, Trudy; Applegarth, Judith
2017-09-01
Abnormal respiratory rates are one of the first indicators of clinical deterioration in emergency department(ED) patients. Despite the importance of respiratory rate observations, this vital sign is often inaccurately recorded on ED observation charts, compromising patient safety. Concurrently, there is a paucity of research reporting why this phenomenon occurs. To develop a substantive theory explaining ED registered nurses' reasoning when they miss or misreport respiratory rate observations. This research project employed a classic grounded theory analysis of qualitative data. Seventy-nine registered nurses currently working in EDs within Australia. Data collected included detailed responses from individual interviews and open-ended responses from an online questionnaire. Classic grounded theory (CGT) research methods were utilised, therefore coding was central to the abstraction of data and its reintegration as theory. Constant comparison synonymous with CGT methods were employed to code data. This approach facilitated the identification of the main concern of the participants and aided in the generation of theory explaining how the participants processed this issue. The main concern identified is that ED registered nurses do not believe that collecting an accurate respiratory rate for ALL patients at EVERY round of observations is a requirement, and yet organizational requirements often dictate that a value for the respiratory rate be included each time vital signs are collected. The theory 'Rationalising Transgression', explains how participants continually resolve this problem. The study found that despite feeling professionally conflicted, nurses often erroneously record respiratory rate observations, and then rationalise this behaviour by employing strategies that adjust the significance of the organisational requirement. These strategies include; Compensating, when nurses believe they are compensating for errant behaviour by enhancing the patient's outcome
Gromov-Witten invariants and localization
Morrison, David R.
2017-11-01
We give a pedagogical review of the computation of Gromov-Witten invariants via localization in 2D gauged linear sigma models. We explain the relationship between the two-sphere partition function of the theory and the Kähler potential on the conformal manifold. We show how the Kähler potential can be assembled from classical, perturbative, and non-perturbative contributions, and explain how the non-perturbative contributions are related to the Gromov-Witten invariants of the corresponding Calabi-Yau manifold. We then explain how localization enables efficient calculation of the two-sphere partition function and, ultimately, the Gromov-Witten invariants themselves. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed V Pestun and M Zabzine) which contains 17 chapters, available at [1].
Dumas, H Scott
2014-01-01
This is a semi-popular mathematics book aimed at a broad readership of mathematically literate scientists, especially mathematicians and physicists who are not experts in classical mechanics or KAM theory, and scientific-minded readers. Parts of the book should also appeal to less mathematically trained readers with an interest in the history or philosophy of science. The scope of the book is broad: it not only describes KAM theory in some detail, but also presents its historical context (thus showing why it was a 'breakthrough'). Also discussed are applications of KAM theory (especially to celestial mechanics and statistical mechanics) and the parts of mathematics and physics in which KAM theory resides (dynamical systems, classical mechanics, and Hamiltonian perturbation theory). Although a number of sources on KAM theory are now available for experts, this book attempts to fill a long-standing gap at a more descriptive level. It stands out very clearly from existing publications on KAM theory because it ...
RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20
Energy Technology Data Exchange (ETDEWEB)
VAN BAAL,P.; ORLAND,P.; PISARSKI,R.
2000-06-01
This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.
Manifestly scale-invariant regularization and quantum effective operators
Ghilencea, D.M.
2016-01-01
Scale invariant theories are often used to address the hierarchy problem, however the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which break this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale invariant regularization in (classical) scale invariant theories. We use a dilaton-dependent subtraction function $\\mu(\\sigma)$ which after spontaneous breaking of scale symmetry generates the usual DR subtraction scale $\\mu(\\langle\\sigma\\rangle)$. One consequence is that "evanescent" interactions generated by scale invariance of the action in $d=4-2\\epsilon$ (but vanishing in $d=4$), give rise to new, finite quantum corrections. We find a (finite) correction $\\Delta U(\\phi,\\sigma)$ to the one-loop scalar potential for $\\phi$ and $\\sigma$, beyond the Coleman-Weinberg term. $\\Delta U$ is due to an evanescent correction ($\\propto\\epsilon$) to the field-dependent masses (of...
