Sample records for classical force-field simulations

  1. Force-Field Functor Theory: Classical Force-Fields which Reproduce Equilibrium Quantum Distributions

    Directory of Open Access Journals (Sweden)

    Ryan eBabbush


    Full Text Available Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.

  2. Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions. (United States)

    Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alán


    Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.

  3. Thermodynamic properties for applications in chemical industry via classical force fields. (United States)

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran


    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  4. Polarizable Empirical Force Field for Halogen-Containing Compounds Based on the Classical Drude Oscillator. (United States)

    Lin, Fang-Yu; MacKerell, Alexander D


    The quality of the force field is crucial to ensure the accuracy of simulations used in molecular modeling, including computer-aided drug design (CADD). To perform more accurate modeling and simulations of halogenated molecules, in this study the polarizable force field based on the classical Drude oscillator model was extended to both aliphatic and aromatic systems using halogenated ethane and benzene model compounds for the halogens F, Cl, Br, and I. The force field parameters were optimized targeting quantum mechanical dipole moments, water interactions, and molecular polarizabilities as well as experimental observables, including enthalpies of vaporization, molecular volumes, hydration free energies, and dielectric constants. The developed halogenated polarizable force field is capable of reproducing QM relative energies and geometries of both halogen bonds and halogen-hydrogen bond donor interactions at an unprecedented level due to the inclusion of a virtual particle and anisotropic atomic polarizability on the halogen and, notably, the inclusion of Lennard-Jones parameters on the halogen Drude particle. The model was validated on the basis of its ability to accurately reproduce pure solvent properties for halogenated naphthalenes and alkanes, including species analogous to those used as refrigerants. Accordingly, it is anticipated that the model will be applicable for the study of halogenated derivatives in CADD as well as in other chemical and biophysical studies.

  5. Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors. (United States)

    Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán


    Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.

  6. Force fields and scoring functions for carbohydrate simulation. (United States)

    Xiong, Xiuming; Chen, Zhaoqiang; Cossins, Benjamin P; Xu, Zhijian; Shao, Qiang; Ding, Kai; Zhu, Weiliang; Shi, Jiye


    Carbohydrate dynamics plays a vital role in many biological processes, but we are not currently able to probe this with experimental approaches. The highly flexible nature of carbohydrate structures differs in many aspects from other biomolecules, posing significant challenges for studies employing computational simulation. Over past decades, computational study of carbohydrates has been focused on the development of structure prediction methods, force field optimization, molecular dynamics simulation, and scoring functions for carbohydrate-protein interactions. Advances in carbohydrate force fields and scoring functions can be largely attributed to enhanced computational algorithms, application of quantum mechanics, and the increasing number of experimental structures determined by X-ray and NMR techniques. The conformational analysis of carbohydrates is challengeable and has gone into intensive study in elucidating the anomeric, the exo-anomeric, and the gauche effects. Here, we review the issues associated with carbohydrate force fields and scoring functions, which will have a broad application in the field of carbohydrate-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids. (United States)

    Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Li, Guohui


    In all of the classical force fields, electrostatic interaction is simply treated and explicit electronic polarizability is neglected. The condensed-phase polarization, relative to the gas-phase charge distributions, is commonly accounted for in an average way by increasing the atomic charges, which remain fixed throughout simulations. Based on the lipid polarizable force field DMPC and following the same framework as Atomic Multipole Optimized Energetics for BiomoleculAr (AMOEBA) simulation, the present effort expands the force field to new anionic lipid models, in which the new lipids contain DMPG and POPS. The parameters are compatible with the AMOEBA force field, which includes water, ions, proteins, etc. The charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments, which are derived from the ab initio gas phase calculations. Many-body polarization including the inter- and intramolecular polarization is modeled in a consistent manner with distributed atomic polarizabilities. Molecular dynamics simulations of the two aqueous DMPG and POPS membrane bilayer systems, consisting of 72 lipids with water molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, electrostatic potential difference between the center of the bilayer and water are all calculated, and compared with limited experimental data.

  8. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics. (United States)

    Lemkul, Justin A; MacKerell, Alexander D


    Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.

  9. Development of complex classical force fields through force matching to ab initio data: application to a room-temperature ionic liquid. (United States)

    Youngs, Tristan G A; Del Pópolo, Mario G; Kohanoff, Jorge


    Recent experimental neutron diffraction data and ab initio molecular dynamics simulation of the ionic liquid dimethylimidazolium chloride ([dmim]Cl) have provided a structural description of the system at the molecular level. However, partial radial distribution functions calculated from the latter, when compared to previous classical simulation results, highlight some limitations in the structural description offered by force field-based simulations. With the availability of ab initio data it is possible to improve the classical description of [dmim]Cl by using the force matching approach, and the strategy for fitting complex force fields in their original functional form is discussed. A self-consistent optimization method for the generation of classical potentials of general functional form is presented and applied, and a force field that better reproduces the observed first principles forces is obtained. When used in simulation, it predicts structural data which reproduces more faithfully that observed in the ab initio studies. Some possible refinements to the technique, its application, and the general suitability of common potential energy functions used within many ionic liquid force fields are discussed.

  10. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field

    NARCIS (Netherlands)

    García-Pérez, E.; Serra-Crespo, P.; Hamad, S.; Kapteijn, F.; Gascon, J.


    Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations

  11. Artificial force fields for multi-agent simulations of maritime traffic and risk estimation

    NARCIS (Netherlands)

    Xiao, F.; Ligteringen, H.; Van Gulijk, C.; Ale, B.J.M.


    A probabilistic risk model is designed to estimate probabilities of collisions for shipping accidents in busy waterways. We propose a method based on multi-agent simulation that uses an artificial force field to model ship maneuvers. The artificial force field is calibrated by AIS data (Automatic

  12. ForceFit: a code to fit classical force fields to ab-initio potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Neil Jon [Los Alamos National Laboratory; Waldher, Benjamin [WSU; Kuta, Jadwiga [WSU; Clark, Aurora [WSU; Clark, Aurora E [NON LANL


    The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under Unix and is written in C++, is an easy to use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program.

  13. GEOFLOW: simulation of convection in a spherical shell under central force field

    Directory of Open Access Journals (Sweden)

    P. Beltrame


    Full Text Available Time-dependent dynamical simulations related to convective motion in a spherical gap under a central force field due to the dielectrophoretic effect are discussed. This work is part of the preparation of the GEOFLOW-experiment which is planned to run in a microgravity environment. The goal of this experiment is the simulation of large-scale convective motion in a geophysical or astrophysical framework. This problem is new because of, on the one hand, the nature of the force field (dielectrophoretic effect and, on another hand, the high degree of symmetries of the system, e.g. the top-bottom reflection. Thus, the validation of this simulation with well-known results is not possible. The questions concerning the influence of the dielectrophoretic force and the possibility to reproduce the theoretically expected motions in the astrophysical framework, are open. In the first part, we study the system in terrestrial conditions: the unidirectional Earth's force is superimposed on the central dielectrophoretic force field to compare with the laboratory experiments during the development of the equipment. In the second part, the GEOFLOW-experiment simulations in weightless conditions are compared with theoretical studies in the astrophysical framework's, in the first instance a fluid under a self-gravitating force field. We present complex time-dependent dynamics, where the dielectrophoretic force field causes significant differences in the flow compared to the case that does not involve this force field.

  14. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers (United States)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)


    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  15. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform. (United States)

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui


    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields (United States)

    Lee, M.W.; Meuwly, M.


    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  17. Vibrational Analysis of Brucite Surfaces and the Development of an Improved Force Field for Molecular Simulation of Interfaces. (United States)

    Zeitler, Todd R; Greathouse, Jeffery A; Gale, Julian D; Cygan, Randall T


    We introduce a nonbonded three-body harmonic potential energy term for Mg-O-H interactions for improved edge surface stability in molecular simulations. The new potential term is compatible with the Clayff force field and is applied here to brucite, a layered magnesium hydroxide mineral. Comparisons of normal mode frequencies from classical and density functional theory calculations are used to verify a suitable spring constant ( k parameter) for the Mg-O-H bending motion. Vibrational analysis of hydroxyl librations at two brucite surfaces indicates that surface Mg-O-H modes are shifted to frequencies lower than the corresponding bulk modes. A comparison of DFT and classical normal modes validates this new potential term. The methodology for parameter development can be applied to other clay mineral components (e.g., Al, Si) to improve the modeling of edge surface stability, resulting in expanded applicability to clay mineral applications.

  18. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations. (United States)

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele


    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.

  19. Defining Condensed Phase Reactive Force Fields from ab Initio Molecular Dynamics Simulations: The Case of the Hydrated Excess Proton. (United States)

    Knight, Chris; Maupin, C Mark; Izvekov, Sergei; Voth, Gregory A


    In this report, a general methodology is presented for the parametrization of a reactive force field using data from a condensed phase ab initio molecular dynamics (AIMD) simulation. This algorithm allows for the creation of an empirical reactive force field that accurately reproduces the underlying ab initio reactive surface while providing the ability to achieve long-time statistical sampling for large systems not possible with AIMD alone. In this work, a model for the hydrated excess proton is constructed where the hydronium cation and proton hopping portions of the model are statistically force-matched to the results of Car-Parrinello Molecular Dynamics (CPMD) simulations. The flexible nature of the algorithm also allows for the use of the more accurate classical simple point-charge flexible water (SPC/Fw) model to describe the water-water interactions while utilizing the ab initio data to create an overall multistate molecular dynamics (MS-MD) reactive model of the hydrated excess proton in water. The resulting empirical model for the system qualitatively reproduces thermodynamic and dynamic properties calculated from the ab initio simulation while being in good agreement with experimental results and previously developed multistate empirical valence bond (MS-EVB) models. The present methodology, therefore, bridges the AIMD technique with the MS-MD modeling of reactive events, while incorporating key strengths of both.

  20. Molecular dynamics simulations of AP/HMX composite with a modified force field. (United States)

    Zhu, Wei; Wang, Xijun; Xiao, Jijun; Zhu, Weihua; Sun, Huai; Xiao, Heming


    An all-atom force field for ammonium perchlorate (AP) is developed with the framework of pcff force field. The structural parameters of AP obtained with the modified force field are in good agreement with experimental values. Molecular dynamics (MD) simulations have been performed to investigate AP/HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) composite at different temperatures. The binding energies, thermal expansion coefficient, and the trigger bond lengths of HMX in the AP/HMX composite have been obtained. The binding energies of the system increase slightly with temperature increasing, peak at 245K, and then gradually decrease. The volume thermal expansion coefficient of the AP/HMX composite has been derived from the volume variation with temperature. As the temperature rises, the maximal lengths of the trigger bond N-NO(2) of HMX increase gradually. The simulated results indicate that the maximal length of trigger bond can be used as a criterion for judging the sensitivity of energetic composite.

  1. Molecular simulation of caloric properties of fluids modelled by force fields with intramolecular contributions: Application to heat capacities (United States)

    Smith, William R.; Jirsák, Jan; Nezbeda, Ivo; Qi, Weikai


    The calculation of caloric properties such as heat capacity, Joule-Thomson coefficients, and the speed of sound by classical force-field-based molecular simulation methodology has received scant attention in the literature, particularly for systems composed of complex molecules whose force fields (FFs) are characterized by a combination of intramolecular and intermolecular terms. The calculation of a thermodynamic property for a system whose molecules are described by such a FF involves the calculation of the residual property prior to its addition to the corresponding ideal-gas property, the latter of which is separately calculated, either using thermochemical compilations or nowadays accurate quantum mechanical calculations. Although the simulation of a volumetric residual property proceeds by simply replacing the intermolecular FF in the rigid molecule case by the total (intramolecular plus intermolecular) FF, this is not the case for a caloric property. We describe the correct methodology required to perform such calculations and illustrate it in this paper for the case of the internal energy and the enthalpy and their corresponding molar heat capacities. We provide numerical results for cP, one of the most important caloric properties. We also consider approximations to the correct calculation procedure previously used in the literature and illustrate their consequences for the examples of the relatively simple molecule 2-propanol, CH3CH(OH)CH3, and for the more complex molecule monoethanolamine, HO(CH2)2NH2, an important fluid used in carbon capture.

  2. Development of reactive force fields using ab initio molecular dynamics simulation minimally biased to experimental data (United States)

    Chen, Chen; Arntsen, Christopher; Voth, Gregory A.


    Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.

  3. An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Fluitt, Aaron M. [Univ. of Chicago, IL (United States); de Pablo, Juan J. [Argonne National Lab. (ANL), Argonne, IL (United States)


    Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermodynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper investigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.

  4. Simulating the physicochemical properties of borosilicate and lanthanum borosilicate glasses using a polarizable force field

    International Nuclear Information System (INIS)

    Pacaud, Fabien


    as result of the nuclear waste vitrification, the knowledge and understanding of the dynamic and structural properties of glasses, including the behavior of radionuclides, is important (in liquid and solid phases). It can influence the glass waste properties, the lifetime of the vitrification process and the amount of radionuclides introduced in the glass matrix. Molecular dynamic simulations have been done to study the influence of the glass matrix composition into the structural and dynamic properties of the glass. a simplified glass, with 3 major oxides of the R7T7 glass such as SiO 2 , B 2 O 3 and Na 2 O, have been used to simulate the R7T7 industrial nuclear glass (a 30 oxides glass). The inclusion of La 2 O 3 allows us to simulate the impact of fission products and minor actinides into the properties of the glass matrix. Both systems, the SiO 2 -B 2 O 3 -Na 2 O and SiO 2 -B 2 O 3 -Na 2 O-La 2 O 3 , allow us to study the sodium and lanthanum effect on the properties of the glass. During this work, a polarizable force field has been developed to do these simulations. The results obtained at room temperature let us reproduce the experimental results of the structure, the distribution of BIII/BIV and the density. a study has been done on the viscosity and electrical conductivity of the liquid. The distribution BIV/BIII and the influence of the structural changes on the density along with the temperature have also been observed with thermal quenching. The current limits of this approach are also described. (author) [fr

  5. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution


    Emami, FS; Puddu, V; Berry, RJ; Varshney, V; Patwardhan, SV; Perry, CC; Heinz, H


    Silica nanostructures find applications in drug delivery, catalysis, and composites, however, understanding of the surface chemistry, aqueous interfaces, and biomolecule recognition remain difficult using current imaging techniques and spectroscopy. A silica force field is introduced that resolves numerous shortcomings of prior silica force fields over the last thirty years and reduces uncertainties in computed interfacial properties relative to experiment from several 100% to less than 5%. I...

  6. Molecular dynamics simulations of the d(CCAACGTTGG)2 decamer in crystal environment: comparison of atom-centered charge, extra-point and polarizable force fields. (United States)

    Baucom, Jason; Transue, Thomas; Fuentes-Cabrera, Miguel; Krahn, Joseph; Darden, Thomas; Sagui, Celeste


    Molecular dynamics simulations of the DNA duplex d(CCAACGTTGG)2 were used to study the relationship between DNA sequence and structure. Three different force fields were used: a traditional description based on atomic point charges, a polarizable force field and an ``extra-point" force field (with additional charges on extra-nuclear sites). It is found that in crystal environment all the force fields reproduce fairly well the sequence-dependent features of the experimental structure. The polarizable force fields, however, outperforms the other two, pointing out to the need of the inclusion of polarization for accurate descriptions of DNA.

  7. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics.

    Energy Technology Data Exchange (ETDEWEB)

    De Hatten, Xavier [University of Bordeaux; Cournia, Zoe [Yale University; Smith, Jeremy C [ORNL; Metzler-Nolte, Nils [University of Bochum, Germany


    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostatic potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1{prime}-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C2-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1{micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline{prime}-1-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.

  8. Force-Field Development and Molecular Dynamics Simulations of Ferrocene–Peptide Conjugates as a Scaffold for Hydrogenase Mimics

    Energy Technology Data Exchange (ETDEWEB)

    de Hatten, Xavier; Cournia, Zoe; Huc, Ivan; Smith, Jeremy C.; Metzler-Nolte, Nils


    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostatic potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1'-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C{sub 2}-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1 {micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline-1'-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 {micro}s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.

  9. Transferability of different classical force fields for right and left handed α-helices constructed from enantiomeric amino acids. (United States)

    Biswas, Santu; Sarkar, Sujit; Pandey, Prithvi Raj; Roy, Sudip


    Amino acids can form d and l enantiomers, of which the l enantiomer is abundant in nature. The naturally occurring l enantiomer has a greater preference for a right handed helical conformation, and the d enantiomer for a left handed helical conformation. The other conformations, that is, left handed helical conformations of the l enantiomers and right handed helical conformations of the d enantiomers, are not common. The energetic differences between left and right handed alpha helical peptide chains constructed from enantiomeric amino acids are investigated using quantum chemical calculations (using the M06/6-311g(d,p) level of theory). Further, the performances of commonly used biomolecular force fields (OPLS/AA, CHARMM27/CMAP and AMBER) to represent the different helical conformations (left and right handed) constructed from enantiomeric (D and L) amino acids are evaluated. 5- and 10-mer chains from d and l enantiomers of alanine, leucine, lysine, and glutamic acid, in right and left handed helical conformations, are considered in the study. Thus, in total, 32 α-helical polypeptides (4 amino acids × 4 conformations of 5-mer and 10-mer) are studied. Conclusions, with regards to the performance of the force fields, are derived keeping the quantum optimized geometry as the benchmark, and on the basis of phi and psi angle calculations, hydrogen bond analysis, and different long range helical order parameters.

  10. Recent Progress in Molecular Simulation of Aqueous Electrolytes: Force Fields, Chemical Potentials and Solubility.

    Czech Academy of Sciences Publication Activity Database

    Nezbeda, Ivo; Moučka, F.; Smith, W.R.


    Roč. 114, č. 11 (2016), s. 1665-1690 ISSN 0026-8976 R&D Projects: GA ČR GA15-19542S Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : force fields * chemical potentials * aqueous electrolytes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.870, year: 2016

  11. Host and adsorbate dynamics in silicates with flexible frameworks: Empirical force field simulation of water in silicalite (United States)

    Bordat, Patrice; Cazade, Pierre-André; Baraille, Isabelle; Brown, Ross


    Molecular dynamics simulations are performed on the pure silica zeolite silicalite (MFI framework code), maintaining via a new force field both framework flexibility and realistic account of electrostatic interactions with adsorbed water. The force field is similar to the well-known "BKS" model [B. W. H. van Beest et al., Phys. Rev. Lett. 64, 1955 (1990)], but with reduced partial atomic charges and reoptimized covalent bond potential wells. The present force field reproduces the monoclinic to orthorhombic transition of silicalite. The force field correctly represents the hydrophobicity of pure silica silicalite, both the adsorption energy, and the molecular diffusion constants of water. Two types of adsorption, specific and weak unspecific, are predicted on the channel walls and at the channel intersection. We discuss molecular diffusion of water in silicalite, deducing a barrier to crossing between the straight and the zigzag channels. Analysis of the thermal motion shows that at room temperature, framework oxygen atoms incurring into the zeolite channels significantly influence the dynamics of adsorbed water.

  12. Molecular Dynamics Simulation of Cross-Linked Epoxy Polymers: the Effect of Force Field on the Estimation of Properties


    B. Arab; A. Shokuhfar


    In this paper, the molecular dynamics method was used to calculate the physical and mechanical properties of the cross-linked epoxy polymer composed of diglycidyl ether of bisphenol-A (DGEBA) as resin and diethylenetriamine (DETA) as curing agent. Calculation of the properties was performed using the constant-strain (static) approach. A series of independent simulations were carried out based on four widely used force fields; COMPASS, PCFF, UFF and Dreiding. Proper comparisons between the res...

  13. Performance of molecular mechanics force fields for RNA simulations: Stability of UUCG and GNRA hairpins

    Czech Academy of Sciences Publication Activity Database

    Banáš, P.; Hollas, D.; Zgarbová, M.; Jurečka, P.; Orozco, M.; Cheatham III, T.E.; Šponer, Jiří; Otyepka, M.


    Roč. 6, č. 12 (2010), s. 3836-3849 ISSN 1549-9618 R&D Projects: GA MŠk(CZ) LC06030; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GD203/09/H046; GA AV ČR(CZ) IAA400040802 Grant - others:GA MŠk(CZ) LC512 Program:LC Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular dynamics * force fields * RNA * tetraloops Subject RIV: BO - Biophysics Impact factor: 5.138, year: 2010

  14. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF) (United States)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.


    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  15. Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes

    Energy Technology Data Exchange (ETDEWEB)

    MacDermaid, Christopher M., E-mail:; Klein, Michael L.; Fiorin, Giacomo, E-mail: [Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122-1801 (United States); Kashyap, Hemant K. [Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); DeVane, Russell H. [Modeling and Simulation, Corporate Research and Development, The Procter and Gamble Company, West Chester, Ohio 45069 (United States); Shinoda, Wataru [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Klauda, Jeffery B. [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)


    The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.

  16. Simulation studies of structure and edge tension of lipid bilayer edges: effects of tail structure and force-field. (United States)

    West, Ana; Ma, Kevin; Chung, Jonathan L; Kindt, James T


    Molecular dynamics simulations of lipid bilayer ribbons have been performed to investigate the structures and line tensions associated with free bilayer edges. Simulations carried out for dioleoyl phosphatidylcholine with three different force-field parameter sets yielded edge line tensions of 45 ± 2 pN, over 50% greater than the most recently reported experimentally determined value for this lipid. Edge tensions obtained from simulations of a series of phosphatidylcholine lipid bilayer ribbons with saturated acyl tails of length 12-16 carbons and with monounsaturated acyl tails of length 14-18 carbons could be correlated with the excess area associated with forming the edge, through a two-parameter fit. Saturated-tail lipids underwent local thickening near the edge, producing denser packing that correlated with lower line tensions, while unsaturated-tail lipids showed little or no local thickening. In a dipalmitoyl phosphatidylcholine ribbon initiated in a tilted gel-phase structure, lipid headgroups tended to tilt toward the nearer edge producing a herringbone pattern, an accommodation that may account for the reported edge-induced stabilization of an ordered structure at temperatures near a lipid gel-fluid phase transition.

  17. Static force fields simulations of reduced CeO2 (110) surface: Structure and adsorption of H2O molecule (United States)

    Vives, Serge; Meunier, Cathy


    The CeO2(110) surface properties are largely involved in the catalysis, energy and biological phenomenon. The Static Force Fields simulations are able to describe large atomic systems surface even if no information on the electronic structure can be obtained. We employ those simulations to study the formation of the neutral 2 CeCe‧ VO•• cluster. We focus on seven different cluster configurations and find that the defect formation energy is the lower for the 1N-2N configurations. Two geometries are possible, as it is the case for the ab initio studies, the in plane and the more stable bridging one. We evidence the modifications of the surface energy and the Potential Energy Surface due to the presence of the 2 CeCe‧ VO•• defect. The physical adsorption of a water molecule is calculated and the geometry described for all the cluster configurations. The H2O molecule physisorption stabilizes the Ce(110) surface and the presence of the 2 CeCe‧ VO•• defect increases this effect.

  18. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof


    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities

  19. Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration

    Czech Academy of Sciences Publication Activity Database

    Beššeová, Ivana; Banáš, Pavel; Kührová, P.; Košinová, P.; Otyepka, Michal; Šponer, Jiří

    Roč. 116, č. 33 ( 2012 ), s. 9899-9916 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GBP305/12/G034; GA ČR(CZ) GAP208/12/1878; GA ČR(CZ) GD203/09/H046; GA ČR(CZ) GA203/09/1476 Grant - others:GA AV ČR(CZ) GPP301/11/P558 Program:GP Institutional research plan: CEZ:AV0Z50040702 Keywords : A-RNA * molecular dynamics * force field Subject RIV: BO - Biophysics Impact factor: 3.607, year: 2012

  20. Perspective: Ab initio force field methods derived from quantum mechanics (United States)

    Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.


    It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.

  1. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide (United States)

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi


    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH2). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD3CD in H2O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  2. Structural study of Na2O-B2O3-SiO2 glasses from molecular simulations using a polarizable force field (United States)

    Pacaud, Fabien; Delaye, Jean-Marc; Charpentier, Thibault; Cormier, Laurent; Salanne, Mathieu


    Sodium borosilicate glasses Na2O-B2O3-SiO2 (NBS) are complex systems from a structural point of view. Three main building units are present: tetrahedral SiO4 and BO4 (BIV) and triangular BO3 (BIII). One of the salient features of these compounds is the change of the BIII/BIV ratio with the alkali concentration, which is very difficult to capture in force fields-based molecular dynamics simulations. In this work, we develop a polarizable force field that is able to reproduce the boron coordination and more generally the structure of several NBS systems in the glass and in the melt. The parameters of the potential are fitted from density functional theory calculations only, in contrast with the existing empirical potentials for NBS systems. This ensures a strong improvement on the transferability of the parameters from one composition to another. Using this new force field, the structure of NBS systems is validated against neutron diffraction and nuclear magnetic resonance experiments. A special focus is given to the distribution of BIII/BIV with respect to the composition and the temperature.

  3. SUPPORTING INFORMATION Classical dynamics simulations of ...

    Indian Academy of Sciences (India)

    Classical dynamics simulations of interstellar glycine formation via CH2=NH + CO + H2O reaction. YOGESHWARAN KRISHNAN, ALLEN VINCENT, and MANIKANDAN. PARANJOTHY∗. Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan,. India. E-mail:

  4. Molecular dynamics simulation for the test of calibrated OPLS-AA force field for binary liquid mixture of tri-iso-amyl phosphate and n-dodecane (United States)

    Das, Arya; Ali, Sk. Musharaf


    Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by

  5. Applications of Molecular Dynamics, Monte Carlo and Metadynamics Simulations Using ReaxFF Reactive Force Fields to Fluid/Solid Interfaces (United States)

    Raju, Muralikrishna

    The interaction of dense fluids (water, polar organic solvents, room temperature ionic liquids, etc.) with solid substrates controls many chemical processes encountered in nature and industry. The key features of fluid-solid interfaces (FSIs) are the high mobility and often reactivity of the fluid phase, and the structural control provided by the solid phase. In this dissertation we apply molecular modeling methods to study FSIs in the following systems: 1. Dissociation of water on titania surfaces. We studied the adsorption and dissociation of water at 300 K on the following TiO2 surfaces: anatase (101), (100), (112), (001) and rutile (110) at various water coverages, using a recently developed ReaxFF reactive force field. The molecular and dissociative adsorption configurations predicted by ReaxFF for various water coverages agree with previous theoretical studies and experiment. 2. Mechanisms of Oriented Attachment in TiO2 nanocrystals. Oriented attachment (OA) of nanocrystals is now widely recognized as a key process in the solution-phase growth of hierarchical nanostructures. However, the microscopic origins of OA remain unclear. Using the same ReaxFF Ti/O/H reactive force field employed in the previous study, we perform molecular dynamics simulations to study the aggregation of various titanium dioxide (anatase) nanocrystals in vacuum and humid environments. 3. Li interactions in carbon based materials. Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length/time-scales and Li-ion concentrations. In this study we describe development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon based materials using atomistic simulations. We develop force-field parameters for Li-C systems using van

  6. Multipolar Force Fields and Their Effects on Solvent Dynamics around Simple Solutes

    DEFF Research Database (Denmark)

    Jakobsen, Sofie; Bereau, Tristan; Meuwly, Markus


    The performance of multipole (MTP) and point charge (PC) force fields in classical molecular dynamics (MD) simulations of condensed-phase systems for both equilibrium and dynamical quantities is compared. MTP electrostatics provides an improved description of the anisotropic electrostatic potential...

  7. Study of ice cluster impacts on amorphous silica using the ReaxFF reactive force field molecular dynamics simulation method

    Energy Technology Data Exchange (ETDEWEB)

    Rahnamoun, A. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 234 Research East, University Park, Pennsylvania 16802 (United States); Duin, A. C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 240 Research East, University Park, Pennsylvania 16802 (United States)


    We study the dynamics of the collisions between amorphous silica structures and amorphous and crystal ice clusters with impact velocities of 1 km/s, 4 km/s, and 7 km/s using the ReaxFF reactive molecular dynamics simulation method. The initial ice clusters consist of 150 water molecules for the amorphous ice cluster and 128 water molecules for the crystal ice cluster. The ice clusters are collided on the surface of amorphous fully oxidized and suboxide silica. These simulations show that at 1 km/s impact velocities, all the ice clusters accumulate on the surface and at 4 km/s and 7 km/s impact velocities, some of the ice cluster molecules bounce back from the surface. At 4 km/s and 7 km/s impact velocities, few of the water molecules dissociations are observed. The effect of the second ice cluster impacts on the surfaces which are fully covered with ice, on the mass loss/accumulation is studied. These studies show that at 1 km/s impacts, the entire ice cluster accumulates on the surface at both first and second ice impacts. At higher impact velocities, some ice molecules which after the first ice impacts have been attached to the surface will separate from the surface after the second ice impacts at 7 km/s impact velocity. For the 4 km/s ice cluster impact, ice accumulation is observed for the crystal ice cluster impacts and ice separation is observed for the amorphous ice impacts. Observing the temperatures of the ice clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting ice clusters increase to about 2000 K, with individual molecules occasionally reaching temperatures of over 8000 K and thus it will be prudent to consider the concept of electron excitation at

  8. Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters

    DEFF Research Database (Denmark)

    Róg, Tomasz; Orłowski, Adam; Llorente, Alicia


    In this Data in Brief article we provide a data package of GROMACS input files for atomistic molecular dynamics simulations of multicomponent, asymmetric lipid bilayers using the OPLS-AA force field. These data include 14 model bilayers composed of 8 different lipid molecules. The lipids present......, and cholesterol, while the extracellular leaflet is composed of SM, PC and cholesterol discussed in Van Meer et al. (2008) [2]. The provided data include lipids' topologies, equilibrated structures of asymmetric bilayers, all force field parameters, and input files with parameters describing simulation conditions...

  9. Reactive Force Fields via Explicit Valency (United States)

    Kale, Seyit

    Computational simulations are invaluable in elucidating the dynamics of biological macromolecules. Unfortunately, reactions present a fundamental challenge. Calculations based on quantum mechanics can predict bond formation and rupture; however they suffer from severe length- and time-limitations. At the other extreme, classical approaches provide orders of magnitude faster simulations; however they regard chemical bonds as immutable entities. A few exceptions exist, but these are not always trivial to adopt for routine use. We bridge this gap by providing a novel, pseudo-classical approach, based on explicit valency. We unpack molecules into valence electron pairs and atomic cores. Particles bear ionic charges and interact via pairwise-only potentials. The potentials are informed of quantum effects in the short-range and obey dissociation limits in the long-range. They are trained against a small set of isolated species, including geometries and thermodynamics of small hydrides and of dimers formed by them. The resulting force field captures the essentials of reactivity, polarizability and flexibility in a simple, seamless setting. We call this model LEWIS, after the chemical theory that inspired the use of valence pairs. Following the introduction in Chapter 1, we initially focus on the properties of water. Chapter 2 considers gas phase clusters. To transition to the liquid phase, Chapter 3 describes a novel pairwise long-range compensation that performs comparably to infinite lattice summations. The approach is suited to ionic solutions in general. In Chapters 4 and 5, LEWIS is shown to correctly predict the dipolar and quadrupolar response in bulk liquid, and can accommodate proton transfers in both acid and base. Efficiency permits the study of proton defects at dilutions not accessible to experiment or quantum mechanics. Chapter 6 discusses explicit valency approaches in other hydrides, forming the basis of a reactive organic force field. Examples of simple

  10. Development of a reactive force field for iron-oxyhydroxide systems. (United States)

    Aryanpour, Masoud; van Duin, Adri C T; Kubicki, James D


    We adopt a classical force field methodology, ReaxFF, which is able to reproduce chemical reactions, and train its parameters for the thermodynamics of iron oxides as well as energetics of a few iron redox reactions. Two parametrizations are developed, and their results are compared with quantum calculations or experimental measurements. In addition to training, two test cases are considered: the lattice parameters of a selected set of iron minerals, and the molecular dynamics simulation of a model for alpha-FeOOH (goethite)-water interaction. Reliability and limitations of the developed force fields in predicting structure and energetics are discussed.

  11. Machine learning of accurate energy-conserving molecular force fields (United States)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert


    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  12. Machine learning of accurate energy-conserving molecular force fields. (United States)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E; Poltavsky, Igor; Schütt, Kristof T; Müller, Klaus-Robert


    Using conservation of energy-a fundamental property of closed classical and quantum mechanical systems-we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol -1 for energies and 1 kcal mol -1 Å̊ -1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

  13. Classical molecular dynamics simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Devanathan, R.; Krack, M.; Bertolus, M.


    Molecular dynamics simulation using forces calculated from empirical potentials, commonly called classical molecular dynamics, is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermomechanical properties. This enables one to obtain insights into fundamental mechanisms governing the behaviour of nuclear fuel, as well as parameters that can be used as inputs for mesoscale models. The interaction potentials used for the force calculations are generated by fitting properties of interest to experimental data and electronic structure calculations (see Chapter 12). We present here the different types of potentials currently available for UO 2 and illustrations of applications to the description of the behaviour of this material under irradiation. The results obtained from the present generation of potentials for UO 2 are qualitatively similar, but quantitatively different. There is a need to refine these existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, develop models that are equipped to handle deviations from stoichiometry, and validate the models and assumptions used. (authors)

  14. Explicit polarization: a quantum mechanical framework for developing next generation force fields. (United States)

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel


    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  15. A dual length scale method for plane-wave-based, simulation studies of chemical systems modeled using mixed ab initio/empirical force field descriptions (United States)

    Yarne, Dawn A.; Tuckerman, Mark E.; Martyna, Glenn J.


    Mixed ab initio/empirical force-field simulation studies, calculations in which one part of the system is treated using a fully ab initio description and another part is treated using an empirical description, are becoming increasingly popular. Here, the ability of the commonly used, plane wave-based generalized gradient approximation to density functional theory is extended to model systems in which the electrons are assumed to be localized in a single small region of space, that is, itself, embedded within a large chemically inert bath. This is accomplished by introducing two length scales, so that the rapidly varying, short range, electron-electron and electron-atom interactions, arising from the region where the electrons are localized, can be treated using an appropriately large plane wave basis, while the corresponding, slowly varying, long range interactions of the electrons with the full system or bath, can be treated using a small basis. Briefly, a novel Cardinal B-spline based formalism is employed to derive a smooth, differentiable, and rapidly convergent (with respect to the small basis) expression for the total electronic energy, which explicitly contains the two length scales. The method allows reciprocal space based techniques designed to treat clusters, wires, surfaces and solids/liquids (open, and 1-D and 2-D periodic boundary conditions, respectively) to be utilized. Other plane wave-based "mixed" methods are restricted to clusters. The new methodology, which scales as N log N at fixed size of the chemically active region, has been implemented for parallel computing platforms and tested through applications to both model and realistic problems including an enzyme, human carbonic anhydrase II solvated in an explicit bath of water molecules.

  16. Optimal Classical Simulation of State-Independent Quantum Contextuality (United States)

    Cabello, Adán; Gu, Mile; Gühne, Otfried; Xu, Zhen-Peng


    Simulating quantum contextuality with classical systems requires memory. A fundamental yet open question is what is the minimum memory needed and, therefore, the precise sense in which quantum systems outperform classical ones. Here, we make rigorous the notion of classically simulating quantum state-independent contextuality (QSIC) in the case of a single quantum system submitted to an infinite sequence of measurements randomly chosen from a finite QSIC set. We obtain the minimum memory needed to simulate arbitrary QSIC sets via classical systems under the assumption that the simulation should not contain any oracular information. In particular, we show that, while classically simulating two qubits tested with the Peres-Mermin set requires log224 ≈4.585 bits, simulating a single qutrit tested with the Yu-Oh set requires, at least, 5.740 bits.

  17. Consistent force fields for saccharides

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld


    Consistent force fields for carbohydrates were hitherto developed by extensive optimization ofpotential energy function parameters on experimental data and on ab initio results. A wide range of experimental data is used: internal structures obtained from gas phase electron diffraction and from x......-anomeric effects are accounted for without addition of specific terms. The work is done in the framework of the Consistent Force Field which originatedin Israel and was further developed in Denmark. The actual methods and strategies employed havebeen described previously. Extensive testing of the force field...

  18. Classical simulations of heavy-ion fusion reactions and weakly ...

    Indian Academy of Sciences (India)

    Abstract. Heavy-ion collision simulations in various classical models are discussed. Heavy-ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics. (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters depend not ...

  19. How accurately do current force fields predict experimental peptide conformations? An adiabatic free energy dynamics study. (United States)

    Tzanov, Alexandar T; Cuendet, Michel A; Tuckerman, Mark E


    The quality of classical biomolecular simulations is inevitably limited by two problems: the accuracy of the force field used and the comprehensiveness of configuration space sampling. In this work we tackle the sampling problem by carrying out driven adiabatic free energy dynamics to obtain converged free energy surfaces of dipeptides in the gas phase and in solution using selected dihedral angles as collective variables. To calculate populations of conformational macrostates observed in experiment, we introduce a fuzzy clustering algorithm in collective-variable space, which delineates macrostates without prior definition of arbitrary boundaries. With this approach, we calculate the conformational preferences of small peptides with six biomolecular force fields chosen from among the most recent and widely used. We assess the accuracy of each force field against recently published Raman or IR-UV spectroscopy measurements of conformer populations for the dipeptides in solution or in the gas phase.

  20. Classical diffusion: theory and simulation codes

    International Nuclear Information System (INIS)

    Grad, H.; Hu, P.N.


    The nonstandard mathematical and numerical problems which arise in classical diffusion theory upon reinsertion of the time derivative of the magnetic field (curl E not equal to 0) are discussed. The extension of classical diffusion theory to curl E not equal to 0 requires solution of a global boundary value problem before the surface averaged flux can be obtained. It also introduces coupling between plamsa diffusion and magnetic flux diffusion (the shin effect). The most effective method for treating Grad--Hogan classical diffusion was to introduce independent and dependent variables so as to eliminate the convection velocity (it can be computed afterwards). This procedure reduced the nonstandard, two dimensional problem to one with computation time only slightly more than for a one-dimensional diffusion problem. 23 references, 1 figure

  1. Entanglement-assisted classical communication can simulate classical communication without causal order (United States)

    Akibue, Seiseki; Owari, Masaki; Kato, Go; Murao, Mio


    Phenomena induced by the existence of entanglement, such as nonlocal correlations, exhibit characteristic properties of quantum mechanics distinguishing from classical theories. When entanglement is accompanied by classical communication, it enhances the power of quantum operations jointly performed by two spatially separated parties. Such a power has been analyzed by the gap between the performances of joint quantum operations implementable by local operations at each party connected by classical communication with and without the assistance of entanglement. In this work, we present a formulation for joint quantum operations connected by classical communication beyond special relativistic causal order but without entanglement and still within quantum mechanics. Using the formulation, we show that entanglement-assisting classical communication necessary for implementing a class of joint quantum operations called separable operations can be interpreted to simulate "classical communication" that does not respect causal order. Our results reveal a counterintuitive aspect of entanglement related to space-time.

  2. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field

    DEFF Research Database (Denmark)

    Monti, Susanna; Corozzi, Alessandro; Fristrup, Peter


    In order to describe possible reaction mechanisms involving amino acids, and the evolution of the protonation state of amino acid side chains in solution, a reactive force field (ReaxFF-based description) for peptide and protein simulations has been developed as an expansion of the previously...... force field on a relatively short time scale (500 ps) is validated by comparison with classical non-reactive simulations and experimental data of well characterized test cases, comprising capped amino acids, peptides, and small proteins, and reaction mechanisms connected to the pharmaceutical sector....... A good agreement of ReaxFF predicted conformations and kinetics with reference data is obtained....


    Huang, Lei; Roux, Benoît


    Classical molecular dynamics (MD) simulations based on atomistic models are increasingly used to study a wide range of biological systems. A prerequisite for meaningful results from such simulations is an accurate molecular mechanical force field. Most biomolecular simulations are currently based on the widely used AMBER and CHARMM force fields, which were parameterized and optimized to cover a small set of basic compounds corresponding to the natural amino acids and nucleic acid bases. Atomic models of additional compounds are commonly generated by analogy to the parameter set of a given force field. While this procedure yields models that are internally consistent, the accuracy of the resulting models can be limited. In this work, we propose a method, General Automated Atomic Model Parameterization (GAAMP), for generating automatically the parameters of atomic models of small molecules using the results from ab initio quantum mechanical (QM) calculations as target data. Force fields that were previously developed for a wide range of model compounds serve as initial guess, although any of the final parameter can be optimized. The electrostatic parameters (partial charges, polarizabilities and shielding) are optimized on the basis of QM electrostatic potential (ESP) and, if applicable, the interaction energies between the compound and water molecules. The soft dihedrals are automatically identified and parameterized by targeting QM dihedral scans as well as the energies of stable conformers. To validate the approach, the solvation free energy is calculated for more than 200 small molecules and MD simulations of 3 different proteins are carried out.

  4. RNA force field with accuracy comparable to state-of-the-art protein force fields. (United States)

    Tan, Dazhi; Piana, Stefano; Dirks, Robert M; Shaw, David E


    Molecular dynamics (MD) simulation has become a powerful tool for characterizing at an atomic level of detail the conformational changes undergone by proteins. The application of such simulations to RNA structures, however, has proven more challenging, due in large part to the fact that the physical models ("force fields") available for MD simulations of RNA molecules are substantially less accurate in many respects than those currently available for proteins. Here, we introduce an extensive revision of a widely used RNA force field in which the parameters have been modified, based on quantum mechanical calculations and existing experimental information, to more accurately reflect the fundamental forces that stabilize RNA structures. We evaluate these revised parameters through long-timescale MD simulations of a set of RNA molecules that covers a wide range of structural complexity, including single-stranded RNAs, RNA duplexes, RNA hairpins, and riboswitches. The structural and thermodynamic properties measured in these simulations exhibited dramatically improved agreement with experimentally determined values. Based on the comparisons we performed, this RNA force field appears to achieve a level of accuracy comparable to that of state-of-the-art protein force fields, thus significantly advancing the utility of MD simulation as a tool for elucidating the structural dynamics and function of RNA molecules and RNA-containing biological assemblies. Copyright © 2018 the Author(s). Published by PNAS.

  5. Classical diffusion: theory and simulation codes

    International Nuclear Information System (INIS)

    Grad, H.; Hu, P.N.


    A survey is given of the development of classical diffusion theory which arose from the observation of Grad and Hogan that the Pfirsch-Schluter and Neoclassical theories are very special and frequently inapplicable because they require that plasma mass flow be treated as transport rather than as a state variable of the plasma. The subsequent theory, efficient numerical algorithms, and results of various operating codes are described

  6. An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations

    DEFF Research Database (Denmark)

    Siani, Pablo; de Souza, R M; Dias, L G


    in cellular systems and also affect physical properties of both biological and model lipid bilayers. In this paper we (i) provide a perspective on the existing literature on simulations of lipid bilayer systems containing oxidized lipid species as well as the main related experimental results, (ii) describe...

  7. Ensemble simulations with discrete classical dynamics

    DEFF Research Database (Denmark)

    Toxværd, Søren


    {E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics......For discrete classical Molecular dynamics (MD) obtained by the "Verlet" algorithm (VA) with the time increment $h$ there exist a shadow Hamiltonian $\\tilde{H}$ with energy $\\tilde{E}(h)$, for which the discrete particle positions lie on the analytic trajectories for $\\tilde{H}$. $\\tilde...

  8. Classical simulations of heavy-ion fusion reactions and weakly ...

    Indian Academy of Sciences (India)


    -ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters ...

  9. Reference simulations of noncanonical nucleic acids with different chí variants of the AMBER force field: Quadruplex DNA, quadruplex RNA, and Z-DNA

    Czech Academy of Sciences Publication Activity Database

    Krepl, Miroslav; Zgarbová, M.; Stadlbauer, Petr; Otyepka, M.; Banáš, P.; Koča, J.; Cheatham III, T.E.; Jurečka, P.; Šponer, Jiří


    Roč. 8, č. 7 (2012), s. 2506-2520 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GD203/09/H046; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GAP208/11/1822; GA ČR(CZ) GBP305/12/G034 Institutional research plan: CEZ:AV0Z50040702 Keywords : refinement of empirical force fields * DNA * Z-DNA backbone Subject RIV: BO - Biophysics Impact factor: 5.389, year: 2012

  10. Simulation of molecular transitions using classical trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, A.; Martens, C. C. [University of California, California (United States)


    In the present work, we describe the implementation of a semiclassical method to study physical-chemical processes in molecular systems where electronic state transitions and quantum coherence play a dominant role. The method is based on classical trajectory propagation on the underlying coupled electronic surfaces and is derived from the semiclassical limit of the quantum Liouville equation. Unlike previous classical trajectory-based methods, quantum electronic coherence are treated naturally within this approach as complex weighted trajectory ensembles propagating on the average electronic surfaces. The method is tested on a model problem consisting of one-dimensional motion on two crossing electronic surfaces. Excellent agreement is obtained when compared to the exact results obtained by wave packet propagation. The method is applied to model quantum wave packet interferometry, where two wave packets, differing only in a relative phase, collide in the region where the two electronic surfaces cross. The dependence of the resulting population transfer on the initial relative phase of the wave packets is perfectly captured by our classical trajectory method. Comparison with an alternative method, surface hopping, shows that our approach is appropriate for modelling quantum interference phenomena. [Spanish] En este trabajo se describe la implementacion de un metodo semiclasico para estudiar procesos fisicos-quimicos en sistemas moleculares donde las transiciones entre estados electronicos y las coherencias cuanticas juegan un papel predominante. El metodo se basa en la propagacion de trayectorias clasicas sobre las correspondientes superficies electronicas acopladas y se deriva a partir del limite semiclasico de la ecuacion cuantica de Liouville. A diferencia de metodos previos basados en trayectoria clasica, dentro de este esquema, las coherencias electronicas cuanticas son tratadas de manera natural como ensamble de trayectorias con pesos complejos, moviendose en

  11. ATK-ForceField: a new generation molecular dynamics software package (United States)

    Schneider, Julian; Hamaekers, Jan; Chill, Samuel T.; Smidstrup, Søren; Bulin, Johannes; Thesen, Ralph; Blom, Anders; Stokbro, Kurt


    ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.

  12. Prediction of the bubble point pressure for the binary mixture of ethanol and 1,1,1,2,3,3,3-heptafluoropropane from Gibbs ensemble Monte Carlo simulations using the TraPPE force field

    Energy Technology Data Exchange (ETDEWEB)

    Rai, N; Rafferty, J L; Maiti, A; Siepmann, I


    Configurational-bias Monte Carlo simulations in the Gibbs ensemble using the TraPPE force field were carried out to predict the pressure-composition diagrams for the binary mixture of ethanol and 1,1,1,2,3,3,3-heptafluoropropane at 283.17 and 343.13 K. A new approach is introduced that allows to scale predictions at one temperature based on the differences in Gibbs free energies of transfer between experiment and simulation obtained at another temperature. A detailed analysis of the molecular structure and hydrogen bonding for this fluid mixture is provided.

  13. Approximate photochemical dynamics of azobenzene with reactive force fields (United States)

    Li, Yan; Hartke, Bernd


    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  14. Genetic algorithms coupled with quantum mechanics for refinement of force fields for RNA simulation: a case study of glycosidic torsions in the canonical ribonucleosides. (United States)

    Kato, Rodrigo B; Silva, Frederico T; Pappa, Gisele L; Belchior, Jadson C


    We report the use of genetic algorithms (GA) as a method to refine force field parameters in order to determine RNA energy. Quantum-mechanical (QM) calculations are carried out for the isolated canonical ribonucleosides (adenosine, guanosine, cytidine and uridine) that are taken as reference data. In this particular study, the dihedral and electrostatic energies are reparametrized in order to test the proposed approach, i.e., GA coupled with QM calculations. Overall, RMSE comparison with recent published results for ribonucleosides energies shows an improvement, on average, of 50%. Finally, the new reparametrized potential energy function is used to determine the spatial structure of RNA (PDB code ) that was not taken into account in the parametrization process. This structure was improved about 82% comparable with previously published results.

  15. Classical dynamics simulations of interstellar glycine formation via ...

    Indian Academy of Sciences (India)



    Sep 20, 2017 ... present article, we report ab initio classical trajectory simulations for the interstellar formation of glycine for the above mentioned reaction with n ... Our simulations indicate that the above proposed catalytic effect by the additional ..... Advances in Chemical Physics: Monte Carlo Methods in Chemical Physics I ...

  16. Deriving force field parameters for coordination complexes

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Brandt, Peter


    The process of deriving molecular mechanics force fields for coordination complexes is outlined. Force field basics are introduced with an emphasis on special requirements for metal complexes. The review is then focused on how to set up the initial model, define the target, refine the parameters......, and validate the final force field, Alternatives to force field derivation are discussed briefly....

  17. Markov model-based polymer assembly from force field-parameterized building blocks. (United States)

    Durmaz, Vedat


    A conventional by hand construction and parameterization of a polymer model for the purpose of molecular simulations can quickly become very work-intensive and time-consuming. Using the example of polyglycerol, I present a polymer decomposition strategy yielding a set of five monomeric residues that are convenient for an instantaneous assembly and subsequent force field simulation of a polyglycerol polymer model. Force field parameters have been developed in accordance with the classical Amber force field. Partial charges of each unit were fitted to the electrostatic potential using quantum-chemical methods and slightly modified in order to guarantee a neutral total polymer charge. In contrast to similarly constructed models of amino acid and nucleotide sequences, the glycerol building blocks may yield an arbitrary degree of bifurcations depending on the underlying probabilistic model. The iterative development of the overall structure as well as the relation of linear to branching units is controlled by a simple Markov model which is presented with few algorithmic details. The resulting polymer is highly suitable for classical explicit water molecular dynamics simulations on the atomistic level after a structural relaxation step. Moreover, the decomposition strategy presented here can easily be adopted to many other (co)polymers.

  18. Harmonic force field for nitro compounds. (United States)

    Bellido, Edson P; Seminario, Jorge M


    Molecular simulations leading to sensors for the detection of explosive compounds require force field parameters that can reproduce the mechanical and vibrational properties of energetic materials. We developed precise harmonic force fields for alanine polypeptides and glycine oligopeptides using the FUERZA procedure that uses the Hessian tensor (obtained from ab initio calculations) to calculate precise parameters. In this work, we used the same procedure to calculate generalized force field parameters of several nitro compounds. We found a linear relationship between force constant and bond distance. The average angle in the nitro compounds was 116°, excluding the 90° angle of the carbon atoms in the octanitrocubane. The calculated parameters permitted the accurate molecular modeling of nitro compounds containing many functional groups. Results were acceptable when compared with others obtained using methods that are specific for one type of molecule, and much better than others obtained using methods that are too general (these ignore the chemical effects of surrounding atoms on the bonding and therefore the bond strength, which affects the mechanical and vibrational properties of the whole molecule).

  19. Nonequilibrium Mixed Quantum-Classical simulations of Hydrogen-bond Structure and Dynamics in Methanol-d Carbon tetrachloride liquid mixtures and its spectroscopic signature (United States)

    Kwac, Kijeong; Geva, Eitan


    Liquid mixtures of methanol-d and carbon tetrachloride provide attractive model systems for investigating hydrogen-bond structure and dynamics. The hydrogen-bonded methanol oligomers in these mixtures give rise to a very broad hydroxyl stretch IR band (~ 150 cm-1). We have employed mixed quantum-classical molecular dynamics simulations to study the nature of hydrogen- bond structure and dynamics in this system and its spectroscopic signature. In our simulations, the hydroxyl stretch mode is treated quantum mechanically. We have found that the absorption spectrum is highly sensitive to the type of force fields used. Obtaining absorption spectra consistent with experiment required the use of corrected polarizabile force fields and a dipole damping scheme. We have established mapping relationships between the electric field along the hydroxyl bond and the hydrogen-stretch frequency and bond length thereby reducing the computational cost dramatically to simulate the complex nonequilibrium dynamics underlying pump-probe spectra.

  20. Classical and quantum simulations of many-body systems

    International Nuclear Information System (INIS)

    Murg, Valentin


    This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new ''analog'' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)

  1. Classical and quantum simulations of many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Murg, Valentin


    This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)

  2. Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates (United States)

    Bravyi, Sergey; Gosset, David


    We present a new algorithm for classical simulation of quantum circuits over the Clifford+T gate set. The runtime of the algorithm is polynomial in the number of qubits and the number of Clifford gates in the circuit but exponential in the number of T gates. The exponential scaling is sufficiently mild that the algorithm can be used in practice to simulate medium-sized quantum circuits dominated by Clifford gates. The first demonstrations of fault-tolerant quantum circuits based on 2D topological codes are likely to be dominated by Clifford gates due to a high implementation cost associated with logical T gates. Thus our algorithm may serve as a verification tool for near-term quantum computers which cannot in practice be simulated by other means. To demonstrate the power of the new method, we performed a classical simulation of a hidden shift quantum algorithm with 40 qubits, a few hundred Clifford gates, and nearly 50 T gates.

  3. Classical dynamics simulations of interstellar glycine formation via ...

    Indian Academy of Sciences (India)



    Sep 20, 2017 ... reaction site. Computational modeling is becoming a very use- ful tool for studying interstellar chemistry.32,33 In the present work, we have investigated the dynamics of reaction 1 and reaction 2 (with n = 2) using ab initio classical trajectory simulations.34,35 Trajectories were initiated at the rate-controlling ...

  4. Energy conservation in molecular dynamics simulations of classical systems

    DEFF Research Database (Denmark)

    Toxværd, Søren; Heilmann, Ole; Dyre, J. C.


    Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete “Verlet” algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence...

  5. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uhlik, Filip [Charles Univ., Prague (Czech Republic); Moucka, Filip [Purkinje Univ. (Czech Republic); Nezbeda, Ivo [Purkinje Univ. (Czech Republic); Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Chialvo, Ariel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.

  6. Evaluating amber force fields using computed NMR chemical shifts. (United States)

    Koes, David R; Vries, John K


    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1 H, 15 N, and 13 C a atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  7. Determining force field parameters using a physically based equation of state. (United States)

    van Westen, Thijs; Vlugt, Thijs J H; Gross, Joachim


    Force field parameters used in classical molecular simulations can be estimated from quantum mechanical calculations or spectroscopic measurements. This especially applies to bonded interactions such as bond-stretching, bond-bending, and torsional interactions. However, it is difficult and computational expensive to obtain accurate parameters describing the nonbonded van der Waals interactions from quantum mechanics. In many studies, these parameters are adjusted to reproduce experimental data, such as vapor-liquid equilibria (VLE) data. Adjusting these force field parameters to VLE data is currently a cumbersome and computationally expensive task. The reason is that the result of a calculation of the vapor-liquid equilibria depends on the van der Waals interactions of all atom types in the system, therefore requiring many time-consuming iterations. In this work, we use an analytical equation of state, the perturbed chain statistical associating fluid theory (PC-SAFT), to predict the results of molecular simulations for VLE. The analytical PC-SAFT equation of state is used to approximate the objective function f(p) as a function of the array of force field parameters p. The objective function is here for example defined as the deviations of vapor pressure, enthalpy of vaporization and liquid density data, with respect to experimental data. The parameters are optimized using the analytical PC-SAFT equation of state, which is orders of magnitude quicker to calculate than molecular simulation. The solution is an excellent approximation of the real objective function, so that the resulting method requires only very few molecular simulation runs to converge. The method is here illustrated by optimizing transferable Lennard-Jones parameters for the n-alkane series. Optimizing four force field parameters p = (ε(CH(2))(CH(2)), ε(CH(3))(CH(3)), σ(CH(2))(CH(2)), σ(CH(3))(CH(3))) we obtain excellent agreement of coexisting densities, vapor pressure and caloric properties

  8. Computational physics simulation of classical and quantum systems

    CERN Document Server

    Scherer, Philipp O J


    This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented ...

  9. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields (United States)

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.


    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  10. Classics

    Indian Academy of Sciences (India)

    Volume 4 Issue 11 November 1999 pp 88-88 Classics. Introduction to Classics Essay · Max Delbrück · More Details Fulltext PDF. Volume 4 Issue 11 November 1999 pp 89-102 Classics. A Physicist Looks at Biology · Max Delbrück · More Details Fulltext PDF. Volume 5 Issue 3 March 2000 pp 105-105 Classics. Introduction.

  11. The ambiguity of simplicity in quantum and classical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, Cina, E-mail:; Mahoney, John R., E-mail:; Crutchfield, James P., E-mail:


    Highlights: • Simplicity depends on whether a system is represented classically or quantally. • We demonstrate that simplicity is unavoidably ambiguous. • Relative simplicity changes order moving between classical and quantum descriptions. • Ambiguity of simplicity bears directly on model selection. - Abstract: A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the “elegance” of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

  12. Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices (United States)

    Struck, J.; Ölschläger, C.; Le Targat, R.; Soltan-Panahi, P.; Eckardt, A.; Lewenstein, M.; Windpassinger, P.; Sengstock, K.


    Magnetism plays a key role in modern technology and stimulates research in several branches of condensed matter physics. Although the theory of classical magnetism is well developed, the demonstration of a widely tunable experimental system has remained an elusive goal. Here, we present the realization of a large-scale simulator for classical magnetism on a triangular lattice by exploiting the particular properties of a quantum system. We use the motional degrees of freedom of atoms trapped in an optical lattice to simulate a large variety of magnetic phases: ferromagnetic, antiferromagnetic, and even frustrated spin configurations. A rich phase diagram is revealed with different types of phase transitions. Our results provide a route to study highly debated phases like spin-liquids as well as the dynamics of quantum phase transitions.

  13. Bridging the Gap Between Quantum Chemistry and Classical Simulations for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Laura [Univ. of Minnesota, Minneapolis, MN (United States)


    We have developed a systematic procedure to generate transferable force fields to simulate the behavior of CO2 and other gases in open-metal-site metal organic frameworks using high-level quantum chemical calculations. Monte Carlo simulations based on an ab initio force field for CO2 in the Mg2(dobpdc) material have been employed to describe the interactions of CO2 with open metals. Our study has shed some light on the interpretation of thermodynamic data of flue gas in Mg2(dobpdc). This force field accurately describes the chemistry of the open metal sites, and is transferable to other structures.

  14. A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morante, S., E-mail: [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Rossi, G.C., E-mail: [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome (Italy)


    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  15. A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics (United States)

    Morante, S.; Rossi, G. C.


    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg-Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann-Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  16. Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters. (United States)

    Róg, Tomasz; Orłowski, Adam; Llorente, Alicia; Skotland, Tore; Sylvänne, Tuulia; Kauhanen, Dimple; Ekroos, Kim; Sandvig, Kirsten; Vattulainen, Ilpo


    In this Data in Brief article we provide a data package of GROMACS input files for atomistic molecular dynamics simulations of multicomponent, asymmetric lipid bilayers using the OPLS-AA force field. These data include 14 model bilayers composed of 8 different lipid molecules. The lipids present in these models are: cholesterol (CHOL), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidyl-ethanolamine (SOPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (SOPS), N-palmitoyl-D-erythro-sphingosyl-phosphatidylcholine (SM16), and N-lignoceroyl-D-erythro-sphingosyl-phosphatidylcholine (SM24). The bilayers׳ compositions are based on lipidomic studies of PC-3 prostate cancer cells and exosomes discussed in Llorente et al. (2013) [1], showing an increase in the section of long-tail lipid species (SOPS, SOPE, and SM24) in the exosomes. Former knowledge about lipid asymmetry in cell membranes was accounted for in the models, meaning that the model of the inner leaflet is composed of a mixture of PC, PS, PE, and cholesterol, while the extracellular leaflet is composed of SM, PC and cholesterol discussed in Van Meer et al. (2008) [2]. The provided data include lipids׳ topologies, equilibrated structures of asymmetric bilayers, all force field parameters, and input files with parameters describing simulation conditions (md.mdp). The data is associated with the research article "Interdigitation of Long-Chain Sphingomyelin Induces Coupling of Membrane Leaflets in a Cholesterol Dependent Manner" (Róg et al., 2016) [3].

  17. Structure-composition trends in multicomponent borosilicate-based glasses deduced from molecular dynamics simulations with improved B-O and P-O force fields. (United States)

    Stevensson, Baltzar; Yu, Yang; Edén, Mattias


    We present a comprehensive molecular dynamics (MD) simulation study of composition-structure trends in a set of 25 glasses of widely spanning compositions from the following four systems of increasing complexity: Na 2 O-B 2 O 3 , Na 2 O-B 2 O 3 -SiO 2 , Na 2 O-CaO-SiO 2 -P 2 O 5 , and Na 2 O-CaO-B 2 O 3 -SiO 2 -P 2 O 5 . The simulations involved new B-O and P-O potential parameters developed within the polarizable shell-model framework, thereby combining the beneficial features of an overall high accuracy and excellent transferability among different glass systems and compositions: this was confirmed by the good accordance with experimental data on the relative BO 3 /BO 4 populations in borate and boro(phospho)silicate networks, as well as with the orthophosphate fractions in bioactive (boro)phosphosilicate glasses, which is believed to strongly influence their bone-bonding properties. The bearing of the simulated melt-cooling rate on the borate/phosphate speciations is discussed. Each local {BO 3 , BO 4 , SiO 4 , PO 4 } coordination environment remained independent of the precise set of co-existing network formers, while all trends observed in bond-lengths/angles mainly reflected the glass-network polymerization, i.e., the relative amounts of bridging oxygen (BO) and non-bridging oxygen (NBO) species. The structural roles of the Na + /Ca 2+ cations were also probed, targeting their local coordination environments and their relative preferences to associate with the various borate, silicate, and phosphate moieties. We evaluate and discuss the common classification of alkali/alkaline-earth metal ions as charge-compensators of either BO 4 tetrahedra or NBO anions in borosilicate glasses, also encompassing the less explored NBO-rich regime: the Na + /Ca 2+ cations mainly associate with BO/NBO species of SiO 4 /BO 3 groups, with significant relative Na-BO 4 contacts only observed in B-rich glass networks devoid of NBO species, whereas NBO-rich glass networks also

  18. Computational physics simulation of classical and quantum systems

    CERN Document Server

    Scherer, Philipp O J


    This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. Many clear mathematical descriptions of important techniques in computational physics are given. The first part of the book discusses the basic numerical methods. A large number of exercises and computer experiments allows to study the properties of these methods. The second part concentrates on simulation of classical and quantum systems. It uses a rather general concept for the equation of motion which can be applied to ordinary and partial differential equations. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multistep methods and the class of Verlet methods which is introduced by studying the motion in Liouville space. Besides the classical methods, inverse interpolation is discussed, together with the p...

  19. Cisplatin binding to DNA: Structure, bonding and NMR properties from Car-Parrinello/Classical MD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, Katrin; Roethlisberger, Ursula; Carloni, Paolo


    Poster session: Abstract is full text. Cisplatin is a widely used anticancer drug. At the molecular level, its beneficial effects arise from its binding to two adjacent purine nucleobases of DNA, which causes a kink in the double helix structure. The lesion is recognized by high mobility group (HMG) domain proteins, hampering cell repair processes and leading to cell death. Because of the serious side-effects of the drug, a large effort is devoted to design novel Pt-based drugs. Classical MD simulations modeling can be of great help in modeling Pt-DNA adducts, yet the intrinsic dependence of platinum coordination chemistry on the electronic structure has limited the domain of applicability, the accuracy and the transferability of the force field used. In this work, we adopt a Car-Parrinello / molecular dynamics approach to investigate structure and dynamics of Pt-DNA adducts, in which the platinum moiety is treated at the density functional level, whereas the macromolecule and the solvent are treated classically. Within this approach, it is shown that (i) the experimental structural determinants of the cisplatin modified DNA duplexes in the free state and in complex with an HMG protein respectively, are well reproduced; (ii) calculated 195Pt NMR chemical shifts are in semiquantitative agreement with experiment ; (III) docking of the Pt(NH3)2 {sup 2+} moiety on a canonical B-DNA dodecamer structure in water solution causes a lesion already in the 10 ps timescale, whose structural features are in fair agreement with experiment. Thus, this approach emerges as a novel computational tool for modeling platinum/DNA chemistry.

  20. 3D Hydrodynamic Simulation of Classical Novae Explosions (United States)

    Kendrick, Coleman J.


    This project investigates the formation and lifecycle of classical novae and determines how parameters such as: white dwarf mass, star mass and separation affect the evolution of the rotating binary system. These parameters affect the accretion rate, frequency of the nova explosions and light curves. Each particle in the simulation represents a volume of hydrogen gas and are initialized randomly in the outer shell of the companion star. The forces on each particle include: gravity, centrifugal, coriolis, friction, and Langevin. The friction and Langevin forces are used to model the viscosity and internal pressure of the gas. A velocity Verlet method with a one second time step is used to compute velocities and positions of the particles. A new particle recycling method was developed which was critical for computing an accurate and stable accretion rate and keeping the particle count reasonable. I used C++ and OpenCL to create my simulations and ran them on two Nvidia GTX580s. My simulations used up to 1 million particles and required up to 10 hours to complete. My simulation results for novae U Scorpii and DD Circinus are consistent with professional hydrodynamic simulations and observed experimental data (light curves and outburst frequencies). When the white dwarf mass is increased, the time between explosions decreases dramatically. My model was used to make the first prediction for the next outburst of nova DD Circinus. My simulations also show that the companion star blocks the expanding gas shell leading to an asymmetrical expanding shell.

  1. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov


    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  2. Transition States from Empirical Force Fields

    DEFF Research Database (Denmark)

    Jensen, Frank; Norrby, Per-Ola


    This is an overview of the use of empirical force fields in the study of reaction mechanisms. EVB-type methods (including RFF and MCMM) produce full reaction surfaces by mixing, in the simplest case, known force fields describing reactants and products. The SEAM method instead locates approximate...

  3. Deriving force field parameters for coordination complexes

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Brandt, Peter


    The process of deriving molecular mechanics force fields for coordination complexes is outlined. Force field basics are introduced with an emphasis on special requirements for metal complexes. The review is then focused on how to set up the initial model, define the target, refine the parameters...

  4. Implementation of molecular dynamics and its extensions with the coarse-grained UNRES force field on massively parallel systems; towards millisecond-scale simulations of protein structure, dynamics, and thermodynamics. (United States)

    Liwo, Adam; Ołdziej, Stanisław; Czaplewski, Cezary; Kleinerman, Dana S; Blood, Philip; Scheraga, Harold A


    We report the implementation of our united-residue UNRES force field for simulations of protein structure and dynamics with massively parallel architectures. In addition to coarse-grained parallelism already implemented in our previous work, in which each conformation was treated by a different task, we introduce a fine-grained level in which energy and gradient evaluation are split between several tasks. The Message Passing Interface (MPI) libraries have been utilized to construct the parallel code. The parallel performance of the code has been tested on a professional Beowulf cluster (Xeon Quad Core), a Cray XT3 supercomputer, and two IBM BlueGene/P supercomputers with canonical and replica-exchange molecular dynamics. With IBM BlueGene/P, about 50 % efficiency and 120-fold speed-up of the fine-grained part was achieved for a single trajectory of a 767-residue protein with use of 256 processors/trajectory. Because of averaging over the fast degrees of freedom, UNRES provides an effective 1000-fold speed-up compared to the experimental time scale and, therefore, enables us to effectively carry out millisecond-scale simulations of proteins with 500 and more amino-acid residues in days of wall-clock time.

  5. The structure and IR signatures of the arginine-glutamate salt bridge. Insights from the classical MD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vener, M. V., E-mail: [Mendeleev University of Chemical Technology, Moscow (Russian Federation); Odinokov, A. V. [Photochemistry Center of the Russian Academy of Sciences, Moscow (Russian Federation); Wehmeyer, C. [Free University, Berlin (Germany); Sebastiani, D. [Martin-Luther-Universität Halle-Wittenberg, Halle (Germany)


    Salt bridges and ionic interactions play an important role in protein stability, protein-protein interactions, and protein folding. Here, we provide the classical MD simulations of the structure and IR signatures of the arginine (Arg)–glutamate (Glu) salt bridge. The Arg-Glu model is based on the infinite polyalanine antiparallel two-stranded β-sheet structure. The 1 μs NPT simulations show that it preferably exists as a salt bridge (a contact ion pair). Bidentate (the end-on and side-on structures) and monodentate (the backside structure) configurations are localized [Donald et al., Proteins 79, 898–915 (2011)]. These structures are stabilized by the short {sup +}N–H⋯O{sup −} bonds. Their relative stability depends on a force field used in the MD simulations. The side-on structure is the most stable in terms of the OPLS-AA force field. If AMBER ff99SB-ILDN is used, the backside structure is the most stable. Compared with experimental data, simulations using the OPLS all-atom (OPLS-AA) force field describe the stability of the salt bridge structures quite realistically. It decreases in the following order: side-on > end-on > backside. The most stable side-on structure lives several nanoseconds. The less stable backside structure exists a few tenth of a nanosecond. Several short-living species (solvent shared, completely separately solvated ionic groups ion pairs, etc.) are also localized. Their lifetime is a few tens of picoseconds or less. Conformational flexibility of amino acids forming the salt bridge is investigated. The spectral signature of the Arg-Glu salt bridge is the IR-intensive band around 2200 cm{sup −1}. It is caused by the asymmetric stretching vibrations of the {sup +}N–H⋯O{sup −} fragment. Result of the present paper suggests that infrared spectroscopy in the 2000–2800 frequency region may be a rapid and quantitative method for the study of salt bridges in peptides and ionic interactions between proteins. This region is

  6. Cluster evolution during the early stages of heating explosives and its relationship to sensitivity: a comparative study of TATB, β-HMX and PETN by molecular reactive force field simulations. (United States)

    Wen, Yushi; Zhang, Chaoyang; Xue, Xianggui; Long, Xinping


    Clustering is experimentally and theoretically verified during the complicated processes involved in heating high explosives, and has been thought to influence their detonation properties. However, a detailed description of the clustering that occurs has not been fully elucidated. We used molecular dynamic simulations with an improved reactive force field, ReaxFF_lg, to carry out a comparative study of cluster evolution during the early stages of heating for three representative explosives: 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), β-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and pentaerythritol tetranitrate (PETN). These representatives vary greatly in their oxygen balance (OB), molecular structure, stability and experimental sensitivity. We found that when heated, TATB, HMX and PETN differ in the size, amount, proportion and lifetime of their clusters. We also found that the clustering tendency of explosives decreases as their OB becomes less negative. We propose that the relationship between OB and clustering can be attributed to the role of clustering in detonation. That is, clusters can form more readily in a high explosive with a more negative OB, which retard its energy release, secondary decomposition, further decomposition to final small molecule products and widen its detonation reaction zone. Moreover, we found that the carbon content of the clusters increases during clustering, in accordance with the observed soot, which is mainly composed of carbon as the final product of detonation or deflagration.

  7. Force Fields and Point Charges for Crystal Structure Modeling


    Svärd, Michael; Rasmuson, Åke C.


    Molecular simulation is increasingly used by chemical engineers and industrial chemists in process and product development. In particular, the possibility to predict the structure and stability of potential polymorphs of a substance is of tremendous interest to the pharmaceutical and specialty chemicals industry. Molecular mechanics modeling relies on the use of parametrized force fields and methods of assigning point charges to the atoms in the molecules. In commercial molecular simulation s...

  8. Simulation of unilateral contact problems departing from the classical boundary problems

    International Nuclear Information System (INIS)

    Frey, S.L.; Sampaio, R.; Gama, R.M.S. da.


    A numerical algorithm is proposed for simulating unilateral contact problems under the classical elasticity point of view. This simple algorithm may be employed by engineers with a minimum knowledge on classical elasticity. (A.C.A.S.) [pt

  9. Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO{sub 2} interface in aqueous environment: Molecular dynamics simulations using ReaxFF reactive force field

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jialin; Ma, Tianbao [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Zhang, Weiwei; Psofogiannakis, George; Duin, Adri C.T. van [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Chen, Lei; Qian, Linmao [Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031 (China); Hu, Yuanzhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Lu, Xinchun, E-mail: [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)


    Highlights: • New ReaxFF reactive force field was applied to simulate the tribochemical wear process at Si/SiO{sub 2} interface. • Wear of silicon atoms is due to the breaking of Si–O–Si bonds and Si–Si–O–Si bond chains on the Si substrate. • Interfacial bridge bonds play an important role during the tribochemical wear process. • Higher pressures applied to the silica phase can cause more Si atoms to be removed by forming more interfacial bridge bonds. • Water plays an opposing role in the wear process because of its both chemical and mechanical effects. - Abstract: In this work, the atomic mechanism of tribochemical wear of silicon at the Si/SiO{sub 2} interface in aqueous environment was investigated using ReaxFF molecular dynamics (MD) simulations. Two types of Si atom removal pathways were detected in the wear process. The first is caused by the destruction of stretched Si–O–Si bonds on the Si substrate surface and is assisted by the attachment of H atoms on the bridging oxygen atoms of the bonds. The other is caused by the rupture of Si–Si bonds in the stretched Si–Si–O–Si bond chains at the interface. Both pathways effectively remove Si atoms from the silicon surface via interfacial Si–O–Si bridge bonds. Our simulations also demonstrate that higher pressures applied to the silica phase can cause more Si atoms to be removed due to the formation of increased numbers of interfacial Si–O–Si bridge bonds. Besides, water plays a dual role in the wear mechanism, by oxidizing the Si substrate surface as well as by preventing the close contact of the surfaces. This work shows that the removal of Si atoms from the substrate is a result of both chemical reaction and mechanical effects and contributes to the understanding of tribochemical wear behavior in the microelectromechanical systems (MEMS) and Si chemical mechanical polishing (CMP) process.

  10. A classical simulation of nonlinear Jaynes-Cummings and Rabi models in photonic lattices: comment. (United States)

    Lo, C F


    Recently Rodriguez-Lara et al. [Opt. Express 21(10), 12888 (2013)] proposed a classical simulation of the dynamics of the nonlinear Rabi model by propagating classical light fields in a set of two photonic lattices. However, the nonlinear Rabi model has already been rigorously proven to be undefined by Lo [Quantum Semiclass. Opt. 10, L57 (1998)]. Hence, the proposed classical simulation is actually not applicable to the nonlinear Rabi model and the simulation results are completely invalid.

  11. Software Process Improvement Using Force Field Analysis ...

    African Journals Online (AJOL)

    An improvement plan is then drawn and implemented. This paper studied the state of Nigerian software development organizations based on selected attributes. Force field analysis is used to partition the factors obtained into driving and restraining forces. An attempt was made to improve the software development process ...

  12. Simulating quantum systems on classical computers with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Kleine, Adrian


    In this thesis, the numerical simulation of strongly-interacting many-body quantum-mechanical systems using matrix product states (MPS) is considered. Matrix-Product-States are a novel representation of arbitrary quantum many-body states. Using quantum information theory, it is possible to show that Matrix-Product-States provide a polynomial-sized representation of one-dimensional quantum systems, thus allowing an efficient simulation of one-dimensional quantum system on classical computers. Matrix-Product-States form the conceptual framework of the density-matrix renormalization group (DMRG). After a general introduction in the first chapter of this thesis, the second chapter deals with Matrix-Product-States, focusing on the development of fast and stable algorithms. To obtain algorithms to efficiently calculate ground states, the density-matrix renormalization group is reformulated using the Matrix-Product-States framework. Further, time-dependent problems are considered. Two different algorithms are presented, one based on a Trotter decomposition of the time-evolution operator, the other one on Krylov subspaces. Finally, the evaluation of dynamical spectral functions is discussed, and a correction vector-based method is presented. In the following chapters, the methods presented in the second chapter, are applied to a number of different physical problems. The third chapter deals with the existence of chiral phases in isotropic one-dimensional quantum spin systems. A preceding analytical study based on a mean-field approach indicated the possible existence of those phases in an isotropic Heisenberg model with a frustrating zig-zag interaction and a magnetic field. In this thesis, the existence of the chiral phases is shown numerically by using Matrix-Product-States-based algorithms. In the fourth chapter, we propose an experiment using ultracold atomic gases in optical lattices, which allows a well controlled observation of the spin-charge separation (of

  13. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. (United States)

    Heinz, Hendrik; Lin, Tzu-Jen; Mishra, Ratan Kishore; Emami, Fateme S


    The complexity of the molecular recognition and assembly of biotic-abiotic interfaces on a scale of 1 to 1000 nm can be understood more effectively using simulation tools along with laboratory instrumentation. We discuss the current capabilities and limitations of atomistic force fields and explain a strategy to obtain dependable parameters for inorganic compounds that has been developed and tested over the past decade. Parameter developments include several silicates, aluminates, metals, oxides, sulfates, and apatites that are summarized in what we call the INTERFACE force field. The INTERFACE force field operates as an extension of common harmonic force fields (PCFF, COMPASS, CHARMM, AMBER, GROMACS, and OPLS-AA) by employing the same functional form and combination rules to enable simulations of inorganic-organic and inorganic-biomolecular interfaces. The parametrization builds on an in-depth understanding of physical-chemical properties on the atomic scale to assign each parameter, especially atomic charges and van der Waals constants, as well as on the validation of macroscale physical-chemical properties for each compound in comparison to measurements. The approach eliminates large discrepancies between computed and measured bulk and surface properties of up to 2 orders of magnitude using other parametrization protocols and increases the transferability of the parameters by introducing thermodynamic consistency. As a result, a wide range of properties can be computed in quantitative agreement with experiment, including densities, surface energies, solid-water interface tensions, anisotropies of interfacial energies of different crystal facets, adsorption energies of biomolecules, and thermal and mechanical properties. Applications include insight into the assembly of inorganic-organic multiphase materials, the recognition of inorganic facets by biomolecules, growth and shape preferences of nanocrystals and nanoparticles, as well as thermal transitions and

  14. Potassium bromide, KBr/ ε: New Force Field (United States)

    Fuentes-Azcatl, Raúl; Barbosa, Marcia C.


    We propose a new force field for the Potassium Bromide, the KBr/ ε. The crystal density and structure, as well as, the density, the viscosity and the dielectric constant of the solution in water were computed and compared with the experiments and other atomistic models. Next, the transferability of the KBr/ ε and of the NaCl/ ε models is verified by creating the KCl/ ε and the NaBr/ ε models. The strategy was to employ the same parameters obtained for the NaCl/ ε and for the KBr/ ε force fields for the building up of the KCl/ ε and the NaBr/ ε models . The thermodynamic and dynamic properties of these two new models were compared with the experimental

  15. Charm production and the confining force field

    International Nuclear Information System (INIS)

    Andersson, B.; Bengtsson, H.-U.; Gustafson, G.


    We show that charm production at SPS energies can be understood simply from O(α 2 sub (s)) QCD processes when combined with fragmentation of the colour fields stretched by the final state partons. The tension of the confining force field responsible for particle production is found to pull the charmed particles away from the reaction centre, giving rise to a harder x sub (F)-spectrum than would be expected from the bare QCD matrix elements. (Authors)

  16. Effects of Force Field Selection on the Computational Ranking of MOFs for CO2 Separations. (United States)

    Dokur, Derya; Keskin, Seda


    Metal-organic frameworks (MOFs) have been considered as highly promising materials for adsorption-based CO 2 separations. The number of synthesized MOFs has been increasing very rapidly. High-throughput molecular simulations are very useful to screen large numbers of MOFs in order to identify the most promising adsorbents prior to extensive experimental studies. Results of molecular simulations depend on the force field used to define the interactions between gas molecules and MOFs. Choosing the appropriate force field for MOFs is essential to make reliable predictions about the materials' performance. In this work, we performed two sets of molecular simulations using the two widely used generic force fields, Dreiding and UFF, and obtained adsorption data of CO 2 /H 2 , CO 2 /N 2 , and CO 2 /CH 4 mixtures in 100 different MOF structures. Using this adsorption data, several adsorbent evaluation metrics including selectivity, working capacity, sorbent selection parameter, and percent regenerability were computed for each MOF. MOFs were then ranked based on these evaluation metrics, and top performing materials were identified. We then examined the sensitivity of the MOF rankings to the force field type. Our results showed that although there are significant quantitative differences between some adsorbent evaluation metrics computed using different force fields, rankings of the top MOF adsorbents for CO 2 separations are generally similar: 8, 8, and 9 out of the top 10 most selective MOFs were found to be identical in the ranking for CO 2 /H 2 , CO 2 /N 2 , and CO 2 /CH 4 separations using Dreiding and UFF. We finally suggested a force field factor depending on the energy parameters of atoms present in the MOFs to quantify the robustness of the simulation results to the force field selection. This easily computable factor will be highly useful to determine whether the results are sensitive to the force field type or not prior to performing computationally demanding

  17. A new force field including charge directionality for TMAO in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Usui, Kota; Nagata, Yuki, E-mail:, E-mail:; Hunger, Johannes; Bonn, Mischa [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Sulpizi, Marialore, E-mail:, E-mail: [Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz (Germany)


    We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O{sub TMAO}) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O{sub TMAO} to mimic the O{sub TMAO} lone pairs and we migrate the negative charge on the O{sub TMAO} to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.

  18. A new force field including charge directionality for TMAO in aqueous solution

    International Nuclear Information System (INIS)

    Usui, Kota; Nagata, Yuki; Hunger, Johannes; Bonn, Mischa; Sulpizi, Marialore


    We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O TMAO ) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O TMAO to mimic the O TMAO lone pairs and we migrate the negative charge on the O TMAO to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.

  19. Optimizing Solute-Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements. (United States)

    Lay, Wesley K; Miller, Mark S; Elcock, Adrian H


    GLYCAM06 and CHARMM36 are successful force fields for modeling carbohydrates. To correct recently identified deficiencies with both force fields, we adjusted intersolute nonbonded parameters to reproduce the experimental osmotic coefficient of glucose at 1 M. The modified parameters improve behavior of glucose and sucrose up to 4 M and improve modeling of a dextran 55-mer. While the modified parameters may not be applicable to all carbohydrates, they highlight the use of osmotic simulations to optimize force fields.

  20. A classical N-Body simulation of groups of galaxies

    International Nuclear Information System (INIS)

    Pech, G.; Chung, K.C.


    Groups of galaxies are simulated by Monte Carlo technique. The mass distribution of the groups is assumed to follow a power-law. A linear relationship between mass and luminosity is considered. (A.C.A.S.) [pt

  1. Computer simulation of mixed classical-quantum systems

    International Nuclear Information System (INIS)

    Kalia, R.K.; Vashishta, P.


    We briefly review three important methods that are currently used in the simulation of mixed systems. Two of these techniques, path integral Monte Carlo or molecular dynamics and dynamical simulated annealing, have the limitation that they can only describe the structural properties in the ground state. The third so-called quantum molecular dynamics (QMD) method can provide not only the static properties but also the real-time dynamics of a quantum particle at finite temperatures. 10 refs

  2. A test on reactive force fields for the study of silica dimerization reactions

    Energy Technology Data Exchange (ETDEWEB)

    Moqadam, Mahmoud; Riccardi, Enrico; Trinh, Thuat T.; Åstrand, Per-Olof; Erp, Titus S. van, E-mail: [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117, 7491 Trondheim (Norway)


    We studied silica dimerization reactions in the gas and aqueous phase by density functional theory (DFT) and reactive force fields based on two parameterizations of ReaxFF. For each method (both ReaxFF force fields and DFT), we performed constrained geometry optimizations, which were subsequently evaluated in single point energy calculations using the other two methods. Standard fitting procedures typically compare the force field energies and geometries with those from quantum mechanical data after a geometry optimization. The initial configurations for the force field optimization are usually the minimum energy structures of the ab initio database. Hence, the ab initio method dictates which structures are being examined and force field parameters are being adjusted in order to minimize the differences with the ab initio data. As a result, this approach will not exclude the possibility that the force field predicts stable geometries or low transition states which are realistically very high in energy and, therefore, never considered by the ab initio method. Our analysis reveals the existence of such unphysical geometries even at unreactive conditions where the distance between the reactants is large. To test the effect of these discrepancies, we launched molecular dynamics simulations using DFT and ReaxFF and observed spurious reactions for both ReaxFF force fields. Our results suggest that the standard procedures for parameter fitting need to be improved by a mutual comparative method.

  3. Polynomial-Time Classical Simulation of Quantum Ferromagnets (United States)

    Bravyi, Sergey; Gosset, David


    We consider a family of quantum spin systems which includes, as special cases, the ferromagnetic X Y model and ferromagnetic Ising model on any graph, with or without a transverse magnetic field. We prove that the partition function of any model in this family can be efficiently approximated to a given relative error ɛ using a classical randomized algorithm with runtime polynomial in ɛ-1, system size, and inverse temperature. As a consequence, we obtain a polynomial time algorithm which approximates the free energy or ground energy to a given additive error. We first show how to approximate the partition function by the perfect matching sum of a finite graph with positive edge weights. Although the perfect matching sum is not known to be efficiently approximable in general, the graphs obtained by our method have a special structure which facilitates efficient approximation via a randomized algorithm due to Jerrum and Sinclair.

  4. Static and dynamical Meissner force fields (United States)

    Weinberger, B. R.; Lynds, L.; Hull, J. R.; Mulcahy, T. M.


    The coupling between copper-based high temperature superconductors (HTS) and magnets is represented by a force field. Zero-field cooled experiments were performed with several forms of superconductors: 1) cold-pressed sintered cylindrical disks; 2) small particles fixed in epoxy polymers; and 3) small particles suspended in hydrocarbon waxes. Using magnets with axial field symmetries, direct spatial force measurements in the range of 0.1 to 10(exp 4) dynes were performed with an analytical balance and force constants were obtained from mechanical vibrational resonances. Force constants increase dramatically with decreasing spatial displacement. The force field displays a strong temperature dependence between 20 and 90 K and decreases exponentially with increasing distance of separation. Distinct slope changes suggest the presence of B-field and temperature-activated processes that define the forces. Hysteresis measurements indicated that the magnitude of force scales roughly with the volume fraction of HTS in composite structures. Thus, the net force resulting from the field interaction appears to arise from regions as small or smaller than the grain size and does not depend on contiguous electron transport over large areas. Results of these experiments are discussed.

  5. Accounting for electronic polarization in non-polarizable force fields. (United States)

    Leontyev, Igor; Stuchebrukhov, Alexei


    The issues of electronic polarizability in molecular dynamics simulations are discussed. We argue that the charges of ionized groups in proteins, and charges of ions in conventional non-polarizable force fields such as CHARMM, AMBER, GROMOS, etc should be scaled by a factor about 0.7. Our model explains why a neglect of electronic solvation energy, which typically amounts to about a half of total solvation energy, in non-polarizable simulations with un-scaled charges can produce a correct result; however, the correct solvation energy of ions does not guarantee the correctness of ion-ion pair interactions in many non-polarizable simulations. The inclusion of electronic screening for charged moieties is shown to result in significant changes in protein dynamics and can give rise to new qualitative results compared with the traditional non-polarizable force field simulations. The model also explains the striking difference between the value of water dipole μ∼ 3D reported in recent ab initio and experimental studies with the value μ(eff)∼ 2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the effective dipole of water can be understood as a scaled value μ(eff) = μ/√ε(el), where ε(el) = 1.78 is the electronic (high-frequency) dielectric constant of water. This simple theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes.