Haataja, Mikko; Gránásy, László; Löwen, Hartmut
2010-08-01
Herein we provide a brief summary of the background, events and results/outcome of the CECAM workshop 'Classical density functional theory methods in soft and hard matter held in Lausanne between October 21 and October 23 2009, which brought together two largely separately working communities, both of whom employ classical density functional techniques: the soft-matter community and the theoretical materials science community with interests in phase transformations and evolving microstructures in engineering materials. After outlining the motivation for the workshop, we first provide a brief overview of the articles submitted by the invited speakers for this special issue of Journal of Physics: Condensed Matter, followed by a collection of outstanding problems identified and discussed during the workshop. 1. Introduction Classical density functional theory (DFT) is a theoretical framework, which has been extensively employed in the past to study inhomogeneous complex fluids (CF) [1-4] and freezing transitions for simple fluids, amongst other things. Furthermore, classical DFT has been extended to include dynamics of the density field, thereby opening a new avenue to study phase transformation kinetics in colloidal systems via dynamical DFT (DDFT) [5]. While DDFT is highly accurate, the computations are numerically rather demanding, and cannot easily access the mesoscopic temporal and spatial scales where diffusional instabilities lead to complex solidification morphologies. Adaptation of more efficient numerical methods would extend the domain of DDFT towards this regime of particular interest to materials scientists. In recent years, DFT has re-emerged in the form of the so-called 'phase-field crystal' (PFC) method for solid-state systems [6, 7], and it has been successfully employed to study a broad variety of interesting materials phenomena in both atomic and colloidal systems, including elastic and plastic deformations, grain growth, thin film growth, solid
Response of SU(2) lattice gauge theory to a gauge invariant external field
International Nuclear Information System (INIS)
Goepfert, M.
1980-10-01
Topologically determined Z(2) variables in pure SU(2) lattice gauge theory are discussed. They count the number of 'vortex souls'. The expectation value of the corresponding Z(2) loop and the dependence of the string tension on an external field h coupled to them is calculated to lowest order in the high temperature expansion. The result is in agreement with the conjecture that the probability distribution of vortex souls determines the string tension. A different formula for the string tension is found in the two limiting cases 0 < /h/ << β << 1 and 0 < β << h << 1. This penomenon is traced to the effect of short range interactions of the vortex souls which are mediated by the other excitations in the theory. (orig.)
Higgs-Yukawa model in chirally-invariant lattice field theory
Bulava, John; Jansen, Karl; Kallarackal, Jim; Knippschild, Bastian; Lin, C.-J.David; Nagai, Kei-Ichi; Nagy, Attila; Ogawa, Kenji
2013-01-01
Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.
Dupoyet, B.; Fiebig, H. R.; Musgrove, D. P.
2010-01-01
We report on initial studies of a quantum field theory defined on a lattice with multi-ladder geometry and the dilation group as a local gauge symmetry. The model is relevant in the cross-disciplinary area of econophysics. A corresponding proposal by Ilinski aimed at gauge modeling in non-equilibrium pricing is implemented in a numerical simulation. We arrive at a probability distribution of relative gains which matches the high frequency historical data of the NASDAQ stock exchange index.
Higgs-Yukawa model in chirally-invariant lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Bulava, John [CERN, Geneva (Switzerland). Physics Department; Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [National Taiwan Univ., Taipei (China). Dept. of Physics; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; National Centre for Theoretical Sciences, Hsinchu (China). Div. of Physics; Nagai, Kei-Ichi [Nagoya Univ., Nagoya, Aichi (Japan). Kobayashi-Maskawa Institute; Ogawa, Kenji [Chung-Yuan Christian Univ., Chung-Li (China). Dept. of Physics
2012-10-15
Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.
Self psychology as a shift away from the paranoid strain in classical analytic theory.