  6. Quantum simulation of the general semi-classical Rabi model in regimes of arbitrarily strong driving (United States)

    Dai, Kunzhe; Wu, Haiteng; Zhao, Peng; Li, Mengmeng; Liu, Qiang; Xue, Guangming; Tan, Xinsheng; Yu, Haifeng; Yu, Yang


    We propose and experimentally demonstrate a scheme to simulate the interaction between a two-level system and a classical light field. Under the transversal driving of two microwave tones, the effective Hamiltonian in an appropriate rotating frame is identical to that of the general semi-classical Rabi model. We experimentally realize this Hamiltonian with a superconducting transmon qubit. By tuning the strength, phase, and frequency of the two microwave driving fields, we simulate the quantum dynamics from the weak to extremely strong driving regime. Under these conditions, we observe that, as a function of increased Rabi drive strength, the qubit evolution gradually deviates from the normal sinusoidal Rabi oscillation, in accordance with the predictions of the general semi-classical Rabi model far beyond the weak driving limit. Our scheme provides an effective approach to investigate the extremely strong interaction between a two-level system and a classical light field. Such strong interactions are usually inaccessible in experiments.

  7. Simulation of classical thermal states on a quantum computer: A transfer-matrix approach

    International Nuclear Information System (INIS)

    Yung, Man-Hong; Nagaj, Daniel; Whitfield, James D.; Aspuru-Guzik, Alan


    We present a hybrid quantum-classical algorithm to simulate thermal states of classical Hamiltonians on a quantum computer. Our scheme employs a sequence of locally controlled rotations, building up the desired state by adding qubits one at a time. We identified a class of classical models for which our method is efficient and avoids potential exponential overheads encountered by Grover-like or quantum Metropolis schemes. Our algorithm also gives an exponential advantage for two-dimensional Ising models with magnetic field on a square lattice, compared with the previously known Zalka's algorithm.

  8. Three-stage classical molecular dynamics model for simulation of heavy-ion fusion

    Directory of Open Access Journals (Sweden)

    Godre Subodh S.


    Full Text Available A three-stage Classical Molecular Dynamics (3S-CMD approach for heavy-ion fusion is developed. In this approach the Classical Rigid-Body Dynamics simulation for heavy-ion collision involving light deformed nucleus is initiated on their Rutherford trajectories at very large initial separation. Collision simulation is then followed by relaxation of the rigid-body constrains for one or both the colliding nuclei at distances close to the barrier when the trajectories of all the nucleons are obtained in a Classical Molecular Dynamics approach. This 3S-CMD approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but also the internal vibrational excitations of one or both the nuclei at distances close to the barrier. The results of the dynamical simulation for 24Mg+208Pb collision show significant modification of the fusion barrier and calculated fusion cross sections due to internal excitations.

  9. Reactive Force Field for Liquid Hydrazoic Acid with Applications to Detonation Chemistry (United States)

    Furman, David; Dubnikova, Faina; van Duin, Adri; Zeiri, Yehuda; Kosloff, Ronnie

    The development of a reactive force field (ReaxFF formalism) for Hydrazoic acid (HN3), a highly sensitive liquid energetic material, is reported. The force field accurately reproduces results of density functional theory (DFT) calculations. The quality and performance of the force field are examined by detailed comparison with DFT calculations related to uni, bi and trimolecular thermal decomposition routes. Reactive molecular dynamics (RMD) simulations are performed to reveal the initial chemical events governing the detonation chemistry of liquid HN3. The outcome of these simulations compares very well with recent results of tight-binding DFT molecular dynamics and thermodynamic calculations. Based on our RMD simulations, predictions were made for the activation energies and volumes in a broad range of temperatures and initial material compressions. Work Supported by The Center of Excellence for Explosives Detection, Mitigation and Response, Department of Homeland Security.

  10. Zero-error classical channel capacity and simulation cost assisted by quantum non-signalling correlations

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Andreas [Universitat Autonoma de Barcelona (Spain)


    We describe quantum non-signalling correlations as two-input and two-output completely positive and trace preserving maps with linear constraints determining non-signalling. We then study the one-shot zero-error classical capacity of a quantum channel assisted by quantum non-signalling correlations, and the reverse problem of simulation. Both lead to simple semidefinite programmings (SDPs) whose solutions can be given in terms of the conditional min-entropies and depend only on the Kraus operator space of the channel. In particular, we show that the asymptotic zero-error classical simulation cost is precisely the conditional min-entropy of the Choi-Jamiolkowski matrix of the given channel. The asymptotic zero-error classical capacity is given by the regularization of a sequence of SDPs, and generally has no simple form. Interestingly, for the class of classical-quantum channels, we show that the asymptotic capacity is reduced to the solution of a rather simple SDP, which coincides with a quantum version of the fractional packing number suggested by Aram Harrow. This further gives an operational interpretation of the celebrated Lovasz number of a classical graph as the zero-error classical capacity of the graph assisted by quantum non-signalling correlations.

  11. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: [Lehrstuhl für BioMolekulare Optik, Ludwig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)


    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10{sup 3}-10{sup 5} molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  12. Implications of confining force field structures in hard hadronic processes

    International Nuclear Information System (INIS)

    Bengtsson, H.-U.


    This thesis is centered on the study of confining force field structures in hard scattering processes. Perturbative QCD provides the means of calculating any process on the parton level, but to be able accurately to describe the actual outcome of an event, one still needs a phenomenological model for how quarks and gluons transform into observable hadrons. One such model is based on the assumption that the particles are produced by the confining fields stretched between the partons. The actual particle distributions will then depend on the topology of the confining fields. We have developed a Monte Carlo program to simulate complete events in hard scattering, and we use this to study the properties of the confining field in different trigger situations. We further look at the amount of hard processes that can be expected in experiments that trigger on transverse energy sum (calorimeter experiments). Finally, we investigate charm production within our model. (author)

  13. Modification of the CHARMM force field for DMPC lipid bilayer. (United States)

    Högberg, Carl-Johan; Nikitin, Alexei M; Lyubartsev, Alexander P


    The CHARMM force field for DMPC lipids was modified in order to improve agreement with experiment for a number of important properties of hydrated lipid bilayer. The modification consists in introduction of a scaling factor 0.83 for 1-4 electrostatic interactions (between atoms separated by three covalent bonds), which provides correct transgauche ratio in the alkane tails, and recalculation of the headgroup charges on the basis of HF/6-311(d,p) ab-initio computations. Both rigid TIP3P and flexible SPC water models were used with the new lipid model, showing similar results. The new model in a 75 ns simulation has shown a correct value of the area per lipid at zero surface tension, as well as good agreement with the experiment for the electron density, structure factor, and order parameters, including those in the headgroup part of lipids. 2008 Wiley Periodicals, Inc.

  14. An alternative phase-space distribution to sample initial conditions for classical dynamics simulations

    International Nuclear Information System (INIS)

    Garcia-Vela, A.


    A new quantum-type phase-space distribution is proposed in order to sample initial conditions for classical trajectory simulations. The phase-space distribution is obtained as the modulus of a quantum phase-space state of the system, defined as the direct product of the coordinate and momentum representations of the quantum initial state. The distribution is tested by sampling initial conditions which reproduce the initial state of the Ar-HCl cluster prepared by ultraviolet excitation, and by simulating the photodissociation dynamics by classical trajectories. The results are compared with those of a wave packet calculation, and with a classical simulation using an initial phase-space distribution recently suggested. A better agreement is found between the classical and the quantum predictions with the present phase-space distribution, as compared with the previous one. This improvement is attributed to the fact that the phase-space distribution propagated classically in this work resembles more closely the shape of the wave packet propagated quantum mechanically

  15. Molecular dynamics simulations of classical sound absorption in a monatomic gas (United States)

    Ayub, M.; Zander, A. C.; Huang, D. M.; Cazzolato, B. S.; Howard, C. Q.


    Sound wave propagation in argon gas is simulated using molecular dynamics (MD) in order to determine the attenuation of acoustic energy due to classical (viscous and thermal) losses at high frequencies. In addition, a method is described to estimate attenuation of acoustic energy using the thermodynamic concept of exergy. The results are compared against standing wave theory and the predictions of the theory of continuum mechanics. Acoustic energy losses are studied by evaluating various attenuation parameters and by comparing the changes in behavior at three different frequencies. This study demonstrates acoustic absorption effects in a gas simulated in a thermostatted molecular simulation and quantifies the classical losses in terms of the sound attenuation constant. The approach can be extended to further understanding of acoustic loss mechanisms in the presence of nanoscale porous materials in the simulation domain.

  16. A quantum-classical simulation of a multi-surface multi-mode ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 124, No. 1, January 2012, pp. 51–58. c Indian Academy of Sciences. A quantum-classical simulation of a multi-surface multi-mode nuclear dynamics on C6H. +. 6 incorporating degeneracy among electronic states. #. SUBHANKAR SARDAR and SATRAJIT ADHIKARI. ∗. Department of Physical Chemistry, ...

  17. Simulating spontaneous parametric down-conversion using classical light: Conference paper

    CSIR Research Space (South Africa)

    Zhang, Y


    Full Text Available of SPIE Volume 9194, Laser Beam Shaping XV, San Diego USA, August 2014 Simulating spontaneous parametric down-conversion using classical light Yingwen Zhanga, Melanie McLarena,b, Filippus S. Rouxa and Andrew Forbesa,b aCSIR National Laser Centre...

  18. Assessing the Performance of Classical Test Theory Item Discrimination Estimators in Monte Carlo Simulations (United States)

    Bazaldua, Diego A. Luna; Lee, Young-Sun; Keller, Bryan; Fellers, Lauren


    The performance of various classical test theory (CTT) item discrimination estimators has been compared in the literature using both empirical and simulated data, resulting in mixed results regarding the preference of some discrimination estimators over others. This study analyzes the performance of various item discrimination estimators in CTT:…

  19. Protocol for classical molecular dynamics simulations of nano-junctions in solution

    KAUST Repository

    Gkionis, Konstantinos


    Modeling of nanoscale electronic devices in water requires the evaluation of the transport properties averaged over the possible configurations of the solvent. They can be obtained from classical molecular dynamics for water confined in the device. A series of classical molecular dynamics simulations is performed to establish a methodology for estimating the average number of water molecules N confined between two static and semi-infinite goldelectrodes. Variations in key parameters of the simulations, as well as simulations with non-static infinite goldsurfaces of constant area and with anisotropically fluctuating cell dimensions lead to less than 1% discrepancies in the calculated N. Our approach is then applied to a carbon nanotube placed between the goldelectrodes. The atomic density profile along the axis separating the slabs shows the typical pattern of confined liquids, irrespective of the presence of the nanotube, while parallel to the slabs the nanotube perturbs the obtained profile.

  20. Surface Tension of Organic Liquids Using the OPLS/AA Force Field. (United States)

    Zubillaga, Rafael A; Labastida, Ariana; Cruz, Bibiana; Martínez, Juan Carlos; Sánchez, Enrique; Alejandre, José


    Molecular dynamics simulations are performed to obtain the surface tension of 61 organic liquids using the OPLS/AA (all-atom optimized potential for liquid simulations). The force field parameters are the same as those recently used (Caleman et al. J. Chem. Theory Comput.2012, 8, 61) to determine several thermodynamic properties of 146 organic liquids. The correct evaluation of surface tension using slab simulations of liquids requires one to properly take into account the long-range interactions (Trukhymchuk and Alejandre J. Chem. Phys.1999, 111, 8510). In addition, the liquid density from slab simulations has to be the same as that obtained in liquid simulations at constant temperature and pressure. The new results of surface tensions from this work improve those reported by Caleman et al. The OPLS/AA force field gives good surface tensions compared with experimental data for most of the systems studied in this work, although it was developed to simulate liquids.

  1. The critical role of force-fields in property prediction

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Welsh, William J.; Rasmussen, Kjeld


    of conformational energydifferences and interaction energies vary significantly from one force-field to another. As a test for the reliability of the non-bonded interactions, vapor-liquid equilibrium (VLE) data have been calculated for a small number of systems using three different force-fields. The force...

  2. Predictions of Phase Separation in Three-Component Lipid Membranes by the MARTINI Force Field

    DEFF Research Database (Denmark)

    Davis, Ryan S.; Sunil Kumar, P. B.; Sperotto, Maria Maddalena


    is to understand which types of unsaturated PC induce the formation of thermodynamically stable coexisting phases when added to mixtures of DPPC and Chol and to unravel the mechanisms that drive phase separation in such three-component mixtures. Our simulations indicate that the currently used MARTINI force field...... the MARTINI force field, is primarily due to the interactions between the coarse-grained molecules, i.e., the beads, rather than due to the differences between the conformations of saturated and unsaturated lipid acyl chains, namely entropy driven....

  3. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields

    Czech Academy of Sciences Publication Activity Database

    Havrila, Marek; Zgarbová, M.; Jurečka, P.; Banáš, P.; Krepl, Miroslav; Otyepka, M.; Šponer, Jiří


    Roč. 119, č. 49 (2015), s. 15176-15190 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68081707 Keywords : MOLECULAR-DYNAMICS SIMULATIONS * DIMERIZATION INITIATION SITE * QUANTUM-CHEMICAL COMPUTATIONS Subject RIV: BO - Biophysics Impact factor: 3.187, year: 2015

  4. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics (United States)

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.


    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  5. Classic-Simulation Android Based Game of Fly and Learn in Elementary School Level

    Directory of Open Access Journals (Sweden)

    Diana Diana


    Full Text Available The purpose of this research is to design classic simulation game application of Fly and Learn which is a mobile gaming application based on android smartphone that aims to provide children in elementary school level to learn with ease through a game. Fly and Learn is a classic simulation game which has a specific purpose to introduce the game of the plane where the children play as a pilot by a plane ride and also to train them in answering questions quickly and accurately on the way. The method used in this research is the waterfall model. The results achieved in the form of an application that can make a learning media for elementary school level students through the medium of game based on android. The conclusion of this research is that the created application successfully attracts students’ interest thus helping their learning process.

  6. The UV absorption of nucleobases: semi-classical ab initio spectra simulations

    Czech Academy of Sciences Publication Activity Database

    Barbatti, M.; Aquino, A. J. A.; Lischka, Hans


    Roč. 12, č. 19 (2010), s. 4959-4967 ISSN 1463-9076 R&D Projects: GA MŠk LC512 Grant - others:Special Research Program(AT) P18411-N19 Institutional research plan: CEZ:AV0Z40550506 Keywords : semi-classical simulations * UV absorption spectra * nucleobases Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  7. Martini Force Field Parameters for Glycolipids

    Czech Academy of Sciences Publication Activity Database

    Lopéz, C. A.; Sovová, Žofie; van Eerden, F. J.; de Vries, H.; Marrink, S.


    Roč. 9, č. 3 (2013), s. 1694-1708 ISSN 1549-9618 Institutional support: RVO:67179843 Keywords : molecular-dynamics simulations * coarse-grained model * phase-behavior * lipid-bilayer * ganglioside GM1 * domain formation * head groups * membrane * Monogalactosyldiacylglycerol * X-RAY Subject RIV: BO - Biophysics Impact factor: 5.310, year: 2013

  8. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model. (United States)

    Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N


    London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the

  9. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. (United States)

    Vanommeslaeghe, K; MacKerell, A D


    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at .

  10. A Force Field for Water over Pt(111): Development, Assessment and Comparison. (United States)

    Steinmann, Stephan N; Ferreira de Morais, Rodrigo; Götz, Andreas W; Fleurat-Lessard, Paul; Iannuzzi, Marcella; Sautet, Philippe; Michel, Carine


    Metal/water interfaces are key in many natural and industrial processes, such as corrosion, atmospheric or environmental chemistry. Even today, the only practical approach to simulate large interfaces between a metal and water is to perform force field simulations. In this work, we propose a novel force field, GAL17, to describe the interaction of water and a Pt(111) surface. GAL17 builds on three terms: (i) a standard Lennard-Jones potential for the bonding interaction between the surface and water; (ii) a Gaussian term to improve the surface corrugation and (iii) two terms describing the angular dependence of the interaction energy. The 12 parameters of this force field are fitted against a set of 210 adsorption geometries of water on Pt(111). The performance of GAL17 is compared to several other approaches, that have not been validated against extensive first principles computations yet. Their respective accuracy is evaluated on an extended set of 802 adsorption geometries of H2O on Pt(111), 52 geometries derived from ice-like layers and an MD simulation of an interface between a c(4x6) Pt(111) surface and a water layer of 14 Å thickness. The newly developed GAL17 force field provides a significant improvement over previously existing force fields for Pt(111)/H2O interactions. Its well-balanced performance suggests that it is an ideal candidate to generate relevant geometries for the metal/water interface, paving the way to a representative sampling of the equilibrium distribution at the interface and to predict solvation free energies at the solid/liquid interface.

  11. Quantum predictions for an unmeasured system cannot be simulated with a finite-memory classical system (United States)

    Tavakoli, Armin; Cabello, Adán


    We consider an ideal experiment in which unlimited nonprojective quantum measurements are sequentially performed on a system that is initially entangled with a distant one. At each step of the sequence, the measurements are randomly chosen between two. However, regardless of which measurement is chosen or which outcome is obtained, the quantum state of the pair always remains entangled. We show that the classical simulation of the reduced state of the distant system requires not only unlimited rounds of communication, but also that the distant system has infinite memory. Otherwise, a thermodynamical argument predicts heating at a distance. Our proposal can be used for experimentally ruling out nonlocal finite-memory classical models of quantum theory.

  12. Multiscale Free Energy Simulations: An Efficient Method for Connecting Classical MD Simulations to QM or QM/MM Free Energies Using Non-Boltzmann Bennett Reweighting Schemes (United States)


    The reliability of free energy simulations (FES) is limited by two factors: (a) the need for correct sampling and (b) the accuracy of the computational method employed. Classical methods (e.g., force fields) are typically used for FES and present a myriad of challenges, with parametrization being a principle one. On the other hand, parameter-free quantum mechanical (QM) methods tend to be too computationally expensive for adequate sampling. One widely used approach is a combination of methods, where the free energy difference between the two end states is computed by, e.g., molecular mechanics (MM), and the end states are corrected by more accurate methods, such as QM or hybrid QM/MM techniques. Here we report two new approaches that significantly improve the aforementioned scheme; with a focus on how to compute corrections between, e.g., the MM and the more accurate QM calculations. First, a molecular dynamics trajectory that properly samples relevant conformational degrees of freedom is generated. Next, potential energies of each trajectory frame are generated with a QM or QM/MM Hamiltonian. Free energy differences are then calculated based on the QM or QM/MM energies using either a non-Boltzmann Bennett approach (QM-NBB) or non-Boltzmann free energy perturbation (NB-FEP). Both approaches are applied to calculate relative and absolute solvation free energies in explicit and implicit solvent environments. Solvation free energy differences (relative and absolute) between ethane and methanol in explicit solvent are used as the initial test case for QM-NBB. Next, implicit solvent methods are employed in conjunction with both QM-NBB and NB-FEP to compute absolute solvation free energies for 21 compounds. These compounds range from small molecules such as ethane and methanol to fairly large, flexible solutes, such as triacetyl glycerol. Several technical aspects were investigated. Ultimately some best practices are suggested for improving methods that seek to connect

  13. Simplified TiO2 force fields for studies of its interaction with biomolecules (United States)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong


    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  14. Joyce and Ulysses: integrated and user-friendly tools for the parameterization of intramolecular force fields from quantum mechanical data. (United States)

    Barone, Vincenzo; Cacelli, Ivo; De Mitri, Nicola; Licari, Daniele; Monti, Susanna; Prampolini, Giacomo


    The Joyce program is augmented with several new features, including the user friendly Ulysses GUI, the possibility of complete excited state parameterization and a more flexible treatment of the force field electrostatic terms. A first validation is achieved by successfully comparing results obtained with Joyce2.0 to literature ones, obtained for the same set of benchmark molecules. The parameterization protocol is also applied to two other larger molecules, namely nicotine and a coumarin based dye. In the former case, the parameterized force field is employed in molecular dynamics simulations of solvated nicotine, and the solute conformational distribution at room temperature is discussed. Force fields parameterized with Joyce2.0, for both the dye's ground and first excited electronic states, are validated through the calculation of absorption and emission vertical energies with molecular mechanics optimized structures. Finally, the newly implemented procedure to handle polarizable force fields is discussed and applied to the pyrimidine molecule as a test case.

  15. Classical molecular dynamics simulations of fusion and fragmentation in fullerene-fullerene collisions

    International Nuclear Information System (INIS)

    Verkhovtsev, A.; Korol, A.V.; Solovyov, A.V.


    We present the results of classical molecular dynamics simulations of collision-induced fusion and fragmentation of C 60 fullerenes, performed by means of the MBN Explorer software package. The simulations provide information on structural differences of the fused compound depending on kinematics of the collision process. The analysis of fragmentation dynamics at different initial conditions shows that the size distributions of produced molecular fragments are peaked for dimers, which is in agreement with a well-established mechanism of C 60 fragmentation via preferential C 2 emission. Atomic trajectories of the colliding particles are analyzed and different fragmentation patterns are observed and discussed. On the basis of the performed simulations, characteristic time of C 2 emission is estimated as a function of collision energy. The results are compared with experimental time-of-flight distributions of molecular fragments and with earlier theoretical studies. Considering the widely explored case study of C 60 -C 60 collisions, we demonstrate broad capabilities of the MBN Explorer software, which can be utilized for studying collisions of a broad variety of nano-scale and bio-molecular systems by means of classical molecular dynamics. (authors)

  16. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers (United States)

    Pérez, Alberto; Marchán, Iván; Svozil, Daniel; Sponer, Jiri; Cheatham, Thomas E.; Laughton, Charles A.; Orozco, Modesto


    We present here the parmbsc0 force field, a refinement of the AMBER parm99 force field, where emphasis has been made on the correct representation of the α/γ concerted rotation in nucleic acids (NAs). The modified force field corrects overpopulations of the α/γ = (g+,t) backbone that were seen in long (more than 10 ns) simulations with previous AMBER parameter sets (parm94-99). The force field has been derived by fitting to high-level quantum mechanical data and verified by comparison with very high-level quantum mechanical calculations and by a very extensive comparison between simulations and experimental data. The set of validation simulations includes two of the longest trajectories published to date for the DNA duplex (200 ns each) and the largest variety of NA structures studied to date (15 different NA families and 97 individual structures). The total simulation time used to validate the force field includes near 1 μs of state-of-the-art molecular dynamics simulations in aqueous solution. PMID:17351000

  17. Solvation structure and dynamics of Ni{sup 2+}(aq) from a polarizable force field

    Energy Technology Data Exchange (ETDEWEB)

    Mareš, Jiří, E-mail:; Vaara, Juha


    Highlights: • We parameterize the Ni{sup 2+} ion within the AMOEBA polarizable forcefield. • Besides vdW parameters, we fit also polarizability, Thole damping and charge. • We use an empirical adjustment to account for the transition into condensed phase. • Very good structural and dynamical properties of Ni{sup 2+}(aq) are demonstrated. - Abstract: An aqueous solution of Ni{sup 2+} has often been used as a prototypic transition-metal system for experimental and theoretical studies in nuclear and electron-spin magnetic resonance (NMR and ESR). Molecular dynamics (MD) simulation of Ni{sup 2+}(aq) has been a part of many of these studies. As a transition metal complex, its MD simulation is particularly difficult using common force fields. In this work, we parameterize the Ni{sup 2+} ion for a simulation of the aqueous solution within the modern polarizable force field AMOEBA. We show that a successful parameterization is possible for this specific case when releasing the physical interpretation of the electrostatic and polarization parameters of the force field. In doing so, particularly the Thole damping parameter and also the ion charge and polarizability were used as fitting parameters. The resulting parameterizations give in a MD simulation good structural and dynamical properties of the [Ni(H{sub 2}O){sub 6}]{sup 2+} complex, along with the expected excellent performance of AMOEBA for the water solvent. The presented parameterization is appropriate for high-accuracy simulations of both structural and dynamic properties of Ni{sup 2+}(aq). This work documents possible approaches of parameterization of a transition metal within the AMOEBA force field.

  18. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses (United States)

    Xia, Q. Z.; Fu, L. B.; Liu, J.


    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  19. Classical molecular dynamics simulation on the dynamical properties of H2 on silicene layer

    Directory of Open Access Journals (Sweden)

    Casuyac Miqueas


    Full Text Available This study investigates the diffusion of hydrogen molecule physisorbed on the surface of silicene nanoribbon (SiNRusing the classical molecular dynamic (MD simulation in LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator. The interactions between silicon atoms are modeled using the modified Tersoff potential, the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO potential for hydrogen – hydrogen interaction and the Lennard – Jones potential for the physisorbed H2 on SiNR. By varying the temperatures (60 K Δ 130 K, we observed that the Δxdisplacement of H2 on the surface SiNR shows a Brownian motion on a Lennard-Jones potential and a Gaussian probability distribution can be plotted describing the diffusion of H2. The calculated mean square displacement (MSD was approximately increasing in time and the activation energy barrier for diffusion has been found to be 43.23meV.

  20. Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties

    DEFF Research Database (Denmark)

    Voroshylova, I. V.; Chaban, V. V.


    Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis(trifluoromethanesulfonyl)......Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis......(trifluoromethanesulfonyl)imide, dicyanamide, hexafluorophosphate, triflate, chloride). We elaborate a systematic procedure, which allows accounting for specific cationanion interactions in the liquid phase. Once these interactions are described accurately, all experimentally determined transport properties can be reproduced. We prove...... that three parameters per interaction site (atom diameter, depth of potential well, point electrostatic charge) provide a sufficient basis to predict thermodynamics (heat of vaporization, density), structure (radial distributions), and transport (diffusion, viscosity, conductivity) of ILs at room conditions...

  1. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies

    Energy Technology Data Exchange (ETDEWEB)

    Costandy, Joseph; Michalis, Vasileios K.; Economou, Ioannis G., E-mail:, E-mail: [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Tsimpanogiannis, Ioannis N., E-mail:, E-mail: [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” 15310 Aghia Paraskevi, Attikis (Greece); Stubos, Athanassios K. [Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” 15310 Aghia Paraskevi, Attikis (Greece)


    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies.

  2. Modeling quantum processes in classical molecular dynamics simulations of dense plasmas (United States)

    Hau-Riege, S. P.; Weisheit, J.; Castor, J. I.; London, R. A.; Scott, H.; Richards, D. F.


    We present a method for treating quantum processes in a classical molecular dynamics (MD) simulation. The computational approach, called ‘Small Ball’ (SB), was originally introduced to model emission and absorption of free-free radiation. Here, we extend this approach to handle ionization/recombination reactions as well as nuclear fusion events. This method exploits the short-range nature of screened-particle interactions in a dense plasma to restrict consideration of quantum processes to a small region about a given ion, and carefully accounts for the effects of the plasma environment on two-particle interaction rates within that region. The use of a reduced set of atomic rates, corresponding to the bottleneck approximation, simplifies their implementation within an MD code. We validate the extended MD code against a collisional-radiative code for model systems under two scenarios: (i) solid-density carbon at conditions encountered in recent experiments, and (ii) high-density Xe-doped hydrogen relevant for laser fusion. We find good agreement for the time-dependent ionization evolution for both systems. We also simulate fast protons stopping in warm, dense carbon plasmas. Here, reasonable agreement with recent experimental data requires contributions from both bound electrons, as modeled by SB in the extended MD code, and free electrons; for the latter, use of the classical random phase approximation (RPA) formula instead of the MD prediction yields better agreement with the experiment, a result that can be attributed to the use of modified Coulomb potentials in MD simulations of electron-ion plasmas. Finally, we confirm that the fusion reaction rate obtained from an MD simulation agrees with analytical expressions for the reaction rate in a weakly screened plasma.

  3. A classical simulation of nonlinear Jaynes-Cummings and Rabi models in photonic lattices (United States)

    Rodríguez-Lara, B. M.; Soto-Eguibar, Francisco; Cárdenas, Alejandro Zárate; Moya-Cessa, H. M.


    The interaction of a two-level atom with a single-mode quantized field is one of the simplest models in quantum optics. Under the rotating wave approximation, it is known as the Jaynes-Cummings model and without it as the Rabi model. Real-world realizations of the Jaynes-Cummings model include cavity, ion trap and circuit quantum electrodynamics. The Rabi model can be realized in circuit quantum electrodynamics. As soon as nonlinear couplings are introduced, feasible experimental realizations in quantum systems are drastically reduced. We propose a set of two photonic lattices that classically simulates the interaction of a single two-level system with a quantized field under field nonlinearities and nonlinear couplings as long as the quantum optics model conserves parity. We describe how to reconstruct the mean value of quantum optics measurements, such as photon number and atomic energy excitation, from the intensity and from the field, such as von Neumann entropy and fidelity, at the output of the photonic lattices. We discuss how typical initial states involving coherent or displaced Fock fields can be engineered from recently discussed Glauber-Fock lattices. As an example, the Buck-Sukumar model, where the coupling depends on the intensity of the field, is classically simulated for separable and entangled initial states.

  4. Machine Learning Force Field Parameters from Ab Initio Data

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Argonne; Li, Hui [Department; Pickard, Frank C. [Laboratory; Narayanan, Badri [Center; Sen, Fatih G. [Center; Chan, Maria K. Y. [Center; Computational; Sankaranarayanan, Subramanian K. R. S. [Center; Computational; Brooks, Bernard R. [Laboratory; Roux, Benoît [Department; Center; Computational


    Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor during the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local “shape” of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.

  5. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank


    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...

  6. A force field for 3,3,3-fluoro-1-propenes, including HFO-1234yf. (United States)

    Raabe, Gabriele; Maginn, Edward J


    The European Union (EU) legislation 2006/40/EC bans from January 2011 the cooperative marketing of new car types that use refrigerants in their heating, ventilation, and air conditioning (HVAC) systems with global warming potentials (GWP) higher than 150. Thus, the phase-out of the presently used tetrafluoroethane refrigerant R134a necessitates the adoption of alternative refrigerants. Fluoropropenes such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf) are currently regarded as promising low GWP refrigerants, but the lack of experimental data on their thermophysical properties hampers independent studies on their performance in HVAC systems or in other technical applications. In principle, molecular modeling can be used to predict the relevant properties of refrigerants, but adequate intermolecular potential functions ("force fields") are lacking for fluoropropenes. Thus, we developed a transferable force field for fluoropropenes composed of CF(3)-, -CF=, -CH=, CF(2)=, and CH(2)= groups and applied the force field to study 3,3,3 trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). We performed Gibbs ensemble simulations on these three fluoropropenes to compute the vapor pressure, saturated densities, and heats of vaporization. In addition, molecular dynamics simulations were conducted to provide predictions for the density, thermal expansivity, isobaric heat capacity, and transport properties of liquid HFO-1234yf in the temperature range from 263.15 to 310 K and pressures up to 2 MPa. Agreement between simulation results and experimental data and/or correlations (when available) was good, thereby validating the predictive ability of the force field.

  7. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    Czech Academy of Sciences Publication Activity Database

    Vlček, L.; Uhlík, F.; Moučka, F.; Nezbeda, Ivo; Chialvo, L.


    Roč. 119, č. 3 (2015), s. 488-500 ISSN 1089-5639 Institutional support: RVO:67985858 Keywords : monte-carlo simulations * molecular-dynamic simulations * classical drude oscillators Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.883, year: 2015

  8. Classical density functional theory & simulations on a coarse-grained model of aromatic ionic liquids. (United States)

    Turesson, Martin; Szparaga, Ryan; Ma, Ke; Woodward, Clifford E; Forsman, Jan


    A new classical density functional approach is developed to accurately treat a coarse-grained model of room temperature aromatic ionic liquids. Our major innovation is the introduction of charge-charge correlations, which are treated in a simple phenomenological way. We test this theory on a generic coarse-grained model for aromatic RTILs with oligomeric forms for both cations and anions, approximating 1-alkyl-3-methyl imidazoliums and BF₄⁻, respectively. We find that predictions by the new density functional theory for fluid structures at charged surfaces are very accurate, as compared with molecular dynamics simulations, across a range of surface charge densities and lengths of the alkyl chain. Predictions of interactions between charged surfaces are also presented.

  9. The classical Pierce diode: Using particle simulations on linear and nonlinear behavior and final states

    International Nuclear Information System (INIS)

    Crystal, T.L.; Kuhn, S.; Birdsall, C.K.


    The classical Pierce diode is a simple 1-d system of two shorted metal plates, a cold beam of electrons injected from one side and a neutralizing background of rigid ions. While the plasma medium is technically stable, the finiteness of the Pierce system allows stable and unstable operation. It is usefully studied as an archetypical bounded plasma system, related e.g., to Q-machines, particle accelerators, thermionic converters. New particle simulations of the Pierce diode have successfully recovered many novel linear phenomena including the dominant linear eigenmodes (seen in the internal electrostatic fields), and the dominant and subdominant eigenfrequencies, (seen both in the internal electrostatics and in the external circuit current, J/sub ext/(t)). These simulation results conform very well to detailed predictions of a new linear analysis. The final (nonlinear) state recovered can show critical dependence on initial (linear perturbation) conditions, and can be made steady-state (d.c.) or periodic-oscillatory by simply changing the initial conditions by a factor of 10/sup -4/ or less. A third class of final state is also possible which has oscillations which seem to be nonperiodic

  10. A Database of Force-Field Parameters, Dynamics, and Properties of Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Giuliano Malloci


    Full Text Available We present an on-line database of all-atom force-field parameters and molecular properties of compounds with antimicrobial activity (mostly antibiotics and some beta-lactamase inhibitors. For each compound, we provide the General Amber Force Field parameters for the major species at physiological pH, together with an analysis of properties of interest as extracted from µs-long molecular dynamics simulations in explicit water solution. The properties include number and population of structural clusters, molecular flexibility, hydrophobic and hydrophilic molecular surfaces, the statistics of intraand inter-molecular H-bonds, as well as structural and dynamical properties of solvent molecules within first and second solvation shells. In addition, the database contains several key molecular parameters, such as energy of the frontier molecular orbitals, vibrational properties, rotational constants, atomic partial charges and electric dipole moment, computed by Density Functional Theory. The present database (to our knowledge the first extensive one including dynamical properties is part of a wider project aiming to build-up a database containing structural, physico-chemical and dynamical properties of medicinal compounds using different force-field parameters with increasing level of complexity and reliability. The database is freely accessible at

  11. Investigation of Numerical Dissipation in Classical and Implicit Large Eddy Simulations

    Directory of Open Access Journals (Sweden)

    Moutassem El Rafei


    Full Text Available The quantitative measure of dissipative properties of different numerical schemes is crucial to computational methods in the field of aerospace applications. Therefore, the objective of the present study is to examine the resolving power of Monotonic Upwind Scheme for Conservation Laws (MUSCL scheme with three different slope limiters: one second-order and two third-order used within the framework of Implicit Large Eddy Simulations (ILES. The performance of the dynamic Smagorinsky subgrid-scale model used in the classical Large Eddy Simulation (LES approach is examined. The assessment of these schemes is of significant importance to understand the numerical dissipation that could affect the accuracy of the numerical solution. A modified equation analysis has been employed to the convective term of the fully-compressible Navier–Stokes equations to formulate an analytical expression of truncation error for the second-order upwind scheme. The contribution of second-order partial derivatives in the expression of truncation error showed that the effect of this numerical error could not be neglected compared to the total kinetic energy dissipation rate. Transitions from laminar to turbulent flow are visualized considering the inviscid Taylor–Green Vortex (TGV test-case. The evolution in time of volumetrically-averaged kinetic energy and kinetic energy dissipation rate have been monitored for all numerical schemes and all grid levels. The dissipation mechanism has been compared to Direct Numerical Simulation (DNS data found in the literature at different Reynolds numbers. We found that the resolving power and the symmetry breaking property are enhanced with finer grid resolutions. The production of vorticity has been observed in terms of enstrophy and effective viscosity. The instantaneous kinetic energy spectrum has been computed using a three-dimensional Fast Fourier Transform (FFT. All combinations of numerical methods produce a k − 4 spectrum

  12. Systematic Parameterization of Lignin for the CHARMM Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Joshua; Petridis, Loukas; Beckham, Gregg; Crowley, Michael


    Plant cell walls have three primary components, cellulose, hemicellulose, and lignin, the latter of which is a recalcitrant, aromatic heteropolymer that provides structure to plants, water and nutrient transport through plant tissues, and a highly effective defense against pathogens. Overcoming the recalcitrance of lignin is key to effective biomass deconstruction, which would in turn enable the use of biomass as a feedstock for industrial processes. Our understanding of lignin structure in the plant cell wall is hampered by the limitations of the available lignin forcefields, which currently only account for a single linkage between lignins and lack explicit parameterization for emerging lignin structures both from natural variants and engineered lignin structures. Since polymerization of lignin occurs via radical intermediates, multiple C-O and C-C linkages have been isolated , and the current force field only represents a small subset of lignin the diverse lignin structures found in plants. In order to take into account the wide range of lignin polymerization chemistries, monomers and dimer combinations of C-, H-, G-, and S-lignins as well as with hydroxycinnamic acid linkages were subjected to extensive quantum mechanical calculations to establish target data from which to build a complete molecular mechanics force field tuned specifically for diverse lignins. This was carried out in a GPU-accelerated global optimization process, whereby all molecules were parameterized simultaneously using the same internal parameter set. By parameterizing lignin specifically, we are able to more accurately represent the interactions and conformations of lignin monomers and dimers relative to a general force field. This new force field will enables computational researchers to study the effects of different linkages on the structure of lignin, as well as construct more accurate plant cell wall models based on observed statistical distributions of lignin that differ between

  13. Evaluation of control and surveillance strategies for classical swine fever using a simulation model. (United States)

    Dürr, S; Zu Dohna, H; Di Labio, E; Carpenter, T E; Doherr, M G


    Classical swine fever (CSF) outbreaks can cause enormous losses in naïve pig populations. How to best minimize the economic damage and number of culled animals caused by CSF is therefore an important research area. The baseline CSF control strategy in the European Union and Switzerland consists of culling all animals in infected herds, movement restrictions for animals, material and people within a given distance to the infected herd and epidemiological tracing of transmission contacts. Additional disease control measures such as pre-emptive culling or vaccination have been recommended based on the results from several simulation models; however, these models were parameterized for areas with high animal densities. The objective of this study was to explore whether pre-emptive culling and emergency vaccination should also be recommended in low- to moderate-density areas such as Switzerland. Additionally, we studied the influence of initial outbreak conditions on outbreak severity to improve the efficiency of disease prevention and surveillance. A spatial, stochastic, individual-animal-based simulation model using all registered Swiss pig premises in 2009 (n=9770) was implemented to quantify these relationships. The model simulates within-herd and between-herd transmission (direct and indirect contacts and local area spread). By varying the four parameters (a) control measures, (b) index herd type (breeding, fattening, weaning or mixed herd), (c) detection delay for secondary cases during an outbreak and (d) contact tracing probability, 112 distinct scenarios were simulated. To assess the impact of scenarios on outbreak severity, daily transmission rates were compared between scenarios. Compared with the baseline strategy (stamping out and movement restrictions) vaccination and pre-emptive culling neither reduced outbreak size nor duration. Outbreaks starting in a herd with weaning piglets or fattening pigs caused higher losses regarding to the number of culled

  14. Molecular mechanics force-field development for amino acid zwitterions. (United States)

    Kirschner, K N; Lewin, A H; Bowen, J P


    Understanding the conformational flexibility of amino acid zwitterions (ZWs) and their associated conformational energies is crucial for predicting their interactions in biological systems. Gas-phase ab initio calculations of ZWs are intractable. Molecular mechanics (MM), on the other hand, is able to handle large systems but lacks the necessary force field parameters to model ZWs. To develop force field parameters that are able to correctly model ZW geometries and energetics we used a novel combinatorial approach: amino acid ZWs were broken down structurally into key functional components, which were parameterized separately. Møller-Plesset second-order perturbation calculations on small carboxylates, on the glycine cation, and on novel hydrogen bonded systems, coupled with available experimental data, were used to generate MM3(2000) ZW parameters (Allinger N. L.; Yuh, Y. H.; Lii, J.-H. J Am Chem Soc 1989, 111, 8551). The MM3 results from this combinatorial approach gave geometries that are in good agreement with neutron diffraction experiments, plus their frequencies and energies appear to be reasonably modeled. Current limitations and future development of MM force fields are discussed briefly. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 111-128, 2003

  15. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Vickie E.; Borreguero, Jose M. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Bhowmik, Debsindhu [Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Ganesh, Panchapakesan; Sumpter, Bobby G. [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Proffen, Thomas E. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Goswami, Monojoy, E-mail: [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States)


    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.

  16. Dissipative dynamics with the corrected propagator method. Numerical comparison between fully quantum and mixed quantum/classical simulations

    International Nuclear Information System (INIS)

    Gelman, David; Schwartz, Steven D.


    The recently developed quantum-classical method has been applied to the study of dissipative dynamics in multidimensional systems. The method is designed to treat many-body systems consisting of a low dimensional quantum part coupled to a classical bath. Assuming the approximate zeroth order evolution rule, the corrections to the quantum propagator are defined in terms of the total Hamiltonian and the zeroth order propagator. Then the corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The evolution of the primary part is governed by the corrected propagator yielding the exact quantum dynamics. The method has been tested on two model systems coupled to a harmonic bath: (i) an anharmonic (Morse) oscillator and (ii) a double-well potential. The simulations have been performed at zero temperature. The results have been compared to the exact quantum simulations using the surrogate Hamiltonian approach.

  17. A hybrid classical-quantum approach for ultra-scaled confined nanostructures : modeling and simulation*

    Directory of Open Access Journals (Sweden)

    Pietra Paola


    Full Text Available We propose a hybrid classical-quantum model to study the motion of electrons in ultra-scaled confined nanostructures. The transport of charged particles, considered as one dimensional, is described by a quantum effective mass model in the active zone coupled directly to a drift-diffusion problem in the rest of the device. We explain how this hybrid model takes into account the peculiarities due to the strong confinement and we present numerical simulations for a simplified carbon nanotube. Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans des nanostructures très fortement confinées. Le transport des particules, consideré unidimensionel, est décrit par un modèle quantique avec masse effective dans la zone active couplé à un problème de dérive-diffusion dans le reste du domaine. Nous expliquons comment ce modèle hybride prend en compte les spécificités de ce très fort confinement et nous présentons des résultats numériques pour un nanotube de carbone simplifié.

  18. Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems

    International Nuclear Information System (INIS)

    Owolabi, Kolade M.


    The aim of this paper is to examine pattern formation in the sub— and super-diffusive scenarios and compare it with that of classical or standard diffusive processes in two-component fractional reaction-diffusion systems that modeled a predator-prey dynamics. The focus of the work concentrates on the use of two separate mathematical techniques, we formulate a Fourier spectral discretization method as an efficient alternative technique to solve fractional reaction-diffusion problems in higher-dimensional space, and later advance the resulting systems of ODEs in time with the adaptive exponential time-differencing solver. Obviously, the fractional Fourier approach is able to achieve spectral convergence up to machine precision regardless of the fractional order α, owing to the fact that our approach is able to give full diagonal representation of the fractional operator. The complexity of the dynamics in this system is theoretically discussed and graphically displayed with some examples and numerical simulations in one, two and three dimensions.

  19. Protein-Ligand Informatics Force Field (PLIff): Toward a Fully Knowledge Driven "Force Field" for Biomolecular Interactions. (United States)

    Verdonk, Marcel L; Ludlow, R Frederick; Giangreco, Ilenia; Rathi, Prakash Chandra


    The Protein Data Bank (PDB) contains a wealth of data on nonbonded biomolecular interactions. If this information could be distilled down to nonbonded interaction potentials, these would have some key advantages over standard force fields. However, there are some important outstanding issues to address in order to do this successfully. This paper introduces the protein-ligand informatics "force field", PLIff, which begins to address these key challenges ( ). As a result of their knowledge-based nature, the next-generation nonbonded potentials that make up PLIff automatically capture a wide range of interaction types, including special interactions that are often poorly described by standard force fields. We illustrate how PLIff may be used in structure-based design applications, including interaction fields, fragment mapping, and protein-ligand docking. PLIff performs at least as well as state-of-the art scoring functions in terms of pose predictions and ranking compounds in a virtual screening context.

  20. Improvement of a force field to model the edges of clay particles

    International Nuclear Information System (INIS)

    Pouvreau, Maxime


    The CLAYFF force field is widely used to model the interfaces of clay minerals - and related layered materials - with an aqueous phase. In the simulations, clay particles are typically represented by semi-infinite layers, i.e. only surfaces parallel to the layer plane (basal surfaces) are considered. This simplification is acceptable to a certain extent, but clay layers are really nano sized and terminated by lateral surfaces or edges. These surfaces can not only adsorb solvated species but are also subject to proton transfers, and all physico-chemical processes related to the aqueous phase acidity predominantly occur at the edges. By adding to the CLAYFF force field a Metal-O-H angle bending term whose parameters are correctly adjusted, the simulations of edge interfaces become possible.The parameters of Al-O-H and Mg-O-H terms were obtained from DFT calculations on bulk, basal surface and edge structural models of gibbsite Al(OH) 3 and brucite Mg(OH) 2 , whose layers can be considered as the backbones of clay minerals and related materials. In addition, the Si-O-H term was parametrized from an edge model of kaolinite Al 2 Si 2 O 5 (OH) 4 . Molecular dynamics simulations based on DFT and on CLAYFF with and without Metal-O-H term were performed. The modified force field clearly improves the description of hydroxylated surfaces: the orientation and the vibrational dynamics of the hydroxyl groups, the hydrogen bonding, and the coordination of metal atoms belonging to the edge are all closer to reality [fr

  1. Single stranded loops of quadruplex DNA as key benchmark for testing nucleic acids force fields

    Czech Academy of Sciences Publication Activity Database

    Fadrná, E.; Špačková, Naďa; Sarzynska, J.; Koča, J.; Orozco, M.; Cheatham III, T.E.; Kulinski, T.; Šponer, Jiří


    Roč. 5, č. 9 (2009), s. 2514-2530 ISSN 1549-9618 R&D Projects: GA MŠk(CZ) LC06030; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) IAA400040802 Grant - others:GA ČR(CZ) GA203/09/1476 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA quadruplex * MD simulation * force fields Subject RIV: BO - Biophysics Impact factor: 4.804, year: 2009

  2. Quantum mechanical force field for water with explicit electronic polarization. (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali


    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  3. Parametrization of a reactive force field for aluminum hydride


    Ojwang, J. G. O.; van Santen, Rutger A.; Kramer, Gert Jan; van Duin, Adri C. T.; Goddard, William A., III


    A reactive force field, REAXFF, for aluminum hydride has been developed based on density functional theory (DFT) derived data. REAXFF_(AlH_3) is used to study the dynamics governing hydrogen desorption in AlH_3. During the abstraction process of surface molecular hydrogen charge transfer is found to be well described by REAXFF_(AlH_3). Results on heat of desorption versus cluster size show that there is a strong dependence of the heat of desorption on the particle size, which implies that nan...

  4. On the use of quartic force fields in variational calculations (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Yachmenev, Andrey; Thiel, Walter; Lee, Timothy J.


    Quartic force fields (QFFs) have been shown to be one of the most effective ways to efficiently compute vibrational frequencies for small molecules. In this letter we discuss how the simple-internal or bond-length bond-angle (BLBA) coordinates can be transformed into Morse-cosine (-sine) coordinates which produce potential energy surfaces from QFFs that possess proper limiting behavior and can describe the vibrational (or rovibrational) energy levels of an arbitrary molecular system to 5 cm-1 or better compared to experiment. We investigate parameter scaling in the Morse coordinate, symmetry considerations, and examples of transformed QFFs making use of the MULTIMODE, TROVE, and VTET variational vibrational methods.

  5. Hydrodynamic Simulations of Classical Novae: Accretion onto CO White Dwarfs as SN Ia Progenitors (United States)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita


    We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material but chosen to keep the mass accretion rate at 2 x 10^{-10} solar masses per year to obtain the largest amount of accreted material possible with rates near to those observed. We assume either 25% core material or 50% core material has been mixed into the accreting material prior to the explosion. We use our 1D, lagrangian, hydrodynamic code: NOVA. We will report on the results of these simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Jose and Hernanz). We find that in all cases and for all white dwarf masses that less mass is ejected than accreted and, therefore, the white dwarf is growing in mass as a result of the accretion and resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

  6. Polarizable water model for the coarse-grained MARTINI force field.

    Directory of Open Access Journals (Sweden)

    Semen O Yesylevskyy


    Full Text Available Coarse-grained (CG simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent, which is either implicit or modeled explicitly as a van der Waals particle. The effect of polarization, and thus a proper screening of interactions depending on the local environment, is absent. Given the important role of water as a ubiquitous solvent in biological systems, its treatment is crucial to the properties derived from simulation studies. Here, we parameterize a polarizable coarse-grained water model to be used in combination with the CG MARTINI force field. Using a three-bead model to represent four water molecules, we show that the orientational polarizability of real water can be effectively accounted for. This has the consequence that the dielectric screening of bulk water is reproduced. At the same time, we parameterized our new water model such that bulk water density and oil/water partitioning data remain at the same level of accuracy as for the standard MARTINI force field. We apply the new model to two cases for which current CG force fields are inadequate. First, we address the transport of ions across a lipid membrane. The computed potential of mean force shows that the ions now naturally feel the change in dielectric medium when moving from the high dielectric aqueous phase toward the low dielectric membrane interior. In the second application we consider the electroporation process of both an oil slab and a lipid bilayer. The electrostatic field drives the formation of water filled pores in both cases, following a similar mechanism as seen with atomistically detailed models.

  7. Links between the charge model and bonded parameter force constants in biomolecular force fields (United States)

    Cerutti, David S.; Debiec, Karl T.; Case, David A.; Chong, Lillian T.


    The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded parameters and the other (appropriate for aqueous solution) for running simulations. The duality is intended to treat water-induced electronic polarization with an understanding that fitting data for bonded parameters will come from quantum mechanical calculations in the gas phase. In this study, we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded data set but following more conventional methods for tailoring bonded parameters (harmonic angle terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq's bonded parameters and runs simulations with the vacuum phase charge set used to derive those parameters. The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an incremental improvement over protocols that do not account for the material phases of each source of their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins and have varying degrees of success modeling the metastability of short (5-19 residues) peptides. In this particular case, ff15ipq-Qsolv increases stability in a number of α -helices, correctly obtaining 70% helical character in the K19 system at 275 K and showing appropriately diminishing content up to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-lived α -helices in simulations of a β -hairpin, and increasing the likelihood that the disordered p53 N-terminal peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv parameter development strategy, which has the hallmarks of strategies used to develop

  8. The Quantum Space Phase Transitions for Particles and Force Fields

    Directory of Open Access Journals (Sweden)

    Chung D.-Y.


    Full Text Available We introduce a phenomenological formalism in which the space structure is treated in terms of attachment space and detachment space. Attachment space attaches to an object, while detachment space detaches from the object. The combination of these spaces results in three quantum space phases: binary partition space, miscible space and binary lattice space. Binary lattice space consists of repetitive units of alternative attachment space and detachment space. In miscible space, attachment space is miscible to detachment space, and there is no separation between attachment space and detachment spaces. In binary partition space, detachment space and attachment space are in two separat continuous regions. The transition from wavefunction to the collapse of wavefuction under interference becomes the quantum space phase transition from binary lattice space to miscible space. At extremely conditions, the gauge boson force field undergoes a quantum space phase transition to a "hedge boson force field", consisting of a "vacuum" core surrounded by a hedge boson shell, like a bubble with boundary.

  9. Force-field compensation in a manual tracking task.

    Directory of Open Access Journals (Sweden)

    Valentina Squeri


    Full Text Available This study addresses force/movement control in a dynamic "hybrid" task: the master sub-task is continuous manual tracking of a target moving along an eight-shaped Lissajous figure, with the tracking error as the primary performance index; the slave sub-task is compensation of a disturbing curl viscous field, compatibly with the primary performance index. The two sub-tasks are correlated because the lateral force the subject must exert on the eight-shape must be proportional to the longitudinal movement speed in order to perform a good tracking. The results confirm that visuo-manual tracking is characterized by an intermittent control mechanism, in agreement with previous work; the novel finding is that the overall control patterns are not altered by the presence of a large deviating force field, if compared with the undisturbed condition. It is also found that the control of interaction-forces is achieved by a combination of arm stiffness properties and direct force control, as suggested by the systematic lateral deviation of the trajectories from the nominal path and the comparison between perturbed trials and catch trials. The coordination of the two sub-tasks is quickly learnt after the activation of the deviating force field and is achieved by a combination of force and the stiffness components (about 80% vs. 20%, which is a function of the implicit accuracy of the tracking task.

  10. Construction of an accurate quartic force field by using generalised least-squares fitting and experimental design

    International Nuclear Information System (INIS)

    Carbonniere, Philippe; Begue, Didier; Dargelos, Alain; Pouchan, Claude


    In this work we present an attractive least-squares fitting procedure which allows for the calculation of a quartic force field by jointly using energy, gradient, and Hessian data, obtained from electronic wave function calculations on a suitably chosen grid of points. We use the experimental design to select the grid points: a 'simplex-sum' of Box and Behnken grid was chosen for its efficiency and accuracy. We illustrate the numerical implementations of the method by using the energy and gradient data for H 2 O and H 2 CO. The B3LYP/cc-pVTZ quartic force field performed from 11 and 44 simplex-sum configurations shows excellent agreement in comparison to the classical 44 and 168 energy calculations

  11. Influence of the temperature-dependent viscosity on convective flow in the radial force field. (United States)

    Travnikov, Vadim; Zaussinger, Florian; Beltrame, Philippe; Egbers, Christoph


    The numerical investigation of convective flows in the radial force field caused by an oscillating electric field between spherical surfaces has been performed. A temperature difference (T_{1}>T_{2}) as well as a radial force field triggers a fluid flow similar to the Rayleigh-Bénard convection. The onset of convective flow has been studied by means of the linear stability analysis as a function of the radius ratio η=R_{1}/R_{2}. The influence of the temperature-dependent viscosity has been investigated in detail. We found that a varying viscosity contrast β=ν(T_{2})/ν(T_{1}) between β=1 (constant viscosity) and β=50 decreases the critical Rayleigh number by a factor of 6. Additionally, we perform a bifurcation analysis based on numerical simulations which have been calculated using a modified pseudospectral code. Numerical results have been compared with the GeoFlow experiment which is located on the International Space Station (ISS). Nonturbulent three-dimensional structures are found in the numerically predicted parameter regime. Furthermore, we observed multiple stable solutions in both experiments and numerical simulations, respectively.

  12. Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Madsen, D.E.; Esbensen, A.L.


    -generation carbohydrate force fields. No single force field is consistently better than the others for all the test cases. A statistical assessment of the performance of the force fields indicates that CHEAT(95), CFF, certain versions of Amber and of MM3 have the best overall performance, for these gas phase...

  13. Parametrization of a reactive force field for aluminum hydride. (United States)

    Ojwang, J G O; van Santen, Rutger A; Kramer, Gert Jan; van Duin, Adri C T; Goddard, William A


    A reactive force field, REAXFF, for aluminum hydride has been developed based on density functional theory (DFT) derived data. REAXFF(AlH(3)) is used to study the dynamics governing hydrogen desorption in AlH(3). During the abstraction process of surface molecular hydrogen charge transfer is found to be well described by REAXFF(AlH(3)). Results on heat of desorption versus cluster size show that there is a strong dependence of the heat of desorption on the particle size, which implies that nanostructuring enhances desorption process. In the gas phase, it was observed that small alane clusters agglomerated into a bigger cluster. After agglomeration molecular hydrogen was desorbed from the structure. This thermodynamically driven spontaneous agglomeration followed by desorption of molecular hydrogen provides a mechanism on how mobile alane clusters can facilitate the mass transport of aluminum atoms during the thermal decomposition of NaAlH(4).

  14. Spatial Confinement of Ultrasonic Force Fields in Microfluidic Channels

    DEFF Research Database (Denmark)

    Manneberg, O; Hagsäter, Melker; Svennebring, J


    of the microfluidic channel. The channel segments are remotely actuated by the use of frequency-specific external transducers with refracting wedges placed on top of the chips. The force field in each channel segment is characterized by the use of micrometer-resolution particle image velocimetry ( micro......-PIV). The confinement of the ultrasonic fields during single-or dual-segment actuation, as well as the cross-talk between two adjacent. fields, is characterized and quantified. Our results show that the field confinement typically scales with the acoustic wavelength, and that the cross-talk is insignificant between...... adjacent. fields. The goal is to define design strategies for implementing several spatially separated ultrasonic manipulation functions in series for use in advanced particle or cell handling and processing applications. One such proof-of-concept application is demonstrated, where. flow...

  15. A Multiposture Locomotor Training Device with Force-Field Control

    Directory of Open Access Journals (Sweden)

    Jianfeng Sui


    Full Text Available This paper introduces a multiposture locomotor training device (MPLTD with a closed-loop control scheme based on joint angle feedback, which is able to overcome various difficulties resulting from mechanical vibration and the weight of trainer to achieve higher accuracy trajectory. By introducing the force-field control scheme used in the closed-loop control, the device can obtain the active-constrained mode including the passive one. The MPLTD is mainly composed of three systems: posture adjusting and weight support system, lower limb exoskeleton system, and control system, of which the lower limb exoskeleton system mainly includes the indifferent equilibrium mechanism with two degrees of freedom (DOF and the driving torque is calculated by the Lagrangian function. In addition, a series of experiments, the weight support and the trajectory accuracy experiment, demonstrate a good performance of mechanical structure and the closed-loop control.

  16. Peptide Bond Isomerization in High-Temperature Simulations. (United States)

    Neale, Chris; Pomès, Régis; García, Angel E


    Force fields for molecular simulation are generally optimized to model macromolecules such as proteins at ambient temperature and pressure. Nevertheless, elevated temperatures are frequently used to enhance conformational sampling, either during system setup or as a component of an advanced sampling technique such as temperature replica exchange. Because macromolecular force fields are now put upon to simulate temperatures and time scales that greatly exceed their original design specifications, it is appropriate to re-evaluate whether these force fields are up to the task. Here, we quantify the rates of peptide bond isomerization in high-temperature simulations of three octameric peptides and a small fast-folding protein. We show that peptide octamers with and without proline residues undergo cis/trans isomerization every 1-5 ns at 800 K with three classical atomistic force fields (AMBER99SB-ILDN, CHARMM22/CMAP, and OPLS-AA/L). On the low microsecond time scale, these force fields permit isomerization of nonprolyl peptide bonds at temperatures ≥500 K, and the CHARMM22/CMAP force field permits isomerization of prolyl peptide bonds ≥400 K. Moreover, the OPLS-AA/L force field allows chiral inversion about the Cα atom at 800 K. Finally, we show that temperature replica exchange permits cis peptide bonds developed at 540 K to subsequently migrate back to the 300 K ensemble, where cis peptide bonds are present in 2 ± 1% of the population of Trp-cage TC5b, including up to 4% of its folded state. Further work is required to assess the accuracy of cis/trans isomerization in the current generation of protein force fields.

  17. Classical density functional theory and Monte Carlo simulation study of electric double layer in the vicinity of a cylindrical electrode (United States)

    Zhou, Shiqi; Lamperski, Stanisław; Sokołowska, Marta


    We have performed extensive Monte-Carlo simulations and classical density functional theory (DFT) calculations of the electrical double layer (EDL) near a cylindrical electrode in a primitive model (PM) modified by incorporating interionic dispersion interactions. It is concluded that (i) in general, an unsophisticated use of the mean field (MF) approximation for the interionic dispersion interactions does not distinctly worsen the classical DFT performance, even if the salt ions considered are highly asymmetrical in size (3:1) and charge (5:1), the bulk molar concentration considered is high up to a total bulk ion packing fraction of 0.314, and the surface charge density of up to 0.5 C m-2. (ii) More specifically, considering the possible noises in the simulation, the local volume charge density profiles are the most accurately predicted by the classical DFT in all situations, and the co- and counter-ion singlet distributions are also rather accurately predicted; whereas the mean electrostatic potential profile is relatively less accurately predicted due to an integral amplification of minor inaccuracy of the singlet distributions. (iii) It is found that the layered structure of the co-ion distribution is abnormally possible only if the surface charge density is high enough (for example 0.5 C m-2) moreover, the co-ion valence abnormally influences the peak height of the first counter-ion layer, which decreases with the former. (iv) Even if both the simulation and DFT indicate an insignificant contribution of the interionic dispersion interaction to the above three ‘local’ quantities, it is clearly shown by the classical DFT that the interionic dispersion interaction does significantly influence a ‘global’ quantity like the cylinder surface-aqueous electrolyte interfacial tension, and this may imply the role of the interionic dispersion interaction in explaining the specific Hofmeister effects. We elucidate all of the above observations based on the

  18. Diffusion behavior of Cr diluted in bcc and fcc Fe: Classical and quantum simulation methods

    Energy Technology Data Exchange (ETDEWEB)

    Ramunni, Viviana P., E-mail: [CONICET, Avda. Rivadavia 1917, Cdad. de Buenos Aires C.P. 1033 (Argentina); Comisión Nacional de Energía Atómica, Gerencia Materiales, Av. Del Libertador 8250, C1429BNP Ciudad de Buenos Aires (Argentina); Rivas, Alejandro M.F. [CONICET, Avda. Rivadavia 1917, Cdad. de Buenos Aires C.P. 1033 (Argentina); Comisión Nacional de Energía Atómica, Departamento de Física Teórica, Tandar, Av. Del Libertador 8250, C1429BNP Ciudad de Buenos Aires (Argentina)


    We characterize the atomic mobility behavior driven by vacancies, in bcc and fcc Fe−Cr diluted alloys, using a multi-frequency model. We calculate the full set of the Onsager coefficients and the tracer self and solute diffusion coefficients in terms of the mean jump frequencies. The involved jump frequencies are calculated using a classical molecular static (CMS) technique. For the bcc case, we also perform quantum calculations based on the density functional theory (DFT). There, we show that, in accordance with Bohr's correspondence principle, as the size of the atomic cell (total number of atoms) is increased, quantum results with DFT recover the classical ones obtained with CMS calculations. This last ones, are in perfect agreement with available experimental data for both, solute and solvent diffusion coefficients. For high temperatures, in the fcc phase where no experimental data are yet available, our CMS calculations predict the expected solute and solvent diffusion coefficients. - Graphical abstract: Display Omitted - Highlights: • Comparison of diffusion coefficients obtained from classical and quantum methods. • We perform our calculations in diluted bcc/fcc Fe–Cr alloy. • Magnetic and phonon effects must be taken into account. • Classical calculations are in perfect agreement with experimental data.

  19. From Discrete to Continuous Process Simulation in Classical Thermodynamics: Irreversible Expansions of Ideal Monatomic Gases (United States)

    Álvarez-Rúa, Carmen; Borge, Javier


    Thermodynamic processes are complex phenomena that can be understood as a set of successive stages. When treating processes, classical thermodynamics (and most particularly, the Gibbsian formulation, predominantly used in chemistry) only pays attention to initial and final states. However, reintroducing the notion of process is absolutely…

  20. Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration. (United States)

    Maciejewski, Arkadiusz; Pasenkiewicz-Gierula, Marta; Cramariuc, Oana; Vattulainen, Ilpo; Rog, Tomasz


    We report parametrization of dipalmitoyl-phosphatidylcholine (DPPC) in the framework of the Optimized Parameters for Liquid Simulations all-atom (OPLS-AA) force field. We chose DPPC as it is one of the most studied phospholipid species and thus has plenty of experimental data necessary for model validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule. In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree-Fock (HF), (2) second order Møller-Plesset perturbation theory (MP2), and (3) density functional theory (DFT). We also tested the effect of the polar environment by using the polarizable continuum model (PCM), and for acyl chains the van der Waals parameters were also adjusted. In effect, six parameter sets were generated and tested on a DPPC bilayer. Out of these six sets, only one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM).

  1. New Force Field Model for Propylene Glycol: Insight to Local Structure and Dynamics. (United States)

    Ferreira, Elisabete S C; Voroshylova, Iuliia V; Koverga, Volodymyr A; Pereira, Carlos M; Cordeiro, M Natália D S


    In this work we developed a new force field model (FFM) for propylene glycol (PG) based on the OPLS all-atom potential. The OPLS potential was refined using quantum chemical calculations, taking into account the densities and self-diffusion coefficients. The validation of this new FFM was carried out based on a wide range of physicochemical properties, such as density, enthalpy of vaporization, self-diffusion coefficients, isothermal compressibility, surface tension, and shear viscosity. The molecular dynamics (MD) simulations were performed over a large range of temperatures (293.15-373.15 K). The comparison with other force field models, such as OPLS, CHARMM27, and GAFF, revealed a large improvement of the results, allowing a better agreement with experimental data. Specific structural properties (radial distribution functions, hydrogen bonding and spatial distribution functions) were then analyzed in order to support the adequacy of the proposed FFM. Pure propylene glycol forms a continuous phase, displaying no microstructures. It is shown that the developed FFM gives rise to suitable results not only for pure propylene glycol but also for mixtures by testing its behavior for a 50 mol % aqueous propylene glycol solution. Furthermore, it is demonstrated that the addition of water to the PG phase produces a homogeneous solution and that the hydration interactions prevail over the propylene glycol self-association interactions.

  2. Modelling of Ion Transport in Solids with a General Bond Valence Based Force-Field

    Directory of Open Access Journals (Sweden)

    S. Adams


    Full Text Available Empirical bond length - bond valence relations provide insight into the link between structure of and ion transport in solid electrolytes. Building on our earlier systematic adjustment of bond valence (BV parameters to the bond softness, here we discuss how the squared BV mismatch can be linked to the absolute energy scale and used as a general Morse-type interaction potential for analyzing low-energy pathways in ion conducting solid or mixed conductors either by an energy landscape approach or by molecular dynamics (MD simulations. For a wide range of Lithium oxides we could thus model ion transport revealing significant differences to an earlier geometric approach. Our novel BV-based force-field has also been applied to investigate a range of mixed conductors, focusing on cathode materials for lithium ion battery (LIB applications to promote a systematic design of LIB cathodes that combine high energy density with high power density. To demonstrate the versatility of the new BV-based force-field it is applied in exploring various strategies to enhance the power performance of safe low cost LIB materials (LiFePO4, LiVPO4F, LiFeSO4F, etc..

  3. External surface adsorption on silicalite-1 zeolite studied by molecular simulation

    NARCIS (Netherlands)

    Garcia-Perez, E.; Schnell, S.K.; Castillo, J.M.; Calero, S.; Kjelstrup, S.; Dubbeldam, D.; Vlugt, T.J.H.


    We have studied the adsorption of ethane, propane, and their mixtures on the external surface of silicalite-1 zeolite by molecular simulation using a classical force field. The ideal adsorbed solution theory (IAST) was successfully used to describe mixture adsorption, both on the external surface

  4. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models. (United States)

    Zhang, Haiyang; Yin, Chunhua; Jiang, Yang; van der Spoel, David


    amino acids. The most recent FF/water combinations of ff14SB/OPC3, ff15ipq/SPC/E b , and fb15/TIP3P-FB do not show obvious improvements in accuracy for the tested quantities. These findings here establish a benchmark that may aid in the development and improvement of classical force fields to accurately model protein dynamics and thermodynamics.

  5. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer’s peptides

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thanh Thuy; Nguyen, Phuong H., E-mail:; Derreumaux, Philippe, E-mail: [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)


    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ{sub 16−22} and Aβ{sub 37−42} of the full length Aβ{sub 1−42} Alzheimer’s peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ{sub 16−22} dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ{sub 16−22} and the dimer and trimer of Aβ{sub 37−42}. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ{sub 16−22} decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ{sub 37−42} decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  6. A Force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution


    Mishra, Ratan K.; Fernández Carrasco, Lucía; Flatt, Robert J.; Heinz, Hendrik


    Tricalcium aluminate (C3A) is a major phase of Portland cement clinker and some dental root filling cements. An accurate all-atom force field is introduced to examine structural, surface, and hydration properties as well as organic interfaces to overcome challenges using current laboratory instrumentation. Molecular dynamics simulation demonstrates excellent agreement of computed structural, thermal, mechanical, and surface properties with available experimental data. The parameters are integ...

  7. Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive. (United States)

    Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D


    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.

  8. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant. (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David


    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  9. The infrared-driven cis-trans isomerization of nitrous acid HONO III: A mixed quantum-classical simulation

    International Nuclear Information System (INIS)

    Hamm, Peter


    A mixed quantum-classical simulation of the IR-driven cis-trans isomerization of HONO in a Kr matrix at 30 K is presented, treating the hydrogen atom as quantum particle and the Kr matrix as well as intermolecular degrees of freedom of the ONO-body as classical. A new method is presented to time-propagate the coupled set of equations in a DVR basis in internal spherical coordinates, rather than in laboratory frame fixed cartesian coordinates. In spherical coordinates, a much more precise computation of the weak vibrational couplings is possible using a still manageable basis size. Good qualitative agreement between simulation and experiment is obtained, underestimating relaxation and isomerization rates by a modest factor ∼5. Upon matrix fluctuations, frequent curve crossings occur between the initially excited OH-stretch vibration and a closely lying combination mode of torsional and bending coordinate that lead to a transfer of population. The subsequent pathway of energy flow is deduced and discussed within a tier model, where trans-states, that belong to the second tier, are populated through a first tier of states that is composed of combinations of bending and torsional excitations. No specific energy pathway is revealed that would funnel the hydrogen atom directly towards the trans-side, hence the experimentally observed high cis → trans quantum yield of close to one probably has to be explained in a statistical scenario on a timescale much longer than that of the present simulation

  10. Computing energy barriers for rare events from hybrid quantum/classical simulations through the virtual work principle (United States)

    Swinburne, Thomas D.; Kermode, James R.


    Hybrid quantum/classical techniques can flexibly couple ab initio simulations to an empirical or elastic medium to model materials systems that cannot be contained in small periodic supercells. However, due to electronic nonlocality, a total energy cannot be defined, meaning energy barriers cannot be calculated. We provide a general solution using the principle of virtual work in a modified nudged elastic band algorithm. Our method enables ab initio calculations of the kink formation energy for 〈100 〉 edge dislocations in molybdenum and lattice trapping barriers to brittle fracture in silicon.

  11. Force fields for monovalent and divalent metal cations in TIP3P water based on thermodynamic and kinetic properties (United States)

    Mamatkulov, Shavkat; Schwierz, Nadine


    Metal cations are essential in many vital processes. In order to capture the role of different cations in all-atom molecular dynamics simulations of biological processes, an accurate parametrization is crucial. Here, we develop force field parameters for the metal cations Li+, Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+ in combination with the TIP3P water model that is frequently used in biomolecular simulations. In progressing toward improved force fields, the approach presented here is an extension of previous efforts and allows us to simultaneously reproduce thermodynamic and kinetic properties of aqueous solutions. We systematically derive the parameters of the 12-6 Lennard-Jones potential which accurately reproduces the experimental solvation free energy, the activity derivative, and the characteristics of water exchange from the first hydration shell of the metal cations. In order to reproduce all experimental properties, a modification of the Lorentz-Berthelot combination rule is required for Mg2+. Using a balanced set of solution properties, the optimized force field parameters aim to capture the fine differences between distinct metal cations including specific ion binding affinities and the kinetics of cation binding to biologically important anionic groups.

  12. Development of CHARMM-Compatible Force-Field Parameters for Cobalamin and Related Cofactors from Quantum Mechanical Calculations. (United States)

    Pavlova, Anna; Parks, Jerry M; Gumbart, James C


    Corrinoid cofactors such as cobalamin are used by many enzymes and are essential for most living organisms. Therefore, there is broad interest in investigating cobalamin-protein interactions with molecular dynamics simulations. Previously developed parameters for cobalamins are based mainly on crystal structure data. Here, we report CHARMM-compatible force field parameters for several corrinoids developed from quantum mechanical calculations. We provide parameters for corrinoids in three oxidation states, Co 3+ , Co 2+ , and Co 1+ , and with various axial ligands. Lennard-Jones parameters for the cobalt center in the Co(II) and Co(I) states were optimized using a helium atom probe, and partial atomic charges were obtained with a combination of natural population analysis (NPA) and restrained electrostatic potential (RESP) fitting approaches. The Force Field Toolkit was used to optimize all bonded terms. The resulting parameters, determined solely from calculations of cobalamin alone or in water, were then validated by assessing their agreement with density functional theory geometries and by analyzing molecular dynamics simulation trajectories of several corrinoid proteins for which X-ray crystal structures are available. In each case, we obtained excellent agreement with the reference data. In comparison to previous CHARMM-compatible parameters for cobalamin, we observe a better agreement for the fold angle and lower RMSD in the cobalamin binding site. The approach described here is readily adaptable for developing CHARMM-compatible force-field parameters for other corrinoids or large biomolecules.

  13. The influence of catch trials on the consolidation of motor memory in force field adaptation tasks

    Directory of Open Access Journals (Sweden)

    Anne eFocke


    Full Text Available In computational neuroscience it is generally accepted that human motor memory contains neural representations of the physics of the musculoskeletal system and the objects in the environment. These representations are called internal models. Force field studies, in which subjects have to adapt to dynamic perturbations induced by a robotic manipulandum, are an established tool to analyze the characteristics of such internal models. The aim of the current study was to investigate whether catch trials during force field learning could influence the consolidation of motor memory in more complex tasks. Thereby, the force field was more than double the force field of previous studies (35 Ns/m. Moreover, the arm of the subjects was not supported. A total of forty-six subjects participated in this study and performed center-out movements at a robotic manipulandum in two different force fields. Two control groups learned force field A on day 1 and were retested in the same force field on day 3 (AA. Two test groups additionally learned an interfering force field B (=-A on day 2 (ABA. The difference between the two test and control groups, respectively, was the absence (0% or presence (19% of catch trials, in which the force field was turned off suddenly. The results showed consolidation of force field A on day 3 for both control groups. Test groups showed no consolidation of force field A (19% catch trials and even poorer performance on day 3 (0% catch trials. In conclusion, it can be stated that catch trials seem to have a positive effect on the performance on day 3 but do not trigger a consolidation process as shown in previous studies that used a lower force field viscosity with supported arm. These findings indicate that the results of previous studies in which less complex tasks were analyzed, cannot be fully transferred to more complex tasks. Moreover, the effects of catch trials in these situations are insufficiently understood and further research

  14. Molecular dynamics study of response of liquid N,N-dimethylformamide to externally applied electric field using a polarizable force field

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weimin; Niu, Haitao; Lin, Tong; Wang, Xungai; Kong, Lingxue [Institute for Frontier Materials, Deakin University, Waurn Ponds VIC 3216 (Australia)


    The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform external electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.

  15. Development and application of a ReaxFF reactive force field for hydrogen combustion. (United States)

    Agrawalla, Satyam; van Duin, Adri C T


    To investigate the reaction kinetics of hydrogen combustion at high-pressure and high-temperature conditions, we constructed a ReaxFF training set to include reaction energies and transition states relevant to hydrogen combustion and optimized the ReaxFF force field parameters against training data obtained from quantum mechanical calculations and experimental values. The optimized ReaxFF potential functions were used to run NVT MD (i.e., molecular dynamics simulation with fixed number of atoms, volume, and temperature) simulations for various H(2)/O(2) mixtures. We observed that the hydroperoxyl (HO(2)) radical plays a key role in the reaction kinetics at our input conditions (T ≥ 3000 K, P > 400 atm). The reaction mechanism observed is in good agreement with predictions of existing continuum-scale kinetic models for hydrogen combustion, and a transition of reaction mechanism is observed as we move from high pressure, low temperature to low pressure, high temperature. Since ReaxFF derives its parameters from quantum mechanical data and can simulate reaction pathways without any preconditioning, we believe that atomistic simulations through ReaxFF could be a useful tool in enhancing existing continuum-scale kinetic models for prediction of hydrogen combustion kinetics at high-pressure and high-temperature conditions, which otherwise is difficult to attain through experiments.

  16. Computer Simulation for Calculating the Second-Order Correlation Function of Classical and Quantum Light (United States)

    Facao, M.; Lopes, A.; Silva, A. L.; Silva, P.


    We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…

  17. Classic articles and workbook: EPRI monographs on simulation of electric power production

    International Nuclear Information System (INIS)

    Stremel, J.P.


    This monograph republishes several articles including a seminal one on probabilistic production costing for electric power generation. That article is given in the original French along with a English translation. Another article, written by R. Booth, gives a popular explanation of the theory, and a workbook by B. Manhire is included that carries through a simple example step by step. The classical analysis of non-probabilistic generator dispatch by L.K. Kirchmayer is republished along with an introductory essay by J.P. Stremel that puts in perspective the monograph material. The article in French was written by H. Baleriaux, E. Jamoulle, and Fr. Linard de Guertechin and first published in Brussels in 1967. It derived a method for calculating the expected value of production costs by modifying a load duration curve through the use of probability factors that account for unplanned random generator outages. Although the paper showed how pump storage plants could be included and how linear programming could be applied, the convolution technique used in the probabilistic calculations is the part most widely applied. The tutorial paper by Booth was written in a light style, and its lucidity helped popularize the method. The workbook by Manhire also shows how the calculation can be shortened significantly using cumulants to approximate the load duration curve

  18. Determination of electron clinical spectra from percentage depth dose (PDD) curves by classical simulated annealing method

    International Nuclear Information System (INIS)

    Visbal, Jorge H. Wilches; Costa, Alessandro M.


    Percentage depth dose of electron beams represents an important item of data in radiation therapy treatment since it describes the dosimetric properties of these. Using an accurate transport theory, or the Monte Carlo method, has been shown obvious differences between the dose distribution of electron beams of a clinical accelerator in a water simulator object and the dose distribution of monoenergetic electrons of nominal energy of the clinical accelerator in water. In radiotherapy, the electron spectra should be considered to improve the accuracy of dose calculation since the shape of PDP curve depends of way how radiation particles deposit their energy in patient/phantom, that is, the spectrum. Exist three principal approaches to obtain electron energy spectra from central PDP: Monte Carlo Method, Direct Measurement and Inverse Reconstruction. In this work it will be presented the Simulated Annealing method as a practical, reliable and simple approach of inverse reconstruction as being an optimal alternative to other options. (author)

  19. Taylor-expansion Monte Carlo simulations of classical fluids in the canonical and grand canonical ensemble

    International Nuclear Information System (INIS)

    Schoen, M.


    In this article the Taylor-expansion method is introduced by which Monte Carlo (MC) simulations in the canonical ensemble can be speeded up significantly, Substantial gains in computational speed of 20-40% over conventional implementations of the MC technique are obtained over a wide range of densities in homogeneous bulk phases. The basic philosophy behind the Taylor-expansion method is a division of the neighborhood of each atom (or molecule) into three different spatial zones. Interactions between atoms belonging to each zone are treated at different levels of computational sophistication. For example, only interactions between atoms belonging to the primary zone immediately surrounding an atom are treated explicitly before and after displacement. The change in the configurational energy contribution from secondary-zone interactions is obtained from the first-order term of a Taylor expansion of the configurational energy in terms of the displacement vector d. Interactions with atoms in the tertiary zone adjacent to the secondary zone are neglected throughout. The Taylor-expansion method is not restricted to the canonical ensemble but may be employed to enhance computational efficiency of MC simulations in other ensembles as well. This is demonstrated for grand canonical ensemble MC simulations of an inhomogeneous fluid which can be performed essentially on a modern personal computer

  20. Stationary temperature profiles in a liquid nanochannel: comparisons between molecular-dynamics simulation and classical hydrostatics. (United States)

    Okumura, Hisashi; Heyes, David M


    We compare the results of three-dimensional molecular-dynamics (MD) simulations of a Lennard-Jones (LJ) liquid with a hydrostatic (HS) solution of a high temperature liquid channel which is surrounded by a fluid at lower temperature. The maximum temperature gradient, dT/dx , between the two temperature regions ranged from infinity (step function) to dT/dx=0.1 (in the usual LJ units). Because the systems were in stationary-nonequilibrium states with no fluid flow, both MD simulation and the HS solution gave flat profiles for the normal pressure in all temperature-gradient cases. However, the other quantities showed differences between the two methods. The MD-derived density was found to oscillate over the length of ca. 8 LJ particle diameters from the boundary plane in the system with the infinite temperature gradient, while the HS-derived density showed simply a stepwise profile. The MD simulation also showed another anomaly near the boundary in potential energy. We have found systems in which the HS treatment works well and those where the HS approach breaks down, and therefore established the minimum length scale for the HS treatment to be valid. We also compare the kinetic temperature and the configurational temperature in these systems, and show that these can differ in the transition zone between the two temperatures.

  1. The MARTINI coarse-grained force field : Extension to proteins

    NARCIS (Netherlands)

    Monticelli, Luca; Kandasamy, Senthil K.; Periole, Xavier; Larson, Ronald G.; Tieleman, D. Peter; Marrink, Siewert-Jan

    Many biologically interesting phenomena occur on a time scale that is too long to be studied by atomistic simulations. These phenomena include the dynamics of large proteins and self-assembly of biological materials. Coarse-grained (CG) molecular modeling allows computer simulations to be run on

  2. The ELBA force field for coarse-grain modeling of lipid membranes.

    Directory of Open Access Journals (Sweden)

    Mario Orsi

    Full Text Available A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (ε(r = 1. Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC and dioleoylphosphatidylethanolamine (DOPE in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids; this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities.

  3. Simulations of collisions between N-body classical systems in interaction; Simulations de collisions entre systemes classiques a n-corps en interaction

    Energy Technology Data Exchange (ETDEWEB)

    Morisseau, Francois [Laboratoire de Physique Corpusculaire de CAEN, ENSICAEN, Universite de Caen Basse-Normandie, UFR des Sciences, 6 bd Marechal Juin, 14050 Caen Cedex (France)


    The Classical N-body Dynamics (CNBD) is dedicated to the simulation of collisions between classical systems. The 2-body interaction used here has the properties of the Van der Waals potential and depends on just a few parameters. This work has two main goals. First, some theoretical approaches assume that the dynamical stage of the collisions plays an important role. Moreover, colliding nuclei are supposed to present a 1. order liquid-gas phase transition. Several signals have been introduced to show this transition. We have searched for two of them: the bimodality of the mass asymmetry and negative heat capacity. We have found them and we give an explanation of their presence in our calculations. Second, we have improved the interaction by adding a Coulomb like potential and by taking into account the stronger proton-neutron interaction in nuclei. Then we have figured out the relations that exist between the parameters of the 2-body interaction and the properties of the systems. These studies allow us to fit the properties of the classical systems to those of the nuclei. In this manuscript the first results of this fit are shown. (author)

  4. Molecular simulation by knowledgeable quantum atoms

    International Nuclear Information System (INIS)

    Popelier, Paul L A


    We are at the dawn of molecular simulations being carried out, literally, by atoms endowed by knowledge of how to behave quantum mechanically in the vicinity of other atoms. The ‘next–next-generation’ force field that aims to achieve this is called QCTFF, for now, although a more pronounceable name will be suggested in the conclusion. Classical force fields such as AMBER mimic the interatomic energy experienced by atoms during a molecular simulation, with simple expressions capturing a relationship between energy and nuclear position. Such force fields neither see the electron density nor exchange-delocalization itself, or exact electrostatic interaction; they only contain simple equations and elementary parameters such as point charges to imitate the energies between atoms. Next-generation force fields, such as AMOEBA, go further and make the electrostatics more accurate by introducing multipole moments and dipolar polarization. However, QCTFF goes even further and abolishes all traditional force field expressions (e.g. Hooke’s law and extensions, Lennard-Jones) in favor of atomistic kriging models. These machine learning models learn how fundamental energy quantities, as well as high-rank multipole moments, all associated with an atom of interest, vary with the precise positions of atomic neighbors. As a result, all structural phenomena can be rapidly calculated as an interplay of intra-atomic energy, exchange-delocalization energy, electrostatic energy and dynamic correlation energy. The final QCTFF force field will generate a wealth of localized quantum information while being faster than a Car–Parrinello simulation (which does not generate local information). Isn't it enough to see that a garden is beautiful without having to believe that there are fairies at the bottom of it too? (Douglas Adams). (invited comment)

  5. Rapid changes in corticospinal excitability during force field adaptation of human walking

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Alain, S; Grey, Michael James


    Force field adaptation of locomotor muscle activity is one way of studying the ability of the motor control networks in the brain and spinal cord to adapt in a flexible way to changes in the environment. Here, we investigate whether the corticospinal tract is involved in this adaptation. We...... measured changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in the tibialis anterior (TA) muscle before, during, and after subjects adapted to a force field applied to the ankle joint during treadmill walking. When the force field assisted dorsiflexion during...... the swing phase of the step cycle, subjects adapted by decreasing TA EMG activity. In contrast, when the force field resisted dorsiflexion, they increased TA EMG activity. After the force field was removed, normal EMG activity gradually returned over the next 5 min of walking. TA MEPs elicited in the early...

  6. Centering Ability of ProTaper Next and WaveOne Classic in J-Shape Simulated Root Canals. (United States)

    Troiano, Giuseppe; Dioguardi, Mario; Cocco, Armando; Giuliani, Michele; Fabiani, Cristiano; D'Alessandro, Alfonso; Ciavarella, Domenico; Lo Muzio, Lorenzo

    Introduction . The aim of this study was to evaluate and compare the shaping and centering ability of ProTaper Next (PTN; Dentsply Maillefer, Ballaigues, Switzerland) and WaveOne Classic systems (Dentsply Maillefer) in simulated root canals. Methods . Forty J-shaped canals in resin blocks were assigned to two groups ( n = 20 for each group). Photographic method was used to record pre- and postinstrumentation images. After superimposition, centering and shaping ability were recorded at 9 different levels from the apex using the software Autocad 2013 (Autodesk Inc., San Rafael, USA). Results . Shaping procedures with ProTaper Next resulted in a lower amount of resin removed at each reference point level. In addition, the pattern of centering ability improved after the use of ProTaper Next in 8 of 9 measurement points. Conclusions . Within the limitations of this study, shaping procedures with ProTaper Next instruments demonstrated a lower amount of resin removed and a better centering ability than WaveOne Classic system.

  7. QM/MM and classical molecular dynamics simulation of histidine-tagged peptide immobilization on nickel surface

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhenyu [State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080(China); Zhao Yapu [State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail:


    The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by 'GAMESS', and the rest atoms are treated as MM part calculated by 'TINKER'. The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with the QM part with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(1 0 0) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the imidazole rings are attached to the substrate more tightly than other bases in this peptide.