Terman, David M
2014-12-01
Classical psychoanalytic theory has a paranoid strain. There is, in effect, an "evil other"--the id--within each individual that must be tamed in development and confronted and worked through as resistance in treatment. This last has historically endgendered an adversarial relationship between patient and analyst. This paranoid strain came from a paranoid element in Freud's personality that affected his worldview, his relationships, and his theory. Self psychology offers a different view of development and conflict. It stresses the child's need for responsiveness from and admiration of caretakers in order to develop a well-functioning self. Though severe behavioral and character problems may result from faults in the process of self-construction, the essential need is not instinctual discharge but connection. Hence the long-assumed opposition between individual needs and social institutions or between patient and analyst is no longer inevitable or universal. Rather, an understanding of the primary need for connection creates both a different interpretive stance and a more cooperative ambience. These changes in theory and technique are traced to Kohut's personal struggles to emancipate himself from his paranoid mother. © 2014 by the American Psychoanalytic Association.
The classical electromagnetic field
Eyges, Leonard
2010-01-01
This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.
Quantum and classical gauge symmetries
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Terashima, Hiroaki
2001-01-01
The use of the mass term of the gauge field as a gauge fixing term, which was discussed by Zwanziger, Parrinello and Jona-Lasinio in a large mass limit, is related to the non-linear gauge by Dirac and Nambu. We have recently shown that this use of the mass term as a gauge fixing term is in fact identical to the conventional local Faddeev-Popov formula without taking a large mass limit, if one takes into account the variation of the gauge field along the entire gauge orbit. This suggests that the classical massive vector theory, for example, could be re-interpreted as a gauge invariant theory with a gauge fixing term added in suitably quantized theory. As for massive gauge particles, the Higgs mechanics, where the mass term is gauge invariant, has a more intrinsic meaning. We comment on several implications of this observation. (author)
Supernatural supersymmetry and its classic example: M-theory inspired NMSSM
Li, Tianjun; Raza, Shabbar; Wang, Xiao-Chuan
2016-06-01
We briefly review the supernatural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the minimal supersymmetric standard model (MSSM), the next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for supernatural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on S1/Z2. In these scenarios, SUSY is broken by one and only one F term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the Kähler potential and superpotential from Calabi-Yau compactification of M-theory on S1/Z2. Thus, as predicted by supernatural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are relatively light around 1 TeV, stau can even be as light as 580 GeV and degenerate with the lightest neutralino, chargino masses are larger than 1 TeV, the light stop masses are around 2 TeV or larger, the first two-generation squark masses are about 3 TeV or larger, and gluinos are heavier tha.n squarks. In the dilaton dominant SUSY breaking scenario, the qualitative picture remains the same but we have heavier spectra as compared to the moduli dominant SUSY breaking scenario. In addition to it, we have Higgs H2/A1-resonance solutions for dark matter (DM). In both scenarios, the minimal value of DM relic density is about 0.2. To obtain the observed DM relic density, we can consider the dilution effect from supercritical string cosmology or introduce the axino as the lightest supersymmetric particle.
Wetting of heterogeneous substrates. A classical density-functional-theory approach
Yatsyshin, Peter; Parry, Andrew O.; Rascón, Carlos; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim
2017-11-01
Wetting is a nucleation of a third phase (liquid) on the interface between two different phases (solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid-fluid and fluid-substrate intermolecular interactions leads to the appearance of a whole ``zoo'' of exciting interface phase transitions, associated with the formation of nano-droplets/bubbles, and thin films. Practical applications of wetting at small scales are numerous and include the design of lab-on-a-chip devices and superhydrophobic surfaces. In this talk, we will use a fully microscopic approach to explore the phase space of a planar wall, decorated with patches of different hydrophobicity, and demonstrate the highly non-trivial behaviour of the liquid-gas interface near the substrate. We will present fluid density profiles, adsorption isotherms and wetting phase diagrams. Our analysis is based on a formulation of statistical mechanics, commonly known as classical density-functional theory. It provides a computationally-friendly and rigorous framework, suitable for probing small-scale physics of classical fluids and other soft-matter systems. EPSRC Grants No. EP/L027186,EP/K503733;ERC Advanced Grant No. 247031.