  8. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. (United States)

    Howard, Rebecca J; Carnevale, Vincenzo; Delemotte, Lucie; Hellmich, Ute A; Rothberg, Brad S


    Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics. (United States)

    Ashraf, Chowdhury; van Duin, Adri C T


    A detailed insight of key reactive events related to oxidation and pyrolysis of hydrocarbon fuels further enhances our understanding of combustion chemistry. Though comprehensive kinetic models are available for smaller hydrocarbons (typically C 3 or lower), developing and validating reaction mechanisms for larger hydrocarbons is a daunting task, due to the complexity of their reaction networks. The ReaxFF method provides an attractive computational method to obtain reaction kinetics for complex fuel and fuel mixtures, providing an accuracy approaching ab-initio-based methods but with a significantly lower computational expense. The development of the first ReaxFF combustion force field by Chenoweth et al. (CHO-2008 parameter set) in 2008 has opened new avenues for researchers to investigate combustion chemistry from the atomistic level. In this article, we seek to address two issues with the CHO-2008 ReaxFF description. While the CHO-2008 description has achieved significant popularity for studying large hydrocarbon combustion, it fails to accurately describe the chemistry of small hydrocarbon oxidation, especially conversion of CO 2 from CO, which is highly relevant to syngas combustion. Additionally, the CHO-2008 description was obtained faster than expected H abstraction by O 2 from hydrocarbons, thus underestimating the oxidation initiation temperature. In this study, we seek to systemically improve the CHO-2008 description and validate it for these cases. Additionally, our aim was to retain the accuracy of the 2008 description for larger hydrocarbons and provide similar quality results. Thus, we expanded the ReaxFF CHO-2008 DFT-based training set by including reactions and transition state structures relevant to the syngas and oxidation initiation pathways and retrained the parameters. To validate the quality of our force field, we performed high-temperature NVT-MD simulations to study oxidation and pyrolysis of four different hydrocarbon fuels, namely

  10. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates (United States)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.


    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars ( d-allose and d-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars d-allose and d-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  11. Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.


    We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer–Tropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

  12. Hierarchical atom type definitions and extensible all-atom force fields. (United States)

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai


    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers [Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)


    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  14. Critical Assessment of Current Force Fields. Short Peptide Test Case

    Czech Academy of Sciences Publication Activity Database

    Vymětal, Jiří; Vondrášek, Jiří


    Roč. 9, č. 1 (2013), s. 441-451 ISSN 1549-9618 R&D Projects: GA MŠk(CZ) LH11020 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : Helix-coil transition * protein-folding simulations * amino-acids * side-chain * alanine dipeptide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  15. Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts (United States)

    Houriez, Céline; Vallet, Valérie; Réal, Florent; Meot-Ner Mautner, Michael; Masella, Michel


    We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in CH3 COO-/CH3 NH3+ solutions at the 0.2-0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the HCOO-/NH4+ pair and 3.3 ± 1.2 molecules for the CH3COO-/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.

  16. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field. (United States)

    Radosinski, Lukasz; Labus, Karolina


    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  17. Combining experimental and simulation data of molecular processes via augmented Markov models. (United States)

    Olsson, Simon; Wu, Hao; Paul, Fabian; Clementi, Cecilia; Noé, Frank


    Accurate mechanistic description of structural changes in biomolecules is an increasingly important topic in structural and chemical biology. Markov models have emerged as a powerful way to approximate the molecular kinetics of large biomolecules while keeping full structural resolution in a divide-and-conquer fashion. However, the accuracy of these models is limited by that of the force fields used to generate the underlying molecular dynamics (MD) simulation data. Whereas the quality of classical MD force fields has improved significantly in recent years, remaining errors in the Boltzmann weights are still on the order of a few [Formula: see text], which may lead to significant discrepancies when comparing to experimentally measured rates or state populations. Here we take the view that simulations using a sufficiently good force-field sample conformations that are valid but have inaccurate weights, yet these weights may be made accurate by incorporating experimental data a posteriori. To do so, we propose augmented Markov models (AMMs), an approach that combines concepts from probability theory and information theory to consistently treat systematic force-field error and statistical errors in simulation and experiment. Our results demonstrate that AMMs can reconcile conflicting results for protein mechanisms obtained by different force fields and correct for a wide range of stationary and dynamical observables even when only equilibrium measurements are incorporated into the estimation process. This approach constitutes a unique avenue to combine experiment and computation into integrative models of biomolecular structure and dynamics.

  18. Accurate force field for molybdenum by machine learning large materials data (United States)

    Chen, Chi; Deng, Zhi; Tran, Richard; Tang, Hanmei; Chu, Iek-Heng; Ong, Shyue Ping


    In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mo's importance as a structural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces, and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large and long-time scale simulations.

  19. Anharmonic force field and vibrational frequencies of tetrafluoromethane (CF$_4$) and tetrafluorosilane (SiF$_4$)


    Wang, Xiao-Gang; Sibert III, Edwin L.; Martin, Jan M. L.


    Accurate quartic anharmonic force fields for CF$_4$ and SiF$_4$ have been calculated using the CCSD(T) method and basis sets of $spdf$ quality. Based on the {\\it ab initio} force field with a minor empirical adjustment, the vibrational energy levels of these two molecules and their isotopomers are calculated by means of high order Canonical Van Vleck Perturbation Theory(CVPT) based on curvilinear coordinates. The calculated energies agree very well with the experimental data. The full quadrat...

  20. Mixed quantum-classical simulation of the hydride transfer reaction catalyzed by dihydrofolate reductase based on a mapped system-harmonic bath model (United States)

    Xu, Yang; Song, Kai; Shi, Qiang


    The hydride transfer reaction catalyzed by dihydrofolate reductase is studied using a recently developed mixed quantum-classical method to investigate the nuclear quantum effects on the reaction. Molecular dynamics simulation is first performed based on a two-state empirical valence bond potential to map the atomistic model to an effective double-well potential coupled to a harmonic bath. In the mixed quantum-classical simulation, the hydride degree of freedom is quantized, and the effective harmonic oscillator modes are treated classically. It is shown that the hydride transfer reaction rate using the mapped effective double-well/harmonic-bath model is dominated by the contribution from the ground vibrational state. Further comparison with the adiabatic reaction rate constant based on the Kramers theory confirms that the reaction is primarily vibrationally adiabatic, which agrees well with the high transmission coefficients found in previous theoretical studies. The calculated kinetic isotope effect is also consistent with the experimental and recent theoretical results.

  1. Molecular Dynamics Simulations and Classical Multidimensional Scaling Unveil New Metastable States in the Conformational Landscape of CDK2.

    Directory of Open Access Journals (Sweden)

    Pasquale Pisani

    Full Text Available Protein kinases are key regulatory nodes in cellular networks and their function has been shown to be intimately coupled with their structural flexibility. However, understanding the key structural mechanisms of large conformational transitions remains a difficult task. CDK2 is a crucial regulator of cell cycle. Its activity is finely tuned by Cyclin E/A and the catalytic segment phosphorylation, whereas its deregulation occurs in many types of cancer. ATP competitive inhibitors have failed to be approved for clinical use due to toxicity issues raised by a lack of selectivity. However, in the last few years type III allosteric inhibitors have emerged as an alternative strategy to selectively modulate CDK2 activity. In this study we have investigated the conformational variability of CDK2. A low dimensional conformational landscape of CDK2 was modeled using classical multidimensional scaling on a set of 255 crystal structures. Microsecond-scale plain and accelerated MD simulations were used to populate this landscape by using an out-of-sample extension of multidimensional scaling. CDK2 was simulated in the apo-form and in complex with the allosteric inhibitor 8-anilino-1-napthalenesulfonic acid (ANS. The apo-CDK2 landscape analysis showed a conformational equilibrium between an Src-like inactive conformation and an active-like form. These two states are separated by different metastable states that share hybrid structural features with both forms of the kinase. In contrast, the CDK2/ANS complex landscape is compatible with a conformational selection picture where the binding of ANS in proximity of the αC helix causes a population shift toward the inactive conformation. Interestingly, the new metastable states could enlarge the pool of candidate structures for the development of selective allosteric CDK2 inhibitors. The method here presented should not be limited to the CDK2 case but could be used to systematically unmask similar mechanisms

  2. Multiband corrections for the semi-classical simulation of interband tunneling in GaAs tunnel junctions (United States)

    Louarn, K.; Claveau, Y.; Hapiuk, D.; Fontaine, C.; Arnoult, A.; Taliercio, T.; Licitra, C.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.


    The aim of this study is to investigate the impact of multiband corrections on the current density in GaAs tunnel junctions (TJs) calculated with a refined yet simple semi-classical interband tunneling model (SCITM). The non-parabolicity of the considered bands and the spin-orbit effects are considered by using a recently revisited SCITM available in the literature. The model is confronted to experimental results from a series of molecular beam epitaxy grown GaAs TJs and to numerical results obtained with a full quantum model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We emphasize the importance of considering the non-parabolicity of the conduction band by two different measurements of the energy-dependent electron effective mass in N-doped GaAs. We also propose an innovative method to compute the non-uniform electric field in the TJ for the SCITM simulations, which is of prime importance for a successful operation of the model. We demonstrate that, when considering the multiband corrections and this new computation of the non-uniform electric field, the SCITM succeeds in predicting the electrical characteristics of GaAs TJs, and are also in agreement with the quantum model. Besides the fundamental study of the tunneling phenomenon in TJs, the main benefit of this SCITM is that it can be easily embedded into drift-diffusion software, which are the most widely-used simulation tools for electronic and opto-electronic devices such as multi-junction solar cells, tunnel field-effect transistors, or vertical-cavity surface-emitting lasers.

  3. Thermally activated magnetization reversal in monatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations

    International Nuclear Information System (INIS)

    Bauer, David S G; Mavropoulos, Phivos; Bluegel, Stefan; Lounis, Samir


    We analyse the spontaneous magnetization reversal of supported monatomic chains of finite length due to thermal fluctuations via atomistic spin-dynamics simulations. Our approach is based on the integration of the Landau-Lifshitz equation of motion of a classical spin Hamiltonian in the presence of stochastic forces. The associated magnetization lifetime is found to obey an Arrhenius law with an activation barrier equal to the domain wall energy in the chain. For chains longer than one domain wall width, the reversal is initiated by nucleation of a reversed magnetization domain primarily at the chain edge followed by a subsequent propagation of the domain wall to the other edge in a random-walk fashion. This results in a linear dependence of the lifetime on the chain length, if the magnetization correlation length is not exceeded. We studied chains of uniaxial and triaxial anisotropy and found that a triaxial anisotropy leads to a reduction of the magnetization lifetime due to a higher reversal attempt rate, even though the activation barrier is not changed.

  4. Recent advances toward a general purpose linear-scaling quantum force field. (United States)

    Giese, Timothy J; Huang, Ming; Chen, Haoyuan; York, Darrin M


    Conspectus There is need in the molecular simulation community to develop new quantum mechanical (QM) methods that can be routinely applied to the simulation of large molecular systems in complex, heterogeneous condensed phase environments. Although conventional methods, such as the hybrid quantum mechanical/molecular mechanical (QM/MM) method, are adequate for many problems, there remain other applications that demand a fully quantum mechanical approach. QM methods are generally required in applications that involve changes in electronic structure, such as when chemical bond formation or cleavage occurs, when molecules respond to one another through polarization or charge transfer, or when matter interacts with electromagnetic fields. A full QM treatment, rather than QM/MM, is necessary when these features present themselves over a wide spatial range that, in some cases, may span the entire system. Specific examples include the study of catalytic events that involve delocalized changes in chemical bonds, charge transfer, or extensive polarization of the macromolecular environment; drug discovery applications, where the wide range of nonstandard residues and protonation states are challenging to model with purely empirical MM force fields; and the interpretation of spectroscopic observables. Unfortunately, the enormous computational cost of conventional QM methods limit their practical application to small systems. Linear-scaling electronic structure methods (LSQMs) make possible the calculation of large systems but are still too computationally intensive to be applied with the degree of configurational sampling often required to make meaningful comparison with experiment. In this work, we present advances in the development of a quantum mechanical force field (QMFF) suitable for application to biological macromolecules and condensed phase simulations. QMFFs leverage the benefits provided by the LSQM and QM/MM approaches to produce a fully QM method that is able to

  5. Simulation of Cross-border Impacts Resulting from Classical Swine Fever Epidemics within the Netherlands and Germany. (United States)

    Hop, G E; Mourits, M C M; Oude Lansink, A G J M; Saatkamp, H W


    The cross-border region of the Netherlands (NL) and the two German states of North Rhine Westphalia (NRW) and Lower Saxony (LS) is a large and highly integrated livestock production area. This region increasingly develops towards a single epidemiological area in which disease introduction is a shared veterinary and, consequently, economic risk. The objectives of this study were to examine classical swine fever (CSF) control strategies' veterinary and direct economic impacts for NL, NRW and LS given the current production structure and to analyse CSF's cross-border causes and impacts within the NL-NRW-LS region. The course of the epidemic was simulated by the use of InterSpread Plus, whereas economic analysis was restricted to calculating disease control costs and costs directly resulting from the control measures applied. Three veterinary control strategies were considered: a strategy based on the minimum EU requirements, a vaccination and a depopulation strategy based on NL and GER's contingency plans. Regardless of the veterinary control strategy, simulated outbreak sizes and durations for 2010 were much smaller than those simulated previously, using data from over 10 years ago. For example, worst-case outbreaks (50th percentile) in NL resulted in 30-40 infected farms and lasted for two to four and a half months; associated direct costs and direct consequential costs ranged from €24.7 to 28.6 million and €11.7 to 26.7 million, respectively. Both vaccination and depopulation strategies were efficient in controlling outbreaks, especially large outbreaks, whereas the EU minimum strategy was especially deficient in controlling worst-case outbreaks. Both vaccination and depopulation strategies resulted in low direct costs and direct consequential costs. The probability of cross-border disease spread was relatively low, and cross-border spread resulted in small, short outbreaks in neighbouring countries. Few opportunities for further cross-border harmonization and

  6. Pathways and mechanisms for product release in the engineered haloalkane dehalogenases explored using classical and random acceleration molecular dynamics simulations. (United States)

    Klvana, Martin; Pavlova, Martina; Koudelakova, Tana; Chaloupkova, Radka; Dvorak, Pavel; Prokop, Zbynek; Stsiapanava, Alena; Kuty, Michal; Kuta-Smatanova, Ivana; Dohnalek, Jan; Kulhanek, Petr; Wade, Rebecca C; Damborsky, Jiri


    Eight mutants of the DhaA haloalkane dehalogenase carrying mutations at the residues lining two tunnels, previously observed by protein X-ray crystallography, were constructed and biochemically characterized. The mutants showed distinct catalytic efficiencies with the halogenated substrate 1,2,3-trichloropropane. Release pathways for the two dehalogenation products, 2,3-dichloropropane-1-ol and the chloride ion, and exchange pathways for water molecules, were studied using classical and random acceleration molecular dynamics simulations. Five different pathways, denoted p1, p2a, p2b, p2c, and p3, were identified. The individual pathways showed differing selectivity for the products: the chloride ion releases solely through p1, whereas the alcohol releases through all five pathways. Water molecules play a crucial role for release of both products by breakage of their hydrogen-bonding interactions with the active-site residues and shielding the charged chloride ion during its passage through a hydrophobic tunnel. Exchange of the chloride ions, the alcohol product, and the waters between the buried active site and the bulk solvent can be realized by three different mechanisms: (i) passage through a permanent tunnel, (ii) passage through a transient tunnel, and (iii) migration through a protein matrix. We demonstrate that the accessibility of the pathways and the mechanisms of ligand exchange were modified by mutations. Insertion of bulky aromatic residues in the tunnel corresponding to pathway p1 leads to reduced accessibility to the ligands and a change in mechanism of opening from permanent to transient. We propose that engineering the accessibility of tunnels and the mechanisms of ligand exchange is a powerful strategy for modification of the functional properties of enzymes with buried active sites.

  7. Ion association in concentrated NaCl brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Collings Matthew D


    Full Text Available Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H2O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m NaCl–water mixtures under ambient (25°C, 1 bar, hydrothermal (325°C, 1 kbar and deep crustal (625°C, 15 kbar conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757. With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (NanClmn-m clusters in addition to simple NaCl ion pairs. Large polyatomic (NanClmn-m clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions.

  8. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers. (United States)

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep


    Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of

  9. Systematic implicit solvent coarse-graining of bilayer membranes: lipid and phase transferability of the force field

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zunjing; Deserno, Markus, E-mail: zwang@cmu.ed, E-mail: deserno@andrew.cmu.ed [Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)


    We study the lipid and phase transferability of our recently developed systematically coarse-grained solvent-free membrane model. The force field was explicitly parameterized to describe a fluid 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer at 310 K with correct structure and area per lipid, while gaining at least three orders of magnitude in computational efficiency (see Wang and Deserno 2010 J. Phys. Chem. B 114 11207-20). Here, we show that exchanging CG tails, without any subsequent re-parameterization, creates reliable models of 1,2-dioleoylphosphatidylcholine (DOPC) and 1,2-dipalmitoylphosphatidylcholine (DPPC) lipids in terms of structure and area per lipid. Furthermore, all CG lipids undergo a liquid-gel transition upon cooling, with characteristics like those observed in experiments and all-atom simulations during phase transformation. These studies suggest a promising transferability of our force field parameters to different lipid species and thermodynamic state points, properties that are a prerequisite for even more complex systems, such as mixtures.

  10. Free Energy-Based Coarse-Grained Force Field for Binary Mixtures of Hydrocarbons, Nitrogen, Oxygen, and Carbon Dioxide. (United States)

    Cao, Fenglei; Deetz, Joshua D; Sun, Huai


    The free energy based Lennard-Jones 12-6 (FE-12-6) coarse-grained (CG) force field developed for alkanes1 has been extended to model small molecules of light hydrocarbons (methane, ethane, propane, butane, and isobutane), nitrogen, oxygen, and carbon dioxide. The adjustable parameters of the FE-12-6 potential are determined by fitting against experimental vapor-liquid equilibrium (VLE) curves and heat of vaporization (HOV) data for pure substance liquids. Simulations using the optimized FE-12-6 parameters correctly reproduced experimental measures of the VLE, HOV, density, vapor pressure, compressibility, critical point, and surface tension for pure substances over a wide range of thermodynamic states. The force field parameters optimized for pure substances were tested on methane/butane, nitrogen/decane, and carbon dioxide/decane binary mixtures to predict their vapor-liquid equilibrium phase diagrams. It is found that for nonpolar molecules represented by different sized beads, a common scaling factor (0.08) that reduces the strength of the interaction potential between unlike beads, generated using Lorentz-Berthelot (LB) combination rules, is required to predict vapor-liquid phase equilibria accurately.

  11. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory. (United States)

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David


    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields. (United States)

    Vato, Alessandro; Szymanski, Francois D; Semprini, Marianna; Mussa-Ivaldi, Ferdinando A; Panzeri, Stefano


    We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  13. Task-space separation principle: a force-field approach to motion planning for redundant manipulators. (United States)

    Tommasino, Paolo; Campolo, Domenico


    In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.

  14. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  15. A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields (United States)

    Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano


    We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393

  16. ANLIZE: a molecular mechanics force field visualization tool and its application to 18-crown-6. (United States)

    Stolworthy, L D; Shirts, R B


    We describe a software tool that allows one to visualize and analyze the importance of each individual steric interaction in a molecular mechanics force field. ANLIZE is presently implemented for the Dreiding force field for use with the Cerius2 software package, but could be implemented in any molecular mechanics package with a graphical user interface. ANLIZE calculates individual interactions in the force field, sorts them by size, and displays them in several ways from a menu of choices. This allows the user to scan through selected interactions to visualize which interactions are the primary determinants of preferred conformations. The features of ANLIZE are illustrated using 18-crown-6 as an example, and the factors governing conformational preference in 18-crown-6 are demonstrated. Users of molecular mechanics packages are encouraged to demand this functionality from commercial software producers.

  17. Anharmonic force field and vibrational frequencies of tetrafluoromethane (CF4) and tetrafluorosilane (SiF4) (United States)

    Wang, Xiao-Gang; Sibert, Edwin L.; Martin, Jan M. L.


    Accurate quartic anharmonic force fields for CF4 and SiF4 have been calculated using the CCSD(T) method and basis sets of spdf quality. Based on the ab initio force field with a minor empirical adjustment, the vibrational energy levels of these two molecules and their isotopomers are calculated by means of high order Canonical Van Vleck Perturbation Theory (CVPT) based on curvilinear coordinates. The calculated energies agree very well with the experimental data. The full quadratic force field of CF4 is further refined to the experimental data. The symmetrization of the Cartesian basis for arbitrary combination bands of Td group molecules is discussed using the circular promotion operator for the doubly degenerate modes, together with tabulated vector coupling coefficients. The extraction of the spectroscopic constants from our second order transformed Hamiltonian in curvilinear coordinates is discussed, and compared to a similar procedure in rectilinear coordinates.

  18. Classical antiparticles

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.


    We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors)

  19. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets (United States)

    El-Kaddah, N.; Szekely, J.


    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  20. Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme

    International Nuclear Information System (INIS)

    Soares, T. A.; Daura, X.; Oostenbrink, C.; Smith, L. J.; Gunsteren, W. F. van


    The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, 3 J NHα and 3 J αβ coupling constants, and 1 5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone 3 J HNα -coupling constants and 1 H- 1 5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain 3 J αβ -coupling constants and 1 H- 1 5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result

  1. Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method (United States)

    Macdonald, R. L.; Grover, M. S.; Schwartzentruber, T. E.; Panesi, M.


    This work presents the analysis of non-equilibrium energy transfer and dissociation of nitrogen molecules (N2(g+1Σ) ) using two different approaches: the direct molecular simulation (DMS) method and the coarse-grain quasi-classical trajectory (CG-QCT) method. The two methods are used to study thermochemical relaxation in a zero-dimensional isochoric and isothermal reactor in which the nitrogen molecules are heated to several thousand degrees Kelvin, forcing the system into strong non-equilibrium. The analysis considers thermochemical relaxation for temperatures ranging from 10 000 to 25 000 K. Both methods make use of the same potential energy surface for the N2(g+1Σ ) -N2(g+1Σ ) system taken from the NASA Ames quantum chemistry database. Within the CG-QCT method, the rovibrational energy levels of the electronic ground state of the nitrogen molecule are lumped into a reduced number of bins. Two different grouping strategies are used: the more conventional vibrational-based grouping, widely used in the literature, and energy-based grouping. The analysis of both the internal state populations and concentration profiles show excellent agreement between the energy-based grouping and the DMS solutions. During the energy transfer process, discrepancies arise between the energy-based grouping and DMS solution due to the increased importance of mode separation for low energy states. By contrast, the vibrational grouping, traditionally considered state-of-the-art, captures well the behavior of the energy relaxation but fails to consistently predict the dissociation process. The deficiency of the vibrational grouping model is due to the assumption of strict mode separation and equilibrium of rotational energy states. These assumptions result in errors predicting the energy contribution to dissociation from the rotational and vibrational modes, with rotational energy actually contributing 30%-40% of the energy required to dissociate a molecule. This work confirms the

  2. The GeoFlow experiment-spherical Rayleigh-Benard convection under the influence of an artificial central force field

    International Nuclear Information System (INIS)

    Gellert, M; Beltrame, P; Egbers, C


    Spherical Rayleigh-Benard convection under the influence of an artificial central force field produced by the so-called dielectrophoretic effect is studied as a simplified model of the flow in the outer earth core. The fluid motion there is most probably driving the earth's dynamo and the energy source for the earth's magnetic field. Studying convective flows in earth-like geometry could lead to a deeper understanding of the basics of these processes. This research is a preparatory study for the experiments on the International Space Station (ISS). A bifurcation-theoretical approach shows the existence of heteroclinic cycles between spherical modes (l, l + 1) for the non-rotating system. This behavior depends strong on the radius ratio of the spheres and will be hard to detect in the experiment. For slow rotations interactions of the azimuthal modes (m, m + 1) found in numerical simulations for supercritical states are supposed to be experimentally observable

  3. π -Stacking interactions in YFP, quantum mechanics and force field evaluations in the S0 and S1 states (United States)

    Merabti, Karim Elhadj; Azizi, Sihem; Ridard, Jacqueline; Lévy, Bernard; Demachy, Isabelle


    We study the π -stacking interaction between the chromophore and Tyr203 in the Yellow Fluorescent Protein (YFP) in order to (i) evaluate the contribution of the internal interaction energy of the isolated Chromophore-Tyrosine complex (Eint) to the 26 nm red shift observed from GFP to YFP, (ii) compare the effects of Eint and of the proteic environment. To that end, we perform quantum mechanical and force field (ff) calculations of the isolated complex in S0 and S1 states on a large sample of geometries, together with molecular dynamics simulations and potential of mean force analysis. The calculated absorption wavelengths are found red shifted with respect to the isolated chromophore by 12-19 nm, that represents a large part of the GFP-YFP shift. We find that the effect of the protein is determinant on the dynamics of the complex while the error that results from using a classicalff is of limited effect.

  4. A valence force field-Monte Carlo algorithm for quantum dot growth modeling

    DEFF Research Database (Denmark)

    Barettin, Daniele; Kadkhodazadeh, Shima; Pecchia, Alessandro


    We present a novel kinetic Monte Carlo version for the atomistic valence force fields algorithm in order to model a self-assembled quantum dot growth process. We show our atomistic model is both computationally favorable and capture more details compared to traditional kinetic Monte Carlo models...

  5. Validation of molecular force field parameters for peptides including isomerized amino acids. (United States)

    Oda, Akifumi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Yamaotsu, Noriyuki; Hirono, Shuichi; Takahashi, Ohgi


    Recently, stereoinversions and isomerizations of amino acid residues in the proteins of living beings have been observed. Because isomerized amino acids cause structural changes and denaturation of proteins, isomerizations of amino acid residues are suspected to cause age-related diseases. In this study, AMBER molecular force field parameters were tested by using computationally generated nonapeptides and tripeptides including stereoinverted and/or isomerized amino acid residues. Energy calculations by using density functional theory were also performed for comparison. Although the force field parameters were developed by parameter fitting for l-α-amino acids, the accuracy of the computational results for d-amino acids and β-amino acids was comparable to those for l-α-amino acids. The conformational energies for tripeptides calculated by using density functional theory were reproduced more accurately than those for nonapeptides calculated by using the molecular mechanical force field. The evaluations were performed for the ff99SB, ff03, ff12SB, and the latest ff14SB force field parameters. © 2018 Wiley Periodicals, Inc.

  6. Accurate van der Waals force field for gas adsorption in porous materials. (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao


    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. A molecular mechanics valence force field for sulfonamides derived by ab initio methods

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, J.B.; Burke, B.J.; Hopfinger, A.J. (Univ. of Illinois, Chicago (United States)); Vance, R.; Martin, E. (DowElanco, Walnut Creek, CA (United States))


    Molecular mechanics valence force field parameters for the sulfonamide group, SO[sub 2]NH, have been derived from ab initio calculations at the RHF/6-31G* level of theory. The force field parameters were designed to be used in conjunction with existing parameters from the MM2/MMP2 force field. The new parameters are demonstrated to accurately reproduce the ab initio optimized geometries of four molecules that contain the sulfonamide group. The strategy used in force field parametrization is discussed. The conformational flexibility of the sulfonamide group has been investigated. Calculations at the RHF/6-31G* level reveal the existence of two stable conformers and that interconversion is achieved by nitrogen inversion rather than rotation about the S-N bond. The energetic effects of expanding the basis set to 6-31G** and of including MP2 and MP3 corrections for electron correlation are discussed. The geometries and Mulliken charges for the ab initio optimized structures are also reported.

  8. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  9. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    NARCIS (Netherlands)

    Fan, Zhaochuan; Koster, Rik S.; Wang, Shuaiwei; Fang, Changming; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; van Huis, Marijn A.; Vlugt, Thijs J. H.


    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe

  10. A force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution. (United States)

    Mishra, Ratan K; Fernández-Carrasco, Lucia; Flatt, Robert J; Heinz, Hendrik


    Tricalcium aluminate (C3A) is a major phase of Portland cement clinker and some dental root filling cements. An accurate all-atom force field is introduced to examine structural, surface, and hydration properties as well as organic interfaces to overcome challenges using current laboratory instrumentation. Molecular dynamics simulation demonstrates excellent agreement of computed structural, thermal, mechanical, and surface properties with available experimental data. The parameters are integrated into multiple potential energy expressions, including the PCFF, CVFF, CHARMM, AMBER, OPLS, and INTERFACE force fields. This choice enables the simulation of a wide range of inorganic-organic interfaces at the 1 to 100 nm scale at a million times lower computational cost than DFT methods. Molecular models of dry and partially hydrated surfaces are introduced to examine cleavage, agglomeration, and the role of adsorbed organic molecules. Cleavage of crystalline tricalcium aluminate requires approximately 1300 mJ m(-2) and superficial hydration introduces an amorphous calcium hydroxide surface layer that reduces the agglomeration energy from approximately 850 mJ m(-2) to 500 mJ m(-2), as well as to lower values upon surface displacement. The adsorption of several alcohols and amines was examined to understand their role as grinding aids and as hydration modifiers in cement. The molecules mitigate local electric fields through complexation of calcium ions, hydrogen bonds, and introduction of hydrophobicity upon binding. Molecularly thin layers of about 0.5 nm thickness reduce agglomeration energies to between 100 and 30 mJ m(-2). Molecule-specific trends were found to be similar for tricalcium aluminate and tricalcium silicate. The models allow quantitative predictions and are a starting point to provide fundamental understanding of the role of C3A and organic additives in cement. Extensions to impure phases and advanced hydration stages are feasible.

  11. Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility. (United States)

    Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José


    The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.

  12. SpaGrOW—A Derivative-Free Optimization Scheme for Intermolecular Force Field Parameters Based on Sparse Grid Methods

    Directory of Open Access Journals (Sweden)

    Dirk Reith


    Full Text Available Molecular modeling is an important subdomain in the field of computational modeling, regarding both scientific and industrial applications. This is because computer simulations on a molecular level are a virtuous instrument to study the impact of microscopic on macroscopic phenomena. Accurate molecular models are indispensable for such simulations in order to predict physical target observables, like density, pressure, diffusion coefficients or energetic properties, quantitatively over a wide range of temperatures. Thereby, molecular interactions are described mathematically by force fields. The mathematical description includes parameters for both intramolecular and intermolecular interactions. While intramolecular force field parameters can be determined by quantum mechanics, the parameterization of the intermolecular part is often tedious. Recently, an empirical procedure, based on the minimization of a loss function between simulated and experimental physical properties, was published by the authors. Thereby, efficient gradient-based numerical optimization algorithms were used. However, empirical force field optimization is inhibited by the two following central issues appearing in molecular simulations: firstly, they are extremely time-consuming, even on modern and high-performance computer clusters, and secondly, simulation data is affected by statistical noise. The latter provokes the fact that an accurate computation of gradients or Hessians is nearly impossible close to a local or global minimum, mainly because the loss function is flat. Therefore, the question arises of whether to apply a derivative-free method approximating the loss function by an appropriate model function. In this paper, a new Sparse Grid-based Optimization Workflow (SpaGrOW is presented, which accomplishes this task robustly and, at the same time, keeps the number of time-consuming simulations relatively small. This is achieved by an efficient sampling procedure

  13. Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function (United States)

    Reddy, Sandeep K.; Moberg, Daniel R.; Straight, Shelby C.; Paesani, Francesco


    The structure of liquid water as a function of temperature is investigated through the modeling of infrared and Raman spectra along with structural order parameters calculated from classical and quantum molecular dynamics simulations with the MB-pol many-body potential energy function. The magnitude of nuclear quantum effects is also monitored by comparing the vibrational spectra obtained from classical and centroid molecular dynamics, both in intensities and peak positions. The observed changes in spectral activities are shown to reflect changes in the underlying structure of the hydrogen-bond network and are found to be particularly sensitive to many-body effects in the representation of the electrostatic interactions. Overall, good agreement is found with the experimental spectra, which provides further evidence for the accuracy of MB-pol in predicting the properties of water.

  14. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case

    DEFF Research Database (Denmark)

    Rossi, G.; Monticelli, L.; Puisto, S. R.


    in the parameterization. We refine the MARTINI procedure by including one additional target property related to the structure of the polymer, namely the radius of gyration. The force-field optimization is mainly based on experimental data. We test our procedure on polystyrene, a standard benchmark for coarse-grained (CG...... of microseconds. Finally, we tested our model in dilute conditions. The collapse of the polymer chains in a bad solvent and the swelling in a good solvent could be reproduced.......We hereby introduce a new hybrid thermodynamic-structural approach to the coarse-graining of polymers. The new model is developed within the framework of the MARTINI force-field (Marrink et al., J. Phys. Chem. B, 2007, 111, 7812), which uses mainly thermodynamic properties as targets...

  15. The force-field derivation and application of explosive/additive interfaces (United States)

    Long, Yao; Chen, Jun


    The inter-molecular force-field across RDX/(paraffin, fluoropolymer) interfaces are derived from first-principles calculated energies under the GGA+vdW functional. Based on the force-field, the polycrystal structures of mixture explosives are obtained, and a set of thermodynamic properties are calculated, including the elastic constants, thermal expansion coefficient, heat capacity, isothermal curve and the Hugoniot curve. The results are in good agreement with the available experiments, and provide a reasonable prediction about the properties of plastic bonded explosives. We find that the thermal expansion coefficient of a multi-component explosive is not only determined by the properties of the components, but is also affected by the thermal stress at the explosive/additive interfaces.

  16. An All-Atom Force Field for Tertiary Structure Prediction of Helical Proteins (United States)

    Herges, T.; Wenzel, W.


    We have developed an all-atom free-energy force field (PFF01) for protein tertiary structure prediction. PFF01 is based on physical interactions and was parameterized using experimental structures of a family of proteins believed to span a wide variety of possible folds. It contains empirical, although sequence-independent terms for hydrogen bonding. Its solvent-accessible surface area solvent model was first fit to transfer energies of small peptides. The parameters of the solvent model were then further optimized to stabilize the native structure of a single protein, the autonomously folding villin headpiece, against competing low-energy decoys. Here we validate the force field for five nonhomologous helical proteins with 20–60 amino acids. For each protein, decoys with 2–3 Å backbone root mean-square deviation and correct experimental Cβ–Cβ distance constraints emerge as those with the lowest energy. PMID:15507688

  17. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field. (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C


    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  18. Protein-DNA docking with a coarse-grained force field

    Directory of Open Access Journals (Sweden)

    Setny Piotr


    Full Text Available Abstract Background Protein-DNA interactions are important for many cellular processes, however structural knowledge for a large fraction of known and putative complexes is still lacking. Computational docking methods aim at the prediction of complex architecture given detailed structures of its constituents. They are becoming an increasingly important tool in the field of macromolecular assemblies, complementing particularly demanding protein-nucleic acids X ray crystallography and providing means for the refinement and integration of low resolution data coming from rapidly advancing methods such as cryoelectron microscopy. Results We present a new coarse-grained force field suitable for protein-DNA docking. The force field is an extension of previously developed parameter sets for protein-RNA and protein-protein interactions. The docking is based on potential energy minimization in translational and orientational degrees of freedom of the binding partners. It allows for fast and efficient systematic search for native-like complex geometry without any prior knowledge regarding binding site location. Conclusions We find that the force field gives very good results for bound docking. The quality of predictions in the case of unbound docking varies, depending on the level of structural deviation from bound geometries. We analyze the role of specific protein-DNA interactions on force field performance, both with respect to complex structure prediction, and the reproduction of experimental binding affinities. We find that such direct, specific interactions only partially contribute to protein-DNA recognition, indicating an important role of shape complementarity and sequence-dependent DNA internal energy, in line with the concept of indirect protein-DNA readout mechanism.

  19. A Monte Carlo model for simulating the behaviour of a quantum harmonic oscillator embedded in a classical cluster, liquid or solid (United States)

    Stace, A. J.


    A simple Monte Carlo model is presented for simulating the motion of a quantum harmonic oscillator trapped in a rare gas cluster or matrix which is treated as a classical heat bath. Preliminary results are present for the system I 2·Ar 11 where it would appear that the bond length of the molecule is sensitive to the temperature of the cluster. It is anticipated that the model may be used to study how vibrating molecules are accommodated by rare gas clusters and solids.

  20. Classical mechanics

    CERN Document Server

    Benacquista, Matthew J


    This textbook provides an introduction to classical mechanics at a level intermediate between the typical undergraduate and advanced graduate level. This text describes the background and tools for use in the fields of modern physics, such as quantum mechanics, astrophysics, particle physics, and relativity. Students who have had basic undergraduate classical mechanics or who have a good understanding of the mathematical methods of physics will benefit from this book.

  1. An object oriented Python interface for atomistic simulations (United States)

    Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.


    Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.

  2. Conditions Affecting the Accuracy of Classical Equating Methods for Small Samples under the NEAT Design: A Simulation Study (United States)

    Sunnassee, Devdass


    Small sample equating remains a largely unexplored area of research. This study attempts to fill in some of the research gaps via a large-scale, IRT-based simulation study that evaluates the performance of seven small-sample equating methods under various test characteristic and sampling conditions. The equating methods considered are typically…

  3. A force field and phonon dispersion curves. I: Application to Cs2 MX6 type systems

    International Nuclear Information System (INIS)

    Cortes, E.; Acevedo, R.


    A physical symmetry adapted formalism of general applicability is put forward to gain understanding of both the short and the long range interactions included in the dynamic matrix in solid state Physics. This formalism is carried out with reference to the Cs 2 U Br 6 which belongs to the Fm 3m(O 5 h ) space group. This system has been chosen since many theoretical and experimental studies have been already reported. This research article represents a new effort to gain understanding with reference to the N- body problem in lattice dynamics. based upon new and non published experimental data we have developed an strategy to work out convergence tests so that to carry out through studies of the lattice sums on both, the direct and the reciprocal spaces. This article reports updated information of the phonon dispersion curves along different polarizations directions, with explicit applications to the Cs 2 U Br 6 crystal. The lattice dynamic of this crystal has been worked out, utilising a model which includes a total of 13 force constants, which are derived when a mixed force field: general valence force field (GVFF)-Urey-Bradley force field (UBFF) is employed and a total of three effective charges on the Cesium, Uranium and Bromide ions. It is shown that our model is suitable to describe both the short and the long range interactions. Furthermore and for reasons of completeness, we have included interactions among atoms belonging to different unit cells. This is indeed a rather important breakthrough of the model reported in the literature previously. The advantages and disadvantages of the current formalism are discussed in the text, though we many anticipate a fair degree of success in the description in the description of several important physical observable and in particular in the description of the LO-TO energy gap. (author)

  4. The scaled-charge additive force field for amino acid based ionic liquids

    DEFF Research Database (Denmark)

    Fileti, E. E.; Chaban, V. V.


    Ionic liquids (ILs) constitute an emerging research field. New ILs involve more and more organic and inorganic ions. Amino acid based ILs (AAILs) represent a specific interest due to their evolutional connection to proteins. We report a new non-polarizable force field (FF) for the eight AAILs...... comprising 1-ethyl-3-methylimidazolium cation and amino acid anions. The anions were obtained via deprotonation of carboxyl group. Specific cation-anion non-covalent interactions were taken into account by computing electrostatic potential for ion pairs. The van der Waals interactions were adopted from...

  5. CLASSICAL AREAS OF PHENOMENOLOGY: Lattice Boltzmann simulation of behaviour of particles moving in blood vessels under the rolling massage (United States)

    Yi, Hou-Hui; Yang, Xiao-Feng; Wang, Cai-Feng; Li, Hua-Bing


    The rolling massage is one of the most important manipulations in Chinese massage, which is expected to eliminate many diseases. Here, the effect of the rolling massage on a pair of particles moving in blood vessels under rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulated results show that the motion of each particle is considerably modified by the rolling massage, and it depends on the relative rolling velocity, the rolling depth, and the distance between particle position and rolling position. Both particles' translational average velocities increase almost linearly as the rolling velocity increases, and obey the same law. The increment of the average relative angular velocity for the leading particle is smaller than that of the trailing one. The result is helpful for understanding the mechanism of the massage and to further develop the rolling techniques.

  6. [Analysis on instantaneous spatial pattern of thermal force field in Harbin]. (United States)

    Zhu, Ning; Wang, Cheng; Zhou, Hongze; Li, Min


    The spatial pattern of urban thermal force field is not only the dominant content in assessing city ecological environment, but also an important base for city green system planning. The status of spatial pattern of thermal force field in Harbin was analyzed with RS and GIS techniques. Based on the instantaneous radiation temperature of the land surfaces in the city when the TM image was sensed remotely, all the patches were divided into 3 levels, i.e., low radiation temperature ( 28 degrees C) were uneven in their areas. The biggest area in these patches was 1489 hm2, and the smallest one was 0.72 hm2. The proportion of the patches with an area less than 1 hm2, between 1-5 hm2, and more than 5 hm2 was 95.02%, 3.46%, and 1.58%, respectively. There were 3 types of spatial patterns of the super-thermal radiation patches, i.e., round form (the average radiation temperature was 30.8 degrees C), ring form (the average radiation temperature was 27 degrees C), and pieces form (the average radiation temperature was 24.7 degrees C). Daowai District and Daoli District were round form, districts along the ring routes of railway in the city were ring form, and Nangang District and Dongli District were pieces form. Some advices to resolve the problem of 'heat island effect' influenced by the factors including greenland covering rate, greenland area and building dimension were discussed.

  7. A method to study precision grip control in viscoelastic force fields using a robotic gripper. (United States)

    Lambercy, Olivier; Metzger, Jean-Claude; Santello, Marco; Gassert, Roger


    Instrumented objects and multipurpose haptic displays have commonly been used to investigate sensorimotor control of grasping and manipulation. A major limitation of these devices, however, is the extent to which the experimenter can vary the interaction dynamics to fully probe sensorimotor control mechanisms. We propose a novel method to study precision grip control using a grounded robotic gripper with two moving, mechanically coupled finger pads instrumented with force sensors. The device is capable of stably rendering virtual mechanical properties with a wide dynamic range of achievable impedances. Eight viscoelastic force fields with different combinations of stiffness and damping parameters were implemented, and tested on eight healthy subjects performing 30 consecutive repetitions of a grasp, hold, and release task with time and position constraints. Rates of thumb and finger force were found to be highly correlated (r>0.9) during grasping, revealing that, despite the mechanical coupling of the two finger pads, subjects performed grasping movements in a physiological fashion. Subjects quickly adapted to the virtual dynamics (within seven trials), but, depending on the presented force field condition, used different control strategies to correctly perform the task. The proof of principle presented in this paper underscores the potential of such a one-degree-of-freedom robotic gripper to study neural control of grasping, and to provide novel insights on sensorimotor control mechanisms.

  8. Leveraging intellectual capital through Lewin's Force Field Analysis: The case of software development companies

    Directory of Open Access Journals (Sweden)

    Alexandru Capatina


    Full Text Available This article presents an original conceptual framework for the strategic management of intellectual capital assets in software development companies. The framework is based on Lewin's Force Field Analysis. The framework makes it possible to assess software company managers’ opinions regarding the way driving and restraining forces affect the pillars of intellectual capital. The capacity to adapt to change is vital for companies in knowledge-intensive industries. Accordingly, this study examined a sample of 74 Romanian software development companies. The aim was to help companies benefit from managing the driving and restraining forces acting upon the pillars of intellectual capital (human, structural, and relational. The effects of the driving forces, quantified by PathMaker software's Force Field Tool, were observed to be greater than the restraining forces for each pillar of intellectual capital. This paper contributes by showing the explanatory power of this framework. The framework thus offers a tool that helps managers drive change in their organizations through effective intellectual capital management. Furthermore, this article describes how to encourage the implementation of changes that create value for software development companies.

  9. Vibrational Study and Force Field of the Citric Acid Dimer Based on the SQM Methodology

    Directory of Open Access Journals (Sweden)

    Laura Cecilia Bichara


    Full Text Available We have carried out a structural and vibrational theoretical study for the citric acid dimer. The Density Functional Theory (DFT method with the B3LYP/6-31G∗ and B3LYP/6-311++G∗∗ methods have been used to study its structure and vibrational properties. Then, in order to get a good assignment of the IR and Raman spectra in solid phase of dimer, the best fit possible between the calculated and recorded frequencies was carry out and the force fields were scaled using the Scaled Quantum Mechanic Force Field (SQMFF methodology. An assignment of the observed spectral features is proposed. A band of medium intensity at 1242 cm−1 together with a group of weak bands, previously not assigned to the monomer, was in this case assigned to the dimer. Furthermore, the analysis of the Natural Bond Orbitals (NBOs and the topological properties of electronic charge density by employing Bader's Atoms in Molecules theory (AIM for the dimer were carried out to study the charge transference interactions of the compound.