Field transformations and the classical equation of motion in chiral perturbation theory
International Nuclear Information System (INIS)
Scherer, S.; Fearing, H.W.
1995-01-01
The construction of effective Lagrangians commonly involves the application of the ''classical equation of motion'' to eliminate redundant structures and thus generate the minimal number of independent terms. We investigate this procedure in the framework of chiral perturbation theory with particular emphasis on the new features which appear at O(p 6 ). The use of the ''classical equation of motion'' is interpreted in terms of field transformations. Such an interpretation is crucial if one wants to bring a given Lagrangian into a canonical form with a minimal number of terms. We emphasize that the application of field transformations leads to a modification of the coefficients of higher-order terms as well as eliminating structures, or what is equivalent, expressing certain structures in terms of already known different structures. This will become relevant once one considers the problem of expressing in canonical form a model effective interaction containing terms beyond next-to-leading order, i.e., beyond O(p 4 ). In such circumstances the naive application of the clasical equation of motion to simply drop terms, as is commonly done at lowest order, leads to subtle errors, which we discuss
The meaning of “anomalous weak values” in quantum and classical theories
International Nuclear Information System (INIS)
Sokolovski, D.
2015-01-01
The readings of a highly inaccurate “weak” quantum meter, employed to determine the value of a dichotomous variable S without destroying the interference between the alternatives, may take arbitrary values. We show that the expected values of its readings may take any real value, depending on the choice of the states in which the system is pre- and post-selected. Some of these values must fall outside the range of eigenvalues of S, in which case they may be expressed as “anomalous” averages obtained with negative probability weights, constructed from available probability amplitudes. This behaviour is a natural consequence of the Uncertainty Principle. The phenomenon of “anomalous weak values” has no non-trivial analogue in classical statistics. - Highlights: • Average reading of a weak meter can take any value, depending on the transition. • No information about intrinsic properties of the measured system, e.g., the size of a spin. • This is a direct consequence of the Uncertainty Principle, which forbids distinguishing between interfering alternatives. • Some of the average have to lie outside the spectrum of the measured operator, i.e., be “anomalous”. • There can be no anomalous averages in a purely classical theory
Answer to 'Information flow, causality, and the classical theory of tachyons'
International Nuclear Information System (INIS)
Recami, E.; Pavsic, M.
1978-01-01
Recently Basano (Int. J. Theor. Phys.; 16:715 (1977)) in a paper entitled 'Information Flow, Causality and the Classical Theory of Tachyons' commented on earlier work by the present authors. In answer to those comments it is pointed out that although 'Extended Relativity' seems to allow one to solve any causal paradoxes with both usual particles and tachyons nevertheless a number of paradoxes are continuously proposed. It has already been shown by the authors that tachyons possibly do not imply any causality violations even in macro-physics but Basano claimed that the procedure lead to new, different paradoxes. It is here demonstrated that such presumed difficulties do not exist. (U.K.)
Classical solutions in quantum field theory solitons and instantons in high energy physics
Weinberg, Erick J
2012-01-01
Classical solutions play an important role in quantum field theory, high energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on ...
Chandrasekhar limit: an elementary approach based on classical physics and quantum theory
Pinochet, Jorge; Van Sint Jan, Michael
2016-05-01
In a brief article published in 1931, Subrahmanyan Chandrasekhar made public an important astronomical discovery. In his article, the then young Indian astrophysicist introduced what is now known as the Chandrasekhar limit. This limit establishes the maximum mass of a stellar remnant beyond which the repulsion force between electrons due to the exclusion principle can no longer stop the gravitational collapse. In the present article, we create an elemental approximation to the Chandrasekhar limit, accessible to non-graduate science and engineering students. The article focuses especially on clarifying the origins of Chandrasekhar’s discovery and the underlying physical concepts. Throughout the article, only basic algebra is used as well as some general notions of classical physics and quantum theory.
Kunicki, Zachary J; Schick, Melissa R; Spillane, Nichea S; Harlow, Lisa L
2018-06-01
Those who binge drink are at increased risk for alcohol-related consequences when compared to non-binge drinkers. Research shows individuals may face barriers to reducing their drinking behavior, but few measures exist to assess these barriers. This study created and validated the Barriers to Alcohol Reduction (BAR) scale. Participants were college students ( n = 230) who endorsed at least one instance of past-month binge drinking (4+ drinks for women or 5+ drinks for men). Using classical test theory, exploratory structural equation modeling found a two-factor structure of personal/psychosocial barriers and perceived program barriers. The sub-factors, and full scale had reasonable internal consistency (i.e., coefficient omega = 0.78 (personal/psychosocial), 0.82 (program barriers), and 0.83 (full measure)). The BAR also showed evidence for convergent validity with the Brief Young Adult Alcohol Consequences Questionnaire ( r = 0.39, p Theory (IRT) analysis showed the two factors separately met the unidimensionality assumption, and provided further evidence for severity of the items on the two factors. Results suggest that the BAR measure appears reliable and valid for use in an undergraduate student population of binge drinkers. Future studies may want to re-examine this measure in a more diverse sample.
Hong, Quan Nha; Coutu, Marie-France; Berbiche, Djamal
2017-01-01
The Work Role Functioning Questionnaire (WRFQ) was developed to assess workers' perceived ability to perform job demands and is used to monitor presenteeism. Still few studies on its validity can be found in the literature. The purpose of this study was to assess the items and factorial composition of the Canadian French version of the WRFQ (WRFQ-CF). Two measurement approaches were used to test the WRFQ-CF: Classical Test Theory (CTT) and non-parametric Item Response Theory (IRT). A total of 352 completed questionnaires were analyzed. A four-factor and three-factor model models were tested and shown respectively good fit with 14 items (Root Mean Square Error of Approximation (RMSEA) = 0.06, Standardized Root Mean Square Residual (SRMR) = 0.04, Bentler Comparative Fit Index (CFI) = 0.98) and with 17 items (RMSEA = 0.059, SRMR = 0.048, CFI = 0.98). Using IRT, 13 problematic items were identified, of which 9 were common with CTT. This study tested different models with fewer problematic items found in a three-factor model. Using a non-parametric IRT and CTT for item purification gave complementary results. IRT is still scarcely used and can be an interesting alternative method to enhance the quality of a measurement instrument. More studies are needed on the WRFQ-CF to refine its items and factorial composition.
Energy Technology Data Exchange (ETDEWEB)
Scheck, Florian [Mainz Univ. (Germany). Inst. fuer Physik
2017-09-01
The following topics are dealt with: Maxwell's equations together with their symmetry and covariance, the Maxwell theory as classical field theory, simple applications of Maxwell's theory, local gauge theories, classical field theory of gravitation. (HSI)
International Nuclear Information System (INIS)
Akhiezer, A.I.; Shul'ga, N.F.
1991-01-01
The process of relativistic particle radiation in an external field has been studied in the semi-classical approximation rather extensively. The main problem arising in the studies is in expressing the formula of the quantum theory of radiation in terms of classical quantities, for example of the classical trajectories. However, it still remains unclear how the particle trajectory is assigned, that is which particular initial or boundary conditions determine the trajectory in semi-classical approximation quantum theory of radiation. We shall try to solve this problem. Its importance comes from the fact that in some cases one and the same boundary conditions may give rise to two or more trajectories. We demonstrate that this fact must necessarily be taken into account on deriving the classical limit for the formulae of the quantum theory of radiation, since it leads to a specific interference effect in radiation. The method we used to deal with the problem is similar to the method employed by Fock to analyze the problem of a canonical transformation in classical and quantum mechanics. (author)
Paquette, John A.; Nuth, Joseph A., III
2011-01-01
Classical nucleation theory has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of classical nucleation theory (CNT) to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of condensable species. A model of silicate grain nucleation and growth was modified to evaluate the effect of a nucleation flux orders of magnitUde below the equilibrium value. The results show that a lack of chemical equilibrium has only a small effect on the ultimate grain distribution.