  10. Beyond Born-Mayer: Improved Models for Short-Range Repulsion in ab Initio Force Fields. (United States)

    Van Vleet, Mary J; Misquitta, Alston J; Stone, Anthony J; Schmidt, J R


    Short-range repulsion within intermolecular force fields is conventionally described by either Lennard-Jones (A/r(12)) or Born-Mayer (A exp(-Br)) forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of intermolecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, and robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Finally, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.

  11. Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Development. (United States)

    Verstraelen, Toon; Vandenbrande, Steven; Heidar-Zadeh, Farnaz; Vanduyfhuys, Louis; Van Speybroeck, Veronique; Waroquier, Michel; Ayers, Paul W


    Atomic partial charges appear in the Coulomb term of many force-field models and can be derived from electronic structure calculations with a myriad of atoms-in-molecules (AIM) methods. More advanced models have also been proposed, using the distributed nature of the electron cloud and atomic multipoles. In this work, an electrostatic force field is defined through a concise approximation of the electron density, for which the Coulomb interaction is trivially evaluated. This approximate "pro-density" is expanded in a minimal basis of atom-centered s-type Slater density functions, whose parameters are optimized by minimizing the Kullback-Leibler divergence of the pro-density from a reference electron density, e.g., obtained from an electronic structure calculation. The proposed method, Minimal Basis Iterative Stockholder (MBIS), is a variant of the Hirshfeld AIM method, but it can also be used as a density-fitting technique. An iterative algorithm to refine the pro-density is easily implemented with a linear-scaling computational cost, enabling applications to supramolecular systems. The benefits of the MBIS method are demonstrated with systematic applications to molecular databases and extended models of condensed phases. A comparison to 14 other AIM methods shows its effectiveness when modeling electrostatic interactions. MBIS is also suitable for rescaling atomic polarizabilities in the Tkatchenko-Scheffler scheme for dispersion interactions.

  12. The challenge of detecting classical swine fever virus circulation in wild boar (Sus scrofa): Simulation of sampling options

    DEFF Research Database (Denmark)

    Schulz, Jana; Schulz, Katja; Blome, Sandra


    with a justifiable effort. The simulation of increased sample sizes per sampling interval showed only a slightly better performance but would be unrealistic in practice, especially outside the main hunting season. Further studies on other approaches such as targeted or risk-based sampling for virus detection...... investigations play a major role in the early detection of new introductions and in regions immunized with a conventional vaccine. The required financial resources and personnel for reliable testing are often large, and sufficient sample sizes to detect low virus prevalences are difficult to obtain. We conducted...

  13. From lime to silica and alumina: systematic modeling of cement clinkers using a general force-field. (United States)

    Freitas, A A; Santos, R L; Colaço, R; Bayão Horta, R; Canongia Lopes, J N


    Thirteen different cement-clinker crystalline phases present in the lime-silica-alumina system have been systematically modeled using a simple and general force field. This constitutes a new type of approach towards the study of lime-silica-alumina systems, where the simpler and more transferable Lennard-Jones potential was used instead of the more traditional Buckingham potential. The results were validated using experimental density and structural data. The elastic properties were also considered. Six amorphous phases (corresponding to calcium/silicon ratios corresponding to belite, rankinite, wollastonite and alumina-doped amorphous wollastonite with 5%, 10% and 15% alumina content) were also studied using molecular dynamics simulations. The obtained MD trajectories were used to characterize the different crystalline and amorphous phases in terms of the corresponding radial distribution functions, aggregate analyses and connectivity among silica groups. These studies allowed a direct comparison between the crystalline and amorphous phases and revealed how the structure of the silica network was modified in the amorphous materials or by the inclusion of other structural units such as alumina. The knowledge at an atomistic level of such modifications is paramount for the formulation of new cement-clinker phases.

  14. Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training. (United States)

    Pizzamiglio, Sara; Desowska, Adela; Shojaii, Pegah; Taga, Myriam; Turner, Duncan L


    Muscle co-contraction is a strategy of increasing movement accuracy and stability employed in dealing with force perturbation of movement. It is often seen in neuropathological populations. The direction of movement influences the pattern of co-contraction, but not all movements are easily achievable for populations with motor deficits. Manipulating the direction of the force instead, may be a promising rehabilitation protocol to train movement with use of a co-contraction reduction strategy. Force field learning paradigms provide a well described procedure to evoke and test muscle co-contraction. The aim of this study was to test the muscle co-contraction pattern in a wide range of arm muscles in different force-field directions utilising a robot-mediated force field learning paradigm of motor adaptation. Forty-two participants volunteered to participate in a study utilising robot-mediated force field motor adaptation paradigm with a clockwise or counter-clockwise force field. Kinematics and surface electromyography (EMG) of eight arm muscles were measured. Both muscle activation and co-contraction was earlier and stronger in flexors in the clockwise condition and in extensors in the counter-clockwise condition. Manipulating the force field direction leads to changes in the pattern of muscle co-contraction.

  15. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations (United States)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash


    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  16. Capturing the H 2 –Metal Interaction in Mg-MOF-74 Using Classical Polarization

    KAUST Repository

    Pham, Tony


    © 2014 American Chemical Society. Grand canonical Monte Carlo (GCMC) simulations of H2 sorption were performed in Mg-MOF-74, a metal-organic framework (MOF) that displays very high H2 sorption affinity. Experimental H2 sorption isotherms and isosteric heats of adsorption (Qst) values were reproduced using a general purpose materials sorption potential that includes many-body polarization interactions. In contrast, using two models that include only charge-quadrupole interactions failed to reproduce such experimental measurements even though they are the type normally employed in such classical force field calculations. Utilizing the present explicit polarizable model in GCMC simulation resulted in a Mg2+-H2 distance of 2.60 Å, which is close to a previously reported value that was obtained using electronic structure methods and comparable to similar experimental measurements. The induced dipole distribution obtained from simulation assisted in the characterization of two previously identified sorption sites in the MOF: the Mg2+ ions and the oxido group of the linkers. The calculated two-dimensional quantum rotational levels for a H2 molecule sorbed onto the Mg2+ ion were in good agreement with experimental inelastic neutron scattering (INS) data. Although the H2-metal interaction in MOFs may be thought of as a quantum mechanical effect, this study demonstrates how the interaction between the sorbate molecules and the open-metal sites in a particular highly sorbing MOF can be captured using classical simulation techniques that involve a polarizable potential.

  17. Formation, characterization and dynamics of onion like carbon structures from nanodiamonds using reactive force-fields for electrical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Panchapakesan [ORNL; Kent, Paul R [ORNL; Mochalin, Vadym N [ORNL


    We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbon nanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core of the nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbon nanostructure appears, with a shell-shell spacing of about {approx}3.4 {angstrom} for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large ({approx}29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications.

  18. Formation, characterization, and dynamics of onion-like carbon structures for electrical energy storage from nanodiamonds using reactive force fields

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science; Kent, P. R. C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science; Mochalin, V. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering


    We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbonnanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core of the nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbonnanostructure appears, with a shell-shell spacing of about ~3.4 Å for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large (~29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications.

  19. Formulation of a reduced order model of the climatic system by combining classical simulation methods with artificial intelligence techniques (United States)

    Bounceur, Nabila; Crucifix, Michel


    analysis (NLPCA) taking on account the non linear dependences between data. The choice on the one hand of the values of the orbital parameters and on the other hand the number of simulations has been chosen using an optimal experimental plan. This method allow us to maximise the information about the model considering the variation of its parameters in a minimum experiences. A great number of these simulations have been done already and the next step will be to apply all the reduction methods. These methodologies have been applied on two simple models. First, the Lorenz attractor, a simple model which takes into account the main characteristics of the complex dynamics of the climate system. Second, a model of the terrestrial insolation determined by the three orbital parameters varying in time, has been analysed using PCA and EOF reduction methods. In this case, five dominant modes have been found to be sufficient. These first results justify the use of the several methods and prove their efficiency in the case of these simple models and encourage us to apply them to the outputs already computed with LoveClim.

  20. A robust force field based method for calculating conformational energies of charged drug-like molecules

    DEFF Research Database (Denmark)

    Pøhlsgaard, Jacob; Harpsøe, Kasper; Jørgensen, Flemming Steen


    The binding affinity of a drug like molecule depends among other things on the availability of the bioactive conformation. If the bioactive conformation has a significantly higher energy than the global minimum energy conformation, the molecule is unlikely to bind to its target. Determination...... of the global minimum energy conformation and calculation of conformational penalties of binding are prerequisites for prediction of reliable binding affinities. Here, we present a simple and computationally efficient procedure to estimate the global energy minimum for a wide variety of structurally diverse...... molecules, including polar and charged compounds. Identifying global energy minimum conformations of such compounds with force-field methods is problematic due to the exaggeration of intramolecular electrostatic interactions. We demonstrate that the global energy minimum conformations of zwitterionic...

  1. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol. (United States)

    Sun, Delin; Forsman, Jan; Woodward, Clifford E


    Abundant peptides and proteins containing arginine (Arg) and lysine (Lys) amino acids can apparently permeate cell membranes with ease. However, the mechanisms by which these peptides and proteins succeed in traversing the free energy barrier imposed by cell membranes remain largely unestablished. Precise thermodynamic studies (both theoretical and experimental) on the interactions of Arg and Lys residues with model lipid bilayers can provide valuable clues to the efficacy of these cationic peptides and proteins. We have carried out molecular dynamics simulations to calculate the interactions of ionized Arg and Lys side-chains with the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer for 10 widely used lipid/protein force fields: CHARMM36/CHARMM36, SLIPID/AMBER99SB-ILDN, OPLS-AA/OPLS-AA, Berger/OPLS-AA, Berger/GROMOS87, Berger/GROMOS53A6, GROMOS53A6/GROMOS53A6, nonpolarizable MARTINI, polarizable MARTINI, and BMW MARTINI. We performed umbrella sampling simulations to obtain the potential of mean force for Arg and Lys side-chains partitioning from water to the bilayer interior. We found significant differences between the force fields, both for the interactions between side-chains and bilayer surface, as well as the free energy cost for placing the side-chain at the center of the bilayer. These simulation results were compared with the Wimley-White interfacial scale. We also calculated the free energy cost for transferring ionized Arg and Lys side-chains from water to both dry and wet octanol. Our simulations reveal rapid diffusion of water molecules into octanol whereby the equilibrium mole fraction of water in the wet octanol phase was ∼25%. Surprisingly, our free energy calculations found that the high water content in wet octanol lowered the water-to-octanol partitioning free energies for cationic residues by only 0.6 to 0.7 kcal/mol.

  2. Classical tachyons

    International Nuclear Information System (INIS)

    Recami, E.


    A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author) [pt

  3. Molecular models and simulations of layered materials

    International Nuclear Information System (INIS)

    Kalinichev, Andrey G.; Cygan, Randall Timothy; Heinz, Hendrik; Greathouse, Jeffery A.


    The micro- to nano-sized nature of layered materials, particularly characteristic of naturally occurring clay minerals, limits our ability to fully interrogate their atomic dispositions and crystal structures. The low symmetry, multicomponent compositions, defects, and disorder phenomena of clays and related phases necessitate the use of molecular models and modern simulation methods. Computational chemistry tools based on classical force fields and quantum-chemical methods of electronic structure calculations provide a practical approach to evaluate structure and dynamics of the materials on an atomic scale. Combined with classical energy minimization, molecular dynamics, and Monte Carlo techniques, quantum methods provide accurate models of layered materials such as clay minerals, layered double hydroxides, and clay-polymer nanocomposites

  4. Revised Backbone-Virtual-Bond-Angle Potentials to Treat the l- and d-Amino Acid Residues in the Coarse-Grained United Residue (UNRES) Force Field. (United States)

    Sieradzan, Adam K; Niadzvedtski, Andrei; Scheraga, Harold A; Liwo, Adam


    Continuing our effort to introduce d-amino-acid residues in the united residue (UNRES) force field developed in our laboratory, in this work the C α ··· C α ··· C α backbone-virtual-bond-valence-angle (θ) potentials for systems containing d-amino-acid residues have been developed. The potentials were determined by integrating the combined energy surfaces of all possible triplets of terminally blocked glycine, alanine, and proline obtained with ab initio molecular quantum mechanics at the MP2/6-31G(d,p) level to calculate the corresponding potentials of mean force (PMFs). Subsequently, analytical expressions were fitted to the PMFs to give the virtual-bond-valence potentials to be used in UNRES. Alanine represented all types of amino-acid residues except glycine and proline. The blocking groups were either the N -acetyl and N ', N '-dimethyl or N -acetyl and pyrrolidyl group, depending on whether the residue next in sequence was an alanine-type or a proline residue. A total of 126 potentials (63 symmetry-unrelated potentials for each set of terminally blocking groups) were determined. Together with the torsional, double-torsional, and side-chain-rotamer potentials for polypeptide chains containing d-amino-acid residues determined in our earlier work (Sieradzan et al. J. Chem. Theory Comput. , 2012 , 8, 4746), the new virtual-bond-angle (θ) potentials now constitute the complete set of physics-based potentials with which to run coarse-grained simulations of systems containing d-amino-acid residues. The ability of the extended UNRES force field to reproduce thermodynamics of polypeptide systems with d-amino-acid residues was tested by comparing the experimentally measured and the calculated free energies of helix formation of model KLALKLALxxLKLALKLA peptides, where x denotes any d- or l- amino-acid residue. The obtained results demonstrate that the UNRES force field with the new potentials reproduce the changes of free energies of helix formation upon d

  5. Diffusion of point defects, nucleation of dislocation loops, and effect of hydrogen in hcp-Zr: Ab initio and classical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, M., E-mail: [Materials Design, Inc., 6 First National Place, Angel Fire, NM 87710 (United States); Wolf, W.; Freeman, C.; Wimmer, E. [Materials Design, Inc., 6 First National Place, Angel Fire, NM 87710 (United States); Adamson, R.B. [Zircology Plus, 36848 Montecito Dr, Fremont, CA 94536 (United States); Hallstadius, L. [Westinghouse Electric Sweden AB, SE-721 63 Västerås (Sweden); Cantonwine, P.E. [Global Nuclear Fuel – Americas, P.O. Box 780, M/C F12, Wilmington, NC 28402 (United States); Mader, E.V. [Electric Power Research Institute (EPRI), 3420 Hillview Ave, Palo Alto, CA 94303 (United States)


    Highlights: • Simulations of point defects in alpha-Zr using ab initio and forcefield methods. • Anisotropic strain dependent diffusion for interstitials and vacancies. • Explanation of pre-breakaway irradiation growth. • Interstitial nanoclusters cause expansion in 〈a〉, vacancy clusters contract 〈c〉. • H atoms diffuse isotropically, attracted to vacancy defects. - Abstract: Diffusion of point defects, nucleation of dislocation loops, and the associated dimensional changes of pure and H-loaded hcp-Zr have been investigated by a combination of ab initio calculations and classical simulations. Vacancy diffusion is computed to be anisotropic with D{sub vac,basal} = 8.6 × 10{sup −6} e{sup −Q/(RT)} (m{sup 2}/s) and D{sub vac,axial} = 9.9 × 10{sup −6} e{sup −Q/(RT)} (m{sup 2}/s), Q = 69 and 72 kJ/mol for basal and axial diffusion, respectively. At 550 K vacancy diffusion is about twice as fast in the basal plane as in a direction parallel to the c-axis. Diffusion of self-interstitials is found to be considerably faster and anisotropic involving collective atomic motions. At 550 K diffusion occurs predominantly in the a-directions, but this anisotropy diminishes with increasing temperature. Furthermore, the diffusion anisotropy is very dependent on the local strain (c/a ratio). Interstitial H atoms are found to diffuse isotropically with D{sub H} = 1.1 × 10{sup −7} e{sup −42/(RT)} (m{sup 2}/s). These results are consistent with experimental data and other theoretical studies. Molecular dynamics simulations at 550 K with periodic injection of vacancies and self-interstitial atoms reveal the formation of small nanoclusters, which are sufficient to cause a net expansion of the lattice in the a-directions driven by clusters of self-interstitials and a smaller contraction in the c-direction involving nanoclusters of vacancies. This is consistent with and can explain experimental data of irradiation growth. Energy minimizations show that vacancy

  6. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations. (United States)

    Bayse, Craig A; Merz, Kenneth M


    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  7. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra. (United States)

    Kutateladze, Andrei G; Mukhina, Olga A


    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  8. Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Rauhut, Guntram, E-mail: [Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)


    Semi-quartic force fields (QFF) rely on a Taylor-expansion of the multi-dimensional Born-Oppenheimer potential energy surface (PES) and are frequently used within the calculation of anharmonic vibrational frequencies based on 2nd order vibrational perturbation theory (VPT2). As such they are usually determined by differentiation of the electronic energy with respect to the nuclear coordinates. Alternatively, potential energy surfaces can be expanded in terms of multi-mode expansions, which typically do not require any derivative techniques. The computational effort to retrieve QFF from size-reduced multi-mode expansions has been studied and has been compared with standard Taylor-expansions. As multi-mode expansions allow for the convenient introduction of subtle approximations, these will be discussed in some detail. In addition, a preliminary study about the applicability of a generalized Duschinsky transformation to QFFs is provided. This transformation allows for the efficient evaluation of VPT2 frequencies of isotopologues from the PES of the parent compound and thus avoids the recalculation of PESs in different axes systems.

  9. Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations

    International Nuclear Information System (INIS)

    Ramakrishnan, Raghunathan; Rauhut, Guntram


    Semi-quartic force fields (QFF) rely on a Taylor-expansion of the multi-dimensional Born-Oppenheimer potential energy surface (PES) and are frequently used within the calculation of anharmonic vibrational frequencies based on 2nd order vibrational perturbation theory (VPT2). As such they are usually determined by differentiation of the electronic energy with respect to the nuclear coordinates. Alternatively, potential energy surfaces can be expanded in terms of multi-mode expansions, which typically do not require any derivative techniques. The computational effort to retrieve QFF from size-reduced multi-mode expansions has been studied and has been compared with standard Taylor-expansions. As multi-mode expansions allow for the convenient introduction of subtle approximations, these will be discussed in some detail. In addition, a preliminary study about the applicability of a generalized Duschinsky transformation to QFFs is provided. This transformation allows for the efficient evaluation of VPT2 frequencies of isotopologues from the PES of the parent compound and thus avoids the recalculation of PESs in different axes systems

  10. Comparison of force fields and calculation methods for vibration intervals of isotopic H+3 molecules

    International Nuclear Information System (INIS)

    Carney, G.D.; Adler-Golden, S.M.; Lesseski, D.C.


    This paper reports (a) improved values for low-lying vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 calculated using the variational method and Simons--Parr--Finlan representations of the Carney--Porter and Dykstra--Swope ab initio H + 3 potential energy surfaces, (b) quartic normal coordinate force fields for isotopic H + 3 molecules, (c) comparisons of variational and second-order perturbation theory, and (d) convergence properties of the Lai--Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 for these potential surfaces are 6.9 (Carney--Porter) and 1.2 cm -1 (Dykstra--Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10 cm -1 for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed ''t'' coordinate Hamiltonian for these molecules, except in the case of H 2 D +

  11. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field (United States)

    Nielsen, Jakob T.; Eghbalnia, Hamid R.; Nielsen, Niels Chr.


    The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field. PMID:22293396

  12. Hydrodynamic Simulations of Classical Nova explosions: predictions of 7Be and 7Li production and the growth to the Chandrasekhar Limit (United States)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; Wagner, R. Mark; Woodward, Charles E.; Jose', Jordi; Hernanz, Margarita


    We have continued our studies of Classical Nova explosions by following the evolution of thermonuclear runaways (TNRs) on Carbon Oxygen white dwarfs (WDs). We have varied both the mass of the WD and the composition of the accreted material. We now rely on the results of multi-D studies of TNRs in WDs that accrete only Solar matter. They find that mixing with the core occurs after the TNR is well underway, reaching enrichment levels in agreement with observations of the ejecta abundances. We, therefore, accrete only Solar matter with NOVA (our 1-D, fully implicit, hydro code) until the TNR is initiated and then switch the accreted composition to a mixed composition: either 25% core and 75% Solar or 50% core and 50% Solar. Because the amount of accreted material is inversely proportional to the initial 12C abundance, by accreting Solar matter the amount of material taking part in the outburst is larger than if we had used mixed material from the beginning. We follow the TNR through the peak and tabulate the amount of ejected gases, their velocities and abundances. We also predict the amount of 7Li and 7Be produced and ejected by the explosion and compare our predictions to the observations in a companion poster describing the LBT measurements of 7Li in V5668 Sgr. We also compare our abundance predictions to those measured in pre-solar grains that may arise from Classical Nova explosions. Our predictions are also compared to results with SHIVA (Josè and Hernanz). Finally, many of these simulations eject significantly less mass than accreted and, therefore, the WD is growing in mass toward the Chandrasekhar Limit. This suggests that the single degenerate scenario is still a viable option for SN Ia progenitors. This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA and HST grants to ASU and WRH is supported by the U.S. Department

  13. Identification of the cognate peptide-MHC target of T cell receptors using molecular modeling and force field scoring

    DEFF Research Database (Denmark)

    Lanzarotti, Esteban; Marcatili, Paolo; Nielsen, Morten


    a key, but currently poorly comprehended, component for our understanding of this variation in the immunogenicity of MHC binding peptides. Here, we demonstrate that identification of the cognate target of a TCR from a set of p:MHC complexes to a high degree is achievable using simple force-field energy...

  14. New Parameterization of the Cornell et al Empirical Force Field Covering Amino Group Nonplanarity in Nucleic Acid Bases

    Czech Academy of Sciences Publication Activity Database

    Ryjáček, Filip; Kubař, Tomáš; Hobza, Pavel


    Roč. 24, - (2003), s. 1891-1901 ISSN 0192-8651 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : Cornell et al. potential * nonplanar amino group * force field parameterization Subject RIV: CF - Physical ; Theoretical Chem istry Impact factor: 3.186, year: 2003

  15. Molecular Modeling of Bifunctional Chelate Peptide Conjugates. 1. Copper and Indium Parameters for the AMBER Force Field

    DEFF Research Database (Denmark)

    Reichert, David E.; Norrby, Per-Ola; Welch, Michael J.


    In this work we describe the development of parameters for In(III) and Cu(II) for the AMBER* force field as found in the modeling package MacroModel. These parameters were developed using automated procedures from a combination of crystallographic structures and ab initio calculations. The new pa...

  16. Molecular dynamic study of Shock wave response of bulk amorphous polyvinyl chloride: effect of chain length and force field (United States)

    Neogi, Anupam; Mitra, Nilanjan


    Atomistic molecular dynamics in conjunction with multi-scale shock technique is utilized to investigate shock wave response of bulk amorphous polyvinyl chloride. Dependence of chain length on physical and mechanical behaviour of polymeric material at ambient condition of temperature and pressure are well known but unknown for extreme conditions. Non-reactive force fields PCFF, COMPASS and PCFF+ were used to determine applicability of the force field for the study of the material subjected to shock loads. Several samples of PVC with various chain lengths were subjected to a range of shock compression from 1.5-10.0 km/s. Even though dependence of chain length was observed for lower shock strengths but was not for intense shock loads. The principle Hugoniot points, calculated by applying hydrostatic Rankine-Hugoniot equations and as well as multi-scale shock technique, were compared against LASL experimental shock data, demonstrating superior performance of PCFF+ force-field over PCFF and COMPASS. Shock induced melting characteristic and vibrational spectroscopic study were conducted and compared with experimental data to observe differences in response with relation to different force fields, chain length of the material for different shock intensities.

  17. Ultrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches

    Directory of Open Access Journals (Sweden)

    Sergey V. Antipov


    Full Text Available Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research “Molecular Ultrafast Science and Technology,” are presented: These include Bohmian dynamics description of the collision of H with H2, local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase.

  18. Ultrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches. (United States)

    Antipov, Sergey V; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří


    Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research "Molecular Ultrafast Science and Technology," are presented: These include Bohmian dynamics description of the collision of H with H 2 , local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase.

  19. SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics. (United States)

    Darré, Leonardo; Machado, Matías Rodrigo; Brandner, Astrid Febe; González, Humberto Carlos; Ferreira, Sebastián; Pantano, Sergio


    Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein-protein complexes.

  20. Binding Analysis of Some Classical Acetylcholinesterase Inhibitors: Insights for a Rational Design Using Free Energy Perturbation Method Calculations with QM/MM MD Simulations. (United States)

    Nascimento, Érica C M; Oliva, Mónica; Świderek, Katarzyna; Martins, João B L; Andrés, Juan


    In the present study, the binding free energy of some classical inhibitors (DMT, DNP, GNT, HUP, THA) with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation (FEP) method based on hybrid quantum mechanics and molecular mechanics (QM/MM) potentials. The results highlight the key role of the van der Waals interaction for the inhibition process, since the contribution of this term to the binding free energy is almost as decisive as the electrostatic one. The analysis of the geometrical parameters and the interaction energy per residue along the QM/MM molecular dynamics (MD) simulations highlights the most relevant interactions in the different AChE-ligand systems, showing that the charged residues with a more prominent contribution to the interaction energy are Asp72 and Glu199, although the relative importance depends on the molecular size of the ligand. A correlation between the binding free energy and the number of cation-π interactions present in the systems has been established, DMT being the most potent inhibitor, capable of forming four cation-π interactions. A layer of water molecules surrounding the inhibitors has been observed, which act as bridges along a network formed by the ligands and the residues of the gorge and also between different residues. Although several hydrogen bonds between ligands and AChE do appear, no significant values of BIEs have been recorded. This behavior can be accounted for by the special features of AChE, such as the presence of several subsites of different natures in the gorge or the existence of several water molecules that act as bridges in the electrostatic interactions.

  1. Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: a systematic study of several common force fields. (United States)

    Trinh, Thuat T; Vlugt, Thijs J H; Kjelstrup, Signe


    We report a systematic investigation of the thermal conductivity of various three-site models of carbon dioxide (CO2) using nonequilibrium molecular dynamics in the temperature range 300-1000 K and for pressures up to 200 MPa. A direct comparison with experimental data is made. Three popular CO2 force fields (MSM, EPM2, and TraPPE) and two flexible models (based on EPM2) were investigated. All rigid force fields accurately predict the equation of state for carbon dioxide for the given range of variables. They can also reproduce the thermal conductivity of CO2 at room temperature and predict a decrease of the thermal conductivity with increasing temperature. At high temperatures, the rigid models underestimate the thermal conductivity.

  2. Identification of the cognate peptide-MHC target of T cell receptors using molecular modeling and force field scoring. (United States)

    Lanzarotti, Esteban; Marcatili, Paolo; Nielsen, Morten


    Interactions of T cell receptors (TCR) to peptides in complex with MHC (p:MHC) are key features that mediate cellular immune responses. While MHC binding is required for a peptide to be presented to T cells, not all MHC binders are immunogenic. The interaction of a TCR to the p:MHC complex holds a key, but currently poorly comprehended, component for our understanding of this variation in the immunogenicity of MHC binding peptides. Here, we demonstrate that identification of the cognate target of a TCR from a set of p:MHC complexes to a high degree is achievable using simple force-field energy terms. Building a benchmark of TCR:p:MHC complexes where epitopes and non-epitopes are modelled using state-of-the-art molecular modelling tools, scoring p:MHC to a given TCR using force-fields, optimized in a cross-validation setup to evaluate TCR inter atomic interactions involved with each p:MHC, we demonstrate that this approach can successfully be used to distinguish between epitopes and non-epitopes. A detailed analysis of the performance of this force-field-based approach demonstrate that its predictive performance depend on the ability to both accurately predict the binding of the peptide to the MHC and model the TCR:p:MHC complex structure. In summary, we conclude that it is possible to identify the TCR cognate target among different candidate peptides by using a force-field based model, and believe this works could lay the foundation for future work within prediction of TCR:p:MHC interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. DFT calculations for anharmonic force field and spectroscopic constants of YC2 and its 13C isotopologues (United States)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing


    The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜2A1) for yttrium dicarbide (YC2) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n = D, T, Q) and cc-pVnZ-PP (n = D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of Ysbnd C2 or Csbnd C are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC2 are calculated. Comparing with the spectroscopic constants of YC2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC2. The Coriolis coupling constants, cubic and quartic force constants of YC2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y13C2 (X˜2A1) and Y13CC (X˜2A‧) are calculated for the first time, which are expected to guide the high resolution experimental work for YC2 and its 13C isotopologues.

  4. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye [Sanford-Burnham-Prebys Medical Discovery Institute (United States); Schwieters, Charles D. [National Institutes of Health, Center for Information Technology (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: [Sanford-Burnham-Prebys Medical Discovery Institute (United States)


    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision

  5. DFT calculations for anharmonic force field and spectroscopic constants of YC2and its13C isotopologues. (United States)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing


    The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜ 2 A 1 ) for yttrium dicarbide (YC 2 ) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC 2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n=D, T, Q) and cc-pVnZ-PP (n=D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC 2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of YC 2 or CC are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC 2 are calculated. Comparing with the spectroscopic constants of YC 2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC 2 . The Coriolis coupling constants, cubic and quartic force constants of YC 2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y 13 C 2 (X˜ 2 A 1 ) and Y 13 CC (X˜ 2 A ' ) are calculated for the first time, which are expected to guide the high resolution experimental work for YC 2 and its 13 C isotopologues. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Prediction of protein structure with the coarse-grained UNRES force field assisted by small X-ray scattering data and knowledge-based information. (United States)

    Karczyńska, Agnieszka S; Mozolewska, Magdalena A; Krupa, Paweł; Giełdoń, Artur; Liwo, Adam; Czaplewski, Cezary


    A new approach to assisted protein-structure prediction has been proposed, which is based on running multiplexed replica exchange molecular dynamics simulations with the coarse-grained UNRES force field with restraints derived from knowledge-based models and distance distribution from small angle X-ray scattering (SAXS) measurements. The latter restraints are incorporated into the target function as a maximum-likelihood term that guides the shape of the simulated structures towards that defined by SAXS. The approach was first verified with the 1KOY protein, for which the distance distribution was calculated from the experimental structure, and subsequently used to predict the structures of 11 data-assisted targets in the CASP12 experiment. Major improvement of the GDT_TS was obtained for 2 targets, minor improvement for other 2 while, for 6 target GDT_TS deteriorated compared with that calculated for predictions without the SAXS data, partly because of assuming a wrong multimeric state (for Ts866) or because the crystal conformation was more compact than the solution conformation (for Ts942). Particularly good results were obtained for Ts909, in which use of SAXS data resulted in the selection of a correctly packed trimer and, subsequently, increased the GDT_TS of monomer prediction. It was found that running simulations with correct oligomeric state is essential for the success in SAXS-data-assisted prediction. © 2017 Wiley Periodicals, Inc.

  7. Non-empirical calculations of force field and vibrational spectrum of LiBH3+ complex ion using the MO lcao sct method

    International Nuclear Information System (INIS)

    Ozerova, V.M.; Solomonik, V.G.


    Non-empiric calculations of the force field, frequencies of normal oscillations and intensities of oscillations in JR spectrum of LiBH 3 + complex ions are performed using the MO lcao SCF method. The alteration of the force field and vibrational spectrum of BH 3 molecule is analyzed in the case of its coordination with Li + cation

  8. Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite (United States)

    Pascal, Tod A.; Karasawa, Naoki; Goddard, William A.


    As assemblies of graphene sheets, carbon nanotubes, and fullerenes become components of new nanotechnologies, it is important to be able to predict the structures and properties of these systems. A problem has been that the level of quantum mechanics practical for such systems (density functional theory at the PBE level) cannot describe the London dispersion forces responsible for interaction of the graphene planes (thus graphite falls apart into graphene sheets). To provide a basis for describing these London interactions, we derive the quantum mechanics based force field for carbon (QMFF-Cx) by fitting to results from density functional theory calculations at the M06-2X level, which demonstrates accuracies for a broad class of molecules at short and medium range intermolecular distances. We carried out calculations on the dehydrogenated coronene (C24) dimer, emphasizing two geometries: parallel-displaced X (close to the observed structure in graphite crystal) and PD-Y (the lowest energy transition state for sliding graphene sheets with respect to each other). A third, eclipsed geometry is calculated to be much higher in energy. The QMFF-Cx force field leads to accurate predictions of available experimental mechanical and thermodynamics data of graphite (lattice vibrations, elastic constants, Poisson ratios, lattice modes, phonon dispersion curves, specific heat, and thermal expansion). This validates the use of M06-2X as a practical method for development of new first principles based generations of QMFF force fields.

  9. Comparative Assessment of Different RNA Tetranucleotides from the DFT-D3 and Force Field Perspective

    Czech Academy of Sciences Publication Activity Database

    Szabla, Rafal; Havrila, Marek; Kruse, Holger; Sponer, Jiri


    Roč. 120, č. 41 (2016), s. 10635-10648 ISSN 1520-6106 Institutional support: RVO:68081707 Keywords : molecular-dynamics simulations * quantum-chemical computations Subject RIV: BO - Biophysics Impact factor: 3.177, year: 2016

  10. Assessing the Current State of Amber Force Field Modifications for DNA

    Czech Academy of Sciences Publication Activity Database

    Galindo-Murillo, R.; Robertson, J.; Zgarbová, M.; Šponer, Jiří; Otyepka, M.; Jurečka, P.; Cheatham III, T. E.


    Roč. 12, č. 8 (2016), s. 4114-4127 ISSN 1549-9618 Institutional support: RVO:68081707 Keywords : molecular- dynamics simulations * particle mesh ewald * pair opening kinetics Subject RIV: BO - Biophysics Impact factor: 5.245, year: 2016

  11. Classical field theory with fermions

    International Nuclear Information System (INIS)

    Borsanyi, Sz.; Hindmarsh, M.


    Classical field theory simulations have been essential for our understanding of non-equilibrium phenomena in particle physics. In this talk we discuss the possible extension of the bosonic classical field theory simulations to include fermions. In principle we use the inhomogeneous mean field approximation as introduced by Aarts and Smit. But in practice we turn from their deterministic technique to a stochastic approach. We represent the fermion field as an ensemble of pairs of spinor fields, dubbed male and female. These c-number fields solve the classical Dirac equation. Our improved algorithm enables the extension of the originally 1+1 dimensional analyses and is suitable for large-scale inhomogeneous settings, like defect networks.

  12. Simulation of a Classically Conditioned Response: Components of the Input Trace and a Cerebellar Neural Network Implementation of the Sutton-Barto-Desmond Model. (United States)


    inputs. Tesauro (1986) has criticized the SB model on the grounds that it is only applicable in situations where inputs are represented locally...Barto, A.G. A temporal-difference model of classical conditioning. , Technical Report TR87-509.2, GTE Labs, Waltham, Mass. (1987). Tesauro , G. Simple

  13. J. Genet. classic 101

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 85, No. 2, August 2006. 101. Page 2. J. Genet. classic. 102. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 3. J. Genet. classic. Journal of Genetics, Vol. 85, No. 2, August 2006. 103. Page 4. J. Genet. classic. 104. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 5. J. Genet. classic.

  14. J. Genet. classic 37

    Indian Academy of Sciences (India)


    Journal of Genetics, Vol. 84, No. 1, April 2005. 37. Page 2. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 38. Page 3. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 39. Page 4. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 40. Page 5. J. Genet. classic. Journal of ...

  15. J. Genet. classic 125

    Indian Academy of Sciences (India)


    Journal of Genetics, Vol. 83, No. 2, August 2004. 125. Page 2. J. Genet. classic. Journal of Genetics, Vol. 83, No. 2, August 2004. 126. Page 3. J. Genet. classic. Journal of Genetics, Vol. 83, No. 2, August 2004. 127. Page 4. J. Genet. classic. Journal of Genetics, Vol. 83, No. 2, August 2004. 128. Page 5. J. Genet. classic.

  16. Validation and Application of the ReaxFF Reactive Force Field to Hydrocarbon Oxidation Kinetics (United States)


    information, including suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188).   Respondents...simulations,  we  have  developed  a  computational  strategy  for  evaluating  flame   speed   in  fuel/oxidant  mixtures... speed .   In  order  to  develop  new  concepts  for  comparing  atomistic-­‐scale  simulations  with   experiment  we

  17. Polarizable Water Model for the Coarse-Grained MARTINI Force Field

    NARCIS (Netherlands)

    Yesylevskyy, Semen O.; Schafer, Lars V.; Sengupta, Durba; Marrink, Siewert J.

    Coarse-grained (CG) simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent,

  18. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies

    Czech Academy of Sciences Publication Activity Database

    Kührová, P.; Best, R.B.; Bottaro, S.; Bussi, G.; Sponer, Jiri; Otyepka, Michal; Banáš, Pavel


    Roč. 12, č. 9 (2016), s. 4534-4548 ISSN 1549-9618 R&D Projects: GA ČR GAP208/12/1878 Institutional support: RVO:68081707 Keywords : molecular- dynamics simulations * base-pairs * tertiary interactions * explicit-solvent Subject RIV: BO - Biophysics Impact factor: 5.245, year: 2016

  19. Ships in an Artificial Force Field : A Multi-agent System for Nautical Traffic and Safety

    NARCIS (Netherlands)

    Xiao, F.


    The main objective of this research is developing a simulation tool that provides information of detailed ship behavior in a specific navigational environment, on both the ship traffic level and the individual ship level, for safety analysis, decision making, planning of ports and waterways, and

  20. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark

    DEFF Research Database (Denmark)

    Boklund, Anette; Goldbach, Stine G.; Uttenthal, Åse


    of CSFV between the hypothetical wild-boar population and the domestic population. Furthermore, the economic impact is assessed taking the perspective of the Danish national budget and the Danish pig industry. We used InterSpreadPlus to model the differential classical swine fever (CSF) risk due to wild...... boar. Nine scenarios were run to elucidate the effect of: (a) presence of wild boar (yes/no), (b) locations for the index case (domestic pig herd/wild-boar group),...

  1. Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks (United States)

    Pukrittayakamee, A.; Malshe, M.; Hagan, M.; Raff, L. M.; Narulkar, R.; Bukkapatnum, S.; Komanduri, R.


    An improved neural network (NN) approach is presented for the simultaneous development of accurate potential-energy hypersurfaces and corresponding force fields that can be utilized to conduct ab initio molecular dynamics and Monte Carlo studies on gas-phase chemical reactions. The method is termed as combined function derivative approximation (CFDA). The novelty of the CFDA method lies in the fact that although the NN has only a single output neuron that represents potential energy, the network is trained in such a way that the derivatives of the NN output match the gradient of the potential-energy hypersurface. Accurate force fields can therefore be computed simply by differentiating the network. Both the computed energies and the gradients are then accurately interpolated using the NN. This approach is superior to having the gradients appear in the output layer of the NN because it greatly simplifies the required architecture of the network. The CFDA permits weighting of function fitting relative to gradient fitting. In every test that we have run on six different systems, CFDA training (without a validation set) has produced smaller out-of-sample testing error than early stopping (with a validation set) or Bayesian regularization (without a validation set). This indicates that CFDA training does a better job of preventing overfitting than the standard methods currently in use. The training data can be obtained using an empirical potential surface or any ab initio method. The accuracy and interpolation power of the method have been tested for the reaction dynamics of H+HBr using an analytical potential. The results show that the present NN training technique produces more accurate fits to both the potential-energy surface as well as the corresponding force fields than the previous methods. The fitting and interpolation accuracy is so high (rms error=1.2 cm-1) that trajectories computed on the NN potential exhibit point-by-point agreement with corresponding

  2. Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field (United States)

    Jing, Zhifeng; Qi, Rui; Liu, Chengwen; Ren, Pengyu


    The interactions between metal ions and proteins are ubiquitous in biology. The selective binding of metal ions has a variety of regulatory functions. Therefore, there is a need to understand the mechanism of protein-ion binding. The interactions involving metal ions are complicated in nature, where short-range charge-penetration, charge transfer, polarization, and many-body effects all contribute significantly, and a quantitative description of all these interactions is lacking. In addition, it is unclear how well current polarizable force fields can capture these energy terms and whether these polarization models are good enough to describe the many-body effects. In this work, two energy decomposition methods, absolutely localized molecular orbitals and symmetry-adapted perturbation theory, were utilized to study the interactions between Mg2+/Ca2+ and model compounds for amino acids. Comparison of individual interaction components revealed that while there are significant charge-penetration and charge-transfer effects in Ca complexes, these effects can be captured by the van der Waals (vdW) term in the AMOEBA force field. The electrostatic interaction in Mg complexes is well described by AMOEBA since the charge penetration is small, but the distance-dependent polarization energy is problematic. Many-body effects were shown to be important for protein-ion binding. In the absence of many-body effects, highly charged binding pockets will be over-stabilized, and the pockets will always favor Mg and thus lose selectivity. Therefore, many-body effects must be incorporated in the force field in order to predict the structure and energetics of metalloproteins. Also, the many-body effects of charge transfer in Ca complexes were found to be non-negligible. The absorption of charge-transfer energy into the additive vdW term was a main source of error for the AMOEBA many-body interaction energies.

  3. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field. (United States)

    Batcho, C S; Gagné, M; Bouyer, L J; Roy, J S; Mercier, C


    When subjects learn a novel motor task, several sources of feedback (proprioceptive, visual or auditory) contribute to the performance. Over the past few years, several studies have investigated the role of visual feedback in motor learning, yet evidence remains conflicting. The aim of this study was therefore to investigate the role of online visual feedback (VFb) on the acquisition and retention stages of motor learning associated with training in a reaching task. Thirty healthy subjects made ballistic reaching movements with their dominant arm toward two targets, on 2 consecutive days using a robotized exoskeleton (KINARM). They were randomly assigned to a group with (VFb) or without (NoVFb) VFb of index position during movement. On day 1, the task was performed before (baseline) and during the application of a velocity-dependent resistive force field (adaptation). To assess retention, participants repeated the task with the force field on day 2. Motor learning was characterized by: (1) the final endpoint error (movement accuracy) and (2) the initial angle (iANG) of deviation (motor planning). Even though both groups showed motor adaptation, the NoVFb-group exhibited slower learning and higher final endpoint error than the VFb-group. In some condition, subjects trained without visual feedback used more curved initial trajectories to anticipate for the perturbation. This observation suggests that learning to reach targets in a velocity-dependent resistive force field is possible even when feedback is limited. However, the absence of VFb leads to different strategies that were only apparent when reaching toward the most challenging target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. The SPASIBA force field of aldehydes. Part II: structure and vibrational wavenumbers of ethandial, propenal and 2-methylpropenal (United States)

    Durier, V.; Zanoun a, A.; Belaidi, A.; Vergoten, G.


    The SPASIBA potential energy function has been extended to conjugated aldehydes. Molecular structures, conformational energies, moments of inertia, dipole moments and vibrational wavenumbers have all been examined. The tested molecules are ethandial (glyoxal), propenal (acrolein), 2-methylpropenal (methacrolein) and some of their deuterated analogs. The parameters of the force field were developed in order to reproduce experimental values: structures, conformational energies and vibrational wavenumbers (minimization of the standard deviation between observed and calculated vibrational wavenumbers). A set of 30 independent force constants was found to be sufficient to describe correctly the structure and vibrational wavenumbers. The average r.m.s errors is 15.25 cm -1.

  5. Properties of Fluids Modelled by Force Fields with Intramolecular Contributions: Application to Heat Capacities.

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Jirsák, Jan; Nezbeda, Ivo; Qi, W.