Structure Theory for Extended Kepler-Coulomb 3D Classical Superintegrable Systems
Directory of Open Access Journals (Sweden)
Ernie G. Kalnins
2012-06-01
Full Text Available The classical Kepler-Coulomb system in 3 dimensions is well known to be 2nd order superintegrable, with a symmetry algebra that closes polynomially under Poisson brackets. This polynomial closure is typical for 2nd order superintegrable systems in 2D and for 2nd order systems in 3D with nondegenerate (4-parameter potentials. However the degenerate 3-parameter potential for the 3D extended Kepler-Coulomb system (also 2nd order superintegrable is an exception, as its quadratic symmetry algebra doesn't close polynomially. The 3D 4-parameter potential for the extended Kepler-Coulomb system is not even 2nd order superintegrable. However, Verrier and Evans (2008 showed it was 4th order superintegrable, and Tanoudis and Daskaloyannis (2011 showed that in the quantum case, if a second 4th order symmetry is added to the generators, the double commutators in the symmetry algebra close polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider an infinite class of classical extended Kepler-Coulomb 3- and 4-parameter systems indexed by a pair of rational numbers (k_1,k_2 and reducing to the usual systems when k_1=k_2=1. We show these systems to be superintegrable of arbitrarily high order and work out explicitly the structure of the symmetry algebras determined by the 5 basis generators we have constructed. We demonstrate that the symmetry algebras close rationally; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering constants of the motion, not themselves polynomials in the momenta, that can be employed to construct the polynomial symmetries and their structure relations.
Rosini, Massimiliano Daniele
2013-01-01
This monograph presents a systematic treatment of the theory for hyperbolic conservation laws and their applications to vehicular traffics and crowd dynamics. In the first part of the book, the author presents very basic considerations and gradually introduces the mathematical tools necessary to describe and understand the mathematical models developed in the following parts focusing on vehicular and pedestrian traffic. The book is a self-contained valuable resource for advanced courses in mathematical modeling, physics and civil engineering. A number of examples and figures facilitate a better understanding of the underlying concepts and motivations for the students. Important new techniques are presented, in particular the wave front tracking algorithm, the operator splitting approach, the non-classical theory of conservation laws and the constrained problems. This book is the first to present a comprehensive account of these fundamental new mathematical advances.
Statistical analysis of 4 types of neck whiplash injuries based on classical meridian theory.
Chen, Yemeng; Zhao, Yan; Xue, Xiaolin; Li, Hui; Wu, Xiuyan; Zhang, Qunce; Zheng, Xin; Wang, Tianfang
2015-01-01
As one component of the Chinese medicine meridian system, the meridian sinew (Jingjin, (see text), tendino-musculo) is specially described as being for acupuncture treatment of the musculoskeletal system because of its dynamic attributes and tender point correlations. In recent decades, the therapeutic importance of the sinew meridian has become revalued in clinical application. Based on this theory, the authors have established therapeutic strategies of acupuncture treatment in Whiplash-Associated Disorders (WAD) by categorizing four types of neck symptom presentations. The advantage of this new system is to make it much easier for the clinician to find effective acupuncture points. This study attempts to prove the significance of the proposed therapeutic strategies by analyzing data collected from a clinical survey of various WAD using non-supervised statistical methods, such as correlation analysis, factor analysis, and cluster analysis. The clinical survey data have successfully verified discrete characteristics of four neck syndromes, based upon the range of motion (ROM) and tender point location findings. A summary of the relationships among the symptoms of the four neck syndromes has shown the correlation coefficient as having a statistical significance (P < 0.01 or P < 0.05), especially with regard to ROM. Furthermore, factor and cluster analyses resulted in a total of 11 categories of general symptoms, which implies syndrome factors are more related to the Liver, as originally described in classical theory. The hypothesis of meridian sinew syndromes in WAD is clearly supported by the statistical analysis of the clinical trials. This new discovery should be beneficial in improving therapeutic outcomes.