    Roč. 147, č. 3 (2017), č. článku 034508. ISSN 0021-9606 R&D Projects: GA ČR GA15-19542S Grant - others:NSERC(CA) STPGP479466-15 Institutional support: RVO:67985858 Keywords : thermodynamic derivative properties * linear contraint solver * monte-carlo simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.965, year: 2016

  6. Properties of Fluids Modelled by Force Fields with Intramolecular Contributions: Application to Heat Capacities.

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Jirsák, Jan; Nezbeda, Ivo; Qi, W.


    Roč. 147, č. 3 (2017), č. článku 034508. ISSN 0021-9606 R&D Projects: GA ČR GA15-19542S Grant - others:NSERC(CA) STPGP479466-15 Institutional support: RVO:67985858 Keywords : thermodynamic derivative properties * linear contraint solver * monte-carlo simulation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.965, year: 2016

  7. Modeling Potential Energy Surfaces: From First-Principle Approaches to Empirical Force Fields

    Directory of Open Access Journals (Sweden)

    Pietro Ballone


    Full Text Available Explicit or implicit expressions of potential energy surfaces (PES represent the basis of our ability to simulate condensed matter systems, possibly understanding and sometimes predicting their properties by purely computational methods. The paper provides an outline of the major approaches currently used to approximate and represent PESs and contains a brief discussion of what still needs to be achieved. The paper also analyses the relative role of empirical and ab initio methods, which represents a crucial issue affecting the future of modeling in chemical physics and materials science.

  8. Development of a reactive force field for the Fe-C interaction to investigate the carburization of iron. (United States)

    Lu, Kuan; Huo, Chun-Fang; Guo, Wen-Ping; Liu, Xing-Wu; Zhou, Yuwei; Peng, Qing; Yang, Yong; Li, Yong-Wang; Wen, Xiao-Dong


    The approach of molecular dynamics with Reactive Force Field (ReaxFF) is a promising way to investigate the carburization of iron which is pivotal in the preparation of desired iron-based materials and catalysts. However, it is a challenge to develop a reliable ReaxFF to describe the Fe-C interaction, especially when it involves bond rearrangement. In this work, we develop an exclusive set of Reactive Force Field (ReaxFF) parameters, denoted RPOIC-2017, to describe the diffusion behavior of carbon atoms in the α-Fe system. It inherited some partial parameters in 2012 (ReaxFF-2012) which are suitable for hydrogen adsorption and dissociation. This set of parameters is trained against data from first-principles calculations, including the equations of state of α-Fe, the crystal constant of Fe 3 C and Fe 4 C, a variety of periodic surface structures with varying carbon coverages, as well as the barriers of carbon diffusion in the α-Fe bulk and on diverse surfaces. The success in predicting the carbon diffusion coefficient and the diffusion barrier using the developed RPOIC-2017 potential demonstrates that the performance is superior to that of the traditional MEAM potential. The new ReaxFF for the Fe-C interaction developed in this work is not only essential for the design of novel iron based materials, but could also help understand atomic arrangements and the interfacial structure of iron carbides.

  9. J. Genet. classic 9

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 88, No. 1, April 2009. 9. Page 2. J. Genet. classic. 10. Journal of Genetics, Vol. 88, No. 1, April 2009. Page 3. J. Genet. classic. Journal of Genetics, Vol. 88, No. 1, April 2009. 11. Page 4. J. Genet. classic. 12. Journal of Genetics, Vol. 88, No. 1, April 2009. Page 5. J. Genet. classic. Journal of Genetics ...

  10. Transferable force field for crystal structure predictions, investigation of performance and exploration of different rescoring strategies using DFT-D methods. (United States)

    Broo, Anders; Nilsson Lill, Sten O


    A new force field, here called AZ-FF, aimed at being used for crystal structure predictions, has been developed. The force field is transferable to a new type of chemistry without additional training or modifications. This makes the force field very useful in the prediction of crystal structures of new drug molecules since the time-consuming step of developing a new force field for each new molecule is circumvented. The accuracy of the force field was tested on a set of 40 drug-like molecules and found to be very good where observed crystal structures are found at the top of the ranked list of tentative crystal structures. Re-ranking with dispersion-corrected density functional theory (DFT-D) methods further improves the scoring. After DFT-D geometry optimization the observed crystal structure is found at the leading top of the ranking list. DFT-D methods and force field methods have been evaluated for use in predicting properties such as phase transitions upon heating, mechanical properties or intrinsic crystalline solubility. The utility of using crystal structure predictions and the associated material properties in risk assessment in connection with form selection in the drug development process is discussed.

  11. J. Genet. classic 235

    Indian Academy of Sciences (India)


    Journal of Genetics, Vol. 83, No. 3, December 2004. 235. Page 2. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 236. Page 3. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 237. Page 4. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 238. Page 5 ...

  12. Free-energy Calculations Using Classical Molecular Simulation: Application to the Determination of the Melting Point and Chemical Potential of a Flexible RDX Model.

    Czech Academy of Sciences Publication Activity Database

    Sellers, M.S.; Lísal, Martin; Brennan, J.K.


    Roč. 18, č. 11 (2016), s. 7841-7850 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA13-02938S Grant - others:ARL(US) W911NF-10-2-0039 Institutional support: RVO:67985858 Keywords : solid-liquid coexistence * atomistic simulation * dynamics simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.123, year: 2016

  13. From Vibrational Spectroscopy to Force Fields and Structures of Saccharides: New Computational Algorithms and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pincu, Madeleine [Univ. of California, Irvine, CA (United States); Gerber, Robert Benny [Univ. of California, Irvine, CA (United States). Dept. of Chemistry


    This work was undertaken with the main objective to investigate basic reactions that take place in relatively simple saccharides (mono-saccharides and cellobiose - the building block of cellulose) , in isolation and in cluster with few water molecules or with (gas-phase) clusters of few waters and ionic compounds (salt, isolated ions like H+ or OH-). Within the context of this work, different potentials were investigated; among them, were the PM3 semi empirical potential, DFT/BLYP and a new hybrid potential constructed from MP2 for the harmonic part and from adjusted Hartree-Fock anharmonic interactions (VSCF-PT2). These potentials were evaluated by comparison with experimental data from published sources and from several collaborating groups. The findings show excellent agreement between experiments and predictions with the hybrid VSCF-PT2 potential and very good agreement with predictions obtained from dynamics with dispersion corrected DFT/BLYP potential. Investigation of hydration of cellobiose, was another topic of interest. Guided by a hydration motif demonstrated by our experimental collaborators (team of Prof J.P. Simons), we demonstrated large energetic and structural differences between the two species of cellobiose: cis and trans. The later, which is dominant in solid and liquid phases, is higher in energy in the gas-phase and compared to pure water, it does not disturb as much the network of H bonds. In contrast, the cis species exhibits asymmetric hydration in cluster with up to 25 waters, indicating that it has surfactant properties. Another highlight of this research effort was the successful first time spectrometric and spectroscopic study of a gas-phase protonated sugar derivative (alpha-D-Galactopyranoside) and its interpretation by Ab Initio molecular dynamics (AIMD) simulations. The findings demonstrate the formation of a motif in which a proton bridges between two Oxygen atoms (belonging to OH groups) at the sugar; The

  14. Development of interatomic potential of Ge(1- x - y )Si x Sn y ternary alloy semiconductors for classical lattice dynamics simulation (United States)

    Tomita, Motohiro; Ogasawara, Masataka; Terada, Takuya; Watanabe, Takanobu


    We provide the parameters of Stillinger-Weber potentials for GeSiSn ternary mixed systems. These parameters can be used in molecular dynamics (MD) simulations to reproduce phonon properties and thermal conductivities. The phonon dispersion relation is derived from the dynamical structure factor, which is calculated by the space-time Fourier transform of atomic trajectories in an MD simulation. The phonon properties and thermal conductivities of GeSiSn ternary crystals calculated using these parameters mostly reproduced both the findings of previous experiments and earlier calculations made using MD simulations. The atomic composition dependence of these properties in GeSiSn ternary crystals obtained by previous studies (both experimental and theoretical) and the calculated data were almost exactly reproduced by our proposed parameters. Moreover, the results of the MD simulation agree with the previous calculations made using a time-independent phonon Boltzmann transport equation with complicated scattering mechanisms. These scattering mechanisms are very important in complicated nanostructures, as they allow the heat-transfer properties to be more accurately calculated by MD simulations. This work enables us to predict the phonon- and heat-related properties of bulk group IV alloys, especially ternary alloys.

  15. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan


    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  16. Drama : Classical Versus Modern


    Nuran, Ade Aini


    This study is aimed at explaining classical drama and modern drama in general. It is also purposed to compare the differences between classical drama and modern drama. One of the most significant contrasts between classical drama and modern is the difference in the protagonists. Classical tragedy, for instance, involves royalty, the elite. The idea was that for a character to have a great and far-reaching influence over society he/she had to be in a position of great power and authority. In...

  17. On the application of the classic Kessler and Berry schemes in Large Eddy Simulation models with a particular emphasis on cloud autoconversion, the onset time of precipitation and droplet evaporation

    Directory of Open Access Journals (Sweden)

    S. Ghosh

    Full Text Available Many Large Eddy Simulation (LES models use the classic Kessler parameterisation either as it is or in a modified form to model the process of cloud water autoconversion into precipitation. The Kessler scheme, being linear, is particularly useful and is computationally straightforward to implement. However, a major limitation with this scheme lies in its inability to predict different autoconversion rates for maritime and continental clouds. In contrast, the Berry formulation overcomes this difficulty, although it is cubic. Due to their different forms, it is difficult to match the two solutions to each other. In this paper we single out the processes of cloud conversion and accretion operating in a deep model cloud and neglect the advection terms for simplicity. This facilitates exact analytical integration and we are able to derive new expressions for the time of onset of precipitation using both the Kessler and Berry formulations. We then discuss the conditions when the two schemes are equivalent. Finally, we also critically examine the process of droplet evaporation within the framework of the classic Kessler scheme. We improve the existing parameterisation with an accurate estimation of the diffusional mass transport of water vapour. We then demonstrate the overall robustness of our calculations by comparing our results with the experimental observations of Beard and Pruppacher, and find excellent agreement.

    Key words. Atmospheric composition and structure · Cloud physics and chemistry · Pollution · Meteorology and atmospheric dynamics · Precipitation

  18. The Classics, Con Brio (United States)

    Hansen, James


    Sponsored by a consortium of 30 American universities, Rome's Intercollegiate Center for Classical Studies offers a year of study to American undergraduate classics majors. Instructors are also American and normally stay only a year; teaching assistants are always ex-students of the center. Extensive field trips are an important part of the…

  19. Fermions from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C.


    We describe fermions in terms of a classical statistical ensemble. The states τ of this ensemble are characterized by a sequence of values one or zero or a corresponding set of two-level observables. Every classical probability distribution can be associated to a quantum state for fermions. If the time evolution of the classical probabilities p τ amounts to a rotation of the wave function q τ (t)=±√(p τ (t)), we infer the unitary time evolution of a quantum system of fermions according to a Schroedinger equation. We establish how such classical statistical ensembles can be mapped to Grassmann functional integrals. Quantum field theories for fermions arise for a suitable time evolution of classical probabilities for generalized Ising models.

  20. Simulation of Peptide Binding to Silica and Silica Mineralization (United States)

    Emami, F. S.; Heinz, H.; Berry, R. J.; Varshney, V.; Farmer, B. L.; Naik, R. R.; Patwardhan, S. V.; Perry, C. C.


    The purpose of this study is to identify the nature of the interaction of peptides with silica surfaces and their effect on mineralization. Classical force fields (CVFF, PCFF) have been extended for silica aiming at the computation of surface properties in quantitative agreement with experiment, taking explicitly into account water molecules, pH, and surface coverage with peptides. We focus on the interaction of five short peptides (pep1, pep4, 82-4, H4, R5) identified by biopanning with regular and amorphous silica surfaces (Q3 and Q2) to understand the relation between peptide sequence and affinity to the surface. Results of the atomistic molecular dynamics simulation indicate adsorption energies, binding constants and conformational changes upon adsorption. The comparison of NMR chemical shifts in solution and on the surface in computation and experiment further aids in understanding the mechanism of binding.

  1. A Classic Beauty (United States)


    M51, whose name comes from being the 51st entry in Charles Messier's catalog, is considered to be one of the classic examples of a spiral galaxy. At a distance of about 30 million light-years from Earth, it is also one of the brightest spirals in the night sky. A composite image of M51, also known as the Whirlpool Galaxy, shows the majesty of its structure in a dramatic new way through several of NASA's orbiting observatories. X-ray data from NASA's Chandra X-ray Observatory reveals point-like sources (purple) that are black holes and neutron stars in binary star systems. Chandra also detects a diffuse glow of hot gas that permeates the space between the stars. Optical data from the Hubble Space Telescope (green) and infrared emission from the Spitzer Space Telescope (red) both highlight long lanes in the spiral arms that consist of stars and gas laced with dust. A view of M51 with the Galaxy Evolution Explorer telescope shows hot, young stars that produce lots of ultraviolet energy (blue). The textbook spiral structure is thought be the result of an interaction M51 is experiencing with its close galactic neighbor, NGC 5195, which is seen just above. Some simulations suggest M51's sharp spiral shape was partially caused when NGC 5195 passed through its main disk about 500 million years ago. This gravitational tug of war may also have triggered an increased level of star formation in M51. The companion galaxy's pull would be inducing extra starbirth by compressing gas, jump-starting the process by which stars form.

  2. Vibrational spectra of trimethyl gallium species in relation to the force field and methyl group internal rotation (United States)

    McKean, D. C.; McQuillan, G. P.; Duncan, J. L.; Shephard, N.; Munro, B.; Fawcett, V.; Edwards, H. G. M.

    Infrared and Raman spectra are reported for Ga(CH 3) 3, Ga(CD 3) 3 and Ga(CHD 2) 3 in the gas phase. These were also examined in the i.r. spectrum in the solid phase at 78 K. The new Raman spectra of the CHD 2 species strongly support earlier i.r. evidence for CH force constant variation during free internal rotation of the methyl groups, from the presence of two bands at 2940 (vs) and 2922 cm -1 (w) identified as due to ν avis and ν †is respectively. The observed a' and e' frequencies of the d0 and d9 species are used to obtain a force field in which three interaction constants are well defined. The best value of the Ga-C stretching force constant is 2.356(28) mdyn Å -1. In the crystal phase at 78 K, the e' modes due to δ s Me and ν as GaC 3 are split, indicating a site group symmetry lower than C3. Gallium and carbon isotope frequency shifts are predicted.

  3. Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air (United States)

    Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier


    Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.

  4. The 'Arm Force Field' method to predict manual arm strength based on only hand location and force direction. (United States)

    La Delfa, Nicholas J; Potvin, Jim R


    This paper describes the development of a novel method (termed the 'Arm Force Field' or 'AFF') to predict manual arm strength (MAS) for a wide range of body orientations, hand locations and any force direction. This method used an artificial neural network (ANN) to predict the effects of hand location and force direction on MAS, and included a method to estimate the contribution of the arm's weight to the predicted strength. The AFF method predicted the MAS values very well (r 2  = 0.97, RMSD = 5.2 N, n = 456) and maintained good generalizability with external test data (r 2  = 0.842, RMSD = 13.1 N, n = 80). The AFF can be readily integrated within any DHM ergonomics software, and appears to be a more robust, reliable and valid method of estimating the strength capabilities of the arm, when compared to current approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The infrared spectra and structure of acetylsalicylic acid (aspirin) and its oxyanion: an ab initio force field treatment (United States)

    Binev, I. G.; Stamboliyska, B. A.; Binev, Y. I.


    The structures of acetylsalicylic acid (aspirin) (I) and its oxyanion (II) have been studied by means of infrared spectra and ab initio 3-21 G force field calculations. The 3100-1100 cm -1 region bands of both the aspirin molecule and its oxyanion have been assigned. The theoretical infrared data for the free aspirin anion are in good agreement with the experimental data for aspirin alkali-metal salts in dimethyl sulfoxide- d6. The theoretical geometrical parameters for the isolated aspirin molecule are close to the literature X-ray diffraction data for its dimer in the solid state, except for those of the carboxy group, which participates directly in hydrogen bond formation. The changes in both the spectral and geometrical parameters, caused by the conversion of the aspirin molecule into the anion, are essential, but they are localized mainly within the carboxy group and the adjacent C-Ph bond. This is also true for the changes in the corresponding bond indices and electronic charges.

  6. QM/MM based fitting of atomic polarizabilities for use in condensed-phase biomolecular simulation

    NARCIS (Netherlands)

    Vosmeer, C.R.; Rustenburg, A.S.; Rice, J.E.; Horn, H.W.; Swope, W.C.; Geerke, D.P.


    Accounting for electronic polarization effects in biomolecular simulation (by using a polarizable force field) can increase the accuracy of simulation results. However, the use of gas-phase estimates of atomic polarizabilities α

  7. Mathematical physics classical mechanics

    CERN Document Server

    Knauf, Andreas


    As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.

  8. Classical pulsating variables

    International Nuclear Information System (INIS)

    Hacke, G.


    The nature of the three types of classical pulsating variables (δ-Cephei stars, W-Virginis stars and RR-Lyrae stars) is studied. Problems of the light-curve analysis such as (1) the frequency distribution of periods for the three types of classical pulsating variables, (2) spurions periods, (3) changes of periods and multiple periodicity as well as (4) the Blazhko-effect and other changes of the light-curve form are discussed

  9. The application of tailor-made force fields and molecular dynamics for NMR crystallography: a case study of free base cocaine

    DEFF Research Database (Denmark)

    Li, Xiaozhou; Neumann, Marcus A.; van de Streek, Jacco


    cocaine is used as an example. The results reveal that, even though the TMFF outperforms the COMPASS force field for representing the energies and conformations of predicted structures, it does not give significant improvement in the accuracy of NMR calculations. Further studies should direct more...

  10. Partition Coefficients of Organic Molecules in Squalane and Water/Ethanol Mixtures by Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Lundsgaard, Rasmus; Kontogeorgis, Georgios; Economou, Ioannis G.


    the GROMACS software, by slowly decoupling of firstly the electrostatic and then the Lennard–Jones interactions between molecules in the simulation box. These calculations depend very much on the choice of force field. Two force fields have been tested in this work, the TraPPE-UA (united-atom) and the OPLS...

  11. Simulations

    CERN Document Server

    Ngada, Narcisse


    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  12. Developmant of a Reparametrized Semi-Empirical Force Field to Compute the Rovibrational Structure of Large PAHs (United States)

    Fortenberry, Ryan

    The Spitzer Space Telescope observation of spectra most likely attributable to diverse and abundant populations of polycyclic aromatic hydrocarbons (PAHs) in space has led to tremendous interest in these molecules as tracers of the physical conditions in different astrophysical regions. A major challenge in using PAHs as molecular tracers is the complexity of the spectral features in the 3-20 μm region. The large number and vibrational similarity of the putative PAHs responsible for these spectra necessitate determination for the most accurate basis spectra possible for comparison. It is essential that these spectra be established in order for the regions explored with the newest generation of observatories such as SOFIA and JWST to be understood. Current strategies to develop these spectra for individual PAHs involve either matrixisolation IR measurements or quantum chemical calculations of harmonic vibrational frequencies. These strategies have been employed to develop the successful PAH IR spectral database as a repository of basis functions used to fit astronomically observed spectra, but they are limited in important ways. Both techniques provide an adequate description of the molecules in their electronic, vibrational, and rotational ground state, but these conditions do not represent energetically hot regions for PAHs near strong radiation fields of stars and are not direct representations of the gas phase. Some non-negligible matrix effects are known in condensed-phase studies, and the inclusion of anharmonicity in quantum chemical calculations is essential to generate physically-relevant results especially for hot bands. While scaling factors in either case can be useful, they are agnostic to the system studied and are not robustly predictive. One strategy that has emerged to calculate the molecular vibrational structure uses vibrational perturbation theory along with a quartic force field (QFF) to account for higher-order derivatives of the potential

  13. Effect of tonic pain on motor acquisition and retention while learning to reach in a force field.

    Directory of Open Access Journals (Sweden)

    Mélanie Lamothe

    Full Text Available Most patients receiving intensive rehabilitation to improve their upper limb function experience pain. Despite this, the impact of pain on the ability to learn a specific motor task is still unknown. The aim of this study was to determine whether the presence of experimental tonic pain interferes with the acquisition and retention stages of motor learning associated with training in a reaching task. Twenty-nine healthy subjects were randomized to either a Control or Pain Group (receiving topical capsaicin cream on the upper arm during training on Day 1. On two consecutive days, subjects made ballistic movements towards two targets (NEAR/FAR using a robotized exoskeleton. On Day 1, the task was performed without (baseline and with a force field (adaptation. The adaptation task was repeated on Day 2. Task performance was assessed using index distance from the target at the end of the reaching movement. Motor planning was assessed using initial angle of deviation of index trajectory from a straight line to the target. Results show that tonic pain did not affect baseline reaching. Both groups improved task performance across time (p<0.001, but the Pain group showed a larger final error (under-compensation than the Control group for the FAR target (p = 0.030 during both acquisition and retention. Moreover, a Group x Time interaction (p = 0.028 was observed on initial angle of deviation, suggesting that subjects with Pain made larger adjustments in the feedforward component of the movement over time. Interestingly, behaviour of the Pain group was very stable from the end of Day 1 (with pain to the beginning of Day 2 (pain-free, indicating that the differences observed could not solely be explained by the impact of pain on immediate performance. This suggests that if people learn to move differently in the presence of pain, they might maintain this altered strategy over time.

  14. Infrared and Raman spectra of bicyclic molecules using scaled noncorrelated and correlated {ital ab initio} force fields

    Energy Technology Data Exchange (ETDEWEB)

    Collier, W.B. [Department of Chemistry, Oral Roberts University, Tulsa, Oklahoma 74171 (United States); Magdo, I. [Gedeon Richter Ltd., Molecular Design Unit, P.O. Box 27, H-1475, Budapest (Hungary); Klots, T.D. [Bartlesville Thermodynamic Group, BDM Petroleum Technologies, P.O. Box 2543, Bartlesville, Oklahoma 74005 (United States)


    This paper reports the application of a scaled {ital ab initio} calculated harmonic force field to predict the frequencies, infrared intensities, Raman intensities, and depolarization ratios of benzofuran, benzothiophene, indole, benzothiazole, and benzoxazole. The theoretical calculations were made using the Hartree{endash}Fock HF/3-21G{sup {asterisk}} and HF/6-31G{sup {asterisk}} basis sets and density-functional theory (DFT)B3-LYP/6-31G{sup {asterisk}} levels. The equilibrium calculated force constants are scaled according to the method of Pulay and compared with the experimentally determined frequencies, intensities, and depolarization ratios to assess the accuracy and fit of the theoretical calculation. Methods for quantitative comparison of intensities were developed. The double numerical differentiation algorithm of Komornicki and McIver was analyzed and used to calculate the Raman intensities for the (DFT)B3-LYP/6-31G{sup {asterisk}} model. The (DFT)B3-LYP/6-31G{sup {asterisk}} model is approaching the harmonic limit in the planar and nonplanar refinement of these bicyclics with wave number fits of 5 and 4 cm{sup {minus}1}, respectively. It reduces the need for scale factors and increases their transfer accuracy, largely because the scale factors values cluster near unity. The Komornicki and McIver algorithm is still a viable method for calculating Raman intensity information for methods that do not have analytic routines programmed. The main shortcoming to this method may lie in the tighter self-consistent field (SCF) convergence criterion possibly needed to calculate Raman intensities for the totally symmetric modes of large molecules. The (DFT)B3-LYP/6-31G{sup {asterisk}} model was superior for calculating the planar intensities, but equal to the HF methods for predicting the nonplanar intensities. {copyright} {ital 1999 American Institute of Physics.}

  15. Can classical noise enhance quantum transmission?

    International Nuclear Information System (INIS)

    Wilde, Mark M


    A modified quantum teleportation protocol broadens the scope of the classical forbidden-interval theorems for stochastic resonance. The fidelity measures performance of quantum communication. The sender encodes the two classical bits for quantum teleportation as weak bipolar subthreshold signals and sends them over a noisy classical channel. Two forbidden-interval theorems provide a necessary and sufficient condition for the occurrence of the nonmonotone stochastic resonance effect in the fidelity of quantum teleportation. The condition is that the noise mean must fall outside a forbidden interval related to the detection threshold and signal value. An optimal amount of classical noise benefits quantum communication when the sender transmits weak signals, the receiver detects with a high threshold and the noise mean lies outside the forbidden interval. Theorems and simulations demonstrate that both finite-variance and infinite-variance noise benefit the fidelity of quantum teleportation.

  16. Nation and Classical Music

    DEFF Research Database (Denmark)

    Brincker, Benedikte

    The last book Anthony D. Smith wrote before he died, and which will be published in Spring 2017, has the title Nation and Classical Music. Smith had for a long time been intrigued by the intimate relationship between the nation and classical music. At the most manifest level it involves...... them into their compositions thus challenging the romantic musical style searching for an authentic national musical expression. Against the backdrop of the extensive research carried out by Anthony Smith into the relationship between the nation and classical music, the present paper seeks to add...... cultural centers. In doing this, the paper seeks to unfold how composers channeled musical inspiration embedded in cultural environments that cut across national boundaries into national musical traditions thus catering to specific national audiences. The paper is written as a tribute to a great mentor...

  17. Twisted classical Poincare algebras

    International Nuclear Information System (INIS)

    Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.


    We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

  18. Multi-scale simulation on solid benzene (United States)

    Liu, Hua; Heinz, Hendrik


    Solid Benzene is used in organic semiconductors for photovoltaics, which often include pi-conjugated systems. We use MD simulations method to explore the relationship between the structure and interaction energy of two kinds of solid benzene, with the Pbca and P21c crystallgraphic structures respectively. Simple relevant force fields (PCFF and CVFF) are examined with regard to their performance on the structure and energetics of benzene dimers and benzene crystals which serve as well characterized model systems. However, MD simulations cannot get the transport properties. So the combination of reliable classical atomistic simulations and quantum-mechanical methods is needed to understand the dynamics of charge transport and self-assembly processes involving pi-conjugated oligomers and polymers. As alternative and accurate models, we explore atomistic models with additional sites which represent the location of the pi electrons and are characterized by suitable charges and van-der-Waals parameters. With these parameters, it will be possible to reproduce the dimer geometries and energies, the crystal structure of solid benzene, as well as pi-stacking forces and free energies for similar systems.

  19. Classical mechanics with Maxima

    CERN Document Server

    Timberlake, Todd Keene


    This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.

  20. Classic Problems of Probability

    CERN Document Server

    Gorroochurn, Prakash


    "A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin

  1. Learning Classical Music Club

    CERN Multimedia

    Learning Classical Music Club


    There is a new CERN Club called “Learning Classical Music at CERN”. We are aiming to give classical music lessons for different instruments (see link) for students from 5 to 100 years old. We are now ready to start our activities in the CERN barracks. We are now in the enrollment phase and hope to start lessons very soon ! Club info can be found in the list of CERN Club: Salvatore Buontempo Club President

  2. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C


    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  3. Children's Classics. Fifth Edition. (United States)

    Jordan, Alice M.

    "Children's Classics," a 1947 article by Alice M. Jordan reprinted from "The Horn Book Magazine," examines the dynamics and appeal of some of the most famous books for young readers, including "Alice in Wonderland,""The Wind in the Willows,""Robinson Crusoe," and "Andersen's Fairy Tales." Paul Hein's annotated bibliography, a revision of Jordan's…

  4. Classicism and Romanticism. (United States)

    Huddleston, Gregory H.


    Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)

  5. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A


    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  6. Classical galactosaemia revisited

    NARCIS (Netherlands)

    Bosch, Annet M.


    Classical galactosaemia (McKusick 230400) is an: autosomal recessive disorder of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712). Most patients present in the neonatal period, after ingestion of galactose, with jaundice,

  7. Classical Curriculum Design (United States)

    George, Judith W.


    The article identifies some key findings in pedagogical research over recent decades, placing them within a framework of logical curriculum development and current practice in quality assurance and enhancement. Throughout, the ideas and comments are related to the practice of teaching classics in university. (Contains 1 figure and 3 notes.)

  8. Causality in Classical Physics

    Indian Academy of Sciences (India)

    IAS Admin

    Classical physics encompasses the study of phys- ical phenomena which range from local (a point) to nonlocal (a region) in space and/or time. We discuss the concept of spatial and temporal non- locality. However, one of the likely implications pertaining to nonlocality is non-causality. We study causality in the context of ...

  9. Nanotribology investigations with classical molecular dynamics

    NARCIS (Netherlands)

    Solhjoo, Soheil


    This thesis presents a number of nanotribological problems investigated by means of classical molecular dynamics (MD) simulations, within the context of the applicability of continuum mechanics contact theories at the atomic scale. Along these lines, three different themes can be recognized herein:

  10. Stimulus Configuration, Classical Conditioning, and Hippocampal Function. (United States)

    Schmajuk, Nestor A.; DiCarlo, James J.


    The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)

  11. Comparison of vibration spectra and of valence force fields of the dimethyl sulfoxide and of its addition compounds with boron trifluoride and bivalent palladium halides

    International Nuclear Information System (INIS)

    Tranquille, Michel


    In its first part, this research thesis addresses vibration spectra and valence force fields of the dimethyl sulfoxide (DMSO) molecule: report of published results obtained by various techniques (microwave, X ray, NMR, slow neutron or vibration spectroscopy), discussion and analysis of vibration spectra, determination of thermodynamic values, determination of normal vibration modes. The second part addresses the study of vibration spectra of coordination compounds of DMSO: influence of water on DMSO vibration spectra, DMSO coordination compounds with boron trifluoride or with palladium halides. The third part addresses the study of valence force fields and of normal modes of vibration of DMSO coordination compounds (same compounds as above), and the fourth part reports the comparison of some DMSO properties in function of the complexing site

  12. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Nezbeda, Ivo; Smith, W.R.


    Roč. 11, č. 4 (2016), s. 1756-1764 ISSN 1549-9618 Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : monte-carlo simulations * molecular-dynamic simulations * free-energy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.245, year: 2016

  13. Infrared spectra of CF(2)=CHD and CF(2)=CD(2): scaled quantum-chemical force fields and an equilibrium structure for 1,1-difluoroethylene. (United States)

    McKean, Donald C; Law, Mark M; Groner, Peter; Conrad, Andrew R; Tubergen, Michael J; Feller, David; Moore, Michael C; Craig, Norman C


    Infrared (IR) spectra in the gas phase are reported for CF(2)=CHD and CF(2)=CD(2) in the region 350-4000 cm(-1). Ab initio calculations of an harmonic force-field and anharmonicity constants have been made with an MP2/aug-cc-pVTZ model. These enable a number of Fermi resonances in each species to be analyzed and a complete set of "observed" harmonic frequencies to be derived. The latter are combined with similar data for CF(2)=CH(2) in a scaling of the model harmonic force field to both anharmonic and harmonic frequencies. Inspection of the scale factors reveals minor defects of the model, evident in the out-of-plane wagging modes and in the CF stretch/CF stretch interaction force constant. Fermi resonance treatments involved in all isotopomers studied are compatible with the overall force-field refinement results. The treatment leaves a small anomaly in the (13)C shift on nu(1). Improved microwave spectra are reported for five isotopic species, and a semiexperimental equilibrium structure for F(2)C=CH(2) is determined and compared favorably with the structure obtained from new high-level ab initio calculations. Centrifugal distortion constants are predicted for the five isotopic species, and those for F(2)C=CH(2) are compared with values fit to microwave spectra.

  14. Molecular dynamics simulations of fluid cyclopropane with MP2/CBS-fitted intermolecular interaction potentials. (United States)

    Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D


    Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.

  15. Classical Diophantine equations

    CERN Document Server


    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  16. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A


    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  17. Injuries in classical ballet

    Directory of Open Access Journals (Sweden)

    Adriana Coutinho de Azevedo Guimarães


    Full Text Available This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external rotation at hip level and to undue use of point ballet slippers. The commonest lesions are in feet and ankles, followed by knees and hips. The rarest ones are in the upper limbs. These injuries are caused by exercise excess, by repetitions always in the same side and by wrong and early use of point slippers. The study reached the conclusion that incorrect application of classical ballet technique predisposes the dancers to characteristic injuries.

  18. Invitation to classical analysis

    CERN Document Server

    Duren, Peter


    This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level, building on basic principles of advanced calculus without appeal to more sophisticated techniques of complex analysis and Lebesgue integration. Among the topics covered are Fourier series and integrals, approximation theory, Stirling's formula, the gamma function, Bernoulli numbers and polynomials, the Riemann zeta function, Tauberian theorems, elliptic integrals, ramifications of the Cantor set, and a theoretical discussion of differ

  19. Revisiting a Classic (United States)

    Rogers, Ibram


    As a 26-year-old English teacher in 1958, Chinua Achebe had no idea that the book he was writing would become a literary classic, not only in Africa but also throughout the world. He could only try to articulate the feelings he had for his countrymen and women. Achebe had a burning desire to tell the true story of Africa and African humanity. The…

  20. Concepts of classical optics

    CERN Document Server

    Strong, John


    An intermediate course in optics, this volume explores both experimental and theoretical concepts, offering practical knowledge of geometrical optics that will enhance students' comprehension of any relevant applied science. Its exposition of the concepts of classical optics is presented with a minimum of mathematical detail but presumes some knowledge of calculus, vectors, and complex numbers.Subjects include light as wave motion; superposition of wave motions; electromagnetic waves; interaction of light and matter; velocities and scattering of light; polarized light and dielectric boundarie

  1. Lectures on classical electrodynamics

    CERN Document Server

    Englert, Berthold-Georg


    These lecture notes cover classical electrodynamics at the level of advanced undergraduates or postgraduates. There is a strong emphasis on the general features of the electromagnetic field and, in particular, on the properties of electromagnetic radiation. It offers a comprehensive and detailed, as well as self-contained, account of material that can be covered in a one-semester course for students with a solid undergraduate knowledge of basic electricity and magnetism.

  2. Generalized classical mechanics

    International Nuclear Information System (INIS)

    De Leon, M.; Rodrigues, P.R.


    The geometrical study of Classical Mechanics shows that the Hamiltonian (respectively, Lagrangian) formalism may be characterized by intrinsical structures canonically defined on the cotangent (respectively, tangent) bundle of a differentiable manifold. A generalized formalism for higher order Lagrangians is developed. Then the Hamiltonian form of the theory is developed. Finally, the Poisson brackets are defined and the conditions under which a mapping is a canonical transformation are studied. The Hamilton-Jacobi equation for this type of mechanics is established. (Auth.)

  3. What was classical genetics? (United States)

    Waters, C Kenneth


    I present an account of classical genetics to challenge theory-biased approaches in the philosophy of science. Philosophers typically assume that scientific knowledge is ultimately structured by explanatory reasoning and that research programs in well-established sciences are organized around efforts to fill out a central theory and extend its explanatory range. In the case of classical genetics, philosophers assume that the knowledge was structured by T. H. Morgan's theory of transmission and that research throughout the later 1920s, 30s, and 40s was organized around efforts to further validate, develop, and extend this theory, I show that classical genetics was structured by an integration of explanatory reasoning (associated with the transmission theory) and investigative strategies (such as the 'genetic approach'). The investigative strategies, which have been overlooked in historical and philosophical accounts, were as important as the so-called laws of Mendelian genetics. By the later 1920s, geneticists of the Morgan school were no longer organizing research around the goal of explaining inheritance patterns; rather, they were using genetics to investigate a range of biological phenomena that extended well beyond the explanatory domain of transmission theories. Theory-biased approaches in history and philosophy of science fail to reveal the overall structure of scientific knowledge and obscure the way it functions.

  4. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)


    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  5. Investigating the spontaneous formation of SDS micelle in aqueous solution using a coarse-grained force field

    Directory of Open Access Journals (Sweden)

    José Maria Pires


    Full Text Available A 1µs Molecular Dynamic simulation was performed with a realistic model system of Sodium Dodecyl Sulfate (SDS micelles in aqueous solution, comprising of 360 DS-, 360 Na+ and 90000 water particles. After 300 ns three different micellar shapes and sizes 41, 68 and 95 monomers, were observed. The process led to stabilization in the total number of SDS clusters and an increase in the micellar radius to 2.23 nm, in agreement with experimental results. An important conclusion, is be aware that simulations employed in one aggregate, should be considered as a constraint. Size and shape distribution must be analyzed.

  6. On Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Laurent Chusseau


    Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.

  7. Noncanonical alpha/gamma Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field

    Czech Academy of Sciences Publication Activity Database

    Zgarbová, M.; Jurečka, P.; Banáš, P.; Havrila, Marek; Šponer, Jiří; Otyepka, M.


    Roč. 121, č. 11 (2017), s. 2420-2433 ISSN 1520-6106 Institutional support: RVO:68081707 Keywords : molecular- dynamics simulations * sugar-phosphate backbone * free-energy landscape * ribosomal-rna Subject RIV: BO - Biophysics OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  8. Molecular Force Fields for Aqueous Electrolytes: SPC/E-Compatible Charged LJ Sphere Models and Their Limitations

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Nezbeda, Ivo; Smith, W. R.


    Roč. 138, č. 15 (2013), s. 154102 ISSN 0021-9606 Grant - others:GA MŠMT(CZ) LH12019; GA ČR(CZ) GAP208/12/0105; NSERCC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : free-energy * computer- simulation * water Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.122, year: 2013

  9. Renormalization in classical field theory

    International Nuclear Information System (INIS)

    Corbo, Guido


    We discuss simple examples in which renormalization is required in classical field theory. The presentation is accessible to undergraduate students with a knowledge of the basic notions of classical electromagnetism. (letters and comments)

  10. Numerical stability of finite difference algorithms for electrochemical kinetic simulations: Matrix stability analysis of the classic explicit, fully implicit and Crank-Nicolson methods and typical problems involving mixed boundary conditions

    DEFF Research Database (Denmark)

    Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter


    The stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference discretizations of example diffusional initial boundary value problems from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention...

  11. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets (United States)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We

  12. Classical altitude training. (United States)

    Friedmann-Bette, B


    For more than 40 years, the effects of classical altitude training on sea-level performance have been the subject of many scientific investigations in individual endurance sports. To our knowledge, no studies have been performed in team sports like football. Two well-controlled studies showed that living and training at an altitude of >or=1800-2700 m for 3-4 weeks is superior to equivalent training at sea level in well-trained athletes. Most of the controlled studies with elite athletes did not reveal such an effect. However, the results of some uncontrolled studies indicate that sea-level performance might be enhanced after altitude training also in elite athletes. Whether hypoxia provides an additional stimulus for muscular adaptation, when training is performed with equal intensity compared with sea-level training is not known. There is some evidence for an augmentation of total hemoglobin mass after classical altitude training with duration >or=3 weeks at an altitude >or=2000 m due to altitude acclimatization. Considerable individual variation is observed in the erythropoietic response to hypoxia and in the hypoxia-induced reduction of aerobic performance capacity during training at altitude, both of which are thought to contribute to inter-individual variation in the improvement of sea-level performance after altitude training.

  13. Classical mirror symmetry

    CERN Document Server

    Jinzenji, Masao


    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  14. Classical Trajectories and Quantum Spectra (United States)

    Mielnik, Bogdan; Reyes, Marco A.


    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  15. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J


    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  16. Ideal versus real: simulated annealing of experimentally derived and geometric platinum nanoparticles (United States)

    Ellaby, Tom; Aarons, Jolyon; Varambhia, Aakash; Jones, Lewys; Nellist, Peter; Ozkaya, Dogan; Sarwar, Misbah; Thompsett, David; Skylaris, Chris-Kriton


    Platinum nanoparticles find significant use as catalysts in industrial applications such as fuel cells. Research into their design has focussed heavily on nanoparticle size and shape as they greatly influence activity. Using high throughput, high precision electron microscopy, the structures of commercially available Pt catalysts have been determined, and we have used classical and quantum atomistic simulations to examine and compare them with geometric cuboctahedral and truncated octahedral structures. A simulated annealing procedure was used both to explore the potential energy surface at different temperatures, and also to assess the effect on catalytic activity that annealing would have on nanoparticles with different geometries and sizes. The differences in response to annealing between the real and geometric nanoparticles are discussed in terms of thermal stability, coordination number and the proportion of optimal binding sites on the surface of the nanoparticles. We find that annealing both experimental and geometric nanoparticles results in structures that appear similar in shape and predicted activity, using oxygen adsorption as a measure. Annealing is predicted to increase the catalytic activity in all cases except the truncated octahedra, where it has the opposite effect. As our simulations have been performed with a classical force field, we also assess its suitability to describe the potential energy of such nanoparticles by comparing with large scale density functional theory calculations.

  17. Classical and quantum cosmology

    CERN Document Server

    Calcagni, Gianluca


    This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...

  18. Classical mechanics an introduction

    CERN Document Server

    Strauch, D


    This upper-level undergraduate and beginning graduate textbook primarily covers the theory and application of Newtonian and Lagrangian, but also of Hamiltonian mechanics. In addition, included are elements of continuum mechanics and the accompanying classical field theory, wherein four-vector notation is introduced without explicit reference to special relativity. The author's writing style attempts to ease students through the primary and secondary results, thus building a solid foundation for understanding applications. So the text is thus structured around developments of the main ideas, explicit proofs, and numerous clarifications, comments and applications. Numerous examples illustrate the material and often present alternative approaches to the final results. Frequent references are made linking mechanics to other fields of physics. These lecture notes have been used frequently by students to prepare for written and/or oral examinations. Summaries and problems conclude chapters and appendices supply nee...

  19. Molecular Simulation of Shock Hugoniot for Polymers (United States)

    Sirk, T.; Chantawansri, T.; Byrd, E.; Rice, B.; Andzelm, J.


    The behavior of polymers under extreme conditions (high pressure and temperature) is of interest for a variety of applications, such as polymer-bonded explosives, coatings, adhesives, and light-weight armor. Material properties and response at extreme conditions can be determined through shock experiments, which are often difficult to measure experimentally because of difficulties in traversing a large range of pressures (up to hundreds of gigapascals) and temperatures (thousands of kelvin) with available instrumentation. In addition, interesting behavior, such as observed behind a shock front, occurs at extremely short time- and length-scales (nanoscale), which poses problems in characterizing the material using current experimental capabilities. To further understand shocked systems, simulation methods such as molecular dynamics (MD) and quantum mechanics (QM) can be used to provide insight into atomic-level phenomena. Using classical MD and QM, we have calculated the principle shock Hugoniot curves for four polymers: poly[methyl methacrylate], poly[ethylene], poly[styrene], and hydroxyl-terminated poly[butadiene]. In the MD calculations, we considered both a non-reactive (i.e. PCFF) and reactive (i.e. ReaxFF) forcefield, respectively, where calculations were performed in LAMMPS. The QM calculations were performed with density functional theory (DFT) using dispersion corrections as implemented in CP2K. We have applied both atom centered pseudopotentials (DCACPs) and Grimme van der Waals corrections in our study. Overall, results obtained by QM show much better agreement with available experimental data for the range of up to 20 GPa than classical force fields. At pressures where reactions can occur the short simulation time available in MD modeling prevents us from fully exploring possible reaction pathways.

  20. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles

    Czech Academy of Sciences Publication Activity Database

    Zgarbová, M.; Otyepka, M.; Šponer, Jiří; Mládek, Arnošt; Banáš, P.; Cheatham III, T.E.; Jurečka, P.


    Roč. 7, č. 9 (2011), s. 2886-2902 ISSN 1549-9618 R&D Projects: GA AV ČR(CZ) IAA400040802; GA ČR(CZ) GD203/09/H046 Grant - others:GA ČR(CZ) GAP208/10/1742; GA ČR(CZ) GPP301/11/ P558 Program:GA; GP Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular-dynamics simulations * density-functional theory * sugar-phosphate backbone Subject RIV: BO - Biophysics Impact factor: 5.215, year: 2011

  1. Flexible matching of test ligands to a 3D pharmacophore using a molecular superposition force field: Comparison of predicted and experimental conformations of inhibitors of three enzymes (United States)

    McMartin, Colin; Bohacek, Regine S.