International Nuclear Information System (INIS)
Wu Ning; Zhang Dahua
2007-01-01
A systematic method is developed to study the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
Keynesianism vs. Classical Economic Theory: European Refugee Crisis and the Fall of Multiculturalism
Directory of Open Access Journals (Sweden)
Aliaksei Igor Patonia
2017-09-01
Full Text Available Posing arguments against statistical evidence picturing the European Union as the key world economy, the research views the economic model of the EU through the prism of Hofstede’s cultural dimensions, explaining its lower resistance towards the global economic crisis and comparing it to China – a country with authoritarian governmental methods – that suffered to a significantly lesser extent. Based on the example of these two entities, the paper views the topic of the current refugee crisis in Europe representing it as a new crucial trial for the EU that potentially checks classical economic theory for consistency. According to the author, if found effective, in the foreseeable future it will form a sound basis for further development, if not – it will likely be replaced by the Keynesian paradigm. Thus, with the current refugee crisis in Europe, the author juxtaposes liberal economy with the state-regulated one. This is done to give hints at the importance of the crisis per se, as it is believed to be capable of shattering some of the fundamental principles of the current world order.
Thermoelectric properties of fully hydrogenated graphene: Semi-classical Boltzmann theory
International Nuclear Information System (INIS)
Reshak, A. H.
2015-01-01
Based on the calculated band structure, the electronic transport coefficients of chair-/boat-like graphane were evaluated by using the semi-classical Boltzmann theory and rigid band model. The maximum value of electrical conductivity for chair (boat)-like graphane of about 1.4 (0.6) × 10 19 (Ωms) −1 is achieved at 600 K. The charge carrier concentration and the electrical conductivity linearly increase with increasing the temperature in agreement with the experimental work for graphene. The investigated materials exhibit the highest value of Seebeck coefficient at 300 K. We should emphasize that in the chemical potential between ∓0.125 μ(eV) the investigated materials exhibit minimum value of electronic thermal conductivity, therefore, maximum efficiency. As the temperature increases, the electronic thermal conductivity increases exponentially, in agreement with the experimental data of graphene. We also calculated the power factor of chair-/boat-like graphane at 300 and 600 K as a function of chemical potential between ∓0.25 μ(eV)
Non-Gaussian statistics, classical field theory, and realizable Langevin models
International Nuclear Information System (INIS)
Krommes, J.A.
1995-11-01
The direct-interaction approximation (DIA) to the fourth-order statistic Z ∼ left-angle λψ 2 ) 2 right-angle, where λ is a specified operator and ψ is a random field, is discussed from several points of view distinct from that of Chen et al. [Phys. Fluids A 1, 1844 (1989)]. It is shown that the formula for Z DIA already appeared in the seminal work of Martin, Siggia, and Rose (Phys. Rev. A 8, 423 (1973)] on the functional approach to classical statistical dynamics. It does not follow from the original generalized Langevin equation (GLE) of Leith [J. Atmos. Sd. 28, 145 (1971)] and Kraichnan [J. Fluid Mech. 41, 189 (1970)] (frequently described as an amplitude representation for the DIA), in which the random forcing is realized by a particular superposition of products of random variables. The relationship of that GLE to renormalized field theories with non-Gaussian corrections (''spurious vertices'') is described. It is shown how to derive an improved representation, that realizes cumulants through O(ψ 4 ), by adding to the GLE a particular non-Gaussian correction. A Markovian approximation Z DIA M to Z DIA is derived. Both Z DIA and Z DIA M incorrectly predict a Gaussian kurtosis for the steady state of a solvable three-mode example
Directory of Open Access Journals (Sweden)
Igor V. Uporov
2015-09-01
Full Text Available The dipole interaction model is a classical electromagnetic theory for calculating circular dichroism (CD resulting from the π-π* transitions of amides. The theoretical model, pioneered by J. Applequist, is assembled into a package, DInaMo, written in Fortran allowing for treatment of proteins. DInaMo reads Protein Data Bank formatted files of structures generated by molecular mechanics or reconstructed secondary structures. Crystal structures cannot be used directly with DInaMo; they either need to be rebuilt with idealized bond angles and lengths, or they need to be energy minimized to adjust bond lengths and bond angles because it is common for crystal structure geometries to have slightly short bond lengths, and DInaMo is sensitive to this. DInaMo reduces all the amide chromophores to points with anisotropic polarizability and all nonchromophoric aliphatic atoms including hydrogens to points with isotropic polarizability; all other atoms are ignored. By determining the interactions among the chromophoric and nonchromophoric parts of the molecule using empirically derived polarizabilities, the rotational and dipole strengths are determined leading to the calculation of CD. Furthermore, ignoring hydrogens bound to methyl groups is initially explored and proves to be a good approximation. Theoretical calculations on 24 proteins agree with experiment showing bands with similar morphology and maxima.