    A computer procedure TFIT, which uses a molecular superposition force field to flexibly match test compounds to a 3D pharmacophore, was evaluated to find out whether it could reliably predict the bioactive conformations of flexible ligands. The program superposition force field optimizes the overlap of those atoms of the test ligand and template that are of similar chemical type, by applying an attractive force between atoms of the test ligand and template which are close together and of similar type (hydrogen bonding, charge, hydrophobicity). A procedure involving Monte Carlo torsion perturbations, followed by torsional energy minimization, is used to find conformations of the test ligand which cominimize the internal energy of the ligand and the superposition energy of ligand and template. The procedure was tested by applying it to a series of flexible ligands for which the bioactive conformation was known experimentally. The 15 molecules tested were inhibitors of thermolysin, HIV-1 protease or endothiapepsin for which X-ray structures of the bioactive conformation were available. For each enzyme, one of the molecules served as a template and the others, after being conformationally randomized, were fitted. The fitted conformation was then compared to the known binding geometry. The matching procedure was successful in predicting the bioactive conformations of many of the structures tested. Significant deviation from experimental results was found only for parts of molecules where it was readily apparent that the template did not contain sufficient information to accurately determine the bioactive conformation.

  2. Simulation

    CERN Document Server

    Ross, Sheldon


    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  3. Reactive Conformation of the Active Site in the Hairpin Ribozyme Achieved by Molecular Dynamics Simulations with epsilon/zeta Force Field Reparametrizations

    Czech Academy of Sciences Publication Activity Database

    Mlýnský, V.; Kuehrova, P.; Zgarbová, M.; Jurečka, P.; Walter, Nils G.; Otyepka, M.; Šponer, Jiří; Banáš, Pavel


    Roč. 119, č. 11 (2015), s. 4220-4229 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GAP208/12/1878 Institutional support: RVO:68081707 Keywords : ACID- BASE CATALYSIS * NUCLEIC-ACIDS * RNA CATALYSIS Subject RIV: BO - Biophysics Impact factor: 3.187, year: 2015

  4. Validation of Trimethylamine-N-oxide (TMAO) Force Fields Based on Thermophysical Properties of Aqueous TMAO Solutions. (United States)

    Markthaler, Daniel; Zeman, Johannes; Baz, Jörg; Smiatek, Jens; Hansen, Niels


    Five molecular models for trimethylamine N-oxide (TMAO) to be used in conjunction with compatible models for liquid water are evaluated by comparison of molecular dynamics (MD) simulation results to experimental data as functions of TMAO molality. The experimental data comprise thermodynamic properties (density, apparent molar volume, and partial molar volume at infinite dilution), transport properties (self-diffusion and shear viscosity), structural properties (radial distribution functions and degree of hydrogen bonding), and dielectric properties (dielectric spectra and static permittivity). The thermodynamic and transport properties turned out to be useful in TMAO model discrimination while the influence of the water model and the TMAO-water interaction are effectively probed through the calculation of dielectric spectra.

  5. A novel approach for deriving force field torsion angle parameters accounting for conformation-dependent solvation effects

    Czech Academy of Sciences Publication Activity Database

    Zgarbová, M.; Luque, F.J.; Šponer, Jiří; Otyepka, M.; Jurečka, P.


    Roč. 8, č. 9 (2012), s. 3232-3242 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GD203/09/H046; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GAP208/11/1822; GA ČR(CZ) GAP208/12/1878; GA ČR(CZ) GBP305/12/G034 Grant - others:GA ČR(CZ) GAP208/10/1742 Program:GA Institutional research plan: CEZ:AV0Z50040702 Keywords : molecular dynamics simulations * guanine quadruplex * DNA ligand binding Subject RIV: BO - Biophysics Impact factor: 5.389, year: 2012

  6. Development of a Modified Embedded Atom Force Field for Zirconium Nitride Using Multi-Objective Evolutionary Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Badri; Sasikumar, Kiran; Mei, Zhi-Gang; Kinaci, Alper; Sen, Fatih G.; Davis, Michael J.; Gray, Stephen K.; Chan, Maria K. Y.; Sankaranarayanan, Subramanian K. R. S.


    Zirconium nitride (ZrN) exhibits exceptional mechanical, chemical, and electrical properties, which make it attractive for a wide range of technological applications, including wear-resistant coatings, protection from corrosion, cutting/shaping tools, and nuclear breeder reactors. Despite its broad usability, an atomic scale understanding of the superior performance of ZrN, and its response to external stimuli, for example, temperature, applied strain, and so on, is not well understood. This is mainly due to the lack of interatomic potential models that accurately describe the interactions between Zr and N atoms. To address this challenge, we develop a modified embedded atom method (MEAM) interatomic potential for the Zr–N binary system by training against formation enthalpies, lattice parameters, elastic properties, and surface energies of ZrN (and, in some cases, also Zr3N4) obtained from density functional theory (DFT) calculations. The best set of MEAM parameters are determined by employing a multiobjective global optimization scheme driven by genetic algorithms. Our newly developed MEAM potential accurately reproduces structure, thermodynamics, energetic ordering of polymorphs, as well as elastic and surface properties of Zr–N compounds, in excellent agreement with DFT calculations and experiments. As a representative application, we employed molecular dynamics simulations based on this MEAM potential to investigate the atomic scale mechanisms underlying fracture of bulk and nanopillar ZrN under applied uniaxial strains, as well as the impact of strain rate on their mechanical behavior. These simulations indicate that bulk ZrN undergoes brittle fracture irrespective of the strain rate, while ZrN nanopillars show quasi-plasticity owing to amorphization at the crack front. The MEAM potential for Zr–N developed in this work is an invaluable tool to investigate atomic-scale mechanisms underlying the response of ZrN to external stimuli (e.g, temperature

  7. Quantum-classical path integral. I. Classical memory and weak quantum nonlocality. (United States)

    Lambert, Roberto; Makri, Nancy


    We consider rigorous path integral descriptions of the dynamics of a quantum system coupled to a polyatomic environment, assuming that the latter is well approximated by classical trajectories. Earlier work has derived semiclassical or purely classical expressions for the influence functional from the environment, which should be sufficiently accurate for many situations, but the evaluation of quantum-(semi)classical path integral (QCPI) expressions has not been practical for large-scale simulation because the interaction with the environment introduces couplings nonlocal in time. In this work, we analyze the nature of the effects on a system from its environment in light of the observation [N. Makri, J. Chem. Phys. 109, 2994 (1998)] that true nonlocality in the path integral is a strictly quantum mechanical phenomenon. If the environment is classical, the path integral becomes local and can be evaluated in a stepwise fashion along classical trajectories of the free solvent. This simple "classical path" limit of QCPI captures fully the decoherence of the system via a classical mechanism. Small corrections to the classical path QCPI approximation may be obtained via an inexpensive random hop QCPI model, which accounts for some "back reaction" effects. Exploiting the finite length of nonlocality, we argue that further inclusion of quantum decoherence is possible via an iterative evaluation of the path integral. Finally, we show that the sum of the quantum amplitude factors with respect to the system paths leads to a smooth integrand as a function of trajectory initial conditions, allowing the use of Monte Carlo methods for the multidimensional phase space integral.

  8. Classical competing risks

    CERN Document Server

    Crowder, Martin J


    If something can fail, it can often fail in one of several ways and sometimes in more than one way at a time. There is always some cause of failure, and almost always, more than one possible cause. In one sense, then, survival analysis is a lost cause. The methods of Competing Risks have often been neglected in the survival analysis literature. Written by a leading statistician, Classical Competing Risks thoroughly examines the probability framework and statistical analysis of data of Competing Risks. The author explores both the theory of the subject and the practicalities of fitting the models to data. In a coherent, self-contained, and sequential account, the treatment moves from the bare bones of the Competing Risks setup and the associated likelihood functions through survival analysis using hazard functions. It examines discrete failure times and the difficulties of identifiability, and concludes with an introduction to the counting-process approach and the associated martingale theory.With a dearth of ...

  9. Classic clover cline clues. (United States)

    Olson, Matthew S; Levsen, Nicholas


    Adaptive clines are striking examples of natural selection in action, yet few have been studied in depth. In this issue of Molecular Ecology, Kooyers & Olsen (2012) introduce modern analyses and thinking towards studies of a classical example of the rapid and repeated evolution of latitudinal and altitudinal clines in cyanogenesis in white clover, Trifolium repens L. Recognizing that adaptive clines represent trade-offs in the selective benefits of traits at different ends of a geographical transect, these researchers focus on whether evidence for selection can be found at regional (coarse) and local (fine) scales. After adjusting for population genetic patterns generated by demographic processes, Kooyers and Olsen provide evidence that the cyanogenesis cline is adaptive across a transect from Louisiana to Wisconsin, USA. Within local populations, divergent selection on coupling dominant and recessive alleles that underlie cyanogenesis is predicted to drive populations to gametic phase disequilibrium (LD), a pattern that has been found in several other studies reviewed by Kooyers and Olsen. The absence of LD within any sampled populations in this study leads the authors to suggest that selective patterns within these clines may be more complex than previously proposed, perhaps even following theoretical predictions of a geographic mosaic. © 2012 Blackwell Publishing Ltd.

  10. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner


    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  11. Classical Fourier analysis

    CERN Document Server

    Grafakos, Loukas


    The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition.  Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...

  12. UV-Completion by Classicalization

    CERN Document Server

    Dvali, Gia; Gomez, Cesar; Kehagias, Alex


    We suggest a novel approach to UV-completion of a class of non-renormalizable theories, according to which the high-energy scattering amplitudes get unitarized by production of extended classical objects (classicalons), playing a role analogous to black holes, in the case of non-gravitational theories. The key property of classicalization is the existence of a classicalizer field that couples to energy-momentum sources. Such localized sources are excited in high-energy scattering processes and lead to the formation of classicalons. Two kinds of natural classicalizers are Nambu-Goldstone bosons (or, equivalently, longitudinal polarizations of massive gauge fields) and scalars coupled to energy-momentum type sources. Classicalization has interesting phenomenological applications for the UV-completion of the Standard Model both with or without the Higgs. In the Higgless Standard Model the high-energy scattering amplitudes of longitudinal $W$-bosons self-unitarize via classicalization, without the help of any new...

  13. Dynamics of unitarization by classicalization

    International Nuclear Information System (INIS)

    Dvali, Gia; Pirtskhalava, David


    We study dynamics of the classicalization phenomenon suggested in G. Dvali et al. , according to which a class of non-renormalizable theories self-unitarizes at very high-energies via creation of classical configurations (classicalons). We study this phenomenon in an explicit model of derivatively-self-coupled scalar that serves as a prototype for a Nambu-Goldstone-Stueckelberg field. We prepare the initial state in form of a collapsing wave-packet of a small occupation number but of very high energy, and observe that the classical configuration indeed develops. Our results confirm the previous estimates, showing that because of self-sourcing the wave-packet forms a classicalon configuration with radius that increases with center of mass energy. Thus, classicalization takes place before the waves get any chance of probing short-distances. The self-sourcing by energy is the crucial point, which makes classicalization phenomenon different from the ordinary dispersion of the wave-packets in other interacting theories. Thanks to this, unlike solitons or other non-perturbative objects, the production of classicalons is not only unsuppressed, but in fact dominates the high-energy scattering. In order to make the difference between classicalizing and non-classicalizing theories clear, we use a language in which the scattering cross section in a generic theory can be universally understood as a geometric cross section set by a classical radius down to which waves can propagate freely, before being scattered. We then show, that in non-classicalizing examples this radius shrinks with increasing energy and becomes microscopic, whereas in classicalizing theories expands and becomes macroscopic. We study analogous scattering in a Galileon system and discover that classicalization also takes place there, although somewhat differently. We thus observe, that classicalization is source-sensitive and that Goldstones pass the first test.

  14. Quantum scattering from classical field theory

    International Nuclear Information System (INIS)

    Gould, T.M.; Poppitz, E.R.


    We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies. ((orig.))

  15. Classical Sets and Non-Classical Sets: An Overview -38 ...

    Indian Academy of Sciences (India)

    Mathematicians, logicians, and computer scientists are trying to model uncertain, imprecise or vague concepts. Here we present two models of vague concepts and draw a comparison between such imprecise sets and the stan- dard classical sets. In Section 1, we define classical sets, which model precise concepts.

  16. Classical Sets and Non-Classical Sets: An Overview -38 ...

    Indian Academy of Sciences (India)

    Classical Sets and Non-Classical Sets: Sumita Basu is assistant professor of mathematics at Lady Braboume. College, Kolkata. Her research interests include artificial intelligence, automata theory, and mathematical logic. Keywords. Fuzzy sets, crisp sets, rough sets, law of excluded middle,. DeMorgan's laws. An Overview.

  17. Innovation: the classic traps. (United States)

    Kanter, Rosabeth Moss


    Never a fad, but always in or out of fashion, innovation gets rediscovered as a growth enabler every half dozen years. Too often, though, grand declarations about innovation are followed by mediocre execution that produces anemic results, and innovation groups are quietly disbanded in cost-cutting drives. Each managerial generation embarks on the same enthusiastic quest for the next new thing. And each generation faces the same vexing challenges- most of which stem from the tensions between protecting existing revenue streams critical to current success and supporting new concepts that may be crucial to future success. In this article, Harvard Business School professor Rosabeth Moss Kanter reflects on the four major waves of innovation enthusiasm she's observed over the past 25 years. She describes the classic mistakes companies make in innovation strategy, process, structure, and skills assessment, illustrating her points with a plethora of real-world examples--including AT&T Worldnet, Timberland, and Ocean Spray. A typical strategic blunder is when managers set their hurdles too high or limit the scope of their innovation efforts. Quaker Oats, for instance, was so busy in the 1990s making minor tweaks to its product formulas that it missed larger opportunities in distribution. A common process mistake is when managers strangle innovation efforts with the same rigid planning, budgeting, and reviewing approaches they use in their existing businesses--thereby discouraging people from adapting as circumstances warrant. Companies must be careful how they structure fledgling entities alongside existing ones, Kanter says, to avoid a clash of cultures and agendas--which Arrow Electronics experienced in its attempts to create an online venture. Finally, companies commonly undervalue and underinvest in the human side of innovation--for instance, promoting individuals out of innovation teams long before their efforts can pay off. Kanter offers practical advice for avoiding

  18. Fundamental Pair Interactions and Applications for Colloidal Silica Particles by Coarse-Grained Simulations

    International Nuclear Information System (INIS)

    Lee, Cheng K.; Hua, Chi C.


    In the first part of this presentation, we introduce how the fundamental pair interactions for colloidal silica particles may be constracted from a self-consistent mapping procedure and coarse-grained simulation without introducing adjustable parameters. Force fields for silica particles with diameter ranging from 1 nm to 100 nm are reported and tabulated in a simple analytical form. In the second part, we describe how the previously obtained force fields may be utilized for modeling rod-like colloidal systems. Focus is on exploring the effects of force field and particulate aspect ratio on the thermodynamic and rheological properties

  19. Structure, modified scaled quantum mechanical force field and a priori prediction of vibrational spectra and their assignment and exponential scaling of frequencies of triphenylene

    International Nuclear Information System (INIS)

    Bandyopadhyay, Indrajit


    The structure, force field and vibrational spectra of triphenylene are studied by B3LYP/6-31G(5d) level of theory. The results are compared to those of the related system, phenanthrene. The scale factors in non-redundant local coordinates obtained after fitting the DFT frequencies to the experimental numbers of phenanthrene-d 0 and -d 10 are transferred to predict the spectra and assignment of triphenylene for in-plane modes. The frequencies based on scaling methodology due to Lee et al. are also obtained. These frequencies are compared with the predicted numbers based on scale factors from phenanthrene. Probable assignment for out-of-plane modes is proposed based on simple scaling of Scott and Random (scale factor 0.9614) as well as by scaling methodology by Lee et al

  20. Cheap but accurate calculation of chemical reaction rate constants from ab initio data, via system-specific, black-box force fields. (United States)

    Steffen, Julien; Hartke, Bernd


    Building on the recently published quantum-mechanically derived force field (QMDFF) and its empirical valence bond extension, EVB-QMDFF, it is now possible to generate a reliable potential energy surface for any given elementary reaction step in an essentially black box manner. This requires a limited and pre-defined set of reference data near the reaction path and generates an accurate approximation of the reference potential energy surface, on and off the reaction path. This intermediate representation can be used to generate reaction rate data, with far better accuracy and reliability than with traditional approaches based on transition state theory (TST) or variational extensions thereof (VTST), even if those include sophisticated tunneling corrections. However, the additional expense at the reference level remains very modest. We demonstrate all this for three arbitrarily chosen example reactions.

  1. Vibrational Frequencies and Spectroscopic Constants for 1(sup 3)A' HNC and 1(sup 3)A' HOC+ from High-Accuracy Quartic Force Fields (United States)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.


    The spectroscopic constants and vibrational frequencies for the 1(sup 3)A' states of HNC, DNC, HOC+, and DOC+ are computed and discussed in this work. The reliable CcCR quartic force field based on high-level coupled cluster ab initio quantum chemical computations is exclusively utilized to provide the anharmonic potential. Then, second order vibrational perturbation theory and vibrational configuration interaction methods are employed to treat the nuclear Schroedinger equation. Second-order perturbation theory is also employed to provide spectroscopic data for all molecules examined. The relationship between these molecules and the corresponding 1(sup 3)A' HCN and HCO+ isomers is further developed here. These data are applicable to laboratory studies involving formation of HNC and HOC+ as well as astronomical observations of chemically active astrophysical environments.

  2. New ways to boost molecular dynamics simulations

    NARCIS (Netherlands)

    Krieger, E.; Vriend, G.


    We describe a set of algorithms that allow to simulate dihydrofolate reductase (DHFR, a common benchmark) with the AMBER all-atom force field at 160 nanoseconds/day on a single Intel Core i7 5960X CPU (no graphics processing unit (GPU), 23,786 atoms, particle mesh Ewald (PME), 8.0 A cutoff, correct

  3. Classic African American Children's Literature (United States)

    McNair, Jonda C.


    The purpose of this article is to assert that there are classic African American children's books and to identify a sampling of them. The author presents multiple definitions of the term classic based on the responses of children's literature experts and relevant scholarship. Next, the manner in which data were collected and analyzed in regard to…

  4. 'Leonard pairs' in classical mechanics

    International Nuclear Information System (INIS)

    Zhedanov, Alexei; Korovnichenko, Alyona


    Leonard pairs (LP) are matrices with the property of mutual tri-diagonality. We introduce and study a classical analogue of LP. We show that corresponding classical 'Leonard' dynamical variables satisfy non-linear relations of the AW-type with respect to Poisson brackets. (author)

  5. Classic romance in electronic arrangement

    Directory of Open Access Journals (Sweden)

    Kizin M.M.


    Full Text Available this article analyses the transformation of the performing arts of classical romance in the terms of electronic sound and performance via electronic sounds arrangements. The author focuses on the problem of synthesis of electronic sound arrangements and classical romance, offering to acquire the skills of the creative process in constantly changing conditions of live performances.

  6. Doing classical theology in context

    African Journals Online (AJOL)


    This article is about doing classical theology in context. The weight ... Classical texts always share in those liberative moments. The question then is in what sense do they present a challenge to the contemporary reader. The second ... tradition established by Marx (1843); the invention by Haydn of a new musical style after ...

  7. Teaching and Demonstrating Classical Conditioning. (United States)

    Sparrow, John; Fernald, Peter


    Discusses classroom demonstrations of classical conditioning and notes tendencies to misrepresent Pavlov's procedures. Describes the design and construction of the conditioner that is used for demonstrating classical conditioning. Relates how students experience conditioning, generalization, extinction, discrimination, and spontaneous recovery.…

  8. Classical Dynamics of Triatomic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Parr, Christopher Alan [California Inst. of Technology (CalTech), Pasadena, CA (United States)


    The classical equations of motion of some bent triatomic harmonic molecular models are integrated numerically to investigate the assumptions underlying contemporary theories of unimolecular reaction rates. The classical equations of motion of two anharmonic bent triatomic molecular models are integrated numerically. Also, a Sato surface, free of spurious wells, is proposed for the reaction H + DBr.

  9. The Diversity of Classical Archaeology

    DEFF Research Database (Denmark)

    This book is the first volume in the series Studies in Classical Archaeology, founded and edited by professors of classical archaeology, Achim Lichtenberger and Rubina Raja. This volume sets out the agenda for this series. It achieves this by familiarizing readers with a wide range of themes and ...

  10. Classicalization of Gravitons and Goldstones

    CERN Document Server

    Dvali, Gia; Kehagias, Alex


    We establish a close parallel between classicalization of gravitons and derivatively-coupled Nambu-Goldstone-type scalars. We show, that black hole formation in high energy scattering process represents classicalization with the classicalization radius given by Schwarzschild radius of center of mass energy, and with the precursor of black hole entropy being given by number of soft quanta composing this classical configuration. Such an entropy-equivalent is defined for scalar classicalons also and is responsible for exponential suppression of their decay into small number of final particles. This parallel works in both ways. For optimists that are willing to hypothesize that gravity may indeed self-unitarize at high energies via black hole formation, it illustrates that the Goldstones may not be much different in this respect, and they classicalize essentially by similar dynamics as gravitons. In the other direction, it may serve as an useful de-mystifier of via-black-hole-unitarization process and of the role...

  11. Classical dynamics a modern perspective

    CERN Document Server

    Sudarshan, Ennackal Chandy George


    Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of ...

  12. Hybrid Quantum-Classical Approach to Quantum Optimal Control. (United States)

    Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu


    A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.

  13. Loire Classics: Reviving Classicism in some Loire Poets

    Directory of Open Access Journals (Sweden)

    Wim Verbaal


    Full Text Available The term 'Loire poets' has come to refer to a rather undefinable group of poets that in the second half of the eleventh century distinguishes itself through its refined poetics. They are often characterized as medieval humanists thanks to their renewed interest in the classics. Sometimes their movement is labelled a 'classicist' one. But what does this 'classicism' mean? Is it even permitted to speak of medieval 'classicisms'? This contribution approaches the question of whether we can apply this modern label to pre-modern phenomena. Moreover, it explores the changes in attitude towards the classics that sets the Loire poets off from their predecessors and contemporaries. The article focuses on poems by Hildebert of Lavardin, Baudri of Bourgueil, Marbod of Rennes, and Geoffrey of Reims. They are compared with some contemporary poets, such as Reginald of Canterbury and Sigebert of Gembloux.

  14. Mathematical methods of classical physics

    CERN Document Server

    Cortés, Vicente


    This short primer, geared towards students with a strong interest in mathematically rigorous approaches, introduces the essentials of classical physics, briefly points out its place in the history of physics and its relation to modern physics, and explains what benefits can be gained from a mathematical perspective. As a starting point, Newtonian mechanics is introduced and its limitations are discussed. This leads to and motivates the study of different formulations of classical mechanics, such as Lagrangian and Hamiltonian mechanics, which are the subjects of later chapters. In the second part, a chapter on classical field theories introduces more advanced material. Numerous exercises are collected in the appendix.

  15. The Wigner representation of classical mechanics, quantization and classical limit

    International Nuclear Information System (INIS)

    Bolivar, A.O.


    Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2π → 0. (author)

  16. Classical physics and classical logic in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Baechtold, M. [Dortmund Univ. (Germany). Inst. fuer Philosophie


    Are the measurement outcomes in microphysics ''classical''? If yes, in which sense? In this talk, I come back to Niels Bohr's interpretation of quantum mechanics and his claim that every measurement outcomes have to be described by means of classical physics. Carl Friedrich von Weizsaecker's transcendental version of this claim and its recent justification provided by Brigitte Falkenburg are also discussed. I then support the idea that a measurement outcome in microphysics cannot be considered as ''classical'' because its occurrence would be governed by the deterministic laws of classical physics (indeed, in the general case, it can only be predicted in a probabilistic manner by quantum mechanics). It can be considered as ''classical'', I argue, only by reference to classical logic. It is true, when no measurement is performed, the structure of propositions expressing all the possible events conforms to a kind of quantum logic (e.g. partial Boolean algebra or orthomodular lattice). However, if considering a performed measurement, the propositions expressing its possible outcomes (i.e. ''possible'' according to the predictions of quantum mechanics) are characterized as follows: at the end of the measurement (i) each of these propositions is either true or false (principle of bivalence), and (ii) only one of these propositions is true (principle of mutual exclusiveness). (orig.)

  17. Quantum dynamics in open quantum-classical systems. (United States)

    Kapral, Raymond


    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  18. Multiple grid methods for classical molecular dynamics. (United States)

    Skeel, Robert D; Tezcan, Ismail; Hardy, David J


    Presented in the context of classical molecular mechanics and dynamics are multilevel summation methods for the fast calculation of energies/forces for pairwise interactions, which are based on the hierarchical interpolation of interaction potentials on multiple grids. The concepts and details underlying multigrid interpolation are described. For integration of molecular dynamics the use of different time steps for different interactions allows longer time steps for many of the interactions, and this can be combined with multiple grids in space. Comparison is made to the fast multipole method, and evidence is presented suggesting that for molecular simulations multigrid methods may be superior to the fast multipole method and other tree methods.

  19. New perspectives on classical electromagnetism


    Cote, Paul J.


    The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.

  20. Classical Mechanics and Symplectic Integration

    DEFF Research Database (Denmark)

    Nordkvist, Nikolaj; Hjorth, Poul G.


    Content: Classical mechanics: Calculus of variations, Lagrange’s equations, Symmetries and Noether’s theorem, Hamilton’s equations, cannonical transformations, integrable systems, pertubation theory. Symplectic integration: Numerical integrators, symplectic integrators, main theorem on symplectic...

  1. Quantum money with classical verification

    International Nuclear Information System (INIS)

    Gavinsky, Dmitry


    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it

  2. Classical theory of radiating strings (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.


    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  3. Dynamical systems in classical mechanics

    CERN Document Server

    Kozlov, V V


    This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics

  4. Information transport in classical statistical systems (United States)

    Wetterich, C.


    For "static memory materials" the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are "quantum simulators". For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.

  5. Beyond the borders of classical optical measurements

    International Nuclear Information System (INIS)

    Eisenberg, H.; Khoury, G.; Fonseca, E.; Bouwmeester, D.


    Full Text: The limits of optical measurements are the subject to many recent works. It has been shown how by using non-classical photonic states, spatial resolution can exceed the diffraction limit [1]. The same states also improve interference measurements beyond the shot noise and up to the quantum Heisenberg limit [2]. On the other hand, a few methods have been suggested that improve the optical resolution by exploiting classical optical nonlinearities [3]. First, we will present a scheme that exploits the non-local quantum correlations of a second order entangled state produced by optical parametric down-conversion [4]. The scheme results with a non-classical state that can be used in quantum limited interferometry. It is also simply extendable to states of any photon number. Another method will be presented, where nonlinear measurements are induced by projecting the state of light onto the Fock space [5]. This process simulated optical nonlinearities up to the 7th order. We used those measurements to characterize the output of a standard polarization interferometer. Improved resolution was demonstrated, but a detailed analysis reveals the differences to the previous nonclassical approach

  6. Quantum and classical ripples in graphene (United States)

    Hašík, Juraj; Tosatti, Erio; MartoÅák, Roman


    Thermal ripples of graphene are well understood at room temperature, but their quantum counterparts at low temperatures are in need of a realistic quantitative description. Here we present atomistic path-integral Monte Carlo simulations of freestanding graphene, which show upon cooling a striking classical-quantum evolution of height and angular fluctuations. The crossover takes place at ever-decreasing temperatures for ever-increasing wavelengths so that a completely quantum regime is never attained. Zero-temperature quantum graphene is flatter and smoother than classical graphene at large scales yet rougher at short scales. The angular fluctuation distribution of the normals can be quantitatively described by coexistence of two Gaussians, one classical strongly T -dependent and one quantum about 2° wide, of zero-point character. The quantum evolution of ripple-induced height and angular spread should be observable in electron diffraction in graphene and other two-dimensional materials, such as MoS2, bilayer graphene, boron nitride, etc.

  7. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter


    Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.

  8. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    International Nuclear Information System (INIS)

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.


    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study. Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2 /H 2 O binary mixtures are computationally studied here for the first time and their critical parameters are reported.

  9. A Numerical Study of Low-Thrust Limited Power Trajectories between Coplanar Circular Orbits in an Inverse-Square Force Field

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes


    Full Text Available A numerical study of optimal low-thrust limited power trajectories for simple transfer (no rendezvous between circular coplanar orbits in an inverse-square force field is performed by two different classes of algorithms in optimization of trajectories. This study is carried out by means of a direct method based on gradient techniques and by an indirect method based on the second variation theory. The direct approach of the trajectory optimization problem combines the main positive characteristics of two well-known direct methods in optimization of trajectories: the steepest-descent (first-order gradient method and a direct second variation (second-order gradient method. On the other hand, the indirect approach of the trajectory optimization problem involves two different algorithms of the well-known neighboring extremals method. Several radius ratios and transfer durations are considered, and the fuel consumption is taken as the performance criterion. For small-amplitude transfers, the results are compared to the ones provided by a linear analytical theory.

  10. A computer program for lattice-dynamical evaluation of Debye-Waller factors and thermodynamic functions for minerals, starting from empirical force fields

    International Nuclear Information System (INIS)

    Pilati, T.; Dermartin, F.; Gramaccioli, C.M.


    A wide-purpose computer program has been written (Fortran) for lattice dynamical evaluation of crystallographic and thermodynamic properties of solids, especially minerals or inorganic substances.The program essentially consists of a routine affording first and second derivatives of energy with respect to mass weighted coordinates, properly modulated by a wave vector algorithm, so that diagonalization can immediately follow and arrive at frequencies, density of states, and eventually to thermodynamic functions and Debye-Waller parameters thorough an automatic Brillouin-zone sampling procedure. The input consists of crystallographic data (unit-cell parameters, space group symmetry operations, atomic coordinates), plus atomic charge and empirical parameters, such as force constants or non-bonded atom-atom interaction energy functions in almost any form. It is also possible to obtain the structure corresponding to the energy minimum, or even to work with partial rigid bodies, in order to reduce the order of the dynamical matrices. The program provides for automatic symmetry labelling of the vibrational modes, in order to compare them with the experimental data; there is possibility of improving the empirical functions through a minimization routine. Examples of application and transferability of force fields to a series of minerals are provided. (author)

  11. Anharmonic rovibrational calculations of singlet cyclic C{sub 4} using a new ab initio potential and a quartic force field

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohong; Bowman, Joel M., E-mail: [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States); Huang, Xinchuan [SETI Institute, 189 Bernardo Ave, Suite 100, Mountain View, California 94043 (United States); Lee, Timothy J., E-mail: [MS 245-1, NASA Ames Research Center, Mofffett Field, California 94035 (United States)


    We report a CCSD(T)/cc-pCV5Z quartic force field (QFF) and a semi-global CCSD(T)-F12b/aug-cc-pVTZ potential energy surface (PES) for singlet, cyclic C{sub 4}. Vibrational fundamentals, combinations, and overtones are obtained using vibrational second-order perturbation theory (VPT2) and the vibrational configuration-interaction (VCI) approach. Agreement is within 10 cm{sup −1} between the VCI calculated fundamentals on the QFF and PES using the MULTIMODE (MM) program, and VPT2 and VCI results agree for the fundamentals. The agreement between VPT2-QFF and MM-QFF results is also good for the C{sub 4} combinations and overtones. The J = 1 and J = 2 rovibrational energies are reported from both VCI (MM) on the PES and VPT2 on the QFF calculations. The spectroscopic constants of {sup 12}C{sub 4} and two C{sub 2v}-symmetry, single {sup 13}C-substituted isotopologues are presented, which may help identification of cyclic C{sub 4} in future experimental analyses or astronomical observations.

  12. Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid-protein interactions, side chain transfer free energies and model proteins

    International Nuclear Information System (INIS)

    Tieleman, D Peter; MacCallum, Justin L; Ash, Walter L; Kandt, Christian; Xu Zhitao; Monticelli, Luca


    We have reparameterized the dihedral parameters in a commonly used united-atom lipid force field so that they can be used with the all-atom OPLS force field for proteins implemented in the molecular dynamics simulation software GROMACS. Simulations with this new combination give stable trajectories and sensible behaviour of both lipids and protein. We have calculated the free energy of transfer of amino acid side chains between water and 'lipid-cyclohexane', made of lipid force field methylene groups, as a hydrophobic mimic of the membrane interior, for both the OPLS-AA and a modified OPLS-AA force field which gives better hydration free energies under simulation conditions close to those preferred for the lipid force field. The average error is 4.3 kJ mol -1 for water-'lipid-cyclohexane' compared to 3.2 kJ mol -1 for OPLS-AA cyclohexane and 2.4 kJ mol -1 for the modified OPLS-AA water-'lipid-cyclohexane'. We have also investigated the effect of different methods to combine parameters between the united-atom lipid force field and the united-atom protein force field ffgmx. In a widely used combination, the strength of interactions between hydrocarbon lipid tails and proteins is significantly overestimated, causing a decrease in the area per lipid and an increase in lipid ordering. Using straight combination rules improves the results. Combined, we suggest that using OPLS-AA together with the united-atom lipid force field implemented in GROMACS is a reasonable approach to membrane protein simulations. We also suggest that using partial volume information and free energies of transfer may help to improve the parameterization of lipid-protein interactions and point out the need for accurate experimental data to validate and improve force field descriptions of such interactions

  13. Classical approach in atomic physics

    International Nuclear Information System (INIS)

    Solov'ev, E.A.


    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincare section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormalization group symmetry, criterion of accuracy and so on are reviewed as well. (author)

  14. Hermeneutic reading of classic texts. (United States)

    Koskinen, Camilla A-L; Lindström, Unni Å


    The purpose of this article is to broaden the understandinfg of the hermeneutic reading of classic texts. The aim is to show how the choice of a specific scientific tradition in conjunction with a methodological approach creates the foundation that clarifies the actual realization of the reading. This hermeneutic reading of classic texts is inspired by Gadamer's notion that it is the researcher's own research tradition and a clearly formulated theoretical fundamental order that shape the researcher's attitude towards texts and create the starting point that guides all reading, uncovering and interpretation. The researcher's ethical position originates in a will to openness towards what is different in the text and which constantly sets the researcher's preunderstanding and research tradition in movement. It is the researcher's attitude towards the text that allows the text to address, touch and arouse wonder. Through a flexible, lingering and repeated reading of classic texts, what is different emerges with a timeless value. The reading of classic texts is an act that may rediscover and create understanding for essential dimensions and of human beings' reality on a deeper level. The hermeneutic reading of classic texts thus brings to light constantly new possibilities of uncovering for a new envisioning and interpretation for a new understanding of the essential concepts and phenomena within caring science. © 2012 The Authors Scandinavian Journal of Caring Sciences © 2012 Nordic College of Caring Science.

  15. Classical field isomorphisms in two-fluid plasmas

    International Nuclear Information System (INIS)

    Thompson, Richard J.; Moeller, Trevor M.


    Previous work recognized a new framework for the equations of a multifluid plasma, wherein each species can be described by a set of equations remarkably similar to the Maxwell equations of classical electrodynamics. This paper extends the previous effort to form an exact isomorphism between the multifluid theory and classical electrodynamics. The major benefits of the new formulation are that the explicit coupling between different species is minimized, and theorems and techniques of classical electrodynamics can be immediately applied to the new multifluid formulation. We introduce the exact isomorphism and investigate some of the immediate consequences from classical electrodynamics. To provide a visualization of the isomorphism, previous 1D and 2D numerical simulations are postprocessed and presented to illustrate the generalized fields and source terms.

  16. Overview of Classical Swine Fever (Hog Cholera, Classical Swine fever) (United States)

    Classical swine fever is a contagious often fatal disease of pigs clinically characterized by high body temperature, lethargy, yellowish diarrhea, vomits and purple skin discoloration of ears, lower abdomen and legs. It was first described in the early 19th century in the USA. Later, a condition i...

  17. Classical planning and causal implicatures

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Benotti, Luciana

    In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...... to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate...

  18. Resonance phenomenon in classical cepheids

    International Nuclear Information System (INIS)

    Takeuti, Mine; Aikawa, Toshiki


    To investigate resonance phenomenon in classical cepheids, the non-linear radial oscillation of stars is studied based on the assumption that the non-adiabatic perturbation is expressed in terms of van der Pol's type damping. Two- and three-wave resonance in this system is applied to classical cepheids to describe their bump and double-mode behavior. The phase of bump and the depression of amplitude are explained for bump cepheids. The double-periodicity is shown by the enhancement of the third overtone in three-wave resonance. Non-linear effect on resonant period is also discussed briefly. (author)

  19. Classical higher-order processes

    DEFF Research Database (Denmark)

    Montesi, Fabrizio


    Classical Processes (CP) is a calculus where the proof theory of classical linear logic types processes à la Π-calculus, building on a Curry-Howard correspondence between session types and linear propositions. We contribute to this research line by extending CP with process mobility, inspired...... by the Higher-Order Π-calculus. The key to our calculus is that sequents are asymmetric: one side types sessions as in CP and the other types process variables, which can be instantiated with process values. The controlled interaction between the two sides ensures that process variables can be used at will...

  20. Principal bundles the classical case

    CERN Document Server

    Sontz, Stephen Bruce


    This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles.  While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.


    Indian Academy of Sciences (India)

    IAS Admin

    just downstream from the glomerular ultrafiltration apparatus? Again, the system represents a far-from-insignificant aspect of our physiology; 20 to. 25% of the output of the heart passes through this one pair of organs. About 20% of the plasma volume squeezes out of the blood in the process, in absolute terms around 60ml ...


    Indian Academy of Sciences (India)

    However, Rutherford's atomic model was not perfect and raised many questions. The needed improvement was worked out by Niels Bohr in two years after Rutherford proposed his theory. Bohr, after getting his PhD from the University of Copenhagen in 1911, joined Rutherford at Manchester in. March 1912, stayed there till ...


    Indian Academy of Sciences (India)

    IAS Admin

    by others and by himself. d) While the phase for which he is well known is part of this paper, it is clearly not an isolated discovery but part of a much larger programme. One also cannot help noticing the mature, measured, clear, and careful style, old fashioned though it may seem to today's readers. We also reproduce.


    Indian Academy of Sciences (India)

    IAS Admin

    when they shed their skins and finally change into butterflies, moths, beetles, bees, and flies. All these little creatures were placed on the plants, flowers, and fruit which they ate for nourishment;. I have also included here species of West Indian spiders, ants, snakes, lizards, rare toads, and frogs, all of which I myself sketched ...


    Indian Academy of Sciences (India)

    nium bombarded with a tiny neutron can yield fragments of much lower atomic number. Sitting on a tree trunk, Meitner estimated the energy release in this breakup process, which they later named 'fission'. After the vacation, Frisch returned to his home institute in Copenhagen and discussed with Bohr, who immedi-.


    Indian Academy of Sciences (India)

    IAS Admin

    important female steroid hormone. It was the time when a good number of prominent organic chemists were engaged in the chemistry of steroids. Because of their biological importance, there was tremendous competitive activity to develop convenient stereospe- cific routes for their synthesis. This paper and his other papers ...


    Indian Academy of Sciences (India)

    and how the related ideas of relativity affect our formulation of field theories, form the ... problem. While relativity is a strong tool provided by physicists for dealing with the cosmological problem, its early orgins are actually to be found in cosmology. .... dynamical relations of physics is provided by tensor analysis, for the lan-.


    Indian Academy of Sciences (India)


    Nov 11, 2013 ... It tried to envisage individual trajectories and anticipated the role of reagent translation and vibration on the rate of a chemical ... has been fully translated and the official version published in the same journal recently (2013). We are grateful to the journal for ...... tainties of the procedure. Instead we take into ...


    Indian Academy of Sciences (India)

    IAS Admin

    Winter Meeting and receives a monetary award, the Oersted Medal, an Award Certifi- cate, and travel expenses to the ... special lectures on the theory of relativity, especially in its four dimensional form, as developed by ... on this theory were heard by Linus Pauling, who learned as much from them as I did myself. In 1927, in ...


    Indian Academy of Sciences (India)


    A B Kempe, an English kinematician, provided in this paper a constructive proof that a linkage can be methodically created to trace a general algebraic curve. ... Statement about ownership and other particulars of. Resonance – journal of science education. 1. Place of Publication : Bangalore. 2. Periodicity of Publication :.


    Indian Academy of Sciences (India)

    IAS Admin

    self confidence of a C V Raman, might they have been the first rather than the second to publish the lifetime of spontaneous fission? On the other hand, we must keep in mind that Raman knew that the phenomenon he was looking for was predicted by theory, while the lifetime measured in this work was far shorter than.


    Indian Academy of Sciences (India)

    IAS Admin

    family of curves, a feat which marked the entry of the prodigy Norbert Wiener onto the mathematical scene. The curves are continuous but nowhere differentiable – a phenom- enon regarded as a mathematical curiosity by most physicists but not Jean Perrin, whose intuitive insights were later proved rigorously. Many more ...


    Indian Academy of Sciences (India)

    IAS Admin

    139th Meeting at Shereton Park Hotel, Wilmington Room, AAAS Section on Environmental Sciences, New. Approaches to Global Weather: GARP (The Global Atmospheric Research ... Massachusetts Institute of Technology, Cambridge. Lest I appear frivolous in even posing the title question, let alone suggesting that it ...


    Indian Academy of Sciences (India)

    IAS Admin

    What is worth learning from this paper is the rather confused situation at that time, with many ideas floating around, proposed by famous astronomers like Kapetyn, Jeans, Lindblad and Shapley. Oort is meticulous in citing his sources, but he also quickly disposes of untenable ideas, though in rather mild language.


    Indian Academy of Sciences (India)

    The Astronomical Quarterly chose to reprint the unpublished report written by Lyman Spitzer as early as. 1947, on the benefits to astronomy from space telescopes. Artificial earth satellites launched by rockets were just being talked about then; the first success came in 1957 with the launch of 'Sputnik' by the then. USSR.


    Indian Academy of Sciences (India)

    IAS Admin

    The paper deals with his and his co-worker K M Sivanandaiah's (who later joined the chemistry faculty of Bangalore. University and made some very useful contributions to peptide chemistry) efforts to develop a convenient stereospecific synthesis of oestrone (written also as estrone), an important female steroid hormone.


    Indian Academy of Sciences (India)

    IAS Admin

    were a dart game, I would be thrown out – for throwing darts at a wall first and only subsequently painting ... to check the performance of the evolutionary process. In particular, it can provide a test for ..... Biochem. Physiol. 83A 255–259. Vallee R B 1998 Molecular motors and the cytoskeleton (San Diego: Academic Press).


    Indian Academy of Sciences (India)

    Swimming Against the Current of Racism. It was a strange state of pain and agony in which I found myself. “Who is this man,. Jones?” I said to myself, “to sit in judgement upon me and my abilities”3. But the thing had been done, and both the Principal and the Director of Public Instruction had unhesitatingly put the seal of ...


    Indian Academy of Sciences (India)

    1. Following LondonГs arguments, one may express the energy of such systems for each spatial conf guration of the atoms in terms of the energy function of the diatomic molecules that can be formed by pairwise combination of the reacting atoms. When two molecules of hi react, e. g., according to. 2hi i2 h2 at every stage of ...


    Indian Academy of Sciences (India)


    From tim e im m em orial m en studied the heavens w ith their unaided eyes. F inally, about three centuries ago, the telescope w as invented. W ith the grow th and developm ent of these giant eyes, the exploration of space has. The article reproduced here was written by Edwin Hubble for P opular A stronom y. (Vol.54, p.183 ...