Blocks of finite groups and their invariants
Sambale, Benjamin
2014-01-01
Providing a nearly complete selection of up-to-date methods and results on block invariants with respect to their defect groups, this book covers the classical theory pioneered by Brauer, the modern theory of fusion systems introduced by Puig, the geometry of numbers developed by Minkowski, the classification of finite simple groups, and various computer assisted methods. In a powerful combination, these tools are applied to solve many special cases of famous open conjectures in the representation theory of finite groups. Most of the material is drawn from peer-reviewed journal articles, but there are also new previously unpublished results. In order to make the text self-contained, detailed proofs are given whenever possible. Several tables add to the text's usefulness as a reference. The book is aimed at experts in group theory or representation theory who may wish to make use of the presented ideas in their research.
Decoherence and the Appearance of a Classical World in Quantum Theory
International Nuclear Information System (INIS)
Alicki, R
2004-01-01
decoherence in quantum information processing and even decoherence in the brain. The next chapter, written by Kiefer, is devoted to decoherence in quantum field theory and quantum gravity which is a much more speculative and less explored topic. Two complementary aspects are studied in this approach: decoherence of particle states by the quantum fields and decoherence of field states by the particles. Cosmological issues related to decoherence are discussed, not only within the standard Friedmann cosmology, but also using the elements of the theory of black holes, wormholes and strings. The relations between the formalism of consistent histories defined in terms of decoherence functionals and the environmental decoherence are discussed in chapter 5, also written by Kiefer. The Feynman--Vernon influence functional for the quantum open system is presented in detail as the first example of decoherence functional. Then the general theory is outlined together with possible interpretations including cosmological aspects. The next chapter by Giulini presents an overview of the superselection rules arising from physical symmetries and gauge transformations both for nonrelativistic quantum mechanics and quantum field theory. Critical discussion of kinematical superselection rules versus dynamical ones is illustrated by numerous examples like Galilei invariant quantum mechanics, quantum electrodynamics and quantum gravity. The introduction to the theory of quantum open systems and its applications to decoherence models is given in chapter 7 by Kupsch. Generalized master equations, Markovian approximation and a few Hamiltonian models relevant for decoherence are discussed. Some mathematical tools, e.g., complete positivity and entropy inequalities are also presented. The last chapter by Stamatescu is devoted to stochastic collapse models which can be interpreted either as certain representations of the dynamics of open quantum systems or as fundamental modifications of the Schroedinger
Energy Technology Data Exchange (ETDEWEB)
Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)
2017-07-15
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)
Sussman, Joshua; Beaujean, A. Alexander; Worrell, Frank C.; Watson, Stevie
2013-01-01
Item response models (IRMs) were used to analyze Cross Racial Identity Scale (CRIS) scores. Rasch analysis scores were compared with classical test theory (CTT) scores. The partial credit model demonstrated a high goodness of fit and correlations between Rasch and CTT scores ranged from 0.91 to 0.99. CRIS scores are supported by both methods.…
Mason, Brandon; Smithey, Martha
2012-01-01
This study examines Merton's Classical Strain Theory (1938) as a causative factor in intimate partner violence among college students. We theorize that college students experience general life strain and cumulative strain as they pursue the goal of a college degree. We test this strain on the likelihood of using intimate partner violence. Strain…